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Abstract

In this paper, a new dynamic mathematical model describing leadership emergence or disappearance in agent based networks
s proposed. Through a generalised Verhulst–Lotka–Volterra model, a triad of agents operates in a market where each agent
etains a quota. The triad is composed of a leader, who leads communication, and two followers. Communications flows
oth ways from leader to followers and vice versa. Competition, collaboration and cheating are allowed. Stability solutions are
nvestigated analytically through a fixed point analysis. Various solutions exist depending on the type of behavioural interactions.
esults show that communication counts: survival of the leader is a condition for stability. All configurations with the leader
ut of the market are unstable. Conversely, the two followers position is highly difficult. The three agents cannot all survive
nless they behave under mutual collaboration and in very special conditions. For followers, cheating the leader, especially if
he leader is collaborating, can be a disaster. By the way, collaboration with the leader may not always ensure market survival.
owever, this can be a strategy to survive and even share the leadership, in particular when the other agent cheats (or is

heated by) the leader. Cheating is a cause of instability. In fact, only a few cases reach stability: this occurs when cheating
omes from the leader and the leader always wins. The leader may be interested in cheating if she does not want to share the
eadership with a follower, that is to get the monopoly of the market.
c 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

In general, considerations about leadership, its emergence (or its conservation) are of wide interest. One may ask
not only how one becomes a leader, under which type of opportunity, but also how, being a leader, one maintains
such a leadership [20]. We emphasise that we do not wish to extend the discussion towards aspects of leadership like
career development nor towards facilitating organisational learning and collective capacity building. Our approach
emphasises the final goal, i.e. to become or remain a leader, rather than the role of a leader.

Knowing that strategic alliances – constellations of bilateral agreements among firms – are increasingly necessary
to support innovative activities [43], we restrict agent based modelling of leadership to an algorithmic method; as
a basic model, we study a triad, where the presupposed to be the “leader” is connected to others who are pending
nodes. Thus, we study how agents cooperation or competition influence leadership opportunity, under (to be better
defined below) endogenous constraints.

Firstly, we propose a practical model of “coopetition” [4] in business networks letting players develop dynamical
strategies. A mixed-type of interactions is considered, that is a system in which competitive and cooperative
scenarios could occur simultaneously among the various interacting agents. This leads to reach realistic stability
states for the leadership.

Secondly, by introducing a leadership (market) capacity in the model, a realistic constraint is inserted, i.e. the
maximum level which all the agents may reach in the market, thereby enforcing a natural (endogenous) limit on
agent size.

Existing economic models of leadership often consider static settings only. However, leadership requires
persistence [23] which can be modelled only in a dynamic context. Gearing towards multiplex complex topologies,
we analyse a possibly asymmetric bidirectionally coupled dynamics.

Within a generalised Lotka–Volterra model, we include a Verhulst limited growth constraint, to better mimic
(“market capacity”) reality within a struggling (“prey–predator”) world [30,48].

The Verhulst–Lotka–Volterra (VLV) prey–predator model is generalised by introducing a network effect through
an undirected (and still) unweighted graph. The weights binary values do suitably represent competition or
cooperation strategies. Elements of the resulting adjacency matrix Γ replace the strength parameters in the
interaction function of the model in [7] and [6].

We emphasise features based on analytic results on stability with differential equations rather than numerical
simulations, - as in [22] or through the interesting and elaborate multiagent-based, spatially explicit, evolutionary
model of Hadzibeganovic et al. [19]. Useful reviews on this topic are [50] and [35].

Our results give some quantitative insights in illustrating cooperation and competition aspects, often encountered
when agents are under a social network pressure. We also show that, under certain conditions, the leader can be
ousted from the market. This gives hints to the other agents on how to survive, even in apparently less favourable
situations.

Let it be recalled that the Lotka–Volterra model has been used in various ways to model many types of complex
systems [9,33,44,47,48]. Moreover, the well-known population growth Verhulst model has been much adapted
outside demography, because the Verhulst quadratic term mimics a constraining exogenous effect found in the
system limited capacity [39]. With such cornerstones, a combined VLV model has been recently formulated in order
to introduce the effects of competition and growth pertinent in economy and opinion formation science [47,48]. A
generalisation through the introduction of a non-linear symmetric interaction function has been used to investigate
competition scenarios [7], cooperation scenarios [6], and mixed types of interactions [39]. Competition scenarios
resulted in finding a self-organising clustering of agents, either chaotic or non chaotic, as a result of their dependence
on their size and initial state conditions. Cooperative scenarios resulted in finding the growth of different clusters of
interacting agents beyond their capacity, in contrast to the competitive case. Cooperation is affected by agents’ sizes,
willingness to cooperate, and by environmental complexity [3]. However, one should allow for a lack of reciprocity
in the coupled agent interactions. This has to do with trustworthiness [26], that is an important aspect in strategic
behaviour [14]. Indeed, it may occur that an agent wishes to compete or cooperate with another one, but this latter
has not necessarily the same behavioural attitude towards the former agent. This is a quite common situation, when
the struggle for survival causes behaviours that are not ethical, leaders not excluded.

We take the concept of leader from complex networks theory: a leader is a node which has a number of directed
links higher than the other nodes, that is, a higher in-degree [15,31]. Besides, in our context, a leader can be both
a predator and a prey [38].
490
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Finally, recall that the most basic network unit useful for complexity needs a triplet of agents. From an
organisational point of view, this is called an “uneasy triangle” in networks [36]. Here the leader takes advantage of
the fact that connections between the two minor agents are weak or non-existent. An important assumption is that
agents are not aware of the behaviour of others. They only know their own attitude towards their direct neighbour.
This allows for asymmetrical behaviour, like competing with an agent that in fact is cooperating.

