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Abstract: Cyanobacteria blooms are a worldwide concern for water bodies and may be promoted by
eutrophication and climate change. The prediction of cyanobacterial blooms and identification of the
main triggering factors are of paramount importance for water management. In this study, we analyzed
a comprehensive dataset including ten-years measurements collected at Lake Varese, an eutrophic
lake in Northern Italy. Microscopic analysis of the water samples was performed to characterize the
community distribution and dynamics along the years. We observed that cyanobacteria represented
a significant fraction of the phytoplankton community, up to 60% as biovolume, and a shift in the
phytoplankton community distribution towards cyanobacteria dominance onwards 2010 was detected.
The relationships between cyanobacteria biovolume, nutrients, and environmental parameters were
investigated through simple and multiple linear regressions. We found that 14-days average air
temperature together with total phosphorus may only partly explain the cyanobacteria biovolume
variance at Lake Varese. However, weather forecasts can be used to predict an algal outbreak two
weeks in advance and, eventually, to adopt management actions. The prediction of cyanobacteria
algal blooms remains challenging and more frequent samplings, combined with the microscopy
analysis and the metagenomics technique, would allow a more conclusive analysis.
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1. Introduction

Cyanobacteria are photosynthetic bacteria that occur naturally in fresh, brackish, marine waters,
and terrestrial environments [1]. Cyanobacteria are a worldwide problem [2] for their ability to form
massive blooms that can produce a wide range of harmful toxins [3]. Bloom events are likely to
be promoted by eutrophication and climate change, and the number and intensity of these blooms
increased globally over the last decades [4]. Cyanobacteria can cause a whole range of problems for
human health and the environment. Fish killed by anoxia caused by the decay of the cyanobacteria
biomass is a notorious effect of cyanobacteria blooms [5]. Moreover, in some conditions, cyanobacteria
can produce cyanotoxins (that includes hepatotoxins, neurotoxins, cytotoxins, and dermotoxins)
negatively impacting the survival of aquatic organisms [6]. In addition to wild animals, intoxication
can also occur for domestic animals and humans, either by direct ingestion of cyanobacteria cells
and/or through consumption of drinking water containing cyanotoxins [7], leading to public health
concerns [3]. Cyanobacteria blooms also generate bad-smelling mucilaginous scum that both impact
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the recreational use of water bodies and prevent their use for drinking water. Considering the negative
impacts of cyanobacterial blooms on ecological, economical, and human health, their monitoring
and forecast is of paramount importance for lake management [8]. Several monitoring approaches
and predictive models were developed to provide accurate and timely information regarding the
development of cyanobacterial bloom in the waterbodies.

Different modeling techniques are known and used for algal bloom prediction, the most common
being multiple linear regression (MLR) and artificial neural networks (ANNs). MLR is the simplest
technique used to develop linear models and used, for example, to predict cyanobacteria [9,10] or
chlorophyll-a [11–13] abundance, while ANNs are complex machine learning techniques, which mimic
the neural adaptation behavior in order to “learn” how to solve a problem.

Eutrophication has been cited as a major cause of increasing harmful cyanobacterial/algal blooms,
in particular in the Mediterranean area [14], and factors including light, temperature, quiescent water
and nutrients, mainly total nitrogen (TN) and total phosphorus (TP), are considered among the
main drivers of cyanobacterial blooms [15,16]. Albeit, it is well known that important predictors
for cyanobacteria dominance and biomass are TP and TN [17,18], there are increasing evidences
that water temperature (WT) is an important factor [9,19–24]. Warming waters intensify the vertical
stratification and lengthen the period of seasonal stratification, which is one of the main physical
variables determining the occurrence of algal bloom outbreaks [25]. The most evident effect of
stratification is the changing availability of nutrients, which may be accumulated in surface layers or
mixed in the entire water column. The increasing global air temperature may increase the strength
and depth of stratification, with possible influences on the seasonal timing and changes in the
phytoplankton phenology and community succession. Stratification leads cyanobacteria to outcompete
other phytoplankton groups, both because of their buoyancy regulation ability [26,27] and because
cyanobacteria are positively affected by the increase of water temperature [22]. In addition, it has been
shown that the meteorological variables as air temperature, wind speed, and relative humidity, could
be drivers of hypolimnetic anoxia, which is an indirect consequence of thermal stratification [28].

Previous studies found conflicting results on the response of cyanobacteria to climate and
nutrients [23,29]. Here, we aim to identify the most important and efficient predictor for cyanobacteria
blooms in Lake Varese, an eutrophic lake in northern Italy and one of the first and most glaring
examples of eutrophication in Europe [30]. Initially classified as hypertrophic lake, following remedial
actions aimed at reduction of the P loading, the lake is now in eutrophic status with bloom events
occurring every year during the summer and early autumn. Lake Varese is “naturally productive” due
to its morphometric characteristics and the geology of its drainage basin [31]. However, the further
increase of human activities in the area accelerated the degradation of its water quality. The analysis
of carotenoid stratigraphy of the sediments showed also that some phytoplanktonic groups are
particularly well adapted in environments with high organic content.

The first signals of summer anoxia in the Lake were documented in 1957 and the fishery activities
ended in 1975 [32]. Albeit, many studies testified the deterioration of the water quality, phytoplankton
studies in Lake Varese were carried out only occasionally [33]. The first detailed analysis dates back
to 1979 [34] and ten years later a further comprehensive study [35] showed that the eutrophication
process was not showing any sign of reversion, and that the P release from sediments is a major factor
constraining the recovery of lake ecosystems [36].

