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ABSTRACT
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Rett syndrome (RTT) is an X-linked neurodevelopmental disorder with a prevalence rate of 

1 in 10,000 females. RTT patients have apparently normal perinatal development until 

about 6-18 months of age, after which they undergo a period of rapid regression, 

characterized by the appearance of autistic features, stereotypic hand movements and 

loss of language. RTT girls also have seizures during childhood, breathing arrhythmias, 

develop scoliosis and lose mobility between ages 1 and 4 years. 

Recently, there has been growing interest in the therapeutic potential of 

phytocannabinoids in the context of neurological diseases. Interestingly, several preclinical 

and clinical data support the ability of some phytocannabinoids to modulate cognitive and 

motor functions, mood and neuronal excitability, all of which are altered in RTT. Despite 

this evidence, so far no studies have addressed the potential therapeutic application of 

phytocannabinoids in RTT. 

Based on these premises, the aim of this project was to evaluate the ability of chronic 

administration of the phytocannabinoids, cannabidivarin (CBDV) and cannabidiolic acid 

(CBDA), to affect neurological and motor defects as well as cognitive deficits in a mouse 

model of RTT, namely Mecp2 knockout (KO) mice. 

To this aim, Mepc2 KO mice were treated daily with CBDV (or relative vehicle) at the 

doses of 0.2, 2, 20 or 200 mg/kg or CBDA (or relative vehicle) at the dose of 2 and 20 

mg/kg from postnatal day (PND) 28 to 66. During the whole treatment schedule, motor and 

neurological signs were scored while short- and long-term memory deficits were evaluated 

at PND 41, 56 and 66. 24 hours after the last injection, brain tissues were collected to 

investigate the presence of alterations on neurotrophic factors (BDNF and IGF-1), 

inflammatory markers (CD11b, GFAP and TNFα) as well as components of the 

endocannabinoid system. 
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The present findings provide for the first time direct evidence that CBDV and CBDA 

improve motor and neurological signs as well as cognitive deficits in Mecp2 KO mice. In 

particular, CBDV administration delays the appearance neurological and motor signs in 

Mecp2 KO mice in a time window between 5 and 7 weeks of age. Conversely, CBDA 

administration ameliorates motor signs only at later stages of the disease progression, i.e. 

8 and 9 weeks of age. Remarkably, both phytocannabinoids exert a complete and 

enduring beneficial effect towards short- and long-term memory deficits in Mecp2 KO 

animals. 

At the biochemical level, chronic treatments with CBDV and CBDA enhance the 

expression of both BDNF and IGF-1 and reduce microglia activation in the brain of Mecp2 

KO mice. Moreover, Mecp2 deletion results in alterations in the endocannabinoid system 

that could likely sustain RTT-like phenotype, and chronic CBDV treatment further 

modulates them. 

Although further studies are needed to directly assess the mechanism(s) through which 

CBDV and CBDA can improve RTT-like phenotype in Mecp2 KO mice, overall these 

findings suggest for the first time a potential therapeutic application of the 

phytocannabinoids CBDV and CBDA in the context of RTT. 
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1. RETT SYNDROME 

RETT syndrome (RTT) is a postnatal progressive neurodevelopmental disorder that 

represents the most common genetic cause of severe intellectual disability in females 

(Percy and Lane, 2005) with an incidence of approximately 1 in 10,000 live births 

(Chahrour and Zoghbi, 2007). The disorder is characterized by arrested development 

between 6 and 18 months of age, regression of acquired skills, loss of speech, 

stereotypic movements, microcephaly, seizures, and mental retardation. 

Affected males with somatic mosaicism or an extra X chromosome have been described 

rarely (Moog et al. 2003). Although MECP2 mutations were initially thought to be 

prenatally lethal in males, it has been shown that MECP2 mutations actually cause a 

variable phenotype in male patients (Ravn et al. 2003). The phenotypes can be divided in 

different categories with presence of symptoms that are highly similar to classic RTT in 

females or mild or severe mental retardation. 

Dr. Andreas Rett, an Austrian pediatrician, first described the syndrome in 1966. Rett 

noticed that, after 1 year of normal development, girls affected by RTT undergo a 

progressive regression characterized by motor dysfunctions, stereotyped hand movements 

and progressive deterioration of cognitive functions (Rett et al. 1966). A subsequent study 

by Hagberg and colleagues in 35 girls with a progressive encephalopathy from three 

different European countries (France, Portugal, and Sweden), also highlighted that the 

syndrome develops in four distinct phases (Hagberg et al. 1986). The first phase, called 

stagnation of development, appears after 7 to 18 months of age and it is characterized by 

a failure to meet major developmental milestones, such as word development, social 

interaction, and motor ability. This phase is further evidenced by microcephaly and growth 

delay. The second phase of the syndrome is characterized by a rapid deterioration that 
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results in loss of previously acquired motor abilities. Purposeful hand movements are 

replaced by stereotypies, such as hand clasping and wringing. Breathing abnormalities 

also often appear at this stage together with mental decline and apraxia. The last two 

phases of RTT, called pseudo-stationary phase and late motor deterioration, appear 

between 3 to 10 years of age and are characterized by seizures and scoliosis, 

accompanied by severe motor impairments, including  loss of ambulation and parkinsonian 

features (Hagberg, 2005; Roze et al. 2007). At the central level, this clinical picture is 

associated with decreased brain size, most likely resulting from smaller neurons and 

reduced dendritic branching, whereas no signs of neuronal degeneration are observed in 

RTT patients (Armstrong, 2005). 

In addition to the classic form, there are five recognized atypical RTT variants (Trevathan 

et al. 1988, Hagberg et al. 2001). These variants show some, but not all, diagnostic 

features of RTT and can be milder or more severe. Several variants of atypical RTT have 

been defined: 1) The early-onset seizure type (Hanefeld variant); 2) The congenital variant 

(Rolando variant) is the most severe form of atypical RTT; 3) The 'forme fruste' is a milder 

variant of RTT; 4) The late childhood regression form; 5) The preserved speech variant 

(PSD or Zappella variant). 

In the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV edition (1994), Rett 

syndrome was classified as one of five autism-related conditions, along with Asperger 

syndrome and childhood disintegrative disorder. So, it defined Rett syndrome as part of 

the spectrum but different from autism itself. In 2013, the American Psychiatric Association 

has published the fifth edition of the DSM-V that modifies the diagnostic criteria for autism 

spectrum disorder. In this current edition, with the growing understanding associated with 

the variability of symptoms, RTT is no longer considered as part of the autism spectrum 
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disorder. However, girls with RTT can also be diagnosed with autism if they meet the 

behavioral criteria. 

The search for a gene for RTT was seriously hampered by the lack of familial cases, as 

99% of cases of the syndrome are due to de novo mutations. However, linkage analysis 

studies on the few available familial cases allowed the identification of methyl-CpG binding 

protein 2 (MECP2) as the key gene responsible for the development of the syndrome 

(Tariverdian et al. 1987; Partington, 1988; Amir et al. 1999). Subsequent genetic studies 

confirmed that 95% of RTT patients show mutations in the MECP2 gene (Neul et al. 2008). 

The range of MECP2 mutations causing RTT includes missense, frameshift, nonsense 

mutations, and intragenic deletions. 

MECP2 is a gene that maps on the X-chromosome, located in Xq28, and encodes for a 

nuclear protein of 53 kDa, which is found in various tissues in mammals (Meehan et al. 

1989; Shahbazian, 2002),  with the highest expression in the brain, where its levels are 

seven times higher in neurons than in glia, underscoring the importance of this protein in 

neuronal function (Shahbazian, 2002). Furthermore, the levels of MeCP2 in the 

mammalian brain increase over postnatal development, suggesting the importance of this 

protein for brain development and synapse maturation (Shahbazian, 2002; Balmer et al. 

2002).  It is the first discovered protein with the ability to regulate higher order chromatin 

structure and to bind methylated cytosine on DNA (Lewis et al. 1992). DNA methylation is a 

covalent modification of the genome, performed by specific enzymes, that provides an 

additional layer of information beyond the sequence of the genome; this modification 

appears to be critical in different process such as genomic imprinting, cellular differentiation 

and the silencing of transposable elements. (Smith et al. 2013; Schubeler, 2015). 
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1.1 MECP2 FUNCTIONS 
  
Experimental evidence supports the role of MECP2 as a transcriptional repressor, 

transcriptional activator, chromatin organizer, regulator of alternative splicing, and miRNA 

processor (Lyst et al. 2015). 

The MECP2 is encoded by a four-exon gene located at q28 on the X chromosome. MECP2 

has two isoforms that differ in the N-terminus and in the distribution, which are generated 

by alternative splicing. Concerning the subcellular localization, both MECP2 isoforms are 

nuclear and co-localize with methylated heterochromatic foci in mouse cells. At the 

anatomical level, it has been demonstrated that the two isoforms have a differential 

distribution in the developing mouse brain (Dragich et al. 2007). 

MECP2 is characterized by the presence of different domains. The first identified domain is 

the methyl CpG binding domain (MBD), which mediates a specific interaction between 

MECP2 and methylated cytosines followed by a guanine (Ohki et al. 2001). Recently, it has 

been highlighted that MECP2 is also able to interact with methylated cytosines in CpA- 

CpT and CpC dinucleotides context and to bind hydroximethyled cytosines, although this 

last interaction appears to be weaker in respect to those with methylated cytosine (Guo et 

al. 2014; Chen et al. 2015; Frauer et al. 2011; Valinluck et al. 2004). 

The MDB domain is not the only portion of the protein able to bind the DNA (Ballestar et al. 

2000). In fact, comparative computational analysis have identified three AT-hooks domains 

three AT-hooks in MECP2, which are specialized basic clusters that bind the minor groove 

of AT-rich DNA (Baker et al. 2013). Interestingly, the three AT-hooks domains of MECP2 

exhibit a strong homology with the AT-hooks domain that are present in the high-mobility-

group-AT-hook family of chromatin modulators (HMGA), who participate in different cellular 
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processes including regulation of gene expression and integration of retroviruses into 

chromosomes (Baker et al. 2013; Reeves and Beckerbauer, 2001). 

Given the presence of an MBD, early functional studies of MECP2 operated under the 

assumption that MECP2 was likely a transcriptional repressor (Bird, 2002). However, in 

vivo transcriptional studies in animal models revealed that many genes are downregulated 

rather than upregulated in Mecp2 KO mice compared to WT controls, suggesting that 

MECP2 could also promote gene expression (Chahrour et al. 2008), probably via 

recruitment of the cAMP responsive elements binding protein 1 (CREB1) (Chahrour et al. 

2008). 

Thus, available evidence suggests the possibility that MECP2 could function as a 

transcriptional activator or repressor depending on the interactions involved in the 

recruitment of MECP2 to chromatin (Li et al. 2013; Ficz et al. 2011; Wu et al. 2011). 

In addition to gene expression regulation, MECP2 appears to modulate processes such as 

alternative splicing and miRNA processing, indicating also a regulation at the post-

transcriptional level (Kazazian, 1998; Han et al. 2004; Perepelitsa-Belancio et al. 2003).  

Mecp2-related neurodevelopmental disorders might therefore be the results of 

misregulations of both transcription and other processes. However, the physiological roles 

of many of these interactions and their relevance to RTT pathology remain to be 

established. 

1.2 MOUSE MODELS OF RETT SYNDROME 

The identification of MECP2 mutations as the genetic cause of RTT led to the 

development of mouse models for studying the molecular basis of the pathology in the 

search for possible effective therapies. In 2001, two mouse models of RTT were generated 

on different backgrounds (Chen et al. 2001; Guy et al. 2001) and both models displayed 
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phenotypes resembling the human pathology. Similar to the human condition, after a 

period of normal development, Mecp2 KO mice undergo a progressive regression 

characterized by stereotyped movement, tremors, myoclonic jerks and seizures, often 

associated with severe motor impairments. Null male mice develop uncoordinated gait, 

breathing abnormalities and hindlimb clasping. Symptoms begin to emerge after 5 weeks 

of age and become more severe between 6 and 12 weeks of age, eventually leading to 

death (Chen et al. 2001; Guy et al. 2001; Katz et al. 2009). Mecp2 heterozygous female 

mice are viable, fertile and appear normal even in early adulthood. Unlike males, 

heterozygous female mice develop a similar phenotype but with a delayed onset (Stearns 

et al. 2007). Specifically, signs of the disease in female heterozygous mice appear around 

6 months of age. In addition, the features of the phenotype in heterozygous females are 

much more variable than in hemizygous males but females tend to show a similar 

progression of phenotypes, though shifted in time. In the case of females, the worsening of 

the animal’s condition does not lead to early natural death. 

Other similarities between humans and animal models for RTT rely on the 

neuroanatomical signs. Indeed, microcephaly, neurons with smaller somas (Chen et al. 

2001; Marchetto et al. 2010; Li et al. 2013), a decrease in dendritic complexity (Armstrong 

et al. 1995; Chapleau et al. 2009) and in synaptic plasticity (Asaka et al. 2006; Guy et al. 

2007), dysregulation of neurotransmitter levels (Panayotis et al. 2011; Santos et al. 2010) 

and the absence of neurodegeneration are observed in Mecp2 KO mice compared to WT 

littermates (Robinson et al. 2012). 

