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Metastatic colorectal cancer (mCRC) is one of the leading causes of mortality and morbidity in the 

world [1]. It is a heterogeneous disease characterized by different pathways of carcinogenesis and 

can be classified into different subtypes with specific molecular and morphological alterations. In 

this contest, BRAF mutations are found in about 10% of mCRC and define a particular subtype 

(BRAF-mCRC) characterized by a dismal prognosis and resistance to standard therapies with a 

median survival of less than 12 months [2].  Furthermore, BRAF-mCRCs are significantly associated 

with female gender, right site, advanced stage, mucinous histology, serrated pathway during 

carcinogenesis and CpG island methylator (CIMP) phenotype, defective mismatch repair (dMMR) 

and presence of microsatellite instability (MSI) [3]. 

Although they are clinically considered an unique entity with a specific histopathological profile, a 

significant biological heterogeneity has been described.   

The vast majority of BRAF mutations (~96%) occur at the V600 amino acid residue where a DNA 

point mutation (transversion of a thymidine to adenosine in coding nucleotide 1799) results in a 

Valin to Glutamate (p.V600E) amino acid substitution, causing a constitutive activation of BRAF 

kinase activity regardless of upstream signaling [4]. Non-BRAF V600E mutations are much less 

common and have been reported to be associated with different clinical impact and biological 

features [5]. 

BRAF p.V600E is found in ~60% of CRC with microsatellite instability (MSI) and in only 5% to 10% of 

microsatellite stable (MSS) CRC [6, 7]. Both BRAF mutation and MMR status should be determined 

in all CRCs to distinguish sporadic tumors from Lynch CRCs. Indeed, because BRAF p.V600E 

mutation has been demonstrated to cause MLH1 epigenetic silencing, this mutation and/or MLH1 

methylation analysis have an established clinical utility to recognize sporadic CRC, excluding Lynch 

tumors [8]. 

MSI in CRC has been associated with a proximal location, poor histologic differentiation, mucinous 

or signet ring cell differentiation, and is common in stages II (20%) and III (12%) but rare in stage IV 

CRCs (4%) [9]. Moreover, MSI is strongly associated with the presence of tumor-infiltrating 

lymphocytes (TILs) because DNA mismatch repair (MMR) defects lead to a high rate of 

immunogenic neoantigens and stimulates the activation of host immune response which is 

generally correlated with the survival benefit of presence of MSI in early stages disease. Instead, 

the prognostic role of MSI remains less clear in metastatic setting [10, 11, 12]. 

At present, the prognostic and predictive implications of TILs and inhibitory programmed cell 

death 1 (PD-1/programmed cell death ligand 1 (PD-L1) proteins in mCRCs are poorly understood, 
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especially in the BRAF-mCRC subtype in which the clinical relevance of a pronounced host immune 

reaction remains elusive, including both MSI and MSS tumors [13]. Moreover, considering the 

dramatic prognosis conferred by BRAF mutation, the groundbreaking results of the immune 

checkpoint inhibitors against the PD1/PD-L1 axis in MMR-deficient tumors could provide a 

remarkable therapeutic promise for patients BRAF-mCRC patients with MSI. [14] 

In contrast with MSI/BRAF-CRC, BRAF-CRC with proficient MMR (MSS/BRAF-CRC) represents a less 

defined subset which shares clinical and molecular features with both serrated pathway and 

conventional pathway [15,16,17]. Indeed, although the BRAF mutation occurs early in 

tumorigenesis and is correlated with the serrated pathway, the MSS/BRAF-CRCs have been found 

to have an high rate of molecular alterations, such as TP53 mutations and chromosomal instability 

(CIN) which are typically correlated with classic pathway and found in BRAF wild type (BRAF wt) 

tumors [15,17]. Furthermore, in a few reports, prevalent or partial neuroendocrine differentiation, 

including patterns of high-grade neuroendocrine carcinoma or mixed adenoneuroendocrine 

carcinoma (MANEC), has been found more commonly in MSS/BRAF-CRC than in MSI/BRAF tumors 

[18,19,20]. 

To our knowledge, no extensive clinical pathological studies focused on BRAF-mCRC have been 

reported to clarify whether the MSI status and associated biological and/or morphological 

characteristics will allow the identification of clinically different tumor subgroups. 

Although the standard of care for BRAF-CRC patients remains fluoropyrimidine-based cytotoxic 

regimen, the aggressive biology of this subgroup has stressed the importance of studying 

chemotherapy intensification strategies in order to develop new therapeutic agents and improve 

outcomes in these patients [21]. Despite the lack of a randomized phase III trial dedicated to 

BRAF-mCRC, chemotherapy intensification combining a quadruple association of 5-fluorouracil, 

oxaliplatin, irinotecan (FOLFOXIRI) associated with antiangiogenic agent, bevacizumab, seems like 

a valid option [22, 23]. 

BRAF mutations, resulting in constitutive activation of MAPK pathway, have garnered a great deal 

of attention over past decade since the inhibition of this pathway by BRAF/MEK inhibitors has 

revolutionized the treatment of melanoma, becoming a standard of care option and its efficacy 

has been replicated in selected tumors such as NSCLC, thyroid cancer, hairy cell leukemia 

[24,25,26]. However, these results contrast with the low activity of BRAF/MEK-targeted therapy in 

patients with BRAF-mCRC, suggesting that responses may be histology-dependent and that the 
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molecular landscape of CRC is more complex [2]. Early data suggested that epidermal growth 

factor receptor (EGFR)-mediated reactivation of the MAPK pathway may be a mechanism 

underlying resistance to therapy [2]. This hypothesis has now been confirmed in a randomized 

phase III study, which demonstrated a survival benefit combining BRAF inhibitors with both anti 

EGFR monoclonal antibodies and MEK inhibitors (BEACON trial) [27]. 

Interestingly, BRAF mutation was found as driver mutation in multiple tumor types, including 

colorectal rhabdoid carcinomas (CRbCs), which represents a very rare and aggressive subtype of 

CRC with poor prognosis [28]. Although the hallmark diagnostic is based on the presence of the 

rhabdoid cell, this entity remains often underdiagnosed because misrecognized and confused with 

poorly differentiated histological subtypes of CRC which may share some histomorphological 

aspects with CRbCs but with very distinct genetic and/or molecular features from each other [29]. 

The events involved in CRbCs pathogenesis are poorly elucidated and to our knowledge only 39 

cases have been reported in literature so far. SMARCB1 (INI-1) inactivation, BRAF V600E mutation, 

epigenetic alterations involved in the serrated pathway and centrosomal inactivation due to 

CROCC mutation are the main molecular mechanisms commonly observed in the development of 

these tumors [28, 30, 31, 32]. 

The complex heterogeneity among sporadic CRC subtypes implies that there is no standardized 

therapeutic approach for these patients. The development of new biomarkers and their clinical 

significance will improve the overall survival and disease management of these tumors, especially 

for aggressive and lethal entities such as BRAF-mCRC or CRbCs without current valid treatments.  

In the present study we performed an extensive literature search concerning the role of BRAF 

mutation in CRC with particular regard to the histological characteristics, to the molecular 

mechanisms underlying the pathogenesis of the mutated BRAF subtype and its biological and 

molecular heterogeneity. Furthermore, we provided a review of the major studies aimed at 

defining the clinical significance of the BRAF mutation in colorectal cancers in terms of prognosis, 

predictive markers of response to different treatments and newly developed innovative 

therapeutic approaches or currently under study. 

Secondly, we analyzed a selected cohort of BRAFV600E-mCRC in order (1) to compare the clinico-

pathological profile of MSI versus  MSS group, highlighting the most significant differences 

associated with MMR status; (2) to analyze the extent of neuroendocrine differentiation and the 
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types of neuroendocrine neoplasms between these two tumor groups; and (3) to evaluate the 

density of intratumor CD8+ T lymphocytes and the PD-L1 immunohistochemical expression in 

tumor cells and their prognostic role. 

Finally, since the BRAF mutation has been reported to be a common feature of CRbCs, we herein 

report seven new cases of this rare entity, examining in detail their clinicopathologic and 

molecular features. For comparison, we included four poorly differentiated medullary carcinomas 

(PDMCs) with focal aspects mimicking rhabdoid features. Immunohistochemical, genetic, and 

epigenetic analyses were performed to clarify the molecular alterations associated with this 

phenotype, with special emphasis on BRAF V600E mutation. In addition, we reviewed the 

literature on the cases of this entity reported so far. 
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1. BRAF gene and MAP Pathway 

The BRAF gene (homolog B of the murine sarcoma viral oncogene v-raf) is located on chromosome 

7 and encodes a protein that belongs to the Raf family of serine-threonine protein kinases [33]. It 

is involved in the MAP kinase (MAPK) cascade (mitogen activated protein) that regulates cell 

growth and differentiation (Figure 1). MAPK signaling starts when epidermal growth factor (EGF) 

binds to its receptor (EGFR) in the cell membrane, activating it by phosphorylation in the 

cytoplasmic domain. Phosphorylated EGFR activates RAS which subsequently activates and 

phosphorylates BRAF which, upon stimulation, forms an active dimer. This in turn phosphorylates 

and activates MEK and then ERK. Activated ERK subsequently translocates to the nucleus where it 

can stimulate transcription factors involved in the promotion of cellular proliferation and survival. 

A negative feedback mechanism exists whereby phosphorylated ERK inhibits the upstream 

components.  Two other Raf kinase family isoforms exist: ARAF and CRAF (or RAF-1) that have 

lower kinase activity, affinity and efficiency for MEK binding, confirming that BRAF is the strongest 

RAF isoform in driving this signaling cascade [2]. 

BRAF is reported to be mutated at different codons, however the most frequent mutation is 

V600E (up to 90% of all BRAF mutations) where a point mutation at the V600 aminoacidic residue 

(transversion of a thymidine to adenosine at coding nucleotide 1799 in exon 15) results in 

substitution of valine to glutamate [2]. This confers a constitutive activation of the MAPK pathway 

with an activity approximately 500-fold greater than the wild type form [24]. 

BRAF and its isoforms ARAF and CRAF not only activate MAPK pathway, but also affect other key 

cellular processes such as cell migration (through RHO small GTPases), apoptosis (through the 

regulation of BCL-2), and survival (through the HIPPO pathway). Thus, it is not a surprise that BRAF 

gene is found constitutively activated by mutation in around 15% of all human known cancer types 

[2, 34]. 
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Figure 1. Mitogen activated protein kinase pathway. A signaling epidermal growth factor binds to 

the receptor (EGFR) on the cell surface causing its phosphorylation and activation. The active 

signal is passed to scaffolding proteins (GRB2 and SOS) which in turn promotes the removal of GDP 

from membrane bound KRAS. KRAS then binds GTP allowing its activation and undergoes 

conformational change to bind and phosphorylate BRAF. The signaling cascade continues through 

MEK and ERK. Activated ERK translocates to the nucleus where it recruits transcription factors 

involved in cellular survival and growth. The V600e BRAF mutationj allows for constitutive 

activation of BRAF and continuation of downstream signaling regardless of upstream regulation. 

C.E. Bond. How the BRAF V600E mutation defines a distinct subgroup of colorectal cancer: molecular and clinical 

implications. Review Article; 2018. 

 

2. Frequency of BRAF mutation in CRC.  

The frequency of BRAF mutations varies widely in human cancers, from nearly half of all 

melanomas to at lower frequencies, ranging from 0 to 18%, in other tumours [24]. 
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In mCRC, the BRAF mutation (nearly always V600E) occurs in approximately 10% of cases with 

recent estimates ranging from 5% to 21% [33]. 

In a report examining 2530 patients with mCRC included in three randomized trials (COIN, FOCUS, 

and PICCOLO), the prevalence of BRAF mutations was 9.1% [33, 35]. In a population-based study 

that could better reflect the true incidence, 12% of the patients had BRAFV600E mutant tumors 

[33, 36]. In another population based report the percentage of BRAF-mutant tumors reaches 20% 

[33, 37]. BRAF and RAS mutations are generally mutually exclusive. When both mutations are 

found in the same tumor, they can be traced to different clones, each with a single mutation. 

These cases are rarely observed: only eight cases on 2530 patients (0.3%) from the three 

randomized COIN, PICCOLO and FOCUS trials and 0.01% of cases in another series [33, 38]. There 

are more BRAF mutations in right-sided CRC than in left-sided tumors.  The SPECTAcolor trial 

revealed that the percentage of BRAF-mutant tumors was 10.5% in the total population of 370 

patients, and was 22.6% in patients with right-sided colon cancer versus only 5.1% in patients left-

sided colon cancer [33, 38]. In a large pooled biomarker analysis evaluating the role of biological 

markers in defining the prognosis of stage II and III colon cancer beyond TNM classification, a 

stepwise decrease in the prevalence of KRAS or BRAF V600E mutations was observed when 

moving from right-sided to left-sided colon cancer. BRAF mutations (and KRAS) were 

approximately twice as likely to be found in the caecum than in the sigmoid colon [33, 39]. 

 

3. Clinicopathological profile of the BRAF-CRC subtype 

BRAF mutations define a particular subtype of CRC associated with morphological, clinical and 

therapeutic features that differ substantially from patients not carrying this genetic alteration. 

BRAF V600E-mCRCs are strongly associated with female sex, older age, mucinous histology, poor 

differentiation, right-sided onset, T4 stage, microsatellite instability, serrated adenomas pathway 

and DNA hypermethylation (CIMP phenotype) [2]. BRAF-CRC patients often have a poor 

performance status (PS) and multiple metastatic sites at diagnosis with higher rate of nodal and 

peritoneal metastases and a lower rate of lung involvement [40, 41] 

Furthermore, there is an association between heavy smoking (current or former smokers) and the 

presence of the BRAF mutation that can be also related to the CIMP phenotype. Although the 
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exact mechanism remains unknown, preclinical studies have shown that tobacco exposure can 

stimulate the DNA methyltransferase activity that is associated with CIMP [42]. 

