
University of Insubria, Varese, Italy

Department of Theoretical and Applied
Science

A Framework in Support of

Emergency Management for

Speci�ed and Unspeci�ed

Emergencies

Author:

Michele Guglielmi

Supervisors:

Elena Ferrari

Barbara Carminati

January 1, 2014

Contents

1 Introduction 5
1.1 Unspeci�ed Emergency Management 6
1.2 Organization . 8
1.3 Publications . 8

2 State of the Art 11
2.1 Complex Event Processing . 11
2.2 Break the Glass Policies . 12

2.2.1 Comparison between BtG and Emergency Policies . . . 13
2.3 Context-based Access Control 14
2.4 Obligations . 15
2.5 Policy Composition . 16
2.6 Administrative Access Control 17
2.7 Policy Similarity . 19
2.8 Anomaly Detection for Data Streams 19

3 Emergency Access Control Model 21
3.1 Emergency Detection . 21

3.1.1 Core Event Speci�cation Language 22
3.1.2 Emergency Description 27

3.2 Emergency Policy . 30
3.2.1 Emergency Policy Correctness 32
3.2.2 Emergency Policy Administration 45
3.2.3 Emergency Policy Composition 63

4 Unspeci�ed Emergency Management 79
4.1 Detection and Management of Unspeci�ed Emergencies 80
4.2 Policy Based Analysis . 83

4.2.1 Satisfaction level for roles and object types 86
4.2.2 Satisfaction level for subject/object conditions 87
4.2.3 Satisfaction Level of a dar on a tacp 90

2

CONTENTS 3

4.3 Anomaly Based Analysis . 93
4.3.1 Anomaly Detection . 94
4.3.2 Correlation Discovery 96
4.3.3 Anomaly Correlation 99

4.4 Historical Based Analysis . 101

5 Enforcement 109
5.1 Architecture . 109
5.2 Unspeci�ed Emergencies Architecture 115

6 Experiments 117
6.1 Emergency Policy Evaluation 117

6.1.1 Dataset . 117
6.1.2 Event Detection Time 119
6.1.3 Post Processing Time 127

6.2 Unspeci�ed Emergency Policy Evaluation 128
6.2.1 Policy Based Analysis Evaluation 128
6.2.2 Access Requests Analysis Evaluation 132
6.2.3 Dataset . 132
6.2.4 Satisfaction Level Evaluation 134
6.2.5 Anomaly Level Evaluation 135
6.2.6 Historical Level Evaluation 136
6.2.7 Satisfaction, Anomaly and Historical Level Comparison 137
6.2.8 Threshold Evaluation 138
6.2.9 Experiments Discussion 139

7 Conclusions 143
7.1 Acknowledgment . 145

Chapter 1

Introduction

In the last years, natural catastrophic events, e.g., �oods, earthquakes, hur-
ricanes [2] and man-made disasters, e.g., airplane crashes, terrorist attacks,
nuclear accidents [7], highlight the need for a more e�cient emergency man-
agement. In particular, attacks of September 11, 2001, have shown that the
lack of e�ective information sharing resulted in the failure to intercept the
terrorist attacks [1]. This example points out the need of a more e�cient,
timely and �exible information sharing during emergency management.

In traditional information systems, information sharing is usually regu-
lated by a proper set of pre-de�ned access control policies that state who
can access which data portion and under which mode [48]. This model does
not �t the emergency management scenario, where usually there is the need
to access resources with greater �exibility than during the normal system
operations. In order to achieve this goal, when an emergency happens, it is
necessary to bypass the regular access control policies and grant users ac-
cess to resources not normally authorized, in order to handle the emergency.
However, such downgrading of the information security classi�cation should
be temporary and controlled, that is, regulated by proper emergency policies.

To cope with these requirements in [27], we propose an access control
model to enforce controlled information sharing in emergency situations. Our
model is able to enforce �exible information sharing through the speci�cation
and enforcement of emergency policies. Emergency policies allow the instanti-
ation of temporary access control policies that override regular policies during
emergency situations. More precisely, each emergency is associated with one
or more temporary access control policy templates, describing the new ac-
cess rights to be enforced during speci�c emergency situations. Emergency
obligations are also supported, since the detection of an emergency could
require the immediate execution of some activities encoded according to a
given response plan.

5

6 CHAPTER 1. INTRODUCTION

The core emergency policy model proposed in [27] has been extended
in order to support composed emergency policies [28] and administration
policies [31].

The former extension [28] introduces the concept of composed emergen-
cies, to describe how atomic emergencies can be combined together to from a
composed one. Moreover, in some cases, a composed emergency may require
overriding the tacps/obligations that have been activated as response plans
of its sub-emergencies, whereas in other cases tacps/obligations of composed
emergencies should coexist with those of its sub-emergencies. Therefore, we
associate with each policy for composed emergencies an overriding strategy
according to which we can specify if tacps/obligations of sub-emergencies
have to be maintained, deleted or temporarily blocked until the end of the
composed emergency.

The latter extension [31] concerns administration policies. Emergency
management is a complex task which requires distributing the rights of
create/modify emergency policies among di�erent subjects. In order to dis-
tribute these rights, we introduce administration policies that specify who are
people authorized to create/modify policies and which emergencies and po-
lices they are authorized to specify. These restrictions are captured through
the de�nition of proper scopes that limit the right to state emergency policies
within speci�c constraints.

1.1 Unspeci�ed Emergency Management

The core emergency policy model (and its extensions) is able to deal only
with emergency situations which can be speci�ed a-priori. In many domains
this is enough since, in emergency management, it is common that experts
of the �eld de�ne response plans, based on regulations and laws as well as on
reports resulting by the emergency preparedness and risk assessment phase
[47]. All these documents represent a solid base from which emergencies and
emergency policies can be speci�ed. However, there are many scenarios where
this might be not enough, since it is di�cult to a-priori �gure out all possible
emergency situations. For instance, in the healthcare domain, it is di�cult
to model a priori any possible disease or injury which might be considered as
an emergency and associate with it the correct information need. This may
have serious consequences, in that unspeci�ed emergencies are not covered
by de�ned policies and therefore the system is not able to respond to their
information needs, unless someone manually triggers the emergency status.
This is the idea behind the break-the-glass model (cfr. Chapter 2 for more
details). However, we believe that the risk of information leakage caused by

1.1. UNSPECIFIED EMERGENCY MANAGEMENT 7

let the user arbitrarily breaking the glass might seriously impact the system
security. For this reason, we explore an alternative approach to deal with
unspeci�ed emergencies highly reducing the risk of information leakage.

The basic idea is to open the system to some access control violations,
i.e., to grant access to some requests that normally should be denied, but
that may be permitted due to the happening of an unspeci�ed emergency.
The reason behind this choice is that the risk of data leakage generated by
these violations might be lower than the damage caused by a late emergency
response. Let us consider, as an example, a power plant; usually only power
plant technicians are allowed to access the schema of the infrastructure but,
suppose that a �re�ghter Y requires the access to this information. If this
access is denied, we might have that: (1) an unspeci�ed emergency such as
a �re alarm is really going on in the power plant, or (2) the request is an
attempted abuse from Y . De�nitely, in this latter case granting the access is
a violation to the infrastructure schema con�dentiality. However, we might
agree that this damage is negligible compared to the bene�ts of granting
the access in case of an unspeci�ed �re emergency. Obviously, not all denied
access requests have to be allowed. In contrast, the idea is to have a system
open only to those denied access requests that have been blocked due to the
absence of proper emergency policies. The problem is how to detect whether
a denied access request is related to an unspeci�ed emergency or it is simply
an attempted abuse.

In order to achieve this goal, the core emergency policy model has been ex-
tended using three strategies for the management of unspeci�ed emergencies:
the policy based analysis, anomaly based analysis and historical based analy-
sis. The anomaly based analysis combines anomaly detection techniques and
complex event processing (CEP) in order to detect anomalous events which
might represent unspeci�ed emergencies and correlate these events to denied
access requests. The historical based analysis considers previously permitted
access requests in order to detect if the current access request is similar to one
of them. For each of these strategies, we de�ne measures called satisfaction
level, anomaly level and historical level. These levels measure, respectively,
how much an access request is close to satisfy existing policies, how much a
set of events is anomalous w.r.t. the normal behavior, how much an access
request is similar to the previously permitted access requests. Every time an
access request is denied due to the absence of a proper policy, we exploit
our strategies to recognize whether it represents an attempted abuse or an
information need for an unspeci�ed emergency. In the former case, the access
request is denied, otherwise it is authorized as a controlled violation.

8 CHAPTER 1. INTRODUCTION

1.2 Organization

This thesis is organized as follows:

• Chapter 2 analyzes the state of the art of topics related to the ac-
cess control model presented in this thesis. More precisely, the litera-
ture about Complex Event Processing (CEP) technology, �exible access
control models based on Break the Glass (BtG) policies, context-based
access control, obligations, policy composition, administrative access
control, policy similarity and anomaly detection are presented.

• Chapter 3 presents the core emergency policy model for �exible infor-
mation sharing in emergency management. The following extensions of
the core model are also presented: (i) policy composition, (ii) adminis-
trative emergency policies, (iii) correctness validity checks.

• Chapter 4 presents the extension of the core model which supports for
unplanned emergency based on access request analysis and anomaly
detection.

• In Chapter 5, a prototype implementation of the proposed access con-
trol model is explained. The prototype architecture details are provided
with a full explanation of the technologies used in the implementation
and the functionalities of the prototype are explained.

• Chapter 6 shows experimental results of a wide series of tests performed
on the prototype. A set of test on the core model prototype performance
are provided and a series of experiments on correctness of the extension
on unspeci�ed emergency is presented.

• Chapter 7 draws some conclusions summarizing the main results and
discussing plans for future works.

1.3 Publications

Part of the material presented in this Ph.D. thesis has already been published:

• The core emergency policy model for �exible emergency management
has been published in [27].

• The extension of the core model for the support of composed emergency
policies has been presented in [28].

1.3. PUBLICATIONS 9

• An in-depth analysis of the model is discussed in [31] and adminis-
tration policies are introduced to enhance the model �exibility during
emergencies.

• The prototype framework called SHARE (Secure information sHaring
frAmework for emeRgency managemEnt) enforcing the core emergency
policy model for emergency situations has been shown in [30].

• The extended version of the access control model able to deal with
unspeci�ed emergencies has been presented in [29, 26].

Chapter 2

State of the Art

The access control model proposed in this thesis covers a large number of
research areas. First of all, emergency detection is performed exploiting Com-
plex Event Processing (CEP) technology (see Section 2.1). The emergency
policy model is a �exible access control model similar to Break the Glass
solutions (see Section 2.2), but with some important improvements. The pro-
posed access control model is context-based (see Section 2.3) and makes use
of obligations (see Section 2.4).

The core access control model has been extended in several directions:
�rst of all policy composition has been introduced (see Section 2.5), then
administrative access control has been added (see Section 2.6). The most
important extension regards the management of unspeci�ed emergencies. We
focus on unspeci�ed emergencies that are similar to emergency situations
already registered in the system, thus we have de�ned measures to represent
how close an access request is to satisfy existing policies. These measures have
already been studied in the �eld of policy similarity (see Section 2.7). Finally,
the last extension regards the automatic detection of emergency situations
exploiting anomaly detection techniques (see Section 2.8).

2.1 Complex Event Processing

Emergency detection is major concern of this thesis. It can bene�t from
the recent advent of Complex Event Processing (CEP) systems [63] as they
allow capturing complex event patterns signaling the beginning/ending of an
emergency. CEP systems are able to continuously process �owing data from
geographically distributed sources. CEP systems represent an evolution of
Data Stream Management Systems (DSMSs): DSMSs process incoming data
through a sequence of transformations based on common SQL operators to

11

12 CHAPTER 2. STATE OF THE ART

produce streams of new data as an output, whereas CEPs see incoming data
as events happened in the external world, which have to be �ltered and
combined to detect occurrences of particular patterns.

The literature o�ers several languages for event pattern speci�cation
(e.g., Amit [4], XChangeEQ [43], SpaTec [73], TESLA [37] and SASE+ [5,
51]). Some languages have also been proposed by vendors (e.g., Streambase,
Sybase, Oracle CEP). These languages mainly di�er in the set of constructs
they support. However, up to now, a standard event speci�cation language
has not yet emerged. To overcome the problem of lack of standardization, in
the thesis a Core Event Speci�cation Language (CESL) will be used.

CESL supports the following operators: (i) query stream operators such
as selection, projection, aggregation, and join; (ii) basic event operators, like
event type, event instance and array of event instances; and (iii) complex
event pattern operators, such as sequence, negation and iteration of events.
More details about CESL are provided in Section 3.1.

2.2 Break the Glass Policies

Traditional access control models are usually strict models where permissions
are known in advance, but in real settings, unplanned emergency situations
may occur. In these cases, a more �exible and adaptable approach can be
adopted. Break-the-glass (BtG), introduced in [74], is an approach for such
�exible support of policies which helps to prevent system stagnation that
could harm lives or otherwise result in losses.

A BtG policy allows a user to override regular access control policies on
demand. Usually, the usage of BtG policies needs to be documented for later
audits and reviews. Several works have been done in the last years about
BtG. Ferreira et al. [50, 49] presented a �rst approach to BtG based on
special accounts that are temporary accounts that comprise more powerful
access rights with a more detailed logging.

Another BtG model [22, 23], presented by Brucker and Petritsch, is based
on emergency levels, i.e. policies are classi�ed according to di�erent levels
(normal / low / medium / high emergency level) and active policies are
normal or emergency policies whether the current system state is normal or
under emergency.

Ardagna et all.[8] proposed an advanced approach to BtG based on the
de�nition of di�erent policy spaces, i.e. spaces for regular policies and for
exception policies; when an access is not explicitly denied or permitted by a
regular policy, the system checks exception policies and if there is an already
planned exception the access is granted, otherwise if the exception is un-

2.2. BREAK THE GLASS POLICIES 13

planned the system denies or permits the request whether the global status
is normal or critic.

2.2.1 Comparison between BtG and Emergency Policies

In BtG models when an access request is denied, the system veri�es whether
this decision can be overridden by a BtG policy and, in such a case, the
subject is noti�ed and asked to con�rm. In our proposal, when an access is
denied by a regular policy, the system checks if this decision can be overridden
by a temporary access control policy activated by the emergency and, in this
case, the access is granted. The two approaches seem similar, but there are
signi�cant di�erences as explained Table 2.1.

BtG Model Our Proposal
BtG policies are always ac-
tive.

Emergency policies are active only during
emergencies.

Users decide when override
a regular policy.

The system automatically recognizes
when an emergency occurs and overrides
regular policies with emergency policies.

A user can arbitrarily break
the glass.

Only the system can override a regular
policy and only during an emergency.

A user might wait a while
to respond when the system
prompt the BtG request.

The system immediately overrides regular
policies when an emergency is detected.

Table 2.1: Comparison between BtG and our proposal

Beside the points presented in Table 2.1 before it is worth noting some
issues about security and �exibility.

• BtG models are more �exible because emergency policies allow viola-
tions only for speci�ed emergencies, whereas BtG models manage also
unspeci�ed emergencies.

• BtG models are less secure because abuses of BtG accesses could bring
the system to an unsafe state, whereas emergency policies do not allow
violations thus abuses are not possible.

As we claimed in the introduction, our model is enough �exible for most
of emergency management scenarios, since emergency policies can be de�ned
based on risk assessment documents [47]. However, in some scenarios such
as healthcare domain, this might be not enough, since it is di�cult to �gure

14 CHAPTER 2. STATE OF THE ART

out a-priori all possible emergency situations. Since unspeci�ed emergencies
are not covered by emergency polices, we extend our model in order to allow
for controlled violations, but in a safer manner w.r.t. BtG policy models, i.e.,
highly reducing the risk of information leakage. The basic idea is to open
the system to some access control violations, i.e., to grant access to some
requests that normally should be denied, but that may be permitted due to
the happening of an unspeci�ed emergency. Even if this extension supports
controlled violations, a relevant di�erence holds w.r.t. BtG models. In the
proposed approach, violations are decided only by the system and not by
requestor and only if the attempted access is close to satisfy one of existing
policies. This makes the proposal safer than BtG models.

2.3 Context-based Access Control

Our model makes a large use of contextual information, not only in emer-
gency description, but also to describe emergency contexts and access control
context. Several works have studied how to model the concept of context
for access control. Some works model speci�c context like temporal context
[12] or spatial context [38], other works model generic context like Gener-
alized Role-Based Access Control [65]. Context-aware access control can be
realized mainly in two ways: context constraint or conditions and context
or environment roles. A context constraint is de�ned by Strembeck et al.
[76] as a dynamic constraint that checks the actual values of the context
attributes captured from the environment; when a user performs an access
request the system checks the associated context conditions and decides if
the corresponding access can be granted. An environment role, as proposed
by Covington et al. [35], associates environmental conditions with a role, i.e.
an environment role can be �weekdays�, which means that this role is active
only during weekdays; when a user performs an access request for a resource
R the system checks the current active roles (included environmental roles)
for the user, if the set of roles needed to access R is a subset of the user active
roles then the access is granted. In our model, we use the Boolean condition
abstraction to express a context constraint, but in a future implementation
both of the previously presented approaches might be used (context con-
straints or environment roles).

Another work which is worth mentioning is the category based access con-
trol model presented by Barker et al. in [9, 15]. More precisely, this is a meta-
model based on term rewriting. The meta-model is not only able to deal with
contextual information, but also to express a wide range of traditional access
control models. The model is based on the concept of category, i.e., classes or

2.4. OBLIGATIONS 15

groups to which entities may be assigned. Entities are denoted uniquely by
constants which include categories C, principals P , actions A, resources R
and events E . Moreover, the meta-model de�nes relationships among entities
such as principal-category assignment, permission and authorization.

• Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈
PCA i� a principal p ∈ P is assigned to the category c ∈ C.

• Permissions: ARCA ⊆ A × R × C, such that (a, r, c) ∈ ARCA i�
the action a ∈ A on resource r ∈ R can be performed by principals
assigned to the category c ∈ C.

• Authorization: PAR ⊆ P × A ×R, such that (p, a, r) ∈ PAR i� a
principal p ∈ P can perform the action a ∈ A on the resource r ∈ R.

We believe that the meta-model presented in [9, 15] is able to express
our emergency policy model. More precisely, a user role assignment (u, r)
can be expressed as a principal-category assignment (p, c), where category c
corresponds to role r and principal p corresponds to the user u.

A temporary access control policy t = (r, o, p) which authorizes users be-
longing to role r to exercise the privilege p on objects identi�ed by object
speci�cation o, can be expressed as a permission (a, r, c) where action a cor-
responds to privilege p, resource r corresponds to object o and category c
corresponds to role r.

An authorization (u, p, o) which authorizes user u to exercise privilege
p on a target object o can be expressed as an authorization (p, a, r) where
principal p correspond to user u, action a correspond to privilege p and
resource r correspond to object o.

The concept of emergency can be modeled as a category, i.e., during
emergency e a principal is assigned to the corresponding category ce.

Finally, the concept of emergency policy (e, t) which activates temporary
access control policy t during emergency e can be expressed as a principal-
category assignment (p, ce) and a permission (a, r, ce), in this case during
emergency e, principal p is assigned to category ce, thus it is authorized to
execute action a on resource r.

2.4 Obligations

In order to handle an emergency situation, sometimes overriding an access
control policies is not enough, because there is the need to perform certain

16 CHAPTER 2. STATE OF THE ART

actions to manage the emergency. To model these actions we use the con-
cept of obligations. An obligation is an action or a set of actions that must
be performed by system or users when certain events occur. When events
are access control decisions they are called access control obligations. These
kinds of obligations were analyzed by Bettini et al. in [17]. They formalized
policies with obligations and provisions, allowing policies to specify actions
and conditions to be ful�lled before or after user exercising of the granted
privileges. Obligations were further extended in system obligation and user
obligation whether the actions are ful�lled by the system or the user. In
[16], Bettini et al describe how to monitoring user obligations in order to
place under control the handling of user obligation violations. Working in
the context of user obligations, Irwin et al. [52, 53] observe that deadlines
are needed for user obligations in order to be able to capture the notion of
violation of obligations. Several policy languages have been proposed that
support the speci�cation of obligations in security policies. Modern access
control languages such as XACML [18] (and similarly, EPAL [69]) have lim-
ited models of obligations. Speci�cally, they model system obligations and
cannot describe user obligations. PONDER language [39], and Policy De-
scription Language (PDL) [62] support the speci�cation of user obligations.
In PONDER obligation policies specify the actions that must be performed
by system or users when certain events occur. Obligation policies are event-
triggered and de�ne the activities subjects (human or automated manager
components) must perform on objects in the target domain. Similarly, PDL
policies use the event-condition-action rule paradigm of active databases to
de�ne a policy as a function that maps a series of events into a set of ac-
tions. These languages de�ne a concept of obligations related to generic event
and not necessarily linked to access control. These kinds of event-triggered
obligations are very similar to our idea of emergency obligation policy. An
emergency obligation policy is an event-triggered obligation where the event
represents an emergency. For example, an obligation related to a cardiac ar-
rest emergency, might automatically call the ambulance for the patient under
emergency.

2.5 Policy Composition

Since our proposal deals with emergency policy composition, it may be con-
sidered in some relationship with work for policy composition [20, 6, 45, 14,
24, 25, 58, 67].

One early work on policy composition is the policy algebra proposed
by Bonatti et al. [20], which aims at combining authorization speci�cations

2.6. ADMINISTRATIVE ACCESS CONTROL 17

originating from heterogeneous independent parties. They model an access
control policy as a set of ground (variablefree) authorization terms, where an
authorization term is a triple of the form (subject, object, action).

Most recently, Bruns et al. [24, 25] proposed an algebra for fourvalued
policies based on Belnap bilattice. In particular, they map four possible policy
decisions, i.e. grant, deny, con�ict and unspeci�ed, to Belnap bilattice and
claim that their algebra is complete and minimal.

However, it is important to note that the focus of our work is di�erent
from the scope of the proposals for policy composition, since we deal with
composition of emergencies, to which we associate new emergency policies.
As such, while policy combination strategies focus on operators to combine
policies and resolution strategies for con�icts among positive and negative
policies, in our proposal we are interested in composition of emergencies and
solutions for the overriding or coexistence of their corresponding temporary
access control policies, as required by the new response plan.

2.6 Administrative Access Control

Since emergency policies might be large in number, we believe the right to
create/modify these polices should be distributed to multiple subjects called
emergency managers. In order to distribute these rights without losing the
central control by the administrator, we have de�ned administrative polices.
The problem of administrative access control has been widely analyzed in
literature. For instance, ARBAC97 [72] is the �rst work to specify an ad-
ministrative access control model. ARBAC97 de�nes a set of administrative
roles, which is disjoint from the set of normal roles. Only members of these
roles can perform administrative operations.

Administrative access control has been also considered by the OASIS
technical committee which has published the XACML v3.0 administration
and delegation pro�le (XACML-Admin) working draft on 16 April 2009 [68]
to support policy administration and dynamic delegation. The former con-
trols the types of policies that individuals can create and modify, whereas the
latter permits some users to create policies of limited duration to delegate
selected capabilities to others. The delegation model used in [68] is a discre-
tionary access control (DAC) model. Consequently, the pro�le only allows the
owner of a permission to delegate it to a speci�c user, which is not scalable
when permissions need to be delegated to a large number of users with the
same job function. In many cases in which the delegator is not available, or is
unable to perform the delegation, it is more convenient to have a third party,
such as the administrator, initiating the delegation on behalf of the user.

18 CHAPTER 2. STATE OF THE ART

This pro�le also lacks the support to allow delegators to delegate any subset
of permissions assigned to him/her. On a separate issue, this pro�le does
not have an enforcement mechanism. Enforcing administrative or delegation
operations will update relevant policies which results in read-write con�icts
while the access controller attempts to evaluate a user access request. Also
when an administrator or delegator attempts to revoke a permission granted
to a user, the same user might still be exercising the permission to access a
resource, which violates system safety.

Another work related to XACML is [80], in which Xu et al. extend [68]
to include the use cases of role-based delegation extending the delegation
framework of [68], and policy administration with or without delegation ex-
tending the Use Cases proposed in [81]. Furthermore, they show how these
extended Use Cases can be realized by extending the design implemented in
[81] that retains the system safety by revoking permissions invalidated by
policy updates. To provide the extra Use Cases and enforce delegation, we
divide the access requests into three categories as follows:

Another administrative model has been proposed Crampton and Loizounor
in [36]. This model, called SARBAC (Scoped Administrative RBAC), allows
for more �exibility in administrative operations in that some of the opera-
tions that should be centrally managed in ARBAC97 (e.g., modi�cation to
the introduced relations) may be decentrally managed in SARBAC. Central
to SARBAC is the concept of an administrative scope, which is de�ned us-
ing the role hierarchy, and is used for de�ning administrative domains. The
administrative scope of a role r (denoted by σ(r)) consists of all roles that
are descendants of r and are not descendants of any role that is incomparable
with r. A role r ∈ σ(a) if in the role hierarchy every path upwards from r
goes through a. Each role is in the scope of the role itself. We say a scope is
nontrivial if it includes more than one role. Using scopes for administration
works best when the role hierarchy is a tree, with an all-powerful role at the
root.

In [59] Li et al. present their approach for administering RBAC, called the
UARBAC. UARBAC consists of a basic model and one extension: UARBACP

, which adds parameterized objects and constraint-based administrative do-
mains. UARBAC adopts the approach of administering RBAC with RBAC.
By this, we mean that permissions about users and roles are administered
in the same way as permissions about other kinds of objects. For example,
the parameterized permission [business role, unit < Branch Hamburg, create]
allows one to create a business role with the parameter unit having a value
that is a descendant of Branch Hamburg.

These models are valid for generic domains, but due to the uniqueness
of emergency management scenario, we decide to develop our administrative

2.7. POLICY SIMILARITY 19

model based on emergency scopes.

2.7 Policy Similarity

One of the strategy used in our model to detect whether a denied access
request represents an attempted abuse or an information need for an un-
speci�ed emergency is called policy based analysis. This analysis is based on
measures to calculate how much a denied access request is close to satisfy
existing policies. In literature of access control policy analysis, there are tech-
niques for policy similarity analysis [61, 13, 60, 34] which are similar to our
approach. Policy similarity is a process through which policies are compared
with respect to the sets of requests they authorize. Given two policies, the
process determines what is the relationship between them (e.g., equivalence,
re�nement, con�ict, etc.). There are mainly two approaches to determine
similarity between policies: based on policy similarity measures [61, 34] and
based on Multi-Terminal Binary Decision Diagrams (MTBDD) based tech-
niques [60]. We analyze the latter since it relies on similarity measures which
are similar to our satisfaction level measures.

A �rst e�ort in the de�nition of a policy similarity measure has been pro-
posed in [61] by Lin et al. Given two policies, this approach groups the same
components in the two policies, and evaluates their similarity, then the ob-
tained similarities are combined according to a weighted combination in order
to produce an overall similarity score. This technique has been extended in
[34] by Cho et all in order to perform policy similarity in a privacy-preserving
manner allowing similarity evaluation of encrypted policies.

Policy similarity measures are di�erent from our proposal since they aim
to �nd relationships among policies and not satisfaction level of a denied
access request w.r.t. existing policies. Although, the di�erent purpose, they
have aspects in common with our approach, i.e., a similar approach to mea-
sure the distance between two categorical or numerical values. Conversely,
they are completely di�erent regarding predicates since we need to measure
how much a dar attribute value is close to satisfy a predicate and not the
similarity between two Boolean expressions.

2.8 Anomaly Detection for Data Streams

One of the strategy used in our model to detect whether a denied access
request represents an attempted abuse or an information need for an un-
speci�ed emergency is called anomaly based analysis. This analysis combines

20 CHAPTER 2. STATE OF THE ART

anomaly detection techniques with complex event processing in order to de-
tect anomalous events which might represent emergency situations. Accord-
ing to [82] anomaly detection techniques for data streams can be categorized
into nearest neighbor based, clustering based, spectral decomposition based
and statistical based approaches.

Nearest neighbor based approaches [56, 3] are the most commonly used
approaches, in this model, a data instance is declared as an anomaly if it is
located far from its neighbors according to a distance function. Clustering
based approaches [44, 77]s group similar data instances into clusters. Data
instances are identi�ed as anomalies if they do not belong to any cluster or
their clusters are signi�cantly smaller than other clusters. Nearest neighbor
and clustering based techniques su�er from the choice of the appropriate
input parameters, e.g., the appropriate distance function or cluster width.

Spectral decomposition based approaches [42, 54] is based on Principal
Component Analysis (PCA) to reduce dimensionality before anomaly detec-
tion and �nds a new subset of dimension which capture the behavior of the
data. More precisely, the top few principal components capture the build of
variability and any data instance that violates this structure for the smallest
components is considered as an anomaly [32]. Spectral decomposition based
techniques are computationally very expensive.

Statistical based approaches assume or estimate a statistical model which
captures the distribution of the data. A data instance is declared as an
anomaly if the probability of the data instance to be generated by the data
model is low. Statistical based techniques are dived into parametric [70] and
non-parametric [11] whether they assume or not the availability of the knowl-
edge about the underlying data distribution. However, in many real life sce-
narios, no a priori knowledge of the sensor stream distribution is available,
thus parametric approaches may be useless. Non-parametric techniques do
not make any assumption about the underlying distribution and are compu-
tationally e�cient.

Chapter 3

Emergency Access Control Model

In this chapter, the access control model to enforce �exible information shar-
ing in support of emergency management is presented.

The key feature of this access control model is the detection of emergency
situation based on Complex Event Processing (CEP) technology. How we use
CEPs for emergency detection is explained in Section 3.1. This section intro-
duces also the Core Event Speci�cation Language (CESL), we have de�ned
to specify emergency situations (see Subsection 3.1.1).

The core model and its extensions are described in Section 3.2. More
precisely, this section presents formal de�nitions of emergency polices and an
in depth analysis of the model (see Subsection 3.2.1). Moreover, extensions
for administrative access control (Subsection 3.2.2) and policy composition
(Subsection 3.2.3) are presented.

3.1 Emergency Detection

Emergency detection is major concern of our access control model. It can
bene�t from the recent advent of Complex Event Processing (CEP) systems
[63] as they allow capturing complex event patterns signaling the begin-
ning/ending of an emergency. CEP systems are able to continuously process
�owing data from geographically distributed sources. CEP systems represent
an evolution of Data Stream Management Systems (DSMSs) as explained in
Section 2.1. The literature o�ers several languages for event pattern speci�ca-
tion, but so far a standard event speci�cation language has not yet emerged.
To overcome the problem of lack of standardization, in the thesis a Core
Event Speci�cation Language (CESL) will be used [27].

21

22 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

3.1.1 Core Event Speci�cation Language

Critical scenarios are often observed analyzing relevant information (e.g.,
body measures) collected by means of a set of sensor networks. In general,
gathered data are sent to a monitor unit in the from of data streams (i.e.,
an append-only sequence of tuples with the same schema). This allows the
monitor unit to continuously analyze them and immediately trigger the emer-
gency when some particular constraints hold. Therefore, a CEP can play the
role of monitor unit.

Example 3.1.1 Let us consider as reference scenario patient remote mon-
itoring. We assume that patients wear several monitoring devices that catch
their health measures (e.g., temperature, heart rate, blood pressure, glucose,
etc.). All gathered measures are encoded as tuples in a data stream and sent
to a CEP, which can easily detect any anomaly signaling an emergency situ-
ation. As an example, an event modeling an emergency situation is given by
heart rate measure lower than 60 beats per minute (bpm).

According to the above scenario, conditions triggering the emergency are
expressed as constraints on streams. Following stream terminology, we say
that an emergency event happens when a tuple satisfying an emergency con-
dition arrives. The emergency event can be simple, as a query on a sin-
gle data stream (e.g., s.heart_rate < 60, where s is the patient vital
signs stream and heart_rate one of its attributes), as well as more complex,
like an aggregation query on a joint set of streams (e.g., an event to detect
an epileptic attack should join many information about patient vital signs
stream and movement sensors stream). To catch these emergency events, the
proposed representation has to be able to model queries on streams. This can
be done through stream query languages. However, in addition to conditions
on streams, we are also interested in the detection of relationships between
simple/complex events that might happen with di�erent temporal order. For
instance, let us assume that patients wear also movement sensors. To catch
the emergency of the patient fall, it is necessary to detect this sequence of
events: the patient falls to the ground and he/she does not stand up within
the next 2 minutes. To catch also this kind of emergency, the proposed emer-
gency description supports speci�cation of event patterns.

CESL supports the following operators: (i) stream operators such as se-
lection, projection, aggregation, and join; (ii) basic event operators, like event
type, event instance and array of event instances; and (iii) complex event
pattern operators, such as sequence, negation and iteration of events.

3.1. EMERGENCY DETECTION 23

Stream Operators

Stream operators include typical SQL-like query operators such as selection,
projection, aggregation, and join, but before introducing these operators in
stream domain, we introduce some basic de�nitions of CESL (i.e., stream
and predicate).

De�nition 3.1.1 Stream: a stream S with attributes Att(S) = {A1, ..., An}
is a real-time, continuous, ordered (potentially unbounded) sequence of tuples.

Example 3.1.2 Consider Example 3.1.1, a possible stream catching patients
health measures might be called VitalSigns and might contain the follow-
ing attributes Att(VitalSigns) = {heart_rate, temperature,
glucose_level, diastolic_pressure, systolic_pressure,
respiratory_rate, patient_id}.

De�nition 3.1.2 Predicate: is an expression P = a θ b where a is an
attribute ∈ Att(S), θ ∈ {< | > | = | ≤ | ≥}, b is an attribute ∈ Att(S) or a
constant value.

Example 3.1.3 Consider stream VitalSigns presented in Example 3.1.2,
a possible predicate over this stream might check if the temperature of a pa-
tient is greater than a prede�ned threshold, i.e., temperature > 37.

CESL allows selecting relevant tuples from the history of all received ones
according to a set of constraints contained in the body of an expression. The
selection operator is formally de�ned as follows.

De�nition 3.1.3 Selection Operator: a selection σ(P)(S) returns tuples
belonging to stream S that satis�es predicate P .

Example 3.1.4 Consider stream VitalSigns presented in Example 3.1.2
and predicate temperature > 37, they might be combined using a selec-
tion operator in order to detect tuples with temperature value greater than 37
degrees, i.e., σ(temperature > 37)(VitalSigns).

CESL supports also the projection operator which chooses a subset of
the attributes in a tuple, and discards the rest. The projection operator is
formally de�ned as follows.

De�nition 3.1.4 Projection Operator: a projection π(A1, ..., An)(S) re-
turns attributes {A1, ..., An} ∈ Att(S) over stream S.

24 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

Example 3.1.5 Consider stream VitalSigns presented in Example 3.1.2,
it might be necessary to choose only the temperature value and the patient_id,
i.e., π(temperature, patient_id)(VitalSigns).

Before introducing aggregation and join operators in stream domain, we
need to formally introduce the concept of window. CESL supports 4 types of
windows:

• Time-based window: is simply expressed as [s, o] where o (o�set) is
the number of time units1 which represents how the window advances to
from a new window, while s is the number of time units which denotes
the window size. For example if the time unit is second, a window
[2s, 4s] means that a new window is created every 2 seconds and the
window duration is 4 seconds.

• Tuple-based window: is expressed also as [s, o] where o is the number
of tuples which represents how the window advances to from a new
window, while s is the number of tuples which de�nes the window size.
For example a window [3, 6] means that a new window is created every
3 tuples and the window size is 6 tuples.

• Event-based window: is speci�ed as [e1, e2] which means that the
window is created when event e1 occurs and is closed when event e2
occurs.

• Mixed window: is speci�ed as [e1, s] which means that the window is
created when event e1 occurs and the window size is s. The size s might
be a number or a time expression whether window size is expressed in
tuple-based or time-based mode.

Aggregation functions return a single value, calculated from values of a
certain attribute in a speci�c window. CESL support typical SQL aggre-
gate functions such as sum, avg, count, max, min. The aggregation
operator has the following formal de�nition.

De�nition 3.1.5 Aggregation Operator: has the from
∑

(F,A)(S)[w],
where the attribute A belonging to stream S is aggregated according to func-
tion F over window w.

1time_unit ∈ {ms, s, mi, h, d, w, mo, y}, ms = milliseconds, s = seconds, mi =
minutes, h = hours, d = days, w = weeks, mo = months, y = years.