In this study, we firstly analyzed the cyanobacteria community with a detailed ten-year picture of
the dynamic composition. We further explored the possible role of chemical and physical parameters
triggering cyanobacteria blooms, introducing a novel approach to find possible relationships between
meteorological data, lake stratification, and cyanobacteria abundance. We developed a simple approach
that can be applied to other lakes using relatively few data and weather forecast data to put in place an
early warning system for cyanobacteria blooms.
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2. Materials and Methods

2.1. Sites Description

The selected study area is Lake Varese (45◦ 49’ N 8◦ 44’ E), which is located in northern Italy
at the feet of the Alps mountain range at a mean altitude of 236 m above sea level (Figure 1). Lake
Varese is a monomictic and eutrophic shallow lake, with a mean depth of 11 m, a maximum depth
of 26 m, a surface area of 14.8 km2, a volume of 153 × 106 m3, and a theoretical renewal time of
1.7–1.9 years [37,38]. Its catchment, with a surface area of 115.5 km2, hosts an average population density
of 700 inhabitant/km2 and is associated with many industrial and commercial activities. The lake
has two tributaries: The Brabbia channel and the Tinella stream, with annual average discharges of
23 × 106 and 10 × 106 m3 yr−1, respectively, and one effluent, the Bardello stream, with annual average
discharge of 80.4 × 106 m3 yr−1 [30]. Information related to watershed characteristics of Lake Varese
can be retrieved at the following link: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/

aqst-lago-di-varese/documenti-e-atti-istitutivi.
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Figure 1. Location of Lake Varese (red). The positions of the available meteorological stations in the
region are indicated by the light blue dots (Regional Environmental Protection Agency Lombardia,
ARPA), and the dark blue dot (the Joint Research Center). The red polygon in the lower right corner
map indicates the location of the model grid-cell from the ERA-Interim atmospheric reanalysis, where
Lake Varese is located.

2.2. Sampling and Analysis

Physical, chemical, and phytoplankton measurements of Lake Varese were provided by the
department of the Regional Environmental Protection Agency of Lombardia (ARPA). The samplings
were performed at least six times a year, as foreseen in the national reference methods [39], by using
the multiprobe (Ocean Seven 316 plus, IDRONAUT) to measure pH, conductivity, redox potential,
photosynthetically active radiation (PAR), oxygen, depth, and temperature. Water transparency was
determined using a Secchi disk. The euphotic region was determined as 2.5 times the Secchi disk depth
or the region where PAR was larger than 1% of the radiation determined immediately below the water
surface, and applied for the collection of integrated samples used for phytoplankton analysis.

https://www.regione.lombardia.it/wps/portal/istituzionale/HP/aqst-lago-di-varese/documenti-e-atti-istitutivi
https://www.regione.lombardia.it/wps/portal/istituzionale/HP/aqst-lago-di-varese/documenti-e-atti-istitutivi
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The complete dataset is composed of 90 sampling campaigns distributed over ten years, from 2004
to 2014, including measures of chemical and physical parameters of lake water sampled at different
depths in the euphotic zone. Measurements of nutrients and other chemical parameters were reported
at only three depths (surface, 13 m and bottom) until 2011, while from 2012 they were also reported at 4/5
of the epilimnium. This vertical resolution is rather coarse to analyze the vertical stratification of these
parameters and for this reason we only provide an overview of these data by reporting mean values and
their ranges (minimum and maximum). In general, the concentrations of nutrients (phosphorus and
nitrogen) and oxygen are related to the presence of cyanobacteria blooms (i.e., nitrogen compounds and
phosphorus are consumed/depleted from the surface while oxygen is enriched due to photosynthesis).
Table 1 summarizes the physical–chemical parameters with a sufficient number of valid measurements
used for this study. All parameters with missing values or below the limit of quantification (LOQ) for
more than 20% of the samples were excluded. For the remaining variables, values below LOQ were
arbitrarily halved, resulting in a preliminary list of nine potential variables for modeling cyanobacteria
abundance. The variables may be all related, directly or indirectly, to the abundance of cyanobacteria
and include both nutrient concentrations (such as: Total phosphorus, TP; ammonium nitrogen, AN;
and reactive silicates, RS) and physical parameters (such as: Water temperature, WT; pH; conductivity,
CD; dissolved oxygen, DO; oxygen saturation, OS; and Secchi disk depth, SD). Total nitrogen (TN) was
not calculated, therefore this parameter is not available in the dataset.

Table 1. List of water surface physical–chemical variables and total cyanobacteria biovolume/density
measured at Lake Varese during the period 2004–2014. The mean, median, and range
(minimum–maximum) values are reported for each variable. The number of samples above and
below the level of quantification (LOQ), and missing values are reported. The number of cyanobacteria
(present/absent) over the total sampling campaigns is shown.

Parameter and Unit of Measures Mean Median Range Above
LOQ

Below
LOQ Missing

Total phosphorous (µg/L) (TP) 42.3 28 2.5–110 80 9 1
Ammonium nitrogen (mg/L) (AN) 0.12 0.048 0.0075–0.69 75 14 1

Reactive silicates (SiO2) (mg/L) (RS) 1.16 0.92 0.05–3.9 82 6 2
pH (pH) 8.18 8.2 7.5–9.6 90 0 0

Conductivity (µS/cm 20 ◦C) (CD) 257 258 175–310 90 0 0
Dissolved oxygen (mg/L) (DO) 9.64 9.8 3.7–14.8 87 0 3

Oxygen saturation (%) (OS) 101 100 50–173 88 0 2
Water temperature (◦C) (WT) 16.3 18 3.6–30 89 0 1
Secchi disk depth (m) (SD) 4.1 3.6 1.1–9.6 90 0 0

Mean Median Range Present Absent

Cyanobacteria biovolume (mm3/m3) (CyanoBV) 1.62 × 103 3.05 × 102 0–3.94 × 104 83 7
Cyanobacteria density (cells/L) (CyanoD) 9.69 × 106 3.62 × 105 0–1.26 × 108 84 6

Phytoplakton Analysis

Collected samples were fixed with a Lugol Acid solution and stored in the dark until analysis
was performed. Phytoplankton community was evaluated according to Utermöhl’s method [40].
Shortly, a fixed sample was placed on a sedimentation tower during 24 h before microscopy analysis
(Olympus model IX71 with 200X and 400X magnification). For each sample a minimum of 200 cells
were identified to the genus or species level and enumerated to determine cell density. Biovolume was
calculated using geometric similar models for each identified cell [41].