This paper is organised as follows: in Section 2, a short complementary literature review is provided encom-
passing related papers on leadership leaning towards modelling in a Lotka–Volterra framework. In Section 3, the
generalised VLV model is introduced in detail: we outline the mathematical, sociological, or economical aspects
justifying the model used in this paper. In Section 4, all cases leading to stability are analysed, showing growth
and/or decay effects in various scenarios. In Section 4.1, the mathematical details are illustrated in detail. Even
though our results are analytical, in Section 4.2, we accompany the results with some numerical simulations to
show the paths towards equilibrium. In most cases, it is observed that the two minor agents cannot survive jointly.
In Section 4.3, some considerations are derived from our analytical results. It appears that the model is suitable for
in various organised networks describing complex systems. Section 5 concludes. Mathematical results on stability
are reported in Appendix.

2. State of the art

In order to restrict the literature review to a reasonable size, let us focus on the specificity of the leadership types
we consider below, geared within a predator–prey concept as that provided by the Lotka–Volterra model. The case
discussed in this paper refers to a triad, which is the simplest complex structure to analyse in a non-linear model.

The leadership aspects which we describe pertain to the criteria on which such agents base their action in order
to reinforce their position [27]. In a sociological group, an agent looks for power; in an economic system, a set
of agents (firms, e.g. banks, airlines, car, soda, or electronic good makers) aims at oligopoly or even monopoly.
Further examples can be found in multi-lover relationships [40] or political coalitions [1,29]. In the present case,
we are open to consider how a leader loses its leadership role, how a dictator (some extreme leadership type) can be
overthrown, how a superior athlete can gain a victory or lose in a race due to his/her competitor framing him/her.

To make the transition towards economic systems seen as evolving living systems within prey–predator aspects,
we refer to Kamimura et al. [28]. Before this article, Guastello [18], stressing self-organisation as a biological
concept, studied leadership emergence in animal troupes. As an organisational ecology modelling strategy describing
how to use Lotka–Volterra models, Sungaila [42] is one of the pioneers. Symbolic and cultural aspects of
organisational life are framed in the process of self-renewal, with which the dynamics of self-organisation must
compete, in view of attaining an exclusive leadership. More recently, Castiaux [8] studied different patterns of
relationships between organisations, as in a Lotka–Volterra system, proposing radical innovation in established
organisations, like being a “knowledge predator”.

3. The generalised Verhulst–Lotka–Volterra model

This work deals with a generalised prey–predator Verhulst–Lotka–Volterra model representing a market in which
n agents simultaneously operate. Variables si ≥ 0 denote the market size of agent i , i = 1, . . . , n while ṡi are their
ime derivative. For sake of compactness, dependence on time for all variables is conveniently omitted.

Two are the forces that drive the model: a Verhulst logistic-type dynamics is coupled by a Lotka–Volterra’s
erm. The first part distributes the overall market proportionally to the agents’ sizes while the second allows the
rowth and the interaction among them. Here, interaction can be either of a cooperative or competitive kind and is
odelled by suitable matrices that describe the network effect. Mixed-type interaction among agents is allowed so

hat cheating (that is when an agent is collaborating while the other is competing) is possible. The model reads

ṡi = αi si

⎛⎝β −

n∑
j=1

s j

⎞⎠ −

n∑
i ̸= j

γ
(
si , s j

)
si s j i = 1, . . . , n. (1)

he first term in (1) contains a Verhulst-like term [45,46] in which “market capacity” β ≥ 1 stands for the
nal relative size, or amount of product or service, that could be reached by the totality of agents within the

arket [17,39,40]. Further, parameter αi denotes the growth rate of agent i’s share in the logistic model. For sake
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of simplicity, in the numerical part of this article it is assumed that agents have the same dynamical (growth)
properties αi = 1.

Term β −
∑n

j=1 s j is the residual market, that is the portion of the market agents can obtain before reaching
aximum capacity.
Interaction functions γ (si , s j ), i, j = 1, . . . , n in (1) [7] stem from the Lotka–Volterra model [32,49].
Functions γ (si , s j ), to be analytically defined below, can be seen in a [8] perspective, as a knowledge acquisition

(or loss) motor, that is in our words a dynamical learning function.
As it will be shown below, these interaction terms might lead to the sum of market shares of all agents to end

up being different than β.
The general case (β ≥ 1) and the particular case (β = 1) are both studied to give further insights to our

odel. When β = 1, the leadership capacity is normalised and implies the same basic time scale for each agent.
urthermore, β ≥ 1 may be called “overcapacity” of the market [39].

Consider the case n = 3; in order to emphasise leadership, the role of “leader” is given to agent A1; she is
llowed to interact directly (by means of functions γ (s1, s2) and γ (s1, s3)) to agents A2 and A3 (the “followers” or
minors”) and, therefore, has some market centrality. Agents A2 and A3 do not directly interact with each other:
(s2, s3) = γ (s3, s2) = 0. They have a weak connection as they both interact (by means of functions γ (s2, s1) and
(s3, s1)) with A1.

The organisational structure is described by the system of differential equations⎧⎨⎩ṡ1 = α1s1 (β − s1 − s2 − s3) − γ (s1, s2) s1s2 − γ (s1, s3) s1s3 (a)
ṡ2 = α2s2 (β − s1 − s2 − s3) − γ (s2, s1) s2s1 (b)
ṡ3 = α3s3 (β − s1 − s2 − s3) − γ (s3, s1) s3s1 (c)

(2)

The interaction function γ (si , s j ) that measures how agents Ai and A j affect each other is [7]

γ
(
si , s j

)
= γi, j = γ̃i, j e

−

( si −s j
σ

)2

(3)

here γ̃i, j , i, j = 1, 2, 3 is an element of matrix Γ ∈ M (3, 3) while σ > 0 scales the intensity of agents sizes
imilarity.