Compared to BRAF wt patients, BRAF-CRCs are characterized by a worse prognosis and resistance 

to standard therapies, with a median OS (mOS) less than 12 months [43] 

The patterns of BRAF-CRC have been shown to be so specific that a nomogram predictive for BRAF 

V600E status was developed and published by Loupakis et al [43]. In this study, a predictive score 

was assigned to each of the following variables: the primary site of the tumor, the patient’s sex, 

and the mucinous characteristics of the cancer. The sum of the scores was converted to the 

probability of BRAF mutation occurrence and was 81% in female patients with mucinous-type 

right-sided colon cancer. The probability to carry a BRAF-mutated tumour ranged from 4% to 81% 

with a predictive accuracy > 80% and with high sensitivity and specificity (81.2% and 72.1%, 

respectively). In particular, a RAS-wt mCRC, not mucinous and originated from a left-sided primary 

occurring in male patients have an extremely poor likelihood to be BRAF mutant (4%). In the era of 

molecular characterization, the present nomogram should not be considered a tool to replace the 

mutational analysis of CRC, but it could allow physicians to better estimate patients’ prognosis 

where BRAF testing is not available or reimbursed because of regulatory restrictions. Furthermore, 

the poor prognosis of BRAF-CRC patients makes their earliest identification essential to enable 

enrolment in clinical trials. This nomogram may also potentially guide for prospective stratification 

of future randomized trials thus avoiding costly and time-consuming upfront testing procedures. In 

addition, the identification of subgroups where BRAF mutation is very likely to occur would 

theoretically help to decrease the attrition bias of retrospective studies when tumour blocks are 

no longer available or difficult to retrieve [43]. 

 

4. Heterogeneity of the BRAF CRC subtype 

Although BRAF-CRCs are typically considered an unique clinical entity, a significant biological 

heterogeneity has been described in literature. 

 

4.1 Different molecular patterns: BM1 and BM2. 

CRCs with BRAF V600E mutation segregate into two different gene expression subtypes with 

distinct molecular features and different potential therapeutic targets [2, 44] Barras et al. have 

recently described in a series of 218 BRAF-CRCs patients, two distinct groups based on their 
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expression profiles regardless of gender, primary tumour location, mismatch repair (MMR) status 

and PI3KCA status [44]. 

The BM1 subtype, representing one-third of patients, is associated with strong activation of 

KRAS/mTOR/AKT/4EBP1 signalling, macrophage infiltration, epithelial–mesenchymal transition 

(EMT) and poor survival. Overall, BM1 shows a strong immune profile characterized by activation 

of pathways such as IL2/STAT3, TNF alfa signalling via NF-KB, IL6/JAK/STAT3 and high score 

apoptosis signatures (for example protein BH3, the only pro-apoptotic BIM protein).  Moreover, 

BM1 presents a higher inflammatory response correlated with the different expression of protein 

like SYK that transmits signals in B and T cells and STAT5, whose expression correlates with 

immune activation [2, 44]. 

The BM2 subtype, representing the remaining two-thirds of BRAF-mCRC patients, displays 

deregulation of the cell cycle with high levels of cyclin-dependent kinase (CDK)1 and low cyclin D1. 

This group is associated with an improved prognosis and MSI. Moreover, the mTORC1 signature 

(complex activation can lead to 4EBP1 and S6K pathway activation) is mostly detected in BM2, 

which confirms a major involvement in the metabolic process [2, 44]. 

 

4.2 Frequency and spectrum of BRAF mutations 

Little is known about non-V600E BRAF mutations and their biological and clinical impact. These 

mutations identify a rare and unexplored molecular subtype of mCRC with clinical and pathological 

features very different from BRAF V600E CRC [21]. 

A study of almost 10,000 mCRCs sequenced with MSK-IMPACT showed that non-V600E BRAF 

mutations occurred in 2.2% of cases, the vast majority being found in MSS cancers. Interestingly, 

these non-V600 mutant cancers are more frequently in younger male patients, are low-grade  left-

sided tumors. Additionally, non-V600 mutant cancers were associated with more favourable 

overall survival rates compared to both BRAF V600 mutant and wild-type cancers [5, 45]. 

Recently, mutations in 594 or 596 codons have been found in <1% of mCRC.  Cremolini et al. 

showed that patients with CRCs mutated in these two codons (n = 10) exhibited better overall 

survival (OS) than patients with BRAF V600E CRC (n = 77) (mOS 62.0 vs 12.6 months; HR= 0.36; 

95% CI, p= 0.002) and even better than those of BRAF wild- type tumors. Moreover, compared to 

V600E, the 594 or 596 mutations were more frequently detected in the rectum, showing a non-

mucinous histology, no peritoneal dissemination and were not associated with MSI [46]. 
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Similarly, Jones et al. [47] confirmed these results on a larger cohort of 1014 patients with mCRC 

where non-V600E variants were observed in 29 of 137 (21.2%) with mainly BRAF codon 594 

mutations. These data have been confirmed by more recent studies [5, 48].  

Three classes of BRAF mutations have been described according to their functional effect and are 

grouped in activating RAS-independent signaling as monomers (class 1–V600E) or as dimers (class 

2–codons 597/601) and RAS-dependent with impaired kinase activity (class 3–codons 594/596) 

[45, 50]. 

From a therapeutical point of view, BRAF inhibitors, such as vemurafenib and dabrafenib, 

effectively inhibit only mutant monomers but not dimers, because their binding to one site in the 

dimer significantly reduces their affinity for the second site [50]. So, tumors with non-BRAFV600E 

mutations are insensitive to these drugs as well as the increased expression of BRAF V600E dimers 

causes acquired resistance [50]. Next-generation BRAF inhibitor compounds are aimed at 

overcoming the problems associated with dimerization and in preclinical models have been shown 

to bind to class 1 monomers, dimers in class 2 mutants, as well as all RAF isoforms. In contrast to 

classes 1 and 2, class 3 BRAF mutants concurrently express high levels of phosphorylated EGFR 

which made them susceptible to EGFR antibody treatment [45]. 

The class 1 BRAF V600E mutation and also class 2 mutations allow for constitutive activation of the 

pathway, therefore a concurrent KRAS mutation is redundant. Indeed they are mutually exclusive 

in a single cancer. Interestingly, the V600E mutation conferred more elevated levels of 

phosphorylated MEK compared to KRAS mutations, which suggests the potency of this mutation in 

upregulation of the MAPK pathway. In contrast, class 3 BRAF mutations are dependent on 

activated KRAS and can coexist and even synergize with KRAS mutation [45]. 

As regards the clinical behaviour and outcome several trials demonstrated that class 3 was 

associated with better OS than classes 1 and 2 [2]. 

Schirripa et al. demonstrated a correlation between this classification and the clinical behavior of 

distinct subtypes. Indeed, class 3 subtypes were more frequently left-sided, node-negative, with 

no peritoneal metastasis compared to class 1, whereas class 2 was similar to class 1. About overall 

survival, the mOS was 21, 23.4, 44.5 and 42.2 months for BRAF patients with class mutations 1, 2, 

3 and BRAF-WT (p < 0.0001), respectively [2, 50]. 

These data confirmed the findings reported by Jones et al: they showed important differences in 

terms of prognosis between BRAF V600 and non-V600 CRCs (> 50% class 3), with a substantially 

longer mOS of 60.7 months in BRAF non-V600E-mutated patients compared to 11.4 months in 
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BRAF V600E-mutated, but also compared to the 43.0 months of BRAF-WT population, emphasizing 

the less aggressive behavior of the BRAF non-V600E-mutated CRCs [2, 5]. 

In conclusion, although relatively rare, the presence of non-V600E mutations in colorectal cancer 

has important implications for clinical management with the choice of therapy and indicates that 

more gene-wide mutation screening regimes are warranted. 

 

4.3 MSI/BRAF-CRC and MSS/BRAF: two different sites of the same coin? 

BRAF p.V600E mutation has been found in ~ 60% of CRC cases with microsatellite instability (MSI) 

and in 5% - 10% of microsatellite stable (MSS) CRC [6, 7]. 

MSI/BRAF-CRC represents the most well-characterized subgroup associated with specific 

clinicopathological and molecular features [45]. The sporadic MSI tumor phenotype is mainly 

caused by biallelic hypermethylation of the MLH1 promoter, resulting in silencing of the gene’s 

expression. Because the BRAF p.V600E mutation has been demonstrated to cause the epigenetic 

silencing of the MLH1 promoter, this mutation and/or MLH1 methylation analysis have an 

established clinical utility to recognize sporadic CRC, excluding Lynch tumors [8, 51]. From a 

clinico-pathological point of view, MSI in CRC has been associated with proximal location, poor 

differentiation, mucinous or signet ring cell differentiation and high degree of tumor-infiltrating 

lymphocites (TILs) as immune response to the high rate of truncated proteins formed as a result of 

multiple frameshift mutations induced by inactivated MMR [3, 45]. 

MSI is commonly observed among stage II (20%) and III (12%) whereas is rare in stage IV CRC (4%) 

[9]. While in early stages MSI is positive prognostic factor, in metastatic setting the prognostic role 

of MSI remains unclear. At present, numerous evidences suggest that the prognostic benefit 

conferred by MSI, linked to an activated immune profile, is lost in the late-stages [10, 11]. 

Moreover, it has been hypothesized that detrimental prognosis seen in late-stage MSI cancers is 

driven by the presence of the BRAF mutation [45]. In this subgroup, there is a positive correlation 

among BRAF mutation, MSI and the presence of CpG island methylator (CIMP) phenotype [42]. 

The remaining BRAF-CRC exhibiting no MLH1 methylation are microsatellite stable (MSS) [45]. 

Compared to MSI/BRAF tumors, MSS/BRAF subset represents a distinct entity that shares clinical 

and molecular features with both MSI/BRAF CRCs of the serrated pathway and BRAF wild-type 

CRCs of the conventional pathway [15, 16, 17, 45]. 

Like MSI/BRAF tumors, MSS/BRAF-CRCs frequently occur in the proximal colon and are often 

mucinous and poorly differentiated. However, they do show more adverse morphological features 
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associated with aggressive phenotype such as frequent tumour budding, lack of TILs, frequent 

lymphatic, perineural, and venous invasion and increased lymph node metastases, compared to 

BRAF mutant/MSI and BRAF wildtype cancers. Finally, MSS/BRAF-CRCs are associated with worse 

outcome than the other two subsets of CRCs [15, 16, 17, 45] 

In CRC, immunohistochemical markers such as CDX2, CK20, and CK7 are frequently used to 

ascertain the colorectal origin of metastases.  As MSS/BRAF-CRCs frequently metastasize, the 

expression of these markers is important for an accurate diagnosis of the primary tumour site. 

Reduced levels of CDX2 staining, which were correlated with epigenetic silencing in MSI and CIMP 

tumors [45, 52, 53] were also found in MSS/BRAF CRCs. CK20 expression is commonly found in 

both MSS/BRAF and in BRAF-wt tumors, but is lost in MSI/BRAF cancers [52, 53]. CK7 is minimally 

present in CRC but more frequently upregulated in MSS/BRAF group compared to the other cancer 

subtypes. Interestingly, CK7 has been found in tissue areas of tumour budding and is a 

morphological feature commonly associated with tumor aggressiveness [45]. 

MSS/BRAF-CRCs have multiple genetic aberrations that are representative of typical changes 

associated with both serrated and conventional pathways [45]. As all BRAF CRC, also this subset is 

characterized gene hypermethylation (CIMP), although this epigenetic feature is more frequently 

observed in MSI/BRAF-CRCs than in MSS/BRAF-CRCs (70–80% versus 60% of cases, respectively) 

[15, 17, 45]. TP53 mutation, typically associated with advanced stage, has been correlated with 

conventional pathway cancers and found uncommon in MSI cancers. MSS/BRAF-CRCs of the 

serrated pathway have been found to have a comparably high rate of TP53 mutation as observed 

in BRAF wt CRCs. This finding provides evidence of a molecular overlap between MSS/BRAF and 

BRAF wt CRCs. [45, 54]. Moreover, MSS/BRAF-CRCs have been found to have a comparably high 

rate of chromosomal instability (CIN) as observed in BRAF wt CRCs [16, 45]. 

 

4.4 BRAF CRCs subtype in the Consensus Molecular Subtype (CMS) classification 

From a comprehensive framework using aggregated gene expression data from multiple datasets, 

Guinney et al. studied almost 2000 colorectal cancers with known BRAF mutational status (about 

10% of all cancers analysed) and identified four consensus molecular subtypes (CMSs) [55]. 

The majority of the BRAF mutant cancers (about 70% of cases) grouped into CMS1, also known as 

“MSI immune” subset, which was enriched with cancers positive for MSI, gene hypermethylation 

and activated immune pathways [55]. From a clinical point of view, CMS1 CRCs are more common 
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in females and in the right colon location, and they are characterized by higher histopathological 

grade [55, 56]. 

In the metastatic setting, considering the strong immunogenicity of these tumors, the use of 

checkpoint inhibitors is a novel therapeutic approach in MSI CRC. Indeed nivolumab (anti PD1), 

pembrolizumab (anti PD1) and the combination of nivolumab and ipilimumab (anti CTLA4) have 

been approved for this subset of patients. A retrospective analysis of the Alliance for Clinical Trials 

in Oncology suggests that patients with CMS1 tumors may have more benefit from bevacizumab 

(anti-VEGF) treatment, when compared to anti-EGFR targeted agents, such as cetuximab [56, 57]. 

The next highest proportion of BRAF mutant cancers (about 17% of BRAF mutant CRCs) fell into 

CMS4 subset, as known as “mesenchymal”. These tumors are mainly MSS cancers, show 

upregulation of genes involved in epithelial-to-mesenchymal transition (EMT) and are associated 

with worse survival rates [45, 55]. In terms of survival, CMS4 metastatic CRCs have the worst 5-

year OS and PFS, when compared to the remaining subtypes.  A recent analysis of the FIRE3 trial 

showed that, in contrast with CMS1, patients with CMS4 CRC possibly benefit more from adding 

cetuximab, instead of bevacizumab to first line treatment with FOLFIRI (5-fluorouracil + irinotecan) 

[56, 58]. Few cases of BRAF CRCs were in CMS3 group and no case was observed in CMS2 subset. 

In Table 1 the main genetic and epigenetic features observed in the four different CMSs are 

reported. 

Table 1. Consensus Molecular Subtype Classification. 

 

Legend: CIMP CpG island methylator phenotype, -H high, -L low, MSI microsatellite instability, MSS 

microsatellite stability, CIN chromosomal instability.  

Colorectal Cancer Subtype – Target therapy of Colorectal cancer subtype; cap.1 Colorectal Cancer Subtype- Current 

Portrait; P.Jordan. Springer. 
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5. Molecular mechanisms 

5.1 The central role of BRAF mutation and CIMP phenotype in the serrated pathway. 

The “serrated neoplastic pathway” describes the progression of serrated polyps to colorectal 

cancer, representing an alternative multistep mechanism of carcinogenesis in addition to the 

conventional adenoma-carcinoma model [42]. 