Cyanobacteria were measured at the level of genera/species as cell densities (cells/L) and
biovolumes (mm3/m3), measured as integrated samples from the surface to 2.5 times the SD (considered
as the limit of the euphotic zone). The total cyanobacteria cell density (CyanoD) and biovolume
(CyanoBV) was calculated as the sum of all reported genera/species for each sampling date. Due to the
large range of measured total biovolumes, spanning over several order of magnitudes, we applied
the log based 10 transformation to predict the cyanobacteria biovolume (LOG CyanoBV). Variability
associated with multiple cell counters could be present, however, a Phytoplankton Proficiency Test
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organized by EQAT Phytoplankton (External Quality Assessment Trials) was successfully completed
in 2013 and 2016.

2.3. Meteorological Data

The meteorological data were obtained from the European Centre Medium-Range Weather
Forecast (ECMWF) ERA-Interim atmospheric reanalysis product [42]. The reanalysis is a global
model simulation of the atmosphere with a data assimilation system which includes a 4-dimensional
variational analysis (4D-var). A large number of atmospheric observations, ground-based and from
satellites, are included in the model variational analysis every 12 h, constraining the atmospheric
weather simulation towards real observational data. ERA-Interim data are available starting from
year 1989 and continuously updated once a month, with a delay of two months to allow for quality
assurance. A large variety of atmospheric variables are available at three hourly time intervals, and with
horizontal spatial resolution of about 80 × 80 km. Data for Lake Varese were extracted from the model
grid cell containing its latitude/longitude coordinates (red polygon on the map in the lower right corner
of Figure 1). We initially considered atmospheric variables which may have an impact on the physical,
hydrological, and biogeochemical properties of the lake according to literature studies [22,25,43–45],
such as surface air temperature, wind speed, photosynthetically active radiation (PAR), and total
precipitation. Statistics of ERA-Interim variables from 2004 to 2014 at the Lake Varese grid cell are
reported in Table 2.

Table 2. List of meteorological variables extracted from the grid cell of the ERA-Interim reanalysis
where Lake Varese is located. The mean, median, and range (minimum and maximum value) calculated
over the period 2004–2014 are reported for each variable.

Variable and Unit of Measures Mean Median Range

Surface air temperature (◦C) 9 8.97 −11.6–24.1
Photosynthetically active radiation (W/m2) 126 122 2.17–273

Wind speed (m/s) 1.96 1.76 0.46–6.37
Total precipitation (mm/day) 6.07 0.84 0–163

The ERA-Interim reanalysis provides a series of advantages, including continuous data for a long
period and representativeness of the region of interest around Lake Varese compared to scattered
measurements not always directly located at the lake, which may reflect specific local conditions
not representative of the lake conditions. Eight meteorological stations are available in a distance
range of maximum 15 km from lake Varese from ARPA (light blue dots in Figure 1), and one station
is located at the Joint Research Center, about 8 km far from Lake Varese (dark blue dot in Figure 1).
Generally, the simulated atmospheric variables are in good agreement with the observations in the
region, as shown for example in Figure A1 in Appendix A, where the ERA-Interim data are compared
to available meteorological stations for the period April 2014–October 2014. A further advantage of
using ERA-Interim is given by the continuous update of the simulations, which may be useful to
further evaluate the model in the future and to use weather forecast data to define an early warning
system for algal blooms.

Using this dataset, we calculated the stratification strength (i.e., the maximum slope of the
thermocline ◦C/m) from the vertical temperature profiles measured at Lake Varese by probes from
2004 to 2014 (see Figure A2 in Appendix A). The averages of the air temperature and wind speed were
calculated from 1 to 28 days (named from T1 to T28 for simplicity) preceding every water sampling
campaign date included in the dataset.
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2.4. Statistical Analysis

The relationships between cyanobacteria biovolume and the selected environmental parameters
(physical and chemical water properties, Table 1, and meteorological data, Table 2) were analyzed
through an exploratory stepwise regression (SLR) approach followed by a multiple linear regression
(MLR) method. In particular, the SLR models were applied for investigating the correlation with
environmental parameters. We looked for correlations with air temperature and wind speed
near the surface from the ERA-Interim reanalysis data. We also studied the standard deviation
in water temperature vertical profiles as a proxy of water stratification with similar results [46].
The Pearson correlation coefficient was calculated between the thermocline slopes and the average
surface temperatures and separately between the thermocline slopes and the average wind speeds.

After that, the MLR model was used as a forecasting approach for predicting the cyanobacteria
growth. In particular, we used physical–chemical parameters of lake surface water as predictors with
potential influence on cyanobacteria growth and we chose cyanobacteria biovolume as a measure
of cyanobacteria growth and as response variable, expressed in ten-based logarithm value (LOG
CyanoBV). MLR was selected for its simplicity and because the parameters were not enough for
properly training the ANNs method without incurring in overfitting problems.

MLR calculations and statistical analysis were performed using the software environment for
statistical computing and graphics R v.3.3.2 (R Core Team 2019). The performance of the MLR models
was assessed using the coefficient of determination (R2), adjusted coefficient of determination (R2 adj),
and root mean square error (RMSE). The best relationship was finally validated using an independent
dataset from the European Commission Joint Research Centre (JRC) (see Section 3.2.).

3. Results

3.1. Occurrence, Magnitude, and Timing of Cyanobacteria

Microscopic analysis of the samples collected from 2004 to 2014 were analyzed to characterize the
community distribution and dynamics along the years. Lake Varese is stratified for most of the year
and it happens to be vertically mixed only in the period between November and February when the
surface water temperature decreases below 10 ◦C.

Cyanobacteria were detected at Lake Varese in 84 of the 90 sampling campaign (93%), with a median
density of 362,000 cells/L and median biovolume of 305 mm3/m3, with maximum of 126 million of cells/L
and 39,000 mm3/m3, respectively (Table 1). As expected in eutrophic environments, cyanobacteria
were over represented in the lake phytoplanktonic community, accounting for more than 50% of the
total cell abundance, in average. Over those 10 years, Oscillatoriales and Chroococcales accounted for
50% of the total CyanoBV, while among Nostocales (43%), Aphanizomenon accounted for 38% (data
not shown).

The cell number and biovolume were analyzed as relative annual abundance per phylum, as shown
in Figure 2. Considering the community abundance based on biovolume, cyanobacteria abundance
may not appear so representative, although the ultraplankton could contribute significantly to the
cyanobacteria community (see Figure 2b).

