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Abstract: Nonclassical states of light can be efficiently generated by performing conditional measure-
ments. An experimental setup including Silicon Photomultipliers can currently be implemented for
this purpose. However, these devices are affected by correlated noise, the optical cross talk in the first
place. Here we explore the effects of cross talk on the conditional states by suitably expanding our
existing model for conditional measurements with photon-number-resolving detectors. We assess
the nonclassicality of the conditional states by evaluating the Fano factor and provide experimental
evidence to support our results.

Keywords: conditional states; silicon photomultipliers; optical cross-talk; nonclassicality

1. Introduction

Given an entangled state, a conditional measurement, which is a scheme exploiting
the reduction postulate [1], is a well-known option for the generation and manipulation of
nonclassical and non-Gaussian states [2,3]. Remarkably, optical states have proven to be
suitable for this task [3–8], especially in sight of Quantum Information protocols [9–11].

Here we focus on the detection of conditional states of light in the discrete-variable
regime via photon-number-resolving (PNR) detectors. In particular, a novel class of PNR
detectors, known as Silicon Photomultipiers (SiPMs), has recently experienced a remark-
able technological improvement [12] and attracted attention for Quantum Optics appli-
cations [13–15]. Due to both their outstanding PNR capability and to their compactness
and robustness, SiPMs may now be considered for discrete-variable Quantum-Information
protocols [16]. Motivated by these points, we have recently tested a pair of SiPMs for
the detection of nonclassical states of light [17,18]. Specifically, in [17] we generated a
mesoscopic multi-mode twin-beam (TWB) state via type-I parametric down-conversion
and post-selected one of the entangled beams by measuring the photon-number observable
on the other one. We succeeded in assessing the nonclassicality of the detected condi-
tional states.

However, as far as we know, the conditioning protocol via SiPMs on a TWB still lacks
a full theoretical description. Indeed, the existing model of the effects of detection [3,4]
does not include the influence of the major drawback of the SiPMs, i.e., the Optical Cross-
Talk (OCT) [12,13,19,20]. The OCT is a process intrinsically connected to the very pixel
structure of these devices. Being each pixel a single-photon avalanche diode, there is a
chance that the avalanche triggered by a photon emits a secondary photon, which may fire
a supplementary cell, resulting in a spurious count. Thus, the OCT influences the output
statistics and may conceal the nonclassicality of the detected state.

Here we extend the model presented in [4] by including the effects of the OCT and
provide a comparison with our experimental results. In Section 2 we define the positive
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operator-valued measure (POVM) describing photon counting affected by a limited quan-
tum efficiency and by the OCT, and provide the tools needed for retrieving the statistics
of the unconditioned and conditional states. Finally, we address the nonclassicality of the
conditional states as sub-Poissonianity and recall the definition of the Fano factor.

In Section 3 we show our results. Firstly, we provide an analytic closed formula for the
statistics of a multi-mode thermal state affected by the OCT. In a previous work of ours [21],
we have already shown that in the single-mode case such a distribution is expressed in
terms of the Fibonacci polynomials. In the present paper, we derive the distribution of
the conditional state and consider the limit case of a TWB with an infinite number of
modes. We also include the effect of the imbalance between the quantum efficiencies of the
detectors. We show the effects of the OCT on the first moment of the statistics and, finally,
we provide the Fano factor of the output conditioned distribution.

In Section 4 the theoretical predictions of the developed model are compared with the
data from our experiment. In the same Section we also discuss how the OCT affects the light
statistics and especially the consequences for the nonclassicality of the conditional states.

In Section 5 we draw our conclusions and suggest further improvements to our model.

2. Materials and Methods
2.1. Theoretical Description

We provide here all the theoretical tools needed to describe post-selection measure-
ments in the presence of the OCT. We start with the effects of the OCT on the statistics
of a multi-mode TWB, then, we derive the expression of the resulting conditional state,
and finally, we show how we estimate the nonclassicality of such a state in terms of
sub-Poissonianity.

2.1.1. Detected-Event Statistics of a TWB in the Presence of the OCT

A TWB is a multi-mode entangled state of light generated through a nonlinear process
known as parametric down conversion [22], which is investigated in the specific context of
the photon counting described in [23]. Under the assumption that the energy is equally
distributed among the µ modes, a TWB state can be written as the tensor product of µ
single-mode squeezed states [4,24], i.e.,

Λ̂ =
µ⊗

j=1

|λ〉〉j j〈〈λ| (1)

where
|λ〉〉 =

√
1− λ2 ∑

n
λn|n〉|n〉, (2)

being n the number of photons, and

λ2 ≡ N
N + µ

(3)

with N as the mean number of photons in each beam. The conditioning measurement is
performed on one of the two parties of the TWB state, typically named as the idler, so that
the corresponding state of the other beam, which is called the signa, is ideally reduced to
the same outcome, accordingly with Born’s rule [1].