Approximately, 15 to 30% of all sporadic CRCs arise from neoplastic serrated polyps, including 

sessile serrated adenomas (SSA) and traditional serrated adenomas (TSA), histologically 

characterized by a “serrated” (or saw-toothed) appearance of the epithelial glandular crypts 

within the precursor polyps [42]. In CRCs arising from serrated lesions, BRAF mutation is an early 

event as indicated by its presence in early neoplastic serrated lesions. Indeed it has been found in 

the vast majority of SSA and TSA but almost never (0.4 – 5%) in conventional adenoma [42, 59]. 

At present two main molecular mechanisms have been described in the serrated pathway, namely 

the “sessile” and the “traditional” sequences. The sessile serrated pathway begins in the proximal 

colon with a BRAF activating mutation that alters the MAPK-ERK pathway inducing apoptosis 

arrest, cellular proliferation and up-regulation of p16 and IGFBP7 genes. p16 (CDKN2A gene) and 

IGFBP7 are important tumor suppressor genes. CDKN2A encodes for the p16 protein that 

negatively regulates the p16/cyclin-dependent kinase/retinoblastoma gene pathway involved in 

the cell cycle control, while IGFBP7 is a direct target and mediator of p53-dependent growth 

suppression [42, 59]. Up-regulation of p16 and IGFBP7 genes cause the transformation of the 

normal mucosa into hyperplastic polyps (HP) followed by cell senescence.  HP lesions can stay 

dormant for a long time due to senescence which inhibits the tumorigenic progress, until an 

aberrant methylation of the p16 and IGFBP7 promoters subverts this protective mechanism and 

leads to evolution towards SSA [42, 60 ,61]. In the vast majority of cases, the next step of 

progression toward serrated adenocarcinoma from SSA may be related to MLH1 aberrant 

methylation causing MSI. More rarely, it may occur epigenetic silencing of other targets, rather 

than MLH1, such as MGMT, leading to serrated adenocarcinoma without MMR deficiency [42, 62, 

63]. Compared to SSA and sessile sequences, the traditional serrated (TSA) pathway is less 

characterized and more controversial. TSA lesions exhibit gene hypermethylation at variable 

levels. Sometimes they can be characterized by BRAF or KRAS mutations, but rarely show MLH1 

hypermethylation [42, 62]. A recent study of 200 TSAs found that all lesions retained MLH1 

expression, leading to MSS phenotype. In addition, this study found residual presence of an SSA in 

approximately 30% of TSAs which suggests SSAs without MLH1 methylation could progress via a 
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TSA to MSS/BRAF CRCs [45, 64]. Cancers arising through the traditional serrated pathway are 

predominantly localized in the distal colon and rectum [42]. TSAs can progress toward dysplasia 

via two different molecular pathways [42, 65]. Usually, TSA lesions which harbor KRAS mutations 

evolve toward conventional adenomatous dysplasia, while TSAs, which display BRAF mutations 

progress toward serrated dysplasia. Moreover, both dysplastic lesions can advance toward high 

grade dysplasia due to aberrant gene methylation. Finally, progression toward invasive carcinoma 

is driven by TP53 alterations [42, 65]. Thus, the serrated carcinomas that originate from traditional 

serrated adenomas generally are MSS or MSI-L and those that originate from a sessile serrated 

adenoma are MSI-H [42]. 

 

5.2 CIMP phenotype and clinical implications 

The BRAF mutation is strongly associated with the CIMP phenotype. DNA methylation is one of the 

epigenetic mechanisms that regulate gene expression. It consists of an enzymatic process that 

adds a methyl group (CH3) to the 5-position of cytosine by DNA methyltransferases (DNMT) to 

produce 5-methylcytosine. When a CpG site is methylated within the promoter region of a gene its 

transcription is inhibited, whereas methylation that happens in CpG sites outside of promoter site, 

called gene body methylation, may cause transcriptional activation [66, 67]. It is known that a 

hallmark of the human cancer genome is both the hypermethylation of specific genes involved in 

the control of cell growth that are transcriptionally silenced, and global DNA hypomethylation. 

CIMP represents a distinct phenotype in CRC, and can be graded as low (CIMP-L), high (CIMP-H) or 

negative (CIMP-0), depending on the degree of simultaneous hypermethylation of different 

promoter regions of tumor suppressor genes [68, 69]. Each single group is characterized by 

specific clinico- pathological and molecular features (Table 2) [42]. 

 

Table 2. Characteristics of CpG islad methylator phenotype in CRC 

 

 De Palma. The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers; 2019. 
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CIMP-H, which is preferentially localized in the proximal colon, occurs more frequently in females 

and in older age, and shows the poorest prognosis compared to CIMP-L. At the molecular level, 

CIMP-H is often associated with BRAF mutation, MSI  and inactivation of WNT/β-catenin pathway, 

Rarely these tumors exhibit TP53 mutations. In comparison, CIMP-L is associated with KRAS 

mutations while CIMP-0 is characterized by frequent TP53 mutations [42, 70, 71]. 

CIMP classification has been revised many times during the last two decades and many gen panels 

have been proposed to recognize CIMP-H, CIMP-L and CIMP-0 groups. Currently, there are two 

main gene panels frequently used to define CIMP. The first panel was described by Toyota and 

includes these five genes: p16, hMLH1, MINT1, MINT2, and MINT31. The second panel has been 

described by Weisenberger and comprises these five genes: CACNA1G, IGF2, NEUROG1, RUNX3, 

and SOCS1 [42, 72, 73]. 

FANG et al have identified a specific pathway that mediates CIMP in BRAF-CRCs: BRAF V600E 

mutation stimulates ERK activity and subsequent phosphorylation of MAFG, which recruits a 

corepressor complex, including BACH1, CHD8 and DNMT3B, that binds to MLH1 promoter causing 

hypermethylation and silencing of the gene transcription.  This mechanism explains why MLH1 

and other tumor suppressor genes are repressed in CRCs BRAFV600E mutant, but not in normal 

cells. This study has provided for the first time that BRAF V600E mutation has a direct causal role 

to determine gene hypermethylation [74]. 

From a clinical point of view, CIMP tumors are heterogeneous. CIMP-L CRCs are associated with 

male gender, while CIMP-H tumors show a female preponderance and tend to occur at a later age 

and are associated with cigarette smoking. The prognostic value of CIMP remains controversial 

especially for metastatic CRCs, perhaps because of their high molecular heterogeneity. In fact, 

although CIMP is mostly reported as a negative prognostic factor in CRC patients, several studies 

demonstrated that its prognostic value can be influenced by BRAF/KRAS and MSI status. Among 

them, CIMP-H, MSS, BRAF mutated tumors show the worst prognosis of all CRCs. The role of CIMP 

in tumor response to therapy is also controversial. Nevertheless, CIMP-H stage III CRC patients can 

benefit from adjuvant irinotecan plus 5-fluorouracil chemotherapy [42, 75]. 
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6. Clinical impact of BRAF mutation in CRC 

6.1 Prognostic role 

Several clinical studies have been conducted aiming at defining the role of BRAF mutations as a 

potential prognostic biomarker for both localized and metastatic CRC patients. Current available 

data derive mainly from patients presenting BRAF V600E mutations, being the most common 

variant [2]. 

In metastatic setting all the published series recognised that BRAF V600E mutation is a strong 

negative prognostic factor, associated with a poor life expectancy of less 12 months [2, 76.] 

In the pooled analysis of the phase III clinical trials CAIRO, CAIRO-2, COIN, and FOCUS, by 

Venderbosh et al, BRAF V600E mutation had a negative impact on both PFS and OS (mPFS 6.2 vs 

7.7 months, HR = 1.34, 95% CI, P<0.001; mOS = 11.4 vs. 17.2 months, HR = 1.91, 95% CI, P<0.001). 

These patients showed a rapidly progressive multisite disease with a lower chance to receive a 

second or subsequent line of treatment, compared with BRAF-wild-type CRC [41, 77]. 

In the prognostic analysis of the MRC FOCUS trial, by Richman et al, BRAF mutation alone had a 

relevant impact on OS (HR 1.82; 95% CI; p < 0.0001) but there was no evidence of its effect on PFS 

(HR 1.14; 95%; p = 0.37) [76]. 

Innocenti et al. reported the aggressive behaviour of BRAF V600E tumors with a shorter OS than 

patients with BRAF wt (OS= 13.5 months vs. 30.6 months, respectively; HR, 2.01 [95% CI, p < .001) 

[78].  

The pooled analyses of five randomized trials (FIRE-1, FIRE-3, AIOKRK0207, AIOKRK0604, RO91) by 

Modest et al, analyzing a total of 1239 patients, showed that BRAF mutation was associated with 

inferior PFS (multivariate HR: 2.19, P < 0.001) and OS (multivariate HR: 2.99, P < 0.001) compared 

with patients with non-mutated tumors [79]. 

Based on analyses from three large phase III randomized trials (COIN, FOCUS, PICCOLO), Seligmann 

et al explored the poor outcome of 231 patients (of 2530 total) with BRAF mCRC mutant. The 

study showed that the poor survival of BRAF-mutated patients is driven by accelerated decline 

following progression and a lower probability of receiving further lines of therapy. BRAF mutation 

confers a markedly worse prognosis regardless of associated clinicopathological features. 
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Moreover, compared to BRAF wt, the BRAF V00E mutated population exhibited higher rates of 

peritoneal metastasis (22 versus 14%, p = 0.003) [80]. 

These findings were in line with results from study of Tran et al which, analysing 57 patients BRAF 

mutated CRC, showed a distinct pattern of metastatic spread compared to BRAF wt CRC, namely 

higher rates of peritoneal metastases (46% v 24%, p=0.001), distant lymph node metastases (53% 

v 38%, p=0.008) and lower rates of lung metastases (35% v 49%, p=0.049) and poorer survival 

(10.4 months vs 34.7 months, P < .001).  Moreover, in survival analysis, in contrast to early-stage 

disease, MSI was associated with shorter survival in metastatic CRC, possibly related to its 

association with the BRAF mutation [81]. 

In the AIO KRK0207 trial, BRAF mutation was reported as the strongest unfavourable prognostic 

factor (HR 3.16; 95% CI 2.17–4.60; p < 0.0001) compared to RAS status and primary tumor location 

[82]. 

While the detrimental prognostic impact of the BRAFV600E mutation in metastatic CRC is well 

established, conflicting results have been reported in early-stage CRC [21]. 

Several post hoc analyses of phase 3 trials did not show any significant prognostic impact on 

disease-free survival (DFS) [83, 84, 85].  Moreover, in the updated 10-years survival and outcomes 

of the MOSAIC trial (Multicenter International Study of Oxaliplatin/Fluorouracil/Leucovorin in the 

Adjuvant Treatment of Colon Cancer) the BRAF mutation was not prognostic for OS (p = 0.965) 

[86]. 

However, in the pooled analysis of the NSABP C-07 and C-08 trials, BRAFV600E mutation was 

associated with worse OS. Interestingly, the authors reported HRs of 1.02 (95% CI, P = 0.86), 1.46 

(95% CI, P = 0.0002), and 2.31 (95% CI, P= 0.0001) for DFS, OS, and survival after relapse 

respectively, suggesting that BRAFV600E mutation negatively impacts the prognosis of patients 

with early stage CRC through a major decrease of survival after relapse but without a clear effect 

on DFS [83, 86]. 

Similarly, Farina-Sarasqueta et al. showed that BRAF V600E mutation is an independent negative 

prognostic factor for OS in stage II–III CRCs (HR 0.45, 95% CI) but it does not seem to influence DFS  

These data suggest that patients with BRAF V600E-mutated CRC have a similar probability of 

relapse compared to BRAF-wt but a significantly shorter post-relapse survival [87]. 

These apparent discrepancies on the prognostic relevance of BRAF mutation in CRC early stage, 

may be explained by the interrelation between the BRAF V600E mutation and MMR deficiency as 

shown by retrospective analyses of several studies [21]. 
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Taking into account the MMR status, in the post hoc analysis of the PETACC-3, EORTC 40993, SAKK 

60-00 trials, by Roth, BRAFV600E mutation was significantly associated with worse OS in patients 

bearing MSS (HR 1.78, 95%CI, reference BRAF wild type) [88]. 

Taieb et al, in the PETACC-8 phase III trial, found that the BRAFV600E mutation influenced neither 

DFS nor OS in the overall population of stage III colon cancers, whereas a significant pejorative 

impact was observed specifically in the MSS subgroup on both DFS (HR = 1.74; 95% CI; p = 0.01) 

and OS (HR = 1.84; p = 0.046). Moreover, in the MSI-H subpopulation, the presence of BRAF V600E 

mutation was associated with longer DFS as compared to BRAF-WT patients (DFS: HR 0.23, 95% CI, 

p = 0.04) suggesting that MSI-H is a protective factor against BRAF mutation in early-stage CRC 

[89]. 

From intergroup trial CALGB 89803, by Ogino et al, 75 BRAF-mutated patients in stage III CRC 

experienced significantly worse overall survival (OS; log-rank P = 0.015; multivariate HR = 1.66; 

95% CI) compared with 431 BRAF wild-type patients. Combining BRAF and MSI status, BRAF-

mutated MSS tumor was an unfavourable subtype compared with BRAF wt/MSI tumors, while 

BRAF-mutated MSI tumor and BRAF wild-type MSS tumor were considerate intermediate subtypes 

[90]. 

Howewer, other studies reported no impact of BRAF mutation on MSI-H early-stage CRCs.  Kalady 

et al study analysed 56 CRC patients with BRAF mutation of 475 totals (12%). The survival data 

were analysed for 322 patients with stage I to III disease: CRCs with BRAF mutation had decreased 

OS than those without mutation (p = 0.018), regardless of MSI (HR 1.79, CI 1.05-3.05, p = 0.03) 

[91]. 

In the study by Sinicrope et al, patients in stage III CRC with BRAF V600e mutations were 

associated with worse DFS (HR, 1.37; 95% CI, 1.08-1.70; P <0.009), irrespective of MMR status [92]. 

Other studies including patients with both early and advanced CRC (I – IV stages) have 

demonstrated the negative impact of BRAF V600E mutation on clinical outcome. 

Samowitz et al showed that BRAF V600E mutation in MSS CRC was associated with a significantly 

poorer survival in patients with II-IV stages disease but has no effect on the excellent prognosis of 

MSI tumors (reduced OS, HR= 3.06, 95%CI) [93]. 

Eklof et al, demonstrated that CRCs with BRAF mutation in stage I-IV showed reduced cancer 

specific survival (HR= 2.00, 95% CI) compared to BRAF wt patients. In this study archival CRC tissue 

from two different cohorts from Northern Sweden, NSHDS and CRUMS, were analysed for KRAS, 

BRAF, PIK3CA mutation status and loss of PTEN expression. As it is known that all four genes are 
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involved in EGFR signalling pathway, Sartore-Bianchi suggested a Quadruple index to indicate as 

positive any tumour with at least one mutation in KRAS, BRAF, PIK3CA and/or loss of PTEN protein 

expression.  