Unfortunately, the exact molecular consequences of the disruption of MECP2 functionality 

that lead to RTT are not fully understood. Interestingly, mutation of MECP2 restricted to 

neuronal lineage resulted in a phenotype indistinguishable from that of mice lacking 
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MECP2 in all tissues, suggesting that absence of normal protein function in neurons is 

sufficient to cause the disease (Chen et al. 2001; Guy et al. 2001). 

Given that dysregulation in protein synthesis is a hallmark of many neurodevelopmental 

disorders associated with severe mental retardation, it has been proposed that alterations 

in protein synthesis and PI3K/AKT/mTor signaling pathway may also play a role in the 

pathogenesis of RTT (Krab et al. 2008; Hoeffer and Klann, 2010; Bear et al. 2008; 

Ehninger et al. 2008). The activity of the PI3K/AKT/mTor signaling pathway in the central 

nervous system (CNS) is crucial for synapse formation and functionality, as it regulates the 

morphology and arborization of dendritic spines as well as synaptic plasticity. Interestingly, 

all these aspects appear to be profoundly altered in RTT patients as well as in Mepc2 KO 

mice (Hoeffer and Klann, 2010; Kelleher et al. 2004; Jaworski and Shengt, 2006; Richter 

et al. 2009). A study by Ricciardi and colleagues (2011) investigated the presence of 

dysregulations of the PI3K/AKT/mTor signaling in a mouse model of RTT. The authors 

analyzed the phosphorylation status of the ribosomal protein s6 (rpS6), a key component 

of the 40S of ribosome and the final target of the PI3K/AKT/mTor pathway whose 

phosphorylation status can be correlated with the activation of protein synthesis (Pende et 

al. 2004; Roux et al. 2007). These data indicate that the phosphorylation status of rpS6 in 

Mecp2 KO mice is severely reduced compared to WT mice, suggesting that the PI3K/mTor 

signaling pathway is downregulated in Mecp2 KO mice. 

In addition, convergent data indicate that the levels of Brain Derived Neurotrophic Factor 

(BDNF), one of the most intensively studied target gene involved in RTT pathogenesis, are 

significantly decreased in Mecp2 KO mice (Chahrour et al. 2008; Chang et al. 2006; Wang 

et al. 2006). BDNF is a neurotrophin involved in neuronal growth, maturation and 

differentiation, and plays also an important role in synaptic plasticity and learning and 
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memory processes. BDNF exerts its functions by binding to tropomyosin receptor kinase B 

(TrkB), leading to the activation of different intracellular pathways, including the PI3K-AKT 

pathway. In KO mice, BNDF overexpression is able to improve the core symptoms of RTT, 

including breathing abnormalities and motor dysfunction, and it increases animals’ lifespan 

(Chang et al. 2006; Ogier et al. 2007; Deogracias et al. 2012). Unfortunately, the 

therapeutic potential of BDNF is hampered by its reduced ability to cross the blood brain 

barrier (BBB). Therefore, researchers are trying to identify alternative molecules that show 

the same positive effects but able to cross the BBB.  

Another interesting molecule in the context of RTT is the insulin-like growth factor-1 (IGF-

1), a peptide hormone that has an important role both in the periphery and in the CNS. It 

binds to IGF-1 receptors, promoting the activation of RAS-MAP pathway and PI3K-AKT 

pathway, thus regulating cellular proliferation, differentiation and stress resilience. Similar 

to BDNF, IGF-1 administration rescues many of the phenotypes present in Mecp2 KO 

mice but, from a therapeutic point of view, the advantage of using IGF-1 with respect to 

BDNF relies on its major capability to cross the BBB (Tropea et al. 2009). 

Although RTT was thought to be caused exclusively by MeCP2 deficiencies in neurons, 

recent evidence provides a functional role of glial cells in the pathogenesis of the disorder. 

In 2009, Mandel and collaborator (Ballas et al. 2009) showed that the Mecp2 protein was 

present in all types of glia. Glial cells are composed of astrocytes, oligodendrocytes and 

microglia. Glia support and interact with neurons in innumerable ways, from providing the 

structural underpinnings and guidance of axons and dendrites to providing energy 

substrates necessary for neuronal function. 

Indeed, evidence suggested that mice with Mecp2-null in glial cells showed behavioral and 

neural synaptic abnormalities that are similar to those in Mecp2-null mice, and studies 
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showed that the restoration of Mecp2 in glial cells can rescue some of these defects (Lioy 

et al. 2011; Nguyen et al. 2013; Cronk et al. 2015). 

Despite the obvious limitation of animal models in the context of complex diseases such as 

RTT, the use of mouse models still represents a unique and essential tool to better 

characterize the molecular basis of the disease and to test possible new therapies. 
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2. THE ENDOCANNABINOID SYSTEM 

The term ‘endocannabinoid system’ (EC system) refers to a neuromodulatory system 

involved in a variety of physiological processes, that are present both in the brain and 

periphery comprising the cannabinoid CB1 and CB2 receptors, their endogenous lipid 

ligands, endocannabinoids, such as the N-arachidonoylethanolamide (anandamide, AEA) 

and the 2-arachidonoylglycerol (2-AG), synthesized “on demand” as ligands for the 

cannabinoid receptors and the associated enzymatic machinery (transporters, biosynthetic 

and degradative enzymes) involved in the synthesis and degradation of 

endocannabinoids. 

 

Figure 1. Main biosynthetic and inactivating enzymes in endocannabinoid signaling (Di Marzo et 
al. 2015).  

 

Two types of cannabinoid receptors have been characterized, named CB1 and CB2 based 

on the order of their discovery (Matsuda et al. 1990; Munro et al. 1993), both belonging to 

the superfamily of G protein coupled receptors, whose activation mediates most of the 

effects of cannabinoid drugs. CB1 receptors are widely expressed in the CNS with low to 

moderate expression in periphery whereas CB2 receptors are predominately located in the 
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immune system, in particular in the spleen and tonsils and recent papers demonstrate that 

they may also be expressed in neurons (Brusco et al. 2008; Gong et al. 2006; Van Sickle 

et al. 2005). The CB1 receptor activation through both Gi/o proteins inhibits adenylyl 

cyclase activity, activates potassium channels and inhibits voltage-gated calcium 

channels, while the CB2 receptor is known only to couple to Gi proteins (Howlett, 2002). 

Some indirect evidence suggests the presence of additional cannabinoid receptors 

(GPR55, GPR119, PPAR) (Ryberg et al. 2007; O’Sullivan, 2007) but to date only CB1 and 

CB2 receptors are recognized by The International Union of Basic and Clinical 

Pharmacology. 

Endogenous ligands for the cannabinoid receptors were discovered soon after their 

characterization. The two major known endogenous ligands are AEA and 2-AG (Devane et 

al. 1992; Stella et al. 1997; Sugiura et al. 2006). Both are arachidonic acid derivatives 

produced from phospholipid precursors postsynaptically through activity-dependent 

activation of specific phospholipase enzymes (Piomelli, 2003). Later on, a number of other 

endocannabinoid ligands have been identified including N- arachidonoyldopamine 

(NADA), N-arachidonoylglycerolether and O-arachidonoylethanolamine (De Petrocellis 

and Di Marzo, 2009). 

These ligands do not share the same biosynthetic or metabolic pathways, indicating 

distinct mechanisms of regulation. Different pathways can produce AEA from the 

phospholipid precursors N-arachidonoyl-phosphatidylethanolamine, the most relevant 

being a direct conversion catalysed by an N-acyl-phosphatidylethanolamine selective 

phosphodiesterase. 2-AG is mainly synthesized through activation of phospholipase C and 

the subsequent production of diacylglycerol, which is rapidly converted to 2-AG by 

diacylglycerol lipase. After its re-uptake, AEA is hydrolysed by the enzyme fatty acid amide 
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hydrolase (FAAH), producing arachidonic acid and ethanolamine, while 2-AG is primarily 

metabolized by monoacylglycerol lipase (MAG lipase), leading to the formation of 

arachidonic acid and glycerol (Di Marzo and Petrosino, 2007). Apart from their well known 

binding to CB1 and CB2 receptors, endocannabinoids may also interact with non-CB1/non 

CB2 targets including the transient receptor potential vanilloid receptor type 1 (TRPV1) (Di 

Marzo and De Petrocellis, 2010), the ‘orphan’ G protein coupled receptor, GPR55 

(Moriconi et al. 2010) and the peroxisome proliferator activated receptor, PPAR (Pistis and 

Melis, 2010), PPAR-α and PPAR-γ. However, CB1 and CB2 receptors are certainly the 

most known targets for AEA and 2-AG, which activate them with different affinity: AEA has 

the highest affinity in both cases, whereas 2-AG has the highest efficacy in both cases 

(McPartland et al. 2007). 

Importantly, endocannabinoids are synthetized and released “on demand” by post 

synaptic cells through the cleavage of membrane phospholipid precursors in response to 

different physiological and pathological stimuli. Released endocannabinoids act as 

retrograde transmitters and traverse back across the synapse where they bind pre 

synaptically located CB1 receptors and reduce synaptic transmitter release (Freund et al. 

2003). 

On this basis, the EC system can be considered one of the major players in regulating the 

activity state of various neurotransmitters, and endocannabinoids are involved in several 

physiological functions. The role of the EC system in the programming of neural cells and 

in the developing nervous system, is well recognized as important. In the fetal brain, 

endocannabinoid levels and CB1 receptor distribution are spatially and temporally 

regulated (Berrendero et al. 1999). Indeed, AEA prevails in the early embryonic stages 

whereas 2-AG levels increase during differentiation to control neural progenitor cells. 
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Moreover, in progenitor cells, CB1 levels become upregulated while CB2 levels decrease 

(Palazuelos et al. 2012). Remarkably, endocannabinoids may modulate cell proliferation, 

fate and migration, as well as synaptogenesis of postmitotic neurons by allowing neuron 

migration and axon targeting and alterations of the EC system contribute to the 

pathogenesis of several psychiatric and neurological disorders.   

3. THE PHYTOCANNABINOIDS 

The plant Cannabis sativa and its preparations have been used for millennia for both 

recreational and medical purposes. More than 100 chemically and biosynthetically related 

cannabinoids have been identified in cannabis flowers in relative amounts depending on 

the plant variety.  Only in the 20th century, the different active constituents of the plant 

were isolated and their chemical structure elucidated, including ∆-9-Tetrahydrocannabinol 

(∆-9-THC) and cannabidiol (CBD). From their identification, many studies were carried out 

in order to understand the pharmacological and the physiological effects of the different 

constituents (Mechoulam and Shvo, 1963; Gaoni, 1964; Dewey, 1986). These 

characteristic compounds are lipophilic metabolites defined as to “phytocannabinoids” to 

distinguish them from often structurally dissimilar but pharmacologically analogous 

endocannabinoids and synthetic cannabinoids. 

3.1 CBD AND ITS POTENTIAL THERAPEUTIC APPLICATIONS 

CBD is the major non-psychotropic component of the plant cannabis sativa and many 

studies have highlighted its potential anxiolytic, anti-depressant, anti-psychotic, anti-

convulsant, anti-nausea, anti-oxidant, anti-inflammatory, anti-arthritic and anti-neoplastic 

properties (see for rewiev Pertwee et al. 2008). 

Unlike THC, which has a high affinity for both CB1 and CB2 receptors, CBD has a low 

affinity for the classical cannabinoid receptors thus it does not elicit the classical effects 
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mediated by CB1 receptors activation such as hypo-locomotion, analgesia, catalepsy and 

hypothermia (Long et al. 2010; McPartland et al. 2015). This has prompt the investigation 

of its therapeutic potential in several pathological conditions. 

CBD’s therapeutic potential has been extensively studied in the context of 

neurodegenerative diseases, where it seems to exert beneficial effects via its anti-

inflammatory and neuroprotective actions. Thanks to the presence of the phenol group in 

its chemical structure (Hampson et al. 1998; Marsicano et al. 2002), CBD seems to restore 

the balance between oxidant and anti-oxidant elements, thus promoting neuronal survival 

(Fernández-Ruiz et al. 2010). Moreover, the anti-inflammatory properties arise also from 

its modulatory activity on the nuclear factor-erythroid 2-related Factor 2 (nrf-2).  Indeed, 

CBD promotes the activity of this transcription factor enhancing the expression of anti-

oxidant and anti-inflammatory proteins (Fernández-Ruiz et al. 2010). In addition, CBD 

promotes neuroprotection via the modulation of microglial activation and migration, 

resulting in a reduction of pro-inflammatory mediators (Walter et al. 2003). Unlike for other 

phytocannabinoids, this action is independent from the interaction with the CB2 receptor 

(Fernández-Ruiz et al. 2007), but it occurs via the inhibition of NF-kB activity (Esposito et 

al. 2006; 2007). NF-kB is a transcriptional factor expressed in almost all cell types and it 

plays key roles in the modulation of inflammation, immune response and cell survival (Sen 

and Baltimore, 1986; Li and Verma, 2002; Kaltschmidt et al. 2005; Mattson, 2005; Ledoux 

and Perkins, 2014). It is activated in response to various insults, such as virus and 

bacterial infections and oxidative stress (Baeuerle and Henkel, 1994; Baldwin, 1996). 