In the absence of the OCT effects, the POVM describing a direct measure of the
photon-number operator n̂ over multi-mode radiation reads [4]

Π̂m(η, µ) =
µ⊗

j=1
∑
lj

δm,γΩ̂lj
(η) (4)
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where m is the number of detected photons and γ ≡ ∑
µ
j=1 lj, being lj the contribution of

mode j to the number of detected photons. The detection is assumed to be affected by a
limited quantum efficiency η and

Ω̂l(η) =

(
η

1− η

)l ∞

∑
n=l

(
n
l

)
(1− η)n|n〉〈n| (5)

is the single-mode photon counting POVM.
The effect of the OCT is typically described [12–14,19] by the probability ε that an

avalanche triggers another single spurious avalanche from a different cell. Assuming
first-order OCT events, the number of fired spurious cells cannot be larger than the number
of detected photons, which implies that, for the detected event k in the presence of the OCT,
we have m ≤ k ≤ 2m ⇒ k/2 ≤ m ≤ k. Note that this assumption on the OCT model is
quite strong. In principle, one should consider that a primary avalanche may be related to
more than one OCT event [25–27]. Indeed, it may happen that more than one of the carriers
in the primary avalanche triggers a secondary one, or that a secondary avalanche triggers a
tertiary one as well, and the tertiary a quaternary and so on. However, here we develop a
first-order OCT model since the class of SiPMs employed in the experiment is characterized
by a very low cross-talk probability. Therefore, considering higher orders would be useless.
Indeed, in a previous paper of ours [14] we have shown that the cross-talk probability
associated to a cascade model can be assimilated to that limited to first order as long as a
larger effective value of OCT is considered.

Given this picture, we generalize the POVM in Equation (4) as follows

Π̂k(η, ε, µ) =
µ⊗

j=1
∑
lj

δk,γΩ̂lj
(η, ε) (6)

with

Ω̂l(η, ε) =

(
ε

1− ε

)l l

∑
t=dl/2e

(
t

l − t

)(
(1− ε)2

ε

)t(
η

1− η

)t ∞

∑
n=t

(
n
t

)
(1− η)n|n〉〈n| (7)

where d·e is the ceiling function. It can be shown that the operator in Equation (6) is a
POVM, i.e., Π̂k ≥ 0 and ∑k Π̂k = Î. Hence, one can derive the expression of the joint
probability of ks detected events on the signal and ki on the idler as

P(ks, ki) = Trs,i[Λ̂Π̂ks ⊗ Π̂ki
] (8)

and the marginal distributions by summing P(ks, ki) over the corresponding variable. Note
that the marginal detected-event distribution of a generic radiation field in the presence of
the OCT is expressed as [14]

p(k) =
(

ε

1− ε

)k k

∑
m=dk/2e

(
m

k−m

)(
η(1− ε)2

ε(1− η)

)m ∞

∑
n=m

(
n
m

)
(1− η)nPn (9)

where Pn is the photon-number distribution of the field. In Section 3 we will show the
explicit form of p(k) for a TWB.

We remark that our model is based on experimentally accessible quantities since the
only parameter connected with the pure photon statistics, which is λ in Equation (2), can
be easily expressed as a function of experimental data and parameters via

λ2 =
〈k̂i〉

〈k̂i〉+ η(1 + ε)µ
(10)
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where 〈k̂i〉 = (1 + ε)ηN is the mean value of detected events in the field including all the
experimental effects.

2.1.2. Detected-Event Statistics after Post-Selection

The measurement over the idler reduces the entangled counterpart, i.e., the signal,
to the corresponding outcome. The expression of the conditional state can thus be re-
trieved from

ρ̂
(ki)
s =

1
p(ki)

Tri[Λ̂Îs ⊗ Π̂ki
] (11)

where p(ki) is the marginal distribution of detected events over the idler, according to
Equation (9). Hence, the distribution of detected events for the conditional states follows as

p(ki)(ks) = Tr[ρ̂(ki)
s Π̂ks ], (12)

which can be read as the probability of detecting ks events in the signal arm as long as the
conditioning value is ki. Given the distribution in Equation (12), the n-th moment comes
straightforward from

〈k̂n
s 〉(ki) = ∑

ks

kn
s p(ki)(ks). (13)

2.1.3. Nonclassicality

Sub-Poissonianity is a well-known sufficient condition for nonclassicality [28,29].
A direct and experimentally approachable estimator of sub-Poissonianity is the ratio
between the variance and the mean value of the photon-number distribution, which is
known as Fano factor [29]. In particular, in Section 3 we will evaluate the Fano factor for
the number of detected events, i.e.,

F ≡ 〈∆k̂2〉
〈k̂〉

(14)

where 〈∆k̂2〉 = 〈k̂2〉− 〈k̂〉2 is the variance of the distribution. As already shown in Refs. [14,16],
in the presence of an OCT probability ε, the mean value of the detected events can be written
as 〈k̂〉 = (1 + ε)〈m̂〉, while the variance reads as 〈∆k̂2〉 = (1 + ε)2〈∆m̂2〉+ ε(1− ε)〈m̂〉. The
nonclassicality condition is achieved if F < 1. Note that just the knowledge of the first and
the second moments, provided by Equation (13), is required.

As a last remark, we point out a well-known effect of the OCT which will be crucial
for our considerations on the nonclassicality: by inspecting the definition of OCT, one
may infer that both the mean value and the variance of the light distribution are increased
by the OCT. It can be shown that this is actually the case. However, one may also ask
whether this enhancement is the same for variance and mean value, i.e., if the Fano factor
remains unchanged under the effect of the OCT. The answer is no [14,16]: the OCT widens
the variance with respect to the mean value and thus it heavily affects the statistics of
light. This effect can be easily shown by retrieving the first and second moments of an
OCT-affected distribution from Equation (9) and noting that

〈∆k̂2〉 − 〈k̂〉
〈k̂〉

= (1 + ε)

[
〈∆m̂2〉 − 〈m̂〉
〈m̂〉 +

2ε

(1 + ε)2

]
≥ 〈∆m̂2〉 − 〈m̂〉

〈m̂〉 ∀ε ≥ 0. (15)

2.2. Experimental Setup and Detection Apparatus

Here we provide a description of the experiment we performed and that we will
discuss in Section 4 to test our theoretical predictions.