The authors found a shorter cancer-specific survival in patients with Quadruple index positive 

tumours in the NSHDS cohort, while this result as not statistically significant in the CRUMS cohort. 

When analysing each gene separately, only BRAF mutations had a significant prognostic value in 

the NSHDS cohort, especially in combination with MSS or CIMP-low. By contrast, only KRAS 

mutations indicated a significantly poorer prognosis in the CRUMS cohort, especially together with 

MSS or CIMP-negative tumours. Finally, PIK3CA and PTEN aberrations did not add any significant 

prognostic information [94].  

Although these results did not support the use of the full Quadruple index they emphasized the 

prognostic value of KRAS and BRAF mutation status, indicating that the establishment of molecular 

subgroups of CRC, based on KRAS and BRAF mutation status, can supply important information, 

not only in prediction of the EGFR-treatment response but also in prediction of patient prognosis 

[94]. 

Within the Nurses’ Health Study and Health Professionals Follow-up Study, Lochhed et al 

investigated survival in 1253 CRC patients, I-IV stages, of which 182 BRAF mutated. Compared with 

MSS/BRAF-wt group, the MSS/BRAF-mutant, MSI-H/BRAF-mutant, and MSI-high/BRAF-wt 

subtypes showed colorectal cancer-specific mortality hazard ratios of 1.60 (95%CI; P = .009), 0.48 

(95% CI; P =0 .02), and 0.25 (95% CI; P < .001), respectively [95]. 

Pai et al analysed 243 patients with CRC of which 20 BRAF mutated. When adjusting for tumor 

stage, survival analysis demonstrated that patients with BRAF-mutated CRC had a significantly 

poor OS and DFS (HR 6.63, 95% CI; and 6.08, 95% CI, respectively) compared with patients with 

KRAS/BRAF-wt CRCs. No significant difference in OS or DFS was identified between patients with 

KRAS-mutated and KRAS/BRAF wt. These results demonstrated that BRAF-mutated proximal colon 

adenocarcinomas with proficient DNA mismatch repair have a dismal prognosis with an aggressive 

clinical course, often display mucinous differentiation, focal signet ring histology, and other 

adverse histologic features such as lymphatic and perineural invasion and high tumor budding 

[96]. 

Finally, in the meta-analyses of Safaee that included 26 CRC studies, BRAF mutation was found to 

increase the risk of mortality (HR= 2.25,95% CI) [97]. 
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Table 3 summarizes the main clinical trials showing BRAF mutation as negative prognostic marker, 

(overall survival, disease free survival or cancer specific survival) especially in MSS tumors. 

 

 

 

 

 

 

 

 

Table 3.  BRAF mutation as prognostic factor in CRC. 

 

A.Thiel and A.Ristimaki. Toward a molecular classification of colorectal cancer: the role of BRAF. Frontiers in 

Oncology; 2013. 

 

6.1.1 Impact of BRAF mutation in post-metastasectomy settings. 

The impact of the BRAF mutation remains negative also in post-metastasectomy settings. 

The first study of surgery for patients with liver metastases secondary to BRAF-mutant tumors 

suggested that the risk of liver metastases is higher in these patients and that OS is poorer after 

liver resection of their metastases [33, 98]. 

Stage impact on OS Reference

IV reduced OS HR: 1.91 and PFS HR: 1.34  (reference BRAF wt) Venderbosh et al 

IV reduced OS HR: 1.82  (reference BRAF wt) Richman et al

IV reduced OS HR: 2.01 (reference BRAF wt) Innocenti et al

IV reduced OS HR: 2.99 and PFS HR: 2.19  (reference BRAF wt) Modest et al

IV worse OS in both 1st-line studies FOCUS HR = 1.55 ; Seligmann

COIN HR = 1.77; in PICCOLO:  PFS HR = 1.06. (reference BRAF wt)

IV reduced OS (10.4 months vs 34.7 months, p < 0.001 Tran et al

IV reduced OS HR 3.16  (reference BRAF wt) Becker et al AIO KRK0207

18 (243) IV reduced PFS HR: 2.39 (reference BRAF wt) Peeters et al

II - III no effect on DFS (HR= 1.0) and OS (HR= 1.2) (reference BRAF wt) French et al

II - III no effect on DFS, HR= 1.07, 95%  CI:0.66–1.73 (reference BRAF wt) Mouradov et al

II-III reduced OS HR: 0.45 and cancer-specific survival HR: 0.47 Farina-Sarasqueta et al

(reference BRAF mut)

II-III reduced OS HR: 1.78  (reference BRAF wt) Roth et al

III reduced OS HR: 1.66  (reference BRAF wt) Ogino et al

I - III reduced OS HR: 1.79  (reference BRAF wt) Kalady et al

II - IV MSS, age tumor site, CIMP adjusted, reduced OS, HR= 3.06 Samowitz et al

I - III reduced OS HR: 1.79  (reference BRAF wt) Kalady et al

I - IV reduced cancer-specific survival, HR: 2.00 (reference BRAF wt) Eklof et al

I - IV higher cancer-specific mortality in MSS HR: 1.60  (reference BRAF wt) Lochhead et al

I - IV MSS, stage adjusted,reduced OS HR: 6.63 and DSF HR: 6.08  (ref.BRAF wt) Pai et al

297 (59)

BRAF mutated

911 (87)

3063 (250) 

711 (56)

843 (100)

74 (664)

231 (2530)

57 (524)

490 (77)

822 (10%)

1307 (103)

506 (75)

475 (56)

196 (35)

1253 (182)

181 (20)

475 (56)
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Schirripa et al. confirmed these data analysing BRAF and KRAS mutation status in 309 CRCs of 

patients undergoing liver resection, demonstrating that cases with BRAF-mutant tumors (n = 12) 

had a shorter recurrence-free survival (5.7 months) compared with RAS-mutant patients (11.0 

months; n = 160) and with RAS-wild-type cases (14.4 months; n = 137) [33, 99]. 

In the pooled analyses of clinical studies by GONO, Cremolini et al. reported that after response to 

FOLFOXIRI + bevacizumab, resected patients shared the same prognosis, with a median disease-

free survival of 11–12 months irrespective of BRAF status. However, this retrospective study 

included only seven patients with BRAF-mutant tumors [100]. 

In the largest series published by the Mayo Clinic of 21 patients who underwent resection of liver 

metastases from BRAF-mutated CRC, the median PFS and median OS were longer than in the non 

metastasectomy cohort (13.6 and 29.1 months vs. 6.2 and 22.7, respectively), with one patient 

who remained relapse-free for more than two years. In multivariate analysis, metastasectomy 

remained significant for improved survival outcomes (HR 0.52; 95% CI; p = 0.02) [2, 101]. 

Recent cohorts have given slightly discordant results. In a French cohort, 66 patients underwent 

resection for BRAF-mutant liver metastases of mCRC. A case-matched comparison was made with 

183 patients who underwent resection for BRAF-wild-type liver metastases of mCRC during the 

same period. The 1- and 3-year DFS rates were respectively 46% and 19% in BRAF-mutant and 55% 

and 28% in BRAF-wt patients (p = 0.430). However, the 1- and 3-year OS rates after surgery were 

93% and 54% in BRAF-mutant and 96% and 83% in BRAF-wt patients (p = 0.004). The median 

survival after disease progression was shorter in patients with BRAF-mutant tumors [33, 102]. 

In a large US cohort including 1497 patients who had complete resection, 35 (2%) patients had 

BRAF-mutant tumors (71% had BRAF V600E mutation). Compared with patients with BRAF-wild-

type tumors, patients with BRAF-mutant tumors were older and appeared to have more advanced 

disease in the liver (more major hepatectomies, for instance) but less extrahepatic disease. 

Median OS was 81 months for patients with BRAF-wild-type tumors and 40 months for patients 

with BRAF-mutant tumors (p < 0.001). Median recurrence-free survival was 22 and 10 months for 

patients with BRAF-wildtype and BRAF-mutant tumors, respectively (p < 0.001). However, long-

term survival was possible; it was associated with node-negative primary tumors, CEA ⩽ 200 μg/l, 

and a clinical risk score <4 [33, 103]. A multivariate analysis of a smaller cohort of 849 patients, 

including 43 (5%) patients with BRAF-mutant tumors, revealed that the presence of a BRAF-V600E 

mutation but not a non-BRAFV600E mutation was associated with significantly poorer prognosis 

OS [33, 104]. 
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In conclusion, these data show that results of liver surgery are poorer in patients with BRAF-V600E 

tumors, although this is still the only hope of cure for these patients. Considering the 

aggressiveness associated to BRAF mutation, it can be stated that surgery must be done as soon as 

possible in the treatment of these patients [33]. 

 

6.2  Predictive role 

6.2.1 Efficacy of response to chemotherapy and to anti-angiogenic agents 

Current standard first-line chemotherapy for metastatic CRC patients involves the combination of 

a fluoropyrimidine and either oxaliplatin or irinotecan [105]. 

Regarding standard chemotherapy treatments, there is no association between the presence of 

BRAF mutations and the response to chemotherapy with oxaliplatin compared to irinotecan, as 

demonstrated by Richman in the MRC FOCUS trial (The Medical Research Council Fluorouracil, 

Oxaliplatin and Irinotecan: Use and Sequencing). This study compared treatment sequences with 

first-line fluorouracil (FU), FU plus irinotecan versus FU plus oxaliplatin in mCRC, demonstrating 

that mutation in KRAS or BRAF was an unfavourable prognostic factor for OS (HR= 1.40; 95% CI; p 

<0.0001) and had minimal impact on PFS (HR, 1.16; 95% CI; p = 0.05) but the mutation status had 

no impact on the choice of using irinotecan versus oxaliplatin on PFS or OS. Therefore, the KRAS 

and BRAF mutation was associated with poor prognosis but is not a predictive biomarker for either 

drug [76]. 

Similar results were found by trial of Morris et al, in which standard chemotherapy has been 

evaluated in a retrospective cohort of 127 BRAF-mt mCRC patients, and has shown very poor 

outcomes in terms of PFS for the first three lines of chemotherapy (median PFS of 6.3, 2.5 and 2.6 

months, respectively). The choice of systemic therapy used (oxaliplatin-based or irinotecan-based 

regimen) did not significantly affect PFS in first-line treatment (6.4 versus 5.4 months, P = 0.99) 

[106]. 

About also adjuvant setting, from a chemotherapeutic point of view, there are not differences 

between regimens applied for BRAF mutated and wild type tumors. In fact, the MOSAIC trial, 

previously reported, showed a slight increase of OS with the FOLFOX4 (standard regimen 

containing oxaliplatin) compared with LV5FU2 (weakened regimen without oxaliplatin) in the BRAF 

V600E population. This result confirms that, in daily clinical practice, determination of the 

BRAFV600E mutation in stage II–III CRC does not impact the therapeutic decision; thus the 
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standard of care for stage III CRC remains 6 months of fluoropyrimidine-based chemotherapy 

combined with oxaliplatin, regardless of the BRAF mutational status [86]. 

Since approximately 60% of patients with metastatic CRC BRAF mutated will not receive 

subsequent chemotherapy and their prognosis remains very poor, they should really be treated 

more aggressively [107]. 

Intensified first-line strategies of chemotherapy, including triple combination of oxaliplatin, 

irinotecan and 5-fluorouracil (FOLFOXIRI), combination of doublet with the EGFR inhibitors 

(cetuximab, panitumumab) or triplet with anti VEGFs (bevacizumab, aflibercept) have been 

evaluated in several studies [2, 21, 105]. 

Based on results from two phase 2 trials [108, 109], showing manageable toxicity and high 

antitumor activity of this regimen, FOLFOXIRI has been compared to FOLFIRI in a phase 3 

randomized trial as first-line treatment for mCRC regardless of their mutational status.  

The Gruppo Oncologico Nord Ovest, by Falcone et al., reported improved outcomes with 

FOLFOXIRI in terms of response rates, PFS, and OS (median OS = 22.6 versus 16.7 months; HR = 

0.70, 95% CI 0.50–0.96, P = 0.032) [110]. 

As regards association strategies with anti-VEGF agents, the FOLFOXIRI regimen has been 

evaluated in combination with bevacizumab in phase 2 trials, showing promising antitumor 

activity. In 2010, an exploratory post hoc analysis reported by Masi et al. found that  the subgroup 

of patients with BRAFV600E tumors (n = 10) exhibited tremendous outcomes (median PFS = 12.8 

months and median OS = 23.8 months). Since data on OS and PFS were very similar between 

patients with BRAF mutation and those with BRAF wt, the author suggests that this aggressive 

treatment could also lead to the loss of the negative prognostic impact of BRAF mutation [111]. 

In order to prospectively validate this therapeutic strategy, Loupakis et al. designed a phase 2 trial 

conceived to explore FOLFOXIRI plus bevacizumab specifically in BRAF-mCRC patients (n=15) 

showing interesting results (median OS 24.1 months, median PFS 9.2 months). In the pooled 

population of patients with BRAFV600E-mutated tumors from both phase 2 trials (n = 25), with a 

median follow-up of 40.4 months, the progression-free rate at 6 months was 84%, median PFS and 

OS were 11.8 and 24.1 months, respectively [112]. 

The TRIBE phase 3 trial randomized patients with metastatic CRC between FOLFIRI plus 

bevacizumab and FOLFOXIRI plus bevacizumab, with a preliminary analysis of the BRAFV600E 

mutation in the study protocol. In the overall population, FOLFOXIRI plus bevacizumab was 

statistically superior to FOLFIRI plus bevacizumab on PFS and OS. Interestingly, similar proportions 
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of patients (76%) in both groups received second-line chemotherapy. The BRAFV600E CRC 

subgroup (28 patients were identified of which 16 for FOLFOXIRI plus bevacizumab and 12 for 

FOLFIRI plus bevacizumab) experimented better PFS (7.5 versus 5.5 months, HR = 0.57, 95% CI) 

and OS (19.0 versus 10.7 months, HR = 0.54, 95% CI) with the quadruple combination. However, 

these results did not reach statistical significance, probably due to a lack of power considering the 

small sample size [113, 114].  

These data led to the recommendation of FOLFOXIRI + bevacizumab as valid option for 

chemotherapy-naive patients with BRAF-mCRC, by the most recent guidelines [115].  

