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Abstract With demands and reliance on aquaculture
still growing, there are various challenges to allow sus-
tainable growth and the shift from fishmeal (FM) to
other protein sources in aquafeed formulations is one
of the most important. In this regard, interest in the use
of insect meal (IM) in aquafeeds has grown rapidly.
Accordingly, the aim of the present study was to assess
the effects of dietary IM from Hermetia illucens (Hi)
larvae included in a low-FM diet on gut microbial
communities of rainbow trout (Oncorhynchus mykiss),
in terms of both composition and function of
microbiome. A feeding trial was conducted using 192
trout of about 100-g mean initial weight. Fish were fed
in quadruplicate (4 tanks/diet) for 131 days with two
diets: the control (Ctrl) contained 20% of FM as well as
other protein sources, whereas the Hi diet contained
15% of Hi larvae meal to replace 50% of the FM
contained in the Ctrl diet. High-throughput sequencing
of 16S rRNA gene was used to identify the major feed
and gut bacterial taxa, whereas Phylogenetic
Investigation of Communities by Reconstruction of
Unobserved States (PICRUS) analysis was performed
on gut bacterial genomes to identify the major active
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biological pathways. The inclusion of IM led to an
increase in Firmicutes, mainly represented by Bacilli
class and to a drastic reduction of Proteobacteria.
Beneficial genera, such as Lactobacillus and Bacillus,
were enriched in the gut of fish fed with the Hi diet,
whereas the number of bacteria assigned to the patho-
genic Aeromonas genus was drastically reduced in the
same fish group. The metagenome functional data pro-
vided evidence that dietary IM inclusion can shape the
metabolic activity of trout gut microbiota. In particular,
intestinal microbiome of fish fed with IM may have the
capacity to improve dietary carbohydrate utilization.
Therefore, H. illucens meal is a promising protein
source for trout nutrition, able to modulate gut microbial
community by increasing the abundance of some bacte-
ria taxa that are likely to play a key role in fish health.

Keywords Aquaculture - Intestinal microbiota -
Metagenomics - Insect meal - Hermetia illucens -
Rainbow trout

Introduction

Aquaculture is growing rapidly and becoming integral
in global food resources, supplying around half of the
world’s seafood supply. One of the most important
challenges that aquaculture sector is currently facing is
the shift from fishmeal (FM) to other protein sources in
aquafeed formulations and considerable efforts have
been made so far to achieve this (Oliva-Teles et al.
2015). In this regard, interest in insect meals (IM) has

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10695-020-00918-1&domain=pdf
https://orcid.org/0000-0002-1995-263X
https://orcid.org/0000-0003-1142-301X
https://orcid.org/0000-0002-1829-7936
https://orcid.org/0000-0003-1566-5956
https://orcid.org/0000-0002-7532-7951

366

Fish Physiol Biochem (2021) 47:365-380

grown rapidly within both scientific and fish farmer
communities.

The high potential of insects as an alternative protein
source to substitute FM in aquafeeds is related to their
nutritional value and life cycle process. Insects are rich
in proteins (45-75% dry matter), essential amino acids,
lipids, minerals, and vitamins, having a nutritional pro-
file similar to FM (Gasco et al. 2020). Being a part of the
natural diet of wild fish, insects have several ecological
and economic advantages, too. They easily grow and
reproduce on organic waste having a high substrate
conversion efficiency. Furthermore, insect mass produc-
tion generates low greenhouse gas and ammonia emis-
sions thus meeting the recycling principles of the circu-
lar economy promoted by EU (van Huis and Oonincx
2017).

The EU Regulation No. 2017/893 (Annexe II of 24th
May 2017) authorises the use in fish feeds of insect-
derived proteins originating from seven species, namely,
black soldier fly (Hermetia illucens), common housefly
(Musca domestica), yellow mealworm (Tenebrio
molitor), lesser mealworm (Alphitobius diaperinus),
house cricket (Acheta domesticus), banded cricket
(Gryllodes sigillatus) and field cricket (Gryllus assimilis).

Of these, black soldier fly (Hermetia illucens) is
considered one of the most promising species to be used
in feeds for salmonids, i.e. rainbow trout (Oncorhynchus
mykiss) and Atlantic salmon (Salmo salar) (Henry et al.
2015; Renna et al. 2017; Belghit et al. 2018, 2019;
Jozefiak et al. 2019a; Li et al. 2020b; Fisher et al.
2020). High levels of dietary protein and lipid and low
levels of carbohydrates are requested to meet the nutri-
tional requirements of these fish species (Lock et al.
2018), and H. illucens (Hi) larvae satisfy these require-
ments as they contain a very high percentage of protein
(36-48% DM) and fat (31-33% DM) and an essential
amino acid profile similar to FM (Henry et al. 2015).

In the last years, a high number of scientific contri-
butions on the use of IM in aquafeeds have been pub-
lished demonstrating the great potential of Hi as a feed
ingredient for cultured fish. The most recent evidences
indicate that up to 50% of FM can be replaced by Hi
larvae meal in Atlantic salmon and rainbow trout diet
without any negative effect on growth performances or
fillet quality (Renna et al. 2017; Bruni et al. 2018, 2020;
Belghit et al. 2019).

In addition to the aforementioned nutrients, insects
contain bioactive compounds that seem to have benefi-
cial effects on animal health (Gasco et al. 2018). For
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instance, insects are rich in chitin and lauric acid that
positively modulate host gut microbiota. Chitin is the
primary constituent of the exoskeleton of arthropods,
structurally analogous to cellulose, and therefore con-
sidered an insoluble fibre with potential prebiotic prop-
erties (Goycoolea et al. 2000). Lauric acid (C12:0),
instead, is a medium-chain fatty acid (MCFA) known
for its antimicrobial effects on Gram-positive bacteria
(Spranghers et al. 2018).