The setup used to produce conditional states is shown in Figure 1. The fundamental
and the third harmonic of a Nd:YLF laser regeneratively amplified at 500 Hz are sent to
a β-barium-borate nonlinear crystal (BBO1, cut angle = 37 deg, 8-mm long) to generate
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the fourth harmonic (262 nm, 3.5-ps pulse duration) by sum-frequency generation. This
field is used to pump parametric down conversion in a second BBO crystal (BBO2, cut
angle = 46.7 deg, 6-mm long) to produce TWB states in a slightly non-collinear interaction
geometry. Two twin portions are spatially and spectrally selected by means of two irises
and two band-pass filters centered at 523 nm. The selected light is then delivered to a
pair of PNR detectors through two multi-mode fibers having a 600-µm core diameter.
As to the detectors, we employed two commercial SiPMs (mod. MPPC S13360-1350CS)
operated at room temperature with an overvoltage of 3V. According to the datasheet [30],
in such conditions, the detectors are endowed with a quantum efficiency of 40% at 460 nm,
a moderate dark-count rate (∼140 kHz), and a low cross-talk probability (∼2%). The output
of each detector is amplified by a fast inverting amplifier embedded in a computer-based
Caen SP5600 Power Supply and Amplification Unit, synchronously integrated by means of
a boxcar gated integrator (SR250, Stanford Research Systems) and acquired. In order to
reduce as much as possible the effect of SiPMs drawbacks, the light signal was integrated
over a short integration gate width (10-ns long), which roughly corresponds to the width of
the peak of the output trace of the detector. Thanks to this choice, the possible contributions
of dark counts and afterpulses can be neglected.

Nd:YLF laser

HWP
PBS

BBO2

BBO1

SiPM

SiPM

ADC+PC

sync

BOXCAR
GATED 

INTEGRATOR

Figure 1. Setup of the experiment described in [17] and addressed in Section 4 to provide experimental
evidence to the model presented here. See the text for details.

A half-wave plate (HWP) followed by a polarizing cube beam splitter (PBS) is placed
on the pump beam in order to modify its intensity and thus the mean number of pho-
tons of the generated TWB states. For each mean value, 100,000 single-shot acquisitions
are performed.

3. Results
3.1. The Effects of the OCT on the Photon-Number Statistics of the TWB

Here we exploit the model developed in Section 2.1 to investigate the effects of the
OCT on the detection of light and, in particular, on the statistics of a multi-mode mesoscopic
TWB. The topic has been already widely investigated [13,14,16,17,19]. Still, we are anyway
going through this point in order to test our model and use it to provide new insights on
the OCT effects implied by this description.

From the inspection of Equation (8), we find that the joint probability of detecting ki
events on the idler and ks on the signal is given by

P(ks, ki) =(1− λ2)µ

(
ε

1− ε

)ks+ki ks

∑
ms=d ks

2 e

ki

∑
mi=d

ki
2 e

(
ms

ks −ms

)(
mi

ki −mi

)
(
(1− ε)2

ε

η

1− η

)ms+mi ∞

∑
n=max(ms ,mi)

(
n + µ− 1

n

)(
n

ms

)(
n

mi

)
(λ(1− η))2n

(16)

which is the extension of the joint probability retrieved in [4], where just the effect of a
limited quantum efficiency is considered.
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If we consider the marginal distribution from Equation (16) for the idler beam, we find

p(ki) =
(1− λ2)µ((1− ε)ηλ2)ki

(1− λ2(1− η))ki+µ

b ki
2 c

∑
l=0

(
ki + µ− 1− l

µ− 1

)(
ki − l

l

)(
1− λ2(1− η)

(1− ε)2ηλ2 ε

)l

=
(1− λ2)µ((1− ε)ηλ2)ki

(1− λ2(1− η))ki+µ

(
ki + µ− 1

µ− 1

)
·

2F1

(
− ki − 1

2
,− ki

2
;−(ki + µ− 1);−4ε

1− λ2(1− η)

(1− ε)2ηλ2

)
(17)

where b·c is the floor function and 2F1(a, b; c; x) is the ordinary hypergeometric function. It
can be shown that Equation (17) can be obtained from Equation (9) as well by replacing Pn
with the photon-number distribution of a multi-mode TWB state [6,24]. We also remark
that, as we showed in [21], in the single-mode case (i.e., µ = 1) Equation (17) reduces
to a linear combination of Fibonacci polynomials, which should be kept in mind for the
considerations that follow.

As a first remark, we stress that our model for the OCT, as outlined in Section 2.1,
accounts for first-order events only. In the following paragraph, we briefly explore the
implications of our simplified model for arbitrary values of ε. Then we move back to the
realistic case related to our experiment.