However, it is important to emphasise that this treatment considered "standard of care" is based 

on the observation of a limited number of patients in three studies and even if the level of 

evidence remains weak, this strategy is well accepted because it offers an aggressive upfront 

treatment, including all major chemotherapeutic agents for mCRC and a targeted therapy, with a 

manageable toxicity profile, to treat patients with a particularly aggressive disease who are rarely 

able to receive a second-line treatment [105]. 

Recently, the TRIBE-2 study did not confirmed the advantage of FOLFOXIRI plus bevacizumab 

versus the doublet regimens plus bevacizumab in the BRAFV600E mutant mCRC patients [172]. 

This has been recently confirmed by a meta-analysis from the same group, demonstrating no 

benefit from FOLFOXIRI plus bevacizumab if compared to standard doublet cytotoxic combinations 

[173].  These data relight the debate on current clinical guidelines recommendation, making 

FOLFOXIRI plus bevacizumab no longer the treatment of choice in first line for BRAFV600E mutant 

mCRC patients [173, 178]. 

Although the rationale for the use of anti-VEGF is based on the fact that the MAPK signalling 

cascade can increase VEGF expression and BRAF mutation might also modulate tumour response 

to anti-angiogenic treatments, the impact of antiangiogenic drugs in BRAF-mt patients has not yet 

been clinically demonstrated [105]. 

In fact, the results of the previously reported studies demonstrate that the addition of oxaliplatin 

to FOLFIRI (FOLFIRINOX) plus bevacizumab seem to be beneficial over FOLFIRI plus bevacizumab. 

However, the added value of the bevacizumab has not been shown [105, 114]. 

Even if no randomised data evaluating the influence of adding bevacizumab to standard 

chemotherapy (i.e., FOLFIRI or FOLFOX) are available for patients with BRAF-mCRC, in post-hoc 

analyses of the AVF2107g and AGITG MAX trials the addition of bevacizumab to first-line IFL [bolus 
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irinotecan, fluorouracil and leucovorin (folinic acid)] or capecitabine has shown a numerical 

improvement in survival outcomes in patients with BRAF-mt mCRC [105, 116, 117]. 

Analogously, in the VELOUR trial the impact of the addition of aflibercept (a fusion protein that 

binds circulating VEGF-A, VEGF-B and placental growth factor) to FOLFIRI in second line treatment 

(progressed after oxaliplatin-based first-line chemotherapy) of mCRC was tested. In the survival 

analysis stratified by prognostic biomarkers, the BRAF-mutated subgroup had a relevant 

improvement in OS compared to the BRAF-wt population, even if data did not reach statistical 

significance (HR 0.49; 95%CI; p = 0.08) [118]. Similar results have been reported with another anti-

angiogenic agent that targets VEGFR2, ramucirumab, in the RAISE trial using FOLFIRI in second-line 

treatment [119]. 

It is possible to conclude that although these post-hoc analyses of randomised trials suggest that 

anti-angiogenic agents might be of interest in BRAF-mCRC patients, prospective trials comparing 

an aggressive chemotherapy alone or in combination with an anti-angiogenic therapy are still 

awaited. 

 

6.2.2 Efficacy of response to anti EGFR agents 

Regarding to response to anti-EGFR agents, the predictive role of BRAFV600E mutation is still 

debated and controversial data have been published [2]. 

In first line treatment, the pooled analysis of CRYSTAL and OPUS randomised studies evaluating 

the addition of cetuximab to FOLFIRI or FOLFOX chemotherapy in KRAS-wt mCRC patients, has 

shown an improvement of ORR, PFS and OS in the subgroup of BRAF-mt mCRC patients, 

suggesting that the BRAF mutation does not confer resistance to anti-EGFR agents in this setting 

but represents only a marker of poor prognosis [120, 121]. 

Similarly, the addition of panitumumab to FOLFOX first-line chemotherapy was associated with a 

numerical improvement of efficacy outcomes in the KRAS-wt/BRAF mutated subgroup [122]. 

Recently, Geissler et al. presented results from the VOLFI trial (AIO-KRK0109), in which FOLFOXIRI 

was compared to FOLFOXIRI + anti-EGFR (panitumumab) in first-line setting. The combination with 

panitumumab resulted in a significantly higher ORR compared to FOLFOXIRI alone (ORR 85.7% vs. 

60.6% p = 0.0096) while there was no difference in PFS between both arms. The best results were 

obtained in symptomatic patients and BRAF-mutated mCRC; an outstanding ORR of 71% in BRAF-

mutated CRC vs 22% in BRAF-WT was observed, even though statistical significance was not 

reached, probably due to the small number of patients (n=16) [123]. 
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Although anti-EGFR agents do not confer any benefit to pre-treated BRAF-mt mCRC patients, these 

results suggest that they might be of value in the first-line treatment of such patients, especially if 

the goal of the treatment is tumour shrinkage. 

In second-line treatment, two studies have been evaluated the addition of anti-EGFR to FOLFIRI 

reporting the same results, with no clinical benefit to BRAF-mt mCRC patients. The PICCOLO trial 

even reported a deleterious effect, in terms of OS (HR, 1.84; 95% CI, p= 0.029) when adding 

panitumumab to irinotecan in patients with BRAF mutated tumours [124, 125]. 

Two meta-analyses have been performed on the results from phase 2 and 3 clinical trials using 

cetuximab or panitumumab alone or combined with chemotherapy in first-, second- or beyond-

second-line treatment. In the first meta-analyses by Pietrantonio et al, the addition of anti-EGFR 

agents to standard treatment (chemotherapy or best supportive care) in the RAS wild-

type/BRAFV600E subgroup did not significantly improve PFS (HR = 0.88; 95%CI; P = 0.33) and OS 

(HR = 0.91; 95% CI; P = 0.63), supporting the need for determination of the BRAF status before 

initiation of anti-EGFR agents [126].  Conversely, Rowland et al. performed another meta-analysis 

showing that there may be insufficient evidence to justify the exclusion of anti-EGFR therapies for 

patients with RAS wild-type/BRAFV600E-mutated mCRC. In this meta-analysis, HRs for PFS and OS 

which benefit with anti-EGFR therapies were 0.86 and 0.97 for RAS wt/BRAFV600E tumors and 

0.81 and 0.62 for RAS wt/BRAF wt ones. Tests of interaction of PFS and OS HRs between the two 

populations were not statistically significant (P = 0.43 and P = 0.07, respectively), highlighting the 

fact that the observed differences of survival benefit with anti-EGFR agents according to BRAF 

mutational status may be due to chance alone. Thus, authors concluded that the BRAF mutation 

could not actually be considered as a negative predictive biomarker for anti- EGFR monoclonal 

antibodies in mCRC and that further data are required to clarify this observation [127]. 

However, both meta-analyses have many limitations and overall cannot definitively guide the 

clinical practice. First, not all available studies were included in these two meta-analyses; second, 

several lines of treatment with different populations were included; third, negative trials for anti-

EGFR agents with irrelevant backbone chemotherapeutic regimens (such as capecitabine plus 

oxaliplatin) were comprised. Moreover, the control arms mixed various chemotherapy regimens 

or even best supportive care. Finally, both panitumumab and cetuximab trials were considered 

although they might give different results in BRAF patients. All these points are likely to present 

significant confounding factors when evaluating BRAF- mCRC patients [105]. 



33 
 

Finally, the FIRE-3 trial compared FOLFIRI plus bevacizumab with FOLFIRI plus cetuximab in the 

first-line treatment of RAS wt mCRC patients. For the 48 (n = 14%) BRAF patients identified in this 

trial, the ORR was higher in the cetuximab arm than in the bevacizumab arm (52% versus 40%), 

while no statistical differences were observed for PFS (HR, 0.84, p = 0.56) and OS (HR, 0.79, p = 

0.45) suggesting that EGFR and VEGF inhibitors have equivalent therapeutic efficacy in BRAF-mCRC 

patients, except for response rate that favours anti-EGFRs [128]. 

 

7. Targeting BRAF and resistance mechanisms to BRAF inhibitors 

7.1 Why are single BRAF inhibitors not effective in BRAF-CRC? 

The monotherapy with BRAF inhibitors (iBRAF), such as vemurafenib, dabrafenib, encorafenib, 

demonstrated an impressive antitumor activity in advanced melanoma with objective response 

rates around 50% and their clinical efficacy has been replicated in other selected cancers such as 

NSCLC, thyroid cancer, hairy cell leukemia [2]. 

Compared to the remarkable success gained in melanoma, iBRAF alone show insufficient clinical 

activity in mCRC with fewer than 10% of responders and PFS of 2.1 – 4.3 months [129, 130, 131]. 

Kopetz et al. led a phase II study evaluating vemurafenib in patients with previously treated BRAF-

mCRC. Among the 21 patients enrolled, only one reached a partial response, while seven reported 

to have stable disease, with mOS and mPFS of 7.7 months and 2.1 months, respectively [129]. In a 

phase 1 trial, no objective response was observed in 18 patients treated with encorafenib, another 

highly selective BRAFV600E inhibitor [130]. 

Pre-clinical studies investigated the mechanism that explains the lower response to BRAF 

inhibitors of BRAF-CRC subtype, demonstrating that molecular landscape of the colon cancer is 

more complex and heterogeneous as compared to melanoma [2]. 

In CRC BRAF mutant, MAPK activity is driven by mutated BRAF and the RTK-mediated activation of 

RAS is restricted by ERK negative feedback signals. The treatment with BRAF inhibitors cause an 

initial decrease of MAPK signalling leading to a loss of expression of ERK negative feedback and an 

increase of RTK-mediated RAS activation with the recruitment of other RAF kinases, which 

produce RAF dimers (such as CRAF) restoring MAPK pathways signalling.  Significantly, RTK 

signalling is present at a higher level in CRC than in melanoma, and one of them (EGFR) is mainly 

responsible for MAPK reactivation in BRAF-mutated mCRC. Thus, although iBRAF induces transient 
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impairment of MAPK pathway signalling, a rapid activation occurs through phosphorylation and 

activation of ERK by the EGFR-mediated activation of RAS and CRAF [2].  

This phenomenon, in which iBRAF leads to reactivation of MAPK activity, is known as “paradoxical 

activation of the MAPK pathway” and represents the main primary resistance mechanism that 

explains the persistence of tumor proliferation despite iBRAF and consequently their lower 

efficacy in mCRC [2]. 

The MAPK pathway reactivation can also occur through several mechanisms such as KRAS 

mutation or amplification, BRAF amplification, or MEK mutation, which underlie the development 

of acquired resistance to RAF inhibitor combinations. Based on these mechanisms, in order to 

maintain the MAPK pathway impairment, combinations of targeted therapy, such as anti-EGFR, 

BRAF and MEK and/or chemotherapy have been explored by many clinical trials with the aim of 

overcoming resistances [2]. 

 

7.2 Strategies to overcome the resistance mechanisms to BRAF inhibitors and rationale 

for new treatment approaches 

As reported above, inhibition of BRAF alone has limited activity in mCRC. For this purpose, in a 

phase II “basket” trial, the combination of vemurafenib and cetuximab was evaluated in 27 

patients with BRAF V600E-mCRC. One patient had a partial response and 69% had stable disease 

with mOS and mPFS of 7.1 and 3.7 months, respectively [2, 131]. 

In another trial, the combination of vemurafenib and panitumumab was investigated in 15 pre-

treated patients with BRAF V600E-mCRC. Two patients had a partial response and six had stable 

disease [2, 132]. 

Similarly, the combinations such as encorafenib and cetuximab, dabrafenib and panitumumab, 

have been evaluated in other trials with response rates ranging from 4% to 23% [2, 133, 134, 135]. 

Preclinical studies have suggested that combined inhibition of BRAF and MEK is more effective 

than BRAF inhibitors combined with anti- EGFR agents. This finding was validated clinically in 

subsequent phase 1 and phase 2 trials that combined BRAF inhibitors with both anti-EGFR 

monoclonal antibodies and MEK inhibitors [2]. 

Given the revolutionary impact of the combination of BRAF and MEK inhibitors in the clinical 

management of melanoma, Corcoran et al. demonstrated that targeting the MAPK pathway may 
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be an effective therapeutic strategy for BRAFV600E-CRC. Among 43 patients treated with 

dabrafenib and trametinib, 56% of cases showed stable disease and an ORR of 12% [2, 136]. 

Triplet drug combinations have also been evaluated to provide the most effective inhibition of the 

MAPK pathway. 

In a trial by Corcoran et al., three cohorts were treated with dabrafenib plus panitumumab, 

dabrafenib plus trametinib plus panitumumab, and trametinib plus panitumumab, respectively. 

The authors showed an ORR for triplet therapy of 21%, better than doublet therapy, but with an 

increase of adverse events, in terms of diarrhea and skin toxicity (rash and dermatitis acneiform); 

mPFS was 4.1 months, while mOS reported was 9.1 months [2, 137]. 

The BEACON trial by Loupakis et al was designed to assess a combination of anti BRAF, MEK and 

EGFR (encorafenib plus binimetinib plus cetuximab, respectively). In this phase 3 trial, 665 patients 

with pre-treated BRAFV600E-mCRC were randomized to receive encorafenib, binimetinib, and 

cetuximab (triplet-therapy group) vs encorafenib and cetuximab (doublet-therapy group) vs a 

control group of investigator’s choice of either cetuximab and irinotecan or cetuximab and 

FOLFIRI. The median OS was 9.0 months in the triplet-therapy group vs 8.4 months in the (HR for 

death vs. control, 0.60; 95% CI; P<0.001) and 5.4 months in the control group (HR for death, 0.52; 

95%; P<0.001). The response rate was 26% in the triplet-therapy group, 20% doublet-therapy 

group and 2% in the control group (P<0.001). Median PFS was 4.3 months and 4.2 months for 

triplet and doublet arms, respectively. The authors concluded that a combination of encorafenib, 

cetuximab, and binimetinib resulted in significantly longer overall survival and a higher response 

rate than standard therapy in patients with mCRC with the BRAF V600E mutation [27]. 

Interestingly, this trial is the largest cohort ever studied and the first phase III trial to demonstrate 

a survival and response advantage in the setting of pre-treated BRAF mutated CRC. 

An ongoing study (ANCHOR-CRC) is investigating the effects of the same triplet therapy as a first-

line treatment for patients with BRAF-mutated CRC [2, 138]. 