The occurrence of Oscillatoriales had visibly increased since 2010 while Chroococcales showed
an inverted trend (Figure 3). The peaks of cyanobacteria abundance were mainly seen during
Summer-Spring seasons (Figure 3a, see ss2007, ss2008 and from 2011 to 2013), although a Winter-Autumn
peak was reported in 2011 (Figure 3a, see wa2011). This episode occurred during the last four years of
the considered period, where Oscillatoriales were dominant.
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Figure 2. Distribution of the total phytoplankton community expressed in percentage (Y-axis) of the
average of the annual campaign from 2004 to 2014. (a) On the top plot, the distribution is reported
as percentage of cell density (cells/L); (b) on the bottom the distribution is shown as percentage of
biovolume (mm3/m3). The total cell density and biovolume values for each year are reported in Table A1
in Appendix A.
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Figure 3. (a) The top graph shows a representation of total cyanobacteria community distribution as
percentage, based on biovolume (mm3/m3). Community distribution is presented as the average of the
annual campaigns data, grouped as Summer-Spring (ss) and Autumn-Winter (aw) seasons, and by
order. The red line reports the total cyanobacteria number per data set; (b) bottom graph represents the
Secchi disk depth (continuous line in orange) at each sampling campaign and the six-month cumulative
precipitations, Autumn-Winter (aw, blue circles) and Spring-Summer (ss, blue squares).
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Considering that cyanobacteria abundance is generally favored by the thermocline stability and the
increasing of the temperature, the dynamic of the cyanobacteria community was evaluated compared
to the available physical and meteorological parameters, such as air and water temperature, photic
region maximum depth or precipitation. Air and water temperature revealed a repetitive seasonal
pattern (data not shown), although the euphotic region showed an overall decrease since 2008 (Secchi
disk depths in Figure 3b). The cumulative seasonal precipitations on the other hand showed a slight
increase over time. In the present study, SD was found to be directly correlated with cyanobacteria
abundance. Water turbidity can vary according to the abundance of organisms or suspended organic
matter. Precipitation may promote bleaching of sediments from the surrounding area decreasing
the turbidity, and consequently the SD, but this phenomenon did not occur in Lake Varese, as can
be seen in Figure 3b. However, precipitation may play a role on cyanobacteria dynamics in this
lake, considering that the community shifted from Chroococcales and Nostocales to Oscillatoriales
and Synechoccoccales dominance along time, as the total precipitation increased. Nostocalles have
competitive advantages such as capacity to fix atmospheric nitrogen and to produce dormant cells,
resistant to adverse conditions [47]. However, Oscillatoriales have been reported to often dominate
shallow polymictic eutrophic lakes showing cyclic successions between Microcystis (Chroococcales)
and Planktothrix (Oscillatoriales) [48].

Other parameters which may influence the cyanobacteria growth and dominance are the nutrients’
bioavailability. The nutrients known to strongly impact the cyanobacteria dynamics and abundance are
nitrogen (in the form of ammonia, nitrite, and nitrate), phosphorus (or orthophosphate) and iron [45].
In this study, all these nutrients except for the iron, were measured and made then available for further
evaluation. Indeed, together with temperature, nitrogen, and phosphorus showed higher potential for
the predictive model development (see Section 3.2.), based on biovolume abundance.

3.2. Relationships between Cyanobacteria and Environmental Parameters

Applying a first preliminary SLR analysis between the cyanobacteria biovolume (LOG CyanoBV)
and the measured water temperature at lake surface, we found the highest Pearson correlation
coefficient (0.5), which was also expected from previous studies [9,19–24]. For the average wind
speeds, we observed negligible correlations with the thermocline slopes (data not shown), while strong
correlations were found for the average surface temperatures and the thermocline slopes, as shown on
Figure A3 in Appendix A. The highest value of the correlation coefficient was found for the average
temperature of the 14 preceding days (T14) and no evident outliers or bias were detected as shown in
Figure 4. Thus, the strong relationship between the stratification at Lake Varese and the T14 surface air
average temperature may be used as predictor of lake stratification and algal/cyanobacterial bloom
outbreaks, with the advantage of using an air average temperature from reanalysis data, without the
need of continuous water temperature profile measurements. The 14 days’ time lag between air surface
temperature and water stratification may be also very useful as a predictive variable using weather
forecasted data.

A further analysis including the new T14 variable (average air surface temperature of the last
14 days) showed the highest correlation with LOG CyanoBV. Thus, keeping T14 and alternating
the variables listed in Table 1, initially eight MLR models with two variables were tested (see in
Appendix A). Thereafter, since from the lake management standpoint is known that the nutrients (TP
and TN) and WT are good predictors of cyanobacteria biomass [22], several of the initial models were
dismissed (see Table A2 in Appendix A). For instance, the models with DO and OS were excluded
because these variables are more an effect than a triggering parameter of a cyanobacterial outbreak.
Similarly, RS was not expected as a relevant variable for cyanobacterial biomass prediction. Thus,
the final MLR analysis was performed considering the remaining four variables (TP, AN, CD, and SD)
with a dataset slightly increased up to 78 samples (Table A3 in Appendix A). The resulting MLR models
are shown in Table 3 in descending order according to their coefficient of determination. Although
Model No.1 has the highest R2, because of the relationship of CD with cyanobacteria, the outbreak
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may be more difficult to interpret from the biological and physical–chemical point of view. Model
No.2 was therefore selected among the two-variable models as the most suitable for LOG CyanoBV
prediction in the Lake of Varese among the two-variable models.Water 2020, 12, x FOR PEER REVIEW 10 of 22 
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Figure 4. Relationship between the thermocline slopes and the average air temperature of current plus
the preceding 14 days. Every dot is from a probe sampling campaign (from 2003 to 2015 included).
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use of the average air temperature of the current and the last 14 days as a proxy of water stratification.

Table 3. Multiple linear regression (MLR) models of cyanobacteria biovolume (LOG CyanoBV) using
the 14-days mean air temperature (T14) and one of the physical–chemical variables listed in Table S1
of SI (AN: Ammonium nitrogen; CD: Conductivity; TP: Total phosphorous; SD: Secchi disk depth;
and pH). The statistical significance of each coefficient is indicated when below 0.1 (p-values: ***: 0.001;
**: 0.01; *: 0.05; ◦, 0.1). For each model the coefficient of determination (R2), the adjusted R2 (R2adj),
and the F statistic are reported. LOG means ten-based logarithm.