However, few information is available about IM
modulatory effect on fish intestinal microbiota (Parma
et al. 2016; Bruni et al. 2018; Huyben et al. 2019;
Belghit et al. 2019; Rimoldi et al. 2019; Terova et al.
2019; Jozefiak et al. 2019a, b; Osimani et al. 2019; Li
etal. 2020a). Indeed, only few studies have investigated
the effect of dietary Hi meal inclusion on the gut bacte-
rial communities of rainbow trout using high-
throughput sequencing technologies (Huyben et al.
2019; Rimoldi et al. 2019; Terova et al. 2019).

The existing data suggest that fish gut microbiota is
plastic and can be modulated by dietary insect meal that
affects gut microbial diversity by enhancing the coloni-
zation of beneficial bacteria, such as lactic acid bacteria,
which are widely used as probiotics in animal nutrition
(Bruni et al. 2018; Rimoldi et al. 2019; Terova et al.
2019; Jozefiak et al. 2019a, b). Such modulation of fish
intestinal microbiota is reasonably expected since chitin,
in addition to prebiotic properties, has antimicrobial and
bacteriostatic effects on several harmful Gram-negative
bacteria (Nawaz et al. 2018). Furthermore, the principal
end products of chitin bacterial fermentation are short-
chain fatty acids (SCFAs), such as acetate, propionate,
and butyrate, which serve as the main energy sources for
enterocytes.

Although the composition of fish intestinal bacterial
community and the principles of its preservation are
nearly known, we are still far from understanding how
to manipulate gut microbiota through the diet to im-
prove fish health. Intestinal microbiota, indeed, affects
the immune response and digestive functions of the host
through bacterial digestive enzyme production
(Ghanbari et al. 2015). The commensal microorganisms
can confer resistance by direct competition with patho-
gen for nutrients or may also produce bactericidal or
bacteriostatic substances, such as lactic acid, hydrogen
peroxide, bacteriocins, or biosurfactants (Corr et al.
2007; Gudina et al. 2015).

Accordingly, the aim of the present study was to
assess the effects of dietary inclusion of H. illucens larva



Fish Physiol Biochem (2021) 47:365-380

367

meal as a replacer of FM on the gut microbial commu-
nity of rainbow trout in terms of both microbiota’s
composition and function. Furthermore, since previous
studies of our group (Rimoldi et al. 2019; Terova et al.
2019) were focused on testing different inclusion levels
of Hi in a high-FM diet, the aim of the present research
was to investigate the inclusion of Hi in a practical (low
FM) formulation context.

High-throughput sequencing of 16S rRNA gene was
used to identify the dynamics of major gut bacterial taxa
in response to diet. An in silico analysis through bioin-
formatics software package PICRUSt was performed on
bacterial genomes to identify the major active biological
pathways of gut bacteria.

Materials and methods
Ethics statement

The trial was conducted at the DISAFA Experimental
Facility of the University of Turin (Italy). All procedures
involving fish comply with the guidelines of the
European Union Council (2010/63/EU) for the use and
care of experimental animals. The Ethical Committee of
the University of Turin (protocol no. 143811) approved
the experimental protocol.

Diets

Two diets were formulated to be isonitrogenous,
isolipidic, and isoenergetic (Table 1). The first diet
(control (Ctrl)) contained 20% of FM as well as other
protein sources (wheat gluten, soybean meal, and
haemoglobin), whereas the second diet (Hil5)
contained 15% of Hermetia illucens (Hi) larva meal to
replace 50% of the FM contained in the Ctrl diet.
Hermetia illucens larva meal was provided by
MUTATEC (Caumont-sur-Durance, France;
https://mutatec.com/). Due to differences in chemical
composition between Hi and FM and to ensure
isonitrogenous, isolipidic, and isoenergetic diets, the
level of inclusion of porcine haemoglobin and wheat
starch slightly changed.

All feeds were prepared through cold pelleting at the
experimental facility of the Department of Agricultural,
Forest and Food Science (DISAFA) of the University of
Turin (Torino, Italy). Briefly, all grounded ingredients
were mixed with oil and desired consistency for

pelleting was gained by adding water to the mixture.
Each diet was cold pelleted using a 2.5-mm die meat
grinder and the obtained pellet was dried at 50 °C for
48 h. Diets were stored in dark bags at a controlled
temperature and humidity conditions.

Feeding trial and fish sampling

A total of 192 rainbow trout with an initial mean body
weight of about 100 g were randomly distributed in 8
outdoor fibre glass tanks of 0.4 m® connected to a flow
through an open system supplied with artesian well
water (constant temperature of 13+1 °C, 8 L min” !,
DO 7.6-8.7 mg L™"). Fish were manually fed with two
experimental diets in quadruplicate (four tanks/diet).
The feeding rate was restricted to 1.4% of biomass for
all the duration of the trial (131 days). Fish mortality
was checked and recorded every day. At the end of the
feeding trial, eight fish/dietary groups (2 fish/tank) were
sacrificed by over anaesthesia with MS-222
(PHARMAQ Ltd., UK; 500 mg/L). The intestine was
aseptically isolated from each fish, and the faccal matter