3.1. EMERGENCY DETECTION 25

Example 3.1.6 Consider stream VitalSigns presented in Example 3.1.2,
it might be necessary to measure the average systolic pressure of a patient
in the last hour, therefore the following aggregation operator might be used:∑
(avg,systolic_pressure)(VitalSigns)[1h,1h].

The join operator combines attributes of two streams into one. The formal
de�nition of selection operator is the following.

De�nition 3.1.6 Join Operator: has the from Join(P)(S1[w1], S2[w2]),
and it joins, with respect to predicate P , tuples belonging to window w1 over
stream S1 with tuples belonging to window w2 over stream S2.

Basic Event Operators

In the following, formal de�nitions of basic event operators such as event type,
event instance and array of event instances and window array are provided.

De�nition 3.1.7 Event Type: an event type ET is the result of a query
over one or more streams.

Example 3.1.7 Consider the result of query presented in Example 3.1.4, it
might be assigned to the event type VS (VitalSigns) in the following way: VS
= σ(temperature > 37)(VitalSigns).

De�nition 3.1.8 Event Instance: an event instance ET e is a tuple sat-
isfying the query in an event type ET .

Example 3.1.8 Consider the event type VS presented in Example 3.1.7,
each tuple belonging to VS might be assigned to an event instance vs in
the following way: VS vs.

De�nition 3.1.9 Array of Event Instances: an array of event instances
ET e[] contains the set of event instances of the event type ET .

Example 3.1.9 Consider again the event type VS presented in Example
3.1.7, the set of tuples belonging to VS might be assigned to an array of
event instances vs[] in the following way: VS vs[].

.

De�nition 3.1.10 Window Array: a window array ET e[][w] speci�es
that array e[] contains event instances of the event type ET that occur in
window w.

26 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

Example 3.1.10 Consider again the event type VS presented in Example
3.1.7, the set of tuples belonging to VS occurred in a time window [1h,1h]
might be assigned to an array of event instances vs[] in the following way:
VS vs[][1h,1h].

Event Pattern Operators

Event pattern operators are able to capture complex relations among events
occurred in speci�c time windows. CESL supports event pattern operators,
such as sequence, negation and iteration. Sequence operator allows capturing
sequences of events using mixed windows as explained in the following formal
de�nition.

De�nition 3.1.11 Sequence: has the from ET1 e1, ET2 e2[e1, S1], . . . ,
ETn en[en−1, Sn−1]. A set of subsequent events matches with the sequence
operator if event e2 (of the event type ET2) occurs within S1 time units after
occurrence of event e1, event e3 occurs within S2 time units after e2 and so
on, de�ning in this way the sequence e1, e2, e3, ..., en.

Example 3.1.11 Consider the healthcare scenario presented in Example 3.1.1
and the VitalSigns stream presented in Example 3.1.2. In order to detect
whether or not the temperature of a patient is increasing in the last 10 min-
utes, the following sequence operator might be used.

VS1 v1, VS2 v2[v1,5m], VS3 v3[v2,5m];
VS1 = σ(37.0 ≤ temperature ≤ 38.0)(VitalSigns);
VS2 = σ(39.0 ≤ temperature ≤ 40.0)(VitalSigns);
VS3 = σ(temperature ≥ 41.0)(VitalSigns);

The three event types VS1, VS2, VS3 contains respectively events with
temperature between 37 and 38 degrees, between 39 and 40 degrees and greater
than 41. The sequence VS1 v1, VS2 v2[v1,5m], VS3 v3[v2,5m]
matches if an event instance v2 with temperature between 39 and 40 degrees
is received within 5 minutes after another event instance v1 with temperature
between 37 and 38 degrees and if an event v3 with temperature greater than
41 is received within 5 minutes after v2 de�ning in this way a sequence of
events with increasing temperature.

CESL allows representing the non-occurrence of an event in a given time
interval through the negation operator whose formal de�nition is the follow-
ing.

De�nition 3.1.12 Negation: a negation operator ¬ ET e[w] matches if
event e has not occurred in window [w].

3.1. EMERGENCY DETECTION 27

Example 3.1.12 In a meteorological station a dry period is detected when
it has not rain within one month since the last rain fell. This situation is
expressed in CESL as follows.

Rain r1, ¬ Rain r2 [r1,1mo]
Rain = σ(rain_level > 10)(RainSensors)

The event type Rain matches when the attribute rain_level is greater
than 10 millimeters, i.e., it is raining. This expression matches if an event
of the event type Rain has not occurred within one month after r1, i.e., the
last rain event.

De�nition 3.1.13 Iteration: has the from ET e[][w]{P ′} where P ′ is a
predicate P ′ = α θ β and e[] is an array of event instances of the event
type ET that occur in window w. α = (att, i), θ ∈ {< | > | = | ≤ | ≥} ,
β = (att, j) or a constant. att is an attribute ∈ Att(ET), i and j are indexes
∈ I, such that: I = {1, ..., |e|} ∪ {∗, ..i, i− x} , x ∈ {0, ..., i− 1}), and j < i.
An index i represents a speci�c event in e[] when i ∈ {1, ..., |e|}, all events
in e[] when i = ∗, all events before e[i] when i = ..i, or the event occurred
x-events before e[i] when i = i− x.

Example 3.1.13 An irregular heartbeat of a patient might be detected if the
current heart rate is greater than the average heart rate of the patient in the
last day. This situation is expressed in CESL as follows.

HR1 hr1[1d,1d] {
hr1[i].heart_rate > AVG(hr1[..i].heart_rate)

};
HR1 = π(heart_rate, VitalSigns);

The event type HR1 selects only the rain_level attribute from Vital-
Signs stream. If the ith event, i.e., the current event hr1[i], has a heart
rate value greater than the average heart rate of the previous events hr1[..i]
in a time window of one day, i.e., [1d,1d], then the heart rate value might
be irregular.

An overview of CESL operators is reported in Table 3.1.

3.1.2 Emergency Description

In light of our formal de�nitions of CESL operators, an emergency is modeled
as a couple of events, de�ned in CESL that signal the beginning and ending
of the emergency situation, respectively. More formally.

28 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

Stream Operators

stream S a stream S with attributes Att(S) =
{A1, ..., An} is a real-time, continuous, ordered
(potentially unbounded) sequence of tuples.

predicate P = a θ b a is an attribute ∈ Att(S), θ ∈ {<|>|=|≤|≥},
b is an attribute ∈ Att(S) or a constant.

selection σ(P)(S) selection of stream S that satis�es predicate
P .

projection π(A1, ..., An)(S) projection of stream S over attributes
{A1, ..., An} ∈ Att(S).

window w time-based window [s, o] s (size) is the window size, denoted as num-
ber of time units, o (o�set) is the number of
time units which represents how the window
advances to from a new window.

tuple-based window [s, o] s is the window size, denoted as number of
tuples, o is the number of tuples which repre-
sents how the window advances to from a new
window.

event-based window [e1, e2] window is created when event e1 occurs and is
closed when event e2 occurs.

mixed window [e1, s] window is created when event e1 occurs and
the window size is s.

aggregation
∑

(F,A)(S)[s, o] aggregation of attribute A of stream S accord-
ing to function F over windows generated with
size s and o�set o.

join Join(P)(S1[s1, o1], S2[s2, o2]), join with respect to predicate P over tuples
of sliding windows of stream S1(i.e., S2) gen-
erated with size s1(i.e., s2) and o�set o1(i.e.,
o2).

Basic Event Operators

event type ET an event type is a query over one or more
streams.

event instance ET e an event instance is a tuple satisfying the
query ET .

array ET e[] declaration of the array e[] of event instances
of the event type ET .

ET e[][w] declaration of the array e[] of event instances
of the event type ET that occur in window w.

Event Pattern Operators

sequence ET1 e1, ET2 e2[e1, S1],
..., ETn en[en−1, Sn−1]

it matches if event e2 (of the event type ET2)
occurs within S1 time units after occurrence of
event e1, event e3 occurs within S2 time units
after e2 and so on, de�ning in this way the
sequence {e1, e2, e3, ..., en}.

negation ¬ ET e[w] matches if event e has not occurred in window
[w].

iteration ET e[][w]{P ′} where P ′ is a
predicate P ′ = α θ β and e[]
is an array of event instances
of the event type ET that oc-
cur in window w.

α = (att, i), θ ∈ {<|>|=|≤|≥} , β = (att, j)
or a constant. att is an attribute ∈ Att(ET),
i and j are indexes ∈ I, such that: I =
{1, ..., |e|}∪{∗, ..i, i−x} , x ∈ {0, ..., i−1}), and
j < i. An index i represents a speci�c event in
e[] when i ∈ {1, ..., |e|}, all events in e[] when
i = ∗, all events before e[i] when i = ..i, or
the event occurred x-events before e[i] when
i = i− x.

Table 3.1: CESL operators

3.1. EMERGENCY DETECTION 29

De�nition 3.1.14 (Emergency): An emergency emg is a tuple (init, end,
timeout, identi�er), where init and end are emergency events speci�ed in
CESL, such that init denotes the event triggering the emergency and end is
the optional event that turns o� the emergency, timeout is the time within
the emergency expires even though end has not occurred.2 Identifier is an
attribute belonging to both the schemes of the event type corresponding to
init and end events.

Every time an emergency event is triggered an emergency instance is
created. Several instances of the same emergency event could hold at the same
time, but with di�erent values for attributes in identifier. The identifier
component plays a key role in that it ensures to trigger an emergency instance
only once and ensures also a connection between init and end events as the
following example clari�es.

Example 3.1.14 Let us consider again the patient monitoring scenario pre-
sented in Example 3.1.1 and the VitalSigns stream presented in Example
3.1.2. A bradycardia emergency can be de�ned as follows.

BradycardiaEmergency {
init: VS1 v1;
VS1 = σ(heart_rate < 60)(VitalSigns);
end: VS2 v2;
VS2 = σ(heart_rate ≥ 60)(VitalSigns);
timeout: ∞;
identifier: patient_id;

}

The emergency starts when the heart rate of a patient is lower than 60 bpm
and it ends when the heart rate of the same patient (i.e., with the same pa-
tient_id) returns greater than or equal to 60 bpm. When the Bradycardia
Emergency is detected for patient 1 the following emergency instance is
created.

BradycardiaEmergencyInstance1 {
emg: BradycardiaEmergency;
identifier: 1;

}

The BradycardiaEmergencyInstance1 is deleted when Brady-
cardiaEmergency ends for patient 1. In ordered to better understand the

2timeout is a temporal expression of the from [n time_unit], where n ∈ N ∪ {∞} and
time_unit ∈ {ms, s, mi, h, d, w, mo, y}, ms = milliseconds, s = seconds, mi = minutes,
h = hours, d = days, w = weeks, mo = months, y = years.

30 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

identifier role, consider the following tuples generated by monitoring pa-
tients a and b3: (61, a), (60, a), (59, a), (58, a), (57, b). When the third tuple
arrives an instance for BradycardiaEmergency is created for patient a,
but when the fourth tuple is received no new instance is created since the heart
rate was already lower than 60 bpm for patient a. In contrast, it is correct to
create a new instance when the �fth tuple is received because it comes from a
di�erent patient, i.e., patient b.

3.2 Emergency Policy

Our model enforces controlled information sharing during emergencies through
temporary access control policies (tacps). More precisely, since di�erent in-
stances of the same emergency might require di�erent temporary access con-
trol policies, we associate with an emergency a temporary access control policy
template that will be properly instantiated when an emergency is detected.

De�nition 3.2.1 (Temporary Access Control Policy Template): A
tacp template is a tuple (sbj, obj, priv, ctx, obl), with the following se-
mantics: when the Boolean expression ctx de�ned on context is true, users
identi�ed by the subject speci�cation sbj are authorized to exercise the priv-
ilege priv on the resource identi�ed by object speci�cation obj. In case the
obligation obl is not null, it denotes a set of actions that must be ful�lled
every time an authorized user exercises priv on the objects denoted by obj.

Our proposal adopts a model similar to attribute-centric RBAC-A [57].
The model in [57] is a combination of role-based access control and attribute-
based access control. We choose this model, because we need to identify
users by their roles (e.g., doctor, patient, etc.) as well as specify attribute-
based conditions. Therefore, in our proposal a subject speci�cation sbj is
a pair (roles, cond), where the �rst is a set of roles and the second is a
condition related to the user pro�le attributes. An object speci�cation obj
is a pair (object, cond), where object denotes a target object and cond is a
condition related to the object attributes.4 The context is modeled as a set
C of pairs (att, val), where att is a context attribute (e.g., time, location,
session information etc.) and val is the corresponding value.

3For brie�ty, we consider only the two attributes heart_rate and patient_id.
4Cond is a Boolean combination of predicates in the from α θ β, where α is an attribute

belonging to the user pro�le (object, respectively), θ is a matching operator in {<,>,=
,≤,≥}, whereas β is a constant value or an attribute att.

3.2. EMERGENCY POLICY 31

Example 3.2.1 Consider the bradycardia emergency presented in Example
3.1.14. Suppose that, during this emergency, access to the Electronic Medical
Record (EMR) of a patient (object condition) should be extended to the sub-
jects taking care of him/her (subject condition - e.g., paramedics). Moreover,
when a subject not normally authorized accesses the EMR, the corresponding
patient should be warned with an email (obligation). In order to enforce these
requirements, the following tacp template can be de�ned:

BradycardiaPolicy {
sbj: (paramedic, param_id = call.param_id);
obj: (EMR, patient_id = emg.patient_id);
priv: read;
ctx: -;
obl: mailto(patient_mail);

}

The tacp subject is the paramedic who answered to the emergency call,
whereas the tacp object is the EMR of the patient under emergency condi-
tion. The context condition ctx is empty, whereas the obligation ensures that
when a paramedic reads the patient EMR, an email is sent to the patient
mail address. When the BradycardiaEmergency is detected for patient 1, the
following tacp instance is created and inserted into the policy base.

BradycardiaPolicyInstance1 {
sbj: (paramedic, param_id = 3);
obj: (EMR, patient_id = 1);
priv: read;
ctx: -;
obl: mailto(patient1@hospital.com);

}

This is created assuming 3 is the identi�er of the paramedic on the am-
bulance answering the patient call and patient1@hospital.com is the email
address of the patient under emergency.

We also bind emergencies with one or more emergency obligations in order
to let the system immediately and automatically execute urgent activities
required by emergency response plans. The binding of an emergency with the
corresponding tacps and obligations is modeled by the so-called emergency
policies.

De�nition 3.2.2 (Emergency Policy): An emergency policy is a tuple
(emg, tacp, obl), where emg is an emergency description (cf. De�nition
3.1.14), tacp can be one or more temporary access control policy templates

32 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

(cf. De�nition 3.2.1) and obl is an optional �eld which contains one or more
emergency obligations, i.e., actions that must be performed when the emer-
gency emg is detected.

Example 3.2.2 Based on Examples 3.1.14 and 3.2.1, an emergency policy
might be the following.

BradycardiaEP {
emg: BradycardiaEmergency;
tacp: BradycardiaPolicy;
obl: call_ambulance(patient_address);

}

where BradycardiaPolicy and call_ambulance are, respectively, the tacp
template and the obligation to be enforced when BradycardiaEmergency is
detected. When the Bradycardia emergency is detected, the following emer-
gency policy instance is created and inserted into the policy base.

BradycardiaEPInstance1 {
emg: BradycardiaEmergencyInstance1;
tacp: BradycardiaPolicyInstance1;
obl: call_ambulance(40 Storrow Dr);

}

This is created assuming 40 Storrow Dr is the address of the patient under
emergency.

3.2.1 Emergency Policy Correctness

The main function of emergency policies is the enforcement of the correspond-
ing tacps/obligations upon emergency detection. More precisely, emergency
policy enforcement consists of two main steps: (1) the creation/deletion of
the corresponding emergency instances and (2) the consequent creation/dele-
tion of instances of the corresponding temporary access control policies. Since
emergency activation/deactivation is a time consuming operation, a particu-
lar attention has to be paid in properly de�ning the init and end emergency
events to ensure that, even if syntactically well-de�ned, they will not imply
a simultaneous activation and deactivation of an emergency. In general, this
type of error occurs when the two sets of tuples satisfying init and end events
are not disjoint. Indeed, in this case the arrival of just one tuple may cause
the simultaneous creation and deletion of the corresponding emergency and
tacp instances. Let us consider, as an example, an emergency speci�cation
where init: temp ≥ 37 and end: temp ≤ 39. In this case, the arrival of a tuple
t such that t.temp = 38 results in the simultaneous creation and deletion of

3.2. EMERGENCY POLICY 33

the corresponding emergency and tacp instances.5 We formally de�ne this
problem in the following subsection.

De�nition 3.2.3 (Simultaneous Holding Problem (SHP)): Let e be a
CESL event, we denote with V Se the validity set of e, de�ned as the set of
tuples satisfying the event e. Let emg be an emergency, and let V Si, V Se the
validity sets corresponding to emg.init and emg.end, respectively. A Simul-
taneous Holding Problem (SHP) occurs when, at a certain time instant X,
two tuples ti and te, such that ti ∈ V Si and te ∈ V Se, arrive.

In order to verify if the init and end events are not correctly de�ned, we
propose a set of Validity Checks. We call the �rst one pre-processing validity
check, since it is used to detect, before the emergency policy registration, if
its emergency description might bring to a potential SHP, so as to prevent
its registration in the system. To better clarify, let us consider once again the
previous example. Here, it is possible to easily detect that there exist some
tuples satisfying simultaneously both init and end events, as their validity
sets are not disjoint. In general performing this check implies to compute the
validity sets of init/end events and verify that they have no common tuples.

Pre-Processing Validity Check

We �rst analyze pre-processing validity check for simple events based on
queries, then for complex event patterns. Simple events are based on queries
such as selection and projection. Indeed, this process is not possible for ag-
gregation and join operators because it is impossible to predict a priori the
result of the aggregation function or which values will satisfy a join predicate.
Thus, it is impossible to statically compute their validity sets.
As �rst step, the process computes the validity set for each attribute in
Atts(init)∪Atts(end). A validity set is calculated through function V S(a, ev)
which returns the validity set of attribute a for the ev event. This is done is
a di�erent way depending on ev. Let us �rst consider events with a unique
operator, i.e., selection or projection. In case ev contains a projection opera-
tor, V S(a, π(a, a1, . . . , an)(S)) = Dom(a) where Dom(a) denotes interval of
attribute a (i.e., Dom(a) = [min,max])6 and S is the stream over which the
event is de�ned. In case ev contains a selection operator, then V S(a, σ(C)(S))
depends on the clause C. If C is not de�ned over attribute a, then VS re-
turns the whole domain Dom(a). In case C is a simple predicate a θ c, where

5Here and in the following we use dot-notation to indicate �elds of events, emergencies
or policies.

6If a is a non-numeric attribute, i.e., string, then the lexicographical order is used.

34 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

θ ∈ {< | > | = | ≤ | ≥} and c is a constant value, then function VS is
calculated in the following way:7

V S(a, σ(a θ c)(s)) =

[min, c), if θ is <
[min, c], if θ is ≤
[c, c], if θ is =
[min, c) ∪ (c,max], if θ is 6=
(c,max], if θ is >
[c,max], if θ is ≥

In case the clause C is a conjunction p1 ∧ · · · ∧ pn, then function VS is cal-
culated as V S(a, σ(p1)(S))∩ · · · ∩ V S(a, σ(pn)(S)). In case the clause C is a
disjunction p1∨ · · ·∨pn, then function VS is calculated as V S(a, σ(p1)(S))∪
· · · ∪ V S(a, σ(pn)(S)). The more complex cases are straightforwardly calcu-
lated as combinations of intersections and unions. In case the ev is a com-
binations of selection or projection operators, then V S(a, op1 ⊕ . . . ⊕ opn)
is calculated for each operator opi and the results are, then, intersected as
V S(a, op1) ∩ . . . ∩ V S(a, opn).

Example 3.2.3 An high stress situation may be detected when a patient
heart rate is greater than 90 beats per minute and the respiratory rate is
greater than 20 breaths per minute, or when the frequency measured by the
electroencephalogram (eeg) is lower than 60Hz. The stress situation ends when
the values return in a normal range.

StressEmergency {
init: VS1 v1
VS1 = σ((hr > 90 ∧ rr > 20) ∨ (eeg < 60))(VitalSings);
end: VS2 v2
VS2 = σ((hr ≤ 90 ∧ rr ≤ 20) ∨ (eeg ≥ 60))(VitalSigns);
timeout: ∞;
identifier: patient_id;

}

Assuming Dom(hr) = [0, 200], Dom(rr) = [0, 100] and Dom(eeg) =
[0, 500], then the validity sets extracted from init and end events are the
following:

V Shrinit = [91, 200] V Shrend = [0, 90]
V Srrinit = [21, 100] V Srrend = [0, 20]
V Seeginit = [0, 59] V Seegend = [60, 500]

7If c is not a constant value, i.e., it is an attribute, then it is not possible to calculate
the validity set, thus another validity check, i.e., event rewriting or post processing, is
executed.

3.2. EMERGENCY POLICY 35

The intersections calculated for each validity set are the following:

V Shrinit ∩ V Shrend = [91, 200] ∩ [0, 90] = ∅
V Srrinit ∩ V Srrend = [21, 100] ∩ [0, 20] = ∅
V Seeginit ∩ V S

eeg
end = [0, 59] ∩ [60, 500] = ∅

Since the intersections between the attributes validity sets are empty, the two
events cannot simultaneously hold.

The pre-processing validity check can be performed also for event pat-
terns such as sequence, negation, iteration. In the following we consider each
possible case.

Sequence
We consider the case where init and end are de�ned as sequences Ie1, Ie2, . . . ,
Ien and Ee1, Ee2, . . . , Eem, respectively. In this case, the pre-processing va-
lidity check can be executed only if the two sequences have the same length
(i.e., n = m) and any couples of events in the same position in the two
sequences (i.e., Iei, Eej, i = j) contain only projection and/or selection op-
erators de�ned over the same window.8 In case the two sequences have a
di�erent length or events in the same position contain aggregation and/or
join operators and they are de�ned over di�erent windows, another validity
check, i.e., event rewriting or post processing, is executed. The pre-processing
validity check for sequences is performed as follows: every event Iei in the
init sequence is compared to the corresponding (i.e., in the same position)
event Eej in the end sequence. If for each couple of events (Iei, Eej), they are
de�ned over the same window and they might simultaneously hold (i.e., for
each attribute a ∈ Atts(Iei)∪Atts(Eej), the intersection V SaIei∩V S

a
Eej
6= ∅),

then init and end events might bring to a potential SHP.

Example 3.2.4 Consider an emergency detected when a patient temperature
increases, i.e., a sequence of events with increasing temperature values is
received.

IncreasingTemperature {
init: (VS1 v1, VS2 v2[v1,5m], VS3 v3[v2,5m],

_, patient_id);
VS1 = σ(35 ≤ temp ≤ 37)(S);
VS2 = σ(38 ≤ temp ≤ 40)(S);

8if Iei and Eej are de�ned over di�erent windows, it is not possible to receive tuples
which satisfy both Iei and Eej , therefore the SHP cannot occur.

36 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

VS3 = σ(temp ≥ 41)(S);
end: (VS4 v4, VS5 v5[v1,5m], VS6 v6[v2,5m],

_, patient_id);
VS4 = σ(34 ≤ temp ≤ 37)(S);
VS5 = σ(38 ≤ temp ≤ 41)(S);
VS6 = σ(temp ≥ 42)(S);
timeout: ∞;
identifier: patient_id;

}

In this example, the arrival, for a certain patient, of a sequence of tuples with
temperatures 36, 39, 44 results in the SHP. Since the two sequences have the
same length, they contain only selection operators and events in the same
position are de�ned over the same window, it is possible to perform the pre-
processing validity check. In this example, the validity check fails, because:
(1) V S1 and V S4 are in the same position, they are de�ned over the same
window and they can simultaneously hold (i.e., V StempV S1 ∩V S

temp
V S4 = [35, 37] 6=

∅); (2) V S2 and V S5 are in the same position, they are de�ned over the
same window (i.e., [v1,5m]) and they can simultaneously hold (i.e., V StempV S2 ∩
V StempV S5 = [38, 40] 6= ∅), (3) V S3 and V S6 are in the same position, they
are de�ned over the same window (i.e., [v2,5m]) and they can simultaneously
hold (i.e., V StempV S3 ∩ V S

temp
V S6 = [42, 100] 6= ∅).

Negation
In this case, init and end operators have the from ¬ ET1 e1[w1] and ¬ ET2
e2[w2]. The pre-processing validity check can be executed only if the two
negations contain only projection and/or selection operators and they are
de�ned over the same window. Otherwise, event rewriting or post-processing
is executed. The pre-processing validity check for negations is performed as
follows: if e1 and e2 are de�ned over the same window (i.e., w1 = w2) and
e1 and e2 might simultaneously hold (i.e., for each attribute a ∈ Atts(e1) ∪
Atts(e2), the intersection V S

a
e1
∩ V Sae2 6= ∅), then they may cause a SHP.

Example 3.2.5 Consider the following generic emergency based on a wrong
de�nition of two negation event patterns.

GenericEmergency {
init: (¬ ET1 e[w], _, patient_id);
ET1 = σ(x > 10)
end: (¬ ET2 e[w], _, patient_id, _,

patient_id);
ET2 = σ(x > 20)
timeout: ∞;

}

3.2. EMERGENCY POLICY 37

If during the window [w] a tuple with the x attribute (Dom(x)=[0,100])
greater than 20 is not received, then the SHP occurs. In this case, since the
two negations are de�ned over the same window and they contain only se-
lection operators, it is possible to perform the pre-processing validity check.
Here, the validity check fails, because ET1 and ET2 are de�ned over the same
window (i.e., [w]) and they can simultaneously hold (i.e., V SxET1 ∩ V S

x
ET2

=
[21, 100] 6= ∅).

Iteration
In this case, init and end have the from ET1 e1[w1]{P1} and ET2 e2[w2]{P2}.
The pre-processing validity check can be executed only if the two iteration
predicates P1 and P2 and the two events ET1 and ET2 contain only projection
and/or selection operators. Moreover, the two iterations should be de�ned
over the same window. Otherwise, event rewriting or post-processing is ex-
ecuted. The pre-processing validity check for iterations checks the following
conditions: (1) e1 and e2 are de�ned over the same window (i.e., w1 = w2)
and they might simultaneously hold (i.e., for each attribute a ∈ Atts(e1) ∪
Atts(e2), the intersection V S

a
e1
∩ V Sae2 6= ∅); (2) iteration predicates P1 and

P2 might simultaneously hold (i.e., for each attribute a ∈ Atts(P1)∪Atts(P2),
the intersection V SaP1

∩ V SaP2
6= ∅). If both the conditions hold, then they

might bring to a potential SHP.

Example 3.2.6 Consider an emergency of tachycardia which starts when a
patient heart rate is greater than or equal to 90 bpm, for one minute, and it
ends when the same patient heart rate is lower than or equal to 100 bpm, for
one minute. This is a wrong de�nition of Tachycardia Emergency.

Tachycardia {
init: (VitalSigns e[][1m, 1m]{e[i].hr ≥ 90}, _,

patient_id);
end: (VitalSigns e[][1m, 1m]{e[i].hr ≤ 100}, _,

patient_id);
timeout: ∞;

}

In this example, the domain of the heart rate attribute is [0,140] and if
during the window [1m, 1m] every received tuple has attribute hr = 95, then
SHP occurs. In this case, since the two iterations are de�ned over the same
window and they contain only selection operators, it is possible to perform the
pre-processing validity check. In this example, the validity check fails, because
ET1 and ET2 are de�ned over the same window (i.e., [w]) and iteration
predicates can simultaneously hold (i.e., V ShrP1

∩ V ShrP2
= [90, 100] 6= ∅).

38 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

Event Rewriting Validity Check

Unfortunately, the pre-processing validity check is not possible for those
events whose validity sets cannot be computed �a priori�. For instance, this
is the case of an emergency monitoring a blood pressure disease with init:
systolic ≥ diastolic+50 and end: diastolic ≥ systolic− 50. To handle these
cases, we propose two additional strategies to detect the SHP. The idea is to
detect tuples satisfying both init and end events at run time, so as to discard
them for emergency activation/detection purpose. More precisely, the �rst
approach, called event rewriting, implies to rewrite init and end events in
such a way that they are not triggered by the arrival of these tuples. This is
achieved by transforming init in init∧ ¬end and end in end∧ ¬init, as the
following example clari�es.

Example 3.2.7 Consider the wrong emergency speci�cation presented above,
where the init and end events are de�ned in CESL as: init = σ(systolic ≥
diastolic + 50)(S) and end = σ(system ≤ diastolic + 50)(S) where S is
the stream over the two events are de�ned. According to the strategy above
explained, they are rewritten as follows:

new_init = σ(systolic ≥ diastolic+ 50)(S) ∧
¬σ(diastolic ≥ systolic− 50)(S)
new_end = σ(diastolic ≥ systolic− 50)(S) ∧
¬σ(systolic ≥ diastolic+ 50)(S)

The arrival of a tuple t with attributes systolic = 100 and diastolic =
50 does not match neither with new_init nor with new_end, therefore the
arrival of t does not result in the SHP.

Post Processing Validity Check

However, this rewriting is not always possible, since it works only when init
and end are de�ned over the same set of streams. Indeed, using CESL op-
erators, it is not possible to combine with negation events from di�erent
streams. For this reason, we propose a further validity check, called post-
processing validity check. This is enforced outside the CEP system since it
requires checking tuples �owing out from init and end events to discard those
that trigger a SHP.

Example 3.2.8 Suppose that the monitoring system is used to monitor pa-
tients glucose level and insulin drips level, so as to raise a hypoglycemia emer-
gency when the patient glucose level is lower than or equal to 70 mg/dl. When
the emergency is detected the insulin drips level is automatically increased by

3.2. EMERGENCY POLICY 39

an emergency obligation. When the insulin level returns greater than or equal
to 1.2, then the emergency ends.

HypoglycemiaEmergency {
init: VS1 v1;
VS1 = σ(glucose_level ≤ 70)(VitalSigns);
end: ID1 id1;
ID2 = σ(insulin_level > 1.2)(InsulinDrip);
timeout: ∞;
identifier: patient_id;

}

In this case, the simultaneous arrival of two tuples t1 from stream Vi-
talSigns and t2 from stream InsulinDrip, with the same patient_id and at-
tributes t1.glucose_level = 68 and t2.insulin_level = 1.3 results in the SHP.

To handle this type of SHP, we introduce a module called Post Processing
(PP) that detects tuples causing SHP and, based on setting introduced by
the emergency manager, will always perform one of the following actions: (i)
discard tuples causing the SHP, i.e., the emergency is not activated, or (ii)
discard only the tuple causing the end of the emergency, i.e., the emergency is
activated and never deactivated. In both cases, a warning is sent to the emer-
gency manager who has de�ned the policy causing the SHP. The solution (i)
is secure because it prevents the activation of a tacp due to a wrong emer-
gency de�nition and is e�cient because it avoids time consuming operation
such as emergency activation/deactivation. However, in case of a real emer-
gency, it might endanger patients health. The solution (ii) does not endanger
patient lives, but it is less secure due to the activation of a tacp which will
never be deactivated. The choice between (i) and (ii) depends on the domain,
for instance in healthcare domain action (ii) is better to not endanger patient
lives, whereas in a military domain action (i) is better to not disclose con-
�dential information for longer than necessary. The post-processing validity
check is important for the overall system correctness, independently from the
response strategy adopted, because it signals to emergency managers those
emergencies causing SHP contributing to the proper de�nition of emergency
descriptions.

Correctness Enforcement

Based on the above-described validity checks the overall process of emergency
policy correctness validation is given in Algorithm 1. This is executed each
time a user de�nes/modi�es an emergency description, i.e., its init and end

40 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

events.

Algorithm 1: SHP
Input : init and end events
Output: {Valid, Invalid, Post}

1 switch init, end do
2 case init is simple event ∧ end is simple event
3 res = ShpSimple(init, end);

4 case init is event pattern ∧ end is event pattern
5 res = ShpPattern(init, end);

6 otherwise res = Post;

7 endsw

8 if res = Post then Post(init, end);
9 return res;

Algorithm 1 �rst checks if both init and end events are simple events (line
2) or event patterns (line 4). Indeed, in these cases we can perform the pre-
processing validity checks or the event-rewriting strategy. These are carried
out by two distinct functions namely ShpSimple (line 3) and ShpPattern
(line 5), otherwise the post-processing strategy is enforced (line 6). These
functions return Invalid or Valid, whether init and end event can or cannot
generate an SHP. In case it is not possible to determine Valid/Invalid status,
these functions return Post. In these cases, the post-processing validity check
is carried out by the Post procedure (line 8), which register init and end into
a list of events whose outputs have to be monitored by the Post Processing
(PP) module.

Function ShpSimple(init, end)

1 if GetStream (init) 6= GetStream (end) then return Post;
2 if Atts (init) ∩ Atts (end) = ∅ then
3 Rewrite (init, init ∧ ¬ end);
4 Rewrite (end, end ∧ ¬ init);
5 return Valid;

6 end

7 if GetOper (init) * {σ, π} ∨ GetOper (end) * {σ, π} then
8 return Post;

9 foreach pi ∈ GetPred (init) ∪ GetPred (end) do
10 if pi.β is not a constant then return Post;

11 end

12 foreach ai ∈ Atts (init) ∪ Atts (init) do
13 if VS(ai, init) ∩ VS(ai, end) 6= ∅ then return Invalid;

14 end

15 return Valid;

As �rst check, the ShpSimple function veri�es whether init and end events
are de�ned over di�erent streams. This is done by means of function Get-
Stream(e), which returns the stream over which event e is de�ned. If they are

3.2. EMERGENCY POLICY 41

de�ned over di�erent streams, a post processing validity check is needed (line
1). Then, the function veri�es if init and end events are de�ned over di�er-
ent attributes (line 2). In this case, the pre-processing validity check cannot
be performed. However, since events are de�ned over the same stream, we
can implement the event-rewriting strategy. This is done by function Rewrite
(lines 3, 4). If init and end events have at least one common attribute, then
the operators used in init and end are analyzed to perform the pre-processing
validity check. If they use operators which are not selection or projection,
then a post processing validity check is needed (line 8) since the validity sets
cannot be computed. Otherwise, each predicate p in both init and end is
analyzed (lines 9-11). If at least one predicate is not a comparison between
an attribute and a constant value, then a post processing validity check is
needed (line 10). Otherwise, each attribute a over which a predicate in both
init and end is de�ned, is analyzed (lines 12-14), so as to compute its validity
set. For each attribute a, the intersection between the validity sets of init and
end is calculated. If the intersection is not empty, then the two events might
cause an SHP (line 13), so the invalid message is returned. In case all these
checks fail, then ShpSimple function returns Valid (line 15).

Function ShpPattern(init, end)

1 switch init, end do
2 case init is sequence ∧ end is sequence
3 if length (init) 6= length (end) then return Post;
4 for i = 1; i < length (init); i++ do

5 if initi.w 6= endi.w then return Post;
6 res = ShpSimple (initi, endi);
7 if res 6= Valid then return res;

8 end

9 return Valid;

10 case init is negation ∧ end is negation
11 if init.w 6= end.w then return Post;
12 res = ShpSimple (init, end);
13 return res;

14 case init is iteration ∧ end is iteration
15 if init.w 6= end.w then return Post;
16 res1 = ShpSimple (init, end);
17 res2 = ShpPredicate (init.P, end.P);
18 if res1 = Valid ∧ res2 = Valid then return Valid;
19 if res1 = Invalid ∨ res2 = Invalid then return Invalid;
20 else return Post;

21 otherwise return Post;

22 endsw

Function ShpPattern performs a process similar to the one of ShpSimple,
but tailored to event patterns. First, it checks if init and end events are both

42 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

de�ned as the same type of pattern: two sequences (line 2), two negations
(line 10) or two iterations (line 14). In case the two events are de�ned over
di�erent types of patterns, then a post processing validity check is needed
(line 21).

When init and end events are both de�ned as sequences (line 2), ShpPat-
tern checks if the two sequences do not have the same length. In this case,
a post processing validity check is needed (line 3). Otherwise, every event
initi in the init sequence is compared against the corresponding endi event
in the end sequence (lines 4-8). If two events initi and endi are not de�ned
over the same window, then a post processing validity check is needed (line
5). Otherwise, the two simple events initi and endi are analyzed through
function ShpSimple (line 6). If ShpSimple returns Invalid or Post, then this
result is returned by ShpPattern (line 7). In case all events in the init and
end sequences are de�ned over the same windows and ShpSimple has always
returned Valid, then ShpPattern returns Valid (line 9).