No. Linear Model R2 R2 adj F

1 LOG CyanoBV = 14.894 * + 0.052 T14 ** − 5.431 CD * 0.31 0.29 16.58
2 LOG CyanoBV = 0.658 + 0.096 T14 *** + 0.527 LOG TP ◦ 0.29 0.27 15.45
3 LOG CyanoBV = 0.244 + 0.065 T14 *** + 0.178 pH 0.27 0.26 13.56
4 LOG CyanoBV = 1.895 *** + 0.068 T14 *** − 0.055 SD 0.27 0.25 14.05
5 LOG CyanoBV = 1.724 *** + 0.077 T14 *** + 0.109 LOG AN 0.27 0.25 13.53

Then, the performance of the selected two-variable models for cyanobacteria biovolume (based
on T14 and TP) is detailed as a time series, from 2004 to 2014, in Figure 5 comparing the measured and
predicted LOG CyanoBV. As shown in the figure, the model generally follows the temporal variability
of cyanobacteria biovolume and is able to forecast the ordinary (seasonal) variability but undervalues
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or overestimates the extremes (the blooming or very low concentrations). The overall model capability
is evaluated by the root mean square error and the obtained RMSE = 0.83 seems to be satisfactory
given the model simplicity.
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Figure 5. Measured and predicted cyanobacteria biovolumes at Lake Varese for all samples collected
during the period 2004–2014. Predicted values are calculated using model No.2 of Table 3. RMSE
indicates the root mean square error of predicted vs. measured values.

In order to check whether the explanatory power of the forecasting could be increased, models
with three variables were also developed by keeping T14 as the pivotal variable, and combining with
all variables from Table 1. The resulting models are shown in Table A4 of Appendix A. Almost no
improvement in the explanatory power was detected in comparison to the two-variable models (Table 3),
hence the models with three variables were not further considered. In addition, a possible improvement
of the selected model (No.2, Table 3) was also tested, by adding meteorological parameters, such as
wind speed, total precipitations, and photosynthetically active radiance (PAR). Since no improvement
was observed (see explanations in Appendix A) the forecasting model with only two predictors (No.2
in Table 3) was selected as the final choice.

Finally, to verify the model robustness, model No.2 in Table 3 was further tested using an
independent dataset (i.e., not used in model development) coming from sampling campaigns conducted
by the JRC from the end of 2007 to the end of 2009 [49]. These samples were collected at the deepest
locations of the lake and dates with no presence of cyanobacteria were excluded resulting in 67 nonzero
records. Except conductivity (CD), that was provided by multiparametric probe, the remaining
chemical–physical variables shown in Table 1 were available as surface samples. Concerning CyanoBV,
the monitoring records were available at nine different depths. To be consistent with the previous
dataset, the total CyanoBV was calculated using measurements in the euphotic zone, between the
surface and 2.5 times the Secchi disk depth (Section 2.1.). Time series graphs of the predicted and the
measured LOG CyanoBV are shown in Figure 6. In this case the RMSE value is 0.85, similar to the
value obtained with the 2004–2014 dataset (RMSE = 0.83). Again, the model tends to overestimate the
cyanobacteria biomass, but a similar effect was observed using the original dataset (see Figure 6), so the
model performances are comparable using both the original and the validation dataset. This conclusion
was confirmed also with a recent monitoring data for cyanobacteria bio-volume accomplished by the
JRC in the summer of 2017 (unpublished data) (Figure A4 in Appendix A).



Water 2020, 12, 675 12 of 21

Water 2020, 12, x FOR PEER REVIEW 12 of 22 

 

remaining chemical–physical variables shown in Table 1 were available as surface samples. 
Concerning CyanoBV, the monitoring records were available at nine different depths. To be 
consistent with the previous dataset, the total CyanoBV was calculated using measurements in the 
euphotic zone, between the surface and 2.5 times the Secchi disk depth (Section 2.1.). Time series 
graphs of the predicted and the measured LOG CyanoBV are shown in Figure 6. In this case the 
RMSE value is 0.85, similar to the value obtained with the 2004–2014 dataset (RMSE = 0.83). Again, 
the model tends to overestimate the cyanobacteria biomass, but a similar effect was observed using 
the original dataset (see Figure 6), so the model performances are comparable using both the original 
and the validation dataset. This conclusion was confirmed also with a recent monitoring data for 
cyanobacteria bio-volume accomplished by the JRC in the summer of 2017 (unpublished data) (Figure 
A4 in Appendix A). 

 
Figure 6. Validation of the model: Measured and predicted cyanobacteria biovolumes at Lake Varese 
using an independent dataset (not included in the MLR analysis) of water samples collected at Lake 
Varese during the period 2008–2010 by JRC. RMSE indicates the root mean square error of predicted 
vs. measured values. 

4. Discussion 

The aim of this study was to analyze the temporal patterns in cyanobacteria dominance in Lake 
Varese over a period of ten years (2004–2014) and to investigate the possibility to predict their 
abundance as a function of a set of meteorological data and water physical–chemical parameters. 
Overall, the picture of the phytoplankton community showed a change from 2006 with an increase 
of the cyanobacterial cells that accounted for more than the 50% of the total community, except in 
2010. The community shift was also observed by the biovolume distribution, however, not so strongly 
dominated by the cyanobacteria particularly in 2008 and 2009 where the main contribution was due 
to the Bacillariophyta and Dynophyta, respectively as confirmed also by the other studies [50]. The 
different distribution in 2010 could be explained by a pilot study performed in 2009 to reduce the 
Phosphorus (P) loading by applying a lanthanum-modified bentonite clay to bind the P [32]. The 
authors showed a sharp reduction (more than 80%) of the P concentrations along the water column 
during 2009–2010 which may be the consequence of the dropped concentration of the cyanobacteria. 
However, the trend seems to be reverted with an increase of the cyanobacteria during the 2011–2014 
years (Figure 2). 