Table 1 Ingredients (g kg ') and proximate composition of the
experimental diets

Ingredients Ctrl Hil5
Fishmeal® 200.0 100.0
Hermetia illucens larva meal® 0.0 150.0
Wheat gluten 130.0 130.0
Soybean meal 200.0 200.0
Porcine haemoglobin 92.0 82.0
Wheat starch 2339 193.9
Fish oil 69.8 69.8
Soybean oil 69.8 69.8
Minerals® 2.5 25
Vitamins 2.0 2.0
Chemical analysis
Dry matter (g 100 g ") 97.15 96.56
Ash (g 100 g ', as fed) 5.83 5.45
Crude protein (g 100 g™, as fed) 45.60 46.14
Ether extract (g 100 g, as fed) 14.91 14.32
Gross energy (MJ kg ', as fed)® 2243 22.56

*Purchased from Corpesca S.A. (Santiago, Chile). ® Provided by
MUTATEC, Caumont-sur-Durance, France (https://mutatec.
com/). “Mineral mixture: provided by Skretting. ¢ Vitamin
mixture provided by Skretting. © Determined by calorimetric bomb
Chemical analysis values are reported as mean of duplicate
analyses
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was obtained by squeezing out and scrapping the intes-
tinal mucosa with a sterile spatula, in order to collect
both the digesta- and the mucosa-associated microbiota
(transit and resident microbiota). The microbiota sam-
ples were then transferred into a sterile 2-mL tube con-
taining 800 pL of Xpedition™ Lysis/Stabilization
Solution (Zymo Research, Irvine, CA, USA) and then
stored at room temperature, until DNA extraction (with-
in 48 h).

Bacterial DNA extraction from feeds and fish gut
and 16S rRNA gene amplicon library construction

The amplification of the V4 region of the bacterial 16S
rRNA gene and amplicon library construction were
conducted as previously reported by our group
(Rimoldi et al. 2018, 2019). In brief, DNeasy
PowerSoil® Kit (Qiagen, Milan, Italy) was used to
extract DNA from 250 mg of intestinal contents and
from 200 mg of feed (3 replicates for each diet). The V4
hypervariable region of the 16S rRNA gene was ampli-
fied by PCR using forward primer 515F: 5'-
GTGYCAGCMGCCGCGGTAA-3' and reverse primer
806R: 5'-GGACTACNVGGGTWTCTAAT-3".
Amplicons were cleaned up followed by PCR to attach
unique paired-end adapters with unique indices using
Nextera XT Index Kit Library, in accordance with the
[llumina protocol “16S Metagenomic Sequencing
Library Preparation for Illumina MiSeq System”
(#15044223 rev. B). Libraries were then quantified by
qRT-PCR and pooled in one tube at equimolar concen-
trations. The amplicon library was pair-ended se-
quenced (2 x 250) on a MiSeq sequencing platform
(Illumina). All sequences were submitted to European
Nucleotide Archive (EBI ENA).

Metabarcoding data analysis

The raw sequences were processed and analysed using
QIIME™ 2 (v. 2018.4) at the default setting (Bolyen
et al. 2019). The reads were trimmed at both 3’ and 5’
ends using Cutadapt v.2018.4.0 software, filtered for
base quality (Q > 30), and merged. Filtered reads were
dereplicated; singletons and chimeric sequences were
removed using QIIME DADA2 denoise-paired com-
mand. All sequences were then clustered into operation-
al taxonomic units (OTUs) at a 97% similarity cut-off.
OTUs were classified using the reference Greengenes v.
13.8 as reference database (http://greengenes.lbl.gov/)
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down to genus level. Chloroplasts as well as sequences
that were eukaryotic were removed. Sequences that had
a frequency lower than 0.005% were removed from the
dataset. Alpha rarefaction curves were plotted to
determine the adequacy of sequencing depth. Alpha
diversity indexes (Chao 1, observed OTUs, Shannon,
Faith-PD, and evenness) were calculated to explain the
species richness and diversity in each sample. Good’s
coverage estimator was used to assess the percentage of
the total species that are represented in a sample.
Principal coordinates analysis (PCoA) was conducted
to visualize similarities or dissimilarities of data based
on unweighted UniFrac and weighted UniFrac distance
metric (Lozupone and Knight 2005; Lozupone et al.
2007).

Functional analysis of intestinal microbiota

Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt)
(Langille et al. 2013) was used to perform the predicted
functional analysis (Langille et al. 2013). Taxonomic
classification was performed using QIIME2 feature-
classifier classify-sklearn function, a Naive Bayes clas-
sifier that was trained on the Greengenes v. 13.8 as
reference database (http://greengenes.lbl.gov/) at 99%
of similarity. The corresponding biom table was
generated using the tools export function and used as
input for the PICRUS pipeline. In brief, PICRUSt was
first used to correct biom tables for 16S rRNA copy
numbers and subsequently used to predict KEGG
(Kyoto Encyclopedia of Genes and Genomes)
orthologues (KO). The maximum allowed Nearest
Sequenced Taxon Index (NSTI) value was set to 2 to
control for the overall accuracy of the metagenomic
predictions. The output data generated with PICRUSt
were subsequently uploaded to the Statistical Analysis
of Metagenomic Profiles (STAMP) software package
(Parks et al. 2014) for further downstream statistical
analyses. A two-sided Welch ¢ test with 95% confidence
was applied to identify differences in microbial meta-
bolic pathways between two groups.

Statistical analysis

Normality and homogeneity of variance of data were
checked by Shapiro-Wilk and Levene’s test, respective-
ly. To test null hypothesis (p < 0.05), Student’s ¢ test or
nonparametric Mann-Whitney U test was applied
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depending on normality and homoscedasticity of the
data. All analyses were performed using Past3 software
(Hammer et al. 2001). To perform statistics on microbial
relative abundance data, the percentage values were
firstly angular transformed. Only those taxa with an
overall abundance of more than 1% (up to order level)
and 0.5% at family and genus levels were considered for
the analysis. The significance of the calculated beta-
diversity dissimilarities was assessed by nonparametric
analysis of similarities (ANOSIM) and PERMANOVA
tests based on 999 permutations using QIIME script
“compare_categories.py”.