When init and end events are de�ned as negations (line 10), ShpPattern
checks if the two events are not de�ned over the same window, so as to return
a Post message (line 11). Otherwise, the two events are analyzed through
ShpSimple and the result is returned by ShpPattern (lines 12, 13).

When init and end are de�ned as iterations (line 14), it veri�es if the two
events are not de�ned over the same window and, if this is the case, a post
processing validity check is needed (line 15). Otherwise, the two events and
the two iteration predicates are analyzed through ShpSimple and ShpPredi-
cate9 and the results are stored respectively in res1 and res2 variables (lines
16, 17). If both res1 and res2 are set to Valid, then ShpPattern returns Valid
(line 18). If res1 or res2 are set to Invalid, then ShpPattern returns Invalid
(line 19). Otherwise a post-processing validity check is needed (line 20).

Correctness Enforcement Formal Demonstrations

The following theorem proves the correctness of Algorithm 1.

Theorem 3.2.1 (Correctness of Algorithm 1). Let e be an emergency
description, init and end its events analyzed by Algorithm 1. For each tu-
ple t that simultaneously triggers both init and end events, no instance of
emergency e is created and simultaneously deleted.

Before proving it we need to introduce two lemmas stating the correctness
of functions ShpSimple and ShpPattern.

9Function ShpPredicate takes as input two predicates and returns Valid or Invalid,
depending on whether their validity sets are disjoint or not.

3.2. EMERGENCY POLICY 43

Lemma 3.2.1 (ShpSimple Correctness). Let e be an emergency descrip-
tion, init and end its simple events analyzed by ShpSimple. For each tuple t
that simultaneously triggers both init and end events, no instance of emer-
gency e is created and simultaneously deleted.

Lemma 3.2.2 (ShpPattern Correctness). Let e be an emergency de-
scription, init and end its event patterns analyzed by function ShpPattern.
For each tuple t that simultaneously triggers both init and end events, no
instance of emergency e is created and simultaneously deleted.

Proof of Lemma 3.2.1 (ShpSimple Correctness)
We start the proof by recalling that if ShpSimple returns Invalid for a couple
of init and end events, then also Algorithm 1 returns Invalid (see line 3).
This implies that init and end will not be registered in the CEP, then no
instance of emergency e is created and simultaneously deleted. If ShpSimple
returns post, then Algorithm 1 executes function Post (line 8). This function
ensures that the SHP cannot occur. Function ShpSimple returns Valid (line
20) in case of event rewriting or when the original init and end events cannot
cause the SHP. Let us consider both the cases:

Event Rewriting: it is performed when GetStream(init) = GetStream(end)
(line 1) and Atts(init) ∩ Atts(end) = ∅ (line 2). Since GetStream(init) =
GetStream(end), the SHP might occur when a tuple t satisfying init and
end is received. This can be formalized by function sat(t, e) which returns
true if tuple t satis�es event e. More precisely, in case of SHP we have
that sat(t, init) = true ∧ sat(t, end) = true. After event rewriting, this
equation will never hold for newInit and newEnd. Indeed, by construction
newInit = init ∧ ¬ end (line 3) and newEnd = end ∧ ¬ init (line 4).
Thus, sat(t, newInit) = sat(t, init) ∧ ¬ sat(t, end) and sat(t, newEnd) =
sat(end, t) ∧ ¬ sat(init, t). Thus, if a tuple t that satis�es both init and
end events arrives, it will never satisfy both newInit and newEnd, since
this is given by sat(t, init) ∧ ¬ sat(t, end) ∧ sat(end, t) ∧ ¬ sat(init, t)
= true ∧ false ∧ true ∧ false = false.

Init and End are Valid: ShpSimple returns Valid when GetStream(init)
= GetStream(end) (line 1), Atts(init) ∩ Atts(end) 6= ∅ (line 2), GetOpera-
tors(init) ⊆ {σ, π} ∨ GetOperators(end) ⊆ {σ, π} (line 7), @ pi ∈ {Get-
Pred(init) ∪ GetPred(end) } such that pi.β is not a constant (lines 9-11) and
∀ ai ∈ {Atts(init) ∪ Atts(end)}, VS (ai, init) ∩ VS (ai, end) = ∅ (lines 12-14).
If all the listed conditions are met, then ∀ ai the init and end validity sets
are disjoint, indeed for any attribute ai belonging to the schema of the tuple

44 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

t or the attribute value belongs to V S(ai, init) or it belongs to V S(ai, end),
as such a SHP will never occur.

Proof of Lemma 3.2.2 (ShpPattern Correctness)
We start the proof by recalling that if ShpPattern returns Invalid for a cou-
ple of init and end events, then also Algorithm 1 returns Invalid (see line
5). This implies that init and end will not be registered in the CEP, then
no instance of emergency e is created and simultaneously deleted. If Shp-
Pattern returns post, then Algorithm 1 executes the Post function (line 8).
The ShpPattern function returns Valid (lines 9, 13, 18) in the following cases:

Sequence Event Patterns: when init and end events are sequences, the
function returns Valid, if length(init) = length(end) (line 3), ∀ initi ∈ init
and ∀ endi ∈ end, initi.w = endi.w (line 5) and ShpSimple(initi, endi) =
Valid (line 6). The Lemma 3.2.1 ensures that if ShpSimple(initi, endi) re-
turns valid, then initi and endi cannot cause the SHP. If this is true for
all the events in the same position in init and end sequences and they are
de�ned over the same windows, then the SHP cannot occur for init and end
events.

Negation Event Patterns: when init and end events are negations, the
function returns Valid if init.w = end.w (line 11) and ShpSimple(init, end)
= Valid (line 12). The Lemma 3.2.1 ensures that if ShpSimple(init, end) re-
turns valid, then init and end cannot cause the SHP, indeed if this is true
and they are de�ned over the same window, then the SHP cannot occur for
init and end events.

Iteration Event Patterns: when init and end events are iterations, the
function returns Valid if init.w = end.w (line 15), ShpSimple(init, end) =
Valid (line 16) and ShpPredicate(init.P, end.P) = Valid (line 17). The Lemma
3.2.1 ensures that if ShpSimple(init, end) returns valid, then init and end
cannot cause the SHP and this result can be easily extended for ShpPredi-
cate(init.P, end.P) function, indeed, if these conditions are satis�ed and init
and end events are de�ned over the same window, then the SHP cannot oc-
cur for init and end events.

Proof of Theorem 3.2.1

We have to prove that if Algorithm 1 returns Valid, then init and end events
cannot cause the SHP, if it returns Invalid, then they might cause the SHP,
otherwise the SHP is avoided through Post procedure (line 8). Algorithm 1

3.2. EMERGENCY POLICY 45

returns Valid (lines 3, 5) in the following cases.

Simple Events: when init and end are simple events (line 2) and ShpSim-
ple returns Valid (line 3). Lemma 3.2.1 ensures that if ShpSimple(init, end)
returns valid, then init and end cannot cause the SHP.

Event Patterns: when init and end are event patterns (line 4) and Shp-
Pattern returns Valid (line 5). Lemma 3.2.2 ensures that if ShpPattern(init,
end) returns valid, then init and end cannot cause the SHP.

Algorithm 1 returns Invalid (lines 3, 5) in the following cases.

Simple Events: when init and end are simple events (line 2) and ShpSim-
ple returns Invalid (line 3). Lemma 3.2.1 ensures that if ShpSimple(init, end)
returns invalid, then init and end might cause the SHP.

Event Patterns: when init and end are event patterns (line 4) and ShpPat-
tern returns Invalid (line 5). Lemma 3.2.2 ensures that if ShpPattern(init,
end) returns invalid, then init and end might cause the SHP.

When init and end events do not fall in one of the previously mentioned
cases, Algorithm 1 executes the Post procedure (line 8). In this case, the
SHP is avoided by the Post Processing module which performs one of the
previously described actions: (i) discard tuples causing the SHP or (ii) discard
only the tuple causing the end of the emergency. In case (i) the emergency
is not created, whereas in case (ii) the emergency is activated and never
deactivated, thus in both cases the simultaneous creation and deletion of an
emergency instance cannot occur.

3.2.2 Emergency Policy Administration

Emergency management is a complex task that we believe requires distribut-
ing the rights of create/modify emergency policies among di�erent subjects,
called emergency managers. Indeed, people in charge of the planning of re-
sponse activities for emergency situations have a strong expertise in issues
dealing with the particular �eld originating the emergency. For example, in
the hospital scenario the head of cardiology ward has the best pro�le to in-
dicate which activities have to be performed for cardiology emergencies, but
not to determine the response plan for a breathing emergency. Moreover,
relevant damage might be caused by emergency managers which, due to low
expertise in IT security issues, might de�ne dangerous emergency policies,

46 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

as they might accidentally or maliciously write policies allowing unnecessary
access to sensitive information or performing unnecessary obligations. For
these reasons, we introduce administration policies that specify who are the
emergency managers authorized to create/modify policies for which emergen-
cies, and which tacp templates they are authorized to specify in emergency
policies. For example, by means of administration policies, we should be able
to state that the pediatric ward administrator is authorized to de�ne tacp
templates only on EMRs of patients with age lower than 12, as well as that
a generic doctor is authorized to de�ne emergencies only over the VitalSigns
data stream and not on the BankTransaction stream, because is not within
his/her competences. In order to enforce the above-described restrictions,
we make use of the concepts of emergency scope and tacp scope, which are
formally de�ned as follows.

De�nition 3.2.4 (Emergency Scope): An emergency scope is a tuple
(event, streams, operators), where event ∈ {init, end, both}, streams
is a set of stream names, and operators is a set of CESL operators.

Given an emergency description e and an emergency scope emg_scope,
we say that e is valid w.r.t. emg_scope, if the init (end or both, respectively)
event is de�ned on a subset of the streams speci�ed in emg_scope.streams,
by using a subset of CESL operators speci�ed in emg_scope.operators.

De�nition 3.2.5 (Tacp Scope): A tacp scope is a tuple (sbj, obj, priv,
ctx, obl) where: sbj, obj and ctx are subject, object and context speci�ca-
tion, respectively; priv and obl are a set of allowed privileges and actions,
respectively.

Given a tacp template tacp and a tacp scope tacp_scope, we say that tacp
is valid w.r.t. a tacp_scope if: the subject (object, respectively) speci�cation
of tacp identi�es a subset of subjects (objects, respectively) identi�ed by
tacp_scope.sbj (tacp_scope.obj, respectively), the set of values for a context
attribute identi�ed by a context speci�cation of a tacp is a subset of the val-
ues identi�ed by tacp_scope.ctx and the privileges (obligations) in tacp.priv
(tacp.obl) is a subset of those privileges (obligations, respectively) identi�ed
in tacp_scope.priv (tacp_scope.obl). Based on emergency and tacp scopes,
we can now formalize the emergency administration policies, as follows.

De�nition 3.2.6 (Emergency Administration Policy): An emergency
administration policy is a tuple (admin_sbj, emg_scope, tacp_scope, obl),
where admin_sbj denotes the users authorized to specify emergency policies

3.2. EMERGENCY POLICY 47

whose emergency description is valid w.r.t. emg_scope and whose tacp tem-
plate is valid w.r.t tacp_scope, and containing only a subset of obligations
listed in obl.

Example 3.2.9 Let us assume that in our reference scenario the follow-
ing administration policy is de�ned: (CardiologyAdministrator, VitalSignsS-
cope, CardiologyScope, { call_ambulance}), where the only allowed emer-
gency obligation is call_ambulance, whereas VitalSignsScope and Cardiolo-
gyScope are speci�ed as follows.

VitalSignsScope {
(Both,(VitalSigns,any));

}

CardiologyScope {
sbj: (doctor, ward=cardiology);
obj: (EMR, ward=cardiology);
priv: {read};
ctx: -;
obl: {mailto};

}

VitalSignsScope denotes emergencies where both init and end events are
de�ned only over the VitalSigns stream (by using any of the CESL operators).
In contrast, the tacp scope includes subjects with the doctor role who belong
to the cardiology ward, and objects corresponding to the EMR of patients
of the cardiology ward. Moreover, the only allowed privilege and obligation
are, respectively, read and mailto. Consider the emergency policy de�ned in
Example 3.2.2. This is not valid w.r.t. the above de�ned administration policy
because the tacp is not valid w.r.t. CardiologyScope, since subjects identi�ed
by HypertensionPolicy include users with the paramedic role and not with the
doctor role. The HypertensionPolicy can be easily modi�ed to be valid w.r.t.
the CardiologyScope changing the subject speci�cation as (doctor, doctor_id
= call.doctor_id). In this case HypertensionPolicy is valid after rewriting
and the rewritten tacp is the following. More details about tacp rewriting are
provided in the following Section.

HypertensionPolicy {
sbj: (doctor, doctor_id = call.doctor_id ∧

ward = cardiology);
obj: (EMR, patient_id = emg.patient_id ∧

ward = cardiology);
priv: read;
ctx: -;

48 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

obl: mailto(patient_mail);
}

Administration Policy Enforcement

The enforcement of emergency administration policies is carried out each
time a user de�nes or modi�es an emergency policy, with the aim of verifying
whether the new policy satis�es at least an administration policy. In case an
emergency policy is not valid w.r.t. the speci�ed administration policies, a set
of rewriting strategies are applied, aiming to re-de�ne the invalid emergency
policy so as to make it valid w.r.t. at least one of the speci�ed administration
policies. Every time an emergency policy is rewritten, a warning is sent to the
emergency manager who has de�ned the policy in order to inform him about
the rewriting operation and, in case of bad rewriting, to manually correct
the policy. In case an emergency policy is not valid w.r.t. any administration
policy and rewriting is not possible, the emergency policy is discarded and the
policy issuer is warned. When a user de�nes/modi�es an emergency policy,
the validity of the new emergency policy is veri�ed by Algorithm 2.

Algorithm 2: ValidateEmergencyPolicies
input : ep, the new emergency policy to be validated
input : u, the user which is trying to de�ne ep
output : ep, ∅ or a list of valid rewritten emergency policies

1 Let EAPR be the Emergency Administration Policy Base;
2 rwEPs = ∅;
3 foreach eap ∈ EAPR do

4 <r, np> = CheckEmergencyPolicy (u, ep, eap);
5 if r = Valid then return ep;
6 if r = ValidAfterRw then

7 rwEPs = rwEPs ∪ {np};
8 Warn (u, ep, eap);

9 end

10 if rwEPs = ∅ then Warn (u, ep);
11 return rwEPs;

Algorithm 2 takes as input an emergency policy ep and the user u who is
trying to de�ne it. Algorithm 2 checks ep against each administration policy
eap in the Emergency Administration Policy Repository EAPR (lines 3-9)
by using the CheckEmergencyPolicy function (line 4). This function takes
as input u, ep, eap and returns a pair <r, np> with one of the following
values: <Valid, ep>, if ep is valid w.r.t. eap, <Invalid, ∅>, if ep is not valid
w.r.t. eap, <ValidAfterRw, np>, where np is a rewritten emergency policy,
if ep is not valid but the rewriting strategy can be applied. If r = Valid,
then Algorithm 2 returns ep (line 5). If r = ValidAfterRw, then the rewritten

3.2. EMERGENCY POLICY 49

emergency policy np is stored into the rwEPs set (line 7) and user u is
informed that the emergency policy he/she has de�ned has been rewritten
(line 8). In case ep is not valid, when Algorithm 2 has analyzed all the
emergency administration policies, it returns rwEPs , which could be empty
or contain the set of rewritten emergency policies (line 11). In case rwEPs is
empty, the ep emergency policy is not inserted into the policy base and the
user u is warned about the wrong de�nition of ep (line 10).

Function CheckEmergencyPolicy(u, ep, eap)

1 Let np = (tacp, emg, obl) be initialized empty;
2 EmgChk = ChkEmgScope (ep.emg, eap.emg_scope);
3 <r, np.tacp> = RwTacp (ep.tacp, eap.tacp_scope);
4 if u ∈ eap.admin_sbj ∧ ep.obl ⊆ eap.obl ∧ EmgChk = true ∧ r = Valid then

5 return <Valid, ep>;

6 if u /∈ eap.admin_sbj ∨ ep.obl ∩ eap.obl = ∅ ∨ EmgChk = false ∨ r = Invalid

then

7 return <Invalid, ∅>;
8 np.emg = ep.emg;
9 np.obl = ep.obl ∩ eap.obl;

10 return <ValidAfterRw,np>;

This function �rst checks if the emergency description ep.emg is valid
w.r.t. the emergency scope eap.emg_scope (line 2) through function ChkEmg
Scope (see its description later on). Then, it calls function RwTacp (line 3),
which takes as arguments the tacp template contained into the input emer-
gency policy and the tacp scope of the input administrative policy and re-
turns a pair <r, np.tacp> that can have one of the following values: <Valid,
ep.tacp>, if ep.tacp is valid w.r.t. eap.tacp_scope, <Invalid, ∅>, if ep.tacp is
not valid w.r.t. eap.tacp_scope, <ValidAfterRw, np.tacp>, where np.tacp is
a rewritten tacp, if ep.tacp is not valid w.r.t. eap.tacp_scope, but it can be
rewritten into the valid policy np.tacp. Then, CheckEmergencyPolicy veri�es
whether the user is among the authorized users in eap, obligations speci�ed
in ep are a subset of those authorized in eap and both the tacp template
and the emergency description contained into the input emergency policy
are valid w.r.t. the corresponding scope (line 4). If all these conditions are
satis�ed, then CheckEmergencyPolicy returns <Valid, ep> (line 5), other-
wise it checks if there is at least a condition to consider ep not rewritable
into a valid policy, that is, if u is not among the authorized users in eap,
or obligations required in ep are disjoint from obligations allowed in eap,
or CheckEmergencyScope returns false or RwTacp returns Invalid (line 6).
If at least a condition holds, then CheckEmergencyPolicy returns <Invalid,
∅> (line 7). Otherwise, the rewriting is possible, thus CheckEmergencyPol-
icy returns <ValidAfterRw, np> (line 10), where np is the emergency policy

50 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

resulting from the tacp rewriting performed by RwTacp, whereas obligations
are given by the intersection between those required in ep and those autho-
rized in eap (line 9).

Function ChkEmgScope(emg,scope)

1 switch scope.event do
2 case init
3 if GetStreams (emg.init) * scope.streams then
4 return false;

5 if GetOperators (emg.init) * scope.operators then
6 return false;

7 case end
8 if GetStreams (emg.end) * scope.streams then
9 return false;

10 if GetOperators (emg.end) * scope.operators then
11 return false;

12 otherwise if GetStreams (emg.init) * scope.streams ∧ GetStreams
(emg.end) * scope.streams then

13 return false;

14 if GetOperators (emg.init) * scope.operators ∧ GetOperators (emg.end)
* scope.streams then

15 return false;

16 endsw

17 return true;

The ChkEmgScope function takes as input an emergency emg and an
emergency scope scope and returns true or false whether emg is valid or not
w.r.t. scope. The function considers three cases depending on the content of
the �eld scope.event (line 1). If scope.event = init (line 2), then the function
checks if the streams over which init is de�ned are not a subset of the streams
contained in the scope (line 3) and if the operators used in init speci�cation
are not a subset of the scope operators (line 5), in case one of these checks
succeeds the function return false, i.e., emg is not valid w.r.t. scope. The
two functions GetStreams and GetOperators return respectively the list of
streams and operators over which the event passed as argument is de�ned. In
a similar way, the function checks streams and operators for the other cases
(scope.event = end, line 7 and scope.event = both, line 12). In case all these
checks fail, then ChkEmgScope function returns true and the emergency emg
is valid w.r.t. scope (line 17).

3.2. EMERGENCY POLICY 51

Function RwTacp(t,s)

1 Let n = (sbj, obj, ctx, obl) be initialized empty;
2 rw = false;
3 <res, np.sbj> = RwTacpSbj (t.sbj,s.sbj);
4 if res = Invalid then return <Invalid, ∅>;
5 if res = ValidAfterRw then rw = true;
6 <res, np.obj> = RwTacpObj (t.obj,s.obj);
7 if res = Invalid then return <Invalid, ∅>;
8 if res = ValidAfterRw then rw = true;
9 if t.priv ∩ s.priv = ∅ then return <Invalid, ∅>;
10 if t.priv * s.priv then
11 rw = true;
12 np.priv = t.priv ∩ s.priv;

13 end

14 <res, np.ctx> = RwTacpExp (t.ctx,s.ctx);
15 if res = Invalid then return <Invalid, ∅>;
16 if res = ValidAfterRw then rw = true;
17 if t.obl ∩ s.obl = ∅ then return <Invalid, ∅>;
18 if t.obl * s.obl then
19 rw = true;
20 np.obl = t.obl ∩ s.obl;

21 end

22 if rw = false then return <Valid, t>;
23 else return <ValidAfterRw, np>;

This function takes as input a tacp template t and a tacp scope s and
returns a pair <r, np> whose possible values have been explained before.
Function RwTacp checks the subject speci�cation t.sbj against the subject
speci�cation s.sbj of the input tacp scope. This is done through function
RwTacpSbj, which will be described later on (line 3). This function returns
a pair <res, np.sbj>. If res = Invalid, then RwTacp returns Invalid (line 4).
If res = ValidAfterRw, then the rw �ag is set to true (line 5). Then, RwTacp
checks the validity of the other tacp �elds (i.e., the object speci�cation and
context condition) using functions RwTacpObj (line 6) and RwTacpExp (line
14), respectively. In contrast privileges and obligations validity are checked
by computing their intersections with privileges/obligations authorized in
the input scope. If the intersection is empty (lines 9, 17), then RwTacp re-
turns Invalid. If tacp privileges (obligations, respectively) are not a subset of
tacp scope ones (lines 10, 18), then a rewriting is possible (lines 11, 19) and
the new privileges (obligations, respectively) are calculated (lines 12, 20) as
the intersection of tacp and tacp scope privileges (obligations, respectively).
When RwTacp has analyzed all the tacp �elds, then, if none of them has been
rewritten, the function returns the couple <Valid, t> (line 22), otherwise, it
returns <ValidAfterRw, np>, where np is the rewritten tacp (line 23). In
the following, we explain RwTacpSbj. RwTacpObj and RwTacpExp are not

52 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

explained because they are similar to RwTacpSbj.

Function RwTacpSbj(s, t)

1 <RolesRes,np.roles> = RwRoles (s.roles, t.roles);
2 <CondRes,np.cond> = RwConditions (s.cond, t.cond);
3 if RolesRes = Valid ∧ CondRes = Valid then

4 return <Valid, t>;

5 if RolesRes = Invalid ∨ CondRes = Invalid then

6 return < Invalid, ∅>;
7 else

8 return <ValidAfterRw, np>;

9 end

Function RwTacpSbj takes as input two subject speci�cations: s, the sub-
ject speci�cation of a tacp scope and t the subject speci�cation of a tacp.
According to the adopted access control model, these subject speci�cations
are pairs (roles, cond), where roles is a set of roles and cond is a Boolean
expression on user pro�le attributes. First, RwTacpSbj veri�es if roles and
conditions speci�ed in t satisfy the restrictions contained in s. This is done
by two functions, namely, RwRoles (line 1) and RwConditions (line 2) that
both return a pair <r, np>. If both roles and condition in t are valid w.r.t.
s (line 3), then RwTacpSbj returns <Valid, t> (line 4). If at least one be-
tween roles and condition in tacp t is invalid w.r.t. s (line 5), then RwTacpSbj
returns <Invalid, ∅> (line 6). Otherwise (line 7), RwTacpSbj returns <Val-
idAfterRw, np> (line 8), where np is the rewritten subject speci�cation.

Function RwRoles
This function checks if roles in t.roles are a subset of roles in s.roles, then it
returns <Valid, t.roles>, if the two sets are disjoint, then it returns <Invalid,
∅>, otherwise, a rewriting is possible and the rewritten roles are calculated
as the intersection between scope and tacp roles.

3.2. EMERGENCY POLICY 53

Function RwConditions(s.cond, t.cond)

1 rw = false;
2 validCond = false;
3 DNF_s = DNF (s.cond);
4 DNF_t = DNF (t.cond);
5 disj = ∅;
6 foreach conjunctive clause ch ∈ DNF_s do
7 foreach conjunctive clause ck ∈ DNF_t do
8 conj = ∅;
9 validClause = true;
10 foreach predicate pi ∈ ch do
11 foreach predicate pj ∈ ck do
12 Let Att(p) the attribute over which predicate p is de�ned;
13 if Att(pi) 6= Att(pj) then
14 rw = true;
15 Insert (pi ∧ pj) Into conj;

16 else

17 Let V S_p be the validity set of predicate p;
18 if V S_pi ∩ V S_pj = ∅ then
19 validClause = false;

20 else

21 if V S_pj ⊆ V S_pi then
22 Insert pj Into conj;

23 else

24 rw = true;
25 Insert (pi ∧ pj) Into conj;

26 end

27 end

28 end

29 end

30 end

31 if validClause = true then validCond = true;
32 Insert conj Into np.cond;

33 end

34 end

35 if validCond = false then
36 return < Invalid, ∅>;
37 else

38 if rw = false then return <Valid, t>;
39 else return <ValidAfterRw, np.cond>;

40 end

Function RwConditions takes as input two Boolean expressions: s.cond
of a tacp scope s and t.cond of a tacp t. RwConditions �rst transforms both
the expressions in Disjunctive Normal Form (DNF), i.e., a disjunction of
conjunctive clauses, respectively DNF_s (line 3) and DNF_t (line 4). It
then compares each conjunctive clause ch ∈ DNF s against each conjunctive

54 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

clause ck ∈ DNF t (lines 6-34). This is performed analyzing each pair of
predicates pi ∈ ch, pj ∈ ck in the conjunctive clauses (lines 10-30). The
predicates comparison depends on attributes over which they are de�ned. If
pi and pj are not de�ned over the same attributes (line 13), then they must
be rewritten (line 14) and inserted into the resulting conjunctive clause conj
(line 15). If pi and pj are de�ned over the same attributes (line 16) then, the
intersection of their validity sets10 V S_pi and V S_pj is computed. If the
intersection is empty (line 18), then variable validClause is set to false (line
19), i.e., the clause is invalid. Otherwise, if V S_pj ⊆ V S_pi (line 21), then
pj is inserted into conj without rewriting it (line 22). Otherwise (line 23),
a rewriting is needed (line 24). The rewriting is performed inserting pi ∧ pj
into conj (line 25). Once all pairs of predicates have been compared, then
the conjunctive clause conj is inserted into the resulting disjunctive clause
np.cond (line 32). Moreover, the validClause variable is checked, if its value
is true, it means that all predicates in ch are valid w.r.t. all predicates in
ck, thus validCond is set to true (line 31), i.e., the whole condition is valid.
This is because in a disjunctive clause, if one clause is valid, then the entire
condition is valid too. When RwConditions has analyzed all conditions: if all
clauses are invalid (line 35), i.e., valCond = false, then it returns <Invalid,
∅> (line 36); if none of them has been rewritten, then it returns <Valid,
t> (line 38); otherwise it returns <ValidAfterRw, np.cond> (line 39), where
np.cond is the rewritten condition. Theorem 3.2.2 proves the correctness of
Algorithm 2.

In the following, a temporary access control policy rewriting example is
presented.

Example 3.2.10 (Emergency Policy Rewriting). Consider the Hyper-
tensionPolicy presented in Example 3.2.1. This policy can be easily modi�ed
to be valid w.r.t. the CardiologyScope presented in Example 3.2.9. In this
case HypertensionPolicy is valid after rewriting and the rewritten tacp is the
following.

HypertensionPolicy {
sbj: (doctor, doctor_id = call.doctor_id ∧

ward = cardiology);
obj: (EMR, patient_id = emg.patient_id ∧

ward = cardiology);
priv: read;
ctx: -;
obl: mailto(patient_mail);

}

10The validity set of a predicate p is the set of values satisfying p.

3.2. EMERGENCY POLICY 55

Administration Correctness

Theorem 3.2.2 (ValidateEmergencyPolicies Correctness). Let ep be
an emergency policy submitted by a user u, and rwEPs be the set of autho-
rized emergency policies returned by Algorithm 2. For each authorized emer-
gency policy rwep ∈ rwEPs, there exists at least an administration policy
eap ∈ EAPR (the Emergency Administration Policy Repository) such that
eap authorizes rwep. If rwEPs = ∅, then none of the administration policies
eap ∈ EAPR authorizes ep, and ep cannot be rewritten in order to be valid
w.r.t. at least one administration policy. Before proving it, we need to intro-
duce a lemma stating the correctness of function CheckEmergencyPolicy.

Lemma 3.2.3 (CheckEmergencyPolicy Correctness). Let u be a user
which is trying to de�ne an emergency policy ep and eap an emergency ad-
ministrative policy. Let <r, n> be the result returned by CheckEmergency-
Policy(u, ep, eap) function. If r is (i) Valid, then ep is valid w.r.t. eap; (ii)
Invalid, then ep is not valid w.r.t. eap; otherwise (iii), it means that the
emergency policy ep has been rewritten as np which is valid w.r.t. eap.

Before proving Theorem 3.2.2, we need to prove Lemma 3.2.3. Before
proving it, we need to introduce lemmas stating the correctness of functions
ChkEmgScope, RwRoles, RwConditions, RwTacpSbj, RwTacpObj RwTacp-
Exp.

Lemma 3.2.4 (ChkEmgScope Correctness). Let e be an emergency de-
scription and s an emergency scope. Let S be the set of emergency descrip-
tions valid w.r.t. s. If ChkEmgScope(e, s) returns true, then e ∈ S; e /∈ S
otherwise.

We prove the lemma by proving that if there exists an emergency e /∈
S such that ChkEmgScope(e, s) returns true, then a contradiction arises.
ChkEmgScope returns true in the following cases.

• s.event = init : in this case ChkEmgScope returns true if init is de�ned
over a subset of streams de�ned in s.streams and operators in init are
a subset of operators in s.operators. If both these conditions hold, then,
according to De�nition 3.2.4, the emergency description e is valid w.r.t.
s, thus e ∈ S.

• s.event = end : in this case ChkEmgScope returns true if end is de�ned
over a subset of streams de�ned in s.streams and operators in end are
a subset of operators in s.operators. If both these conditions hold, then,
according to De�nition 3.2.4, the emergency description e is valid w.r.t.
s, thus e ∈ S.

56 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

• s.event = both: in this case ChkEmgScope returns true if init and end
are de�ned over a subset of streams de�ned in s.streams and operators
in init and end are a subset of operators in s.operators. If all these
conditions are met, then e is valid w.r.t. s, thus e ∈ S.

Lemma 3.2.5 (RwRoles Correctness). Let t and s be a tacp and a tacp
scope, respectively. Let t.roles and s.roles be the set of roles in the subject
speci�cation of t and s, respectively. We denote with St.roles and Ss.roles the set
of subjects identi�ed by t.roles and s.roles, respectively. If RwRoles(s.roles,
t.roles) returns: Valid, then St.roles ⊆ Ss.roles; Invalid, then St.roles ∩Ss.roles =
∅; otherwise (i.e., ValidAfterRw), it means that t.roles has been rewritten
as np.roles which is valid w.r.t. s.roles, i.e., assuming Snp.roles be the set of
subjects identi�ed by np.roles, then Snp.roles ⊆ Ss.roles.

We have to prove that if RwRoles returns Valid, then St.roles ⊆ Ss.roles, if
it returns Invalid, then St.roles∩Ss.roles = ∅, otherwise the rewritten role spec-
i�cation np.roles identi�es a set of subjects Snp.roles ⊆ Ss.roles. RwRoles re-
turns Valid if t.roles is a subset of s.roles, indeed in this case St.roles ⊆ Ss.roles,
it returns Invalid if the intersection between t.roles and s.roles is empty, thus
St.roles ∩ Ss.roles = ∅. In case of rewriting, the new set of roles np.roles is cal-
culated as the intersection of t.roles and s.roles, which identi�es the subjects
Snp.roles = St.roles ∩ Ss.roles, therefore Snp.roles ⊆ Ss.roles.

Lemma 3.2.6 (RwConditions Correctness). Let t and s be a tacp and
a tacp scope, respectively. Let t.cond and s.cond be the conditions in the sub-
ject speci�cation of t and s, respectively. We denote with St.cond and Ss.cond
the set of subjects identi�ed by t.cond and s.cond, respectively. If RwCon-
ditions(s.cond, t.cond) returns: Valid, then St.cond ⊆ Ss.cond; Invalid, then
St.cond ∩Ss.cond = ∅; otherwise (i.e., ValidAfterRw), it means that t.cond has
been rewritten as np.cond which is valid w.r.t. s.cond, i.e., assuming Snp.cond
be the set of subjects identi�ed by np.cond, then Snp.cond ⊆ Ss.cond.

We prove the Lemma by induction on the dimension of the DNF of t.cond,
where by dimension we mean the number of conjunctive clauses and the
number of predicates in each clause. Thus, proving the Lemma by induction
implies to prove that the lemma holds for a DNF composed of one clause
with one predicate (Basis n=1). Then, we assume that the Lemma holds for
a DNF with one clause composed of n predicates and we prove that it holds
also for DNF with one clause composed of n+ 1 predicates. If the Lemma is
demonstrated for a DNF with one conjunctive clause, then it is valid also for
a DNF with more than one clause since in a disjunction, if one clause is valid,

3.2. EMERGENCY POLICY 57

then the entire disjunction is valid too. In the demonstration, we assume that
the DNF of s.cond has the following from c1∨ . . .∨cn, where each conjunctive
clause ci has the from p1 ∧ . . . ∧ pm. The set of subjects identi�ed by s.cond
is Ss.cond = Sc1 ∪ . . . ∪ Scn and the set of subjects identi�ed by a conjunctive
clause ci is Sci = Sp1 ∩ . . . ∩ Spm , where Scj and Spj are the set of subjects
whose pro�les satisfy conditions in clause cj and predicate pj.

Basis: The DNF of t.cond is composed of one predicate p, thus St.cond = Sp.

By construction, RwConditions returns Valid (line 38) when validCond =
true (i.e., check at line 35 fails) and rw = false. These conditions are satis-
�ed when there is at least one clause in DNF(t.cond) which is valid w.r.t. a
clause in DNF(s.cond) (line 31) and none of the predicates has been rewrit-
ten. A clause c1 is valid w.r.t. another clause c2 if all predicates in c1 are
valid w.r.t. all predicates in c2. More formally, these conditions are satis-
�ed when ∃ ch ∈ DNF (s.cond) (lines 6-34) such that ∀ pi ∈ ch (lines 10-
30), Att(pi) = Att(p) (line 16) and V S_p ⊆ V S_pi

11 (line 21). If these
conditions are met, it means that the validity set of p is a subset of the
validity sets of each pi, i.e., the subjects identi�ed by p are a subsets of
subjects identi�ed by p1, . . . , pn, that is, Sp ⊆ Sp1 , . . . , Sp ⊆ Spm . Since Sci =
Sp1∩. . .∩Spm , Sp is also a subset of Sci . Moreover, since Ss.cond = Sc1∪. . .∪Scn ,
if Sp ⊆ Sc1 , . . . , Sp ⊆ Scn , then Sp ⊆ Ss.cond.

RwConditions returns Invalid (line 36) when validCond = false (line 35).
This condition is satis�ed when all clauses in DNF(t.cond) are invalid w.r.t.
all clauses in DNF(s.cond). A clause c1 is invalid w.r.t. another clause c2 if
at least one predicate in c1 is invalid w.r.t. a predicate in c2. More formally,
these conditions are satis�ed when ∀ ch ∈ DNF (s.cond) (lines 6-34), ∃ pi ∈ ch
(lines 10-30) such that Att(pi) = Att(p) (line 16) and V S_pi ∩ V S_p = ∅
(line 18). If this condition is met, it means that Sp ∩ Spi = ∅. Since Sci =
Sp1 ∩ . . .∩Spm , if Sp∩Spi = ∅, then Sp∩Sci = ∅. If this is true for all clauses,
then Sc1 ∩ Sp = ∅, . . . , Scn ∩ Sp = ∅. Since Ss.cond = Sc1 ∪ . . . ∪ Scn , then
Sp ∩ Ss.cond = ∅.