Figure 6. Validation of the model: Measured and predicted cyanobacteria biovolumes at Lake Varese
using an independent dataset (not included in the MLR analysis) of water samples collected at Lake
Varese during the period 2008–2010 by JRC. RMSE indicates the root mean square error of predicted vs.
measured values.

4. Discussion

The aim of this study was to analyze the temporal patterns in cyanobacteria dominance in
Lake Varese over a period of ten years (2004–2014) and to investigate the possibility to predict their
abundance as a function of a set of meteorological data and water physical–chemical parameters.
Overall, the picture of the phytoplankton community showed a change from 2006 with an increase
of the cyanobacterial cells that accounted for more than the 50% of the total community, except in
2010. The community shift was also observed by the biovolume distribution, however, not so strongly
dominated by the cyanobacteria particularly in 2008 and 2009 where the main contribution was
due to the Bacillariophyta and Dynophyta, respectively as confirmed also by the other studies [50].
The different distribution in 2010 could be explained by a pilot study performed in 2009 to reduce
the Phosphorus (P) loading by applying a lanthanum-modified bentonite clay to bind the P [32].
The authors showed a sharp reduction (more than 80%) of the P concentrations along the water column
during 2009–2010 which may be the consequence of the dropped concentration of the cyanobacteria.
However, the trend seems to be reverted with an increase of the cyanobacteria during the 2011–2014
years (Figure 2).

The cyanobacteria composition showed two distinct dominances; Chroococcales/Nostocales were
mainly detected in the period from 2004 to 2009, while Oscillatoriales/Synechoccoccales increased
after the 2010. In temperate regions, Oscillatoriales and most Chroococcales are associated with the
increasing of temperature and water column stability; Nostocales, without the potential to fix nitrogen
(Aphanizomenon), are associated with increasing TP concentration, while Synechoccoccales dominance
is influenced by lower temperatures and water stability [4]. We could not have a clear picture of the
dynamic distribution due to scarce periodicity of the sampling which would lead to a misinterpretation.
After 2010, we observed an increase of the precipitation which may influence the shifting, however,
Oscillatoriales have been reported to often dominate shallow polymictic eutrophic lakes showing cyclic
successions between Microcystis (Chroococcales) and Planktothrix (Oscillatoriales). To get insight to
the cyanobacterial biodiversity and spatio-temporal dynamic changes, it would need more frequent
samplings such as weekly combined with the microscopy analysis and the metagenomics technique
which allows a more deep analysis by sequencing the whole community (microbiome).
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In the modeling studies, we did an attempt to develop an ANN using our data, but it resulted in an
overfitted model while the selected MLR with just two predictors suggests that a general relationship
has been captured as also confirmed by the validation step (see Figure 6), further supporting the
robustness of the model as an accepted predictor. In our studies, we did not use the cell density as
parameter (although available for the data set as shown in Figure 2) because the cell size can vary
considerably within and between species, and toxin concentration relates more closely to the amount of
dry matter in a sample than to the number of cells. In addition, cell identification by optical microscopy
may underestimate the real value of cyanobacteria cells, indeed, smaller species may be (classified)
reported as ultraplankton [51]. Therefore, the biovolume was selected as a more appropriate parameter.
Furthermore, the biovolume measurements require less time for the microscopic analysis than cell
identification and enumeration providing data with lower uncertainties. The parameters selected
in this work such as the water temperature, DO, nutrient availability, and the water transparency
measured as SD, play a key role in the occurrence of cyanobacterial blooms [19,20,22,23,26,27,52–54].
In addition to these factors known to be good predictors for cyanobacteria abundance, we tried to
evaluate whether the air temperature could be considered as parameter. Indeed, air temperature is one
of the main factors driving the evolution of water temperature in a lake [55] and influencing as well
the vertical temperature profile and lake stratification [56], which are both important parameters for
the occurrence of algal bloom outbreaks. In Lake Varese and generally in monomictic lakes, during
spring, when air temperature rises, water stratification normally starts to build-up, stabilizes during
summer until fall, when decreasing air temperatures break the stratification. Another factor which
may lead to changes in water turbulence is the wind stress.

Taranu et al. has shown conflicting results on the response of cyanobacteria to climate and
nutrients for dimictic (lakes that mix from top to bottom in two water mixing periods within a year)
and polymictic lakes (mix from top to bottom for more than two water mixing periods) [23]. In dimictic
lakes the stronger predictor was water-column stability, while for polymictic lakes, was nutrients
loading. Journey et al., focusing on two monomictic lakes (mix from top to bottom during one mixing
period per year), found strong correlations between cyanobacterial biovolumes and water stratification,
while an opposite relationship was found with the nutrient levels [29]. In addition, it has been shown
that the meteorological variables as air temperature, wind speed, and relative humidity, could be
drivers of hypolimnetic anoxia, which is an indirect consequence of thermal stratification [28]. Indeed,
temperature and stratification are cross-linked factors, with stratification forming and strengthening at
higher air and water temperatures. In this paper, based on this correlation, we have demonstrated
that 14-days average air temperature can be used as a proxy of the stratification strength for Lake
Varese (Figure A3 in Appendix A and Figure 4). Indeed, the strongest correlation was found at 14 days
(T14) preceding the current water temperature and the parameter T14. Despite wind speed being
generally a physical variable influencing lake stratification [57], the lack of relationship with the
thermocline slopes can be explained because the Lake Varese area usually does not experience strong
wind speed. Based on that and considering that phosphorous is one of the most important factors for
lake management [17], the model using T14 and total phosphorous (TP, model No.2 in Table 3) was
chosen in this work as the best candidate to predict the Cyanobacteria biovolume at Lake Varese. In our
analysis, the model using ammonium nitrogen (AN) as predictor (model No.5 in Table 3) was not
considered further because AN is only one form of available nitrogen in water while it is known that
all bioavailable forms of nitrogen (ammonium nitrogen, nitrate nitrogen, urea, and alanine nitrogen)
influence the cyanobacteria abundance [58].