Results
Metabarcoding sequencing outcome

Sixteen intestinal and six feed samples were efficiently
and correctly sequenced on an I[llumina MiSeq platform.
An overall sequences of 1,652,358 corresponding to an
average of 75,107 £ 16,411 sequences per sample, was
retained after the quality filtering and processing of
sequencing reads.

Dataset was representative of bacterial communities
due to Good’s coverage estimators for all samples that
were greater than 99%.The sequencing depth was set
based on the saturation phase of the alpha diversity
rarefaction curves at 10,780 sequences in both feed
and intestinal content samples (Supplementary Fig. 1,
Online Resource 1). All sequencing data were submitted
to the European Nucleotide Archive (EBI ENA) public
database, under the accession code PRJEB38953.

Characterization of feed-associated bacterial
communities

A total of 38,073 and 34,672 high-quality reads was
taxonomically classified for Ctrl and Hil5 feed samples,
respectively. The high-throughput sequencing analysis
revealed that the microbial profiles of feed were mainly
comprised of 2 phyla, 4 classes, 6 orders, 12 families,
and 8 genera. The most abundant taxa of bacteria at the
phylum, family, and genus levels are shown in Fig. 1.
The complete list of OTUs found in feeds with their
relative abundances is given in Online Resource 2.
The microbial community diversity of feeds was
evaluated by alpha diversity analysis, and indices are
shown in Table 2. No differences in terms of species

richness (Chao 1) and biodiversity (Shannon diversity
index) or any other considered alpha diversity indexes
were found between feed-associated communities. The
relative abundances (%) of the most abundant taxa
found in feed samples are listed in Supplementary
Table 1 (Online Resource 3).

At phylum level, Hil5 feed was characterized by
higher percentage of Firmicutes (47%), mainly repre-
sented by Bacilli class than the Ctrl feed (40%).
Conversely, microbiota associated with Ctrl showed a
higher relative abundance of Proteobacteria (58 %), prin-
cipally belonging to Alpha- and Gammaproteobacteria
classes (Fig. 1a, Supplementary Table 1). Accordingly,
a high amount of the Enterococcaceae (34%),
Erysipelotrichaceae (2.5%), and Bacillaceae (0.8%)
families was found in the diet with insect meal. Ctrl
feed was instead rich in Lactobacillaceae (15.8%),
Leuconostocaceae (1.3%), Fusobacteriaceae (0.7%),
and Shewanellaceae (1.7%) (Fig. 1b; Supplementary
Table 1). At genus level, Ctrl feed had higher relative
abundance of Lactobacillus, Weissella, and Shewanella
than Hil5 feed, which was instead rich in Vagococcus,
Erysipelothrix, and Vibrio genera (Fig. lc,
Supplementary Table 1). Genus Oceanobacillus was
found only associated to insect-based feed.

Microbial profile and dietary modulation of trout gut
communities

Overall high-quality reads of 144,164 and 178,036 were
taxonomically classified for Ctrl and Hil5 trout feeding
groups, respectively. After removing the OTUs assigned
to eukaryotic sequences, the most abundant bacterial
taxa were mainly comprised of 6 phyla, 9 classes, 14
orders, 19 families, and 10 genera. The profiles of
microbial communities at the phylum, family, and genus
taxonomic levels for each trout group are shown in
Fig. 2. The complete list of OTUs detected in intestinal
samples is available as additional data in
Online Resource 4.

The alpha rarefaction analysis of gut bacterial com-
munities showed that indexes of species richness “Chao
17 and “Observed OTUs” were significantly higher in
fish fed with Hil5 diet than in the control fish.
Conversely, diet type did not affect either phylogenetic
diversity (Faith PD) or entropy (Shannon and evenness)
(Table 3).

Analysis of beta-diversity revealed an overall effect
of diet on microbial communities in the presence/
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a Ctrl feed

b Ctrl feed

C Ctrl feed

m Firmicutes
m Proteobacteria
m Others

= Aeromonadaceae
= Enterobacteriaceae
m Enterococcaceae

1 Lactobacillaceae

® Leuconostocaceae
m Streptococcaceae
m Erysipelotrichaceae
m Fusobacteriaceae

B Moraxellaceae

m Vibrionaceae

m Shewanellaceae

m Bacillaceae

u Others

m Vagococcus

m Lactobacillus
= Weissella

= Streptococcus
m Erysipelothrix
m Shewanella

m Vibrio

m Oceanobacillus
m Anassigned

m Others

Hil5 feed

Hils feed

Hil5 feed

Fig. 1 Relative abundance (%) of the most prevalent bacteria in Ctrl and feeds at phylum (a), family (b), and genus (¢) taxonomic level.
Only bacteria with an overall abundance of 0.5% were reported. Bacteria with lower abundance were pooled and indicated as “others”

absence (unweighted UniFrac) (Fig. 3a), but not in
relative abundance (weighted UniFrac), of specific
OTUs (Fig. 3b). Principal coordinates analysis (PCoA)
of unweighted UniFrac distances clearly showed that
the intestinal microbiota of the Hil5 feeding group
clustered separately from the Ctrl group; the two main
components explain 53% of the observed variance (Fig.
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3a). Additionally, intestinal communities were remark-
ably different from feed-associated bacterial ones, thus
indicating that observed differences at the gut level were
not simply a consequence of undigested feed that might
have been present in the gastrointestinal tract. The
PERMANOVA and ANOSIM tests confirmed the
PCoA results, showing significant differences (R =
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0.46, pseudo-F'=3.32, ¢ <0.05) in the composition of
the microbiota between Ctrl and Hil5 feeding groups
only in the unweight UniFrac analysis (Table 4). The
relative abundances (%) of the most abundant taxa
found in fish intestinal samples are reported in Table 5.