Elements γ̃i, j ∈ Γ can get three values: −1, 0, 1. If γ̃i, j = −1
(
γ̃i, j = 1

)
agent Ai cooperates (competes) with

gent A j . In case no direct interaction occurs, γ̃i, j = 0. Further, γ̃i,i = 0, i = 1, 2, 3. Network representations
ssociated to matrices Γ are depicted in Table 1.

A key feature in this analysis is that if agents Ai and A j do not behave reciprocally, the one who competes
γ̃i, j = 1

)
is cheating her cooperating counterpart

(
γ̃ j,i = −1

)
. Interactions can be:

(i) symmetric: γ̃i, j = γ̃ j,i , i, j = 1, 2, 3. If Ai cooperates (competes) with A j then A j cooperates (competes)
with Ai . Here no agent is cheating. Matrices encompassing these cases are denoted with Γ (+) (Table 1,
first column). Matrix Γ (+)

1 represents a fully competitive system. Matrix Γ (+)
2 describes a mixed-type of

interaction system where A1 and A2 are unfriendly between each others but A1 and A3 reciprocally cooperate;
otherwise said, couples (A1; A2) and (A1; A3) do not have the same strategic plans. Matrix Γ (+)

3 describes
full cooperation.

(ii) antisymmetric: γ̃i, j = −γ̃ j,i . If Ai cooperates (competes) with A j then A j competes (cooperates) with Ai .
Matrices encompassing these cases are denoted with Γ (−) (Table 1, second column). In this scenario, players
do not act symmetrically. For each interaction between agents there is an agent cheating another one. Take
for example Γ (−)

1 : A1 collaborates with both A2 and A3, but both A2 and A3 compete with A1. Due to the
lack of direct connection between A2 and A3, this does not necessarily mean that these agents establish some
sort of alliance.

(iii) mixed reciprocal attitude: such matrices are denoted with Γ (0) (Table 1, third column). Here one couple of
agents interacts reciprocally where in the other couple there is an agent who is cheating.

In all of the three scenarios above, by permuting matrix indices accordingly, more cases can be represented. For
sake of paucity, cases not considered in Table 1 are omitted. This is not limiting the analysis as, in these cases,
followers’ attitude switches between them.

Function (3) mimics a Gaussian-type form, is continuous and time differentiable, it avoids the dynamics to

diverge, and allows a proper theoretical analysis of the system dynamics.
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1
)
, dashed curve: collaboration between agents

1

3

Γ (0)
1 =

⎡⎣ 0 1 1
−1 0 0
1 0 0

⎤⎦

1

3

Γ (0)
2 =

⎡⎣ 0 −1 −1
−1 0 0
1 0 0

⎤⎦

1

3

Γ (0)
3 =

⎡⎣0 −1 1
1 0 0
1 0 0

⎤⎦

1

3

Γ (0)
4 =

⎡⎣ 0 −1 1
−1 0 0
−1 0 0

⎤⎦

Mixed reciprocity: Γ (0)
Table 1
Matrices Γ and network representation of interaction between agents — continuous curve: competition between agents

(
γ̃i, j =(

γ̃i, j = −1
)
.

1

2 3

Γ (+)
1 =

⎡⎣0 1 1
1 0 0
1 0 0

⎤⎦
1

2 3

Γ (−)
1 =

⎡⎣ 0 1 1
−1 0 0
−1 0 0

⎤⎦
2

1

2 3

Γ (+)
2 =

⎡⎣ 0 1 −1
1 0 0

−1 0 0

⎤⎦
1

2 3

Γ (−)
2 =

⎡⎣ 0 1 −1
−1 0 0
1 0 0

⎤⎦
2

1

2 3

Γ (+)
3 =

⎡⎣ 0 −1 −1
−1 0 0
−1 0 0

⎤⎦
1

2 3

Γ (−)
3 =

⎡⎣0 −1 −1
1 0 0
1 0 0

⎤⎦
2

2

Symmetric (reciprocal) interactions: Γ (+) Antisymmetric (reciprocal) interactions: Γ (−)
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Function γi, j si s j in (2)(a)–(c), when bounded in subset [0; +∞) × [0; +∞), is positive and always non
ecreasing, if γ̃i, j = 1, and negative and non increasing, if γ̃i, j = −1, wrt both si and s j .

In the Lotka–Volterra model interactions between species are gauged by constant parameters. In model (2)(a)–(c),
s pointed out by Fernàndez et al. [12], values for the interaction function γi, j depend on relative sizes of agents. This
llows to ascertain that the relationships of closeness among agents in (3) modify the interaction (or bargaining)
trength among them and, therefore, their size (payoffs) evolutions. Further, according to Caram et al. [7], such
nteraction coefficients are the largest (in absolute value) if agents’ sizes are similar, i.e. if si ∼ s j . On the other
ide, γ (si , s j ) ≈ 0, if si and s j are quite different.

As it will be seen later, the asymptotic-like behaviour of γ (si , s j ) is well suited to represent complex qualitative
eatures.

. Results on stability

The importance of stability in a market and, in general, for a whole economy as well in a price system, is crucial.
uch aspect is explained in [25] and [11]. Thus, the conditions under which stability is reached, implying a stable
arket as well as an economy, can give useful insights on how a market should be structured.
This Section is devoted to investigation on stability for dynamical system (2)(a)–(c). In Section 4.1, the detailed

nalysis on stability for all cases is illustrated. The analysis indicates that a systemic stability exists, — a stability
hich e.g. in economic term can be referred to a possible equilibrium point of the market, for all interacting agents.

n several cases, as shown, several final states may occur according to the initial quota of the agents, thus leading to
etastability or instability. When stable solutions are present, for any initial condition (i.e. for any choice of initial

alues for s1, s2, and s3) the dynamic process converges to a configuration that will never change.
Metastable solutions can also be found: here, once the initial conditions are set up, the system is stable. Finally,

nstable solutions depend on various parameters.