We recall that, in case RwConditions returns ValidAfterRw, the rewritten
tacp subject speci�cation has the following form: np.cond = nc1 ∨ . . . ∨ ncn,
where each conjunctive clause nci has the form: np1 ∧ . . . ∧ npm. The set of
subjects identi�ed by np.cond is Snp.cond = Snc1 ∪ . . . ∪ Sncn and the set of

11We recall that the validity set V Sp is de�ned as the set of tuples that satis�es the
predicate p.

58 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

subjects identi�ed by a conjunctive clause nci is Snci = Snp1 ∩ . . . ∩ Snpm .

Function RwConditions returns ValidAfterRw (line 39) when validCond =
true (i.e., check at line 35 fails) and rw = true. These conditions are satis�ed
if there exists at least a predicate that has been rewritten and none of the
other predicates is invalid w.r.t. p. Indeed, if this is the case, the function
would stop, returning Invalid. If these conditions are met it means that a
predicate pi has been rewritten and ∀ pj such that pj 6= pi, there are three
possibilities.

1. Att(pj) 6= Att(p) (line 13), in this case a rewriting is performed as
npj = pj ∧ p.

2. Att(pj) = Att(p) (line 16) and V S_p ⊆ V S_pj (line 21), in this case
no rewriting is needed, therefore npj = pj.

3. Att(pj) = Att(p) (line 16) and V S_p * V S_pj (line 23), in this case
a rewriting is performed as npj = pj ∧ p.

In conclusion, predicate pi has been rewritten, thus npi = pi ∧ p, i.e.,
Snpi = Spi ∩ Sp, indeed Snpi ⊆ Spi . Regarding any other predicate pj, there
are two possibilities (1) pj is rewritten (case 1, 3) as npj = pj ∧ p, thus
Snpj = Spj ∩ Sp or (2) pj is not rewritten (case 2), thus Snpj = Spj . In both
cases, Snpj ⊆ Spj . In light of these considerations, a rewritten clause nci
identi�es a set of subjects Snci = Snp1 ∩ . . . ∩ Snpm , where each Snpi is a
subset of Spi , thus Snci ⊆ Sci . Since Ss.cond = Sc1 ∪ . . . ∪ Scn and Snp.cond =
Snc1 ∪ . . . ∪ Sncn , then Snp.cond ⊆ Ss.cond.

Induction: Let us now assume that thesis holds for a subject speci�cation st
composed of one clause with n predicates. We prove the thesis for a subject
speci�cation st′ , composed of one clause with n + 1 predicates. Since the
thesis holds for st, the set of subjects St identi�ed by st is a subset of Ss
(i.e., St ⊆ Ss). Adding a predicate to st, we obtain the following DNF:
st′ = (p1 ∧ . . . ∧ pn ∧ pn+1). Indeed, st′ is more restrictive than st, thus
St′ ⊆ St and consequently St′ ⊆ Ss, which prove the thesis.

Lemma 3.2.7 (RwTacpSbj Correctness). Let t and s be a tacp and a
tacp scope, respectively. We denote with St and Ss the set of subjects identi�ed
by t and s, respectively. If RwTacpSbj(s, t) returns Valid, then St ⊆ Ss;
Invalid, then St∩Ss = ∅; otherwise (i.e., ValidAfterRw), it means that t has
been rewritten as np which is valid w.r.t. s, i.e., assuming Snp be the set of
subjects identi�ed by np, then Snp ⊆ Ss.

3.2. EMERGENCY POLICY 59

By construction, RwTacpSbj(s, t) returnsValid (line 4) if both RwRoles(s.roles,
t.roles) and RwConditions(s.cond, t.cond) return Valid (line 3). Lemma 3.2.5
ensures that if RwRoles returns Valid, then St.roles ⊆ Ss.roles and Lemma 3.2.6
ensures that if RwConditions returns Valid, then St.cond ⊆ Ss.cond. Since the
set of subjects identi�ed by a subject speci�cation x is Sx = Sx.roles∩Sx.cond,
then if St.roles ⊆ Ss.roles and St.cond ⊆ Ss.cond, then St ⊆ Ss.

The RwTacpSbj(s, t) function returns Invalid (line 6) if RwRoles(s.roles,
t.roles) or RwConditions(s.cond, t.cond) returns Invalid (line 5). Lemma
3.2.5 ensures that if RwRoles returns Invalid, then St.roles ∩ Ss.roles = ∅,
similarly, Lemma 3.2.6 ensures that if RwConditions returns Invalid, then
St.cond ∩ Ss.cond = ∅. Thus, if St.roles ∩ Ss.roles = ∅ or St.cond ∩ Ss.cond = ∅, then
St ∩ Ss = ∅.

The RwTacpSbj(s, t) function returns ValidAfterRw (line 8) if at least one
of the functions RwRoles(s.roles, t.roles) and RwConditions(s.cond, t.cond)
returns ValidAfterRw and the other function does not return Invalid (e.g.,
conditions in lines 3 and 5 are not satis�ed), i.e., the other function might
return Valid or ValidAfterRw. Lemma 3.2.5 ensures that if RwRoles returns
ValidAfterRw, then the subjects identi�ed by np.roles are Snp.roles ⊆ Ss.roles
and Lemma 3.2.6 ensures that if RwConditions returns ValidAfterRw, then
the subjects identi�ed by np.cond are Snp.cond ⊆ Ss.cond. Indeed, if Snp.roles ⊆
Ss.roles and Snp.cond ⊆ Ss.cond, then Snp ⊆ Ss.

We now introduce Lemmas 3.2.8 and 3.2.9 stating the correctness of Rw-
TacpObj and RwTacpExp functions. Although the code of these functions is
not presented in Section 4, we give the following two Lemmas because these
functions are similar to RwTacpSbj, but we not provide the formal demon-
strations.

Lemma 3.2.8 (RwTacpObj Correctness). Let t and s be a tacp and a
tacp scope, respectively. We denote with Ot and Os the set of objects identi�ed
by t and s, respectively. If RwTacpObj(s, t) returns Valid, then Ot ⊆ Os;
Invalid, then Ot ∩ Os = ∅; otherwise (i.e., ValidAfterRw), it means that t
has been rewritten as np which is valid w.r.t. s, i.e., assuming Onp be the set
of objects identi�ed by np, then Onp ⊆ Os.

Lemma 3.2.9 (RwTacpExp Correctness). Let t and s be a tacp and a
tacp scope, respectively. We denote with Ct and Cs the set of values for a con-
text attribute a identi�ed by the context expressions in t and s, respectively.12

12We recall that in our model a context is a set of pairs (a, v), where a is a context

60 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

If RwTacpExp(s, t) returns Valid, then Ct ⊆ Cs; Invalid, then Ct ∩Cs = ∅;
otherwise (i.e., ValidAfterRw), it means that t has been rewritten as np which
is valid w.r.t. s, i.e., assuming Cnp be the set of values for the context attribute
a identi�ed by the context expression np, then Cnp ⊆ Cs.

Lemma 3.2.10 (RwTacp Correctness). Let t and s be a tacp and a tacp
scope, respectively. Let <r, np> be the result returned by RwTacp(t,s) func-
tion. If r is (i) Valid, then t is valid w.r.t. s; (ii) Invalid, then t is not valid
w.r.t. s; otherwise (iii), it means that the tacp t has been rewritten as np
which is valid w.r.t. s.

By Construction the RwTacp(t,s) function returns Valid if variable rw is
false (line 22). This becomes true if RwTacpSbj (line 3), RwTacpObj (line 6),
RwTacpExp (line 14) return Valid and t.priv ⊆ s.priv and t.obl ⊆ s.obl (i.e.,
checks at lines 10 and 18 fail). Lemma 3.2.7 (3.2.8 and 3.2.9, respectively) en-
sures that if RwTacpSbj (RwTacpObj and RwTacpExp, respectively) returns
Valid, then St.sbj ⊆ Ss.sbj (Ot.obj ⊆ Os.obj and Ct.ctx ⊆ Cs.ctx, respectively).
According to De�nition 3.2.5, a tacp t is valid w.r.t. a tacp scope s if (i)
the set of subjects identi�ed by the subject speci�cation t.sbj is a subset
of the set of subjects identi�ed by s.sbj, i.e., St.sbj ⊆ Ss.sbj, (ii) the set of
objects identi�ed by the object speci�cation t.obj is a subset of the set of
objects identi�ed by s.obj, i.e., Ot.obj ⊆ Os.obj, (iii) the privileges in t.priv
are a subset of the privileges in s.priv, i.e., t.priv ⊆ s.priv, (iv) the set of
values for a context attribute a identi�ed by the context expressions t.ctx is
a subset of the set of values identi�ed by s.ctx for the same attribute, i.e.,
Ct.ctx ⊆ Cs.ctx, (v) the obligations in t.obl are a subset of the obligations in
s.obl, i.e., t.obl ⊆ s.obl. Lemmas 3.2.7, 3.2.8 and 3.2.9 ensure that properties
(i-ii-iv) are all satis�ed when RwTacp(t,s) function returns Valid, whereas
properties (iii-v) are satis�ed when RwTacp(t,s) returns Valid because it re-
turns valid only if t.priv ⊆ s.priv and t.obl ⊆ s.obl.

The RwTacp(s, t) function returns Invalid (lines 4, 7, 9, 15, 17) if one func-
tion among RwTacpSbj (line 3), RwTacpObj (line 6) and RwTacpExp (line
14) returns Invalid (lines 4, 7, 15) or in case t.priv ∩ s.priv = ∅ (line 9) or in
case t.obl∩s.obl = ∅ (line 17). Lemma 3.2.7 (3.2.8 and 3.2.9, respectively) en-
sures that if RwTacpSbj (RwTacpObj and RwTacpExp, respectively) returns
Invalid, then St.sbj∩Ss.sbj = ∅ (Ot.obj∩Os.obj = ∅ and Ct.ctx∩Cs.ctx = ∅, respec-
tively). According to De�nition 3.2.5, a tacp t is not valid w.r.t. a tacp scope

attribute and v is its current value and a context expression over a represents a set of
values V for a; if v ∈ V , then the context expression is satis�ed.

3.2. EMERGENCY POLICY 61

s if one of the following conditions is satis�ed: (1) the set of subjects identi-
�ed by the subject speci�cation t.sbj is disjoint from set of subjects identi�ed
by s.sbj, i.e., St.sbj ∩ Ss.sbj = ∅, (2) the set of objects identi�ed by the object
speci�cation t.obj is disjoint from the set of objects identi�ed by s.obj, i.e.,
Ot.obj ∩Os.obj = ∅, (3) the privileges in t.priv are disjoint from the privileges
in s.priv, i.e., t.priv∩ s.priv = ∅, (4) the set of values for a context attribute
a identi�ed by the context expression t.ctx is disjoint from the set of values
identi�ed by s.ctx for the same attribute, i.e., Ct.ctx∩Cs.ctx = ∅, (5) the obli-
gations in t.obl are disjoint from the obligations in s.obl, i.e., t.obl∩s.obl = ∅.
Lemmas 3.2.7, 3.2.8 and 3.2.9 ensure that one of the properties (1-2-4) is
satis�ed in case RwTacp(s, t) function returns Invalid. Moreover, if one of
the conditions t.priv ∩ s.priv = ∅ and t.obl ∩ s.obl = ∅ is satis�ed, then the
RwTacp(s, t) function returns Invalid.

The RwTacp(t,s) function returns ValidAfterRw (line 23) if variable rw is
true (i.e., check at line 22 fails). This becomes true if one of the functions
RwTacpSbj (line 3), RwTacpObj (line 6) and RwTacpExp (line 14) returns
ValidAfterRw (lines 5, 8, 16) or, assuming np is the rewritten tacp, when
np.priv * s.priv (line 10) and np.obl * s.obl (line 18). Assuming np is the
rewritten tacp, Lemma 3.2.7 (3.2.8 and 3.2.9, respectively) ensures that if Rw-
TacpSbj (RwTacpObj and RwTacpExp, respectively) returns ValidAfterRw,
then Snp.sbj ⊆ Ss.sbj (Onp.obj ⊆ Onp.obj and Cnp.ctx ⊆ Cs.ctx, respectively). Ac-
cording to De�nition 3.2.5, the rewritten tacp np is valid w.r.t. a tacp scope
s if conditions (i-v) are all satis�ed for the tacp np. Lemmas 3.2.7, 3.2.8
and 3.2.9 ensure that properties (i-ii-iv) are all satis�ed when RwTacp(t,s)
function returns ValidAfterRw, whereas properties (iii-v) are satis�ed when
RwTacp(t,s) returns ValidAfterRw because the rewritten privileges are cal-
culated as np.priv = t.priv ∩ s.priv (line 11), thus np.priv ⊆ s.priv and the
rewritten obligations are calculated as np.obl = t.obl ∩ s.obl (line 19), thus
np.obl ⊆ s.obl.

Proof of Lemma 3.2.3

By Construction, function CheckEmergencyPolicy returns Valid (line 5)
if u ∈ eap.admin_sbj, ep.obl ⊆ eap.obl, ChkEmgScope(ep.emg, eap.emg_
scope) returns true and RwTacp(ep.tacp, eap.tacp_scope) returns Valid (line
4). According to De�nition 3.2.6, an administrative policy eap authorizes an
emergency policy ep (i.e., ep is valid w.r.t. eap), if the following conditions
are all satis�ed: (i) the ep issuer u belongs to subjects in eap.admin_sbj, (ii)
the set of obligations in ep.obl is a subset of the obligations in eap.obl, (iii)
the emergency ep.emg is valid w.r.t. the emergency scope eap.emg_scope

62 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

and (iv) the tacp ep.tacp is valid w.r.t. the tacp scope eap.tacp_scope. Re-
garding condition (i), obviously if u ∈ eap.admin_sbj, then it means that
the ep issuer u belongs to subjects in eap.admin_sbj. Regarding condition
(ii), obviously if ep.obl ⊆ eap.obl, then the set of obligations in ep.obl is a
subset of the obligations in eap.obl. Regarding condition (iii), Lemma 3.2.4
ensures that if CheckEmergencyPolicy(ep.emg, eap.emg_scope) returns true,
then ep.emg is valid w.r.t. eap.emg_scope. Regarding condition (iv), Lemma
3.2.10 ensures that if RwTacp(ep.tacp, eap.tacp_scope) returns Valid, then
ep.tacp is valid w.r.t. eap.tacp_scope. In light of these considerations, the
CheckEmergencyPolicy function returns Valid, when conditions (i-iv) are all
satis�ed, i.e., when the administrative policy eap authorizes ep.

Function CheckEmergencyPolicy returns Invalid (line 7) if u /∈ eap.admin_
sbj or ep.obl∩ eap.obl = ∅ or ChkEmgScope(ep.emg, eap.emg_scope) returns
false or RwTacp(ep.tacp, eap.tacp_scope) returns Invalid (line 6). According
to De�nition 3.2.6, an administrative policy eap does not authorizes an emer-
gency policy ep, if one of the following conditions is satis�ed: (1) the ep issuer
u does not belongs to subjects in eap.admin_sbj, (2) the set of obligations
in ep.obl is disjoint from the set of obligations in eap.obl, (3) the emergency
ep.emg is not valid w.r.t. the emergency scope eap.emg_scope and (4) the
tacp ep.tacp is not valid w.r.t. the tacp scope eap.tacp_scope. Regarding con-
dition (1), obviously if u /∈ eap.admin_sbj, then it means that the ep issuer
u belongs to subjects in eap.admin_sbj. Regarding condition (2), obviously
if ep.obl∩eap.obl = ∅, then the set of obligations in ep.obl is disjoint from the
set of obligations in eap.obl. Regarding condition (3), Lemma 3.2.4 ensures
that if ChkEmgScope(ep.emg, eap.emg_scope) returns false, then ep.emg is
not valid w.r.t. eap.emg_scope. Regarding condition (4), Lemma 3.2.10 en-
sures that if RwTacp(ep.tacp, eap.tacp_scope) returns Invalid, then ep.tacp is
not valid w.r.t. eap.tacp_scope. In light of these considerations, the CheckE-
mergencyPolicy function returns Invalid, when at least one condition in (i-iv)
is satis�ed, i.e., when the administrative policy eap does not authorizes ep.

Function CheckEmergencyPolicy returns ValidAfterRw (line 10) if np is
valid w.r.t. eap. The np policy is calculated as np.emg = ep.emg (line 8),
np.obl = ep.obl ∩ eap.obl (line 9) and np.tacp is the rewritten tacp returned
by the RwTacp function (line 3). According to De�nition 3.2.6, an adminis-
trative policy eap authorizes an emergency policy np (i.e., np is valid w.r.t.
eap), if conditions (i-v) are all satis�ed. Regarding condition (i), obviously
if u ∈ eap.admin_sbj, then it means that the np issuer u belongs to sub-
jects in eap.admin_sbj. Regarding condition (ii), obviously np.obl ⊆ eap.obl
because it is calculated as np.obl = ep.obl ∩ eap.obl. Regarding condition

3.2. EMERGENCY POLICY 63

(iii), Lemma 3.2.4 ensures that if ChkEmgScope(np.emg, eap.emg_scope) re-
turns true, then np.emg is valid w.r.t. eap.emg_scope. Regarding condition
(iv), Lemma 3.2.10 ensures that if RwTacp(np.tacp, eap.tacp_scope) returns
ValidAfterRw, then np.tacp is valid w.r.t. eap.tacp_scope. In light of these
considerations, the CheckEmergencyPolicy function returns ValidAfterRw,
when the rewritten emergency policy np satis�es all conditions (i-iv), i.e.,
when the administrative policy eap authorizes np.

Proof of Theorem 3.2.2
We have to prove that: 1) for each authorized emergency policy rwep ∈
rwEPs returned by Algorithm 2, there exists at least an administration pol-
icy eap ∈ EAPR such that eap authorizes rwep; 2) if rwEPs = ∅, then none
of the administration policies eap ∈ EAPR authorizes ep and ep cannot be
rewritten in order to be valid w.r.t. at least an administration policy, i.e., ep
is invalid w.r.t. any eap ∈ EAPR.
By Construction Algorithm 2 returns the emergency policy ep (line 5) passed
as argument by a user u issuer of the policy (i.e., ep is validated) if ∃ eap ∈
EAPR (lines 3-7) such that CheckEmergencyPolicy(u, ep, eap) (line 4) re-
turns Valid (line 5). Lemma 3.2.3 ensures that if CheckEmergencyPolicy(u,
ep, eap) returns Valid, then ep is valid w.r.t. to eap.
Algorithm 2 returns ∅, when rwEPs is empty (line 8). This becomes true (i.e.,
ep is not validated) if ∀ eap ∈ EAPR (lines 3-7), CheckEmergencyPolicy(u,
ep, eap) (line 4) returns Invalid. Lemma 3.2.3 ensures that if CheckEmergen-
cyPolicy(u, ep, eap) returns Invalid, then ep is not valid w.r.t. eap. If this
is true, for every eap ∈ EAPR, then ep is not valid w.r.t. any emergency
administration policy.
Algorithm 2 returns a non-empty set rwEPs (line 8) of rewritten emergency
policies if ∃ at least one eap ∈ EAPR (lines 3-7) such that CheckEmer-
gencyPolicy(u, ep, eap) (line 4) returns ValidAfterRw (line 6). Lemma 3.2.3
ensures that if CheckEmergencyPolicy(u, ep, eap) returns ValidAfterRw, then
the rewritten emergency policy np is valid w.r.t. to eap. Since every rewritten
emergency policy np is valid w.r.t. to eap and it is inserted into rwEPs (line
6), ∀ rwep ∈ rwEPs , then rwep is valid.

3.2.3 Emergency Policy Composition

The core emergency model is able to capture complex event patterns, but
there exist critical scenarios that cannot be handled using this model. These
are the cases of a combination of di�erent emergency situations that may
give rise to a new and more critical situation, requiring a new response plan,
di�erent from those plans already in place for the management of atomic

64 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

emergencies. Therefore, we introduce the concept of composed emergencies,
to describe how and which sub-emergencies have to be combined together to
form a composed one.

FacilityMapsFilesPol

{

 sbj:FireFighters

 obj: MapsFiles

 priv: read

}

SteamFilesPol {

 sbj:EPA Agents

 obj: SteamFiles

 priv: read

}

ChemicalFilesPol {

 sbj:EPA Agents

 obj: ChemicalFiles

 priv: read

}

obl:

1. FireFightersCall

2. PoliceCall

obl: FacilityEvacuation obl: WarnEPA

Fire Alarm Explosion Toxic Material Loss

Figure 3.1: Industrial Facility Scenario: emergencies and related tacps/obli-
gations

Example 3.2.11 For example, consider the scenario of an industrial com-
pany facility which produces plastic material. Suppose that the facility is
equipped with sensor networks detecting �re alarms, explosions and presence
of toxic substances in air/water. Suppose that the system enforces the emer-
gency policies represented in Figure 3.1: (1) when a �re alarm is detected, the
�re�ghters and police agents are automatically called (i.e., FireFightersCall
and PoliceCall obligations) and they are allowed to access the facility map
�les (i.e., FacilityMapsFilesPol temporary access control policy); (2) when an
explosion emergency is detected, facility evacuation is enforced (i.e., Facili-
tyEvacuation) and the Environmental Protection Agency (EPA) personnel is
allowed to read the �les with information about steams processed in the facil-
ity (i.e., SteamFilesPol); (3) when a high level of toxic substances is detected,
the EPA should be warned about the emergency (i.e., WarnEPA) and infor-
mation on the chemical substances used in the facility should be immediately
available to EPA sta� (i.e., ChemicalFilesPol). The situation might get much
more critical if two or more of the above described emergencies are detected
at the same time or in a sequence. Indeed, if the �re alarm is followed by
an explosion, and the explosion is in turn followed by a toxic material loss

3.2. EMERGENCY POLICY 65

emergency, it means that the �re and explosion caused damage with toxic ma-
terial release. As such, the emergency situation requires the modi�cation of
the ongoing response activities. Since the risk of ecological disaster is high a
higher level authority, such as the Department of Homeland Security (DHS),
should be warned and any information about the processes executed in the
facility should be immediately available to DHS sta�.

Situations like the one presented in Example 3.2.11 cannot be handled by
emergency policies, since they require the new concepts of composed emer-
gencies and related emergency policies, introduced in the following sections,
in order to model new information sharing needs required by the composed
emergency response plan.

We support two ways to specify how emergencies have to be combined
together to from a composed emergency. The �rst represents the composed
emergency as a list of multiple occurrences of the same emergency type.
The second represents the composed emergency as a pattern of di�erent
emergencies. Formally, composed emergencies are de�ned as follows.

De�nition 3.2.7 A composed emergency ce is a pair (combination, pri-
ority), where priority ∈ {high, low} indicates the priority of the composed
emergency, whereas combination indicates the sub-emergencies and how they
are combined together to from ce. More precisely, the combination component
can be of one of the following forms:

• {oc1, ..., ocn}, such that ocj = (emgj, nj), where emgj is an emergency
identi�er, whereas nj ∈ N is the minimum number of emgj instances
necessary to trigger ce.

• pattern, which can be: (1) a sequence emg1, emg2[emg1, s2], . . . , emgn
[emgn−1, sn], where emgi is an atomic or composed emergency, whereas
emgi[emgi−1, si] indicates that emgi should happen between emgi−1 and
a time interval of size si, de�ning in this way the sequence of emergen-
cies emg1, emg2, ..., emgn; (2) a negation ¬ emg[w], which speci�es the
non-occurrence of emergency emg in a given time window w.

Example 3.2.12 Consider the situation presented in Example 3.2.11, where
three atomic emergencies generate a critical situation, which can be modeled
by the following composed emergency:

EcologicalDisaster = (Pattern, high)

Pattern =

FireAlarm,
Explosion[FireAlarm, 1h],
T oxicMaterialLoss[Explosion, 1h]

66 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

If an explosion emergency is detected within one hour after the �re alarm
emergency and a toxic material loss emergency is detected within one hour af-
ter the explosion, then the composed emergency EcologicalDisaster is raised.

The binding of an atomic or composed emergency with the corresponding
tacps and obligations is modeled through emergency policies. In order to
manage critical situations represented by composed emergencies, it is often
necessary that the tacps and obligations that have been activated as response
plan to sub-emergencies are overridden by tacps/obligations associated with
composed emergencies.

For instance, consider again the scenario presented in Example 3.2.11, and
suppose that the obligations associated with the sub-emergency �re alarm
are: call �re�ghters and call police. When the composed emergency Ecolog-
icalDisaster is detected, while the police call should be deleted in order to
not endanger the lives of police men with the released toxic material, the
�re�ghters call should be maintained, since the �re must be extinguished
regardless the release of toxic substances.

To handle situations like these, we enable the Emergency Manager to
specify the overriding strategy determining how to behave with respect to the
tacps/obligations associated with sub-emergencies involved in the composi-
tion. More precisely, we support three overriding strategies, that is, maintain,
delete, and block that imply, respectively, that tacps/obligations associated
with sub-emergencies are maintained, deleted or blocked until the end of the
corresponding composed emergency.

The block overriding strategy is extremely important, since it allows tem-
porary blocking tacps/obligations for the duration of the composed emer-
gency. For instance, consider an emergency of power loss in a generator of
a power plant and the consequent obligation CallMaintenance. If the emer-
gency gets more critical, e.g., the generator is burning, a new obligation Fire-
FightersCall should be enforced. In this case the CallMaintenance obligation
should be blocked to not endanger maintenance sta� lives, but it should be
restated as soon as the �re is extinguished.

We are aware that there could be emergencies whose relevance requires
not stopping any of the associated tacps/obligations, even in case these are
involved in a composition. As an example, consider once again the scenario in
Example 3.2.11, when the ecological disaster emergency is detected, although
this composed emergency is more serious than its sub-emergency �re alarm,
the related �re�ghter call should not be deleted/blocked until the �re is
extinguished.

To prevent overriding of critical tacps/obligations, we introduce an excep-
tion mechanism at the emergency level. This is done by exploiting the priority

3.2. EMERGENCY POLICY 67

level associated with each emergency (cfr. De�nitions 3.1.14 and 3.2.7). More
precisely, the tacps/obligations associated with any high priority emergency
can be never deleted/blocked even though this emergency is involved in a
composed emergency, and even though this latter requests for tacps/obliga-
tions overriding.13 Moreover, considering that, given an emergency, not all
of its response procedures have the same importance, we introduce a more
�ne-grained exception level, that is, the tacp/obligation level. More precisely,
we enable the Emergency Manager to specify, for each emergency with low
priority, those tacps/obligations that do not have to be deleted/blocked even
in case the emergency is involved in a composed emergency which requests
for tacps/obligations overriding. The formal de�nition of emergency policy
is therefore modi�ed as follows.

De�nition 3.2.8 An Emergency Policy is a tuple (emg, tacps, obligations,
overriding), where emg is the identi�er of an atomic or composed emer-
gency; tacps is a set of pairs (tacp,14 exception), where tacp is a temporary
access control policy, whereas exception ∈ { true, false}; obligations is a set
of pairs (obl, exception), where obl is an obligation, whereas exception ∈
{ true, false}. An exception will be used to denote whether a tacp or obli-
gation enforces a policy/action that cannot be deleted or blocked (exception
= true) by the overriding strategies. The overriding component consists of
(tacpOver, oblOver), whose values in {maintain, delete, block} denote the
overriding strategy for tacps/obligations, respectively.

It is worth noting that in case emg is an atomic emergency, the overriding
�eld is empty.

Example 3.2.13 Consider the scenario in Example 3.2.11. The requirement
to automatically warn the DHS, allowing its personnel to access information
about any process in the facility (i.e., all �les), when the EcologicalDisaster
emergency (cfr. Example 3.2.11) is raised, can be modeled by associating the
following policy to the EcologicalDisaster emergency, as shown in Figure 3.2.

13In this thesis, we just consider two priority levels (i.e., high, low). We postpone as
future work the de�nition of a more sophisticated exception mechanism.

14Tacps are expressed in terms of subject, object, privilege and context information.

68 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

-tacps = (FacilityMapsFilesPol, true)
-obligations = (FireFigthersCall, true),
(PoliceCall, false)
-priority = low
-

FireAlarm

-tacps = (SteamFilesPol, true)
-obligations = (FacilityEvacuation, true)
-priority = high

Explosion

-tacps = (ChemicalFilesPol, true)
-obligations = (warnEPA, true)
-priority = high

ToxicMaterialLoss

-emg = EcologicalDisaster
-tacps = (AllFilesPol, true)
-obligations = (warnDHS, true)
-overriding = (delete, delete)

EcologicalDisasterEP

Figure 3.2: EcologicalDisaster Emergency Policy

In Figure 3.2, the EcologicalDisasterEP emergency policy is represented,
where AllFilesPolicy is a tacp granting DHS access to any �le containing
information about processes in the facility and WarnDHS obligation warns
EPA about the ecological disaster emergency. Suppose now that the Fire-
Alarm emergency has a low priority, whereas we assume that its tacp Facil-
ityMapsFilesPol, allowing �re�ghters and police agents to access the facility
maps �les, has a true exception value. Moreover, two obligations are asso-
ciated with FireAlarm, requiring to call �re�ghters and police agents, which
we assume having a true and false exception value, respectively. Additionally,
the Explosion emergency has a high priority and its tacp (called SteamFile-
sPol) and obligation (called FacilityEvacuation) have both true as exception
value. Finally the ToxicMaterialLoss emergency has a high priority and its
tacp (called ChemicalFilesPol) and obligation (called WarnEPA) have both
true as exception value. Let us now explain the overriding strategies. Since
tacpOver is set to delete, the tacp related to the low priority sub-emergencies
(i.e., FireAlarm) with exception �eld set to false (none in case of FireAlarm)
are deleted, whereas those with a true exception value (i.e., FacilityMapsFile-
sPol) are maintained. Similarly, since the �ag oblOver is set to delete, obliga-
tions related to low priority sub-emergencies (i.e., FireAlarm) with exception
�eld set true (i.e., the obligation requiring to call �re�ghters) are maintained,
whereas those with false exception value (i.e., the call police obligation) are
deleted.

Emergency Composition Tree

The introduction of composed emergencies brings new issues mainly related
to overriding enforcement. Indeed, when a composed emergency ce is trig-
gered, its sub-emergencies, say e1, . . . , en have been already instantiated. This

3.2. EMERGENCY POLICY 69

implies that the corresponding tacps/obligations have been already activated.
If we further consider that each sub-emergency could be a composed emer-
gency as well, the number of tacps/obligations linked to a composed emer-
gency may be large. This may greatly impact the time needed to instantiate
the new emergency e, since for each of the already inserted tacps/obliga-
tions it should be determined whether it has to be maintained, deleted or
blocked. This decision is taken considering the overriding strategy associated
with e, the priority of sub-emergencies as well as the exception values of the
corresponding tacps/obligations. However, a key requirement for emergency
management is to provide timely information to people involved in the re-
sponse plan. A delay due to overriding enforcement could imply situations
where information is not available, or available to the wrong people, due to
tacps not yet overridden. Similarly, this delay can imply a delayed stop of
risky activities imposed by obligations. To avoid these situations, we propose
a solution where, for each composed emergency e for which a policy has been
speci�ed, the corresponding lists of tacps/obligations to be deleted, main-
tained or blocked are statically pre-computed. More precisely, we organize
the tacps/obligations that have to be instantiated due to the triggering of an
atomic/composed emergency as well as the lists of tacps/obligations to be
overridden, into a set of tree data structures, called Emergency Composition
Tree. In the following, we introduce the tree data structure and the algorithm
for its generation.

An Emergency Composition Tree (ECT) is de�ned such that each emer-
gency is represented as a node, whereas all information related to the corre-
sponding policies are modeled as its attributes. The formal de�nition of an
ECT is given in what follows.

De�nition 3.2.9 Given a composed emergency ce consisting of n subemer-
gencies e1, ..., en and its corresponding emergency policy cep=(ce, tacps, obli-
gations, overriding),15 the corresponding ECT is de�ned as a pair 〈N,E〉
where:

• N = {nce, ne1, . . . , nen} is the set of nodes. Node nce represents the
composed emergency ce and has the following attributes: tacps, obliga-
tions, priority, tacpOver, oblOver, tacpToDelete, tacpToBlock, oblTo
Delete, and oblToBlock. In particular, tacps and obligations contain
the list of tacps/obligations speci�ed in cep.tacps16 and cep.obligations,

15For simplicity, in De�nition 3.2.9, we assume that each emergency is associated with a
single policy. If an emergency is bound to multiple policies, De�nition 3.2.9 can be easily
extended.

16Here and in the following we use dot-notation to indicate �elds of emergencies or
polices (e.g., tacps, obligations).

70 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

priority is the priority of emergency ce, tacpOver and oblOver repre-
sent the overriding strategies speci�ed in cep.overriding, tacpToDelete,
tacpToBlock, oblToDelete and oblToBlock contain, respectively, the
tacps and obligations that have to be deleted or blocked in case of
the triggering of ce. Each node nei ∈ N , i ∈ [1, n] represents a sub-
emergency ei. It has the same attributes as node nce, where tacps and
obligations contain the list of tacps/obligations speci�ed in the emer-
gency policy related to ei, priority is the priority of emergency ei,
tacpOver and oblOver represent the overriding strategies speci�ed in
the emergency policy associated with ei, whereas the overriding lists
(i.e., tacpToDelete, tacpToBlock, oblToDelete and oblToBlock) con-
tain tacps/obligations that have to be deleted or blocked in case of the
triggering of ei.

• E = {(nce, ne1), . . . , (nce, nen)} is the set of edges.
Attributes related to overriding (i.e., tacpOver, oblOver, tacpToDelete,

tacpToBlock, oblToDelete and oblToBlock) are optional. For instance, in case
of a node denoting an atomic emergency they are unnecessary, as the follow-
ing example clari�es.

-tacps = (AllFilesPol, true)
-obligations = (warnDHS, true)
-priority = high
-tacpOver = delete
-oblOver = delete
-tacpToDelete = { FacilityMapsFilesPol }
-oblToDelete = { PoliceCall }

EcologicalDisaster

-tacps = (FacilityMapsFilesPol, true)
-obligations = (FireFigthersCall, true),
-
-priority = low

FireAlarm

-tacps = (SteamFilesPol, true)
-obligations = (FacilityEvacuation, true)
-priority = high

Explosion

-tacps = (WaterFilesPol, false)
-obligations = (WaterMaintenanceCall, false)
-priority = low

WaterContamination

-tacps = (GasFilesPol, false)
-obligations = (GasMaintenanceCall, false)
-priority = high

AirContamination

-tacps = (ChemicalFilesPol, true)
-obligations = (warnEPA, true)
-priority = high
-tacpOver = delete
-oblOver = block
-tacpToDelete = { WaterFilesPol }
-oblToBlock = { WaterMaintenanceCall }

ToxicMaterialLoss

 (PoliceCall, false)

Figure 3.3: Emergency Composition Tree

3.2. EMERGENCY POLICY 71

Example 3.2.14 Consider the policy presented in Example 3.2.13 referring
to the composed emergency EcologicalDisaster in Example 3.2.12. Suppose
that ToxicMaterialLoss is de�ned as the composition of two atomic emergen-
cies: WaterContamination and AirContamination. Suppose moreover that
WaterContamination is a low priority emergency associated with the tacp
WaterFilesPol, which allows water maintenance personnel to access �les con-
taining information about water usage in the facility. In contrast, AirCon-
tamination is a high priority emergency associated with the tacp GasFilesPol
allowing the gas maintenance personnel to access �les containing information
about gas processed in the facility. The ECT corresponding to the Ecologi-
calDisaster emergency is represented in Figure 3.3. The node associated with
the composed emergency ToxicMaterialLoss has a tacps attribute which con-
tains a tacp, called ChemicalFilesPol, with true exception value. Chemical-
FilesPol allows EPA personnel to access �les with information about chemical
substances processed in the facility. The obligations attribute of ToxicMate-
rialLoss contains an obligation, called warn EPA, that warns EPA about the
toxic material loss emergency. The tacpOver attribute is set to delete mean-
ing that ChemicalFilesPol overrides the sub-emergency tacp WaterFilesPol,
but not GasFilesPol. This is because GasFilesPol is associated with AirCon-
tamination which is a high priority emergency, whereas WaterFilesPol is as-
sociated with the low priority emergency WaterContamination. The oblOver
attribute of ToxicMaterialLoss is set to block. However, GasMaintenanceCall
has to still be enforced, since it is associated with the high priority emergency
AirContamination, whereas the obligation WaterMaintenanceCall is tempo-
rary blocked until the end of ToxicMaterialLoss, since it is associated with the
low priority emergency WaterContamination. Therefore, the overriding lists
of ToxicMaterialLoss are the following: tacpToDelete = {WaterFilesPol},
tacpToBlock = ∅, oblToDelete = ∅, oblToBlock = {WaterMaintenanceCall}.
The overriding lists of EcologicalDisaster are computed in a similar way.