The gut microbial community of trout was dominat-
ed, regardless of the diet, by four phyla: Proteobacteria,
Firmicutes, Tenericutes, and Fusobacteria (Fig. 3a). Of
these, the amount of Firmicutes was positively influ-
enced (p < 0.05) by dietary insect meal (Hil5 54%, Ctrl
7.6%) (Table 5). This was essentially due to the enrich-
ment in bacteria belonging to the Clostridia (3.6%) and
Bacilli (50%) class. On the contrary, the average relative
abundance of Proteobacteria, mainly represented by
Gammaproteobacteria, was significantly higher in Ctrl
fish (43%) than in the Hil5 feeding group (7.6%). At
order level, the only difference between two groups was
in the amount of Aeromonadales and Bacillales
(Table 5). The first taxon was more abundant in Ctrl
samples, whereas Bacillales were enriched in fish fed
Hil5 diet. Accordingly, Aeromonadaceae were particu-
larly abundant in the gut of controls (18%), whereas
Bacillaceae (25%) and Paenibacillaceae (7.4%) were
solely found in trout receiving Hil5 diet (Fig. 3b,
Table 5). The Oceanobacillus, Bacillus, Paenibacillus,
and Cetobacterium genera were exclusive of the intes-
tine of fish fed Hi meal. In the same dietary group, the
amount of Aeromonas and Lactobacillus genera was
significantly less and more abundant, respectively, in
comparison to controls (Fig. 3¢, Table 5).

Prediction of metabolic pathways of gut bacterial
communities

PICRUSt was applied to predict the functional potential
of the intestinal microbiome of rainbow trout. Level 3
KEGG orthologue function prediction was used. Our

Table 2 Alpha diversity metrics (rarefied at 10,780 sequences) of
feed microbial communities. All data are reported as mean values
(n=3)+xSD

Item Ctrl feed Hil5 feed p value
Observed OTUs  340.67 +3.51  346.33 £ 9.24 0.48
Chao 1 36891 £4.95 368.00 +21.28  0.94
Faith-PD 5.11+£0.32 5.60 £ 0.37 0.12
Shannon 6.00 + 0.08 5.82 + 0.06 0.05
Evenness 0.71 £ 0.01 0.69 £ 0.01 0.05

analysis revealed 217 predicted metabolic pathways
(Online Resource 5). Among them, 28 were significant-
ly different between the two dietary groups (Fig. 4).
Metabolic inference from 16S rRNA gene sequencing
data showed that dietary inclusion of Hi meal upregu-
lated the abundance of genes responsible of pathways
involved in starch and sugar metabolism and in the
transcription processes. On the contrary, genes involved
in the peptidoglycan biosynthesis and recycling and in
the protein folding and biofilm formation were en-
hanced in the microbiome of control fish (Fig. 4).

Discussion

The use of insect meal in fish feed is a way to respond to
the problems of aquaculture industry related to the sta-
bility and reduction of feeding costs and to promote
sustainable aquatic environment management. So far,
several researches have shown that insect meal can
partially replace fishmeal and completely replace soya
bean meal that are commonly used in aquafeeds, with-
out affecting fish growth performances, feed utilization,
digestibility, and fillet quality (Magalhdes et al. 2017,
Renna et al. 2017; Bruni et al. 2018, 2020; Iaconisi et al.
2018; Terova et al. 2019). Indeed, the present research
confirms what has been stated in previous studies on
rainbow trout; i.e. defatted Hi meal is well accepted by
trout and does not negatively affect fish growth and
survival if it is included at levels up to 40% in the diet
(Renna et al. 2017; Stadtlander et al. 2017; Bruni et al.
2018; Terova et al. 2019). Because fish are natural
predators of insects, it is reasonable to assume that they
are evolutionarily adapted for consuming them.

Nevertheless, fish growth performance is not the only
outcome that defines a successful aquaculture practice;
fish welfare has to be taken into account, too. In this
prospect, intestinal microbiota, which directly affects
the digestive functions and the immune response of the
host should be considered a key indicator of a healthy
fish (Ghanbari et al. 2015).

In line with our previous researches, the present study
showed that Hi meal inclusion in the diet can modify
fish gut microbiota, thus improving the health status of
trout. In two recent studies in trout, we have reported
that the partial substitution of dietary FM with 10%,
20%, or 30% of a defatted Hi meal had an important
effect in modulating both the intestinal transient and
resident bacterial communities (Rimoldi et al. 2019;
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a Ctrl

Ctrl

Ctrl

Hil5s

m Firmicutes

m Proteobacteria
m Spirochaetes
= Tenericutes

m Fusobacteria
m Bacteroidetes
m Others

m Neisseriaceae

m Aeromonadaceae

m Enterobacteriaceae

= Brevinemataceae

m Mycoplasmataceae

m Aerococcaceae Hil5

B Enterococcaceae

m Lactobacillaceae

m Streptococcaceae

® Clostridiaceae

m Erysipelotrichaceae

m Fusobacteriaceae

u Moraxellaceae

= Vibrionaceae

m Carnobacteriaceae
Flavobacteriaceae

m Oxalobacteraceae

m Bacillaceae

m Paenibacillaceae

m Unassigned

m Others

m Deefgea Hi15
= Aeromonas

m Vagococcus

= Lactobacillus

m Trichococcus

m Flavobacterium
m Oceanobacillus
m Bacillus

m Paenibacillus

H Cetobacterium
= Unassigned

m Others

Fig.2 Relative abundance (%) of the most prevalent intestinal bacterial phyla (a), families (b), and genera (¢) in each trout dietary group. In
the figure, all taxa with an overall abundance of > 0.5% were reported. Bacteria with lower abundance were pooled and indicated as “others”
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Table 3 Alpha diversity metrics (rarefied at 10,780 sequences) of
gut microbial communities of trout fed with Ctrl or Hil5 diets. All
data are reported as mean values (7 = 8) + SD. Significant p values
are in italic