We show the transformation of the detected-photon number statistics of TWBs due
to the OCT in Figure 2 for the single-mode case and in Figure 3 for the multi-mode one.
In both figures, we set the quantum efficiency η = 0.17 and the mean photon number
N = 10 (see Equation (2)), which are experimentally reasonable values as long as SiPMs
are employed for detection (see Section 4) and the photon-number regime is mesoscopic
(see Section 2). For what concerns the multi-mode case, we have considered the limit
µ→ ∞, since, again, this case is comparable with the number of modes estimated in our
experiments, where µ ∼ 2000 [17]. As µ → ∞, the multi-thermal distribution of TWB
converges to a Poissonian one, whereas the detected-event distribution in Equation (17)
tends to

pµ→∞(ki) = exp

(
− 〈k̂i〉

1 + ε

) b ki
2 c

∑
l=0

(
ki − l

l

)
1

(ki − l)!

(
ε

1− ε

)l(1− ε

1 + ε
〈k̂i〉

)ki−l
. (18)

Note that here we replaced the parameter λ with 〈k̂i〉 through Equation (10).
At a first glance to Figure 2, we note that the OCT gives rise to an asymmetry in

the detected-event distribution: the detection probability of even events enhances pro-
portionally to ε as the detection probability of odd events declines. Moreover, this effect
is smoothed as the detected-event ki increases. A further inspection of our OCT model
may help to understand why. Let m be the number of photons detected with probability η.
As mentioned above, according to our OCT model, the outcome is a number k such that
m ≤ k ≤ 2m. If m is odd, then m/2 of the possible values for k are odd and m/2 are even,
but, if m is even, (m + 1)/2 of the possible values for k are even while still just m/2 are odd.
This is basically due to the fact that 2m, the superior bound to k, is always even. However,
as m increases, such a difference between even and odd detected-photon numbers becomes
negligible compared to k. This effect is especially apparent if we look at Equation (17) in the
single-mode case. As mentioned above, in such a situation the detected-event distribution
reduces to a linear combination of Fibonacci polynomials. This family of polynomials can
be defined as [31]

Fn(x) ≡ 1
2n

(√
x2 + 4 + x

)n
+ (−1)n+1

(√
x2 + 4− x

)n

√
x2 + 4

(19)
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for given n ∈ N. The index of the polynomials in the single-mode detected-event distribu-
tion is n = ki + 1, so that we get larger contributions as ki is even and smaller otherwise.

Figure 2. Detected-event distribution of the idler beam from Equation (17) in the single-mode case
(µ = 1) as a function of the number of detected events ki and of the OCT probability ε. We set the
quantum efficiency η to 0.17, while the mean photon number N to 10. These choices, together with
a selected value of ε, yield the corresponding mean value 〈ki〉 = (1 + ε)ηN. The plot shows the
evolution of a single-thermal distribution due to the OCT.

Figure 3. Detected-event distribution of the idler beam from Equation (18) in the multi-mode limit
case (µ→ ∞) as a function of the number of detected events ki and of the OCT probability ε. We set
the quantum efficiency η to 0.17, while the mean photon number N to 10. These choices, together
with a selected value of ε, yield the corresponding mean value 〈ki〉 = (1 + ε)ηN. The plot shows the
evolution of a Poissonian distribution due to the OCT.

In Figures 4 and 5 we emphasize the most obvious effect of the OCT on the statistics
of detected photons, i.e., compared to the case where no OCT affects the measurement,
the probability of detecting smaller numbers of events is depleted, while, on the con-
trary, the larger values of k are more likely to be revealed. An expected effect of the OCT
which, rather than a consequence, is the very definition of it. Note that here we focus
on experimental values of ε, which are typically small (ε < 0.1) due to the recent techno-
logical improvements mentioned above. The plots show the ratio between the difference
∆p ≡ p(ki)− p0 and p0, where p0 ≡ p(ki)|ε=0. Again, we explore the single-mode case in
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Figure 4, and the multi-mode limit case in Figure 5, having fixed every parameter as before.
Note that the effect of the OCT in the two cases is the same, as the differences between
the two plots have to be ascribed uniquely to the different distributions of pure photons,
single-thermal in Figure 4 and Poissonian in Figure 5.

0 1 2 3 4 5 6
-0.10

-0.05

0.00

0.05

0.10

0.15

ki

Δ
p
/p
0

Figure 4. Plots of the relative differences ∆p/p0, with ∆p = p(ki)− p0 and p0 ≡ p(ki)|ε=0, in the
single-mode case (µ = 1) as a function of the number of detected events ki, for different values of
the OCT probability ε, which are ε = 1% (green), ε = 3% (red), ε = 5% (blue), ε = 7% (grey) and
ε = 9% (violet). The quantum efficiency η and the mean photon number N are again set to 0.17 and
10, respectively.

0 1 2 3 4 5 6
-0.1

0.1

0.3

0.5

0.7

0.9

ki

Δ
p
/p
0

Figure 5. Plots of the relative differences ∆p/p0, with ∆p = p(ki)− p0 and p0 ≡ p(ki)|ε=0, in the
multi-mode limit case (µ→ ∞) as a function of the number of detected events ki, for different values
of the OCT probability ε, which are ε = 1% (green), ε = 3% (red), ε = 5% (blue), ε = 7% (grey) and
ε = 9% (violet). The quantum efficiency η and the mean photon number N are again set to 0.17 and
10, respectively.