Other combinations were tested, including chemotherapy. Based on preclinical data showing a 

great antitumor activity by using doublet or triplet therapy, a phase 1 trial, combining 

vemurafenib, cetuximab and irinotecan was developed. A total of 18 BRAF-mutated CRC patients 

were included, with an ORR of 35% and mPFS of 7.7 months. The following randomized phase II 

trial (SWOG 1406) combining irinotecan and cetuximab with or without vemurafenib included 106 

patients. mPFS was 4.3 months in vemurafenib arm vs. 2.0 months of the control arm; in addition, 

response and disease control rates were higher in the vemurafenib arm [2]. 
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Another phase 3 randomised trial designed to investigate FOLFOXIRI plus cetuximab or FOLFOXIRI 

plus bevacizumab as firstline treatment in BRAF-mt mCRC patients is currently underway, with a 

main objective of ORR (FIRE-4.5/AIO KRK-0116) [139]. 

Other pathways have been involve in resistance mechanisms, such as PI3K/AKT pathway, the Wnt 

pathway and the overexpression of RAC1B [2]. 

It has been shown that BRAF-mCRC cell lines have higher activation of several proteins of PI3K/AKT 

pathway compared to melanoma cell lines, and that mCRC cell lines with mutations in this 

pathway or loss of PTEN are more resistant to growth inhibition by BRAF inhibitors as compared to 

cell lines without these alterations. Thus, the combination of BRAF inhibition and PI3K inhibition 

seems attractive. A phase 1b trial has evaluated the therapeutic effect of encorafenib with 

cetuximab (doublet) ± alpelisib (an α-specific PI3K inhibitor) (triplet) in 28 refractory BRAF-mCRC 

patients. Best ORR and PFS were, respectively, 23.1% and 3.7 months (95% CI, 2.8–10.6) in the 

dual arm versus 32.1% and 4.3 months (95% CI, 4.1–5.4) in patients treated with the triplet, which 

seemed relatively well tolerated [140]. Tabernero et al. investigated the same triplet in a phase 2 

trial, in which 102 patients with BRAFV600E-mCRC were randomized to receive encorafenib plus 

cetuximab (n = 50) or encorafenib plus cetuximab and alpelisib (n = 52). Results were encouraging 

with an overall response rate of 22 and 27% for the doublet and the triplet regimen, respectively. 

Median PFS was 4.2 and 5.4 months (HR = 0.69; 95%CI; P = 0.064). Major grade 3 and 4 adverse 

events were anemia (17 versus 6%), hyperglycemia (13 versus 2%), and increased lipase (8 versus 

18%) for the triplet and doublet arms, respectively [134]. 

Other potential targets include the Wnt/beta-catenin pathway. The Wnt/β-catenin pathway, 

which is frequently dysregulated in non-MSI CRC, was also recently implicated in the mechanisms 

of BRAF V600E CRC resistance. Treatment with iBRAF was found to upregulate this pathway in 

preclinical models of BRAF V600E-mCRC, including cell line and patient-derived xenografts. 

Stimulation of the Wnt signalling occurred through activation of focal adhesion kinase (FAK) upon 

inhibitor treatment. Notably, FAK activation did not require EGFR or ERK1/2 activation, indicating 

that the observed hyperactivation of Wnt signalling was a MAPK pathway reactivation-

independent event. Importantly, combined inhibition of BRAF/Wnt pathway or BRAF/FAK exerted 

strong synergistic antitumor effects, both in cell lines and mouse xenograft models. The results of 

the trial NCT02278133, which enrols patients with both BRAF-V600E and Wnt pathway mutations 
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and treated with the Wnt inhibitor WNT974 in combination with encorafenib and cetuximab, are 

expected [2, 140]. 

Finally, regarding the tumor microenvironment, persistent inflammatory cues were shown to 

promote the overexpression of tumor-related RAC1B GTPase. RAC1B overexpression facilities 

malignant progression by promoting evasion from BRAF V600E-induced senescence. Importantly, 

it was shown that one non-steroid anti-inflammatory drug, ibuprofen, specifically downregulated 

inflammation related RAC1B overexpression and led to reduced tumour growth in mouse 

xenografts of BRAF V600E CRC cell lines. This could represent another therapeutic opportunity for 

combination therapy in patients with the BRAF CRC subtype [141]. 

Emerging data confirm that tumor microenvironment can impact disease prognosis. It has been 

demonstrated that chronic inflammation with a high expression of COX2-PGE2 plays a 

fundamental role in the genesis of CRC as PGE2 suppress the anti-tumor effect deployed by the 

immune system [2]. 

BRAF mutation determines an upregulation of the RAF-MAPK pathway, which leads to 

downstream activation of PTGS2 (COX-2) and to the increase of PGE2 production; this leads to 

higher survival and faster replication of tumor cells. In a study carried out by Kosumi and 

colleagues, considering BRAF-mutated CRC, the subgroup with higher COX-2 expression presented 

lower disease-specific survival (DSS) (HR 2.44; 95% CI 1.39–4.28); the association between COX2 

and worse survival did not reach statistical significance in the BRAF-WT population (HR 0.82; 

95%CI). As an explanation of this mechanism, the authors proposed that PGE2 accumulation in the 

tumor microenvironment resulted in greater resistance to the local immune system [2]. 

In table 4 the main clinical trials with BRAF inhibitors in CRC BRAF mutant are reported. 

Table 4.  

 

RR response rate; mPFS median progression free survival; mOS median overall survival; m: months. 

regimen n° of patients ORR PFS OS reference
vemurafenib 21 5% 2.1 7.7 Kopetz et al

encorafenib 18 0% 4 \ gomez roca 

vemurafenib + cetuximab 27 3.7 % 3.7 7.1 hyman 

vemurafenib + panitumumab 15 13% 3.2 7.6 yaeger

dabrafenib + panitumumab 20 10 3.5 \ corcoran

encorafenib + cetuximab 50 22 4.2 \ tabernero

dabrafenib + trametinib 43 12 3.5 \ corcoran

dabrafenib + trametinib + panitumumab 91 21 4.2 9.1 corcoran

encorafenib + cetuximab ± binimetinib 224 (triplet); 220 (doublet) 26 ; 20 4.3 ; 20 9 ; 8.4 loupakis

encorafenib + cetuximab + alpelisib 52 27 5.4 15.2 tabernero

vemurafenib + cetuximab + irinotecano 106 16 4.4 \ Kopetz et al

BRAF + EGFR inhibitors + Wnt inhibitors encorafenib + cetuximab + WNT974 20 \ \ \ clinicaltrials.gov

Clinical trials with BRAF inhibitors in CRC BRAF  mutant

Single BRAF inhibitor

Doublet combinations

BRAF + MEK inhibitors

Therapeutic Strategy

BRAF + MEK + EGFR inhibitors

BRAF + EGFR + PI3K inhibitors

BRAF + EGFR inhibitors + irinotecano

BRAF + EGFR inhibitors

Triplet combinations

BRAF + MEK + EGFR inhibitors
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8. Immunotherapy: a new therapeutic promise for BRAF-mutated mCRC? 

The BRAFV600E mutation is strongly associated with MSI and therefore with a high degree of 

infiltration by tumour-associated lymphocytes, mostly of activated CD8+ cytotoxic T lymphocytes. 

The cytotoxic T lymphocytes recognize the neo-antigens that are translated because of MSI and 

presented as peptides on the cell surface by major histocompatibility complex class I molecules 

(MHC-I). In order to evade an immune response, tumour cells express on their surface the 

inhibitory programmed cell death 1 ligand (PD-L1) that binds to the PD-1 co-receptor on T 

lymphocytes, an immune checkpoint, and supresses cytotoxic activity.  Thus, although infiltrating T 

cells are abundantly detected in the BRAF/MSI subtype of tumours, their activity is 

downmodulated by tumour cells, which express PD-L1 in response to the inflammatory 

microenvironment as an adaptive immune resistance, suggesting the incremented expression of 

PD-L1 as the main escape mechanism. Blocking the interaction between PD1 and PD-L1 can 

reactivate cytotoxic T lymphocytes to attack cancer cells. For this reason immune checkpoint 

inhibition should be considered for CRC BRAF mutant/MSI.  

Several trials demonstrated that MSI tumors have been shown to be much more sensitive to 

immunotherapy than proficient MMR tumors [142]. 

The CHECKMATE 142, phase II trial, evaluated nivolumab (anti PD1) with or without ipilimumab 

(anti CTLA-4).  As expected, no antitumor efficacy was observed for MSS tumors (n = 20).  Among 

patients with MSI mCRC (n = 100), 17 (17%) harboured BRAFV600E mutation. Seventy patients 

received nivolumab 3 mg/kg alone and 30 patients were treated with nivolumab 3 mg/kg plus 

ipilimumab 1 mg/kg. Objective response rate was 25.5 and 33.3%, respectively (median duration 

of response not reached in both arms). Median PFS was not reached in the combination arm and 

reached 5.3 months with nivolumab alone. Thus, nivolumab monotherapy, as well as the 

combination of nivolumab plus ipilimumab, demonstrated encouraging results with durable 

responses in patients with MSI mCRC. Interestingly, clinical activity was observed regardless of the 

BRAF and KRAS mutational status and PD-L1 expression [143]. 

In addition, the recent phase III trial KEYNOTE-177 demonstrated the superiority of 

pembrolizumab in first-line setting over standard regimens in MSI mCRC, independently from 

BRAF status [174]. According to these trials, CPIs seem to perform better than standard therapies 

in BRAFV600E mutant MSI mCRC [174]. The ongoing phase III trial CheckMate 8HW 

(NCT04008030) is evaluating the combination of nivolumab and ipilimumab in the same setting 

and it is expected to provide further data for this subset of patients. Summarizing, these studies 
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support the administration of a CPI as upfront treatment in BRAFV600E mutant MSI mCRC 

patients. Indeed, following KEYNOTE-177 data, both Food and Drug Administration (FDA) and 

European Medicines Agency (EMA) recently approved pembrolizumab in the first line setting for 

MSI mCRC, including those BRAFV600E mutant [175,176]. Today, pembrolizumab is the new 

standard of care for MSI mCRC harboring BRAFV600E mutation. If immunotherapy is 

contraindicated or not available, standard cytotoxic treatments remain an option. 

 

9. Literature Review of Colorectal Rhabdoid Carcinoma (CRbC) 

For comparison of clinicopathologic data, prognostic parameters, and genetic profiles with those 

of our tumor series, we performed a thorough review of the MEDLINE literature, for colorectal 

carcinomas reported as rhabdoid carcinoma, carcinoma with rhabdoid features, rhabdoid tumor, 

malignant rhabdoid tumor, pleomorphic carcinoma, giant cell carcinoma, and undifferentiated 

carcinoma. We report in Table 5 (see in appendix) all cases that we have critically reviewed and 

accepted as they demonstrated similar histology and immunophenotype as the cases reported in 

the present study. A careful review of the MEDLINE literature revealed 39 cases of CRbCs that 

should be added to our seven cases for a total of 46 cases (Table 5). The patients were 22 males 

and 24 females aged 23–87 years (mean age: 64 years; median 69 years). The neoplasms were 

located in order of frequency in the cecum (26%), sigmoid colon (17.4%), ascending colon and 

rectum (13% each), right colon unspecified (10.8%), transverse colon (8.7%), hepatic flexure, 

splenic flexure, and left colon unspecified (2.1% each). The size of the tumors was reported in 33 

cases and ranged from 3–15 cm in maximum diameter (mean 7.3 cm, median 7 cm). Positive 

regional lymph nodes were found in 32/39 (82%) in which detailed data were available. Liver 

metastases were reported in 31% of the patients and peritoneal metastases in 10% of the cases. 

Of the 36 patients with available data, 34 received surgery as first or unique treatment and three 

(8%) of them received adjuvant therapy. The remaining patients underwent palliative treatment 

because of advanced disease. Fluoropyrimidine- and oxaliplatin-based chemotherapy were the 

regimens mostly used as first line therapy in a metastatic setting. Other chemotherapy regimens 

used comprehended irinotecan (FOLFIRI scheme) and anthracycline/platinum (EOX scheme). Only 

two patients received more than one line of chemotherapy in a metastatic setting and only one 

patient received monoclonal antibody (both antivascular endothelial growth factor (anti-VEGF) 

and anti–epidermal growth factor (anti-EGFR)) with no benefit. Follow-up data were available for 

41 patients: 31 (75%) died of disease within 1–15 months (mean: 4.5 months, median 4 months). 
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Ten patients with follow-up ≥6 months (range 6–216 months, mean 59 months, median 29.5 

months) were reported as still alive.  In the histopathological reports, the rhabdoid cells were the 

prevalent cells in the majority of cases; however, in 45% of 35 cases an adenocarcinomatous 

component more frequently focal and at the tumor periphery and often poorly differentiated has 

been detected. The reported immunohistochemical findings proved in 36/36 cases co-expression 

of vimentin and pancytokeratin mainly localized to paranuclear cytoplasmic inclusions. Variable 

positivity for EMA has been found in 15/21 (71.4%) cases. Complete loss or focal loss of SMARCB1 

(INI-1) was reported in 9/27 (33.5%) and 3/27 (11.1%) cases, respectively. Nuclear 

immunoreactivity for TP53 and β-catenin has been found in 12/34 (35.6%) and six of eight (75%) 

cases, respectively. E-cadherin immunoreactivity was negative in the four cases investigated. CK20 

and CDX2 were not expressed in the majority of cases: 24/28 (85.7%) and 29/32 (90.6%), 

respectively. Actin, desmin, and S-100 were not expressed in all cases investigated (9, 10, and 6 

respectively). The Ki-67 labeling index evaluated in 11 cases ranged from 30–90% (mean 57.6%). 

The number of tumor-associated T lymphocytes (TIL), either CD3 or CD8, reported for cases was 

registered as low.  

As reported in Table 6, BRAF V600E mutation is the prominent molecular feature of CRbCs 

examined so far, occurring in 13/22 (60%) cases analyzed. By contrast, due to the mutual 

exclusivity of KRAS and class I BRAF mutations such as BRAF V600E, KRAS variants were observed 

at low frequency (2/17, 12%) and basically only in BRAF wild-type tumors. Concurrent mutations in 

both genes were very uncommon (1/17, 0.06% of cases). 

Moreover, as in colorectal carcinomas, MSI was strongly associated with BRAF V600E mutation 

and was observed in seven out of eight BRAF mutant cases. However, although a significant 

positive association between these two markers is also confirmed in these rare tumors, the 

frequency of BRAF mutant/microsatellite stable (MSS) CRbC was unexpectedly high (6/13 cases; 

46%) compared with the low incidence of this molecular subset among colorectal cancers (CRCs). 