We show now how we create the set of ECTs for composed emergen-
cies. Note that the same emergency could be part of one or more composed
emergencies. To avoid storage of redundant information, we make use of an
indexing data structure (i.e., a hash table), which maps each emergency with
information about the position of the corresponding subtree in existing ECTs.
The position is encoded as index[emg] = (tj,lm,cn), where tj denotes an ECT,
whereas lm and cn denote the position of the node related to emg in tj (i.e., its
level lm and relative position cn in the level, from left to right). Algorithm 3
receives as input the policy base CEP containing policies for composed emer-
gencies and returns the set of created ECTrees and the associated indexing
structure. For each policy cepj ∈ CEP , it calls the createECT() function,

72 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

which returns an ECT called tree and the modi�ed index (line 3). Tree is
then inserted into the ECTrees (line 4). Atomic emergencies that are not
part of a composed emergency are not considered by Algorithm 3, therefore
they are not indexed and during enforcement.

Algorithm 3: Emergency Composition Trees generation
Input : CEP the composed emergency policy base
Output: ECTrees, the set of ECTs, and the index hash table

1 Let index be an empty hash table, root be an empty variable;
2 foreach cepj ∈ CEP do

3 <tree, index> = createECT (cepj , root, 0, 0, index);
4 Insert tree Into ECTrees;

5 end

6 return <ECTrees,index>

The createECT () function receives as input: an emergency policy cep for a
composed emergency; the root node of the ECT under construction (needed
for the indexing); depth and chNum, denoting the level and number of chil-
dren, where nodes created by the function will be inserted; the indexing hash
table index. The createECT () function returns a pair <parent, index> where
parent is the node created for the input cep and index is the modi�ed hash
table. To better explain the meaning of root, depth and chNum, suppose to
have a composed emergency ce1 consisting in turn of two composed sub-
emergencies ce2 and ce3. When the createECT function is called for ce1 by
Algorithm 3, root is an empty variable, depth = 0 and chNum = 0 (see line 3
in Algorithm 3), therefore root will be assigned to the node related to ce1, say
n1 and emphindex[ce1] = (n1, 0, 0). When createECT is recursively called
for ce2, root = n1, depth = 1 and chNum = 0, therefore index [ce2] = (n1, 1,
0). Finally, when createECT is recursively called for ce3, root = n1, depth =
1 and chNum = 1, therefore index [ce2] = (n1, 1, 1).

Function createECT calls function createNode(), by passing it cep, root,
depth, chNum and index (line 1). This function returns a node, called par-
ent, de�ned according to De�nition 3.2.9, the modi�ed index table and root.
Then, function createECT analyzes each of the sub-emergencies subj involved
in the input composed emergency (lines 4-14). If subj is an atomic emergency
(line 6), then the function calls createNode(), which returns the child node
(line 7), the modi�ed index table and root. If subj is a composed emergency,
then the child node is created calling recursively function createECT() (line
9). In both the cases, the child node is added as direct child of parent node
(line 11). Finally, function createECT calls the createOverLists() function
which inserts the proper tacps/obligations related to the child node into the
overriding lists of the parent node (line 13). When all sub-emergencies have

3.2. EMERGENCY POLICY 73

Function createECT(cep, root, depth, chNum, index)

1 <parent, index, root> = createNode (cep, root, depth, chNum, index);
2 depth++;
3 Let SubEmg be the set of sub-emergencies in cep.emg;
4 foreach subj ∈ SubEmg do
5 Let epj be the emergency policy associated with subj ;
6 if subj is an atomic emergency then
7 <child, index, root> = createNode (epj , root, depth, chNum, index);

8 else

9 <child, index> = createECT (epj , root, depth, chNum, index);

10 end

11 Create an edge between node parent and node child;
12 chNum++;
13 parent = createOverLists (parent, child);

14 end

15 return <parent, index>

been analyzed, then the createECT function returns parent node, i.e., the
root of the created ECT and the modi�ed index table (line 15).

The createNode function takes as input an emergency policy ep, the root
of the ECT under construction, depth and chNum, denoting the level and
number of children where the new node will be inserted. If a node associated
with the emergency ep.emg already exists, then the createNode function gets
that node through the getNode function (line 1), otherwise, a new node is
created (line 3).

Function createNode(ep, root, depth, chNum, index)

1 if index[ep.emg] 6= ∅ then n = getNode(index[ep.emg]);
2 else

3 n = new node;
4 n.tacps = ep.tacps;
5 n.obligations = ep.obligations;
6 n.priority = ep.emg.priority;
7 if ep.emg is composed then

8 n.tacpOver = ep.tacpOver;
9 n.tacpOver = ep.oblOver;
10 n.tacpToDelete = n.tacpToBlock = n.oblToDelete = n.oblToBlock = ∅;
11 end

12 end

13 if depth = 0 then root = n;
14 Insert (root, depth, chNum) Into index[ep.emg];
15 return <n, index, root>;

The tacps, obligations and priority attributes are initialized for the new

74 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

node (lines 4, 5, 6). If ep.emg is a composed emergency (line 7), then also the
overriding strategies attributes are initialized (lines 8, 9) and the overriding
lists are created (line 10). Finally, the createNode function creates the index
(root,17 depth, chNum) for node n (line 14) and returns the node itself, the
modi�ed index table and the root node (line 15).

Function createOverLists(parent, child)

1 if child.priority 6= high ∧ parent.tacpOver 6= maintain then

2 foreach tacpj ∈ child.tacps do
3 if tacpj.exception 6= true then
4 if parent.tacpOver = delete then
5 Insert tacpj Into parent.tacpToDelete;

6 else

7 Insert tacpj Into parent.tacpToBlock;

8 end

9 if child.priority 6= high ∧ parent.oblOver 6= maintain then

10 foreach oblj ∈ child.obligations do
11 if oblj.exception 6= true then
12 if parent.oblOver = delete then
13 Insert oblj Into parent.oblToDelete;

14 else

15 Insert oblj Into parent.oblToBlock;

16 end

17 return parent;

The createOverLists function takes as input a parent and a child node,
inserts the proper tacps/obligations related to child into the overriding lists
of parent and returns the modi�ed parent node. If the child node is not
linked with a high priority emergency and parent requests to override/block
tacps (line 1), then the tacps related to child should be deleted or blocked.
Therefore, each tacpj ∈ child.tacps is analyzed (lines 2-8) and if exception is
not set to true (line 3) then: (i) if parent.tacpOver = delete (line 4), tacpj
is inserted into parent.tacpToDelete (line 5), (ii) if parent.tacpOver = block
(line 6), tacpj is inserted into parent.tacpToBlock (line 7). In lines 9-16, a
similar overriding strategy is enforced for obligations.

Policy Enforcement

Emergency policy enforcement is done by making use of ECTs. More pre-
cisely, when an emergency e is detected, then: if e is an atomic emergency,
its tacps and obligations are inserted into the system, whereas if it is com-
posed, tacps and obligations contained into tacps and obligations attributes

17The root variable is already set if depth is greater than zero, but in case depth is equal
to zero it means that node n is the root of its ECT, thus variable root is set to n (line 13).

3.2. EMERGENCY POLICY 75

of the corresponding ECT node are inserted into the system and those con-
tained in tacpToDelete/ oblToDelete, tacpToBlock/oblToBlock are deleted
and/or blocked, respectively.

Example 3.2.15 Consider the ECT in Figure 3.3. When the composed emer-
gency EcologicalDisaster is detected, active tacps are: FacilityMapsFilesPol
(linked to FireAlarm), SteamFilesPol (linked to Explosion), GasFilesPol
(linked to AirContamination) and ChemicalFilesPol (linked to the Toxic-
MaterialLoss). In contrast, the WaterFilesPol tacp was already overridden
by the ChemicalFilesPol tacp. The node related to EcologicalDisaster is re-
trieved using the indexing data structure. Then, the system enforces tacps and
obligations related to EcologicalDisaster. The system also retrieves the tacps
contained in the overriding lists. Since tacpToDelete = { FacilityMapsFile-
sPol }, FacilityMapsFilesPol is deleted. The obligations in place in the system
are: FireFightersCall and PoliceCall (linked to FireAlarm emergency), Fa-
cilityEvacuation (linked to Explosion), GasMaintenanceCall (linked to Air-
Contamination), and warn EPA (linked to the ToxicMaterialLoss), whereas
the WaterMaintenanceCall obligation was already blocked until the end of the
ToxicMaterialLoss emergency. The system checks the obligations contained in
the list associated with the EcologicalDisaster node. Since oblToDelete = {
PoliceCall }, PoliceCall is deleted.

Complexity Analysis

In this section, we estimate the time needed to create the set of ECTs, which
are generated at policy speci�cation time, as well as the time needed for
composed emergency policy enforcement using the generated ECTs.

ECTs generation To estimate the time required to create the set of ECTs,
we analyze Algorithm 3. We �rst analyze createECT function, then we draw
conclusions about complexity of Algorithm 3.

Function createECT: As a �rst step, createECT calls createNode by pass-
ing as input cep, a policy for composed emergencies (line 1). The time re-
quired by all operations in the createNode function is a constant time c
except the time to copy the list of tacps and obligations (lines 4, 5) which
is linear in the number of tacps nt and the number of obligations no. There-
fore the total time required by the function is nt + no + c, i.e., O(nt + no).
Then, the createECT function considers each sub-emergency subj contained
into cep (lines 4-14). When subj is an atomic emergency, the function creates
the corresponding node, by calling function createNode (line 7), whereas if

76 CHAPTER 3. EMERGENCY ACCESS CONTROL MODEL

subj is a composed emergency, it recursively calls itself (line 9). For each
sub-emergency the createECT function calls also the createOverLists func-
tion (line 13) which implements the overriding strategy. The time required
by this function depends again on the number of tacps and obligations in
child node, i.e., O(nt + no). To give an estimation of the total time required
by createECT function, we assume that the number of sub-emergencies that
are involved at any level in cep is n and all sub-emergencies are composed,18

which means that createECT is recursively called n times. The overall time is,
in the worst case, O(n× (max(nt)+max(no))) where max(nt) and max(no)
denote the maximum number of tacps/obligations associated with policies
of all sub-emergencies. Therefore, the overall time is linear in the number of
sub-emergencies.

Main Algorithm: Algorithm 3 calls function createECT for each policy
associated with a composed emergency (lines 2-5). Let m be the number of
emergency policies associated with composed emergencies. Then, the overall
time required for Algorithm 3 is: O(m × n × (max(nt) +max(no))). Thus,
Algorithm 3 is linear in the number of emergency policies for composed emer-
gency and, since the creation of each ECT takes a linear time in the number
of sub-emergency, Algorithm 3 is e�cient and scalable.

Emergency Policy Enforcement Analysis

Thanks to the proposed tree and indexing data structures, composed
emergency enforcement is e�cient in terms of time needed to decide which
tacps/obligations have to be inserted, deleted or blocked. We recall that, for
a policy associated with a composed emergency ce, the enforcement consists
of the following stpdf: (i) retrieval of the ECT node related to the emergency,
(ii) reading of the tacps and obligations attributes and (iii) insertion in the
policy bases of the retrieved tacps/obligations, (iv) reading of the overriding
lists, and (v) execution of the overriding operations (i.e., delete/block the
overridden tacps/obligations). By using the de�ned data structures, the time
needed to perform step (i) is expected to be short. Indeed, given a composed
emergency ce, retrieving the root node of the corresponding subtree in an
ECT requires just to access the �rst entry in the hash table associated with
ce, which requires a constant small time. Once index (t, l, c) has been re-
trieved from the hash table, the time needed to access the indexed node is
again very small, as it requires to access node at level l and internal position

18Actually, at least one emergency among those involved in the composition has to be
atomic, but to estimate the worst case, we are assuming that they are all composed as
this requires more time.

3.2. EMERGENCY POLICY 77

c, i.e., the complexity is O(l ∗ c). Stpdf (ii) and (iii) require reading two node
attributes (i.e., tacps and obligations) and inserting their content into the
proper repository. Assuming that read and write operations require a con-
stant time, then these stpdf have a time complexity of O(nt+no), where nt is
the number of tacps and no is the number of obligations. The time required
by both stpdf (iv) and (v) is linear in the lists size (i.e., the number of items
to be read and written). As such, let max(nl) be the maximum size of the
overriding lists, the overall complexity is O(max(nl)). Therefore, the overall
cost of policy enforcement is O(l ∗ c+ nt + no +max(nl)).

Chapter 4

Unspeci�ed Emergency

Management

The core emergency policy model proposed and its extensions (i.e., composed
emergency policies and administration policies) are able to cover emergen-
cies which can be speci�ed a priori. However, there are many scenarios where
this might not be enough, since there are emergencies which cannot be pre-
dicted beforehand. For instance, in healthcare domain it is di�cult to specify
in advance any possible injury or disease which might be considered as an
emergency. These unspeci�ed emergencies are not detected by the system
and they are not connected to policies allowing information sharing needs
(unspeci�ed policies). This may have serious consequences, for instance in
healthcare domain this might endanger human lives.

Consider, for example, a hospital where patients wear sensors for real time
monitoring of their vital signs; usually only the doctor in charge of a patient
is allowed to read his/her medical record. Suppose that during the night the
ECG wave of a patient p shows an interference dissociation (i.e., a rare case
of arrhythmia, which might have not been modeled as an emergency) and
his/her doctor d1 is not working at the time of the emergency, but another
doctor d2 requires to access the medical record of p. In this case, we might
have that: (1) arrhythmia emergency and related policy have been speci�ed,
thus the emergency is detected and d2 is allowed to access the medical record
of p due to an existing emergency policy; (2) arrhythmia emergency and
related policy are unspeci�ed, thus the emergency is not detected and d2 is
not allowed to access the medical record of p. We might agree that in case
(2) not allowing d2 to access the medical record might endanger patient p
life.

The basic idea is to detect unspeci�ed emergencies exploiting anomaly
detection techniques and to permit those access requests that should be de-

79

80 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

nied due to the absence of policies related to unspeci�ed emergencies. For
instance, in case (2), the arrhythmia emergency can be easily detected as an
anomaly, i.e., during arrhythmia values of heart rate have not a regular fre-
quency and the consequent access request by d2 should be permitted because
it is related to the emergency, i.e., they refer to the same patient.

Obviously, not all access request related to an emergency should be al-
lowed, but only those access requests related to unspeci�ed emergencies. In
order to detect whether an access request is related to an unspeci�ed emer-
gency or it is an attempted abuse, we determine if the access request is close
to satisfy existing policies. We call this technique policy based analysis. For
instance, in case (2), the access request performed by d2 is very similar to the
regular policy for d1 since they are both doctors and the protected object is
the same, i.e., the medical record of patient p.

The management of unspeci�ed emergencies is based on three strategies:
the policy based analysis, anomaly based analysis and historical based analy-
sis. The policy based analysis calculates how much an access request is close
to satisfy existing policies. The anomaly based analysis combines anomaly
detection techniques and complex event processing (CEP) in order to detect
anomalous events which might represent unspeci�ed emergencies and cor-
relate these events to denied access requests. The historical based analysis
considers previously permitted access requests in order to detect if the current
access request is similar to one of them. For each of these strategies, we de�ne
measures called satisfaction level, anomaly level and historical level. These
levels measure, respectively, how much an access request is close to satisfy
existing policies, how much a set of events is anomalous w.r.t. the normal
behavior, how much an access request is similar to the previously permit-
ted access requests. Moreover, we present a large set of experiments which
show not only the e�ectiveness of our strategies, but also how to combine
our measures in order to maximize the detection of unspeci�ed emergencies.

4.1 Detection and Management of Unspeci�ed

Emergencies

In this section, we introduce our framework to extend the model presented
in [27] in order to deal with unspeci�ed emergencies. As we claimed in the
introduction, a denied access request should be authorized if it represents an
information need for an unspeci�ed emergency. Unspeci�ed emergencies are
detected as anomalies, which are patterns in data that do not conform to ex-
pected normal behavior [33]. For example, suppose the average heart rate of

4.1. DETECTION ANDMANAGEMENTOF UNSPECIFIED EMERGENCIES81

a patient is around 80 bpm (i.e., the normal behavior), if a pattern of events
with heart rate of 120 bpm has been detected, it represents an anomaly. In
order to detect and manage anomalous events which might represent unspec-
i�ed emergencies, we have identi�ed three characteristics to discover whether
an access request expresses an information need for an unspeci�ed emergency
or not: the access request is (i) close to satisfy existing policies, (ii) related
to an anomaly, (iii) similar to previously authorized access requests.

If an access request is close to satisfy existing policies (i), it is likely
that the access request represents an information need for an unspeci�ed
emergency, otherwise it might represent an attempted abuse. For instance,
suppose to have a policy that authorizes doctors to read patients medical
records and suppose that a user with another role has performed an access
request for a patient medical record; if the role of this user is close to the doc-
tor role (e.g., paramedic), the access request might represent an information
need for an unspeci�ed emergency. On the contrary, if the role of this user
is very di�erent from the doctor role (e.g., administrative sta�), the access
request might represent an attempted abuse.

If an access request is related to an anomaly (ii), it is likely that the
anomaly represents an unspeci�ed emergency and the access request repre-
sents the related information need necessary to manage the emergency situ-
ation. For example, consider the pattern of anomalous hear rates of 120 bpm
introduced before and suppose these events belong to patient p, moreover,
suppose a paramedic requires to read p medical record and the anomalous
heart rate values has been detected two minutes before the access request; it
is likely that patient p is under an unspeci�ed emergency situation and the
paramedic needs to read his/her medical record to give �rst aid.

If an access request is similar to previously authorized access requests (iii),
it is likely that the current access request should be authorized since similar
ones have been authorized before. For instance, suppose a paramedic p1 has
been authorized to read patient p1 medical record and another paramedic p2
is trying to read patient p2 medical record, it is likely that the two paramedics
both need to read p1 and p2 medical records in order to manage unspeci�ed
emergencies.

Based on the three dimensions described above, the detection of unspeci-
�ed emergencies is performed using three di�erent strategies: (1) policy based
analysis (2) anomaly based analysis, and (3) historical based analysis. The
architecture of our framework is shown in Figure 4.1.

82 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

user
Objects

CEP Server

Emergency
Policy

Repository

Access Request Analyzer

Anomaly

Detector

Anomaly
Repository Historical

Repoistory
Anomaly
detection

Anomaly
Based

Analysis

Policy
Based

Analysis

Historical
Based

Analysis

Figure 4.1: Framework Architecture

The architecture presented in Figure 4.1 ensures an e�ective management
of unspeci�ed emergencies and related information sharing requirements ex-
ploiting the following three strategies.

• Policy Based Analysis: every time an access request is denied, the
Access Request Analyzer compares it against temporary access control
policies in the Emergency Policy Repository in order to �nd the tacp
which is the closest to be satis�ed by the access request. This policy
based analysis returns a score called satisfaction level which represents
how much the access request is close to satisfy the tacp.

• Anomaly Based Analysis: this strategy is divided into two parts: (i)
anomaly detection and anomaly correlation. The �rst part is performed
by the Anomaly Detector which monitors events coming from the CEP
system in order to detect anomalous events which might represent un-
speci�ed emergencies. Once a set of anomalous events is detected, an
anomaly is stored along with an anomaly level (i.e., how much events
are anomalous w.r.t. the normal behavior) in the Anomaly Repository.
The anomaly correlation is performed every time an access request
is denied. In this phase, the Access Request Analyzer searches, in the
Anomaly Repository, anomalies occurred in a speci�ed time window be-
fore the access request in order to �nd the anomaly which is the most
correlated to the access request. The anomaly based analysis returns
the anomaly level of the most correlated anomaly.

4.2. POLICY BASED ANALYSIS 83

• Historical Based Analysis: every time an access request ar is de-
nied, the system �nds the related anomaly an, if exists, exploiting our
anomaly based analysis techniques. Then, ar and an are compared
against previously permitted access requests in order to �nd the couple
(arh, anh) which is the most similar to ar and an in both access request
and anomalous events, if exist. The historical based analysis returns a
score called historical level which represents how much ar and an are
similar to the couple (arh, anh).

Once these three strategies has been performed the anomaly level of the
anomaly related to the denied access request, the satisfaction and historical
level of access request are combined together to give an overall level ol which
is used to decide to authorize or not the access request. More precisely, the
Access Request Analyzer compares ol against a prede�ned threshold th and
a tolerance value ε and if ol > th + ε, the access request is authorized, if
ol < th − ε, the access request is denied, otherwise the access request is
considered ambiguous. In case, the access request is authorized, it is stored
in the Historical Repository with the related anomaly, if exists.

In the following sections, we give a detailed explanation of the policy based
analysis, anomaly based analysis and historical based analysis.

4.2 Policy Based Analysis

Before introducing policy based analysis, it is important to give a formal
speci�cation of two building blocks of our model such as event type and object
type. An event type et and an object type ot specify the schema of events
belonging to et and the schema of objects belonging to ot, respectively.
Their formal de�nitions are provided in the following.

De�nition 4.2.1 (Event Type): An event type et is a couple (schema,
identifier), where schema is a set of couples (att, type) where att
is the name of an attribute whereas type is its data type, identifier is
the name of an attribute belonging to schema1.

This de�nition is slightly di�erent from the one proposed in Section 3.1
since the event type is not just the result of a query over a data stream, but
it contains the schema of the data stream events and an identi�er which is an
attribute that uniquely identify group of events, e.g., patient id = 1, uniquely
identify events associated with patient 1. In light of these modi�cation, it is

1The role of the identi�er is clari�ed in Example 4.2.1

84 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

useless to specify an identi�er in the emergency speci�cation, since the emer-
gency takes the same identi�er of the event type over which the emergency
is de�ned (this is clearer in Example 4.2.1).

De�nition 4.2.2 (Object Type): An object type ot is a set of couples
(att, type) where att is the name of an attribute whereas type is its
data type.

The following example clari�es the event and object types and present an
emergency and related tacp speci�cations which are used to explain policy
based analysis.

Example 4.2.1 Consider the healthcare scenario where patients are con-
stantly supervised through a specialized equipment which ensure a real time
monitoring of their vital signs. Data gathered by the monitoring equipment is
sent to the CEP in order to automatically detect emergency situations. More
precisely, we suppose that each sensor sends patients vital signs to the CEP
through the following event type.

VitalSigns{
schema = {(heart_rate, int), (glucose_level, int),

(patient_id, string)}
identifier = patient_id;

}

The event type VitalSigns represents events containing 3 attributes:
two numerical integer values called heart_rate and glucose_level and
a string value called patient_id. The identi�er attribute is patient_id
whose role is crucial in emergency speci�cation as shown in the following. In
this scenario, a hyperglycemia emergency can be de�ned over the VitalSigns
event type as follows.

HyperglycemiaEmergency {
init: VS1 v1;
VS1 = σ(glucose_level > 200)(VitalSigns);
end: VS2 v2;
VS2 = σ(glucose_level ≤ 200)(VitalSigns);
timeout: ∞;

}

The emergency starts when the glucose level in the blood of a patient
is higher than 200 mg/dl and it ends when the glucose level of the same
patient returns lower than or equal to 200 mg/dl. The matching between the
init and end event is ensured by the identi�er patient_id de�ned in

4.2. POLICY BASED ANALYSIS 85

the VitalSigns event type. During hyperglycemia emergency paramedics
taking care of the patient under emergency may be authorized to read objects
belonging to the object type MedicalRecord which is de�ned as follows.

MedicalRecord {(patient, string), (name, string),
(lastname, string), (age, int)}

The object type MedicalRecord may be used in the following tacp to
authorize user belonging to the role doctor and working in the intensive care
ward to read the medical record of patients during hyperglycemia emergency.

HyperglycemiaPolicy (hgp) {
shgp = {
srhgp = doctor
schgp = (ward = Intensive Care Ward)

}
ohgp = {
othgp = MedicalRecord

}
}

The policy based analysis measures how much a denied access request is
close to satisfy existing temporary access control policies. Once an access
request is denied, the system stores this decision together with additional
information into a structure called denied access request (dar) whose formal
de�nition is the following.

De�nition 4.2.3 (Denied Access Request): A denied access request dar
is a tuple (sid, oid, pd, sd, od), where sid identi�es the user to which has been
denied the exercise of privilege pd on the target object oid; sd = (SRd, SAd)
contains information related to sid, where SRd is the set of roles assigned
to him/her, and SAd is his/her pro�le, de�ned as a set of attributes and
corresponding values (a, v) of sid pro�le; od = (otd, OAd), where otd denotes
the object type of oid and OAd is a set of attribute and related values (a, v)
associated with object oid.

Example 4.2.2 Consider the healthcare scenario presented in Example 4.2.1
and the tacp HyperglycemiaPolicy (hgp). Let us assume that an ac-
cess request has been denied, thus the following dar is stored into the system.

dar1 {
sid = paramedic1
oid = MedialRecord1
sdar1 = {

86 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

SRdar1 = {paramedic}
SAdar1 = {(ward, Cardiac Ward)}

}
odar1 = {
otdar1 = MedicalRecord
OAdar1 = {(patientid, 1)}

}
}

Dar1 represents an access request performed by the user paramedic1
belonging to the paramedic role working in the Cardiac Ward and requesting
to access MedialRecord1 belonging to patient 1.

We need a measure for estimating the satisfaction level of a given dar d
w.r.t. a tacp t. We recall that a tacp states (i) the subject speci�cation in
terms of conditions on user pro�le attributes and roles, and (ii) the object
speci�cation in terms of conditions on object type and properties. Thus, we
are interested in measuring: how much the pro�le and roles of the user who
has submitted d is far to satisfy conditions in the subject speci�cation in t,
and, how much the object requested in d is close to satisfy the conditions on
the object description in t. We refer to these measures as satisfaction level
of d on t w.r.t. the subject speci�cation, and w.r.t. the object speci�cation.
The overall satisfaction level of d on t is then de�ned as combination of
these two measures. Note that, object and subject speci�cations have some
common features. Indeed, they both state constraints on categories, that is,
roles and object types in the subject and object speci�cations, respectively.
Moreover, both of them specify conditions on attributes of user pro�les and
object properties. Thus, to estimate both satisfaction levels a similar process
has to be performed. This implies to measure (1) how the requested category
(i.e., role, object type) is far from the ones of user/object (i.e., roles assigned
to requesting user, types of requested object) and (2) how a given set of
attribute values (i.e., values of user pro�le and values of object properties) is
far to satisfy conditions over them (i.e., conditions on user pro�le, conditions
on object properties). For this reason, in the following we �rst introduce how
we estimate (1) and (2).

4.2.1 Satisfaction level for roles and object types

In order to measure these satisfaction levels, we have to estimate how two
roles/object types are close each other. At this aim, having objects and roles
organized in hierarchies helps, in that we can exploit existing distance mea-
sure de�ned for hierarchies [64]. More precisely, we assume to have a distance

4.2. POLICY BASED ANALYSIS 87

function dH(v1, v2) which takes as input two values v1 and v2 (i.e., two roles,
two object types) and returns a value in the range [0, 1] as a measure of how
much v1 is close to v2 in a given role/object type hierarchy H. It is impor-
tant to note that, even though roles and object types are not hierarchically
organized, it is possible to calculate dH() distance using, instead of hierarchy
H, a generic dictionary based ontology such as WordNet [78]. In order to
keep the presentation as general as possible, we do not de�ne the distance
function dH , but, where needed, i.e., examples and experiments, we adopt
the Wu and Palmer measure [79]

De�nition 4.2.4 (role and object satisfaction level): Let t be a tacp,
where srt and ott denote the role and object type speci�ed in subject and
object speci�cation, respectively. Let d be a dar, where SRd and otd denote
the set of roles assigned to user speci�ed in d and the object type of requested
object, respectively. Let Hr, Ho be the hierarchies for roles and object types,
respectively. The satisfaction level of d on t w.r.t. roles, denoted as rsl(t, d),
and the satisfaction level of d on t w.r.t. object types, denoted as osl(t, d),
are de�ned as follows:

rsl(t, d) = 1−min(dHr(srt, srd1), . . . , dHr(srt, srdn))

∀ srdj ∈ SRd

(4.1)

otsl(t, d) = 1− dHo(ott, otd) (4.2)

The role satisfaction level is de�ned as one minus the minimum distance
between each role assigned to the dar user and the role speci�ed in the tacp,
whereas the object satisfaction level is speci�ed as one minus the distance
between the object type requested in the dar and the object type speci�ed
in the tacp.

4.2.2 Satisfaction level for subject/object conditions

Given a tacp and a dar, we have to measure: (i) how much the user pro�le
in the dar is close to satisfy the Boolean expression in the tacp subject
speci�cation, and (ii) how much properties of the target object are close
to satisfy the Boolean expression in the tacp object speci�cation. In both
cases, we need a measure to state how far a given set of attribute values is
to satisfy conditions posed on the corresponding attributes. For example, a
subject speci�cation, where we have a condition �ranking > 5�, and two users
u1 and u2 whose pro�les have ranking = 5 and ranking = 1. None of them
satisfy the Boolean expression, but we can say that u1 is closer to satisfy it

88 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

than u2. Similar examples hold for conditions on object properties. At this
purpose, we convert the Boolean expression in a Disjunctive Normal Form
(DNF) to calculate the satisfaction level in a bottom up way. We �rst evaluate
satisfaction levels between user pro�le/object properties and each predicate,
then we use these values to estimate satisfaction level of each clause, up to
the entire expression.

Given a predicate p and an attribute value vd (i.e., value of a pro�le
attribute, value of an object property), its satisfaction level is calculated
in a di�erent way based on type of the attribute in p. If it is a numerical
attribute, this is calculated as the normalized Euclidean distance between vd
and vp,

2, whereas if it is categorical attribute it is calculated as the distance
dH() between vd and vp in the hierarchy over which the attribute is organized.

3

De�nition 4.2.5 (satisfaction level of a predicate): Let p = ap θ vp be
a predicate, where ap is an attribute name,4 θ ∈ {<,>,=,≤,≥}, and vp is a
constant value. Let A be a set of pairs (ai, vi) denoting attribute names and
corresponding value. The predicate satisfaction level of p on A, is calculated
by the psl function.

psl(p,A) =

0 if @ (ai, vi) ∈ A | ai = ap
1 if ∃ (ai, vi) ∈ A | ai = ap

∧ vi ∈ sat(p)
1− dH(vp, vi) if ∃ (ai, vi) ∈ A | ai = ap

∧ vi /∈ sat(p)
∧ ap is categorical

1− |vp−vi|
|Dom(ap)| otherwise

(4.3)

where Dom(ai) is the domain of attribute ai and sat(p) is the set of values
which satisfy predicate p.
Let d be a dar, where SAd and OAd denote the set of pro�le attributes and
object properties, respectively, the satisfaction level of p on d w.r.t. subject
speci�cation and w.r.t. object speci�cation are de�ned as psl(p, SAd) and
psl(p,OAd), respectively.

2Note that this does not apply to those attributes de�ned as identi�ers, since measuring
the distance between two identi�ers is meaningless.

3As explained for roles/object types, even though an attribute does not belong to a
domain speci�c hierarchy it is always possible to calculate the distance dH using a generic
dictionary based ontology such as WordNet [78].

4We assume there are no syntactic variations for attribute names. For instance, it is not
possible to have attribute names such as �rank� and �ranking� in di�erent tacps referring
to the rank attribute. A schema matching approach [21, 46, 40] can be adopted to unify
attribute names before measuring predicates satisfaction levels.

4.2. POLICY BASED ANALYSIS 89

According to Equation 4.3, the predicate satisfaction level is equal to: (i)
zero, in case the attribute ap is not included in the attributes of the user
pro�le/object properties; (ii) one, in case the attribute ai is included in the
attributes of the user pro�le/object properties and the attribute value vi
satis�es the predicate; (iii) one minus the dH distance between vp and vi in
a given hierarchy H, in case the categorical attribute ai is included in the
attributes of the dar subject speci�cation, but its value vi does not satisfy
the predicate p; (iv) one minus the normalized Euclidean distance between
vp and vi, otherwise.

Based on above de�nition we can de�ne satisfaction level of a clause as
follows.

De�nition 4.2.6 (satisfaction level of a clause): Let c = p1∧· · ·∧pn be a
clause, A be a set of pairs (ai, vi) denoting attribute names and corresponding
values. The satisfaction level of c on A is calculated by the clsl function.

clsl(c, A) =
psl(p1, A) + · · ·+ psl(pn, A)

n
(4.4)

Let d be a dar, where SAd and OAd denote the set of pro�le attributes
and object properties, respectively, the satisfaction level of clause c on d w.r.t.
subject speci�cation and w.r.t. object speci�cation are de�ned as clsl(p, SAd)
and clsl(p,OAd), respectively.

Finally, since each clause c is part of a disjunctive clause (i.e., the DNF of
the subject condition or object conditions), the satisfaction level of DNF on
a set of attribute A is computed as the maximum value of clause satisfaction
levels between each conjunctive clause ci and attributes in A.

De�nition 4.2.7 (satisfaction level of DNF): Let dnft = c1∨ ...∨ cn be
the DNF of a subject or object condition in a tacp t, and A be a set of pairs
(ai, vi) denoting attribute names and corresponding values. The satisfaction
level of dnft on A is calculated by the dnfsl function.

dnfsl(dnft, A) = max(clsl(c1, A), . . . , clsl(cn, A)) (4.5)

Let d be a dar, where SAd and OAd denote the set of pro�le attributes
and object properties, respectively, the satisfaction levels of the DNF dnf
on d w.r.t. subject speci�cation and w.r.t. object speci�cation are de�ned as
dnfsl(dnfsct , SAd) and dnfsl(dnfoct , OAd), respectively.

90 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

4.2.3 Satisfaction Level of a dar on a tacp

Given a tacp t and a dar d, we can estimate the satisfaction level of d on
t w.r.t. the subject speci�cation and w.r.t. the object speci�cation exploiting
the above de�nitions.

De�nition 4.2.8 (satisfaction level of d on t w.r.t. the subject spec-
i�cation and w.r.t. object speci�cation): Let t be a tacp, and (srt, sct),
(ott, oct) be its subject and object speci�cations, respectively, where sct and oct
are expressed in DNF. Let d be a dar, where (SRd, SAd), (otd, OAd) denote
roles and pro�le of requesting user, types and properties of requested object,
respectively. The satisfaction level of d on t w.r.t. the subject speci�cation is
de�ned as follows:

sbjsl(st, sd) =
w1 ∗ rsl(srt, SRd) + w2 ∗ dnfsl(sct, SAd)

2
(4.6)

The satisfaction level of d on t w.r.t. the object speci�cation is de�ned as
follows:

objsl(ot, od) =
w1 ∗ osl(ott, otd) + w2 ∗ dnfsl(oct, OAd)

2
(4.7)

Both equations calculate the satisfaction levels as the average of the DNF
satisfaction levels computed on attributes (De�nition 4.2.7) and satisfaction
level on roles/object types (De�nition 4.2.4). The weights values w1 and w2

can be used for emphasizing the importance of the role/object or condition
satisfaction levels, respectively.

Finally, we can de�ne satisfaction level of d on t by combing the above
levels.

De�nition 4.2.9 (Satisfaction level of a dar on tacp): Let t be a tacp,
where st, ot denote its subject and object speci�cations. Let d be a dar, where
sd, od denote description of requesting user and requested object (see De�ni-
tion 4.2.3). Satisfaction level of d on t is calculated by the t-darsl function:

t− darsl(t, d) = sbjsl(st, sd) + objsl(ot, od)

2
(4.8)

Equation 4.8 calculates tacp-dar satisfaction level as the average between
the subject satisfaction level sbjsl and the object satisfaction level objsl
(De�nition 4.2.8).

4.2. POLICY BASED ANALYSIS 91

Example 4.2.3 Consider the denied access request dar1 presented in Ex-
ample 4.2.2. In this example, we suppose roles, object types and attributes
are hierarchically organized as shown in Figure 4.2. In this case, the role
and object satisfaction levels are calculated as follows: (1) rsl(hgp, dar1) =
1−min(dHr(doctor,
paramedic)) = 1 - 0.335 = 0.67, where the distance value is small, i.e., 0.33,
since the two roles are very close in the hierarchy; (2) otsl(hgp, dar1) = 1,
since the two objects have the same type. The subject condition in hgp con-
tains only one predicate p:(ward = Intensive Care Ward) and the set of sub-
ject attributes in dar1 is SAdar1 = {(ward, Cardiac Ward)}. Since ward is a
hierarchically organized attribute and cardiac ward does not satisfy the predi-
cate p, the predicate satisfaction level is calculated as follows: psl(p, SAdar1) =
1− dH(Intensive Care Ward, Cardiac Ward)= 1 - 0.33 = 0.67.