When activated, NF-kB crosses the nuclear membrane and binds the DNA promoting the 

expression of various pro-inflammatory mediators such as inducible NO synthase (INos), 

interleukin-1, 6, 8 and chemokines (Duh et al. 1989, Kaltschmidt et al. 1993; Ahn and 
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Aggarwal, 2005; Gupta et al. 2010a, Gupta et al. 2010b). The inhibition of this transcription 

factor by CBD occurs through the interaction with specific kinase such as p38 MAP 

Kinase, blocking their translocation into the nucleus and the cascade that leads to the 

expression of pro-inflammatory mediators (Esposito et al. 2006), as well as through the 

interaction with nuclear receptors belonging to the PPAR family, PPAR-gamma in 

particular (Hill et al. 2012; Esposito et al. 2011).  

Preclinical studies have been carried out to test the efficacy of CBD as a new possible 

therapy for neurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s (AD) 

disease. Both pathologies share the presence of a chronic inflammatory state in the 

central nervous system, which leads to neuronal suffering and death (Lee et al 2010; Qian 

et al. 2010). In AD, there is a progressive loss of cholinergic neurons due to the 

accumulation of beta-amyloid plaques and neurofibrillary tangles, that leads to a severe 

impairment in short and long-term memory functions (Perl et al. 2010). In contrast, PD is 

characterized by a progressive accumulation of alpha-synuclein oligomers that impairs 

dopaminergic neurons in the substantia nigra pars compacta causing severe motor 

disturbances but also psychotic episodes (Hindle et al. 2010). In both these pathologies, 

the antioxidant properties of CBD and its capability to reduce the activation of microglia 

seem to be very efficacious. Indeed, as shown by different studies, CBD is able to reduce 

the inflammatory processes that lead to the formation of the beta-amyloid plaques and 

alpha-synuclein oligomers, including phosphorylation of NF-kB by MAP 38 and increased 

iNos activity (Iuvone et al. 2004; Esposito et al. 2006; 2007). Interestingly, in PD the 

administration of CBD is also able to reduce PD-associated psychotic episodes (Zuardi et 

al. 2009).  
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CBD is currently under investigation for the treatment of epilepsy, a chronic neurological 

condition caused by defects in neuronal excitability that lead to altered neural network 

synchronization and seizure. CBD appears to be very effective in the treatment of hyper-

excitability disorders as demonstrated both in preclinical and clinical studies (Jones et al. 

2010). The beneficial effect of CBD in the context of epilepsy can be ascribed to its ability 

to modulate Ca2+ levels via its direct interaction with TRPV1 and TRPV2 receptors and to 

enhance GABAergic transmission, ultimately resulting in a reduction of spontaneous 

bursts (Iannotti et al. 2014; Consroe et al. 1982). Furthermore, it has been also shown that 

co-administration of CBD with some classical anti-epileptic drugs, such as phenytoin and 

phenobarbital, is able to potentiate their anticonvulsant effect (Jones et al. 2010).  

The need for new therapies for hyper-excitability disorders arises from the observation that 

about 30% of patients do not respond to the classical anti-epileptic drugs, including 

patients diagnosed with Lennox-Gastaut and Dravet syndromes, which affect mostly 

children and are characterized by high frequency of seizure and severe 

neurodevelopmental problems (Oakley et al. 2011). Remarkably, CBD seems to be 

effective against convulsions in mouse models of Dravet syndromes (Devinsky et al. 

2014). 

3.2 OTHER PHYTOCANNABINOIDS 

In the plant cannabis sativa, in addition to THC and CBD, there are other 

phytocannabinoids that show interesting pharmacological and therapeutic properties, such 

as ∆-9-tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabigerol (CBG), 

cannabidivarin (CBDV), ∆-9-tetrahydrocannabinolic acid (THCA), and cannabidiolic acid 

(CBDA). Although the pharmacology of these compounds has not yet been fully 

elucidated, experimental data suggest a complex pharmacological profile which involves 
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not only the EC system, but also other receptors, channels or intracellular targets 

(Pertwee, 2009). 

 

Figure 2. Chemical structures of the phytocannabinoids cannabidiol (CBD),  
∆-9-tetrahydrocannabivarin (∆-9-THCV), cannabigerol (CBG), cannabidiolic acid (CBDA), 

cannabichromene (CBC) and cannabidivarin (CBDV). 

 
Among them, THCV is the second most studied cannabinoid after CBD. This 

phytocannabinoid is able to antagonize CB1 receptors at low doses (Thomas et al. 2005), 

preventing also the effects induced by THC, such as hypothermia and anti-nociception 

(Pertwee, 2008; Englund et al. 2016). Moreover, THCV is a CB2 receptor agonist that 

reduces microglia cell activation and the production of pro-inflammatory cytokine, 

promoting neuroprotection in models of PD. In addition, THCV is also able to enhance the 

activity of 5-HT1A receptors, attenuating the positive and negative symptoms in animal 

models of schizophrenia (Cascio et al. 2015).  

CBC is one of the most abundant phytocannabinoids present in the plant cannabis sativa 

(Turner et al. 1980; Russo, 2011), and it shows anti-inflammatory and analgesic 

properties.  CBC’s anti-inflammatory action occurs through the inhibition of the production 

of NO, IL-10 and IFN-gamma. In contrast, the analgesic action occurs via the stimulation 

of the descending anti-nociceptive pathway in the ventrolateral periaqueductal grey 

mediated by the activation of TRPA1 receptors (Romano et al. 2013; Maione et al. 2011). 
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CBG is the precursor of THC, CBD and CBC (Hill et al. 2012). This phytocannabinoid is a 

TRPV1 and TRPV2, TRPA1 and α2-adrenoceptor receptor agonist that possesses 

analgesic, anti-inflammatory, anti-oxidant and neuroprotective properties. The 

neuroprotective properties of CBG have been investigated in preclinical studies in the 

context of Huntington disease, a severe neurodegenerative disease caused by a mutation 

in the Huntingtin gene that produce the loss of glutamatergic neurons in the basal ganglia. 

Indeed, CBG administration in mouse models of HD increases the expression of BDNF 

and IGF-1 promoting a reduction in the aggregation of huntingtin (Giovannoni et al. 2009; 

Rock et al. 2011; Valdeolivas et al. 2015).  Finally, this phytocannabinoid is also a potent 

TRPM8 and 5-HT1A antagonist with anti-emetic and anti-nausea properties (De Petrocellis 

et al. 2011). 

CBDV is a non-psychoactive phytocannabinoid with a structure similar to CBD. Like CBD, 

it has low affinity for CB1 and CB2 receptors. Interestingly, CBDV, through the interaction 

with TRPV1 channels, exerts anti-epileptic effects, reducing seizures frequency and 

amplitude of bursts in the limbic areas (Hill et al. 2013; Iannotti et al. 2014). 

THCA is a precursor of tetrahydrocannabinol (THC). Recent data reported that it has 

moderate affinity for human CB1 and CB2 receptors (Rosenthaler et al. 2014) and acts as 

a weak TRAP1 antagonist and a good TRPM8 antagonist (Ligresti et al. 2006). 

Finally, CBDA is another non-psychoactive phytocannabinoid currently under investigation. 

It is the acid precursor of CBD (Potter et al. 2008; Mechoulam and Gaoni, 1965). 

Currently, little is known about the pharmacological actions of CBDA. There is already 

evidence, however, that CBDA shares the ability of CBD to activate the transient receptor 

potential (TRP) cation channels, TRPV1 and TRPA1, and to antagonize TRPM8 (De 

Petrocellis et al. 2008; 2011). Importantly, however, CBDA produces these effects with 
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significantly less potency than CBD (Rock et al. 2012; Bolognini et al. 2013). In addition, 

CBDA can act as a selective inhibitor of COX-2 (Takeda et al. 2014), an enzyme 

expressed by cells undergoing inflammation, although this finding has not been confirmed 

by subsequent studies (Ruhaak et al. 2011). 

Overall, many phytocannabinoids possess interesting pharmacological properties that 

could be useful for the treatment of several pathological conditions. In addition, in 

preclinical models, all these compounds have been proven to be safe and well tolerated 

also at the higher doses tested, further supporting their potential exploitation for the 

treatment of human diseases. 
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Recent studies have highlighted the potential beneficial effects of some phytocannabinoids 

in the context of neurological diseases, including neurodegenerative disorders, 

hyperexcitability and in affective disorders, thanks to their anti-oxidant, anti-inflammatory 

and neuroprotective properties. Additionally, several preclinical and clinical data support 

the ability of some phytocannabinoids to modulate cognitive and motor functions, mood 

and neuronal excitability, all of which are altered in Rett syndrome (RTT). Despite the 

evidence suggestive of a potential therapeutic application on phytocannabinoids in RTT, 

so far no studies have addressed this possibility. 

Cannabidivarin (CBDV) is a n-propyl analogue of cannabidiol (CBD) that lacks 

psychoactive activity (Hill et al. 2013). In vitro data shows that CBDV possesses low 

affinity and lacks appreciable functional activity at the cannabinoid receptor 1 (CB1) and 

cannabinoid receptor 2 (CB2). Little interaction with the enzymes responsible for the 

synthesis and degradation of endocannabinoids is reported (Bisogno et al. 2003; De 

Petrocellis et al. 2011) although purified CBDV is potentially a low potency inhibitor of the 

endocannabinoid membrane transporter and Diacylglycerol Lipase (DAGL), which would 

lead to inhibition of the biosynthesis of the endocannabinoid 2-AG. Moreover, CBDV may 

act through transient receptor potential (TRP) cation channels with agonistic actions at 

TRPV1 and TRPV2 channels (De Petrocellis et al. 2011; 2012), and antagonistic actions 

at TRPM 8 (De Petrocellis et al. 2011) in vitro. 

Cannabidiolic acid (CBDA) is the acidic precursor of CBD. In harvested cannabis, CBDA 

gradually loses its carboxyl group to form CBD, a process that can be accelerated by 

heating or burning cannabis, as happens when it is smoked. Currently, little is known 

about the pharmacological actions of CBDA. There is already evidence, however, that 

CBDA shares the ability of CBD to activate TRPV1 and TRPA1 channels and to 
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antagonize TRPM8 (De Petrocellis et al. 2008; 2011). However, CBDA produces these 

effects with significantly less potency than CBD (Rock et al. 2012). In addition, CBDA can 

act as a selective inhibitor of COX-2 (Takeda et al. 2008), an enzyme expressed by cells 

undergoing inflammation, although this finding has not been confirmed by subsequent 

studies (Ruhaak et al. 2011). 

In this project, we started our investigations using CBDV and CBDA, two compounds 

strictly related to CBD (CBDV is its propyl analogue while CBDA is its direct precursor) but 

whose therapeutic applications are more understudied in the context of neurological 

disorders. We aimed at testing for the first time the possibility that non-psychotomimetic 

phytocannabinoids, namely CBDV and CBDA, could be beneficial towards symptoms and 

signs associated with RTT. To this aim, chronic intraperitoneal treatments with CBDV (or 

relative vehicle) at the doses of 0.2, 2, 20 or 200 mg/kg or CBDA (or relative vehicle) at the 

dose of 2 and 20 mg/kg were carried out from PND 28 to PND 66 and their effects on 

motor and neurological symptom progression and cognitive deficits were monitored in 

Mecp2 KO mice, an animal model of RTT. Doses were chosen based on previous 

pharmacokinetic studies (Deiana et al. 2012) showing that CBDV at the dose of 60 mg/kg 

injected intraperitoneally was rapidly absorbed and readily detectable in the rat brain 30 

minutes post-injection and its levels in the brain gradually declined until reaching values 

close to the detection threshold within 24 hours after dosing. 

During the whole treatment schedule mice were scored every other day to evaluate the 

possible impact of phytocannabinoid treatments on motor symptoms (hindlimb clasping, 

gait, mobility) as well as neurological signs (breathing abnormalities, tremors) and general 

condition present in Mecp2 KO mice. Moreover, to assess the efficacy of 

phytocannabinoids administration in reverting short- and long-term memory deficits 
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present in KO mice, the NOR test was performed at different time points during 

pharmacological treatments, i.e. PND 41, 56 and 66. 

Finally, 24 hours after the last injection, mice were sacrificed and brain tissues from Mecp2 

WT and KO were collected to perform biochemical studies in order to assess the ability of 

phytocannabinoids to modulate same of the neurochemical markers known to be altered in 

RTT such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) 

protein levels and their common downstream PI3K/Akt/mTOR signaling pathway. 

Furthermore, additional analysis were carried out in order to assess the levels of 

inflammatory markers, such as CD11b, TNFα and GFAP, as well as the status of the 

endocannabinoid system in the brain of Mecp2 WT and KO mice after phytocannabinoid 

administration.  

Behavioral and biochemical results obtained in this study will provide important information 

about the effectiveness of CBDV and CBDA administration on symptom progression and 

cognitive deficits in the context of RTT. 
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ANIMALS 

The Mecp2-null mouse strain was generated according to Cobolli Gigli et al. (2016). 

C57BL/6 Mecp2 heterozygous females purchased from Jackson Laboratories 

(B6.129P2(C)-MeCP2tm1.1Bird/J) were crosses with CD1 WT male mice (Crl:CD1(ICR); 

Charles River) and kept backcrossing each generation of CD1 heterozygous females with 

new CD1 males for at least 10 generations. All animals were housed in groups of 4-5 in 

clear plastic cages on a 12 h light-dark cycle (lights on 8:00 AM) and in a temperature- (22 

± 2°C) and humidity-controlled environment (50 ±10%) with a plastic tube for 

environmental enrichment and had free access to food and water. Experimental 

procedures were performed in accordance with the guidelines released by the Italian 

Ministry of Health (D.L. 2014/26) and the European Community directives regulating 

animal research (2010/63/EU). Protocols were approved by the Italian Minister for 

Scientific Research and all efforts were made to minimize the number of animals used and 

their suffering. 