Item Ctrl Hil5 p value
Observed OTUs  229.25 + 57.68  370.50 + 131.84  0.02
Chao 1 259.13 +£70.03 421.93 + 14240 0.0/
Faith-PD 452 +1.21 548 £1.77 0.11
Shannon 485 +042 539 +0.82 0.09
Evenness 0.62 + 0.05 0.64 £ 0.05 0.60

Terova et al. 2019). As expected, the present
metabarcoding analysis revealed that Firmicutes,
Proteobacteria, and Tenericutes phyla were dominant
in the gut of rainbow trout, regardless of the diet
(Lyons et al. 2017a, b; Terova et al. 2019). The phylum
Tenericutes is considered specifically adapted to the

gastrointestinal environment of farmed rainbow trout.
Several studies have reported that this phylum, with
Mycoplasma being the dominant genus, is prominent
in the distal intestine of rainbow trout as well as in other
farmed salmonids (Lyons et al. 2017a; Huyben et al.
2018; Fogarty et al. 2019; Terova et al. 2019).
Therefore, our data provide a further evidence of the
importance of this genus in trout, thus corroborating the
idea that this fish species could be a specific host for
Mycoplasma.

Although gut bacterial communities were dominated
by the same phyla irrespective of the diet, species rich-
ness (Chao 1 index, observed OTUs) was significantly
increased by dietary supply of 15% of insect meal in our
study. Previously, we found an increase of species rich-
ness only in the digesta-associated (allochthonous), but
not in mucosa-associated (autochthonous), gut microbi-
ota of rainbow trout fed with increasing levels of Hi
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Table 4 ANOSIM and PERMANOVA test results for comparisons of gut microbiota composition between Ctrl and Hil5 feeding groups.

Significant g-values (< 0.05) are shown in italic

Statistical test Unweighted Weighted

ANOSIM (permutation NV = 999) g-value R q-value R

Ctrl vs Hil5 0.015 0.42 0.247 0.06
Ctrl vs Ctrl diet 0.042 0.45 0.915 -0.22
Hil5 vs Hil5 diet 0.046 0.46 0.174 0.47
Ctrl diet vs Hil5 diet 0.095 1.00 0.247 1.00
PERMANOVA (permutation = 999) g-value Pseudo-F g-value Pseudo-F
Ctrl vs Hil5 0.009 3.32 0.279 1.46
Ctrl vs Ctrl diet 0.012 4.87 0.346 1.22
Hil5 vs Hil5 diet 0.009 426 0.036 6.21
Ctrl diet vs Hil5 diet 0.119 9.02 0.228 58.18

meal (10-30%) (Rimoldi et al. 2019; Terova et al.
2019). Bruni et al. (2018) found instead, a higher species
richness in autochthonous intestinal microbiota of trout
fed a diet containing 20% of Hi meal. In any case, a
higher microbial richness should be considered a posi-
tive effect, since it may potentially provide further met-
abolic capabilities to the host thus improving its health
status (Borrelli et al. 2017).

Insect meals are rich in chitin, a form of insoluble
fibre, which may act as prebiotic by selectively stimu-
lating the growth of beneficial gut bacteria and promot-
ing their colonization (Guerreiro et al. 2018). In the
same way, biodiversity parameters were increased by
dietary administration of krill or inclusion of 5-20%
chitin in the diet of salmonids (Askarian et al. 2012;
Ringe et al. 2012). Furthermore, chitin and its
deacetylate derivate chitosan have antimicrobial proper-
ties and a bacteriostatic effect against several harmful
Gram-negative bacteria (Nawaz et al. 2018).

Multivariate analysis of bacterial community’s diver-
sity, based on unweighted UniFrac dissimilarity data,
displayed a strong clustering of fish groups fed with Hi
meal and with the control diet that were cleanly sepa-
rated into uniformly distant regions. Our data confirm
previous researches showing that the Hi meal inclusion
in the diet causes a significant reduction of gut
Proteobacteria, predominantly belonging to the
Gammaproteobacteria class, in comparison to the con-
trol diet without insect meal (Huyben et al. 2019;
Rimoldi et al. 2019; Terova et al. 2019). In particular,
in line with those studies, our metagenomic analysis
highlighted the dramatic shift from an high
Proteobacteria to Firmicutes ratio in the gut of fish fed

@ Springer

with the Ctrl diet to a low ratio in fish fed with the insect
meal diet. The most dominant genus in the control fish
gut was Aeromonas, which includes several Gram-
negative bacteria commonly present in fresh water and
potentially pathogenic for fish, as they can cause skin
ulcerations. In the current study, intestinal abundance of
Aeromonas in trout fed Hil5 was significantly reduced
and this is in line with our findings on autochthonous
intestinal microbiota of trout fed with Hi meal.

In another study of our group, microbiota of
trout fed with Hi meal showed a reduction of
Gammaproteobacteria, mainly represented by genera
Shewanella, Aeromonas, Citrobacter, and Kluyera
(Rimoldi et al. 2019). Similarly, Bruni et al. (2018)
found a high abundance of OTUs related to the
Aeromonas genus only in the control fish group, but
not in the intestine of the insect-fed groups. An increase
amount of Aeromonas genus with the Hi treatment has
been recently reported only in Siberian sturgeon
(Acipenser baerii) (Jozefiak et al. 2019b).