.1. The mathematical results

Recall (2)(a)–(c); stability, ṡi = 0, i = 1, 2, 3 returns system⎧⎪⎨⎪⎩
ṡ1 = s1

(
β − s1 −

(
1 + γ1,2

)
s2 −

(
1 + γ1,3

)
s3

)
= 0

ṡ2 = s2
(
β −

(
1 + γ2,1

)
s1 − s2 − s3

)
= 0

ṡ3 = s3
(
β −

(
1 + γ3,1

)
s1 − s2 − s3

)
= 0

(4)

Analysis of Fixed Points (FPs thereafter) of dynamical system (2)(a)–(c) entails the evaluation of eigenvalues of
ts Jacobian matrix, computed at each corresponding FP. FPs stability of the system can be thereby determined at
ny time t .

All mathematical calculations are reported in the Appendix. Solutions of system (4) determine a range of FPs.
detailed list of these FPs is relegated in the Appendix. Table 5 contains FPs for Γ (+) (symmetric cases) and

(−) (antisymmetric cases) while Table 6 displays FPs for Γ (0) (mixed reciprocity cases).
In general terms, when the real part of each eigenvalue is negative, the system is said to be stable, that is, the

quilibrium solution at long term is independent of the initial situation. If at least one eigenvalue is equal to zero
nd the others have their real parts negative, the system is said to be metastable (at long term, the equilibrium
olution depends of the initial situation). If at least one eigenvalue has a positive real part, the system is said to be
nstable.

The Jacobian matrix J =

[
∂

∂sk
ṡi

]
, i, k = 1, 2, 3 when αi = 1 for (2)(a)–(c) is

J =

⎧⎪⎪⎨⎪⎪⎩
β − 2si −

∑
j ̸=i s j

(
1 + γi, j

(
1 −

2si(si −s j)
σ 2

))
k = i

−si

(
1 + γi,k

(
1 +

2sk (si −sk )

σ 2

))
k ̸= i

.

An analysis of the most interesting results in terms of stability follows. Stability for FPs has been studied when
β = 1 (see Tables 2, 3, and 4).

Results on stability have been analytically obtained. Besides, numerical simulations for some initial conditions
have been performed (see Figs. 1). This allows to show different behaviours of agents’ quotas wrt time and how
these trajectories lead, in any case, to a stable scenario. In all numerical simulations β = 1.
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Table 2
Stability of FPs for Symmetric cases - β = 1 - M stands for Metastable while U for Unstable solutions.
For instance, if σ = 1, s = s2 = s3 = 0.428... and s1 = s2 + s3 = 2s.

FP Symmetric cases Γ (+)

Type Γ (+)
1 Γ (+)

2 Γ (+)
3

No agent in the market

(I) si = 0; i = 1, 2, 3 U U U

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 Stable U U
(IIb) s2 ̸= 0; s1, s3 = 0 M M U
(IIc) s3 ̸= 0; s1, s2 = 0 M U U

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 M M, Ub U
(IIIb) s2 = 0; s1, s3 ̸= 0 U Stable Stable
(IIIc) s3 = 0; s1, s2 ̸= 0 U U Stable

All agents in the market (si ̸= 0; i = 1, 2, 3)

(IVa) s1 = s2 + s3; s2 = s3 U – Stablea

(IVb) 2s1 = s2 + s3 – – –

aThere is a unique solution for each σ .
bM or U depending on s.

Table 3
Stability of FPs for Antisymmetric cases - β = 1 - M stands for Metastable while U for Unstable solutions.

FP Antisymmetric cases Γ (−)

Type Γ (−)
1 Γ (−)

2 Γ (−)
3

No agent in the market

(I) si = 0; i = 1, 2, 3 U U U

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 U U Stable
(IIb) s2 ̸= 0; s1, s3 = 0 M M U
(IIc) s3 ̸= 0; s1, s2 = 0 M U U

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 M M, Ua U
(IIIb) s2 = 0; s1, s3 ̸= 0 – – –
(IIIc) s3 = 0; s1, s2 ̸= 0 – – –

All agents in the market (si ̸= 0; i = 1, 2, 3)

(IVa) s1 = s2 + s3; s2 = s3 – – –
(IVb) 2s1 = s2 + s3 – – –

aM or U depending on s.

.2. Stability and numerical simulations

Here a discussion of stable FPs is presented (Tables 2, 3, and 4). Several alternatives in a cell indicate that in such
case stability depends on the value for β and, possibly, for other parameters. All Subfigures below are collected

n Fig. 1.
Symmetric interaction: when all agents compete, matrix Γ (+)

1 , no stable solution with all agents surviving is
found (see case IVa in Table 2, first column). This can be considered in line, however extended to three agents,
with the exclusion principle [24]. Here stability is reached in case IIa, with the leader only survivor (i.e. A2 and

A3 ousted from the market). Fig. 1a depicts how market quotas reach the equilibrium.
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Table 4
Stability of FPs for Mixed Reciprocity cases - β = 1 - M stands for Metastable while U for Unstable
solutions.

FP Mixed reciprocity cases Γ (0)

Type Γ (0)
1 Γ (0)

2 Γ (0)
3 Γ (0)

4

No agent in the market

(I) si = 0; i = 1, 2, 3 U U U U

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 U U Stable U
(IIb) s2 ̸= 0; s1, s3 = 0 M U U U
(IIc) s3 ̸= 0; s1, s2 = 0 M U M M

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 M U M M
(IIIb) s2 = 0; s1, s3 ̸= 0 U – U –
(IIIc) s3 = 0; s1, s2 ̸= 0 – Stable – Stable

All agents in the market (si ̸= 0, i = 1, 2, 3)

(IVa) s1 = s2 + s3, s2 = s3 – – – –
(IVb) 2s1 = s2 + s3 – – U U

Other interactions with two agents out of three out of the market are possible; they are never stable, being either
etastable or unstable.
This suggest that full competition causes minor players to go out of the market, regardless of their initial quotas.
When A1 and A2 compete while A1 and A3 collaborate (interaction as in matrix Γ (+)

2 ), the only stable
configuration (that is, of course, reached for all initial conditions) is reached for A1 and A3 in the market and
A2 forced out of it. Further, Fig. 1b shows that equilibrium values for A1 and A3 are the same and equal to 1.
This means that the interaction between these two agents is capable of duplicating the capacity of the market while
forcing A2 getting ousted. Otherwise said, competing with the leader poses a follower out of the market.