3.2. The Effects of the OCT on the Photon-Number Statistics of the Conditional State

Here we investigate the effects of the OCT on the statistics of the signal after condition-
ing over the idler, as described in Section 2.1. We also consider the effect of the imbalance
between the quantum efficiencies of the signal and idler detectors.
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Note that, while we remove the assumption that the detectors of the two parties share
the same quantum efficiency η = ηs = ηi, we keep assuming the same OCT probability
ε = εs = εi. The imbalance is introduced through the parameter α ≡ ηs/ηi, with η ≡ ηi.

The expression of the reduced state of the signal after measuring ki events over the
idler is straightforward from Equation (11) and reads

ρ̂
(ki)
s =

(1− λ2)µ

p(ki)

(
ε

1− ε

)ki ki

∑
mi=d

ki
2 e

(
mi

ki −mi

)(
(1− ε)2

ε

η

1− η

)mi

µ⊗
j=1

∑
lj

δmi ,γ

∞

∑
nj=lj

(
nj
mj

)
λ2nj(1− η)nj |nj〉〈nj|

(20)

where again γ ≡ ∑
µ
j=1 lj and d·e is the ceiling function. Note that the conditional state

correctly does not depend on α since no detection over the signal party has occurred yet.
On the contrary, the related detected-event distribution is a function of α, other than

of the number of events detected over the idler ki:

p(ki)(ks) =
(1− λ2)µ

p(ki)

(
ε

1− ε

)ki+ks ki

∑
mi=d

ki
2 e

ks

∑
ms=d ks

2 e

(
mi

ki −mi

)(
ms

ks −ms

)(
(1− ε)2

ε

η

1− η

)mi

(
(1− ε)2

ε

αη

1− αη

)ms ∞

∑
l=ms

(
l + µ− 1

l

)(
l

ms

)(
l

mi

)
λ2l(1− η)l(1− αη)l .

(21)

In the limit of large number of modes, we find

p(ki)
µ→∞(ks) =

exp
(
− 〈ki〉

η(1+ε)

)
pµ→∞(ki)

(
ε

1− ε

)ki+ks ki

∑
mi=d

ki
2 e

ks

∑
ms=d ks

2 e

(
mi

ki −mi

)(
ms

ks −ms

)
(
(1− ε)2

ε

η

1− η

)mi( (1− ε)2

ε

αη

1− αη

)ms ∞

∑
l=ms

1
l!

(
l

ms

)(
l

mi

)
(
〈ki〉(1− η)(1− αη)

η(1 + ε)

)l
.

(22)

Given Equation (21), we can have access to every moment of the conditional-state
distribution. For instance, the first moment reads

〈k̂s〉(ki) =
αη(1 + ε)

1− λ2(1− η)

[
ki + µλ2(1− η)− ∂

∂x
log χ(x)

∣∣∣∣
x=0

]
(23)

where

χ(x) ≡
b ki

2 c

∑
l=0

(
ki + µ− 1− l

µ− 1

)(
ki − l

l

)(
1− λ2(1− η)

(1− ε)2ηλ2 ε

)l

elx (24)

is a sort of characteristic function related to the discrete probability distribution in Equation (17).
Indeed, one can easily prove that Equation (17) can be rewritten as

p(ki) =
(1− λ2)µ[(1− ε)ηλ2]ki

[1− λ2(1− η)]ki+µ
χ(0). (25)

The logarithmic derivatives of χ(x) evaluated in x = 0 contribute to the moments of
the conditional state, as shown in Equation (23) for the mean value. If ε is set to 0 and α to 1
in Equation (23), we retrieve the result reported in [4] for the limited-quantum-efficiency
condition, i.e.,
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〈k̂s〉(ki)(ε = 0, α = 1) =
ki(〈k̂i〉+ ηµ) + µ〈k̂i〉(1− η)

〈k̂i〉+ µ
. (26)

3.3. The Effects of the OCT on the Nonclassicality of the Conditional State

Finally, we focus on the nonclassicality of the state generated after post-selection and
evaluate to what extent the OCT is detrimental for this quantum resource.

The first and the second moments of the conditional-state distribution allow us to
retrieve the Fano factor for the detected events by means of Equation (14) expressed for the
operator k̂s. As mentioned in Section 2.1, the Fano factor provides a sufficient condition for
nonclassicality. For the distribution of the conditional state in Equation (21) we find that
it reads

F(ki)
s =

1 + 3ε

1 + ε
− αη(1 + ε) +

1
〈k̂s〉(ki)

[
αη(1 + ε)

1− λ2(1− η)

]2[
λ2(1− η)(ki + µ)

]
−

1
〈k̂s〉(ki)

[
αη(1 + ε)

1− λ2(1− η)

]2
· ∂

∂x
log χ(x)

[
λ2(1− η)− ∂

∂x
log
(

∂

∂x
log χ(x)

)]∣∣∣∣
x=0

(27)

where χ(x) is defined in Equation (24). Again, we highlight that Equation (27) can be
written as a function of experimental quantities by just replacing λ with 〈ki〉 through
Equation (10). Since the expression is quite complex, in Figure 6 we show the behavior of
F(ki)

s as a function of the conditioning value ki for different choices of the other parameters:
in panel (a), different mean values of the unconditioned state 〈ki〉, in panel (b), different
values of the balance parameter α, in panel (c), different choices of the cross-talk probability
ε, and finally in panel (d), different number of modes of the unconditioned state µ. It is
worth noting that the subPoissonianity of the Fano factor can be increased by decreasing
the mean value of the unconditioned state and increasing the number of modes, and by
operating on the features of the detectors, namely reducing the OCT probability and
increasing the balance factor.