Molecular features strongly associated with BRAF colorectal cancers such as a high frequency of 

CIMP and rare loss or mutation of the TP53 gene have been scarcely studied in CRbCs. Finally, 

recent next-generation target sequencing of SMARCB1 (INI-1) and CROCC genes highlighted point 

mutations of the CROCC gene in 4/10 (40%) cases and no SMARCB1 (INI-1) genetic alterations. 
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Table 6. Molecular data of colorectal rhabdoid carcinomas (CRbCs) previously reported. 

Studies 
MSI 

status 
BRAF KRAS PIK3CA CROCC INI-1§ TP53 CIMP 

Kono et al. 2007  [144] MSS - WT - - - - - 

Samalavicus et al. 2013 [145] MSS V600E WT - - - - - 

Lee et al. 2013 (case 1) [146] MSS WT WT - WT WT - - 

Lee et al. 2013 (case 2) [146] MSS V600E WT - WT WT - - 

Agaimy et al. 2014 [28] MSI  V600E - - - NEG# - CIMP 

Moussaly et al. 2015 [147] MSI - - - - - - - 

Kalyan et al. 2015 [148] MSS WT Q61K WT - WT R273H - 

Wang et al. 2016 (case 1) 

[149] 
MSS V600E - - - POS# - - 

Wang et al. 2016 (case 2) 

[149] 
MSI V600E - - - NEG# - - 

Wang et al. 2016 (case 3) 

[149] 
MSS V600E - - - POS# - - 

Agaimy et al. 2016 [150] MSS - - - - POS# - - 

Remo et al. 2018*  [32] MSS WT WT - - - - - 

Remo et al. 2018 * [32] MSS WT WT - - - - - 

Remo et al. 2018* [32] MSS WT MUT - - POS# - - 

Remo et al. 2018* [32] MSI V600E - - - POS# - - 

Remo et al. 2018 (RC1) [32] MSI  V600E WT - A161S WT - CIMP 

Remo et al. 2018 (RC2) ** 

[32] 
MSI  V600E - - V1885A WT - CIMP 

Remo et al. 2018 (RC5) [32] MSS V600E WT - WT WT - - 

Remo et al. 2018 (RC6) [32] MSS V600E G12V - WT WT - - 

Remo et al. 2018 (RC7) [32] MSI V600E WT - WT WT - - 

Remo et al. 2018 (RC8) [32] MSS WT WT - WT WT - - 

Remo et al. 2018 (RC9) [32] MSI V600E WT - S1320I WT - - 

Remo et al. 2018 (RC10) [32] MSS WT WT - WT WT - - 

Remo et al. 2018 (RC11) [32] MSI WT WT - A1510T WT - - 

Remo et al. 2018 (RC12) [32] MSS WT WT - WT WT - - 

Legend: -: not available result; MSI presence of microsatellite instability; MSS: absence of microsatellite 

instability; CIMP: CpG island methylator phenotype; INI§: molecular or immunohistochemical results were 

indicated: POS or NEG correspond to INI-1 positive expression or negative expression, respectively. WT 

indicates absence of gene mutation; * CRb quoted by Remo et al. 2018 as personal communication by 

Sanchez P.A.; ** previously published by Pancione et al. 2011. 
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The work of my PhD training in Experimental and Translational Medicine has been carried out at 

the laboratory of Molecular Pathology of the Anatomic Pathology Unit of Varese Hospital and can 

be divided in two parts. 

In the first part I performed a thorough review of the MEDLINE literature on the role of BRAF 

mutation in colorectal cancer, from a pathogenetic, molecular and clinical point of view (reported 

as advanced colorectal cancer, BRAF mutation, CD8 T-cell content, MSI, neuroendocrine 

differentiation). Moreover, we analysed a selected cohort of BRAFV600E-mCRC in order (1) to 

compare the clinical-pathological profile of the MSI group with respect to the MSS group, 

highlighting the most significant differences based on MMR status; (2) to analyse the extent of 

neuroendocrine differentiation and the types of neuroendocrine neoplasms between MSI and 

MSS tumors; and (3) to assess intratumoral CD8 + T cell density and tumor cell PD-L1 expression 

and their prognostic influence. The results obtained from this part of work have been published in 

the report [13] (1. in appendix section). 

In the second part, since BRAF mutation has been reported as a common feature of CRbCs, we 

report here seven new cases of this rare entity, examining in details their clinical-pathological and 

molecular characteristics. For comparison, we included four poorly differentiated medullary 

carcinomas (PDMCs) with focal features mimicking rhabdoid features. Immunohistochemical, 

genetic and epigenetic analyses were performed to characterize these tumour entities and to 

correlate BRAF mutation status with the clinico-pathological features of these tumors.  

Our results have been integrated and discussed with the literature data available so far on CRbCs. 

These data have been published in the report (29) (2. in appendix section) 
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This chapter is organized in two parts. 

Part 1 is a clinico-pathological analysis of 59 mCRC with BRAF mutation and was performed to 

compare MSI and MSS cases, focusing on the inflammatory profiles and neuroendocrine 

differentiation of these tumors. 

Part 2 is a clinicopathological and molecular study of seven Colorectal rhabdoid carcinomas 

(CRbCs) compared with poorly differentiated medullary carcinomas (PDMCs) with focal aspects 

mimicking rhabdoid features 

 

1. Part I  

1.1 Patient Cohort 

From January 2010 to December 2017, at the pathology department of ASST of Sette Laghi- 

University of Insubria, we selected 59 patients with mCRC. The inclusion criteria were as follows: 

(1) stage IV at diagnosis and relapsed early-stage CRC (stage I - III); (2) Presence of BRAF p.V600E 

mutation; (3) availability of histologic samples (ie, surgical samples and/or biopsy specimens); (4) 

clinical data, including surgery, treatment, and follow-up data; and (5) known MSI status and MMR 

defect type by using immunohistochemistry. 

For each patient, we collected data about sex, age at the diagnosis, Eastern Cooperative Oncology 

Group performance status [151], colorectal site, disease stage at diagnosis, type of surgery or 

metastasectomy, metastatic disease sites, and therapy performed. All the patients had undergone 

treatment for metastatic disease with ≥ 1 regimens of chemotherapy and/or targeted therapy 

(anti-VEGF or anti – EGFR antibody). BRAF p.V600E mutation, MSI status, immunohistochemical 

expression of MMR proteins, and MLH1 methylation were evaluated in accordance with previously 

reported protocols in our lab [152]. The patients were followed up using regular and periodic 

clinical and instrumental evaluations. The tumor response was assessed using the Response 

Evaluation Criteria in Solid Tumors [153].  OS was considered as the interval from the diagnosis of 

metastatic disease to death or the last follow-up evaluation.  

 The ethics committee of Ospedale di Circolo di Varese approved the present study (approval no. 

0008465), which was performed in accordance with the Declaration of Helsinki. 

 

1.2  Histopathologic and Immunophenotypical Study 

The histologic diagnosis of CRC was confirmed by 2 gastrointestinal tumor experts in accordance 

with the criteria of the 2010 World Health Organization classification [154]. The histopathologic 
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revision evaluated the following features: histologic type (tubular, mucinous, medullary, signet 

ring cells, undifferentiated, and mixed adenoneuroendocrine histologic features [ie, MANEC]), 

grade (1-3), mitotic index per 2 mm2, growth pattern, tumor budding, necrosis, vascular space 

invasion, perineural invasion, percentage of tumor stroma, residual adjacent adenoma, 

intratumoral lymphocyte count, and the presence of tertiary lymphoid structures (Crohn-like 

reaction). For assessment of tumor budding, the Nakamura method was used to score the cases. 

The degree of tumor budding was categorized into 2 groups: low grade (none or mild) and high 

grade (moderate or marked) [155]. Using immunohistochemistry, we evaluated the type of 

lymphocytic infiltrate, both intratumoral lymphatic invasion (ILI) and peritumoral lymphatic 

invasion (PLI), using anti-CD3 and anti-CD8 antibodies. Tumor-associated inflammation was 

assessed according to the criteria of Kasajima et al [156] and graded as absent (no inflammatory 

cells at the tumor margin), weak (mild and patchy inflammatory cells at the tumor margin), 

moderate (evident bandlike inflammatory reaction at the tumor margin), or high (prominent 

inflammation at the invasive edges). The number of CD8 and CD3 lymphocytes in the tumor center 

and tumor periphery was evaluated using a Zeiss Microscope (ocular, x 10; objective, 25 mm) over 

an average area of 0.882 mm2. We counted their number at the point at which the inflammatory 

infiltrate was more intense. PD-L1 expression was assessed on the tumor cells (TCs) and immune 

cells infiltrating and surrounding the tumor (ILI and PLI, respectively). PD-L1 staining was scored as 

positive when > 1% of the TCs or immune cells were immunoreactive. Moreover, all cases were 

evaluated for immunohistochemical expression of p53, CDX2, Ki-67, and synaptophysin. The 

antibodies, protocols, and criteria for the evaluation of immunohistochemical expression are 

reported in the Table 7. 

Table 7. Antibodies used and immunohistochemical protocols 

Primary Antibody Clone 
Working 
Solution 

Treatment Manufacturer 

CD3 Rabbit monoclonal 2GV6  pure MW 5 min x2 CB, pH 6 Ventana 

CD8 Rabbit monoclonal SP57  1:2 MW 5 min x2 CB, pH 6 Ventana 

PDL-1 Rabbit monoclonal SP142  1:40 MW 5 min x4 EDTA, pH 8 Spring 

P53 Mouse monoclonal DO-7  1:500 MW 5 min x4 CB, pH 6 Dako 

CDX2 Mouse monoclonal CDX2-88  1:50 MW 5 min x4 CB, pH 6 Biocare 

Ki67 Mouse monoclonal MIB-1  1:100 MW 5 min x4 CB, pH 6 Dako 
Synaptophysin Rabbit 

monoclonal 
polyclonal  1:2 MW 5 min x4 CB, pH 6 Ventana 

Legend. MW: Microwave antigen retrieval solution; CB: citric acid antigen retrieval buffer 

Abbreviations: CB= citric acid retrieval buffer; EDTA ethylenediaminetetraacetic acid; MW= microwave antigen 

retrieval solution. 
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Immunohistochemistry was performed manually. Formalin-fixed paraffin-embedded sections were mounted 

on poly-L-lysine coated slides, deparaffinized and hydrated through graded alcohols to water. Endogenous 

peroxidase activity was quenched in 3% H2O2 in water for 20 minutes. Proteolytic treatment was performed 

using different antigen-retrieval solutions (CB pH6 or EDTA pH8) in a domestic 750-kW microwave oven. 

Primary antibodies were applied overnight at 4°C, and immunostained using the avidin-biotin peroxidase 

complex (ABC) method or the MACH4 system. For ABC method, sections were incubated with biotinylated 

anti-mouse immunoglobulins and ABC peroxidase complex, each for 1 h at room temperature. The 

immunoreaction was developed with 3.3’-diamonobenzidine tetrahydrochloride (DAB) as chromogen and 

nuclei were counterstained with hematoxylin. Finally, sections were dehydrated. 

 

1.3 Statistical Analyses 

We summarized the major clinical and pathologic features of the tumors using descriptive 

statistics for the overall case series and stratified by MSI status. We used standard cutoff values to 

define the expression of stroma (≥20%), synaptophysin (>0), and p53 (≥50) as high. We tested the 

null hypothesis of no difference in the clinical characteristics when stratified by MSI using either 

the t test or c2 test for continuous and discrete variables, respectively. We used box plots to 

represent the distribution of CD3, CD8, and PDL1 when stratified by MSI status. Owing to the 

skewed nature of these parameters, we tested the difference among the MSI groups using the 

Wilcoxon rank sum test. We estimated the linear correlation among CD3, CD8, and PD-L1 

expression using Pearson’s rho coefficient. Of the 58 patients with valid follow-up data, we 

estimated the hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality when stratified 

by MSI status (with MSS as reference) and for a 1-standard deviation increase in CD3, CD8, and 

PD-L1 expression using univariate Cox proportional hazards models. The proportionality of hazards 

was tested by adding a time*variable interaction; none was significant. We also explored 

multivariate Cox models, adjusting for age, sex, primary tumor site, and metastasis location 

(peritoneal vs. other). Finally, to investigate the combined effect of MSI and CD8 expression on OS, 

we first defined the positivity to CD8 by adopting the sample mean as the cutoff value and created 

a 4-class exposure variable with MSI status. This was the only independent variable in a univariate 

Cox regression model, with negative CD8 expression and MSS as the reference class. We used SAS 

software, release 9.4 (SAS Institute, Cary, NC), for the statistical analyses and R, version 3.2.5 (R 

Foundation, Vienna, Austria), to create the figures. 
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2. Part II  

2.1 Histopathologic and Immunophenotypical study 

Formalin-fixed and paraffin-embedded tissue blocks from 11 colorectal carcinomas were retrieved 

from our routine surgical pathology files, dating back to 1984. We included seven neoplasms 

composed (at least 30%) of highly atypical tumor cells with abundant eosinophilic cytoplasm 

containing hyaline-like globular (rhabdoid) inclusions classified as CRbC. We also included four 

cases interpreted as poorly differentiated medullary carcinomas (PDMCs) showing areas with 

discohesive polymorphic cells with abundant eosinophilic cytoplasm and eccentric nuclei, 

mimicking rhabdoid cells. One of the CRbCs and two of the PDMCs showed a focal glandular 

component. A combined CRbC and PDMC was found in one case. Tissue sections were stained 

with hematoxylin–eosin and periodic acid–Schiff/Alcian blue. The histopathologic revision 

evaluated the following features: Grade, mitotic index per 2 mm2, growth pattern, tumor budding, 

necrosis, vascular space invasion, perineural invasion, percentage of tumor stroma, intratumoral 

and peritumoral lymphocytic infiltration. For assessment of tumor budding, the Nakamura method 

was used to score the case [155]. The degree of tumor budding was categorized into two groups: 

Low grade (none or mild) and high grade (moderate or marked). Tumor-associated inflammation 

at the tumor margin was assessed according to the criteria of Kasajima et al. [156] and graded as 

absent (0), weak (1+), moderate (2+), or high (3+). The quantity of intratumoral granulocytes was 

graded as: Absent (0), weak (1+), moderate (2+), or high (3+). The number of intratumoral CD8-

positive lymphocytes (CD8-TIL) and peritumoral CD8-positive lymphocytes (CD8-PTL) was assessed 

using anti-CD8 antibodies and their relative number was evaluated using a Zeiss microscope 

(ocular x 10; objective 25 mm) over an average of 0.882 mm2. Moreover, all cases were evaluated 

for immunohistochemical expression of pancytokeratin, CK7, CK20. EMA, β-catenin, SMARCB1 

(INI-1), vimentin, Ki-67, p53, CDX2, and synaptophysin. The antibodies, protocols, and criteria for 

the evaluation of immunohistochemical expression are reported in Table 8 (see in appendix). 