Under full cooperation, interaction matrix Γ (+)

3 , stability can be reached either for all three agents surviving (case
IVa under specific conditions s1 = s2 + s3 and s2 = s3) or for one of the “minors” getting out: in case IIIb (IIIc)
agent A2 (A3) succumbs while A1 and A3 (A2) remains in the market. Further, Fig. 1c (1d) shows that in case IIIb
(IIIc) the two surviving agents duplicate market capacity.

Antisymmetric interaction: when cheating is practised by all agents, the only stable configuration arises with A1
cheating both A2 and A3 (Table 3, matrix Γ (−)

3 , case IIa). The final configuration is with both followers ruled out of
the market, as shown in Fig. 1e. All other configurations are unstable or metastable. Cheating against a collaborating
leader is, once again, bad practice for followers.

One may wonder why the leader should cheat both followers. This is a way of getting both followers out of the
market and remain the only player.

Mixed reciprocity: Table 4 shows that here three stable solutions occur. The first one (matrix Γ (0)

3 , case IIa) deals
with the leader only surviving agent. In this setting agent A1 collaborates with A2 while competing with A3. The
numerical depiction of this case is in Fig. 1f.

A second equilibrium (matrix Γ (0)

2 , case IIIc) is reached with A3 forced out of the market while A1 and A2

survive (Sub Fig. 1g). Matrix Γ (0)

2 explains why this occurs: A3 is competing against A1 while all other interactions
are cooperative.

The third equilibrium (matrix Γ (0)

4 , case IIIc) is similar to the second one as here is agent A2 that, while all other
interactions are cooperative, competes against A1 and is forced out of the market (Fig. 1h).

These results show that, again, followers should not compete with the leader.

4.3. Discussing cooperation, competition, leadership and cheating

This section presents some economic comments upon stable results discussed in Section 4.2. The vocabulary

mainly pertains to socio-economic-like or management cases [37], but it is easily imagined that mutatis mutandis
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Fig. 1. Numerical simulations — time representation of interactions with stable equilibria (β = 1, σ = 1): agent A1 (leader): continuous
urve; agent A2: dashed curve; agent A3: dotted curve — Numerical values in each caption are the initial and the equilibrium quotas for
ach agent.

hese comments hold for other situations, as in sport, in scientific research, in politics, in other societal processes,
ven in love relationships [40]. The keywords of such a discussion can be considered to be: maintenance or
onservation and loss of leadership.

To illustrate these results some graphs have been depicted (see Fig. 1). The main message these plot convey is
hat the leader benefits of an evident as well as indisputable superiority and leaves followers to find a strategy that
ill not lead them of out the market.
In the considered triadic market, A1 is in a leading position, essentially from the point of view of communication,

hile A2 and A3 share weak and negligible connections with each other. Communication counts: in fact, A1 may
e finally taking the entire market, even if she does not start with the highest initial quota of the market (see Fig. 1,
igs. 1e and 1f).

However, the competitive advantage of A1 does not assure by itself that A1 will definitely enjoy higher quotas
or oust the other agents away or even survive into the market. Agent A1 can be ousted from the market (cases IIb,
IIc, and IIIa in Tables 2, 3, and 4) even if all these scenarios are not stable.

In case the interaction matrix is Γ (+)

1 , that is if all agents compete, the leader is forced out of the market whenever
her initial quota is less than the sum of the initial quotas of the two followers (Fig. 1i). However, this is a metastable
equilibrium. Further, lack of information on the mutual strategies does not allow a sort of alliance between minor
agents. The presence of the leader is a condition for stability.

A general result is found: the three agents cannot all survive unless they behave under mutual collaboration and
in very special conditions, (case IVa in matrix Γ (+)

3 ). Thus, the need of survival triggers the behaviour (competition,
cooperation and cheating) and, due to this, it may even happen that it is the leader that goes out the market.
The competitive advantage is not permanent and therefore can be lost. This may be due to a lack of innovation,
advancement in technology, etc., leading to a reduction in firm share in a competitive market or total exit from the
market.
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Conversely, there are (stable) situations in which the interaction among agents leads A1 to the “leader takes all”
type — a phenomenon which is caused by the existence of the so called Matthew effect also known as the “rich
gets richer” effect [33,51].

On the other hand, the position of the two followers is highly difficult. In general, a possible good strategy for
minor players is to collaborate with the leader, hoping not to be cheated. In fact, it has been discovered [2,13,16]
that “Collaboration is a key driver of overall performance of companies around the world. Its impact is twice as
significant as a company’s aggressiveness in pursuing new market opportunities (...) and five times as significant as
the external market environment (...)”.

Cheating is a cause of instability. In fact, only a few cases reach stability: by the way, this occurs when cheating
comes from the leader and the leader always wins.

As said above, for the minor agents, cheating the leader can end up with a disaster. Conversely, the leader may
benefit from cheating, no matter the attitude of the other agents. The leader may be interested in cheating if she
does not want to share the leadership with a follower, that is to get the monopoly of the market.

Even if a fair collaboration with the leader is established by one followers she, due to her size, could be forced
to exit the market. This again depends on the attitude of the leader.

Collaboration with the leader may not always ensure market survival: even if all collaborate, one of the minor
agents can go out. However, this can be a strategy to survive and even share the leadership, in particular when the
other agent cheats (or is cheated by) the leader.