Again, if ε = 0 and α = 1, we retrieve the known expression of the Fano factor for the
conditional state in the context of multi-mode TWB states and limited quantum efficiency,
as outlined in [6], i.e.,

F(ki)
s (ε = 0, α = 1) = (1− η)

[
1 +

〈k̂i〉(ki + µ)(〈k̂i〉+ ηµ)

(〈k̂i〉+ µ)[(ki + µ)(〈k̂i〉+ ηµ)− ηµ(〈k̂i〉+ µ)]

]
. (28)

Note that Equation (27) can be significantly simplified by taking the limit to realistic
values for the parameters µ and ε. As mentioned above, our experimental conditions allow
us to take the limit µ→ ∞, which reduces the sum in Equation (24) to

χ(0) ∼
(
〈ki〉

1− ε

1 + ε

)ki b
ki
2 c

∑
l=0

1
l!(ki − 2l)!

(
ε(1 + ε)

〈k̂i〉(1− ε)2

)l
, (29)

but then, being the typical OCT probabilities of modern SiPMs of the order 10−2, the largest
order in the argument of the sum for a given term l is

(ε/〈k̂i〉)l

l!(ki − 2l)!
. (30)
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Figure 6. Fano factor of the conditional states as a function of the conditioning values for different
choices of the other parameters involved in Equation (27). Panel (a): F for different choices of the
mean value of the unconditioned state. From bottom to top: 〈k〉 = 0.5 (black), 〈k〉 = 1 (red), 〈k〉 = 1.5
(blue), 〈k〉 = 2 (green), 〈k〉 = 2.5 (magenta), 〈k〉 = 3 (cyan). The other parameters are: η = 0.17,
µ = 100, α = 1, and ε = 0.01. Panel (b): F for different choices of the balance factor. From top to
bottom: α = 0.5 (black), α = 0.6 (red), α = 0.7 (blue), α = 0.8 (green), α = 0.9 (magenta), α = 1 (cyan).
The other parameters are: η = 0.17, µ = 100, 〈k〉 = 2, and ε = 0.01. Panel (c): F for different choices
of the cross-talk probability. From bottom to top: ε = 0.01 (black), ε = 0.02 (red), ε = 0.05 (blue),
ε = 0.10 (green), ε = 0.15 (magenta), ε = 0.20 (cyan). The other parameters are: η = 0.17, µ = 100,
〈k〉 = 2, and α = 1. Panel (d): F for different choices of the number of modes of the unconditioned
state. From top to bottom: µ = 1 (black), µ = 2 (red), µ = 5 (blue), µ = 10 (green), µ = 100 (magenta),
µ = 1000 (cyan). The other parameters are: η = 0.17, 〈k〉 = 2, α = 1, and ε = 0.01.

Thus, provided that the order of the mean number of detected events is larger than
the order of ε, the argument of the sum gets smaller as l increases. If we keep the l = 0
term only, all the logarithmic derivatives of χ(x) are null, so that the mean value and the
Fano factor of the conditional state are much simplified. By taking this limit, we neglect
the OCT contribution provided by the asymmetry between odd and even detected events,
which is reasonable if ε is small (i.e., ε < 0.1), as highlighted in Figures 4 and 5. Given this
approximation and the limit for µ, one gets

〈k̂s〉(ki)
µ→∞ = α[η(1 + ε)ki + (1− η)〈k̂i〉]

F(ki)
sµ→∞ =

1 + 3ε

1 + ε
− αη(1 + ε)

[
1− (1− η)〈k̂i〉

η(1 + ε)ki + (1− η)〈k̂i〉

]
.

(31)
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Equations (31) allow us to find the threshold conditioning value k̄ such that the

detected state is nonclassical, i.e., F(ki<k̄)
sµ→∞ < 1. Before retrieving k̄, we remark that in the

limit µ→ ∞, the Fano factor in Equation (28), where ε = 0 and α = 1, is a function of the
quantum efficiency only, i.e.,

F(ki)
sµ→∞(ε = 0, α = 1) =

1− η

1− η/2
. (32)

However, 0 ≤ F(ki)
sµ→∞(ε = 0, α = 1) ≤ 1 ∀η ∈ [0, 1], which means that the imperfections

in detection due to limited quantum efficiency never provide a detected superPoissonian
statistics in this context. Only in the limit case η = 0 the nonclassicality of a conditional
state from multi-mode TWB is not revealed by the Fano factor, otherwise the detected
nonclassicality is just reduced with respect to the ideal case (η = 1). On the contrary,
the OCT can completely conceal the quantum nature of a conditional state since we may
have F(ki)

sµ→∞ > 1 for some ki < k̄ where

k̄ =
2ε(1− η)〈k̂i〉

η(1 + ε)[αη(1 + ε)2 − 2ε]
. (33)

Note that k̄ > 0 ⇐⇒ αη(1 + ε)2 > 2ε, i.e., if

ηs > ηth(ε) ≡
2ε

(1 + ε)2 (34)

where we replaced αη with the quantum efficiency of the detector of the signal party ηs
through the definition of α. Therefore, Equation (33) shows that for ε > 0 and η < 1 there
is a conditioning number k̄ > 0 such that if ki < k̄ the detected statistics is superPoissonian
(see Figure 6). Moreover, Equation (34) gives an experimental condition for the observation
of the nonclassicality of the conditional state: provided that ηs is larger than the thresh-
old ηth, then a finite k̄ exists such that one can measure F(ki)

sµ→∞ < 1 ∀ki > k̄. Note that
k̄(ε = 0, η 6= 0) = 0, which implies that the detected statistics is subPoissonian, if the only
detection imperfection is a non-unit η > 0. However, it is remarkable that in the ideal case
η = 1 we have a subPoissonian statistics independently of ε, while if η → 0 and ε 6= 0, then
the detected statistics is always superPoissonian, independently of ki.