GENOTYPING 

Mouse genotypes were determined through PCR on genomic DNA purified from tail 

biopsy. Biopsies were obtained within the second and the third week of life. 

Forward PCR primer sequences: 5’-ACCTAGCCTGCCTGTACTTT for the identification of 

the null allele, 5’-GACTGAAGTTACAGATGGTTGTG for the WT allele. Common reverse 

primer sequence: 5’- CCACCCTCCAGTTTGGTTTA. The obtained PCR products were: a 

single band of 450 base pairs (bp) for the Mecp2-null mice; a single band of 400 bp for the 

WT animals and the two bands for heterozygous females. 
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TREATMENT 

CBDV treatment. A total of 112 littermate male mice from 4 different cohorts were used in 

the study, divided in 10 treatment groups: 22 for WT-vehicle, 10 for WT-CBDV 0.2 mg/kg, 

13 for WT-CBDV 2 mg/kg, 12 for WT-CBDV 20 mg/kg, 3 for WT-CBDV 200 mg/kg, 11 for 

KO-vehicle, 6 for KO-CBDV 0.2 mg/kg, 13 for KO-CBDV 2 mg/kg, 14 for KO-CBDV 20 

mg/kg and 8 for KO-CBDV 200 mg/kg. 

CBDA treatment. A total of 37 littermate male mice were used in this study, divided in 6 

treatment groups: 4 for WT-vehicle, 6 for WT-CBDA 2 mg/kg, 6 for WT-CBDA 20 mg/kg, 7 

for KO-vehicle, 7 for KO-CBDA 2 mg/kg, 7 for KO-CBDA 20 mg/kg. 

Pure CBDV (96.4%; CBD 3.3%) and pure CBDA (97%; CBGA 2.4%, CBD 0.4%), a kind 

gift of GW Pharmaceuticals (Cambridge, UK), was stored at -20°C and freshly prepared 

daily by dissolution in ethanol, kolliphor EL and saline (2:1:17 and 1:1:18 respectively). 

The treatments started at PND 28 (when animals were 4 weeks old) and lasted until PND 

67 (when animals were 9 weeks old). Every day, mice were weighed and received an 

intraperitoneal injection of CBDV (or relative vehicle) at the doses of 0.2, 2, 20 or 200 

mg/kg or CBDA (or relative vehicle) at the dose of 2 and 20 mg/kg between 9:00 a.m. and 

11:00 a.m. (Figure 3). 

BEHAVIORAL STUDIES 

Score test 

Neurological defects in Mecp2-null mice were evaluated using semi-quantitative 

observational scoring for hindlimb clasping, gait, breathing, tremor, mobility and general 

condition. Starting from postnatal day (PND) 28, Mecp2 WT and KO mice were scored 

every other day to evaluate the effect of chronic phytocannabinoids, CBDV and CBDA, 

treatment on motor symptoms as well as neurological signs and general condition.  
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Each of the six symptoms was scored from 0 to 2 (0 corresponds to the symptom being 

absent or the same as in the WT animal; 1 when the symptom was present; 2 when the 

symptom was severe) as previously described by Guy et al. (2007) and Szczesna et al. 

(2014). Specifically: 

Mobility: the mouse is observed when placed on bench, then when handled gently and 

scored as follows: 0 = As WT, 1 = Reduced movement when compared with WT: extended 

freezing period when first placed on bench and longer periods spent immobile. 2 = No 

spontaneous movement when placed on the bench; mouse can move in response to a 

gentle prod or a food pellet placed nearby.  

Gait: 0 = As WT. 1 = Hind legs are spread wider than WT when walking or running with 

reduced pelvic elevation, resulting in a 'waddling' gait. 2 = More severe abnormalities: 

tremor when feet are lifted, walks backward or 'bunny hops' by lifting both rear feet at 

once. 

Hindlimb clasping: mouse observed when suspend by holding base of the tail. 0 = Legs 

splayed outward. 1 = Hindlimbs are drawn toward each other (without touching) or one leg 

is drawn into the body. 2 = Both legs are pulled in tightly, either touching each other or 

touching the body.  

Tremor: mouse observed while standing on the flat palm of the hand. 0 = No tremor. 1 =  

Intermittent mild tremor. 2 = Continuous tremor or intermittent violent tremor. 

Breathing: movement of flanks observed while animal is standing still. 0 = Normal 

breathing. 1 = Periods of regular breathing interspersed with short periods of more rapid 

breathing or with pauses in breathing. 2 = Very irregular breathing-gasping or panting.    

General condition: mouse observed for indicators of general well-being such as coat 

condition, eyes and body stance. 0 = Clean shiny coat, clear eyes, and normal stance. 1 = 
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Eyes dull, coat dull/ungroomed, and somewhat hunched stance. 2 = Eyes crusted or 

narrowed, piloerection, and hunched posture. 

If at any point an animal scored 2 out of 2 for any of the last three behaviors, or if the 

animal lost 20% of its body weight during the experiment, it was killed. 

Novel object recognition (NOR) test 

The test was performed on PND 28, 41, 56 and 66 (0, 14, 29 and 39 days after starting 

treatments). The experimental apparatus used for the NOR test was an open-field box 

(43x43x32 cm) made of Plexiglas, placed in a dimly illuminated room. Animals performed 

each test individually as in Zamberletti et al. 2015 using retention times of 30 minutes 

(short-term memory) and 24 hours (long-term memory). During the test phase the time 

spent exploring the familiar object (Ef) and the new object (En) was recorded separately by 

two observers blind to the groups and the discrimination index was calculated as follows:  

(En-Ef)/(En+Ef) x 100. 

BIOCHEMICAL STUDIES 

Western blot 

Mice were sacrificed by cervical dislocation on PND 68, 24 hours after the last 

phytocannabinoid  injection. The brains were quickly removed, immediately frozen in liquid 

nitrogen and stored at -80°C until processing. 

The experiments were carried out as previously reported (Zamberletti et al. 2015). Briefly, 

equal amounts total protein lysates from hemisected brains (50 µg) were run on a 14% 

SDS-polyacrylamide gel. The proteins were transferred to polyvinylidene difluoride (PVDF) 

membranes and blocked for 2 hours before incubation overnight at 4°C with the following 

antibodies: rabbit polyclonal anti-BDNF (1:1000; Millipore, Italy), goat polyclonal anti-IGF-1 

(1:1000; Relia Tech GmbH, Germany), rabbit polyclonal anti-pAKT Ser473 (1:1000; Cell 
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Signaling, Danvers, MA), rabbit polyclonal anti-pS6 (1:1000; Cell Signaling, Danvers, MA), 

rabbit polyclonal anti-pERK1/2 (1:1000; Cell Signaling, Danvers, MA), rabbit polyclonal 

anti-NAPE-PLD (1:3000; Cayman Chemical, Ann Arbor, MI), rabbit polyclonal anti-FAAH 

(1:2000; Cayman Chemical, Ann Arbor, MI), goat polyclonal anti-DAGLα (1:1000; Abcam, 

Cambridge, UK), rabbit polyclonal anti-MAGL (1:1000; Cayman Chemical, Ann Arbor, MI ), 

rabbit polyclonal anti-GFAP (1:1000; Sigma Aldrich, Italy), rabbit polyclonal anti-TNFalpha 

(1:1000; Relia Tech GmbH, Germany), rabbit polyclonal anti-CD11b (1:1000; Novus 

Biologicals, USA). Bound antibodies were detected with horseradish peroxidase (HRP) 

conjugated secondary anti-rabbit or anti-goat antibody (1:2000-1:5000; Chemicon 

International, Temecula, CA). For normalization, the blots were stripped with Restore 

Western Blot Stripping Buffer (Thermo Scientific, Rockford, IL) and re-blotted with mouse 

anti-β-actin monoclonal antibody (1:10000; Sigma Aldrich, Italy), rabbit polyclonal anti-total 

AKT (1:1000; Abcam, Cambridge, UK), rabbit polyclonal anti-total S6 (1:1000; Cell 

Signaling, Danvers, MA) or rabbit polyclonal anti-total ERK1/2 (1:1000; Cell Signaling, 

Danvers, MA) overnight at 4°C. Bound antibodies were visualized using Clarity Western 

ECL Substrate (Bio-Rad Laboratories, Hercules, CA, USA) and bands were detected with 

a GBOX XT camera (Syngene, Cambridge, UK). Optical density of the bands was 

quantified using Image Pro Plus 7.0 software (MediaCybernetics, Bethesda, MD, USA), 

normalized to β-actin and expressed as arbitrary units.  

Lipid extraction and endocannabinoid measurement 

Hemisected brains were dounce-homogenized and extracted with 

chloroform/methanol/Tris-HCl (50 mM, pH 7.4) (2:1:1, v/v) containing internal deuterated 

standards for AEA, PEA, OEA, and 2-AG, quantification by isotope dilution [8-AEA, d4-

PEA, d4-OEA, and d5-2-AG, (Cayman Chemical)], respectively. The lipid-containing 
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organic phases were then purified by open bed chromatography on silica and fractions 

were obtained by eluting the column with 99:1, 90:10, and 50:50 (v/v) 

chloroform/methanol. Fractions eluted with chloroform/methanol 90:10 were collected, the 

excess solvent evaporated with a rotating evaporator, and aliquots analyzed by isotope 

dilution-LC/atmospheric pressure chemical ionization/MS carried out in the selected ion 

monitoring mode by using a Shimadzu HPLC apparatus (LC-10ADVP) coupled to a 

Shimadzu (LCMS-2020) quadrupole mass spectrometer via a Shimadzu atmospheric 

pressure chemical ionization interface. MS detection was performed by using values of 

m/z 356 and 348 (molecular ions + 1 for d8-AEA and AEA), m/z 304 and 300 (molecular 

ions + 1 for d4-PEA and PEA), m/z 330 and 326 (molecular ions + 1 for d4-OEA and OEA) 

and m/z 384 and 379 (molecular ions +1 for d5-2-AG and 2-AG). AEA, PEA, OEA, and 2-

AG levels were therefore calculated on the basis of their area ratios with the internal 

deuterated standard signal areas.  

Lipid amounts expressed as picomoles were then normalized per gram or milligram of wet 

tissue. 

Statistics 

For CBDV experiments, score data were analyzed non-parametrically using Pearson's 

Chi-square test with Yates correction. NOR data and biochemical results were expressed 

as mean ± SEM and analyzed by factorial- and main effects ANOVA, respectively. 

Calculations were carried out using Statistica 7.0 and R (R Core Team, 2013) Statistical 

Software. Bonferroni’s post-hoc test was used to control for multiple comparisons.  

CBDA behavioral and biochemical data were expressed as mean ± SEM and first 

analyzed by two-way ANOVA followed by Bonferroni’s post-hoc test. Calculations were 

carried out using Prism 5.0 software (GraphPad Software, San Diego, CA). A more 
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detailed and accurate statistical analysis is now ongoing (Pearson's Chi-square test with 

Yates correction for qualitative score data and three-way ANOVA analysis for NOR 

results). Survival curves were generated and compared using the log-rank method and the 

level of statistical significance was set at p<0.05. 
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1. BEHAVIORAL DATA 

1.1 Effect of chronic CBDV treatment in Mecp2 WT and KO mice 

Effect of chronic CBDV treatment on motor and neurological sign progression in Mecp2-

deficient mice 

Figure 4A shows the effect of chronic CBDV on tremors, hindlimb clasping, mobility, 

breathing, general condition and gait in KO mice over time. No effect of genotype or 

treatment on motor and neurological signs was observed in 4-week-old Mecp2 KO mice 

(data not shown). CBDV, at all doses tested, did not affect any of the considered 

parameters when given to WT mice (Figure 4). 

Tremors 

Male Mecp2 KO mice exhibited tremors beginning from 5 weeks of age. CBDV 

administration significantly reduced tremors in Mecp2 KO mice at 5 (χ2 
[8]=12.765, 

p=0.012) and 6 (χ2 
[8]=16.422, p=0.036) weeks of age, but not later. Doses of 2, 20 and 

200 mg/kg showed similar efficacy (p<0.001) whereas the lowest dose of CBDV tested, 

0.2 mg/kg, was ineffective and both appearance and intensity of tremors were similar in 

KO-CBDV 0.2 mg/kg mice compared to KO-vehicle animals. 

Hindlimb clasping 

Mecp2 KO mice showed a significant increase in hindlimb clasping starting from 6 weeks 

of age. CBDV treatment significantly attenuated hindlimb clasping in KO mice at 6 weeks 

of age (χ2 
[8]=22.814, p=0.0036). This effect was reached at doses of 2, 20 and 200 mg/kg 

(p<0.05, 0.01). In contrast, CBDV was ineffective at the lowest dose tested, 0.2 mg/kg. 