5. Conclusion

It is interesting to point out a few theoretical remarks from the literature concurring with this work’s findings.
Stiglitz [41], in his reflections on the state of the theory of monopolistic competition, intended to revolutionise
the modelling of imperfectly competitive markets. He observed that the main distinctive features of monopolistic
competition leading to economic agents’ decisions are based on a few principles, sometimes (to say the least) weakly
based on modelling. Hopefully, we provide some way of codifying such principles, and moreover we sustain their
theoretical background. Recently, Mesak et al. [34] had also noticed that strategic changes improve performance
and also leadership emergence. Thereby, by analogy with this specific reference, it is understandable that changes in
our model parameters could be usefully investigated in terms of their relative influential impact on final equilibrium
states.

Previously, Encaoua et al. [10] had stated that ”In the struggle to create, maintain and expand favourable market
positions, firms’ actions are intended not only to affect the current conduct of rivals directly, but also to have an
indirect effect by altering market structure in a way which constrains the rival’s subsequent actions”. These points
are of great interest; they confirm the usefulness of the presently parsimonious model that could be applied, for
instance, to the analysis of moral preferences, as illustrated in [5].

An interesting research question that will be tackled in the future is the following: could a follower gain a relevant
role in a market if she owns a novel technology capable of granting her a stronger capability of penetrating the
market itself? This requires to analyse a more general model than the one under scrutiny in this article. Innovation
effect, and the consequent improved market penetration, is translated into this setting by larger values for parameters
α.

Hermalin [23] suggests that “... one rationale for following is the leader has superior information about actions
to be taken”. Hence, the network structure applied in this article exactly matches this point.

Completely different scenarios may arise if a connection, even weak, is established between the two minor
players. Coalitions are then possible and the leader might lose her predominance.

In this paper, the economic considerations are based on mathematical results and are focused on stability. This
allows us drawing analytically the solutions of the differential equations system at any point in time. In this way,
we can monitor the process, from the initial condition until the asymptotic fixed point. Later, it may be particularly
interesting to study the metastable cases, possibly considering memory “constraints” in feedback mechanisms [21].
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Appendix. Determination of fixed points

This Appendix collects all Fixed Points (FPs) obtained by solving system of Eqs. (4) in the symmetric,
antisymmetric (Table 5) and mixed reciprocity (Table 6) cases. Such solutions are divided in four cases, according
to the number of equilibrium quotas that are strictly greater than 0.

Some FPs depend on β and on a parameter s. Bounds for s wrt to β are also provided. In some cases quotas si
turn out being linked to a further constraint.

• Case 1. Stability for Type I FPs: all agents are forced out of the market (s1 = s2 = s3 = 0). The Jacobian
matrix is equal to an identity matrix; all its eigenvalues are therefore equal to 1, leading to an unstable
equilibrium.

• Case 2. Stability for Type II FPs: only one agent survives so that the following three sub-cases, one for each
agent remaining in the market, occur:

– Type IIa FPs - only A1 survives: s1 = β, s2 = s3 = 0. The Jacobian matrix reads

J (β, 0, 0) =

⎡⎣1 − 2β −β
(
1 + γ1,2

)
−β

(
1 + γ1,3

)
0 1 − β

(
1 + γ2,1

)
0

0 0 1 − β
(
1 + γ3,1

)
⎤⎦

and its eigenvalues are λ1 = 1 − 2β < 0, λ2 = 1 − β
(
1 + γ2,1

)
, and λ3 = 1 − β

(
1 + γ3,1

)
.

Stable, metastable or unstable situations depend on β, γ2,1, and γ3,1. Cases Γ (+)

1 , Γ (−)

3 , Γ (0)

3 , according to
formula (3) and recalling that γ̃2,1 = γ̃3,1 = 1, always lead to stability as all of the above eigenvalues are
strictly negative. For the other interaction matrices stability, metastability or unstability can occur. For
example, Γ (+)

2 (for which γ̃2,1 = 1 and γ̃3,1 = −1) leads to a stable solution when β > 1
1+γ3,1

, metastable
when β =

1
1+γ3,1

or unstable, when 1 ≤ β < 1
1+γ3,1

.
– Type IIb FPs - only A2 remains in the market: s2 = β, s1 = s3 = 0. The Jacobian matrix now reads

J (0, β, 0) =

⎡⎣1 − β
(
1 + γ1,2

)
0 0

−β
(
1 + γ2,1

)
1 − 2β −β

0 0 1 − β

⎤⎦
and its eigenvalues are λ1 = 1 − 2β < 0, λ2 = 1 − β ≤ 0, and λ3 = 1 − β

(
1 + γ1,2

)
.

Similarly to the previous case, we will have stable, metastable or unstable situations according the value
of β and the sign of γ1,2. Interactions Γ (+)

1 , Γ (−)

1 , Γ (−)

2 , Γ (0)

1 are either stable or metastable; in all other
cases unstability can arise.

– Type IIc FPs - agent A3 only remains in the market: s3 = β, s1 = s2 = 0. The Jacobian matrix

J (0, 0, β) =

⎡⎣1 − β
(
1 + γ1,3

)
0 0

0 1 − β 0
β

(
1 + γ3,1

)
−β 1 − 2β

⎤⎦
has eigenvalues equal to λ1 = 1 − β ≤ 0, λ2 = 1 − 2β < 0 and λ3 = 1 − β

(
1 + γ1,3

)
.

Stable, metastable or unstable equilibria occur according to the value of β and the sign of γ1,3. Interaction
matrices Γ (+)

1 , Γ (−)

1 , Γ (0)

1 , Γ (0)

3 , Γ (0)

4 end up in either stable or metastable equilibria, but in other cases

unstability can appear.
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Table 5
FPs for the Symmetric and Antisymmetric cases.