One may ask if a combination of η and ε exists such that F(ki)
sµ→∞ = 0 for some ki.

Unfortunately, this is not the case since in the second line of Equations (31) the Fano factor
is a monotone decreasing function of ki and it converges to an asymptotic value which is
strictly positive ∀ε > 0. Finally, we remark that the threshold in Equation (34) is directly
connected to the sub-Poissonianity of the original state, which in turn depends on its
intrinsic nonclassical correlations. In fact the same threshold can be shown to hold for the
observation of sub-shot-noise correlations of TWB. The sub-Poissonianity condition on
correlations can be expressed by the noise reduction factor as R < 1, where R is defined as
the ratio of the variance of the difference of detected events and the mean value of their
sum, i.e.,

R ≡ 〈∆(k̂s − k̂i)
2〉

〈k̂s + k̂i〉
. (35)

We showed in Ref. [20] that, in the case of TWB states with a large number of modes,
this figure of merit can be reduced to

R = 1− αη(1 + ε) +
2ε

1 + ε
, (36)

which gives R < 1 for the same condition as in Equation (34). Hence, the connection
between the sub-Poissonianity condition and the requirement on the quantum efficiency in
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Equation (34) is straightforward. Incidentally, note that the Fano factor in the second of
Equations (31) can be expressed in terms of the noise reduction factor.

4. Discussion

In order to validate the model for conditioning addressed in the previous Section,
hereafter we present and discuss the experimental generation of nonclassical conditional
states. As already explained in [6,17,18], such states can be obtained in post-processing by
selecting a certain number of photons in one TWB arm and reconstructing the modified
distribution of photons in the other arm. In Section 3 we showed that the unconditioned
state is formally described by a multi-thermal distribution, which reduces to Equation (18)
when the light in one arm is characterized by a very large number of modes [32–34]
and is detected by a SiPM characterized by an OCT probability ε 6= 0. In Figure 7 we
show the detected-event distributions having mean values 〈k〉 = 2.63 (panel (a)), 2.66
(panel (b)), 1.43 (panel (c)), and 0.57 (panel (d)). The experimental data are shown as gray
dots, while the theoretical fitting functions according to Equation (18) are presented as
gray lines. To quantify the agreement between the experimental data and the theoretical
expectations we evaluate the fidelity f = ∑m̄

m=0

√
Pth(k)P(k), in which Pth(k) and P(k)

are the theoretical and experimental distributions, respectively, and the sum extends
up to the maximum number of detected events k above which both Pth(k) and P(k)
become negligible.
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Figure 7. Detected-event distributions P(k) of the unconditioned state having mean value 〈k〉 = 2.63
(panel (a)), 2.66 (panel (b)), 1.43 (panel (c)), and 0.57 (panel (d)). The experimental data are shown
as gray dots, while the theoretical expectations are presented as gray lines. The fidelity values are:
f = 0.9999 in all panels.
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From the fitting procedure, it is possible to obtain the value of the only fitting parame-
ter, namely the OCT. In particular, we notice that for the four considered measurements,
the OCT value is of the same order of magnitude and always less than 1%, thus proving
that the cross-talk probability affecting this model of SiPM is really small, even if not
completely negligible. We remark that the estimated values for the OCT probability in
Figure 8 are smaller than those reported in the datasheet of our sensors [30], but consistent
with the characterization that we have already provided for these SiPMs in [16].

In order to prove that the conditioning procedure changes the statistical properties
of such states making them sub-Poissonian, we calculate the Fano factor of the condi-
tional states obtained from each of the four considered unconditioned states. Indeed,
as mentioned in Section 2.1, F < 1 is a sufficient condition for nonclassicality.

1 2 3 4 5
0.92

0.94

0.96

0.98

1.00

1.02

1.04

ki

F

Figure 8. Fano factor as a function of the conditioning value for four different unconditioned states
having mean values 〈k〉 = 2.63 (black), 2.66 (red), 1.43 (blue), and 0.57 (magenta). The experimental
data are shown as dots plus error bars, while the theoretical fitting functions according to the
second line of Equations (31) are presented as dashed curves with the same color choice. The fitting
parameters are the following: η = 0.134, α = 0.990 (black curve), η = 0.157, α = 0.989 (red curve),
η = 0.158, α = 0.997 (blue curve), and η = 0.125, α = 0.986 (magenta curve). The reduced χ(2) are:
0.34 (black curve), 0.14 (red curve), 0.94 (blue curve), and 0.05 (magenta curve).