Personel

Administrative
Personel

Medical
Personel

Technical
Personel

doctor paramedic

Hospital
Object

Medical Object Pharmaceutical
Object

Drug Prescription
Medical
Record

Medical
Equipment

Ward

Medical Ward Surgical Ward

Geriatric
Ward

Cardiac
Ward

a. Roles Hierarchy b. Object Types Hierarchy
c. Ward Attribute Hierarchy

Pediatric
Ward

Intensive
Care Ward

Neurosurgey
Ward

Transplan
Surgery
Ward

Figure 4.2: Roles, Object Types and Ward Attribute Hierarchies

Since the subject condition is composed of one predicate dnfsl(schgp,
SAdar1) = 0.67. Combining these values, it is possible to calculate subject and
object satisfaction levels as follows: (1) sbjsl(shgp, sdar1) =

0.67+0.67
2

= 0.67;
(2) since the object speci�cation contains only the object type and the two
object have the same type objsl(ohgp, odar1) = 1. The overall tacp-dar satis-
faction level is calculated as the average of these two values: t− darsl(hgp,
dar1) = 0.67+1

2
= 0.835. This level is returned as the result of the policy based

analysis phase.

The t-darsl is used to �nd the tacp which is the closest to be satis�ed by
the current denied access request, i.e., the tacp with the highest satisfaction
level. Obviously, it is ine�cient to compare a dar against each tacp, especially
if the number of tacps is large. In order to avoid such sequential compari-
son, we make use of a pre-computed roles-objects matrix. This matrix allows
quickly selecting a subset of tacps whose roles and object type speci�cations
are close to be satis�ed by the dar. Then, among the selected policies the

5In this Example the distance between the two roles in the hierarchy is calculated using
the Wu and Palmer measure [79].

92 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

tacp-dar satisfaction level is calculated and the maximum satisfaction level
is return as result of the policy based analysis.

More precisely, let R be the set of roles de�ned in the entire access control
system and O be the set of object types. The roles-objects matrix is a matrix
with a row for each role ri ∈ R and a column for each object type oj ∈ O.
A cell in the row ri and column oj contains a list of tacps order by their
satisfaction level. Please note that we cannot use t-darsl measure to order
the tacps in each matrix cell, since we need to measures how much a role ri is
close to satisfy a tacp subject speci�cation and how much an object oj is close
to satisfy a tacp object speci�cation, whereas t-darsl measures satisfaction
level of an entire dar w.r.t. a tacp. For this reason, we de�ne a new measure
called matrix satisfaction levels.

De�nition 4.2.10 (msl - matrix satisfaction level): Let t be a tacp
and M [ri, oj] be a cell in the roles-objects matrix corresponding to role rj and
object type oj, the matrix satisfaction level is calculated by the msl function.

msl(t, ri, oj) =
rsl(SRt, {ri}) + (1− dH(ott, oj))

2
(4.9)

Equation 4.9 calculates the matrix satisfaction level as the average of: (i)
roles satisfaction level rsl (see De�nition 4.2.4) between the tacp role set SRt

and a set which contains only ri and (ii) one minus the distance dH() between
the tacp object type ott and oj in the object type hierarchy H.

We do not report here the code for the roles-objects matrix creation since
it was already presented in [29], but we report the code necessary to �nd the
tacp with the highest satisfaction level, i.e., code of Algorithm 4 since this is
a modi�ed version of the one presented in [29]. This new version returns the
maximum satisfaction level without comparing this value with a threshold,

4.3. ANOMALY BASED ANALYSIS 93

since this value might be combined with anomaly and historical levels.

Algorithm 4: maxSatisfactionLevel()
Input : dar, the denied access request.
Output: the maximum satisfaction level between the dar and existing policies.

1 T = ∅;
2 Let SRd be the set of roles contained in dar;
3 Let otd be the object type contained in dar;
4 Let M be the roles-objects matrix;
5 foreach ri ∈ SRd do

6 foreach ti ∈M [ri][otd] do
7 if ti /∈ T then

8 Insert ti Into T;

9 end

10 end

11 max = 0;
12 foreach ti ∈ T do

13 sl = t-darsl(ti, dar);
14 if sl > max then max = sl;

15 end

16 return max;

The 4 algorithm takes as input a denied access request dar and returns
the maximum satisfaction level between dar and existing policies. First of all,
the algorithm analyzes each role ri ∈ SRd in the dar subject speci�cation
(lines 5-10). For each role ri, the algorithm retrieves the cell in the roles-
objects matrix M at row ri and column otd (i.e., the object type in dar),
which contains a subset of tacps close to be satis�ed by the role ri and by
the object type otd. For each tacp ti ∈ M [ri][otd] (lines 6-9), if the tacp is
not already contained in T (line 7), it is inserted into the set T (line 8).

Then, for each tacp ti ∈ T (lines 12-15), the algorithm calculates the
satisfaction level sl between ti and dar using t-darsl algorithm (line 13) and
if sl is the maximum, the algorithm stores its value in max variable (line 14).
Once all, the tacps have been analyzed, the algorithm returns max (line 16).

4.3 Anomaly Based Analysis

The anomaly based analysis exploits anomaly detection techniques and com-
plex event processing (CEP) in order to detect anomalous events. Once an
anomaly has been detected this information is stored in the anomaly reposi-
tory. Once an access request is denied by regular policies the system tries to
�nd an anomaly in the anomaly repository which might be correlated to the
denied access request; this phase is called anomaly correlation. The anomaly
correlation is performed exploiting a pre-de�ned correlation between the ob-

94 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

ject type of the denied access request and the event type of the anomaly.
These correlations might be de�ned either manually by the system adminis-
trator or automatically with techniques for correlation discovery.

In light of these considerations, this section is structured as follows: �rst
of all, we show how the system performs the anomaly detection; then, we ex-
plain how anomalies are linked to denied access requests during the anomaly
correlation phase; �nally, we explain correlation discovery techniques used
to pre-calculate correlations used in the anomaly correlation phase.

4.3.1 Anomaly Detection

The anomaly detection is performed combing CEP and anomaly detection
techniques. More precisely, each input or output stream (i.e., the result of
processing single or multiple input streams) that we want to monitor in a
CEP system is connected to a set of operators which perform the detection
of anomalous events. These operators are an aggregation and a �lter. The
aggregate operator computes aggregations of events coming form an input
or an output stream over a moving window according to an anomaly detec-
tion function adf(). Moreover, the operator groups output events based on a
particular input �eld.6

The generic anomaly detection function adf() takes as input the set of
events in the aggregation window and returns a score between 0 and 1 which
represents the anomaly level of analyzed events, i.e., how much these events
are anomalous w.r.t. the normal behavior of the system. In order to keep the
presentation as general as possible, we do not de�ne the anomaly detection
function adf(), but in our experiments, we adopt two di�erent techniques
[56, 11] whose details are provided in Chapter 2.

Once the anomaly level has been calculated, if this level is greater than
a prede�ned threshold, it means that analyzed events are signi�cantly di�er-
ent form the normal behavior of the system, thus they should be stored as
anomalies. The formal de�nition of anomaly is the following.

De�nition 4.3.1 (Anomaly): An anomaly is a tuple (E, et, ts, al, id),
where E is the set of anomalous event(s) detected using an anomaly detec-
tion function adf(), et is the event type of the anomalous event(s), ts is the
timestamp of the �rst anomalous event, al is the anomaly level calculated
using adf() and id is the value of the identi�er attribute in the anomalous
event(s).

6Events are always grouped based on the identi�er attribute for instance the patient
id, i.e., a window is created for patient1, a window for patient2, etc. In this way, all the
events in the window share the same identi�er value.

4.3. ANOMALY BASED ANALYSIS 95

The event �ow which realizes the anomaly detection is depicted in Figure
4.3.

Σ

win_size = n
function = adf(E)

group by identifier eagg.al > th

eagg = (E, et, ts, al, id)E = {e1, …, en}

I1 O1

Figure 4.3: Anomaly Detection Event Flow

This detects anomalies among events received from the input stream I1
whose event type is ET1

7. First of all, events received from I1 are aggregated
using a window of size n and grouped by the identi�er value, i.e., the ag-
gregation function adf() is performed every n events which shares the same
identi�er. The aggregation operator produces an aggregated event eagg which
contains the anomaly level of events in E along with other information, i.e.,
the same information stored in an anomaly (see De�nition 4.3.1). Then, the
eagg event is sent to a �lter which discards those aggregated events whose
anomaly level is lower than a prede�ned threshold th. The events that are
not discarded are sent to output stream O1 and stored as anomalies in the
Anomaly Repository.

Example 4.3.1 Consider the patient remote monitoring scenario presented
in Example 4.2.1. To detect anomalies in this scenario a CEP system might
be similar to the one depicted in Figure 4.3, where the input stream is con-
nected to the event type VitalSigns presented in Example 4.2.1 and the
aggregation windows size is set to 64 events. Suppose a set of 64 events E
has been received from VitalSigns and the �rst event has been detected at
04:45AM 05-08-2012 and every event is coming from patient 1. The aggregate
operator returns a high anomaly level (e.g., 0.8), since they are signi�cantly
di�erent from the normal values (i.e., 80 bpm). Thus, the aggregated event
eagg = (E, VitalSigns, 05-08-2012 04:45AM, 0.8, 1) is sent to the �lter
which checks if 0.8 is greater than the prede�ned threshold th. If the check
succeeds, the aggregated event is stored in the anomaly repository as follows:

Anomaly1 {
E = { e1, . . . , e64 };

7The input stream I1 might be connected either to an input or an output stream, thus
it may be the result of processing multiple input streams.

96 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

et = VitalSigns;
ts = 05-08-2012 04:45AM;
al = 0.8;
id = 1;

}

The Anomaly1 contains the set of anomalous events E, the event type of
the anomalous events, i.e., VitalSigns, the timestamp �05-08-2012 04:45AM�
of the �rst anomalous event and the identi�er value, in this case, since the
identi�er of event type VitalSigns is the attribute patient_id, its value
is 1.

4.3.2 Correlation Discovery

The relation between a dar and an anomaly is based on a pre-de�ned corre-
lation between the object type of the dar and the event type of the anomaly
(see De�nition 4.3.1 for further details). The correlation is de�ned over an
attribute in the event type and another attribute in the object type. The
formal de�nition of the Event Type - Object Type Correlation (ETOTC) is
the following.

De�nition 4.3.2 Event Type - Object Correlation (ETOTC): An etotc
is represented as a tuple (et, ot, oa), where et is an event type and ot is the
correlated object type. The correlation is ensured by a connection between the
identi�er of et and the oa attribute which belongs to the schema of ot.

Example 4.3.2 Consider event and object type presented in Example 4.2.1,
i.e., VitalSigns and MedicalRecord. The correlation between them
might be ensured by the following ETOTC.

etotc1 {
et = VitalSigns;
ot = MedicalRecord;
oa = patientid;

}

The correlation is ensured by a connection between the identi�er of Vital-
Signs (i.e., the attribute patient_id) and the attribute �patientid� belonging
to the schema of MedicalRecord.

These correlations might be de�ned either manually by the system ad-
ministrator or automatically with techniques for correlation discovery pre-
sented in this section. The correlation discovery problem can be de�ned as
the process of identifying relationships between attributes of object types and

4.3. ANOMALY BASED ANALYSIS 97

attributes of event types, i.e., the event type identi�ers. This is very similar
to another problem known in literature as foreign key discovery. This is the
process of discovering the set foreign keys within a database schema [71]. A
foreign key represents a relationship between an attribute in a referencing
table and another attribute (i.e., the primary key) in a referenced table. In-
deed, the foreign key discovery problem and our problem are similar since
they both aim �nding relationship between attributes.

A large number of foreign key discovery techniques are based on the
calculation of inclusion dependencies (INDs). An inclusion dependency A ⊆
B means that all values of the dependent attribute A are contained in the
value set of the referenced attribute B [10]. An IND between two attributes
is a precondition for foreign key discovery, thus couples of attributes with
INDs are candidates for foreign keys. In our model, we exploit inclusion
dependency discovery algorithms for detecting INDs between attributes in
event and object types. More precisely, we determine all INDs using the
SPIDER (Single Pass Inclusion DEpendency Recognition) algorithm [10].

Then, among retrieved INDs, we identify whether the IND represents a
ETOTC or not based on a set of features. These features are similar to the
one used in foreign key discovery to detect which IDNs represent foreign keys.
These features have been extensively analyzed in foreign key discovery liter-
ature using common sense and by carefully studying positive and negative
examples [71]. In our model, we make use of a subset of these features in
order to calculate the correlation level. The object attribute with the high-
est correlation level with an event attribute is stored in an ETOTC. The
subset of features used in our model are called coverage, colNameSim and
multiRefRatio. These measures are used to calculate the correlation between
two attributes a1 and a2: coverage measures the ratio of values in a1 that are
contained in a2; the multiRefRatio measures how often values in a1 appears
as referenced attribute in a2; the colNameSim measures the similarity be-
tween the two attributes names. In the following, we provide details on how
to calculate the correlation level.

De�nition 4.3.3 (correlation level): Let et be an event type and et.id be
its identi�er. Let ot be an object type and ot.a be one of its attributes. Let
Vet.id and Vot.a be sets of values of et.id and ot.a, respectively. The correlation
level between et.id and ot.a is de�ned as follows:

corrLev(et.id, ot.a) = f(coverage(Vet.id, Vot.a) + colNameSim(et.id, ot.a)+

multiRefRatio(Vet.id, Vot.a)
(4.10)

98 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

The correlation level is calculated as a function f() of the coverage, the
column name similarity and the multi reference ratio; the f() function might
be a simple average or a weighted average or a more complex combination.
The coverage() function calculates ratio of values in Vot.a that are contained
in Vet.id as follows.

coverage(Vet.id, Vot.a) =
| Vet.id ∩ Vot.a |
| Vot.a |

(4.11)

The multiRefRatio() function counts how often values in Vot.a appears
as referenced attribute in Vet.id set as follows.

multiRefRatio(Vet.id, Vot.a) =
avg(count(v1, Vet.id), . . . , count(vn, Vet.id))

| Vot.a |
(4.12)

The colNameSim() function measures the similarity between the two at-
tributes names et.id and ot.a using a generic string distance measure dist()
as follows.

colNameSim(et.id, ot.a) = 1− dist(et.id, ot.a); (4.13)

Example 4.3.3 Consider the event type VitalSigns introduced in Exam-
ple 4.2.1 and its events e1 . . . e6 presented in Example 4.4.2. Consider also
the object type MedicalRecord presented in Example 4.2.1 and its objects
presented in the following.

o1={(patientid,1),(name,Mark),(lastname,Smith),(age,33)}
o2={(patientid,2),(name,John),(lastname,Nolan),(age,19)}
o2={(patientid,3),(name,Bob),(lastname,Palmer),(age,34)}

The identi�er of VitalSigns, i.e., patient_id and the patientid
attribute of object type MedicalRecord have inclusion dependencies, since
they have common values (i.e., 1 and 2), thus | Vpatient_id ∩ Vpatientid | = 2,
whereas the total number of values of patient_id is three, i.e, 1, 2, 3, thus
| Vot.a | = 3, therefore coverage(Vpatient_id, Vpatientid) = 2/3 = 0.6.

In addition, values 1 and 2 appear three times in VitalSigns events,
i.e., 1 appears in e1, e2 and e3, whereas 2 appears in e4, e5 and e6, but value
3 does not appear in VitalSigns events, thus multiRefRatio(Vpatient_id,
Vpatientid) = avg(3, 3, 0)/2 = 2/2 = 1.

For the column name similarity, we calculate the distance between the two
column names using the Hamming distance, thus colNameSim(patient_id,
patientid) = 1 - 0.1 = 0.9.

4.3. ANOMALY BASED ANALYSIS 99

In the end, if we use the average as function f , then the correlation level is
(0.6 + 1 + 0.9)/3 = 0.83. Supposing this is the highest correlation value, the
identi�er of VitalSigns, i.e., patient_id and the patient attribute
of object type MedicalRecord are correlated in the ETOTC repository
through the patientid attribute, i.e., a tuple (VitalSigns, Medical
Record, patientid) is added to the repository.

4.3.3 Anomaly Correlation

The anomaly correlation tries to �nd an anomaly in the anomaly repository
which might be correlated to a dar. As we claimed in Section 4.1, this step
is important because if the system �nds an anomaly correlated to an ac-
cess request, it is likely that the anomaly represents the triggering event of
an unspeci�ed emergency as such the dar represents the information need
necessary to manage the unspeci�ed emergency.

For instance, suppose doctor d1 tries to read the medical record of pa-
tient p1, but the access request is denied by regular policies; moreover an
anomalous heart beat has been detected for patient p1 within a short time
before the access request. In this case, it is likely that the anomalous event
represents an unspeci�ed tachycardia emergency and the dar represents the
missing policy which should authorize doctor d1 to access patient p1 medical
record.

Once the ETOTC correlations have been de�ned as explained in Section
4.3.2, these are used during the access request analysis in order to �nd an
anomaly which might be correlated to a dar in the anomaly repository. First
of all, the system analyzes anomalies occurred in a speci�ed time window
before the dar. For each anomaly ai the system checks if there is a correlation
between the object type ot in the dar object speci�cation and the event type
et of the anomaly. If a correlation (et, ot, oa) has been found, the system
retrieves values of identi�er of the anomaly ai.id and attribute oa, if these
values match it means ai and dar are correlated. Among anomalies correlated
to the dar, the system selects the anomaly with the highest anomaly level
and this level is returned as the result of the anomaly correlation phase.

Example 4.3.4 Consider the denied access request dar1 presented in Ex-
ample 4.2.2. Suppose, the only anomaly stored in the anomaly repository
within speci�ed time window before the dar is Anomaly1 (presented in Ex-
ample 4.3.1). Moreover, suppose that etotc1 presented in Example 4.3.2
has been de�ned in the system. In this case, etotc1 = (VitalSigns,
MedicalRecord, patientid) ensures a correlation between the object
type MedicalRecord in the dar1 object speci�cation and the event type

100 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

VitalSigns in Anomaly1. Since the value of attribute patientid in
the dar object speci�cation is the same of the identi�er of Anomaly1, i.e.,
1, the anomaly is related to the dar. Since this is the only anomaly correlated
to the dar, its anomaly level, i.e., 0.8, is kept as the result of the anomaly
correlation phase.

The anomaly correlation presented in this section is performed by Al-
gorithm 5 which takes as input a denied access request and the size of the
window and returns the maximum anomaly level among anomalies correlated
to the dar occurred in the speci�ed window before the dar.

Algorithm 5: maxCorrelatedAnomaly()
Input : dar, the denied access request; w, the window size.
Output: The maximum anomaly level among anomalies correlated to dar.

1 Let ETOTC be the Event Type - Object Type Correlation repository;
2 Let A be the anomalies repository; max = 0;
3 foreach ai ∈ A do

4 if dar.ts - w ≤ ai.ts ≤ dar.ts then
5 att = correlatedObjAttribute (ai, dar.od.otd, ETOTC);
6 if att 6= ∅ then
7 if ai.id = dar.obj.att then
8 if ai.al > max.al then max = ai;

9 end

10 end

11 end

12 end

13 return max;

First of all, the algorithm analyzes each anomaly ai in the anomaly repos-
itory A (lines 3-12). If the anomaly ai has occurred within a time window of
size w before the occurrence of dar (line 4), then the algorithm correlatedOb-

jAttribute is called to �nd an attribute which connects the anomaly to the
object of the dar in the Event Type - Object Type Correlation repository
ETOTC (line 5).8 If the attribute exists (line 6), then the algorithm checks
if the value of the anomaly identi�er id is equal to the attribute value in the
dar object (line 7). If this is true, the algorithm checks if the anomaly level
of ai is the maximum and, in this case, it stores ai in max variable. Once all,
the anomalies are analyzed, the algorithm returns max (line 13).

8The correlatedObjAttribute takes as input an anomaly a, a dar object obj and the
ETOTC repository, �nds in ETOTC a tuple (a.et, obj, oa) and returns oa if the tuple has
been found, ∅, otherwise.

4.4. HISTORICAL BASED ANALYSIS 101

4.4 Historical Based Analysis

The third strategy exploited in the access request analysis is the historical
based analysis, which measures how much a denied access request is similar
to one of the previously permitted dars. Every time a dar di is authorized
according to policy and/or anomaly based analysis a pair (di, ai), called
controlled violation, is stored in the historical repository. The pair contains
the dar di and the anomaly ai related to di, if any.

9 Controlled violations,
stored in the historical repository, are used during the access request analysis.

More precisely, every time an access request is denied, the system per-
forms the anomaly correlation in order to �nd the anomaly which is the most
correlated to the dar, then it compares the dar itself and the related anomaly
against controlled violations stored in the historical repository. More specif-
ically, suppose an access request d1 has been denied and the anomaly corre-
lation has identi�ed the related anomaly a1, this pair (d1, a1) is compared
against each controlled violation (di, ai) stored in the historical repository.
This comparison measures the similarity between (d1, a1) and (di, ai) based
on the similarity between d1 and di, called dars similarity level, and the
similarity between a1 and ai, called anomaly similarity level.

These two similarities are calculated separately, then results are combined
together in the overall similarity level according to a prede�ned function,
e.g., average. The maximum similarity level is returned as the result of the
historical based analysis. If the current dar is not related to any anomaly or
the controlled violation does not contain any anomaly, the anomaly similarity
level is not calculated and the historical based analysis relies only on the dars
similarity level.

It is worth noting that the historical based analysis is a re�nement of
policy and anomaly based analysis, which is used to enhance detection of
unspeci�ed emergencies, but it is unlikely that this analysis might identify
unspeci�ed emergencies not detected by the other strategies.

Dar Similarity Level

The dar similarity level measures how much two dars are similar to each
other. The calculation of dar similarity level is similar to the satisfaction
level measure presented in Section 4.2. Satisfaction level is used to compare
a dar against a tacp, whereas the dar similarity level is used to compare two
dars, but since structures of tacps and dars are similar, the two measures

9In case, an anomaly has not been found, the controlled violation contains only the
dar.

102 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

are similar too. More precisely, the dar similarity level is calculated by the
dar-sim function whose de�nition is summarized in Figure 4.4.

𝑑𝑎𝑟 𝑠𝑖𝑚(𝑑1, 𝑑2) =
𝑠𝑏𝑗𝑠𝑖𝑚(𝑠𝑑1 , 𝑠𝑑2) + 𝑜𝑏𝑗𝑠𝑖𝑚(𝑜𝑑1, 𝑜𝑑2)

2
-

𝑠𝑏𝑗𝑠𝑖𝑚(𝑠𝑑1 , 𝑠𝑑2) =
𝑤1 ∗ 𝑟𝑠𝑖𝑚(SRd1 , 𝑆𝑅𝑑2) + 𝑤2 ∗ 𝑎𝑠𝑠𝑖𝑚(𝑆𝐴𝑑1 , 𝑆𝐴𝑑2)

2

𝑜𝑏𝑗𝑠𝑖𝑚(𝑜𝑑1 , 𝑜𝑑2) =
𝑤1 ∗ 𝑜𝑡𝑠𝑖𝑚(𝑜𝑡𝑑1 , 𝑜𝑡𝑑2) + 𝑤2 ∗ 𝑎𝑠𝑠𝑖𝑚(𝑂𝐴𝑑1 , 𝑂𝐴𝑑2)

2

dars similarity level

subject and object similarity level

Figure 4.4: Tacp - Dar Satisfaction Level Measure

As shown in Figure 4.4 the dars similarity level dar − sim(d1, d2) be-
tween two dars d1 and d2 is calculated as the average of subject similarity
level sbjsim(sd1 , sd2) and object similarity level objsim(od1 , od2). Recursively,
subject and object similarity level are calculated as the weighted average of
role similarity level rsim(SRd1 , SRd2) and subject attributes similarity level
assim(SAd1 ,
SAd2) and object type similarity level otsim(otd1 , otd2) and object attributes
similarity level assim(OAd1 , OAd2), respectively.

Subject and object similarity levels are similar to satisfaction levels, thus
we gave a brief overview of these functions. Moreover, object type similarity
is calculated in the same way of object type satisfaction level, thus otsim
function is the same of otsl presented in De�nition 4.2.4. On the contrary,
roles, subject and object attributes similarity levels are slightly di�erent, thus
we give the formal de�nitions of these measures.

De�nition 4.4.1 (roles similarity level): Let d1 and d2 be two dars,
where SRd1 and SRd2 denote the set of roles. Let Hr, be the hierarchies
for roles. The role similarity level between d1 and d2, denoted as rsim(d1, d2)
is de�ned as follows:

rsiml(d1, d2) = 1−min(dHr(sr
1
d1
, sr1d2), . . . , dHr(sr

n
d1
, srmd2))

∀ srid1 ∈ SRd1 ∧ sr
j
d2
∈ SRd2

(4.14)

4.4. HISTORICAL BASED ANALYSIS 103

The role similarity level is de�ned as one minus the minimum distance
between each role assigned to the user in d1 and each role assigned to the user
in d2.

Since dars subject and object speci�cation are both sets of couple attribute-
value, the subject and object attributes similarity levels are calculated using
the same function called assim (attribute set similarity level) which measure
how much two sets of attributes values are similar. First, we start de�ning
how measure the similarity of a single attribute a in dar w.r.t. to the entire
set of attributes A in another dar. Then, we iterate this measure to calculate
the distance between two set of attributes in two di�erent dars.

De�nition 4.4.2 (attribute similarity level): Let d1 and d2 be two dars.
Let a be an attribute belonging to the schema of the subject/object in d1 with
its value v and A be a set of pairs (ai, vi) denoting attribute names and
corresponding values of the subject/object in d2. The attribute similarity level
of a on A, is calculated by the asim function.

asim(a,A) =

0 if @ (ai, vi) ∈ A | ai = a
1− dH(v, vi) if ∃ (ai, vi) ∈ A | ai = a

∧ a is categorical

1− |v−vi|
|Dom(a)| otherwise

(4.15)

According to Equation 4.15, the attribute similarity level is equal to: (i)
zero, in case the attribute a is not included in the attributes in A; (ii) one
minus the dH distance between v and vi in a given hierarchy H, in case the
categorical attribute ai is included in the attributes A; (iii) one minus the
normalized Euclidean distance between vp and vi in Dom(a) (the domain of
attribute a), otherwise.

The attribute similarity level can be easily extend to measure the simi-
larity between two sets of couples attribute-value belonging to two di�erent
dar subject/object speci�cations.

De�nition 4.4.3 (attribute set similarity level): Let d1 and d2 be two
dars. Let Ad1 be the set of pairs (ai, vi) denoting the n attribute names and
corresponding values of the subject/object in d1 and let Ad2 be the set of
attribute names and corresponding values of the subject/object in d2. The
similarity level between Ad1 and Ad2, is calculated by the assim function.

assim(Ad1 , Ad2) =
asim(a1, Ad2) + · · ·+ asim(an, Ad2)

n
(4.16)

104 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

As shown in Equation 4.16, the attribute set similarity level between two
sets of attributes Ad1 and Ad2 is calculated as the average of the attribute
similarity levels between each attribute ai ∈ Ad1 and Ad2.

The assim is used in computation of both subject and object attributes
similarity levels, as shown in Figure 4.4.

Example 4.4.1 Consider the denied access request dar1 presented in Ex-
ample 4.2.2 and the following dar2 whose access request has been performed
by paramedic2 belonging to the geriatric ward which tried to access medical
record of patient2.

dar2 {
sid = paramedic2
oid = MedialRecord2
sdar2 = {
SRdar2 = {paramedic}
SAdar2 = {(ward, Geriatric Ward)}

}
odar2 = {
otdar2 = MedicalRecord
OAdar2 = {(patientid, 2)}

}
}

As explained in Example 4.2.2, we suppose roles, object types and at-
tributes are hierarchically organized as shown in Figure 4.2. In this case, the
role and object similarity levels are calculated as follows: (1) rsim(dar1, dar2)
= 1, since the two paramedics have the same role; (2) otsim(dar1, dar2) = 1,
since the two objects have the same type.

The set of subject attributes in dar1 is SAdar1 = {(ward, Cardiac Ward)},
whereas the set of subject attributes in dar2 is SAdar2 = {(ward, Geriatric
Ward)}. Since there is just one attribute in the subject speci�cation the
subject attribute similarity level correspond to the attribute similarity level
asim(ward, SAdar2) between ward and SAdar2. Since ward is a hierarchically
organized attribute, the similarity is calculated as 1 − dH(Geriatric Ward,
Cardiac Ward)= 1 - 0.33 = 0.67.

The set of object attributes in dar1 is OAdar1 = {(patientid, 1)}, whereas
the set of object attributes in dar2 is SAdar2 = {(patientid, 2)}. Since there
is only one attribute in the object speci�cation, the object attribute similarity
level correspond to the attribute similarity level asim(patientid, OAdar2) be-
tween patientid and OAdar2. Since patientid is a numerical attribute, the

4.4. HISTORICAL BASED ANALYSIS 105

similarity is calculated as 1− |2−1|
10

= 1 - 0.1 = 0.9.10

Combining these values, it is possible to calculate subject and object sim-
ilarity levels as follows:
(1) sbsim(sdar1 , sdar1) =

1+0.67
2

= 0.835.
(2) objsim(odar1 , odar1) =

1+0.9
2

= 0.95. The overall dars similarity level is cal-
culated as the average of these two values: dar−sim(dar1, dar2) =

0.835+0.95
2

=
0.8925.

Anomaly Similarity Level

The anomaly similarity level measures how much events causing an anomaly
are similar to events causing another one. The similarity between two sets
of events is calculated as the average of similarity between each event in
one set and each event in the other one. In order to calculate the similarity
level between two anomalies a1 and a2, we need to measure how much events
causing a1 are similar to events causing a2. Obviously, events must belong
to the same event type. More precisely, given two events sets: E1 and E2 we
need to measure how much each event ei ∈ E1 are similar to events in E2.
Then, we iterate this measure to calculate the similarity between the two set
of events E1 and E2. We start de�ning similarity between two events then
between an event and an event set and �nally between two event sets.

De�nition 4.4.4 (single event similarity level): Let e1 and e2 be two
events. Let Ae1 be the set of pairs (aie1 , v

i
e1
) denoting attribute names and

corresponding values of e1 and let Ae2 be the set of pairs (aie2 , v
i
e2
) denoting

attribute names and corresponding values of e2. The single event similarity
level is calculated as follows.

sesl(e1, e2) = assim(Ae1 , Ae2) (4.17)

Since events are similar to user/object types because they are both repre-
sented as a set of couples attribute-value, we exploit attribute set similarity
(De�nition 4.4.3) to calculate the single event similarity.

The single event similarity de�nition can be easily extended to measure
the similarity between an event and a set of events.

De�nition 4.4.5 (multiple event similarity level): Let e be an event.
Let E be a set of events {e1, . . . , en}. The similarity level between e and E,
is calculated by the mesl function.

10In this example, we suppose the total number of patient is 10.

106 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

mesl(e, E) =
sesl(e, e1) + · · ·+ sesl(e, en)

n
(4.18)

The similarity level between e and E, is calculated as the average of
sesl(e, ej) for each ej ∈ E.

The multiple event similarity de�nition can be easily extend to measure
the similarity between two event sets.

De�nition 4.4.6 (event set similarity level): Let E1 be a set of events
{e1, . . . , en} and E2 be a another set of events. The similarity level between
E1 and E2, is calculated by the essl function.

essl(E1, E2) =
mesl(e1, E2) + · · ·+mesl(en, E2)

n
(4.19)

The similarity level between E1 and E2, is calculated as the average of
multiple similarity levels calculated between each event ej ∈ E1 and E2.

It is important to note that the identi�er attribute is not considered in
Equation 4.19, because it is useless in the event set similarity. This is clari�ed
in the following example.

Example 4.4.2 Consider the Anomaly1 presented in Example 4.3.1 and
suppose it contains the following set of events.

E_1 {
e1={(heart_rate,102),(glucose_level,120),(patient_id,1)}
e2={(heart_rate,103),(glucose_level,120),(patient_id,1)}
e3={(heart_rate,101),(glucose_level,120),(patient_id,1)}
}

Moreover, suppose that the current access request analysis has found an-
other anomaly in the historical repository which contains the following set of
events.

E_2 {
e4={(heart_rate,104),(glucose_level,120),(patient_id,9)}
e5={(heart_rate,102),(glucose_level,120),(patient_id,9)}
e6={(heart_rate,100),(glucose_level,120),(patient_id,9)}
}

These two sets of events both represent a tachycardia emergency and their
similarity is calculated as follows. Let us start with the single event similar-
ity level between e1 and e4, which, according to equation 4.17, is calculated
as sesl(e1, e4) = assim(Ae1 , Ae4). Since assim is calculated as the average

4.4. HISTORICAL BASED ANALYSIS 107

of the attribute similarity levels between each attribute in the two attribute
sets, we begin from heart rate attribute. Since heart rate is a numerical at-
tribute, the similarity asim(heart_rate, Ae4) is calculated as 1 − |102−104|

200
=

1− 0.01 = 0.9911. Regarding the other attributes, glucose_level has the
same values for e1 and e4, thus its similarity is 1, whereas patient_id
is not considered since it is the identi�er of VitalSigns event type. The
identi�er is not considered because the distance between two identi�ers is not
signi�cant, i.e., the two set of events are similar because they both represent
a tachycardia emergency regardless of the identi�er value. It is worth noting
that considering the identi�er might a�ect the result of this measure because
the two values are signi�cantly di�erent.

In light of these results, the single event similarity level sesl(e1, e4) =
0.99+1

2
= 0.995. The single event similarity is then calculated between e1

and the events in E2, i.e, sesl(e1, e5) = 1, sesl(e1, e6) = 0.995. These re-

sults are combined to calculate mesl(e1, E2) =
sesl(e1,e4)+sesl(e1,e5)+sesl(e1,e6)

3
=

0.995+1+0.995
3

= 0.996.
The multiple event similarity level is then calculated between e2 and the

events in E2, i.e., mesl(e2, E2) = 0.993 and between e3 and the events in E2,
i.e., mesl(e3, E2) = 0.997. Finally, these results are combined to obtain the

overall event set similarity essl(E1, E2) =
mesl(e1,E2)+mesl(e2,E2)+mesl(e3,E2)

3
=

0.996+0.993+0.997
3

= 0.9953.

Finally, we can de�ne historical level by combing the above measures.

De�nition 4.4.7 (Historical level): Let (d1, a1) be a controlled violation.
Let d2 be a denied access request and a2 be the most related anomaly. The
historical level is calculated by the hl function.

hl((d1, a1), (d2, a2)) =
w1 × dar − sim(d1, d2) + w2 × essl(Ea1 , Ea2)

2
(4.20)

Equation 4.20 calculates historical level as the weighted average between
the dars similarity level dar − sim (Figure 4.4) and the event set similarity
level essl (De�nition 4.4.6).

Example 4.4.3 Consider the dars similarity level calculated in Example
4.4.1, i.e., dar − sim(dar1, dar2) = 0.8925 and the event set similarity level
computed in Example 4.4.2, i.e., essl(E1, E2) = 0.9953. The overall his-
torical level might be calculated as the average of these two values, i.e.,
0.8925+0.9953

2
= 0.9439. This level is returned as the result of the historical

based analysis phase.

11In this example, we suppose heart rate values are ranged between 0 and 200.

108 CHAPTER 4. UNSPECIFIED EMERGENCY MANAGEMENT

The historical based analysis presented in this section is performed by
Algorithm 6 which takes as input a denied access request and the related
anomaly and returns the maximum similarity level between the couple (dar,
a) and previously permitted access requests and related anomalies.