FP Symmetric cases Γ (+)

Type Γ (+)
1 Γ (+)

2 Γ (+)
3

No agent in the market

(I) si = 0; i = 1, 2, 3 (0, 0, 0) (0, 0, 0) (0, 0, 0)

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 (β, 0, 0) (β, 0, 0) (β, 0, 0)

(IIb) s2 ̸= 0; s1, s3 = 0 (0, β, 0) (0, β, 0) (0, β, 0)

(IIc) s3 ̸= 0; s1, s2 = 0 (0, 0, β) (0, 0, β) (0, 0, β)

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 (0, s, β − s) (0, s, β − s) (0, s, β − s)
0 < s < β 0 < s < β 0 < s < β

(IIIb) s2 = 0; s1, s3 ̸= 0 (β/3, 0, β/3) (β, 0, β) (β, 0, β)

(IIIc) s3 = 0; s1, s2 ̸= 0 (β/3, β/3, 0) (β/3, β/3, 0) (β, β, 0)

All agents in the market (si ̸= 0; i = 1, 2, 3)

(IVa) s1 = s2 + s3; s2 = s3 (2s, s, s) – (2s, s, s)
β/6 < s < β/4 β/4 < s < β/2
s =

β

2(2+γ2,1)
s =

β

2(2+γ2,1)

(IVb) 2s1 = s2 + s3 – – –

FP Antisymmetric cases Γ (−)

Type Γ (−)
1 Γ (−)

2 Γ (−)
3

No agent in the market

(I) si = 0; i = 1, 2, 3 (0, 0, 0) (0, 0, 0) (0, 0, 0)

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 (β, 0, 0) (β, 0, 0) (β, 0, 0)

(IIb) s2 ̸= 0; s1, s3 = 0 (0, β, 0) (0, β, 0) (0, β, 0)

(IIc) s3 ̸= 0; s1, s2 = 0 (0, 0, β) (0, 0, β) (0, 0, β)

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 (0, s, β − s) (0, s, β − s) (0, s, β − s)
0 < s < β 0 < s < β 0 < s < β

(IIIb) s2 = 0; s1, s3 ̸= 0 – – –
(IIIc) s3 = 0; s1, s2 ̸= 0 – – –

All agents in the market (si ̸= 0, i = 1, 2, 3)

(IVa) s1 = s2 + s3, s2 = s3 – – –
(IVb) 2s1 = s2 + s3 – – –

• Case 3. Stability for Type III FPs: here only one agent is pushed out of the market. Again, three sub-cases
occur.

– Type IIIa FPs - agent A1 is the only one that goes out the market: s1 = 0, s2 > 0, s3 > 0. Let s2 = s,
so that s3 = β − s, the Jacobian matrix

J (0, s, β − s) =⎡⎣1 − s
(
γ1,2 − γ1,3

)
− β

(
1 + γ1,3

)
0 0

−s
(
1 + γ2,1

)
1 − s − β −s

− (β − s)
(
1 + γ3,1

)
s − β 1 − 2β + s

⎤⎦
has now eigenvalues equal to λ1 = 1 − 2β < 0, λ2 = 1 − β ≤ 0, and( ) ( )
λ3 = 1 − s γ1,2 − γ1,3 − β 1 + γ1,3 = 1 − β − sγ1,2 − (β − s) γ1,3.
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Table 6
FPs for the Mixed reciprocity cases.

FP Mixed reciprocity cases Γ (0)

Type Γ (0)
1 Γ (0)

2 Γ (0)
3 Γ (0)

4

No agent in the market

(I) si = 0; i = 1, 2, 3 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

One agent in the market

(IIa) s1 ̸= 0; s2, s3 = 0 (β, 0, 0) (β, 0, 0) (β, 0, 0) (β, 0, 0)

(IIb) s2 ̸= 0; s1, s3 = 0 (0, β, 0) (0, β, 0) (0, β, 0) (0, β, 0)

(IIc) s3 ̸= 0; s1, s2 = 0 (0, 0, β) (0, 0, β) (0, 0, β) (0, 0, β)

Two agents in the market

(IIIa) s1 = 0; s2, s3 ̸= 0 (0, s, β − s) (0, s, β − s) (0, s, β − s) (0, s, β − s)
0 < s < β 0 < s < β 0 < s < β 0 < s < β

(IIIb) s2 = 0; s1, s3 ̸= 0 (β/3, 0, β/3) – (β/3, 0, β/3) –
IIIc) s3 = 0; s1, s2 ̸= 0 – (β, β, 0) – (β, β, 0)

All agents in the market (si ̸= 0, i = 1, 2, 3)

(IVa) s1 = s2 + s3, s2 = s3 – – – –

(IVb) 2s1 = s2 + s3 – – (2s, s, 3s) (2s, 3s, s)
– – β/8 < s < β/6 β/6 < s < β/4
– – s =

β

2(3+γ2,1)
s =

β

2(3+γ2,1)

Again, we will have stable, metastable or unstable situations according the value of β, the value of s
and the signs of γ1,2 and γ1,3.
In this case stability depends also on s − β, that is, how far is s from β.
Interaction matrices Γ (+)

1 , Γ (−)

1 , Γ (0)

1 lead to either stable or metastable equilibria. In all the other cases
unstability might arise.