Breathing and gait 

Breathing and gait abnormalities were evident in Mecp2 KO mice starting from 7 weeks of 

age. Breathing (χ2 [8]=22.405, p=0.0042) and gait (χ2 [8]=16.275, p=0.039) were improved 
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by CBDV in Mecp2 KO mice at the starting of the symptoms only, that is 7 weeks of age. 

Once again, doses of 2, 20 and 200 mg/kg were equally efficacious (p<0.05, 0.01, 0.001) 

whereas the lowest dose tested was completely ineffective. 

Mobility and general condition 

Impaired mobility and deterioration of general condition in KO mice was observed starting 

from 7 weeks of age. CBDV administration at all doses tested did not affect both 

parameters in KO mice during the whole treatment schedule. 

Total Symptom Score 

Individual behavior scores were combined into a total symptom score for each mouse 

(Figure 4B). Total symptom score was significantly increased in KO mice treated with 

vehicle starting from 5 weeks of age compared to WT mice and continued to increase until 

the end of the observation period. Significant effects were observed on total symptom 

score at 6 (χ2 [8]=19.617, p=0.0037) and 7 (χ2 [8]=21.732, p=0.0041) weeks of age. 

Treatment with CBDV 2, 20 and 200 mg/kg showed similar efficacy in attenuating motor 

and neurological deficits in KO mice. Indeed, all doses of CBDV significantly improved 

total symptom score in KO mice at 6 (p<0.001) and 7 (p<0.001) weeks of age, although 

CBDV’s beneficial effect was lost at later stages of the disease progression (i.e. 8 and 9 

weeks of age). In contrast, CBDV 0.2 mg/kg did not affect the progression of symptoms 

over the entire observation period. 

Effect of chronic CBDV treatment on survival in Mecp2-deficient male mice 

The percentage survival of Mecp2 KO and WT mice treated with CBDV or vehicle is 

shown in figure 5, where the results are plotted as Kaplan–Meier survival curves and 

expressed as the percentage of surviving mice over total mice with respect to time 

expressed as weeks. No lethality was observed in WT mice treated with either vehicle or 



 

34 

 

CBDV. In contrast, survival in KO mice treated with vehicle was only 38.5% by 9 weeks of 

age. All doses of CBDV administered from PND 28 onward were able to increase survival 

rates in Mecp2 KO mice at the end of the observation period compared to vehicle-treated 

littermates (KO-CBDV 0.2 mg/kg: 66.6%; KO-CBDV 2 mg/kg: 61.5%; KO-CBDV 20 mg/kg: 

71.4%; KO-CBDV 200 mg/kg: 87.5%), although this effect reached statistical significance 

only at the higher dose tested, 200 mg/kg (p=0.0433; log Rank test). 

Effect of chronic CBDV treatment on short- and long-term memory deficits in Mecp2-

deficient male mice 

Chronic administration of all doses of CBDV did not affect both short- and long-term 

memory in WT animals. 

Short-term memory 

Figure 6A shows the effect of chronic CBDV treatment on short-term memory in Mecp2 

WT and KO mice at different time points before and during CBDV administration. 

Three-way ANOVA revealed significant effects of genotype (F[1,281]=38.298, p<0.0001), 

treatment (F[4,281]=33.091, p<0.0001) and genotype x treatment interaction (F[4,280]=24.974, 

p<0.0001) on short-term memory. In Mecp2 KO mice, a cognitive impairment in short-term 

memory was already present at PND 28, a time point when the motor symptoms were not 

yet present. Indeed, the discrimination index was significantly reduced in KO mice with 

respect to WT littermates at this time point (p<0.001). The cognitive impairment in short-

term memory was consistently present in KO mice and was maintained until adulthood. In 

fact, KO animals showed significant reductions of the discrimination index at PND 41 

(p<0.001), 56 (p<0.001) and 66 (p<0.001) compared to WT mice. Interestingly, at each of 

these time points, administration of three different doses of CBDV (2, 20 and 200 mg/kg) 

completely and significantly counteracted the cognitive impairment in short-term memory 
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present in KO mice (p<0.001). In contrast, chronic CBDV treatment at the lowest dose 

tested, 0.2 mg/kg, did not rescue the cognitive impairment in KO mice, the discrimination 

index being still significantly reduced at PND 41 (p<0.001), 56 (p<0.001) and 66 (p<0.001) 

compared to WT mice. 

Long-term memory  

Figure 6B shows the effect of chronic CBDV treatment on long-term memory in Mecp2 WT 

and KO mice at different time points before and during CBDV administration. 

Three-way ANOVA revealed significant effects of genotype (F[1,280]=163.45, p<0.0001), 

treatment (F[4,280]=22.819, p<0.0001) and genotype x treatment interaction (F[4,281]=25.409, 

p<0.0001) on long-term memory. Similar to what was observed for short-term memory, 

Mecp2 KO animals showed a significant cognitive impairment in long-term memory at PND 

28, a pre-symptomatic phase of the disease. Indeed, the discrimination index was 

significantly reduced in KO mice with respect to WT littermates (p<0.001). The cognitive 

impairment in Mecp2 KO mice was maintained until adulthood, with the discrimination 

index of KO mice treated with vehicle being reduced at PND 41 (p<0.001), 56 (p<0.001) 

and 66 (p<0.001) respectively compared to WT mice. 

Interestingly, at each of these time points, administration of CBDV 2, 20 and 200 mg/kg 

significantly rescued the cognitive impairment in long-term memory present in KO mice 

(p<0.001). As already shown for short-term memory, the lowest dose of CBDV (0.2 mg/kg) 

was not able to recover this cognitive impairment present in KO mice, the discrimination 

index being still reduced at PND 41 (p<0.01), 56 (p<0.001) and 66 (p<0.05) compared with 

WT mice. 
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1.2 Effect of chronic CBDA treatment in Mecp2 WT and KO mice 

Effect of chronic CBDA treatment on motor and neurological sign progression in Mecp2-

deficient male mice 

Figure 7A shows the effect of chronic CBDA on tremors, hindlimb clasping, mobility, 

breathing, general condition and gait in KO mice over time. No effect of genotype or 

treatment on motor and neurological sign was observed in 4-week-old Mecp2 KO mice 

(data not shown). CBDA, at all doses tested, did not affect any of the considered 

parameters when given to WT mice (Figure 7). 

Tremors 

Male Mecp2 KO mice exhibited tremors beginning from 5 weeks of age as revealed by 

two-way ANOVA analysis (genotype effect, 5 wks: F[2,31]=69.20; p<0.0001; 6 wks: 

F[2,30]=2577; p<0.0001; 7 wks: F[2,28]=11270; p<0.0001; 8 wks: F[2,26]=939.3; p<0.0001; 9 

wks: F[2,24]=621.4; p<0.0001). CBDA per se, at all doses tested, did not have any effect 

when administered to WT mice. In Mecp2 KO mice, chronic administration of both doses 

of CBDA 2 and 20 mg/kg significantly reduced tremors in KO mice only at 9 weeks of age 

(treatment effect and genotype x treatment interaction: F[2,24]= 4.197; p=0.0273). 

Hindlimb clasping 

Mecp2 KO mice show an increase in hindlimb clasping starting from 5 weeks of age 

(genotype effect, 5 wks: F[2,31]=23.22; p<0.0001; 6 wks: F[2,30]=49.91; p<0.0001; 7 wks: 

F[2,28]=59.62; p<0.0001; 8 wks: F[2,26]=110.4; p<0.0001; 9 wks: F[2,24]=136; p<0.0001). 

CBDA per se, at all doses tested, did not have any effect when given to WT mice and 

chronic administration of CBDA 2 and 20 mg did not affect this parameter in Mecp2 KO 

mice during the whole treatment schedule. 
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Mobility 

Impaired mobility was observed in KO mice starting from 7 weeks of age (genotype effect, 

7 wks: F[2,28]=18.05; p=0.0002; 8 wks: F[2,26]=62.83; p<0.0001; 9 wks: F[2,24]=161.3; 

p<0.0001). CBDA treatment per se did not have any effect when administered to WT mice. 

In Mecp2 KO mice, chronic CBDA at the dose of 20 mg/kg significantly attenuated mobility 

deficits in KO mice at 8 and 9 weeks of age (treatment effect and genotype x treatment 

interaction: 8 wks: F[2,26]= 3.174; p=0.0529; 9 wks: F[2,24]= 3.716; p=0.0393). In contrast, 

CBDA 2 mg/kg did not affect the development of this symptom in KO mice at any time. 

Breathing 

Breathing abnormalities were evident in Mecp2 KO mice starting from 7 weeks of age 

(genotype effect, 7 wks: F[2,28]=12.57; p=0.0014; 8 wks: F[2,26]=176.3; p<0.0001; 9 wks: 

F[2,24]=144.2; p<0.0001). As with the other behavioral signs, CBDA per se did not have any 

effect on breathing abnormalities when given to WT animals. Administration of CBDA at 

doses of 2 and 20 mg/kg did not affect this parameter during the entire treatment period. 

General Condition 

General condition of KO mice treated with vehicle started to worsen from 7 weeks of age 

compared to WT animals (genotype effect, 7 wks: F[2,28]=20.25; p=0.001; 8 wks: 

F[2,26]=125.6; p<0.0001; 9 wks: F[2,24]=217.2; p<0.0001).  At all doses tested, CBDA per se 

had no effect when administered to WT animals. CBDA did not exert any beneficial effect 

on the general condition in Mecp2 KO mice during the whole treatment schedule. 

Gait 

Gait abnormalities were present in Mecp2 KO mice starting from 6 weeks of age (genotype 

effect, 6 wks: F[2,30]=16.62; p=0.0003; 7 wks: F[2,28]=76.30; p<0.0001; 8 wks: F[2,26]=380.9; 

p<0.0001; 9 wks: F[2,24]=973; p<0.0001). CBDA per se did not affect this parameter when 
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given to WT mice. Administration of CBDA only at a dose of 20 mg/kg significantly 

attenuated gait deficits in KO mice at 8 and 9 weeks of age (treatment and genotype x 

treatment interaction: 8 wks: F[2,26]= 6.215; p=0.0062; 9 wks: F[2,24]= 7.959; p=0.0022), 

whereas CBDA 2 mg/kg did not affect this symptom in KO mice at any time. 

Total Symptom Score 

To obtain an overview of the effect of CBDA on progression of the motor and neurological 

sign in Mecp2 KO animals individual behavior scores were combined into a total symptom 

score for each mouse (Figure 7B). Total symptom score was significantly increased in KO 

mice treated with vehicle starting from 5 weeks of age compared to WT mice and 

continued to increase until the end of the observation period (genotype effect, 5 wks: 

F[2,31]=88.67; p<0.0001; 6 wks: F[2,30]=124.7; p<0.0001; 7 wks: F[2,28]=229.1; p<0.0001; 8 

wks: F[2,26]=528.8; p<0.0001; 9 wks: F[2,24]=755.6; p<0.0001). Two-way ANOVA revealed a 

significant effect of treatment and treatment x genotype interaction on total symptom score 

at 8 and 9 weeks of age (8 wks: F[2,26]= 3.721; p=0.0379; 9 wks: F[2,24]= 5.070; p=0.0146). 

As outlined by the total symptom score graph, treatment with CBDA 20 mg/kg significantly 

improved total symptom score in KO mice at later stages of the disease progression (8 

and 9 weeks of age). In contrast, CBDA 2 mg/kg had no significant effect on the 

progression of symptoms over the entire treatment period. 

Effect of chronic CBDA treatment on survival in Mecp2-deficient male mice 

The percentage survival of Mecp2 KO and WT mice treated with CBDA (2 and 20 mg/kg) 

or vehicle is shown in figure 8, where the results are plotted as Kaplan–Meier survival 

curves and expressed as the percentage of surviving mice over total mice with respect to 

time expressed as weeks. No lethality was observed for WT mice treated with vehicle or 

CBDA. In contrast, survival in KO mice treated with vehicle was 57.14% at 9 weeks of age. 
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Chronic CBDA treatment at the higher dose tested, 20 mg/kg, was able to increase 

survival rates in Mecp2 KO mice at the end of the observation period compared to vehicle-

treated littermates (85.71%), although this effect did not reach statistical significance. On 

the contrary, CBDA at dose of 2 mg/kg did not affect this parameter in Mecp2 KO mice. 

Indeed, the survival rate being the same in the/this treatment group compared to KO-

vehicle littermates (57.14%). 

Effect of chronic CBDA treatment on short- and long-term memory deficits in Mecp2-

deficient male mice 

Chronic administration of all doses of CBDA per se did not affect both short- and long-term 

memory in WT animals, the discrimination index being similar in all the experimental 

groups analyzed. 

Short-term memory 

Figure 9A shows the effect of chronic CBDA treatment on short-term memory in Mecp2 

WT and KO mice at different time points before and during CBDA administration. 

As expected, a cognitive impairment in short-term memory was already present in KO 

animals at PND 28, a time point when the motor symptoms were not present. Indeed, the 

discrimination index was significantly reduced by about 185% in KO mice with respect to 

WT littermates. Two-way ANOVA analysis revealed significant effects of genotype, 

treatment and genotype x treatment interaction on short-term memory at PND 41 

(genotype, F[2,30]=30.05, p<0.0001; treatment, F[2,30]=4.163, p=0.0254; genotype x 

treatment interaction, F[2,30]=5.021, p=0.0132), 56 (genotype, F[2,27]=25.20, p<0.0001; 

treatment, F[2,27]=3.687, p=0.0384; genotype x treatment interaction, F[2,27]=3.122, 

p=0.0603) and 66 (genotype, F[2,24]=50.28, p<0.0001; treatment, F[2,24]=7.134, p=0.0037; 

genotype x treatment interaction, F[2,24]=10.29, p=0.0006). This cognitive impairment in 
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short-term memory was constantly present in KO mice and it was maintained until 

adulthood. In fact, KO animals showed significant reductions of the discrimination index by 

about 183, 153 and 179%, at PND 41, 56 and 66 respectively compared to WT mice. 