Algorithm 6: maxControlledViolationsHistoryLevel()
Input : dar, the denied access request, a, the related anomaly
Output: The maximum similarity level between dar and previously permitted

access requests.
1 Let H be the historical repository;
2 max = 0;
3 foreach (dari, ai) ∈ H do

4 sim = hl ((dari, ai), (dar, a));
5 if sim > max then max = sim;

6 end

7 return max;

First of all, the algorithm analyzes each couple (dari, ai) of previously
permitted access requests and related anomalies in the historical repository
H (lines 3-6). If the historical level hl between (dari, ai) and (dar, a) calcu-
lated using Equation 4.20 (line 4) is the maximum (line 5), then the algorithm
stores its value in max variable (line 5). Once entries in the historical reposi-
tory have been analyzed, the algorithm returns the maximum historical level
max (line 13).

Chapter 5

Enforcement

In this chapter, we show how the proposed emergency policies model can
be enforced on top of a CEP system. More precisely, we implemented a
prototype framework in Java on top of a StreamBase CEP platform [75].
The framework is called SHARE (Secure information sHaring frAmework for
emeRgency managemEnt). The architecture which support the core model
and its extensions is presented in Section 5.1, while the extend framework
for the support of unspeci�ed emergencies is presented in Section 5.2.

5.1 Architecture

The prototype architecture is shown in Figure 5.1. The main module of
this architecture is the Emergency Handler which performs registration and
enforcement of emergencies and polices. Given an emergency policy, it is
necessary to register init and end events in the CEP, as well as emergen-
cies and polices information in the repositories. The Emergency Repository
contains emergency descriptions, whereas the Tacp templates repository &
acp repository contains tacp templates and regular access control polices.
An emergency de�nition in the emergency repository is stored as a tuple
(init, end, timeout, identifier, obl) as explained in De�nition 3.1.14 and a
tacp template in the tacp templates repository & acp repository is stored as
a tuple (sbj, obj, priv, exp, obl) as explained in De�nition 3.2.1. When a user
makes an access request, its pro�le is loaded from the User Pro�les Reposi-
tory. Each user pro�le contains authentication information such as user name
and password and user attributes such as user role and personal information,
e.g., name, family name, age etc.

In order to explain the prototype details, we analyze how it works during
the three most important phases: (1) speci�cation of emergency polices and

109

110 CHAPTER 5. ENFORCEMENT

Emergency
Manager

5A

user

Tacp template repository

emergency
instances

tacp instances
& acp
respository

Objects

CEP
Server

4A

7A

1UA

5UA

Emergency
Repository

4UA

6A

1A

5D

6D

Emergency

Handler

Access

Control

Handler

1A = Tuple Received by CEP Server
2A = Event Detection (init)
3A = Event sent to the Emergency Handler
4A = Emergency Retrieval
5A = Emergency Instance Creation
6A = Tacp Template Retrieval
7A = Tacp Instance Creation
1D = Tuple Received by CEP Server
2D = Event Detection (end)
3D = Event sent to the Emergency Handler
4D = Emergency Retrieval
5D = Emergency Instance Deletion
6D = Tacp Instance Retrieval and Deletion
1UA = User Request
2UA = User Profile Retrieval
3UA = User Authentication Response
4UA = User Objects Retrieval
5UA = Return Objects List to the User

LEGEND

4D

1D 2D

2A

A = Activation
D = Deactivation
UA = User Access

2UA3UA

User Profiles
Repository

Correctness Checker

3A

3D PP

Emergency Policy Editor

Post
Processing

Admin Policies Checker

Figure 5.1: System Architecture

5.1. ARCHITECTURE 111

emergency description, (2) emergency activation/deactivation (3) user access.

Emergency and Emergency Policy Speci�cation: the Emergency Pol-
icy Editor allows the creation of emergency descriptions, tacp templates, and
emergency policies. Emergency descriptions are stored into the Emergency
repository. Before emergency registrations, correctness validity checks de-
scribed in Section 3.2.1 are performed by the Correctness Checker. Similarly,
new tacp templates are stored into the Tacp template repository. When an
emergency manager, using the Emergency Policy Editor, creates/updates an
emergency policy, then the administration policy enforcement is performed
by the Admin Policies Checker. If this is successfully executed, the new/up-
dated emergency policy is stored in the system.

Emergency Activation/Deactivation: Once the CEP server receives a
tuple (1A) triggering an init event (2A), this is immediately sent to the
Emergency Handler (3A). Before arriving to the Emergency Handler, the
Post Processing (PP) module checks through the post-processing validity
check if the tuple might cause an SHP and executes one of the response
actions described in Section 3.2.1. If this is not the case, the Emergency
Handler retrieves from the Emergency Repository the emergency related to
the received tuple (4A), if any. Then a new emergency instance is created
(5A) unless another emergency instance with the same identi�er has been
already created (i.e., the emergency policy is already active). Moreover, the
Emergency Handler retrieves from the Tacp template repository, templates
related to the activated emergency (6A), if any, by also creating the corre-
sponding tacp instance (7A). When the CEP server receives a tuple (1D)
that causes the detection of an end event (2D), it sends such a tuple to the
Emergency Handler (3D), which checks if there exists an emergency related
to it in the Emergency Repository (4D). If this is the case, the corresponding
emergency and tacp instances are deleted (5D-6D).

User Access: When a user u successfully logs into the system (1UA), the
Access Control Handler retrieves its pro�le from the User Pro�les Repository
(2-3UA). This contains pro�le attributes and the set of roles u is authorized
to play. To compute the set of objects u is authorized to require, the Access
Control Handler veri�es each regular access control policy in place by re-
turning objects identi�ed by those policies whose authorized roles (i.e., roles
speci�ed in their subject speci�cation) include at least a role assigned to
u. To this set, the Access Control Handler also adds objects authorized by
some temporary access control policy instances (4UA). The object contained
in a tacp instance is returned if subject, object and context conditions in the

112 CHAPTER 5. ENFORCEMENT

tacp are satis�ed. More details about conditions evaluation are provided in
Chapter 6.

In the following example, we show how the emergency policy enforcement
works in the patient remote monitoring scenario presented in Example 3.1.1.

Example 5.1.1 Emergency and Emergency Policy Speci�cation: con-
sider an emergency manager who wants to de�ne the BradycardiaEmer-
gency presented in Example 3.1.14. Such emergency might be de�ned as
depicted in the screenshot in Figure 5.2.

Home Emergecies Reg Policies Emg Policies Logout

BradycardiaEmergency

SHARE: a secure information
sharing framework

for emergency management

DeleteEdit

init: BradycardiaInit
end: BradycardiaEnd
timeout: infinity
identifier: patient_id
obligation: call

 INPUT

 OUTPUT

VitalSigns Bradycardia

heart_rate < 60

BradycardiaInit

 OUTPUT

BradycardiaEnd

Figure 5.2: Emergency Editor Screenshot

This screenshot shows the BradycardiaEmergency where Brady-
cardiaInit is the event which starts the emergency when the heart rate of
a patient is lower than or equal to 60 bpm, BradycardiaEnd is the event
which ends the emergency when the heart rate returns higher than 60 bpm,
timeout is set to in�nity and identifier is the attribute patient_id.
The identi�er patient_id guarantees the correlation between init/end events
and also that di�erent emergencies are raised for di�erent patients.

An emergency policy which connects Bradycardia with the corresponding

5.1. ARCHITECTURE 113

tacp and obligation might be the BradycardiaPolicy depicted in the screen-
shot in Figure 5.3.

Home Emergecies Reg Policies Emg Policies Logout

BradycardiaPolicy

Bradycardia Paramedic emr read mailto

Filter: user_condition: user.id = call.paramedic_id

object_condition: emr.id = emg.patient_id

SHARE: a secure information
sharing framework

for emergency management

Delete

Edit Emergency Edit Policy

Emergency Role Object Privilege Obligation

Delete

Disabled

Figure 5.3: Emergency Policy Editor Screenshot

In this case the tacp extends access to the Electronic Medical Record
(EMR) of the patient under emergency (Filter: obj.id = emg.patient_id) to
the paramedic who answered to the emergency call (Filter: user.id = call.para-
medic_id). The obligation mailto ensures that when a paramedic reads the
patient EMR, then an email is sent to the patient email address.

Emergency Activation: when the CEP server detects (2A) an event from
the output stream BradycardiaInit, then it sends this event (3A) to the
Emergency Handler. The Emergency Handler retrieves (4A-5A) Brady-
cardiaEmergency and the policy template BradycardiaPolicy. Then
the Emergency Handler stores the following emergency instance (6A) and
tacp instance (7A).

114 CHAPTER 5. ENFORCEMENT

id emg_id identi�er obl
31 BradycardiaEmergency 1 call_ambulance(40 Storrow Dr)

Table 5.1: Emergency Instance from Example 3.1.14

id tacp_id sbj obj
41 BradycardiaPolicy role = paramedic ∧ user.id = 12 EMR.id = 1
priv exp obl emg_instance_id
read - mailto(a@domain.com) 31

Table 5.2: Tacp Instance from Example 3.2.1

When the emergency is detected, a new emergency instance (id = 31) is cre-
ated with identifier = 1 (the patient_id of the patient under emergency)
and obl = call_ambulace(40 Storrow Dr), assuming that 40 Storrow Dr
is the patient address. Then the emergency obligation is ful�lled and a tacp
instance is created with subject role = paramedic ∧ user.id = 12 assuming
that 12 is the identi�er of the paramedic on the ambulance, EMR.id = 1 and
obl = mailto(a@domain.com), assuming that a@domain.com is the patient
mail address.

User Access: When a user u logs into the system with the role paramedic
and with id = 12 (1UA) its pro�le is retrieved by the Access Control Handler
in the User Pro�les Repository (2UA). In this case the pro�le contains the
list uroles = { paramedic }. The user u is then authenticated (3UA) and the
Access Control Handler analyzes the polices in Tacp templates & acp reposi-
tory (4UA). In this case, the only tacp instance related with a user with the
role paramedic is the one in Table 5.2, therefore the system checks the subject
condition (paramedic.id = 12) and returns the objects that satisfy the object
condition (5UA), i.e., the list { EMR.id = 1 } is returned to the logged user
(5UA).

Emergency Deactivation: When the CEP server detects (2D) an event e2
from the output stream O2, then it sends this event (3D) to the Emergency
Handler. The Emergency Handler retrieves (4D) the emergency 12 related
to the event received and the corresponding emergency instance and tacp in-
stance and deletes (5D-6D) them (i.e., the emergency instance 31 and the
tacp instance 41).

5.2. UNSPECIFIED EMERGENCIES ARCHITECTURE 115

5.2 Unspeci�ed Emergencies Architecture

The core model architecture has been further extended to support unspec-
i�ed emergencies detection and management. The extended architecture is
presented in Figure 5.4, where new modules are highlighted in a di�erent
color.

The functions performed by the new modules is explained in the following.

Anomaly Detector: this module is in charge of detecting anomalous events
in data streams connected to the CEP and store these anomalies into the
anomaly repository.

userObjects

CEP Server

Policy
Repository

Access

Control

Handler

User Profiles
Repository

Emergency
Manager

Correctness Checker

Emergency Policy Editor

Admin Policies Checker

Emergency

Handler

Access

Request

Analyzer

Anomaly

Detector

Anomaly
Repository

Historical
Repoistory

Figure 5.4: Unspeci�ed Emergencies Framework Architecture

Access Request Analyzer: once an access request has been denied by the
access control handler, the access requests analyzer performs policy, anomaly
and historical based analysis. The policy based analysis is performed check-
ing in the policy repository whether the current access request is close to

116 CHAPTER 5. ENFORCEMENT

satisfy existing polices. The anomaly based analysis is executed checking if
the current access request is related to any of the anomalies stored in the
anomaly repository. The historical based analysis is carried out searching
previously permitted access requests similar to the current one. Once the
satisfaction, anomaly and historical level of the current access request has
been calculated, the access request analyzer decides whether authorizing or
not it based on the calculated levels, threshold and tolerance values.

Chapter 6

Experiments

In this section experiments on the prototype framework present in Chapter
5 are presented. More precisely, experiments results on the framework im-
plementing the core model and its extensions are introduced in Section 6.1,
while experimental results for the detection and management of unspeci�ed
emergencies are described in Section 6.2.

6.1 Emergency Policy Evaluation

In this section, the performance results of the prototype system are discussed.
The experiments were run on an Intel Core i7 2.00 GHz CPU machine with
4Gb RAM, running Windows 7. The prototype implements the architecture
explained in Chapter 5, therefore we carried out tests on every step of the
emergency life cycle. In this section, we report results on overall time for
emergency activation/deactivation and user access time. Before presenting
the experimental results, we provide details on the dataset.

6.1.1 Dataset

In order to carry out the experiments on emergency detection, activation and
deactivation, we developed an emergency events generator. By means of this
generator, we can create a speci�c number of init and end events by varying
their complexity, which is measured in terms of number of operators (i.e.,
selection, aggregation and join operators) contained into the event.

117

118 CHAPTER 6. EXPERIMENTS

Σ

Σ
⋈

σ

Σ

Σ

σ

⋈

I1

Init

End

I2

Σ

Σ
⋈

σ

Σ

Σ

σ

⋈

I3

I4

⋈

⋈

Σ

Σ

σ
I1 Init

End

Σ

Σ
⋈

σ

Σ

Σ

σ

⋈

I1
Init

End

I2

Complexity 1

Complexity 2

Complexity 4

Figure 6.1: Emergency Event Complexity

As shown in Figure 6.1, in case of complexity 1, the generated event takes
as input a unique stream, over which it evaluates one selection and two ag-
gregations. From this unique input stream, it generates both init and end
events. With a complexity of two, the event contains 2 input streams, 2 selec-
tions, 4 aggregations and 2 join operators. In general, in case of complexity n,
the number of input streams is n, the number of selections is n, the number

of aggregations is 2n and the number of join operators is
∑√

n
i=1 2

i (see, as
an example the case of complexity 4 in Figure 6.1). The emergency events
generator is also able to send a certain number of tuples to input streams at
a certain speed (tuples per second) so as to trigger, with a given frequency,
the init and end events previously created.

Another important aspect of the dataset is the number of emergencies
and tacps which is �xed and set to 100. These 100 emergencies and tacps
are activated and deactivated 100 times during the experiments for a total
of 10.000 emergency activations and deactivations. During experiments the
tuples rate varies from 1.000 to 10.000 tuples per second, which means the
number of activated emergencies per hour varies from 3.600.000 to 36 million.
Considering for instance that the daily volume of 911 calls for New York city
is 30.000 [19] we believe that our experimental numbers are large enough to
guarantee high performance in a real emergency management system.

In the following the results of the experiments are shown for each previ-
ously de�ned steps: (1) event detection time, (2) emergency activation/de-
activation time and (3) user access time. The �rst experiment is focused on
demonstrating that the CEP system is a valid base for an event-based emer-

6.1. EMERGENCY POLICY EVALUATION 119

gency management, whereas the other experiments are focused on testing the
e�ciency of the event handler. In the end, the performance of post-processing
module are also tested.

6.1.2 Event Detection Time

The event detection time depends on the complexity of the emergency events
registered into StreamBase and also on the tuples rate, i.e., the numbers of
tuples received by StreamBase, measured in tuples per second.

Event Detection Time based on Event Complexity

In this experiment, the emergency events generator sends a �xed number of
tuples (i.e., 100.000) to the CEP at a �xed time interval (i.e., 100 tuples per
seconds) and the event detection time is measured varying the complexity
from 2 to 64. This means that the init event varies from having two input
streams, two selections, four aggregations and two join operators to 64 input
streams, 64 selections, 128 aggregations and 510 join operators.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70

T
im

e
 (

m
s
)

Event Complexity

Event Detection Time

Figure 6.2: Event Detection Time

Figure 6.2 reports the event detection time: in the �rst case, i.e., complex-
ity 2, the event detection time is 10 milliseconds, while in the last case, i.e.,
complexity 64, the event detection time is 950 milliseconds. A detection time

120 CHAPTER 6. EXPERIMENTS

of one second might be considered too high in critical scenario. However, it
is important to note that we do not expect that emergency events have such
a high complexity.

Event Detection Time based on Tuples Rate

In the following test, the emergency events generator is set up with a �xed
number of emergencies (i.e., 10) with a �xed complexity (i.e., 4) and it sends
a �xed number of tuples (i.e., 500, for each emergency input) to StreamBase.
The event detection time is measured varying the tuples per second rate from
10 t/s to 1.000 t/s.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

T
im

e
 (

m
s
)

Tuples per second

Event Detection Time

Figure 6.3: Event Detection Time (Rate)

As shown in Figure 6.3, in the �rst case, i.e., 10 t/s, the event detection
time is 2 millisecond, while in the last case, i.e., 1.000 t/s, the event detection
time is 30 milliseconds. These results show that StreamBase is scalable in
the number of received tuples, therefore it is suitable for the purposes of our
prototype.

Emergency Activation Time

The emergency activation time represents the time elapsed between the de-
tection of the emergency by StreamBase and the e�ective activation of the

6.1. EMERGENCY POLICY EVALUATION 121

corresponding emergency policy, that is, the time of creation of instances of
the corresponding emergency and tacp.

Emergency Creation Time

The emergency creation time is composed of the time necessary to retrieve the
emergency related to the init event received (4A. emergency retrieval time)
and the time to create the corresponding emergency instance (6A. emergency
instance creation time). In this experiment, the emergency generator sends
a �xed number of tuples (i.e., 10.000) to the CEP input streams in order to
trigger the related events. The emergency creation time is measured varying
the tuples rate, from 1000 to 10.000, and consequently the events rate released
by the CEP. The emergency instance creation time is constant (around 5 ms),
whereas the emergency retrieval time grows in a linear way in the number of
events per second (e/s), as shown in Figure 6.4.

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Events per second

Emergency Creation Time

Figure 6.4: Emergency Creation Time

The emergency creation time shown in Figure 6.4 comprise both emer-
gency instance creation time and emergency retrieval time, but since the
emergency instance creation time is constant the growth depends only on
the emergency retrieval time. Referring to Figure 6.4: in the �rst case, i.e.
1000 e/s, the emergency creation time is 2 milliseconds, while in the last case,
i.e. 10.000 e/s, the emergency creation time is 21 milliseconds. These results

122 CHAPTER 6. EXPERIMENTS

show that the system is scalable in the number of the received events and
the CPU time is e�cient also with a high events rate.

Tacp Creation Time

The tacp creation time is composed of the time necessary to retrieve the tacp
template related to the emergency (5A. tacp template retrieval time) and the
time to create the corresponding tacp instance (7A. tacp instance creation
time). Since a tacp template is directly connected to an emergency through
a many-to-many relationship, the tacp template retrieval time is constant
(around 5 ms). Conversely, the tacp instance creation time depends on the
number of subject and object conditions. As shown in Figure 6.5, we tested
this time varying the number of subject and object conditions from 2 to
2.048.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 500 1000 1500 2000

T
im

e
 (

m
s
)

Number of Subject and Object Conditions

Tacp Instance Creation Time

Figure 6.5: Tacp Instance Creation Time

In this case, the tacp instance creation time growth is linear in the number
of subject and object conditions. In the �rst case, i.e. 2 subject and object
conditions, the tacp instance creation time is 0,8 milliseconds, while in the
last case, i.e. 2.048 conditions, the tacp instance creation time is 2,3 millisec-
onds. These results show that the number of conditions does not a�ect the
system performance.

6.1. EMERGENCY POLICY EVALUATION 123

Emergency Deactivation Time

The emergency deactivation time represents the time elapsed between the
detection (2D) of the end of an emergency by StreamBase and the e�ective
deactivation of the corresponding emergency policy.

Emergency Deletion Time

The emergency deletion time is composed of the time necessary to retrieve the
emergency related to the end event received (4D. emergency retrieval time)
and the time to delete the corresponding emergency instance (5D. emergency
instance deletion time). In this experiment, the emergency generator sends
a �xed number of tuples (i.e., 10.000) to the CEP in order to trigger the
related end events. The emergency deletion time is measured varying the
events rate from 1000 to 10.000 events per second. The emergency instance
deletion time is constant (around 1.7 ms), whereas the emergency retrieval
time growth is linear in the number of events per second, since the emergency
instance deletion time is constant the growth depends only on the emergency
retrieval time.

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Events per second

Emergency Instance Deletion Time

Figure 6.6: Emergency Deletion Time

Referring to Figure 6.6, in the �rst case, i.e. 1000 e/s, the emergency
deletion time is 3 milliseconds, while in the last case, i.e. 10.000 t/s, the

124 CHAPTER 6. EXPERIMENTS

emergency deletion time is 20 milliseconds.

Tacp Deletion Time

The tacp deletion time is composed of the time necessary to retrieve the tacp
instance related to the emergency instance (tacp instance retrieval time)
and the time to delete the corresponding tacp instance (6D. tacp instance
deletion time). Since a tacp instance is directly connected to an emergency
instance through a many-to-many relationship, the tacp instance retrieval
time is constant (around 1,2 ms). The tacp instance deletion time is constant
too (around 1,6 ms).

Overall Activation and Deactivation Time

The overall activation time represents the time elapsed between the detection
of an emergency and the e�ective activation of the corresponding emergency
policy. This is given by: (i) the time needed to retrieve the emergency related
to the triggered init event (emergency retrieval time), (ii) the time for the
creation of the corresponding emergency instance (emergency instance cre-
ation time), (iii) the time necessary to retrieve the tacp template related to
the emergency (tacp template retrieval time) and (iv) the time to create the
corresponding tacp instance (tacp instance creation time).

The overall deactivation time represents the time elapsed between the
detection of a tuple satisfying an end event and the e�ective deactivation of
the corresponding emergency policy. Similar to activation, this is given by
the emergency retrieval time, the emergency instance deletion time and the
tacp instance retrieval and deletion time.

In this experiment, the number of emergency descriptions and tacps is
�xed and set to 100. Each emergency is connected to one tacp. The emer-
gency generator sends a �xed number of tuples (i.e., 200) to StreamBase
input streams: the �rst 100 tuples activate the 100 emergencies and related
100 tacps, whereas the other 100 tuples deactivate the 100 emergencies and
related 100 tacps. The experiment is repeated 100 times for a total of 20.000
tuples and 10.000 emergency activations and 10.000 emergency deactivations.
The overall activation and deactivation time is measured varying the tuples
rate, from 1.000 to 10.000 tuples per second in order to stress as much as
possible the CEP system. In Figure 6.7 is shown a histogram divided into
two parts, the �rst part represents the overall activation time, whereas the
second part represents the overall deactivation time. In the activation part
of the charts, the emergency instance creation time, the tacp template re-
trieval time and the tacp instance creation time are constant (0,5 ms, 0,6 ms,

6.1. EMERGENCY POLICY EVALUATION 125

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1000
2000

3000
4000

5000
6000

7000
8000

9000
10000

1000
2000

3000
4000

5000
6000

7000
8000

9000
10000

T
im

e
 (

m
s
)

Events per second

Emergency Retrieval Time
Emergency Instance Creation Time

Tacp Retrieval Time
Tacp Instance Creation Time

Emergency Retrieval Time
Emergency Instance Deletion Time

Tacp Instance Deletion Time

DeactivationActivation

Figure 6.7: Overall Activation/Deactivation Time

0,9 ms, respectively). In the deactivation part of the chart, the emergency in-
stance deletion time and the tacp instance deletion time are constant (1.7 ms
and 2.8 ms, respectively). The emergency retrieval time grows linearly in the
number of events per second (e/s) for both activation and deactivation. The
tacp creation and deletion time is around 2 milliseconds for each tacp, which
means in the most challenging experiment (i.e., 10.000 emergency activations
and deactivations) a tacp creation/deletion overhead of 2 milliseconds over
a total activation/deactivation time of 45 milliseconds, i.e., less than 5%. In
this case, although the number of created/deleted tacp is high (i.e., 10.000),
the overhead due to these operation is small and does not a�ect signi�cantly
the overall activation/deactivation time.

User Access Time

The user access time represents the time elapsed between the user login
and the response of the system, which returns the set of objects on which
the user can exercise privileges. In order to return this set, it is necessary
to �nd the tacp/acp related to the role of the user into the tacp & acp
repository (tacp retrieval time). Then, for each tacp, the subject, object and
context conditions are checked (tacp evaluation time). Please note that these
experiments have been conducted without considering regular access control
policies, as we are mainly interested to new access control policies implied

126 CHAPTER 6. EXPERIMENTS

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Number of Tacps

Tacp Retrieval Time

Figure 6.8: Retrieval Time of Tacp Instances

by emergency management (i.e., tacps). As such, in the following we focus
on retrieval time of tacp.

Tacp Retrieval Time: in this experiment we measure the time elapsed
between the user login and the arrival of the set of objects on which the
user can exercise privileges. The number of tacp for each role is �xed, i.e.,
100 tacps for each role, which means that each role can exercise privileges
over 100 objects, assuming that each tacp identi�es a unique authorized
object. We carried out the experiment increasing the number of roles. More
precisely, in the �rst experiment we make use of 10 roles, since each role can
exercise privileges over 100 objects, the Access Control Handler should check
1.000 tacps. In the last experiment, we make use of 100 roles, therefore the
Access Control Handler should check 10.000 tacps. The results are shown in
Figure 6.8. In the �rst case, i.e., 1.000 tacps, the retrieval time of tacp is 20
milliseconds, while in the last case, i.e., 10.000 tacps, the retrieval time is 21,7
milliseconds. The di�erence between the two times is small and it guarantees
a high scalability of the prototype.

Tacp Evaluation Time: in this experiment, we measure the time re-
quired to evaluate subject, object and context conditions in a single tacp.
We measured this time by varying the complexity of the tacp, that is, of its
subject, object and context speci�cations. We vary the number of conditions
from 2 to 2.048 in subject, object and context speci�cations.

6.1. EMERGENCY POLICY EVALUATION 127

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

T
im

e
 (

m
s
)

Number of user, object and context conditions

Tacp Evaluation Time

Figure 6.9: Tacp Instance Evaluation Time

In the �rst case, i.e. two conditions in subject, object and context, the tacp
evaluation time is 3 milliseconds, while in the last case, i.e. 2.048 conditions,
the time is 10,2 milliseconds. The time growth is linear in the number of
conditions, as shown in Figure 6.9.

The experiment results have shown that the prototype is fast in acti-
vation/deactivation of emergency policies and more important, the access
control is not a�ected by the emergency policy enforcement. Moreover, in-
creasing the number of emergencies, policies and users, the time elapsed for
each operation grows in a linear way, therefore the system is scalable.

6.1.3 Post Processing Time

This is the time necessary to the post processing module to check if two
tuples coming out from init and end output streams of the same emergency
have the same timestamp and refer to the same identi�er (i.e., if a SHP hold).

In this experiment, the number of emergencies is �xed and set to 100.
The emergency generator sends 100 couples of tuples (ii, ei) to StreamBase
input streams such that ii and ei triggers and ends the ith emergency and ii
and ei have the same timestamp and identi�er. The experiment is repeated
100 times for a total of 20.000 tuples and 10.000 SHP detections.

The Post Processing Time is measured varying the tuples rate, from 1.000
to 10.000 tuples per second, and, consequently, the rate of events detected
by StreamBase.

128 CHAPTER 6. EXPERIMENTS

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Events per Second

Activation/Deactivation Time
Post Processing Time

Figure 6.10: Post Processing Time vs Activation/Deactivation Time

Figure 6.10 is a comparison between post processing and activation/deac-
tivation time. The results for emergency activation time are the same shown
in Figure 3 in the paper. The chart clearly shows that post processing time
is slightly better than activation/deactivation time, thus it is worth perform-
ing post processing validity checks in order to improve the overall system
performance.

6.2 Unspeci�ed Emergency Policy Evaluation

We implemented the detection of unspeci�ed emergencies in Java on top of a
StreamBase CEP platform [75] using MySQL as policies, dars and historical
repository. In the following, we introduce a preliminary experiment to evalu-
ate the e�ectiveness of the policy based analysis. This compares dar evalua-
tions carried out by a group of security-aware people against dar evaluations
resulting from a satisfaction-based evaluation relying on proposed measures.
Then, we have carried out three experiments to evaluate satisfaction, anomaly
and historical level measures separately and combined together.

6.2.1 Policy Based Analysis Evaluation

The �rst set of experiments we have performed aims at comparing dar evalu-
ations carried out by a group of security-aware people against dar evaluations

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 129

resulting from a satisfaction-based evaluation relying on proposed measures.
The second experiment shows how evaluations change by tuning the thresh-
old value. Both experiments have been carried on a dataset composed of 10
tacps. The dataset has been manually created so as to represent a realistic
healthcare scenario. Tacps implement access requirements such as policies to
authorize users with the role doctor to access patient medical records or users
with the role pharmacist to access information about drugs. Tacps are de�ned
over 47 roles and 38 object types, both hierarchically organized. Moreover,
40% of tacps contain subject or object conditions. Starting from these tacps
a set of 50 dars has been generated. These dars were generated randomly,
with the resulting satisfaction levels varying in a range between 0.44 and 0.94.

Satisfaction-based dar evaluation: in this experiment, we use our sat-
isfaction level measures with a threshold value th = 0.69 and a tolerance
value ε = 0.05; the threshold value has been calculated as the average of
satisfaction levels of the roles-object matrix, whereas ε is an empirical value.
Moreover, we set weights w1 = w2 = 1, so as to give the same importance to
roles/objects and conditions. The results are reported in Table 6.1.

tot sl controlled
violations

attempted
abuses

ambiguous

25 sl ≤ 0.64 0 25 0
4 0.64 < sl < 0.74 0 0 4
21 sl ≥ 0.74 21 0 0

Table 6.1: Satisfaction-based dar evaluation

According to our measures, 25 dars have a low satisfaction level (i.e.,
sl ≤ 0.64) therefore they should be denied since they represent attempted
abuses; 4 dars have a medium satisfaction level (i.e., 0.64 < sl < 0.74) thus
they are considered ambiguous; 21 dars have a high satisfaction level (i.e.,
sl ≥ 0.74), thus they should be permitted as controlled violations.

Human-based dar evaluation: each dar in the dataset has been evaluated
by a group of 20 Ph.D./Master students with background in data security.
Before participating to the test, all tacps in place in the system have been
shown and explained to the students and the concept of controlled violation
has been clearly introduced. For each dar it has been required to evaluate
whether this, in his/her opinion, would have to be considered as controlled
violation, attempted abuse, or the dar is ambiguous and the participant is
not able to give a sure response. The participants do not know the answer
given by the satisfaction-based dar evaluation, thus their decisions are not

130 CHAPTER 6. EXPERIMENTS

in�uenced by our measures results. For each dar, if more than 70% of the
participants have given the same answer, this answer is considered the �nal
human decision, whereas if the participants decisions are split (e.g., 60% con-
trolled violations, 40% attempted abuses), the dar is considered ambiguous.
The human-based evaluation results are reported in Table 6.2.

tot sl controlled
violations

attempted
abuses

ambiguous

25 sl ≤ 0.64 0 25 0
4 0.64 < sl < 0.74 0 2 2
21 sl ≥ 0.74 21 0 0

Table 6.2: Human-based dar evaluation

The human-based evaluation suggests denying the 25 dars with lowest
level of satisfaction, since they represent attempted abuses; for the 4 dars in
the middle, the participants recognized 2 dars as attempted abuses and they
split on the other 2 dars; for the last 21 dars, they recognized all of them as
controlled violations.

0

10

20

30

40

50

60

70

80

90

100

% controlled violations % attempted abuses % ambiguous

P
e

rc
e

n
ta

ge

human-based satisfaction-based

Figure 6.11: Human-based vs. Satisfaction-based Dars Evaluation

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 131

0
10
20
30
40
50
60
70
80
90

100
%

 c
o

n
tr

o
lle

d
vi

o
la

ti
o

n
s

%
 a

tt
em

p
te

d
 a

b
u

se
s

%
 a

m
b

ig
u

o
u

s

%
 c

o
n

tr
o

lle
d

vi
o

la
ti

o
n

s

%
 a

tt
em

p
te

d
 a

b
u

se
s

%
 a

m
b

ig
u

o
u

s

%
 c

o
n

tr
o

lle
d

vi
o

la
ti

o
n

s

%
 a

tt
em

p
te

d
 a

b
u

se
s

%
 a

m
b

ig
u

o
u

s

sl < 0.64 0.64 > sl < 0.74 sl > 0.74

P
er

ce
n

ta
ge

human-based satisfaction-based

Figure 6.12: Grouped Human-based vs. Satisfaction-based Dars Evaluation

A comparison between human-based and satisfaction-based evaluation is
given in Figure 6.11, which shows that exactly the same percentage of dars
(i.e., 42%) have been judged as controlled violations by both evaluations. Re-
garding dars judged as attempted abuses, human-based evaluation is more
restrictive since participants have judged 54% of the dars, while our measures
only 50%. Moreover, participants have considered 4% of the dars ambiguous,
whereas satisfaction-based evaluation has recognized 8% of the dars as am-
biguous. Indeed, there is a 4% of dars which are considered ambiguous by
satisfaction-based evaluation, but judged as attempted abuse by participants
of our evaluation.

A more speci�c analysis is given in Figure 6.12, where human and satisfaction-
based evaluations are grouped by satisfaction levels. The histogram highlights
that for low (i.e., sl ≤ 0.64) and high satisfaction levels (i.e., sl ≥ 0.74) the
two evaluations match. They are di�erent for dars with medium satisfaction
level (i.e., 0.64 < sl < 0.74). In this case, satisfaction-based evaluation con-
siders 100% of the dars ambiguous, whereas participants recognized 50% of
dars to be denied and 50% as ambiguous.

These results highlight that the proposed measures correctly recognize
dars which are close to satisfy existing tacps and dars which are distant. Re-
garding ambiguous dars, the satisfaction-based decision correctly recognizes
those dars which are tagged as ambiguous by humans, thus there are no dars
allowed by the system, but ambiguous for human beings. However there is a

132 CHAPTER 6. EXPERIMENTS

small percentage (4% of the total dars and 50% of ambiguous dars), which
are recognized as ambiguous by satisfaction-based evaluation, but are denied
by human participants. We believe that this percentage can be reduced by
properly setting the threshold and tolerance values, moreover it is possible,
for ambiguous dars, to let the user decide (taking the responsibility of this
action) whether to access the data or not.

0

10

20

30

40

50

60

0,6 0,65 0,7 0,75 0,8

P
er

ce
n

ta
ge

Threshold (th)

satisf-based controlled
violations

satisf-based attempted
abuses

satisf-based ambigous

human-based controlled
violations

human-based attempted
abuses

human-based ambigous

Figure 6.13: Human-based vs Satisfaction-based Dars Evaluation varying
threshold value

6.2.2 Access Requests Analysis Evaluation

In the following, we introduce the dataset used for the experiments. Based
on the proposed dataset, we have carried out three experiments to evaluate
our measures separately, i.e., only the satisfaction level measure, only the
anomaly level measure and only the historical level measure. Then, we have
run the same experiment combing the three measures using a simple aver-
age and a weighted average. In addition, we carried out another experiment
varying the threshold value, in order to check how this value in�uence the
detection of unspeci�ed emergencies. Finally, based on these results we an-
alyze possible methods to combine our measures in order to have the best
detection and management of unspeci�ed emergencies.

6.2.3 Dataset

The dataset is modeled among two di�erent domains: healthcare and tem-
perature. Regarding healthcare domain, the dataset contains health measures
taken from patients wearing several monitoring devices that catch their vital

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 133

signs. These dataset includes real data coming from an ECG dataset [55] and
synthetic data created ad hoc for our experiments. In temperature domain,
the dataset contains sensor data generated measuring temperature in the
Intel Berkeley Research Laboratory [41].

We model these two dataset into two di�erent streams called VitalSigns
for the healthcare domain and Temperature for the temperature domain.
The VitalSigns stream contains 7 attributes, i.e., heart rate, temperature,
systolic and diastolic pressure, glucose level, respiratory rate and patient,
whereas the Temperature stream attributes are date, time, room, building
and temperature.

During the experiment, an emergency generator sends to the two streams
a large amount of tuples containing regular values and few tuples containing
anomalous values which signal emergency situations. More precisely, for the
VitalSigns stream, the generator sends 23.000 tuples. Among these tuples
there are 19 small sets of tuples containing anomalous values. These sets have
an average size of 50 tuples. Among these anomalies 9 are de�ned over the
heart rate attribute, 2 over temperature, 2 over glucose rate, 2 over systolic
pressure, 2 over diastolic pressure, 2 over respiratory rate.

For the Temperature stream, the generator sends 2 millions of tuples;
among these tuples there are 6 sets of anomalous tuples. These sets have an
average size of 60 tuples and the anomalies are all de�ned over the tempera-
ture attribute. The total amount of sets of anomalous tuples for both streams
is 25.