– Type IIIb FPs - agent A2 only goes out the market: s2 = 0, s1 > 0, s3 > 0. All FPs verify equality
s1 = s3. Letting s1 = s3 = s it turns out that either s = β/3 or s = β. The Jacobian matrix reads

J (s, 0, s) =⎡⎣1 − 2s − s
(
1 + γ1,3

)
−s

(
1 + γ1,2

)
−s

(
1 + γ1,3

)
0 1 − s

(
1 + γ2,1

)
− s 0

−s
(
1 + γ3,1

)
−s 1 − 2s − s

(
1 + γ3,1

)
⎤⎦

and its eigenvalues are λ1 = 1 − 2s, λ2 = 1 − s
(
2 + γ2,1

)
, and λ3 = 1 − s

(
4 + γ1,3 + γ3,1

)
. If s = β,

interaction matrices Γ (+)

2 and Γ (+)

3 lead to stable situation. If, instead, s = β/3 interaction functions Γ (+)

1 ,
Γ (0)

1 , and Γ (0)

3 will provide stable (β > 3/2), metastable (β = 3/2) or unstable (β < 3/2) equilibria.
– Type IIIc FPs - agent A3 only goes out of the market: s3 = 0, s1 > 0, s2 > 0. Similarly as above, all

FPs verify s1 = s2 = s. Once again, these values can be equal to either β/3 or β. The Jacobian matrix
is

J (s, s, 0) =⎡⎣1 − 2s − s
(
1 + γ1,2

)
−s

(
1 + γ1,2

)
−s

(
1 + γ1,3

)
−s

(
1 + γ2,1

)
1 − 2s − s

(
1 + γ2,1

)
−s

0 0 1 − s
(
1 + γ3,1

)
− s

⎤⎦
and its eigenvalues are λ1 = 1 − 2s, λ2 = 1 − s

(
2 + γ3,1

)
, and λ3 = 1 − s

(
4 + γ1,2 + γ2,1

)
.

Stable equilibria for matrices Γ (+)

3 , Γ (0)

2 , and Γ (0)

4 occur when s = β. If, instead, s = β/3 interaction
matrices Γ (+)

1 and Γ (+)

2 will show stable, metastable or unstable situations depending on β (respectively
β > 3/2, β = 3/2, β < 3/2).

• Case 4. Stability for Type IVa FPs - all agents remain in the market.
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Necessary conditions for this result are γ3,1 = γ2,1, and either s2 = s3 or s2 + s3 = 2s1. Possible FPs solutions
are plausible only for matrix Γ (+)

1 and Γ (+)

3 , if s2 = s3, and for matrices Γ (0)

3 and Γ (+)

4 if, instead, s2+s3 = 2s1.
Suppose s2 = s3. In these two symmetric cases γ1,2 = γ1,3 = γ2,1 = γ3,1. Letting these quantities be equal to
γ , then s2 = s3 =

1
2(2+γ ) , s1 = s2 + s3 =

1
2+γ

(implicit solution). Denoting s = s2 = s3, the Jacobian matrix is

J (2s, s, s) =⎡⎢⎢⎣
γ

(2+γ )3σ 2 −
1

2+γ
−

γ

2(2+γ )3σ 2 −
γ+1
2+γ

−
γ

2(2+γ )3σ 2 −
γ+1
2+γ

−
γ

(2+γ )3σ 2 −
γ+1

2(2+γ )

γ

(2+γ )3σ 2 −
1

2(2+γ )
−

1
2(2+γ )

−
γ

(2+γ )3σ 2 −
γ+1

2(2+γ )
−

1
2(2+γ )

γ

(2+γ )3σ 2 −
1

2(2+γ )

⎤⎥⎥⎦
whose eigenvalues are

λ1 =
γ

2 (2 + γ )3 σ 2
, λ2 = −1, λ3 =

3γ

2 (2 + γ )3 σ 2
+

γ

2 + γ

It turns out that solution is unstable for Γ (0)

1 , when (γ > 0) and stable for Γ (0)

3 , (when γ < 0).
Further suppose s2 + s3 = 2s1. Mixed reciprocity case Γ (0)

3 is characterised by equality γ2,1 = γ3,1 = γ1,3 =

−γ1,2 > 0. Denoting γ = γ1,2 < 0, then s2 =
1

2(3−γ ) , s3 =
3

2(3−γ ) , s1 =
1

3−γ
(implicit solution). Denoting also

s = s2, the Jacobian matrix is

J (2s, s, 3s) =⎡⎢⎢⎣
2γ

(3−γ )3σ 2 −
1

3−γ
−

γ

2(3−γ )3σ 2 −
γ+1
3−γ

−
3γ

2(3−γ )3σ 2 −
1−γ

3−γ

−
γ

2(3−γ )3σ 2 −
1−γ

2(3−γ )

γ

2(3−γ )3σ 2 −
1

2(3−γ )
−

1
2(3−γ )

3γ

2(3−γ )3σ 2 −
3(1−γ )

2(3−γ )
−

3
2(3−γ )

−
3γ

2(3−γ )3σ 2 −
3

2(3−γ )

⎤⎥⎥⎦
whose eigenvalues are

λ1 =
3γ

2 (3 − γ )3 σ 2
, λ2 = −

γ

3 − γ
, λ3 = −

3γ

2 (3 − γ )3 σ 2
− 1.

As γ < 0, λ2 > 0 implies that the solution obtained is unstable.
A final comment on the mixed reciprocity case Γ (0)

4 is due. Here γ2,1 = γ3,1 = γ1,2 = −γ1,3 < 0. Denoting
γ = γ1,2 < 0, the implicit solution is s3 =

1
2(3+γ )

, s2 =
3

2(3+γ )
, s1 =

1
3+γ

. Let s = s3: the Jacobian matrix is

J (2s, 3s, s) =⎡⎢⎢⎣
−

2γ

(3+γ )3σ 2 −
1

3+γ

3γ

2(3+γ )3σ 2 −
γ+1
3+γ

γ

2(3+γ )3σ 2 −
1−γ

3+γ

−
3γ

2(3+γ )3σ 2 −
3(γ+1)

2(3+γ )
−

3γ

2(3+γ )3σ 2 −
3

2(3+γ )
−

3
2(3+γ )

γ

2(3+γ )3σ 2 −
γ+1
3+γ

−
1

2(3+γ )
−

γ

2(3+γ )3σ 2 −
1

2(3+γ )

⎤⎥⎥⎦
Eigenvalues for this matrix are not easy to calculate but its determinant is positive; this matrix will then have
at least a real positive eigenvalue. This allows to conclude that the solution is unstable.
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