We recorded an increase in the number of Bacillus
and Lactobacillus genera in response to dietary insect
meal. Proliferation of lactic acid bacteria (LAB) may be
due to the prebiotic effect of chitin, and, as proposed by
Bruni et al. (2018), it may indicate that chitin was a
preferential growth substrate for LAB. Indeed, LAB
play an important role in degrading fibres.
Furthermore, they have an active role in host defence
against pathogens, by producing bactericidal com-
pounds, such as lactic acid, hydrogen peroxide, bacte-
riocins, and biosurfactants, which prevent pathogen col-
onization of the intestinal epithelial surface (Ringe and
Gatesoupe 1998; Corr et al. 2007; Gudina et al. 2015;
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Table 5 Mean relative abundance (%) + SE (n =8) of the most Table 5 (continued)
prevalent phyla, orders, classes, families, and genera found in the
intestine of trout fed with two experimental diets. Significant Cul Hil5 p value
p values (< 0.05) are shown in italic
Streptococcaceae 0.54 += 0.49 1.30 £ 0.41 0.067
Cul Hil5 p value Clostridiaceae 109+ 088  2.66+0.68 0083
Erysipelotrichaceae ~ 1.02+0.70  0.14 £ 0.06  0.220
Phylum Fusobacteriaceae 1.92 + 1.35 4.74 + 4.09 0.958
Firmicutes 758 £432  54.08 £ 14.58 0.024 Moraxellaceae 0.05+0.04  0.60+0.52 0.717
Proteobacteria 4295+ 10.61 758 +1.42  0.041 Vibrionaceae 144+£085 0.08+0.05 0215
Spirochaetes 1.29 + 0.83 263+1.64 0563 Carnobacteriaceae 0.26 = 0.20 1.69 = 0.95 0.031
Tenericutes 4539 + 11.44 29.56 + 13.50 0.411 Flavobacteriaceae 121+ 1.01  0.00 +0.00
Fusobacteria 1.39 + 0.68 542 + 4.28 0.958 Oxalobacteraceae 0.81 £046  0.04 = 0.02 0.629
Bacteroidetes 1.14£0.72  0.00 + 0.00 Bacillaceae 0.00 £0.00 2517 +7.16
Class Paenibacillaceae 0.00 + 0.00 7.40 +£2.25
Clostridia 0.86 = 0.63 3.59 £ 0.98 0.031 Genus
Alphaproteobacteria ~ 10.77 £ 5.86  4.65+1.25  0.793 Deefgea 826+6.57 061+056 0.178
Betaproteobacteria ~ 10.92 £ 6.65 135+0.92  0.103 Aeromonas 10.04 £ 6.66 0.11+£0.07  0.007
Gammaproteobacteria 21.09 = 11.45 1.59+0.69  0.018 Vagococcus 056+020 089+035 0439
[Brevinematae] 129+098 263+184 0563 Lactobacillus 055+£022 3.02+1.03 0.028
Mollicutes 45.39 £ 11.56 29.55 + 14.60 0.411 Trichococcus 0.02+002 060+031 008
Bacilli 5.98 + 3.53 5035 + 13.73 0.024 Flavobacterium 0.60 £ 0.43 0.00 £ 0.00
Fusobacteriia 1394093  541+48 0958 Oceanobacillus 0.00 £0.00 727 £2.12
Flavobacteriia 1.12£0.93  0.00 + 0.00 Bacillus 0.00+0.00  1.09+0.28
Order Paenibacillus 0.00 = 0.00 2.65 +0.76
Clostridiales 1.40 + 1.10 381 + 1.07 0.083 Cetobacterium 0.00 £ 0.00 412 +4.11
Neisseriales 9.84 + 6.74 0.72 = 0.56 0.178
Aeromonadales 17.76 £ 11.21 0.31+0.20  0.009 Ringo et al. 2018). Even the increased amount of
Enterobacteriales 157098  049+022 0371 Bacillus represents a positive effect of dietary chitin
[Brevinematales] 136101 240+ 1.57  0.636 deriving from insect meal. Chitin, indeed, may have
Mycoplasmatales 4922 +10.94 29.37 +£14.71 0.320 increased the proliferation of chitinolytic bacteria, since
Lactobacillales 927+6.10  14.62+4.60 0.339 several Bacillus species have been shown to secrete
Erysipelotrichales 1.02+£0.70  0.14+0.06  0.220 chitinase (Cody 1989). Together with LAB, the
Fusobacteriales 192+ 135 474+£4.09 0958 Bacillus genus is one of the most common probiotics
Vibrionales 144 +085 0.10+0.07 0215 used in aquaculture to enhance host immune response
Stramenopiles 077076 1.88+1.88  0.543 and disease resistance. Up to date, several studies have
Flavobacteriales 121 £1.01  0.00 + 0.00 demonstrated the immunomodulatory effects of
Burkholderiales 1.13+£0.63 023+0.08 0.956 Bacillus subtilis in fish (Salinas et al. 2005; Newaj-
Bacillales 0.02+0.02 3890+ 11.18 0.001 Fyzul et al. 2007; Cerezuela et al. 2013) and there are
Family several evidences documenting that the use of insect
Neisseriaceae 984 +674 0.72+056  0.149 meals from H. illucens may positively modulate trout

Aeromonadaceae 17.76 £ 11.21 0.31 £ 0.20 0.009
Enterobacteriaceae 1.57 £ 0.98 0.49 +0.22 0.371
Brevinemataceae 1.36 £ 1.01 240 + 1.57 0.636

Mycoplasmataceae 49.23 £10.95 29.37 +14.71 0.173
Aerococcaceae 0.65 = 0.58 0.97 + 0.66 0.122
Enterococcaceae 316 £1.64 245+0.80 0.902
Lactobacillaceae 430 +£3.01 7.78 £2.48 0.226

gut microbiota, increasing LAB and Bacilli amount in
both mucosa- and digesta-associated microbiota (Bruni
et al. 2018; Huyben et al. 2019; Terova et al. 2019;
Jozefiak et al. 2019a).