In Figure 8 we show the experimental Fano factors shown as dots plus error bars, while
the theoretical fitting functions according to the second line of Equations (31) are shown as
dashed lines with the same color choice. For all the fitting functions we left η and α as free
fitting parameters, while we used the same values of ε obtained from the fitting of the marginal
distributions. In particular, in all cases we obtained a balance factor α ∼ 0.99 and a quantum
efficiency η ∼ 0.14. As a general statement, we note that the data corresponding to the
conditioning value ki = 1 are larger than 1 for the largest mean values. Such a behavior is in
agreement with the theoretical expectation expressed by the second line of Equations (31) and
the plots in panel (a) of Figure 6. Moreover, we emphasize that for the smallest mean value the
conditioning operation is applied up to ki = 3 because the number of experimental data is not
sufficient to reliably build the states corresponding to ki > 3.

In order to explore in which way the conditional measurements modify the statisti-
cal properties of the unconditioned states in the presence of the OCT, in the two panels
of Figure 9 we show some conditional distributions at different conditioning values to-
gether with the corresponding unconditioned statistics having mean values 〈k〉 = 2.66
(panel (a)), and 1.43 (panel (b)). The data are presented as colored dots plus error bars
(ki = 1 in black, ki = 2 in red, and ki = 3 in blue), while the theoretical expectations
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are shown as solid lines with the same color choice. The theoretical curves have been
calculated according to Equation (22) using the parameter values of ε obtained from the
fit of the unconditioned states (see caption of Figure 7) and those of η and α obtained
from the fit of the Fano (see caption of Figure 8). For the sake of clarity, in each panel of
Figure 9 we show again the statistics of the unconditioned state as gray dots and the theo-
retical expectation as gray surface defined by dashed line. As expected from the two panels
of the figure, it clearly appears that the conditional measurements change the statistics
of the input state. Even in this case, to quantify the agreement between the experimental
data and the theoretical expectations we evaluate the fidelity. We note that the higher the
conditioning value the lower the fidelity value. This fact can be ascribed to the limited
number of data at our disposal to build the statistics, which is lower and lower at increasing
values of ki. Larger acquisitions of data could overcome such a limit. At the same time,
the good dynamic range of SiPMs would suggest that both the unconditioned states and
the corresponding conditional ones could be more populated, thus allowing us to really
explore the mesoscopic intensity domain.
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Figure 9. Detected-event distributions P(k) of the conditional states for ki = 1 (black curve), ki = 2
(red curve), and ki = 3 (blue curve) obtained from an unconditioned state having mean value
〈k〉 = 2.66 (panel (a)) and 1.43 (panel (b)). The experimental data are shown as colored symbols,
while the theoretical expectations are presented as solid lines with the same color choice. The fidelity
values are: f = 0.9999, 0.9961, and 0.9888 in panel (a) and f = 0.9999, 0.9954, and 0.9863 in panel (b).
The unconditioned state is shown as gray dots and its theoretical expectation as gray surface defined
by dashed line. The fidelity value is f = 0.9996 in panel (a) and f = 0.9999 in panel (b).
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In general, the good agreement between the experimental data and the theoretical
expectations validate the model used to describe the role played by the non-idealities of
the employed detectors, namely the cross-talk effect, the non-unitary quantum efficiency
and the possible imbalance between the two quantum efficiencies. We emphasize that the
detection of subPoissonian states was achieved because, even in the presence of a limited
quantum efficiency, the OCT probability is small enough to ensure that η > ηth. This is
not the case of either previous sensors generations, in which the OCT probability was
more than 10%, or new kinds of SiPMs with a higher sensitivity in the near infrared region.
Indeed, the best generation of such detectors exhibits a cross talk probability of 6% and a
low quantum efficiency (less than 20%), which could prevent the generation of nonclassical
states by conditional measurements.

5. Conclusions

In this paper we addressed a thorough theoretical model for the conditional measure-
ments with SiPMs. In particular, we included the contribution of the OCT and we took into
account the possibility of an imbalance between the two detection chains. We provided a
complete description of the detection of a multi-mode TWB state in the presence of the OCT,
showing explicitly the effects of such correlated noise on the reconstructed distribution. We
obtained a closed formula for the detected-event distribution of the conditional states and
an analytic expression for the first moments. Hence, we retrieved the Fano factor, which
represents a sufficient criterion for nonclassicality. In particular, we found that, in the
presence of cross-talk effect, nonclassicality is more easily attained by:

- reducing the imbalance between the two detection arms;
- decreasing the mean value of the unconditioned states;
- increasing the number of modes.

Moreover, we found a useful bound between the quantum efficiency of the detectors
and the OCT probability, which sets a link between their mutual values for still revealing
the nonclassicality of conditional states. Actually, we demonstrated that this bound is valid
in general for the twin-beam states, on which the conditioning operation is performed.

The theoretical expectations have been validated by the experimental generation of
conditional states by conditional measurements performed on multi-mode TWB states with
SiPMs. The good agreement between the experimental data and the theoretical predictions
suggests that the conditional measurements can be performed even on more populated
states to produce well-populated conditional states as well by exploiting the good dynamic
range of SiPMs.

Finally, we hint that the model may be further improved by including the dark counts,
which is another common drawback of SiPMs at room temperature. However, it is worth
noting that in the case of a light signal integrated over short gate widths [17], which
correspond to our experimental condition, the mean number of dark counts is remarkably
low, which is the reason why we did not address this topic here. Moreover, it could be
interesting to include cascade effects and generation of multiple secondary avalanches in
the model for the OCT, so that a realistic case for large ε could be compared with the one
explored here.
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