Nevertheless, the predictive power of this model is rather low, representing only about 30%
of the total variability. The difficulty of predicting cyanobacteria blooms using physico–chemical
environmental variables is a common problem highlighted also by previous studies [17,23,59]. On the
other hand, as reported by Janssen et al., it is urgent and challenging to provide an algal bloom
prediction at global level for the lakes [21]. The 14-days average air temperature together with total
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phosphorus can be, therefore, used to predict an algal outbreak two weeks in advance and, eventually,
to adopt management actions to reduce their occurrence in monomictic and eutrophic shallow lakes.

The threshold for health alert in recreational waters is normally defined for cyanobacterial
density in many countries. A density of 100,000 cyanobacterial cells per ml (which is equivalent
to approximately 50 µg/L of chlorophyll-a if cyanobacteria dominate) is a guideline for a moderate
health alert in recreational waters [60], although the regulated threshold varies at national level.
The conversion of cyanobacteria cell density into biovolume is not simple, as measurements of the
cyanobacteria genera/species are needed [41]. Each country is free to define the alert values for the
presence of cyanobacteria either in cell abundance or in biovolume [61], only few countries defined
thresholds in terms of cyanobacterial biovolume (Figure 7). The Netherlands and New Zealand defined
a surveillance level for cyanobacetria biovolume below 2.5 mm3/L (LOG CyanoBV = 3.34 mm3/m3) and
0.5 mm3/L (LOG CyanoBV = 2.7 mm3/m3), respectively. An alert is set above these thresholds requiring
weekly monitoring and issue warning to the public. Above 15 mm3/L (LOG CyanoBV = 4.18 mm3/m3)
and 10 mm3/L (LOG CyanoBV = 4 mm3/m3) The Netherlands and New Zealand authorities set an
action level, continue the monitoring, notify the public of a potential risk to health, and if potentially
toxic taxa are present, consider testing samples for cyanotoxins. Germany defined a single threshold
for surveillance and alert level at 1 mm3/L (LOG CyanoBV = 3 mm3/m3), above which local authorities
must publish warnings, discourage bathing, and consider temporary closure.
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Figure 7. Estimated cyanobacteria biovolume calculated for Lake Varese using model No.2 of Table 3.
The colored field represents LOG CyanoBV at different levels of the two predictors, T14 ranging between
5 and 30 ◦C, and TP ranging between 2.5 and 110 µg/L. The colored bars above the plot and the black
lines refers to examples of threshold levels for cyanobacteria biovolume (surveillance in green, alert in
orange, and action in red) of defined by legislation in The Netherlands, New Zealand, and Germany.

5. Conclusions

The main findings of this study can be summarized in the following points:

• In Lake Varese, a shift in the phytoplankton community distribution towards cyanobacteria
dominance onwards 2010 was observed;

• This change may be related to changes in the nutrients, as well as precipitation patterns, as
suggested by other studies, but more frequent samplings combined with the microscopy analysis
and the metagenomics technique (microbiome) would allow a more conclusive analysis;

• Air temperature can be used as a good proxy of the lake surface water temperature and of the
lake stratification;

• The 14 days mean air temperature showed the highest correlation with lake stratification strength
derived by vertical water temperature profiles. At surface, this parameter is easily computable
from weather forecast data, and together with total phosphorus continuous measured in situ,
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can be used as an early warning tool to anticipate by two weeks the beginning of cyanobacteria
blooms in Lake Varese.

This model can help predict and mitigate the impact of climate change on water and ecosystem
resource management.
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Table A1. Total phytoplankton community expressed as cell density (cells/L) and biovolume (mm3/m3)
for the period 2004–2014.

Year Cell Density (Cells/L) Biovolume (mm3/m3)

2004 2.11 × 107 1.43 × 104

2005 2.54 × 107 1.22 × 105

2006 2.65 × 107 6.01 × 104

2007 1.32 × 108 2.84 × 104

2008 1.60 × 108 1.80 × 104

2009 4.54 × 107 1.27 × 104

2010 7.85 × 107 2.73 × 104

2011 2.17 × 108 3.12 × 104

2012 2.04 × 108 2.16 × 104

2013 1.31 × 108 2.31 × 104

2014 8.48 × 107 2.27 × 104

Appendix B. Validation of T14

To verify whether the 14 days’ time could be used from the weather forecast we compared the
T14 values from the ERA-Interim reanalysis with T14 calculated using forecasted temperatures from
the ECMWF Integrate Forecast System. Considering all sampling days of the LOG CyanoBV model
dataset, we found a regression line with slope of 1.00 and a coefficient of determination (R2) of 0.99,
the T14 value with forecasted temperature is on average 0.7 ◦C larger than the T14 calculated using the
reanalysis. Thus, we can assume that the 14 days average of forecasted atmospheric temperatures
could be reliable enough for an early warning of cyanobacteria algal bloom outbreak, despite the
forecast uncertainty increases with time.Water 2020, 12, x FOR PEER REVIEW 17 of 22 
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Figure A3. Relationship between the thermocline slope and the average atmospheric surface
temperature of the current and the preceding 1–28 days. The maximum correlation is found for
the preceding 14 days.

Appendix C. Two-Variable MLR Models

Since T14 and WT are strongly correlated (Pearson correlation coefficient is 0.98), WT was excluded
from the performed trials. The ten-based logarithm of the CD, TP, DO, RS, and AN, was used in MLR
because Log10 transformation best approximates the normal distributions for these variables. Table 1
shows the list of models for cyanobacteria biovolume (LOG CyanoBV) computed through the MLR
method. The fraction of the total variation of measured LOG CyanoBV that can be explained by the
regression equation (coefficient of determination, R2) is ranged from 0.28 to 0.33, and a bit lower when
taking into account the sample size (73) and the number of predictors (2), R2adj ranged from 0.26 to 0.31.
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The coefficients estimated for the atmospheric temperature (T14) are always statistically significant at
the 1% or 0.1% level, while only the coefficient of CD in model No.1 was statistically significant at the
5% level. However, all the models listed in Table 1, are statistically significant according to the analysis
of variance with F value higher than 3.12, which is the critical value for a p-value of 0.05, two predictor
variables, and 73 samples.