At each considered time point, administration of the two doses of CBDA (2 and 20 mg/kg) 

completely and significantly counteracted the cognitive impairment in short-term memory 

present in KO mice. 

Long-term memory  

Figure 9B shows the effect of chronic CBDA treatment on long-term memory in Mecp2 WT 

and KO mice at different time points before and during CBDA administration. 

Similar to what was observed for short-term memory, KO animals showed a significant 

cognitive impairment in long-term memory at PND 28. Indeed, the discrimination index 

was significantly reduced by about 149% in KO mice with respect to WT littermates.  

Two-way ANOVA analysis revealed significant effects of genotype, treatment and 

genotype x treatment interaction on long-term memory at PND 41 (genotype, F[2,30]=46.79, 

p<0.0001; treatment, F[2,30]=2.454, p=0.1031; genotype x treatment interaction, 

F[2,30]=6.997, p=0.0032), 56 (genotype, F[2,27]=56.40, p<0.0001; treatment, F[2,27]=0.8938, 

p=0.4208; genotype x treatment interaction, F[2,27]=2.400, p=0.1098) and 66 (genotype, 

F[2,24]=144.4, p<0.0001; treatment, F[2,24]=19.26, p<0.0001; genotype x treatment 

interaction, F[2,24]=21.52, p<0.0001). This cognitive impairment was maintained until 

adulthood, the discrimination index of KO mice treated with vehicle being reduced by 

about 147, 156 and 227%, at PND 41, 56 and 66 respectively compared to WT mice. 

Chronic administration of the two doses of CBDA (2 and 20 mg/kg) ameliorated the 

cognitive impairment in long-term memory present in KO mice, and this effect reached 
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statistical significance at PND 41 and 66, whereas a non-significant trend was observed at 

PND 56.  

2. BIOCHEMICAL DATA 

2.1 Effect of chronic CBDV treatment in Mecp2 WT and KO mice 

Effect of chronic CBDV treatment on BDNF, IGF-1 protein levels and downstream 

PI3K/AKT/mTOR and ERK1/2 pathways in hemisected brains of Mecp2-deficient male 

mice 

CBDV at all doses tested did not affect the expression of all the considered biochemical 

markers when given chronically to WT mice. 

Two-way ANOVA analysis revealed significant effects of genotype (F[4,38]=4.773, 

p=0.0032) and genotype x treatment interaction (F[4,38]=2.709, p=0.0444) on IGF-1 levels. 

IGF-1 levels were significantly reduced in Mecp2 KO mice treated with vehicle compared 

to WT animals (p<0.05). CBDV administration dose-dependently rescued IGF-1 

expression in KO mice. Indeed, CBDV 2, 20 and 200 mg/kg significantly increased IGF-1 

levels in KO mice (p<0.05, 0.01), whereas a non-significant trend (p=0.0864) was 

observed after administration of the lowest dose of 0.2 mg/kg (Figure 10A). 

Statistical analysis showed significant effects of genotype (F[4,38]=5.677, p=0.0220), 

treatment (F[4,38]=2.677, p=0.0455) and genotype x treatment interaction (F[4,38]=9.997, 

p=0.0081) on BDNF expression. BDNF protein levels were significantly reduced in Mecp2 

KO mice treated with vehicle with respect to WT littermates (p<0.01). Interestingly, chronic 

administration of CBDV at the dose of 0.2 mg/kg did not affect BDNF expression in KO 

mice, its levels being still significantly reduced compared to WT-vehicle animals (p<0.05). 

In contrast, chronic CBDV at the doses of 2, 20 and 200 mg/kg significantly restored BDNF 

levels in KO mice, to a similar degree (p<0.05, Figure 10B). 
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Finally, figure 10C, represents the effect of chronic CBDV administration on pAKT Ser473, 

rpS6 and ERK1/2 phosphorylation in the brain of Mecp2 WT and KO mice. Significant 

effects of genotype and genotype x treatment interaction were also found on pAKT 

(F[4,26]=3.967, p=0.0570; F[4,26]=6.574, p=0.0009) and rpS6 phosphorylation (F[4,29]=23.83, 

p<0.0001; F[4,29]=2.702, p=0.0500). Phosphorylation levels of AKT were significantly 

reduced in Mecp2 KO mice compared to WT animals (p<0.05). Chronic CBDV 

administration dose dependently recovered pAKT levels in Mecp2 deficient mice, reaching 

statistical significance at doses of 20 and 200 mg/kg (p<0.01, 0.001). In contrast, the 

lowest dose of CBDV, 0.2 mg/kg, did not affect pAKT Ser473 levels in Mecp2 deficient 

mice, the levels of which were still decreased compared to controls (p<0.05). 

Mecp2 deletion significantly reduced rpS6 phosphorylation within the adult brain compared 

to WT littermates (p<0.001). Chronic CBDV treatment at doses of 2, 20 and 200 mg/kg 

significantly increased rpS6 phosphorylation levels in KO mice (p<0.05, 0.01). In contrast, 

the lowest dose tested, 0.2 mg/kg, was ineffective, rpS6 phosphorylation being similar in 

KO-vehicle and KO-CBDV 0.2 mice (p<0.05). Neither genotype nor CBDV treatment 

affected ERK1/2 phosphorylation. 

Effect of chronic CBDV treatment on endocannabinoid contents in Mecp2-deficient male 

mice 

Figure 11A shows the effects of chronic CBDV administration on the levels of the 

endocannabinoids AEA and 2-AG as well as the N-acylethanolamines PEA and OEA in 

the brain of Mecp2 WT and KO mice. No statistically significant differences in AEA, OEA 

PEA and 2-AG levels were found between the two genotypes, although a trend for the 

increase of AEA (p=0.0613) and OEA (p=0.0817) was noticed. Statistical analysis 

revealed significant effects of genotype x CBDV treatment interaction on AEA 



 

43 

 

(F[4,20]=5.859, p=0.045) and 2-AG (F[4,20]=5.375, p=0.041) levels as well as non-significant 

trend on OEA (F[4,20]=8.787, p=0.067) content. CBDV administration at doses of 2, 20 and 

200 mg/kg significantly increased AEA levels in Mecp2 KO mice with respect to WT-

vehicle mice (p<0.05, 0.001, 0.01). A similar effect of CBDV was also observed on OEA 

levels. Indeed, chronic CBDV treatment at doses of 2, 20 and 200 mg/kg significantly 

enhanced OEA content (p<0.01, 0.001, 0.05). Chronic CBDV administration significantly 

reduced 2-AG levels in the brain of KO mice at doses of 20 and 200 mg/kg compared to 

vehicle-treated animals (p<0.05, 0.01). CBDV treatment also showed a trend toward 

reduction of 2-AG levels in WT mice. Finally, CBDV treatment did not affect PEA content in 

the brain of both WT and KO animals. 

Effect of chronic CBDV treatment on endocannabinoid synthetic and degrading enzymes 

in Mecp2-deficient male mice 

Figure 11B depicts the effect of chronic CBDV treatment on the protein levels of the main 

endocannabinoid synthetic and degrading enzymes in the brain of Mecp2 WT and KO 

mice.  

Two-way ANOVA analysis revealed significant effects on NAPE-PLD (genotype, 

F[4,32]=5.724, p=0.0228; genotype x treatment interaction, F[4,32]=3.227, p=0.0247), FAAH 

(genotype, F[4,32]=11.14, p=0.0022; treatment, F[4,32]=1.782, p=0.1576) and DAGLα 

(treatment, F[4,32]=11.75, p<0.0001) levels in the hemisected brains of KO mice. The 

expression of the main AEA synthetic enzyme NAPE-PLD was significantly increased in 

male Mecp2 KO mice after chronic treatment with CBDV at the highest dose tested, 200 

mg/kg (p<0.01). In contrast, CBDV treatment at doses of 0.2, 2 and 20 mg/kg did not affect 

NAPE-PLD levels both in Mecp2 WT and KO mice. Deletion of Mecp2 resulted in a 

significant reduction of FAAH levels in vehicle-treated mice (p<0.05). Chronic CBDV 



 

44 

 

administration at all doses tested did not rescue FAAH expression in Mecp2 KO mice. In 

addition, chronic treatment with CBDV 0.2 and 20 mg/kg showed a trend towards a 

reduction in FAAH expression in WT mice, although the effect did not reach statistical 

significance. CBDV treatment also affected the expression of DAGLα, a key enzyme in the 

biosynthesis of the endocannabinoid 2-AG. In fact, chronic CBDV administration 

significantly reduced DAGLα protein levels at all doses tested both in WT (p<0.01) and in 

KO mice (p<0.001). No effect of either genotype or CBDV treatment was observed on the 

2-AG degrading enzyme MAG lipase. 

Effect of chronic CBDV treatment on CB1 and CB2 receptors in Mecp2-deficient male 

mice 

Figure 11C shows the effect of chronic CBDV treatment on the protein levels of CB1 and 

CB2 receptors in the brain of Mecp2 WT and KO mice. 

Two-way ANOVA analysis revealed significant effects of genotype and genotype x 

treatment interaction on CB1 (F[4,32]=19.89, p<0.0001; F[4,32]=3.429, p=0.0193) and CB2 

(F[4,32]=4.662, p=0.0384; F[4,32]=3.834, p=0.0118) levels. CB1 protein levels were 

significantly increased in Mecp2 KO mice treated with vehicle compared to WT controls 

(p<0.001). Chronic CBDV treatment 2, 20 and 200 mg/kg significantly reduced CB1 

receptor expression in KO mice (p<0.05), whereas the 0.2 mg/kg dose was ineffective. 

CBDV at all doses tested did not affect CB1 receptor levels when chronically administered 

to WT animals. 

CB2 receptor expression was significantly enhanced in Mecp2 KO mice compared to WT 

controls (p<0.001). Chronic CBDV administration at doses of 2, 20 and 200 mg/kg 

significantly rescued CB2 receptor expression in KO mice (p<0.001), without affecting its 
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levels in WT littermates. In contrast, CBDV 0.2 mg/kg was not able to normalize CB2 

receptor expression in Mecp2 KO animals. 

Effect of chronic CBDV treatment (20 mg/kg) on glial markers in hemisected brains of 

Mecp2-deficient male mice 

Figure 12 shows the effect of chronic CBDV treatment (20 mg/kg) on the protein levels of 

the microglia marker, CD11b, the astrocyte marker, GFAP, and the pro-inflammatory 

cytokine, TNFα, in the brain of Mecp2 WT and KO mice. 

Statistical analysis shows main effects of genotype (F[1-12]=6.966, p=0.0216) and treatment 

(F[1-12]=4.756, p=0.0498) on CD11b levels. In the brain of Mecp2 KO mice, CD11b 

expression was significantly increased by about 60% compared to WT littermates. Chronic 

CBDV treatment at the dose of 20 mg/kg was able to reduce CD11b levels in KO mice, 

without affecting the expression of this marker when administered to controls. 

Two-way ANOVA revealed a significant effect of CBDV treatment also on GFAP levels 

(F[1-12]=6.540, p=0.0251). Indeed, CBDV showed a trend towards increasing GFAP 

expression both in WT and KO mice. Finally, neither genotype nor treatment affected 

TNFα levels in the brain. 

2.2 Effect of chronic CBDA treatment in Mecp2 WT and KO mice 

Effect of chronic CBDA treatment on BDNF and IGF-1 protein levels in hemisected brains 

of Mecp2-deficient male mice 

In order to investigate the ability of CBDA to modulate brain levels of BDNF and IGF-1 in 

Mecp2 KO mice, animals were sacrificed 24 hours after the last CBDA (or vehicle) 

injection and western blot studies were carried out on protein extracts obtained from 

hemisected brains. 
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Figure 13 shows the effect of chronic CBDA treatment on BDNF and IGF-1 protein levels 

in Mecp2 WT and KO mice. 

Two-way ANOVA revealed significant effects of genotype and genotype x treatment 

interaction on BDNF (genotype: F[2-18]=4.629, p=0.0453; interaction: F[2-18]=4.6115, 

p=0.0241) and IGF-1 (genotype: F[2-18]=3.288, p=0.0607; interaction: F[2-18]=9.514, 

p=0.0015) levels. As expected, Mecp2 deletion resulted in a reduction of both BDNF and 

IGF-1 by about 66% and 50% compared to controls. Chronic CBDA treatment did not 

affect the expression of the two neurotrophins when administered to WT mice. In contrast, 

both doses of CBDA showed a similar efficacy in increasing BDNF and IGF-1 expression 

in Mecp2 KO mice. 

Effect of chronic CBDA treatment on glial markers in hemisected brains of Mecp2-deficient 

male mice 

Figure 14 shows the effect of chronic CBDA treatment (2 and 20 mg/kg) on the protein 

levels of the microglia marker, CD11b, the astrocyte marker, GFAP, and the pro-

inflammatory cytokine, TNFα, in the brain of Mecp2 WT and KO mice. 