In addition to taxonomic characterization of gut mi-
crobiota in response to dietary insect meal, this study
investigated the functional potential of the intestinal
microbiome of rainbow trout using the computational
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approach PICRUSt (Langille et al. 2013). Indeed, the
use of dietary insect meal clearly affected the structure
of trout intestine—associated microbial community
(what’s there?) but, to understand the intrinsic processes
that lead to similar functionality, it is necessary to search
the connections between individual microbiota (what
are they doing?) and the corresponding metabolic phe-
notype (Piazzon et al. 2017).

Gut microbes carry out a multitude of biochemical
reactions, which play a critical role in host nutrition by
contributing to the digestion of several dietary ingredi-
ents. In agreement with Lyons et al. (2017a), we found
that the principal functional pathways associated with
bacterial communities of trout intestine, regardless of
the diet, were metabolism, cellular processes, membrane
transport, and genetic information processing.

However, based on metagenome prediction, trout fed
with insect meal showed an enhancement of pathways
involved in sugar and starch metabolism. Members of
the phylum Firmicutes are known to play a pivotal role
in the fermentation of dietary carbohydrates (Corrigan

== Ctrl =3Hil5

Autophagy - yeast |

et al. 2015). In our case, the increase of sugar metabo-
lism observed in the Hi group of trout could be reason-
ably correlated to the higher presence of Bacilli that
typify the intestinal microbiota of these fish. The fer-
mentation of dietary carbohydrates and resistant
starches by the intestinal microbiota leads to the forma-
tion of a variety of beneficial substances, including
short-chain fatty acids (SCFAs). It is well established
that SCFAs (mainly acetate, propionate, and butyrate),
in addition to being energy sources for colonocytes,
promote fish intestinal health (Hamer et al. 2008; Koh
et al. 2016; Rimoldi et al. 2016). Furthermore, the
increased ability of gut microbiome to utilize dietary
carbohydrates could be an interesting approach to im-
prove feed digestibility in trout that is known as a poor
user of dietary carbohydrates and fibres (Wilson 1994;
Polakof et al. 2012). In fact, Bacillus genera are widely
used as probiotics in aquaculture to increase feed ab-
sorption and digestion (Soltani et al. 2019).

On the contrary, intestinal microbiome of trout fed
with the Ctrl diet showed an increased capacity for
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Fig. 4 Predicted functional metagenomic pathways of trout gut microbiome, as identified by PICRUSt. The extended error bar graph and

statistical analysis were made using STAMP bioinformatics software
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peptidoglycan synthesis. Peptidoglycan is the major
structural component of the cell wall of both Gram-
positive and Gram-negative bacteria. It is the major wall
structural component of the most pathogenic bacteria and
it is considered a proinflammatory molecule that stimu-
lates host innate immune response (Mogensen 2009). In
human, for instance, functional analysis of the faecal
microbiome of healthy individuals and atherosclerosis
patients revealed an increase in the peptidoglycan syn-
thesis gene in the afflicted population (Karlsson et al.
2012). It means that the increased capacity for peptido-
glycan synthesis might contribute to the chronic inflam-
mation of the atherosclerotic arterial walls.

The hypothesis that control fish in the present study
were affected by an inflammatory status seems to be
supported by the increase of gene pathways of chaper-
ones and protein-folding catalysts found in their intestinal
microbiota. Indeed, secretion of chaperones and protein-
folding catalysts (foldase) from prokaryote cells acts as
intercellular signal, principally for leukocytes.
Chaperones and foldase have been defined “moonlight-
ing” proteins since they may act as homeostatic immune
regulators and, under certain circumstances, contribute to
tissue pathology as well (Henderson and Pockley 2010).

Effectively, Proteobacteria dominated intestinal
microbiome of control trout, whereas Firmicutes were
scarcely represented. This phylum was mainly repre-
sented by Gammaproteobacteria class, which includes
important disease-causing pathogens of fish. Among
these, Aeromonas resulted particularly abundant in the
intestine of fish fed with Ctrl diet, possibly as a sign of
intestinal dysbiosis or disease.

In summary, the present research reinforces the in-
sights of previous studies conducted by us and other
groups showing that insect proteins can have beneficial
effects on intestinal microbiota of fish. The inclusion of
15% of H. illucens led to an increase in the total number
of Firmicutes, mainly represented by Bacilli class, and
to a drastic reduction of Proteobacteria. Beneficial gen-
era, such as Lactobacillus and Bacillus, were enriched in
the gut of fish fed with an insect-based diet, while the
number of bacteria assigned to the pathogenic
Aeromonas genus was drastically reduced in the same
fish group. The metagenome functional data provided
evidence that dietary IM inclusion can shape the meta-
bolic activity of trout gut microbiota. In particular, in-
testinal microbiome of trout fed with insect meal may
have the capacity to complement the endogenous diges-
tive enzymes, thus improving dietary carbohydrates

utilization. Therefore, H. illucens meal is a promising
alternative protein source for trout nutrition, able to
modulate gut microbial community by increasing the
abundance of some bacteria taxa that are likely to play a
key role in fish health.
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