Table A2. Two-variable multiple linear regression (MLR) models of cyanobacteria biovolume (LOG
CyanoBV) using the 14-days mean atmospheric temperature (T14) and one of the physical–chemical
variables (AN: Ammonium nitrogen; CD: Conductivity; TP: Total phosphorous; SD: Secchi disk depth;
RS: Reactive silicates; DO: Dissolved oxygen; OS: Saturation oxygen percentage; and pH). The statistical
significance of each coefficient is indicated when below 0.05 (p-values: ***: 0.001; **: 0.01; *: 0.05).
For each model the coefficient of determination (R2), the adjusted R2 (R2adj), and the F statistic are
reported. LOG means 10-based logarithm.

No. Linear Model R2 R2 adj F

1 LOG CyanoBV = 15.353 * + 0.055 T14 ** − 5.645 LOG CD * 0.33 0.31 17.16
2 LOG CyanoBV = 0.718 + 0.095 T14 *** + 0.463 LOG TP 0.31 0.29 15.41
3 LOG CyanoBV = 2.886 ** + 0.074 T14 *** − 1.324 LOG DO 0.3 0.28 14.95
4 LOG CyanoBV = 1.869 *** + 0.070 T14 *** − 0.065 SD 0.3 0.28 14.79
5 LOG CyanoBV = 1.561 *** + 0.079 T14 *** + 0.230 LOG RS 0.3 0.28 14.68
6 LOG CyanoBV = 1.759 *** + 0.079 T14 *** − 0.002 OS 0.29 0.27 14.01
7 LOG CyanoBV = −1.015 + 0.063 T14 ** + 0.329 pH 0.29 0.27 14.49
8 LOG CyanoBV = 1.616 *** + 0.077 T14 *** + 0.055 LOG AN 0.28 0.26 13.92

Table A3. List of water surface physical–chemical variables selected for the final MLR analysis. For each
physical–chemical variable, the mean, median, range, and number of measurements above/below the
level of quantification (LOQ) are reported.

Mean Median Range Above LOQ Below LOQ

Total phosphorous (µg/L) TP 40.4 25.5 2.5–110 69 9
Ammonium nitrogen (mg/L) AN 0.11 0.048 0.0075–0.6 64 14

pH pH 8.2 8.2 7.5–9.6 78 0
Conductivity
(µS/cm 20 ◦C) CD 256 257 175–310 78 0

Secchi disk depth (m) SD 4 3.5 1.1–9.6 78 0
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Figure A4. Validation of model No.2 in Table 1: Measured and predicted cyanobacteria biovolumes
at Lake Varese using an independent dataset (not included in the MLR analysis) of water samples
collected at Lake Varese during summer 2017. The T14 was calculated using forecasted temperatures at
Lake Varese by the Global Forecast System (GFS) of the National Centers for Environmental Prediction
(NCEP, http://www.emc.ncep.noaa.gov/).

http://www.emc.ncep.noaa.gov/
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Appendix D. Three-Variable MLR Models

Table A4. Three-variable multiple linear regression (MLR) models of cyanobacteria biovolume (LOG
CyanoBV) using the 14-days mean atmospheric temperature (T14) and two of the physical–chemical
variables (AN: Ammonium nitrogen; CD: Conductivity; TP: Total phosphorous; SD: Secchi disk depth;
and pH). The statistical significance of each coefficient is indicated when below 0.1 (p-values: ***: 0.001;
**: 0.01; *: 0.05; ◦, 0.1). For each model the coefficient of determination (R2), the adjusted R2 (R2adj),
and the F statistic are reported. LOG means 10-based logarithm.

No. Linear Model R2 R2 adj F

1 LOG CyanoBV = 3.391 * + 0.074 T14 *** − 0.0097 CD * + 0.504 LOG TP ◦ 0.33 0.31 12.41
2 LOG CyanoBV = 4.859 *** + 0.046 T14 ** − 0.0105 CD * − 0.067 SD 0.32 0.3 11.75
3 LOG CyanoBV = 4.401 *** + 0.052 T14 * + 0.0218 LOG AN − 0.010 CD * 0.31 0.28 74
4 LOG CyanoBV = 15.201 * + 0.053 T14 ** - 0.0236 pH − 5.481 LOG CD * 0.31 0.28 10.91
5 LOG CyanoBV = 0.918 + 0.091 T14 *** + 0.5077 LOG TP ◦− 0.048 SD 0.3 0.27 10.53
6 LOG CyanoBV = −1.369 + 0.088 T14 *** + 0.2519 pH + 0.554 LOG TP ◦ 0.3 0.27 10.42
7 LOG CyanoBV = 0.742 + 0.102 T14 *** + 0.1191 LOG AN + 0.532 LOG TP ◦ 0.29 0.27 10.29
8 LOG CyanoBV = 2.070 *** + 0.076 T14 *** + 0.1702 LOG AN − 0.065 SD 0.28 0.25 9.49
9 LOG CyanoBV = 0.931 + 0.064 T14 *** + 0.1207 pH − 0.051 SD 0.27 0.24 9.3

10 LOG CyanoBV = 0.415 + 0.071 T14 ** + 0.1659 pH + 0.099 LOG AN 0.27 0.24 9

Appendix E. Testing an Improvement with Additional Meteorological Parameters

For a range of days from 1 to 28, the maximum squared wind speed (m2/s2), the average
total precipitation (mm/day), and the PAR (W/m2) were calculated (as for the average surface
temperature). Adding wind speed (iteratively from 1 to 28 days) to the predictors of model No.2
(Table 3), the corresponding R2 ranged from 0.29 to 0.31, thus no relevant improvement was detected.
This is probably due to the generally weak winds at Lake Varese, not strong enough to break the lake
stratification. Indeed, ERA-Interim data showed that annual mean wind speed is ranged between 1.82
and 2.02 m/s, i.e., light breeze for the period 2003–2015. Stronger winds, such as gentle breeze, between
3.3 and 5.2 m/s, were observed for 17–37 days/year, and only up to three days/year of moderate breeze,
between 5.2 and 7.4 m/s. Similarly, for the average total precipitation, R2 ranged from 0.29 to 0.30.
On the opposite, an improvement was detected for PAR, where R2 ranged from 0.37 to 0.40. Since PAR,
calculated for 14 days, was correlated with T14 to a high degree (Pearson correlation coefficient is 0.82),
including it in the model would be deemed as an overfitting.
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