Preliminary data seem to confirm that in the brain of Mecp2 KO mice, CD11b expression 

was increased compared to WT littermates. Chronic CBDA treatment (2 and 20 mg/kg) 

seems to reduce CD11b levels in KO mice, without affecting the expression of this marker 

when administered to controls. 

In contrast, chronic CBDA administration did not affect GFAP and TNFα levels in the brain 

of both WT and KO mice. 
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BEHAVIORAL RESULTS: motor and neurological signs 

The present behavioral analyses confirm our previous findings (Cobolli Gigli et al. 2016) 

showing that Mecp2 KO male mice from a CD1 background show normal development for 

about the first month of life. Starting from 5 weeks of age, these mice develop severe and 

progressive motor deficits and neurological abnormalities, including tremors, hindlimb 

clasping, gait and breathing abnormalities, mobility impairments and a worsening of their 

general condition. Due to the severity of symptoms, about 50% of Mecp2 KO mice dies by 

9 weeks of age. Furthermore, these mice display cognitive impairments both in short- and 

long-term memory that are already present at 4 weeks of age, a phase of the disease 

when motor and neurological impairments are still absent. 

We here show for the first time that both CBDV and CBDA ameliorate neurological and 

motor signs in Mecp2 KO mice at different stages of the disease progression. In particular, 

CBDV significantly delays the appearance of tremors, hindlimb clasping as well as 

breathing and gait abnormalities between 5 and 7 weeks of age, but its beneficial effect is 

lost at later stages of the disease progression (i.e. 8 and 9 weeks of age). Unlike CBDV, 

chronic administration of CBDA in Mecp2 KO mice partially attenuates tremors, mobility 

and gait deficits only at later stages of the disease progression, i.e. 8 and 9 weeks of age, 

a time point when CBDV’s beneficial effect is lost. 

Remarkably, chronic administration of both phytocannabinoids shows a trend towards 

increasing survival rates in Mecp2 KO mice at the end of the observation period. 

From a pharmacological point of view, CBDV and CBDA do not show a linear dose-

response curve, at least in the dose ranges we tested, but they elicit an “all-or-none” 

response. Doses of CBDV of 2, 20 and 200 mg/kg show similar efficacy in ameliorating 
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RTT-like phenotype in Mecp2 mice, whereas the lowest dose tested, 0.2 mg/kg, is 

completely ineffective. Similarly, CBDA is effective only at the dose of 20 mg/kg. 

Importantly, both CBDV and CBDA chronic treatments do not affect motor and 

neurological signs when chronically administered to WT animals, suggesting the safety 

and tolerability of these compounds. 

BEHAVIORAL RESULTS: short- and long-term memory 

Remarkably, both phytocannabinoids show efficacy in reverting short- and long-term 

memory deficits in Mecp2 KO mice, although CBDV does so more potently that CBDA. 

In particular, chronic CBDV administration at doses of 2, 20 and 200 mg/kg completely 

recovers short- and long-term memory deficits during the whole treatment schedule, and 

this improvement persists at later stages of the disease progression, when CBDV’s 

efficacy towards neurological and motor signs is lost. 

Similarly, both doses of CBDA, 2 and 20 mg/kg, are able to improve short-term memory 

deficits in KO mice at each time point considered. The beneficial effect of CBDA is also 

evident on long-term memory deficits: chronic CBDA treatment at both doses tested 

significantly attenuates long-term memory deficits in Mecp2 KO mice, reaching statistical 

significance at PND 41 and 66. 

BIOCHEMICAL RESULTS: neurotrophic factors 

Besides behavioral analyses, we also carried out biochemical studies in hemisected brains 

of Mecp2 WT and KO mice to find possible molecular correlates of the effects observed at 

behavioral level. 

BDNF is one of the best-characterized target of Mecp2 regulation (Chen et al. 2003), 

which is known to play an important role in neuronal and synaptic maturation (Carvalho et 

al. 2008) as well as in synaptic plasticity mechanisms underlying learning and memory in 
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the developing and adult CNS (Cunha et al. 2010). Expression of BDNF is decreased in 

mouse models of RTT (Chen et al. 2003; Chang et al. 2006; Li et al. 2014; Martinowich et 

al. 2003) and overexpression or enhancement of BDNF levels in vivo relieve some 

symptoms of the mutant phenotype (Chang et al. 2006; Deogracias et al. 2012; Johnson et 

al. 2012; Kline et al. 2010; Kron et al. 2014; Ogier et al. 2007; Schmid et al. 2012;  Roux et 

al. 2012). Unfortunately, the therapeutic potential of BDNF is limited by its poor efficiency 

at crossing the blood–brain barrier (Pardridge et al. 1994) hence possible therapeutic 

strategies must rely on the identification of agents capable of indirectly stimulating BDNF 

levels. 

In this context, the recent demonstrated ability of the phytocannabinoid CBD to restore 

BDNF expression in animal models of hepatic encephalopathy (Magen et al. 2010) and 

meningitis (Barichello et al. 2012), suggests that also its sister compound CBDV as well as 

its direct precursor CBDA could possess this feature. Accordingly, our data support 

CBDV’s and CBDA’s potentials to modulate BDNF levels in an animal model of RTT. 

Importantly, here we show for the first time that CBDV chronic treatment elevates the 

levels of BDNF in the hemisected brain of Mecp2 KO mice at behaviorally efficacious 

doses. In particular, chronic CBDV at doses of 2, 20 and 200 mg/kg significantly restores 

BDNF levels in KO mice, to a similar degree. In contrast, CBDV at the dose of 0.2 mg/kg 

does not affect BDNF expression in KO mice. A similar effect is also present after CBDA 

administration. Indeed, both doses tested, 2 and 20 mg/kg, significantly enhance BDNF 

levels in the brain of Mecp2 KO mice. Although we cannot rule out the possibility that more 

subtle effects could be present in specific brain regions, the ability of CBDV and CBDA to 

increase BDNF levels on the overall brain of Mecp2 KO mice can represent an important 



 

50 

 

feature in the context of RTT, which is characterized by profound synaptic dysfunctions 

across a broad range of brain areas (Della Sala et al. 2014). 

In addition to BDNF, IGF-1 is another neurotrophic factor that holds great promise as 

therapeutic agent in RTT. Like BDNF, IGF-1 is widely expressed in the brain during normal 

development; it promotes neuronal cell survival as well as synaptic maturation and 

plasticity (Dyer et al. 2016). In mouse models of RTT, administration of both IGF-1 and its 

truncated form (1-3)IGF-1 reverses many of the features of the RTT phenotype (Chen et 

al. 2007; Castro et al. 2014; Della Sala et al. 2016; Tropea et al. 2009). Different from 

BDNF, IGF-1 crosses the blood–brain barrier. Early studies in RTT patients have 

demonstrated the tolerability and safety of IGF-1 as a potential treatment (Pini et al. 2012; 

2014; 2016; Khwaja et al. 2014) and Phase 2 clinical trials using IGF-1 in RTT are 

currently ongoing. 

Of note, in addition to their effect on BDNF, both CBDV and CBDA treatments also 

enhance IGF-1 levels in the brain of Mecp2 KO mice. Indeed, chronic CBDV treatment at 

doses of 2, 20 and 200 mg/kg restores IGF-1 levels in KO mice and a similar effect is also 

present after CBDA administration at doses of 2 and 20 mg/kg. 

Given that both BDNF and IGF-1 modulates neuroplasticity and adaptive processes 

underlying learning and memory (Cunha et al. 2010; Dyer et al. 2016) and normalization of 

BDNF levels by CBD was associated with improved cognitive performance in animal 

models (Magen et al. 2010; Barichello et al. 2012), we speculate that CBDV- and CBDA-

mediated enhancement of BDNF and IGF-1 levels could likely contribute to their shared 

ability to ameliorate short- and long-term memory deficits in Mecp2 KO mice. In line with 

this hypothesis, CBDV-induced enhancements of BDNF and IGF-1 occur at a time point 

when it is no longer effective towards neurological signs but it still recovers short- and 
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long-term memory impairments in Mecp2 KO mice. In addition, a close association 

between CBDA-induced normalization of BDNF and IGF-1 levels and its pro-cognitive 

effects in Mecp2 deficient mice is suggested by the observation that these effects are 

observed at both doses tested, which at behavioral level share similar efficacy only 

towards cognitive signs.   

Although both BDNF and IGF-1 signal via PI3K/AKT and MAPK/ERK pathways to affect 

neuronal maturation and survival (Tropea et al. 2006; Yoshii et al. 2007; Zheng et al. 

2004), there is direct evidence of the involvement of the AKT pathway in RTT. Indeed, it 

has been demonstrated that reduced phosphorylation of rpS6 in Mecp2 deficient mice is 

specific to signaling via AKT and not ERK1/2 kinases (Ricciardi et al. 2011). The 

PI3K/AKT/mTOR pathway is crucially implicated in a broad range of physiological 

functions, such as cell growth, proliferation, metabolism and protein synthesis (Yu et al. 

2016). This pathway has been widely investigated in the pathogenesis of cognitive 

dysfunction and neurological diseases. 

In this thesis, we first evaluated and completed investigations of the effect of chronic 

CBDV administration on PI3K/AKT pathway while CBDA experiments are still ongoing. We 

found that CBDV-mediated increases of BDNF and IGF-1 are associated with the 

normalization of their common downstream AKT/mTOR signaling pathway whereas no 

effects of either genotype or CBDV treatment are observed on ERK1/2 expression. This 

suggests that the beneficial effect of CBDV on RTT-like phenotype might arise from its 

ability to increase the levels of both growth factors that, in turn, synergistically stimulate 

downstream PI3K/AKT/mTOR intracellular signaling pathway to normalize rpS6 

phosphorylation. 
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BIOCHEMICAL RESULTS: glia markers 

The symptoms of RTT are mainly attributed to neuronal dysfunction. Indeed, converging 

evidence supports that neuronal, morphological and functional abnormalities are involved 

in RTT pathogenesis. In vitro and in vivo, Mecp2-deficient neurons show fewer dendritic 

spines and reduced arborization (Zhou et al. 2006; Smrt et al. 2007; Palmer et al. 2008). 

Moreover, selective re-expression of Mecp2 effectively rescued synaptic and behavioral 

abnormalities in Mecp2-null mice (Luikenhuis et al. 2004). 

However, increasing evidence suggests that white matter abnormalities and glial cell 

dysfunction might contribute to RTT phenotype. Recently, it was reported that Mecp2-null 

astrocytes are incapable of supporting the normal development of co-cultured WT neurons 

(Williams et al. 2014) and Mecp2-null microglia and astrocytes are toxic to WT neurons 

mainly via disruption of glutamate clearance and release (Maezawa et al. 2009; Maezawa 

and Jin, 2010). These findings clearly suggest that RTT is not simply a disease of neurons 

alone, but a more complex disease in which glial cells might play a pivotal role in the 

pathological process, possibly via modulation of neuronal function. 

Also in light of the proven anti-oxidant and anti-inflammatory properties of 

phytocannabinoids, we evaluated whether CBDV and CBDA administration affected glia 

cells in Mecp2 KO mice. Hence, we monitored the protein levels of the microglia marker, 

CD11b, the astrocyte marker, GFAP, as well as the pro-inflammatory cytokine, TNFα, in 

the brain of Mecp2 WT and KO mice after chronic phytocannabinoid administration. 

We found that CD11b expression is significantly increased in the brain of Mecp2 KO mice 

compared to WT littermates, suggesting an activation of microglia cells in the mouse 

model. Interestingly, chronic treatments with both CBDV and CBDA reduce CD11b 

expression in Mecp2 KO mice. In particular, CBDV significantly rescues CD11b at the 



 

53 

 

dose of 20 mg/kg and a similar effect is observed after administration of CBDA at doses of 

2 and 20 mg/kg. 

These results suggest that both phytocannabinoids could dampen microglia activation in 

the context of RTT, and this effect might contribute to their ability to ameliorate the 

behavioral phenotype. In particular, the observation that CBDV reduces microglia 

activation at the end of the treatment schedule (when it was still able to rescue only short- 

and long-term memory deficits) and CBDA does so at both doses tested (that share the 

ability to ameliorate only cognitive impairments) is suggestive of an association between 

phytocannabinoids-mediated reduction of microglia activation and their pro-cognitive 

properties. 

BIOCHEMICAL RESULTS: EC system 

No studies have thus far investigated the possible involvement of the EC system in the 

pathogenesis of RTT. Thus, in this research project, we also evaluated for the first time 

whether Mecp2 deletion could result in alterations of the brain EC system and we also 

investigated whether phytocannabinoids could affect components of the EC system in the 

brain of Mecp2 KO mice. We collected data on the effect of chronic CBDV treatment on 

the different components of this neuromodulatory system, whereas experiments after 

chronic CBDA treatment are still ongoing. 