Starting from the 25 sets of anomalous tuples 25 emergencies have been
modeled. For instance, the regular value for the heart rate attribute is around
80 bpm; consider a set of tuples containing values around 50 bpm. These tu-
ples represent an anomaly thus, we can model a bradycardia emergency when
the heart rate value become lower than 60 bpm. Once we have de�ned these
25 emergencies, we associated them with 25 tacps, one for each emergency.
Tacps implement access requirements such as policies to authorize users with
the role doctor to access patient medical records or users with the role phar-
macist to access information about drugs. Tacps are de�ned over 47 roles
and 38 object types, both hierarchically organized. Moreover, 40% of tacps
contain subject or object conditions.

Besides the tuples dataset and the emergency policies repository, we also
created a dataset of 50 access requests. Before running the experiment we
label these access request as �To Deny� (TD) or �To Permit� (TP). More
precisely, we created 25 access requests which satisfy existing tacps that are
labeled as TP and 25 access requests which not satisfy existing tacps which
are labeled as TD.

During the experiment, an emergency generator sends tuples belonging

134 CHAPTER 6. EXPERIMENTS

to the tuple dataset in order to trigger the 25 emergencies. Every time an
emergency tuple is sent to the CEP platform the related emergency is trig-
gered and the related tacp is activated, thus the emergency generator sends
an access request for the object protected by the tacp. This is repeated until
all 25 access requests labeled as TP have been sent. Once all access requests
in TP have been sent, the other 25 access requests labeled as TD are also
sent to the system.

The �rst time we run the experiment, all the 25 emergency policies are
active, thus the 25 correlated emergencies are detected and the 25 access
requests labeled as TP are permitted, whereas the other 25 access requests
labeled as TD are denied. Then, we randomly and incrementally hide part of
emergency policies in order to verify if hidden emergencies are still detected
as anomalies and hidden tacps are still permitted as controlled violations.
The experiment is repeated three times: (1) using only the satisfaction level
measure (2) using only the anomaly level measure and (3) using only the
historical level measure. In the end, we also run the same experiment comb-
ing the three measures using a simple average and a weighted average. In
addition, we run another experiment varying the threshold value, in order to
check how this value in�uence the performance of our measures.

6.2.4 Satisfaction Level Evaluation

In this experiment, the emergency generator sends tuples from the tuples
dataset and access requests from the access request dataset. During the ex-
periment, we randomly and incrementally hide emergency policies in order
to verify if hidden policies are permitted as controlled violations exploiting
our satisfaction level measure. We repeat the experiment 10 times hiding two
policies every time. The results are reported in Table 6.3, which shows the
percentage of Access Requests (AR) labeled as TP that are e�ectively per-
mitted and the percentage of ARs labeled as TD that are e�ectively denied.
Table 6.3 shows also the percentage of False Negatives (FNs), i.e., access
requests that are denied even though they should be permitted and the per-
centage of False Positives (FPs), i.e., access requests that are permitted even
though they should be denied.

The results in Table 6.3 shows that when the number of hidden emergency
policies is low, i.e., lower than 40%, all the access requests are evaluated cor-
rectly, i.e., 100% of access requests to be permitted are e�ectively permitted
by satisfaction levels and 100% of access requests to be denied are e�ectively
denied. Indeed, when there are too many hidden emergency policies (i.e.,

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 135

% of hidden

EP

% of permitted

ARs

% of denied

ARs

% FNs % FPs

8 100 100 0 0
16 100 100 0 0
24 100 100 0 0
32 100 100 0 0
40 100 100 4 0
48 98 100 2 0
56 88 100 12 0
64 78 100 22 0
72 70 100 30 0
80 60 100 40 0

Table 6.3: Satisfaction Level Evaluation

more than 48%), the satisfaction level is less precise and some FNs occur.1

6.2.5 Anomaly Level Evaluation

This is the same of the previous experiment where we sends tuples from
the tuples dataset, access requests from the access request dataset and ran-
domly and incrementally hide emergency policies (two policies every time),
but in this case we exploit anomaly level measure. During the experiment, the
generic anomaly detection function adf() presented in Section 4.3, is replaced
by two di�erent techniques [56, 11] whose details are explained in Section 2.
The results are reported in Table 6.4.

% of hidden

emergency

policies

% of permitted

AR

% of denied AR % FNs % FPs

8 100 100 0 0
16 100 100 0 0
24 100 100 0 0
32 100 100 0 0
40 100 100 0 0
48 96 98 4 2
56 96 96 4 4
64 96 92 4 8
72 96 82 4 18
80 96 74 4 26

Table 6.4: Anomaly Level Evaluation

1FPs are all zeroes, in this case, because when the number of emergency policies de-
creases it is not possible to have satisfaction levels that increase.

136 CHAPTER 6. EXPERIMENTS

The results in Table 6.4 shows, as in the previous experiment that when
the number of hidden emergency policies is low, i.e., lower than 40%, then
100% of access requests are evaluated correctly. When there are too many
hidden emergency (i.e., more than 48%) the anomaly level is less precise and
there are 10% of FNs. In this case, there are also some FPs. This happens
when the number of hidden policies is greater than 48%, because in this case
the anomaly level is less precise, thus some normal events are detected as
emergencies and the related access requests are permitted even though they
should be denied.

6.2.6 Historical Level Evaluation

This experiment is quite di�erent from the previous ones. The emergency
generator sends tuples and access requests selected from the corresponding
datasets. During the experiment, we randomly and incrementally hide emer-
gency policies. Every time we hide emergency policies some of these policies
are permitted as controlled violations2 populating in this way the historical
repository. We repeat the experiment 12 times hiding two emergency policy
every time. The results are reported in Table 6.5.

% of hidden

tacps

number of

controlled vio-

lations

% of per-

mitted

AR

% of de-

nied AR

% FNs % FPs

8 0 0 100 100 0
16 2 0 100 100 0
24 4 0 100 100 0
32 6 36 100 64 0
40 8 50 100 50 0
48 10 60 100 40 0
56 12 72 100 38 0
64 14 76 100 34 0
72 16 84 100 16 0
80 18 86 100 14 0
100 20 92 100 8 0
100 22 100 100 0 0

Table 6.5: Historical Level Evaluation

The results in Table 6.5 shows that performances of historical level eval-
uation are slightly worse than performances of other measures. In the �rst
row, we hide 8% of emergency policies, but the historical repository is empty

2In this case, we use both satisfaction levels and historical level; satisfaction level is
used to populate the historical repository and historical level is used for the evaluation.

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 137

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0,00 20,00 40,00 60,00 80,00 100,00

P
er

ce
n

ta
ge

Percentage of hidden Emergency Policies

satisfaction level anomaly level historical level

satisfaction level (FN) anomaly level (FN) historical level (FN)

Figure 6.14: Access Requests Permitted as Controlled Violations

(i.e., zero controlled violations), thus all access requests are denied, i.e., 100%
of FNs. While the number of controlled violations in the historical repository
increases the percentage of permitted access requests increases as well and
the percentage of FNs decreases.3

6.2.7 Satisfaction, Anomaly and Historical Level Com-
parison

In this section, we analyze the results of previous experiments comparing
performances of satisfaction, anomaly and historical level from the point of
view of access requests permitted and access request denied.

The comparison from the point of view of access requests permitted as
controlled violations is shown is Figure 6.14.

As shown in Figure 6.14 satisfaction and anomaly level permit 100% of
access requests that should be permitted when the percentage of hidden
emergency policies is lower than 40%, whereas historical level permits 100%
of access requests when the percentage of hidden controlled violations is lower
than 16%. Indeed, performance of historical level is lower than performance
of other measures. When the number of hidden emergency policies increases

3FPs are all zeros in this case for the same reasons explained in the satisfaction level
experiment.

138 CHAPTER 6. EXPERIMENTS

0,00

20,00

40,00

60,00

80,00

100,00

0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00

P
er

ce
n

ta
ge

Percentage of hidden Emergency Policies

satisfaction level anomaly level historical level

satisfaction level (FP) anomaly level (FP) historical level (FP)

Figure 6.15: False Negatives Comparison

the percentage of permitted access requests decrease in a lower manner for
satisfaction level and anomaly level. Conversely, the number of FNs increases
when the number of hidden emergency policies increases. The number of FNs
increases in a faster manner for historical level since performance of historical
measure is lower.

The comparison from the point of view of denied access requests is shown
is Figure 6.15.

As shown in Figure 6.15 satisfaction and historical level deny 100% of
access requests that should be denied, whereas anomaly level deny 100% of
access requests when the percentage of hidden controlled violations is lower
than 48%. Indeed, satisfaction and historical level do not have any FPs, while
for anomaly level the number of FPs increases when the number of hidden
emergency policies increases.

6.2.8 Threshold Evaluation

In this section, we evaluate the importance of threshold selection. In order
to perform this test, we decide to hide 40% of emergency policies. Since for
higher percentages of hidden policies the performance of our measures decay,
we decided to hide 40% because this is the maximum number of hidden
policies for which our strategies work e�ciently. We vary the threshold value
from 0.3 to 0.75 and the results are shown in Figure 6.16.

As shown in Figure 6.16, our measures have the best performance with
the threshold set to 0.6, whereas when the threshold changes the number of
FPs and FNs decreases or increases. More precisely, when the threshold is

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 139

0

20

40

60

80

100

120

0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75

P
e

rc
e

n
ta

ge

Threshold

% of Permitted AR % of Denied AR % of FP % of FN

Figure 6.16: Threshold Evaluation

lower than 0.6, the system authorizes too many access requests (i.e., FPs),
whereas when the threshold is higher than 0.6, the system deny too many
access requests (i.e., FNs).

6.2.9 Experiments Discussion

In this section, we propose three di�erent way of combining our emergency
detection strategies, based on the results of our experiments. The �rst two
ways are the average and the weighted average. We carried out an experiment
to evaluate these two strategies. This is the same of the previous experiment
where we randomly and incrementally hide emergency policies (two policies
every time), but in this case we combine our measures using average (avg) of
satisfaction, anomaly and historical levels and weighted average (wavg) where
historical level is calculated as shown in Equation 6.1, i.e., the dar-similarity
has more weight than the event set similarity level.

hl(t, d) =
0.7× dar − sim(d1, d2) + 0.3× essl(Ea1 , Ea2)

2
(6.1)

Equation 6.1 calculates historical level as the weighted average between
the dars similarity level dar-sim (Figure 4.4) and the event set similarity
level essl (De�nition 4.4.6). The results of the comparison between avg and
wavg are reported in Figures 6.17 and 6.18. In Figure 6.17, the comparison is
shown from the point of view of permitted access requests, whereas in Figure
6.18 from the point of view of denied access requests.

140 CHAPTER 6. EXPERIMENTS

0,00

20,00

40,00

60,00

80,00

100,00

0,00 20,00 40,00 60,00 80,00 100,00

P
e

rc
e

n
ta

ge

Percentage of hidden Emergency Policies

% of permitted AR (avg) % of permitted AR (wavg)

% of FN (avg) % of FN (wavg)

Figure 6.17: Avg vs Weighted Avg (Permitted AR)

As shown in Figure 6.17, wavg and avg combinations work in the same
way, i.e., 100% of access requests that should be permitted are e�ectively
permitted when the percentage of hidden emergency policies is lower than
40%, whereas when the number of hidden emergency policies increases wavg
is slightly better than avg for both number of permitted access requests and
number of FNs.

0,00

20,00

40,00

60,00

80,00

100,00

0,00 20,00 40,00 60,00 80,00 100,00

P
e

rc
e

n
ta

ge

Percentage of hidden Emergency Policies

% of denied AR (avg) % of denied AR (wavg)

% of FP (avg) % of FP (wavg)

Figure 6.18: Avg vs Weighted Avg (Denied AR)

As shown in Figure 6.18, wavg and avg combinations work in the same
way, i.e., 100% of access requests that should be denied are e�ectively denied
when the percentage of hidden emergency policies is lower than 40%, whereas
when the number of hidden emergency policies increases wavg is slightly

6.2. UNSPECIFIED EMERGENCY POLICY EVALUATION 141

better than avg in the number of denied access requests. The number of FPs
is zero because when the number of emergency policies decreases it is not
likely that our measures increase.

Although the performance of the average are good a weighted average
might be better depending of the domain and the base knowledge. For in-
stance, when the number of emergency policies stored in the policy repository
is large, the accuracy of satisfaction level increases, thus it is better to as-
sign a greater weight to these measure. Moreover, weights assigned to the
measures might change over time. For instance, in the beginning, when the
historical repository is empty, it is better to assign a lower weight to the
historical level, but when the number of controlled violations increases, the
weight of historical level might be increased as well, since the base knowledge
is larger.

Another way of combining these measures might be a sequential evalua-
tion of satisfaction levels. The evaluation might be prede�ned by the system
administrator or it might be decided at runtime. In the former case, the ad-
ministrator de�nes a-priori the depth of the evaluation, e.g., depth is set to
1, 2 or 3, thus when an access request is denied, if depth is set to 1, only
the satisfaction level is calculated, if depth is set to 2 a combination of sat-
isfaction and anomaly level is calculated, otherwise all the three measures
are combined. In the latter case, the system decide at runtime which strat-
egy to apply, i.e., when an access request is denied the satisfaction level is
calculated, if this level clearly identi�es whether the access request is to au-
thorize or not, the result is returned, otherwise the measure is re�ned with
the anomaly level, in this case again if this level clearly identi�es whether
to authorize or not the access request, the result is returned, otherwise the
measure is re�ned with the historical level. In addition, this way of evalu-
ate the access request can be re�ned assigning di�erent weights to the three
levels at runtime.

The number of possible combinations of our strategies is large, thus it is
not possible to general a general way to decide which combination is better.
This decision is strictly dependent on the domain of the system and the
requirements of access control and information sharing.

Chapter 7

Conclusions

The general goal of this PhD work concerned the de�nition, implementation
and testing of an access control framework to enforce controlled information
sharing in emergency situations.

Traditional access control systems do not �t the emergency management
scenario, where there is the need for a more e�cient, timely and �exible in-
formation sharing. For these reasons, we have proposed a novel access control
model based on emergency policies. The core model is able to express and
detect complex emergency situations exploiting CEP technologies. Moreover,
we extend regular access control policies with temporary access control poli-
cies that override regular policies during emergency situations. Such policies
also support obligations, i.e., set of actions that must be ful�lled when a
certain event occurs in the system.

The core emergency policy model has been extended in order to sup-
port composed emergencies and administration policies. The emergency pol-
icy composition introduces the concept of composed emergencies to describe
how atomic emergencies can be combined together to from a composed one
and how sub-emergencies can be overridden by a composed one. The emer-
gency policy administration is enforced de�ning proper scopes for emergency
policies that limit the right to state emergency policies only to speci�c emer-
gencies.

In this section, we introduce our framework to extend the core model in
order to deal with unspeci�ed emergencies. The management of unspeci�ed
emergencies is performed using three di�erent strategies: (1) policy based
analysis (2) anomaly based analysis and (3) historical based analysis. The
policy based analysis calculates how much an access request is close to satisfy
existing policies; if an access request is signi�cantly close to satisfy a tacp, it
is likely that the access requests represents an information need related to an
unspeci�ed emergency. The anomaly based analysis �nds anomalies related

143

144 CHAPTER 7. CONCLUSIONS

to a denied access request; if an anomaly is correlated to an access request,
it is likely that the anomaly represents an unspeci�ed emergency and the
access requests represents the related emergency policy. The historical based
analysis considers previously permitted access requests in order to detect if
the current access request is similar to one of them; indeed if this is true the
access requests should be authorized. The architecture of our framework is
shown in Figure 4.1 which illustrates also how the system enforces the three
strategies for the management of unspeci�ed emergencies.

In order to deal with unspeci�ed emergencies, the core emergency pol-
icy model has been further extended to support �exible information sharing
also for unplanned emergency situations. The basic idea to manage these
situations is to detect unspeci�ed emergencies exploiting anomaly detection
techniques and to permit those access requests that are denied due to the ab-
sence of policies related to unspeci�ed emergencies. Obviously, not all access
request related to an emergency should be allowed, but only those access
requests related to unspeci�ed emergencies. In order to detect whether an
access request is related to an unspeci�ed emergency or it is an attempted
abuse, we have de�ned three di�erent strategies called policy, anomaly and
historical based analysis based on three di�erent satisfaction level measures.

In addition to the proposed access control model, we have implemented a
prototype framework called SHARE (Secure information sHaring frAmework
for emeRgency managemEnt) and we have carried out an extensive set of
tests in order to check what is the impact of emergency policies into an access
control system and to evaluate the e�ectiveness of the proposed techniques
for the management of unspeci�ed emergencies.

The experiment results of the core access control model have shown that
the prototype is fast in activation/deactivation of emergency policies and
more important, the access control is not a�ected by the emergency policy
enforcement. Moreover, increasing the number of emergencies, policies and
users, the time elapsed for each operation grows in a linear way, therefore
the system is scalable.

Regarding the management of unspeci�ed emergencies, results of experi-
ments for the satisfaction level measures shows that the proposed techniques
correctly recognize anomalous events which signals emergency situations, ac-
cess requests which are close to satisfy existing policies, i.e., to be permitted
as controlled violations and also access requests distant from existing poli-
cies, i.e., to be denied as attempted abuses. Moreover, experiment results
highlight that with an accurate tuning of threshold values the percentage of
errors is irrelevant.

The work presented in this thesis might be extend along several directions.

7.1. ACKNOWLEDGMENT 145

• Regarding speci�ed emergencies, we believe that tools to assist security
administrator in emergencies and emergency policies de�nitions can
be de�ned. More precisely, since a large number of risk assessment
tools have been developed in the last years [66], we plan to analyze
them so as to automatically extract emergency descriptions, policies
and obligations from emergency scenarios and response plans.

• Regarding unspeci�ed emergencies, we would like to extend the ap-
proach to take into account user trust, object con�dentiality levels and
a-posteriori log analysis. Moreover, We plan to extend our approach to
the support of unspeci�ed emergencies that are not similar to any of
the registered emergencies. We also plan to develop learning techniques
to automatically de�ne new emergency policies based on occurred dars
and controlled violations.

• We aim to enforce information sharing among multiple organizations
exploiting new cloud computing techniques. Cloud computing is suit-
able for the purpose of information sharing because it provides a com-
mon storage space where organizations can share their data. Starting
from works in the �eld of collaboration in disaster management, we
believe we could use a cloud infrastructure to solve most of the inter-
operability issues due to heterogeneous access control models.

7.1 Acknowledgment

Research presented in this thesis was partially funded by the European O�ce
of Aerospace Research and Development (EOARD) and the Air Force O�ce
of Scienti�c Research (AFOSR).

Bibliography

[1] The 9/11 commission report, tech. report, National Commission on Ter-
rorist Attacks Upon the United States, July 2004.

[2] Federal response to hurricane katrina: Lessons learned, tech. report, As-
sistant to the President for Homeland Security and Counter Terrorism,
February 2006.

[3] A. Abu Safia and Z. Al Aghbari, Searching data streams for vari-
able length anomalies, in Innovations in Information Technology (IIT),
2011 International Conference on, 2011, pp. 297�302.

[4] A. Adi and O. Etzion, Amit - the situation manager, The VLDB
Journal, 13 (2004), pp. 177�203.

[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, E�cient
pattern matching over event streams, in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, SIGMOD
'08, New York, NY, USA, 2008, ACM, pp. 147�160.

[6] K. Alghathbar and D. Wijesekera, Consistent and complete ac-
cess control policies in use cases, in UML 2003 - The Uni�ed Modeling
Language. Modeling Languages and Applications, P. Stevens, J. Whit-
tle, and G. Booch, eds., vol. 2863 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2003, pp. 373�387.

[7] Y. Amano, Statement to iaea ministerial conference on nuclear safety,
2011.

[8] C. Ardagna, S. De Capitani di Vimercati, S. Foresti, T. Gran-
dison, S. Jajodia, and P. Samarati, Access control for smarter
healthcare using policy spaces, Computers and Security, 29 (2010),
pp. 848�858.

147

148 BIBLIOGRAPHY

[9] S. Barker, The next 700 access control models or a unifying meta-
model?, in Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies, SACMAT '09, New York, NY, USA, 2009,
ACM, pp. 187�196.

[10] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz, E�ciently
detecting inclusion dependencies, in In Int. Conf. on Data Engineering
(ICDE 07, Poster, 2007.

[11] M. S. Beigi, S.-F. Chang, S. Ebadollahi, and D. C. Verma,
Anomaly detection in information streams without prior domain knowl-
edge, IBM J. Res. Dev., 55 (2011), pp. 550�560.

[12] E. Bertino, P. A. Bonatti, and E. Ferrari, Trbac: A temporal
role-based access control model, ACM Trans. Inf. Syst. Secur., 4 (2001),
pp. 191�233.

[13] E. Bertino, C. Brodie, S. B. Calo, L. F. Cranor, C. Karat,
J. Karat, N. Li, D. Lin, J. Lobo, Q. Ni, P. R. Rao, and X. Wang,
Analysis of privacy and security policies, IBM J. Res. Dev., 53 (2009),
pp. 225�241.

[14] C. Bertolissi and M. Fernández, A rewriting framework for the
composition of access control policies, in Proceedings of the 10th in-
ternational ACM SIGPLAN conference on Principles and practice of
declarative programming, PPDP '08, New York, NY, USA, 2008, ACM,
pp. 217�225.

[15] , Category-based authorisation models: Operational semantics and
expressive power, in Proceedings of the Second International Conference
on Engineering Secure Software and Systems, ESSoS'10, Berlin, Heidel-
berg, 2010, Springer-Verlag, pp. 140�156.

[16] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera, Obliga-
tion monitoring in policy management, in Proceedings of the 3rd Inter-
national Workshop on Policies for Distributed Systems and Networks
(POLICY'02), POLICY '02, Washington, DC, USA, 2002, IEEE Com-
puter Society, pp. 2�.

[17] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera, Pro-
visions and obligations in policy management and security applications,
in Proceedings of the 28th international conference on Very Large Data
Bases, VLDB '02, VLDB Endowment, 2002, pp. 502�513.

BIBLIOGRAPHY 149

[18] H. L. Bill Parducci, extensible access control markup language
(xacml) speci�cation 3.0, August 2010.

[19] W. N. Blog, Emergency responders take 911 calls side by side, 2012.

[20] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati,
An algebra for composing access control policies, ACM Trans. Inf. Syst.
Secur., 5 (2002), pp. 1�35.

[21] A. Boukottaya and C. Vanoirbeek, Schema matching for trans-
forming structured documents, in Proceedings of the 2005 ACM sympo-
sium on Document engineering, DocEng '05, New York, NY, USA, 2005,
pp. 101�110.

[22] A. D. Brucker and H. Petritsch, Extending access control models
with break-glass, in Proceedings of the 14th ACM symposium on Access
control models and technologies, SACMAT '09, New York, NY, USA,
2009, ACM, pp. 197�206.

[23] A. D. Brucker, H. Petritsch, and S. G.Weber, Attribute-based
encryption with break-glass, in Workshop In Information Security The-
ory And Practice (WISTP), P. Samarati, M. Tunstall, and J. Posegga,
eds., no. 6033 in Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, 2010, pp. 237�244.

[24] G. Bruns, D. S. Dantas, and M. Huth, A simple and expressive
semantic framework for policy composition in access control, in Pro-
ceedings of the 2007 ACM workshop on Formal methods in security
engineering, FMSE '07, New York, NY, USA, 2007, ACM, pp. 12�21.

[25] G. Bruns and M. Huth, Access control via belnap logic: Intuitive,
expressive, and analyzable policy composition, ACM Trans. Inf. Syst.
Secur., 14 (2011), pp. 9:1�9:27.

[26] B. Carminati, E. Ferrari, and M. Guglielmi, Secure information
sharing for speci�ed and unspeci�ed emergencies, Under Submission to
Data & Knowledge Engineering.

[27] , Secure information sharing on support of emergency management,
in Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third Inter-
national Conference on and 2011 IEEE Third International Conference
on Social Computing (SocialCom), oct. 2011, pp. 988�995.

150 BIBLIOGRAPHY

[28] , Policies for composed emergencies in support of disaster manage-
ment, in Secure Data Management (SDM), W. Jonker and M. Petkovi¢,
eds., vol. 7482 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2012, pp. 75�92.

[29] , Controlled information sharing for unspeci�ed emergencies, in In
proceedings of the 8th International Conference on Risks and Security
of Internet and Systems (CRISIS), Oct. 2013.

[30] , Share: Secure information sharing framework for emergency man-
agement, in Data Engineering (ICDE), 2013 IEEE 29th International
Conference on, 2013, pp. 1336�1339.

[31] , A system for timely and controlled information sharing in emer-
gency situations, IEEE Transactions on Dependable and Secure Com-
puting (TDSC), 10 (2013), pp. 129�142.

[32] V. Chandola, A. Banerjee, and V. Kumar, Outlier detection: A
survey, 2007.

[33] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection:
A survey, ACM Comput. Surv., 41 (2009), pp. 15:1�15:58.

[34] E.-A. Cho, G. Ghinita, and E. Bertino, Privacy-preserving simi-
larity measurement for access control policies, in Proceedings of the 6th
ACM workshop on Digital identity management, DIM '10, New York,
NY, USA, 2010, pp. 3�12.

[35] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev,
M. Ahamad, and G. D. Abowd, Securing context-aware applications
using environment roles, in Proceedings of the sixth ACM symposium
on Access control models and technologies, SACMAT '01, New York,
NY, USA, 2001, ACM, pp. 10�20.

[36] J. Crampton and G. Loizou, Administrative scope: A foundation for
role-based administrative models, ACM Trans. Inf. Syst. Secur., 6 (2003),
pp. 201�231.

[37] G. Cugola and A. Margara, Tesla: a formally de�ned event speci-
�cation language, in DEBS, 2010, pp. 50�61.

[38] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca, Geo-
rbac: A spatially aware rbac, ACM Trans. Inf. Syst. Secur., 10 (2007).

BIBLIOGRAPHY 151

[39] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, The ponder
policy speci�cation language, in Proceedings of the International Work-
shop on Policies for Distributed Systems and Networks, POLICY '01,
London, UK, 2001, Springer-Verlag, pp. 18�38.

[40] G. Ding, H. Dong, and G. Wang, Appearance-order-based schema
matching, in Proceedings of the 17th international conference on
Database Systems for Advanced Applications - Volume Part I, DAS-
FAA'12, Berlin, Heidelberg, 2012, pp. 79�94.

[41] I. R. Division, Temperature dataset, Sept. 2013.
http://db.csail.mit.edu/labdata/.

[42] P. H. dos Santos Teixeira and R. L. Milidiú, Data stream
anomaly detection through principal subspace tracking, in Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC '10, New
York, NY, USA, 2010, ACM, pp. 1609�1616.

[43] M. Eckert and F. Bry, Rule-based composite event queries: the lan-
guage xchangeeq and its semantics, Knowl. Inf. Syst., 25 (2010), pp. 551�
573.

[44] M. Elahi, K. Li, W. Nisar, X. Lv, and H. Wang, E�cient
clustering-based outlier detection algorithm for dynamic data stream, in
Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth Inter-
national Conference on, vol. 5, 2008, pp. 298�304.

[45] E. F. Elisa Bertino, Silvana Castano and M. Mesiti, Specifying
and enforcing access control policies for xml document sources, World
Wide Web, 3 (2000), pp. 139�151. 10.1023/A:1019289831564.

[46] J. Evermann, Theories of meaning in schema matching: An ex-
ploratory study, Inf. Syst., 34 (2009), pp. 28�44.

[47] T. F. E. M. A. (FEMA), Emergency response plan implementation
@ONLINE, Sept. 2012.

[48] E. Ferrari, Access control in data management systems, Synthesis Lec-
tures on Data Management, 2 (2010), pp. 1�117.

[49] A. Ferreira, D. Chadwick, P. Farinha, R. Correia, G. Zao,
R. Chilro, and L. Antunes, How to securely break into rbac: The btg-
rbac model, in Proceedings of the 2009 Annual Computer Security Ap-
plications Conference, ACSAC '09, Washington, DC, USA, 2009, IEEE
Computer Society, pp. 23�31.

152 BIBLIOGRAPHY

[50] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha,
E. Oliveira-Palhares, D. W. Chadwick, and A. Costa-
Pereira, How to break access control in a controlled manner, in Pro-
ceedings of the 19th IEEE Symposium on Computer-Based Medical Sys-
tems, Washington, DC, USA, 2006, IEEE Computer Society, pp. 847�
854.

[51] D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, and
G. Anderson, Sase: Complex event processing over streams, in In Pro-
ceedings of the Third Biennial Conference on Innovative Data Systems
Research, 2007.

[52] K. Irwin, T. Yu, and W. H. Winsborough, Assigning responsibility
for failed obligations.

[53] K. Irwin, T. Yu, and W. H. Winsborough, On the modeling and
analysis of obligations, in Proceedings of the 13th ACM conference on
Computer and communications security, CCS '06, New York, NY, USA,
2006, ACM, pp. 134�143.

[54] R. Jiang, H. Fei, and J. Huan, Anomaly localization for network
data streams with graph joint sparse pca, in Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD '11, New York, NY, USA, 2011, ACM, pp. 886�894.

[55] E. Keogh, L. Jessica, and F. Ada, ECG dataset, Sept. 2013.
http://www.cs.ucr.edu/∼eamonn/discords/.

[56] E. Keogh, J. Lin, and A. Fu, Hot sax: E�ciently �nding the most
unusual time series subsequence, in Proceedings of the Fifth IEEE In-
ternational Conference on Data Mining, ICDM '05, Washington, DC,
USA, 2005, IEEE Computer Society, pp. 226�233.

[57] D. R. Kuhn, E. J. Coyne, and T. R. Weil, Adding attributes to
role-based access control, Computer, 43 (2010), pp. 79 �81.

[58] A. J. Lee, J. P. Boyer, L. E. Olson, and C. A. Gunter, Defeasible
security policy composition for web services, in Proceedings of the fourth
ACM workshop on Formal methods in security, FMSE '06, New York,
NY, USA, 2006, ACM, pp. 45�54.

[59] N. Li and Z. Mao, Administration in role-based access control, in Pro-
ceedings of the 2nd ACM symposium on Information, computer and

BIBLIOGRAPHY 153

communications security, ASIACCS '07, New York, NY, USA, 2007,
ACM, pp. 127�138.

[60] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo, Exam: a com-
prehensive environment for the analysis of access control policies, Int. J.
Inf. Secur., 9 (2010), pp. 253�273.

[61] D. Lin, P. Rao, E. Bertino, and J. Lobo, An approach to evaluate
policy similarity, in Proceedings of the 12th ACM symposium on Access
control models and technologies, SACMAT '07, New York, NY, USA,
2007, pp. 1�10.

[62] J. Lobo, R. Bhatia, and S. Naqvi, A policy description language, in
Proceedings of the sixteenth national conference on Arti�cial intelligence
and the eleventh Innovative applications of arti�cial intelligence confer-
ence innovative applications of arti�cial intelligence, AAAI '99/IAAI
'99, Menlo Park, CA, USA, 1999, American Association for Arti�cial
Intelligence, pp. 291�298.

[63] A. Margara and G. Cugola, Processing �ows of information: from
data stream to complex event processing, in Proceedings of the 5th ACM
international conference on Distributed event-based system, DEBS '11,
New York, NY, USA, 2011, ACM, pp. 359�360.

[64] S. Mohammad and G. Hirst, Distributional measures of semantic
distance: A survey, CoRR, abs/1203.1858 (2012).

[65] M. Moyer, M.J.; Abamad, Generalized role-based access control, in
Proceedings of the The 21st International Conference on Distributed
Computing Systems, Washington, DC, USA, 2001, IEEE Computer So-
ciety, pp. 391�398.

[66] E. Network and I. S. A. (ENISA), Inventory of risk managemen-
t/risk assessment methods, Sept. 2012.

[67] Q. Ni, E. Bertino, and J. Lobo, D-algebra for composing access con-
trol policy decisions, in Proceedings of the 4th International Symposium
on Information, Computer, and Communications Security, ASIACCS
'09, New York, NY, USA, 2009, ACM, pp. 298�309.

[68] OASIS, Xacml v3.0 administration and delegation pro�le version 1.0.

[69] G. K. P. Ashley, S. Hada, Enterprise privacy authorization language
(epal) speci�cation 1.2, November 2003.

154 BIBLIOGRAPHY

[70] A. Pawling, P. Yan, J. Candia, T. Schoenharl, and G. Madey,
Anomaly detection in streaming sensor data, in Intelligent Techniques
for Warehousing and Mining Sensor Network Data, IGI Global, 2009.

[71] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and
U. Leser, A machine learning approach to foreign key discovery, in Pro-
ceedings of the 12th International Workshop on the Web and Databases
(WebDB 2009), 2009.

[72] R. Sandhu, V. Bhamidipati, and Q. Munawer, The arbac97 model
for role-based administration of roles, ACM Trans. Inf. Syst. Secur., 2
(1999), pp. 105�135.

[73] S. Schwiderski-Grosche and K. Moody, The spatec composite
event language for spatio-temporal reasoning in mobile systems, in Pro-
ceedings of the Third ACM International Conference on Distributed
Event-Based Systems, DEBS '09, New York, NY, USA, 2009, ACM,
pp. 11:1�11:12.

[74] Security and Privacy Committee (SPC), Break-glass: An ap-
proach to granting emergency access to healthcare systems. White paper,
Joint NEMA/COCIR/JIRA, 2004.

[75] StreamBase, http://www.streambase.com/, Sept. 2013.

[76] M. Strembeck and G. Neumann, An integrated approach to engineer
and enforce context constraints in rbac environments, ACM Trans. Inf.
Syst. Secur., 7 (2004), pp. 392�427.

[77] Y. Thakran and D. Toshniwal, Unsupervised outlier detection in
streaming data using weighted clustering, in Intelligent Systems Design
and Applications (ISDA), 2012 12th International Conference on, 2012,
pp. 947�952.

[78] WordNet, http://wordnet.princeton.edu/, Mar. 2013.

[79] Z. Wu and M. Palmer, Verbs semantics and lexical selection, in Pro-
ceedings of the 32nd annual meeting on Association for Computational
Linguistics, ACL '94, Stroudsburg, PA, USA, 1994, pp. 133�138.

[80] M. Xu and D. Wijesekera, A role-based xacml administration and
delegation pro�le and its enforcement architecture, in Proceedings of the
2009 ACM workshop on Secure web services, SWS '09, New York, NY,
USA, 2009, ACM, pp. 53�60.

BIBLIOGRAPHY 155

[81] M. Xu, D. Wijesekera, X. Zhang, and D. Cooray, Towards
session-aware rbac administration and enforcement with xacml, in Poli-
cies for Distributed Systems and Networks, 2009. POLICY 2009. IEEE
International Symposium on, july 2009, pp. 9 �16.

[82] Y. Zhang, N. Meratnia, and P. Havinga, Outlier detection tech-
niques for wireless sensor networks: A survey, Commun. Surveys Tuts.,
12 (2010), pp. 159�170.

	Introduction
	Unspecified Emergency Management
	Organization
	Publications

	State of the Art
	Complex Event Processing
	Break the Glass Policies
	Comparison between BtG and Emergency Policies

	Context-based Access Control
	Obligations
	Policy Composition
	Administrative Access Control
	Policy Similarity
	Anomaly Detection for Data Streams

	Emergency Access Control Model
	Emergency Detection
	Core Event Specification Language
	Emergency Description

	Emergency Policy
	Emergency Policy Correctness
	Emergency Policy Administration
	Emergency Policy Composition

	Unspecified Emergency Management
	Detection and Management of Unspecified Emergencies
	Policy Based Analysis
	Satisfaction level for roles and object types
	Satisfaction level for subject/object conditions
	Satisfaction Level of a dar on a tacp

	Anomaly Based Analysis
	Anomaly Detection
	Correlation Discovery
	Anomaly Correlation

	Historical Based Analysis

	Enforcement
	Architecture
	Unspecified Emergencies Architecture

	Experiments
	Emergency Policy Evaluation
	Dataset
	Event Detection Time
	Post Processing Time

	Unspecified Emergency Policy Evaluation
	Policy Based Analysis Evaluation
	Access Requests Analysis Evaluation
	Dataset
	Satisfaction Level Evaluation
	Anomaly Level Evaluation
	Historical Level Evaluation
	Satisfaction, Anomaly and Historical Level Comparison
	Threshold Evaluation
	Experiments Discussion

	Conclusions
	Acknowledgment