Mecp2 deletion results in a reduction of the degrading enzyme FAAH in the brain which is 

associated with a trend towards increasing AEA and OEA levels compared to WT 

littermates. More interestingly, Mecp2 deletion significantly upregulates the expression of 

brain CB1 and CB2 receptors in Mecp2 deficient mice. Increased CB1 and CB2 receptor 

levels in the absence of Mecp2 suggest the possibility that Mecp2 could function as a 

repressor of CNR1 and CNR2 gene expression. However, this is a merely speculative 
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hypothesis and specific studies are needed to assess whether Mecp2 can act as a 

transcriptional repressor of these genes. However, dysregulation of CB1 receptor might 

also be a direct consequence of reduced BDNF levels. Indeed, it has been shown that 

CB1 receptor function is highly potentiated in mice lacking one copy of the BDNF gene (De 

Chiara et al. 2010), suggesting a functional interplay between BDNF and cannabinoid CB1 

receptors.  

Chronic CBDV treatment is able to modulate components of the endocannabinoid system 

in the brain of Mecp2 KO mice. Chronic CBDV administration at doses of 2, 20 and 200 

mg/kg increases AEA levels and elevates OEA content in Mecp2 mutant mice, effects that 

are associated with reduced FAAH expression and, only for the highest dose tested, i.e. 

200 mg/kg, with enhancement of NAPE-PLD expression. Furthermore, chronic CBDV 

treatment greatly reduces 2-AG levels both in Mecp2 WT and KO mice, via reduction of 

DAGLα expression, consistent with previous findings demonstrating CBDV’s ability to 

inhibit DAGLα in vitro (Bisogno et al. 2003; De Petrocellis et al. 2011). Thus, CBDV 

modulates endocannabinoid content through different mechanisms: it enhances AEA and 

OEA levels mainly by inhibiting their degradation whereas it reduces 2-AG by inhibiting its 

synthesis. 

Chronic CBDV treatment at doses of 2, 20 and 200 mg/kg significantly normalizes the 

levels of both receptors in the brain of Mecp2 deficient mice. As previous reports suggest 

that CBDV binds to CB1 and CB2 receptors with only very weak affinity (Iannotti et al. 

2014; Hill et al. 2012; Hill et al. 2013; Amada et al. 2013; Rosenthaler et al. 2014), we 

propose that normalization of CB1 receptor expression following chronic CBDV treatment 

in Mecp2 KO mice may occur indirectly as a consequence of its ability to modulate 

endocannabinoid signaling. Nevertheless, CBDV-induced normalization of CB1 receptor in 
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Mecp2 KO mice could also be secondary to its ability to increase BDNF levels. In fact, it 

has been shown that BDNF potently inhibits CB1 receptor function, by modulating 

cholesterol metabolism and membrane lipid raft function (De Chiara et al. 2010). In 

support of this hypothesis, administration of a CBDV dose that did not restore BDNF levels 

(0.2 mg/kg) also failed to normalize CB1 receptor expression. 
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CONCLUSIONS 

The present findings provide for the first time direct evidence that CBDV and CBDA are 

able to improve motor and neurological signs as well as cognitive deficits in Mecp2 KO 

mice.  

In particular, CBDV administration delays neurological and motor signs in Mecp2 KO mice 

in a time window between 5 and 7 weeks of age. Conversely, CBDA administration 

ameliorates motor signs only at later stages of the disease progression, i.e. 8 and 9 weeks 

of age. Remarkably, both phytocannabinoids exert a complete and enduring beneficial 

effect towards short- and long-term memory deficits in Mecp2 KO animals. 

At the biochemical level, chronic treatments with CBDV and CBDA enhance the 

expression of both BDNF and IGF-1 and reduce microglia activation in the brain of Mecp2 

KO mice. It is tempting to speculate that the effect of CBDV and CBDA on BDNF and IGF-

1 as well as on microglia cells might contribute to their ability to ameliorate cognitive 

impairments whereas the molecular basis of phytocannabinoid-mediated amelioration of 

neurological and motor signs has not been identified yet. Future experiments will be aimed 

at assessing the hypothesis that CBDV and CBDA may skew microglia cells towards a 

neuroprotective phenotype, promoting BDNF and IGF-1 release (Derecki et al. 2013) that 

ultimately might act on neurons to modulate synaptic plasticity processes underlying 

learning and memory functioning. 

Finally, we here showed that Mecp2 deletion also results in profound changes in the brain 

EC system that could likely sustain RTT-like phenotype, suggesting that modulation of the 

EC signaling might represent a potential strategy to ameliorate RTT-related behavioral and 

molecular parameters. 
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Although further studies are clearly needed to directly assess the mechanism(s) through 

which CBDV and CBDA can improve RTT-like phenotype in Mecp2 KO mice, overall the 

present findings suggest for the first time a potential therapeutic application of the 

phytocannabinoids CBDV and CBDA in the context of RTT. 
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Figure 3. Treatment schedule. CBDV (or relative vehicle) at the doses of 0.2, 2, 20 and 200 mg/kg 
or CBDA (or relative vehicle) at doses of 2 and 20 mg/kg were administered daily starting from 
PND 28 to PND 67. At PND 28, 41, 56 and 66 the Novel Object Recognition (NOR) test was 
performed to assess the presence of cognitive deficits. 
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Figure 4. Effect of chronic CBDV (0.2, 2, 20, 200 mg/kg/day, PND 28-67) treatments on the Mecp2 

KO phenotype. (A) Plots showing “Score Test” after CBDV treatment related to tremor, hindlimb 

clasping, breathing, gait, mobility and general condition. (B) Plot of total average symptom scores 

showing “Score Test” in Mecp2 KO-treated mice after CBDV treatment. The number of animals 

used in each experiment was 22 for WT-vehicle, 10 for WT-CBDV 0.2 mg/kg, 13 for WT-CBDV 2 

mg/kg, 12 for WT-CBDV 20 mg/kg, 3 for WT-CBDV 200 mg/kg, 11 for KO-vehicle, 6 for KO-CBDV 

0.2 mg/kg, 13 for KO-CBDV 2 mg/kg, 14 for KO-CBDV 20 mg/kg and 8 for KO-CBDV 200 mg/kg. 

Data represent mean ± SEM and were analyzed non-parametrically using Pearson's Chi-square 

test with Yates correction. *p<0.05, **p<0.01, ***p<0.001 vs KO-vehicle mice. 
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Figure 5. Effect of chronic CBDV (0.2, 2, 20, 200 mg/kg/day, PND 28-67) treatments on survival in 

Mecp2 KO mice. Kaplan-Meier survival curves of CBDV-treated Mecp2 KO mice compared to KO-

vehicle littermates. 
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Figure 6. Effect of chronic CBDV (0.2, 2, 20, 200 mg/kg/day, PND 28-67) treatments on (A) short-

term memory (retention time 30 minutes) and (B) long-term memory (retention time 24 hours) in 

WT and KO mice as measured through the NOR test. The test was performed at PND 28, 41, 56 

and 66. Data are expressed as mean ± S.E.M. and were analyzed using a three-way ANOVA 

followed by Bonferroni post-hoc test. *p<0.05, **p<0.01, ***p<0.001 vs WT-vehicle; °°°p<0.001 vs 

KO-vehicle. 
Number of animals. PND 28: 40 for WT mice and 35 for KO mice. WT mice (PND 41, 56, 66: 22 for WT-vehicle, 10 for 

WT-CBDV 0.2 mg/kg, 13 for WT-CBDV 2 mg/kg, 12 for WT-CBDV 20 mg/kg, 3 for WT-CBDV 200 mg/kg). KO mice 

(PND 41: 11 for KO-vehicle, 6 for KO-CBDV 0.2 mg/kg, 13 for KO-CBDV 2 mg/kg, 14 for KO-CBDV 20 mg/kg and 8 for 

KO-CBDV 200 mg/kg. PND 56: 11 (short-term) and 10 (long-term) for KO-vehicle, 5 for KO-CBDV 0.2 mg/kg, 11 for KO-

CBDV 2 mg/kg, 12 for KO-CBDV 20 mg/kg and 7 for KO-CBDV 200 mg/kg. PND 66: 5 for KO-vehicle, 4 for KO-CBDV 

0.2 mg/kg, 8 for KO-CBDV 2 mg/kg, 10 (short-term) and 9 (long-term) for KO-CBDV 20 mg/kg and 6 (short-term) and 5 

(long-term) for KO-CBDV 200 mg/kg). 
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Figure 7. Effect of chronic CBDA (2, 20 mg/kg/day, PND 28-67) treatments on the Mecp2 KO 

phenotype. (A) Plots showing “Score Test” after CBDA treatment related to tremor, hindlimb 

clasping, breathing, gait, mobility and general condition. (B) Plot of total average symptom scores 

showing “Score Test” in Mecp2 KO-treated mice after CBDA treatment. The number of animals 

used in each experiment was 4 for WT-vehicle, 6 for WT-CBDA 2 mg/kg, 6 for WT-CBDA 20 

mg/kg, 7 for KO-vehicle, 7 for KO-CBDA 2 mg/kg, 7 for KO-CBDA 20 mg/kg. Data represent mean 

± SEM and were analyzed using a two-way ANOVA followed by Bonferroni post-hoc test. *p<0.05, 

**p<0.01, ***p<0.001 vs KO-vehicle mice. 
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Figure 8. Effect of chronic CBDA (2, 20 mg/kg/day, PND 28-67) treatments on survival in Mecp2 

KO mice. Kaplan-Meier survival curves of CBDA-treated Mecp2 KO mice compared to KO-vehicle 

littermates. 
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Figure 9. Effect of chronic CBDA (2, 20 mg/kg/day, PND 28-67) treatments on (A) short-term 

memory (retention time 30 minutes) and (B) long-term memory (retention time 24 hours) in WT and 

KO mice as measured through the NOR test. The test was performed at PND 28, 41, 56 and 66. 

Data are expressed as mean ± S.E.M. and were analyzed using a two-way ANOVA followed by 

Bonferroni post-hoc test. ***p<0.001 vs WT-vehicle; °p<0.01; °°p<0.01; °°°p<0.001 vs KO-vehicle. 
Number of animals. PND 28: 9 for WT mice and 13 for KO mice. WT mice (PND 41, 56, 66: 4 for WT-vehicle, 6 for WT-

CBDA 2 mg/kg, 6  for WT-CBDA 20 mg/kg). KO mice (PND 41: 7 for KO-vehicle, 7 for KO-CBDA 2 mg/kg, 7 for KO-

CBDA 20 mg/kg. PND 56: 5  for KO-vehicle, 6  for KO-CBDA 2 mg/kg, 6  for KO-CBDA 20 mg/kg. PND 66: 4 for KO-

vehicle, 4 for KO-CBDA 2 mg/kg, 6  for KO-CBDA 20 mg/kg). 
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Figure 10. Effect of chronic CBDV (0.2, 2, 20, 200 mg/kg/day, PND 28-67) treatments on protein 

levels of (A) Insulin-Like Growth Factor-1 (IGF-1), (B) Brain-Derived Neurotrophic Factor (BDNF) 

and their common downstream pathway (C) pAkt Ser473 and its downstream effector rpS6 and 

ERK1/2 phosphorylation in hemisected brains of WT and KO Mecp2 mice. Measurements were 

carried out on total protein lysates from hemisected brains. Representative blot images correspond 

to the results of one experiment out of four. Data are expressed as mean ± SEM of 3-5 animals per 

group. *p<0.05, **p<0.01, ***p<0.001 vs WT-vehicle; °p<0.05, °°p<0.01; °°°p<0.001 vs KO-vehicle. 

Two-way ANOVA followed by Bonferroni post-hoc test. 
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Figure 11.  Effect of chronic CBDV (0.2, 2, 20, 200 mg/kg/day, PND 28-67) treatments on (A) 

AEA, 2-AG, PEA and OEA contents, (B) protein levels of the main endocannabinoid synthetic and 

degrading enzymes NAPE-PLD, DAGLα, FAAH and MAGL and (C) CB1 and CB2 receptors in 

hemisected brains of WT and KO Mecp2 mice. Data are expressed as mean ± SEM of 3-6 animals 

per group. *p<0.05, **p<0.01, ***p<0.001 vs WT-vehicle; °p<0.05, °°p<0.01; °°°p<0.001 vs KO-

vehicle. Two-way ANOVA followed by Bonferroni post-hoc test. 
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Figure 12.  Effect of chronic CBDV (20 mg/kg/day; PND 28-67) treatment on protein levels of (A) 

CD11b, (B) GFAP and (C) TNFα in hemisected brains of WT and KO Mecp2 mice. Data are 

expressed as mean ± SEM of 4 animals per group. *p<0.05 vs WT-vehicle. Two-way ANOVA 

followed by Bonferroni post-hoc test. 
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Figure 13. Effect of chronic CBDA (2, 20 mg/kg/day, PND 28-67) treatments on protein levels of 

(A) Insulin-Like Growth Factor-1 (IGF-1), (B) Brain-Derived Neurotrophic Factor (BDNF) in 

hemisected brains of WT and KO Mecp2 mice. Measurements were carried out on total protein 

lysates from hemisected brains. Data are expressed as mean ± SEM of 4 animals per group. 

*p<0.05 vs WT-vehicle; °p<0.05, °°p<0.01 vs KO-vehicle. Two-way ANOVA followed by Bonferroni 

post-hoc test. 
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Figure 14.  Effect of chronic CBDA (2, 20 mg/kg/day, PND 28-67) treatments on protein levels of 

(A) CD11b, (B) GFAP and (C) TNFα in hemisected brains of WT and KO Mecp2 mice. Data are 

expressed as mean ± SEM of 3-4 animals per group.  
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