Positive and negative controls were used throughout. SMARCB1 (INI-1) staining was interpreted 

according to the criteria exposed by Wang et al. [149] and categorized as 1) negative staining, 2) 

focally negative staining, and 3) positive staining. 
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2.2 Molecular Study 

2.2.1 MSI and CpG Island Methylator Phenotype (CIMP) Analysis  

MSI status was evaluated in accordance with previously reported protocols [157]. Methylation 

study was performed using methylation-sensitive multiple ligation-dependent probe amplification 

(MS-MLPA), that allows the simultaneous assessment of promoter methylation of multiple genes 

in a single experiment. SALSA MS-MLPA ME042-C1 CIMP Kit (MRC-Holland, Amsterdam, The 

Netherlands) was used to perform methylation analysis on eight gene promoters frequently 

methylated in CIMP tumors [69] (details in Table 9, see appendix). In detail, the kit contains 31 MS-

MLPA probes which detect the methylation status of promoter regions of CACNA1G, CDKN2A, 

CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 genes. MS-MLPA reactions were performed 

according to the manufacturer’s instructions. The MS-MLPA products were analyzed on an ABI 310 

Automatic DNA Sequencer (Applied Biosystems, Foster City, CA, USA) using GeneMapper 4.0 

genotyping software (Applied Biosystems, Foster City, CA, USA). Values corresponding to peak size 

in base pairs (bp) and peak areas were used for further data processing by Co_alyser V8 software 

(MRC-Holland, Amsterdam, The Netherlands). All probes were adjusted to reference probes within 

each sample (intra-sample normalization). The methylation ratio (MR) was calculated by dividing 

each normalized peak value of the HhaI-digested sample by that of the corresponding undigested 

sample. Blood-derived DNA samples of three healthy individuals were used as unmethylated 

reference samples for inter-sample normalization. Sensitivity and specificity of the MS-MLPA assay 

were determined by a titration experiment, mixing fully methylated DNA (CpGenome Universal 

Methylated DNA, Millipore) with unmethylated DNA (CpGenome Universal Unmethylated DNA, 

Millipore) in proportions of 0%, 10%, 25%, 50%, and 100%. Using three replicates for each 

concentration, we observed MR values between 0 and 0.16 for the probes of fully unmethylated 

samples, and between 0.28 and 0.47 for the probes of 10% methylated DNAs. MRs obtained in the 

titration experiment with the 10%-methylated DNA were used as cut off values to determine 

aberrant methylation Ratio (MR) status of our probes as categorical variables (Table 9 shows the 

cutoff used for each MS-MLPA probe, see in appendix). To classify a gene promoter as methylated, 

at least half of the probes had to show methylation. We considered a sample CIMP positive if it 

showed at least four out of eight methylated promoters. 
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2.2.2 Targeted Sequencing Libraries and Massively Parallel Sequencing 

Tumor DNA was obtained from formalin-fixed paraffin-embedded (FFPE) tissue using three 

representative 8 µm sections. The sections of every specimen were treated twice with Bio-Clear 

(Bio-optica, Milan, Italy). Neoplastic areas were manually microdissected for DNA extraction and 

contained at least 50% of tumor cells to minimize contamination by normal cells. DNA was 

extracted using the Maxwell®DNA FFPE Kit (Promega, Madison, Wisconsin, USA) and purified using 

an automatic nucleic acid purification system (Maxwell 16 system, Promega, Madison,Wisconsin, 

USA) according to the manufacturer’s protocol. Each sample was then quantified using Qubit 

dsDNA High-Sensitivity Assay kit (Invitrogen, Thermo Fisher Scientific, USA). A targeted capture 

library was constructed according to the protocol Human Actionable Solid Tumor Mutations 

QIAseq DNA Panel (DHS-101Z, Qiagen, Hilden, Germany) that allows to analyze by NGS, specific 

exons or hot-spot mutations in 19 oncogenes (BRAF, PDGFRA, EGFR, KRAS, NRAS, KIT, AKT1, ALK, 

CTNNB1, ERBB3, ESR1, FOXL2, GNA11, GNAQ, IDH1, IDH2, MET, RAF1, RET) plus the whole exonic 

regions of ERBB2, PIK3CA, and TP53. This gene panel covers a total of 15,160 bp with 170 

amplicons with a mean of 150 bp. Libraries were generated starting from 40–100 ng of FFPE DNA. 

Genomic DNA samples were first fragmented, end repaired, and A-tailed within a single multi-

enzyme reaction. Prior to target enrichment and library amplification, each original DNA molecule 

was assigned a unique molecular identifier (UMI) containing a 12-base random sequence. After 

cleanup of adapter-ligated DNA using QIAseq beads, target enrichment was performed post-UMI 

assignment through eight cycles of targeted PCR using one region-specific primer and one 

universal primer complementary to the adapter. After cleanup of target enrichment, a universal 

PCR and cleanup of the amplicons were ultimately carried out. Equal volumes of individuals 

libraries were pooled at 4 pm. Bead emulsion for immobilization and clonal amplification were 

performed with the Ion OneTouch2 System (Thermo Fisher Scientific,Waltham, Massachusetts, 

USA) and Ion OneTouchES instruments (Thermo Fisher Scientific, Waltham, Massachusetts, USA). 

Barcoded libraries of 8–10 samples were sequenced on an Ion S5 XL System (A27214, Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) according to the manufacturer’s instructions 

using 500 flows. 

2.2.3 Next-Generation Sequencing Data Analysis 

Upon completion of the sequencing run, unmapped BAM (uBAM) files were imported into the CLC 

Genomics Workbench (Qiagen Bioinformatics version 12, Hilden, Germany). Sequencing data were 
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analyzed using the Biomedical Genomics Analysis plugin, which allows to align reads to the 

reference genome (UCSC build hg19), UMI counting, read trimming, and variant identification. 

Data were filtered ensuring a coverage of at least 500x and an allelic fraction of 5%. In order to 

detect only mutations with a deleterious defect on protein functions, both synonymous mutations 

and variants described in the 1000 Genome Project were filtered out. All subjects gave their 

informed consent for inclusion before they participated in the study. The study was conducted in 

accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics 

Committee of Varese (Project identification number: 0008465). 

 

 

 

 

 

 

 

 

 

 



52 
 

 

 

 

 

 

 

RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

1. Part I 
1.1 Clinicopathologic Features and Treatment of BRAF-mCRC 

The data from 59 patients with BRAF-mCRC were collected. The present series included 22 MSI 

(37.2%) and 37 MSS (62.7%) neoplasms. Of the 59 specimens, 7 were biopsy samples and 52 were 

surgical resection samples. The clinicopathologic features of the tumors are summarized in Table 

10. In our cohort, the proportion of women was greater than that of men (61% vs. 39%), their 

mean age was 67 years, and right-sided tumors were more common than left-sided ones (69% vs. 

31%). Compared with consecutive cohorts of CRC, we observed a high frequency of tubular and 

mucinous/signet ring cell cancer types (49.2% and 23.7%, respectively), followed by medullary 

undifferentiated types (15.3%) and MANEC (12%). Most cases were characterized by an infiltrative 

growth pattern (79.2%) and high percentage of stroma (61.8%). Clinically, metastatic disease 

(stage IV) was the initial diagnosis for 63% of the patients and 37% of patients had developed a 

relapse after a diagnosis of early-stage CRC (stage I-III). Multisite metastatic disease was the 

prevalent condition, with liver and peritoneum frequently involved (56% and 38%, respectively). 

Only 5 patients had a single metastasis and underwent metastasectomy. Of these 5 patients, 2 had 

undergone liver metastasis resection and 3 had undergone pulmonary resection or splenectomy 

or partial removal of the psoas muscle. As shown in Figure 2, 76% of the patients had undergone 

first-line chemotherapy with or without a monoclonal antibody (anti-vascular endothelial growth 

factor and/or anti-EGFR), 33% of the patients had received second-line, 14% third-line, and 5% 

fourth-line treatment. Only 10 patients (17%) were treated with best supportive care. The 

chemotherapy regimens were based on schemes containing 5-fluorouracil, irinotecan, and 

oxaliplatin. 

Table 10. Clinicopathologic profiles of MSI and MSS BRAF-mCRC 

 

All patients 

n (%) 

MSI-CRC 

n (%) 

MSS-CRC 

n (%) 
p-value** 

 n=59 n=22 n=37  

Age, mean±SD, years 66.9±11.8 70±9.6 65.1±12.7 0.1 

Women (%) 36 (61%) 12 (54.5%) 24 (64.9%) 0.4 

Primary Tumor Side* 
    

Right-sided 40 (69%) 22 (100%) 18 (50%) 
< .0001 

Left-sided 18 (31%) 0 (0%) 18 (50%) 

Histological Type 
    

Tubular 29 (49.2%) 8 (36.4%) 21 (56.8%) 

0.09 Mucinous/signet ring cells 14 (23.7%) 8 (36.4%) 6 (16.2%) 

Medullary/undifferentiated 9 (15.3%) 5 (22.7%) 4 (10.8%) 
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MANEC 7 (11.9%) 1 (4.5%) 6 (16.2%) 

Grading 
    

G1/G2 30 (50.8%) 8 (36.4%) 22 (59.5%) 
0.09 

G3 29 (49.2%) 14 (63.6%) 15 (40.5%) 

Stage at diagnosis* 
    

I-II-III 21 (36.2%) 9 (40.9%) 12 (33.3%) 
0.6 

IV 37 (63.8%) 13 (59.1%) 24 (66.7%) 

Distant metastasis*     

   Liver 28 (55%) 11 (55%) 17 (56%)  

   Peritoneum 19 (38%) 10 (50%) 9 (30%) 0.095 

   Lung 14 (28%) 3 (15%) 11 (36%)  

Lymph node metastasis*     

   Presence 14 (28%) 9 (45%) 5 (16.7%) 
0.029 

   Absence 36 (72%) 11 (55%) 15 (83.3%) 

Growth pattern* 
    

   Expansive 11 (20.8%) 8 (38.1%) 3 (9.4%) 
0.01 

   Infiltrative 42 (79.2%) 13 (61.9%) 29 (90.6%) 

Percentage of stroma ≥20% 34 (61.8%) 6 (30%) 28 (80%) 0.0002 

Synaptophysin ≥1 16 (29.1%) 1 (4.5%) 15 (45.5%) 0.001 

Ki67%, mean±SD 66.5±20.5 70±20 64.3±20.7 0.3 

p53 ≥50 22 (37.3%) 3 (13.6%) 19 (51.4%) 0.004 

Legend: SD, standard deviation. *data were not available for all patients; ** Student's t-test for continuous 

variables, chi-square tests for categorical variables. 

 

Figure 2: Treatments used in first and following lines: 76% of patients were treated up-front with a 

chemotherapy combined or not with a monoclonal antibody (anti-VEGF and/or anti-EGFR), 33% of patients 

received a second line, 14% a third line and 5% a fourth line of treatment. Only ten patients (17%) were 

treated with best supportive care.  
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Best Supportive Care 10 0 0 0
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CT+ antiEGFR 10 4 3 0
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CT 14 10 2 0
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1.2 Clinicopathologic Profiles of BRAF-mCRC according to MSI Status 

MSI mCRC showed a positive correlation with right-sidedness (P<.0001), poor histologic 

differentiation (P= .09), an expansive pattern of growth (P = .01), and presence of lymph node 

metastases (P= .029; Table 10). By contrast, MSS mCRC were characterized by higher stromal 

component (P = .0002) and positive immunoreactivity for synaptophysin (P = .001) and p53 (P = 

.004). In this subset of cases, neuroendocrine tumors were more frequent than in the MSI mCRC 

(16.2% vs. 4.5%; P= .09; Figures 3 and 4). Finally, lung metastases were more common in patients 

with MSS mCRC compared with patients with MSI mCRC (P= .09). No other significant differences 

between the 2 groups were found in Ki-67 expression, necrosis, vascular space invasion, perineural 

invasion, or stage of disease at diagnosis (Table 10; Table 11) 

 

 

 

 

 

 

 

Figure 3 : Histological aspects of a colorectal mixed adenoneuroendocrine carcinoma (MANEC) with BRAF 

mutation. MANECs are neoplasms in which both the neuroendocrine and non-neuroendocrine components 

are present. A: hematoxylin-eosin stained section showing glandular structure with solid mucin production 

admixed with neuroendocrine proliferation, (×200). B: Synaptophysin stained section (x200). The 

neuroendocrine component express general neuroendocrine markers such as synaptophysin while signet 

ring exocrine cells are negative. C: Acid mucins of non-neuroendocrine cells stained strongly with Alcian 

Blue (x400). 
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Figure 4 : Comparison of MSI CRCs (panels A, C and E) with MSS CRCs (panels B, D, F). MSI CRC shows more 

abundant intratumor lymphocytes and has a lower percentage of stroma (A: hematoxylin-eosin stained 

section, x200) compared to MSS CRC (B: hematoxylin-eosin stained section, x100). CD8 immunostaining 

highlights the high number of immune cells that infiltrates a MSI CRC (Panel C, x 200) compared to MSS CRC 

showing no intratumor lymphocytes (Panel D, x 100).  PD-L1 expression on the cell membrane of tumor 

cells in a MSI CRC (Panel E, x400) and intense p53 nuclear immunoreactivity in a MSS CRC (Panel F, x400)  

 

TABLE 11. Histopathological features evaluated in MSI and MSS tumors 

 Total patients MSI (n=22) MSS (n=37) p-value 

Crohn-like 2+/3+ (%) 12 (25%) 5 (25%) 7 (25%) 1.0 

Budding 2+/3+ (%)  13 (25.5%) 4 (20%) 9 (29%) 0.5 

Vascular space invasion 2+/3+ (%)  28 (54.9%) 13 (65%) 15 (48.4%) 0.2 

Perineural invasion (%)  29 (60.4%) 9 (45%) 20 (71.4%) 0.06 

Necrosis (%) 
    

    focal 13 (23.2%) 4 (18.2%) 9 (26.5%) 

0,1     geographical 24 (42.9%) 13 (59.1%) 11 (32.4%) 

    absent 19 (33.9%) 5 (22.7%) 14 (41.2%) 

Abbreviations: MSI microsatellite instability; MSS microsatellite stable 
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1.3 Different Immune Infiltration in MSI and MSS BRAF-mCRC 

An inflammatory infiltrate was strongly associated with MSI tumors. CD8 and CD3 lymphocytes, 

both ILI and PLI, were prevalent in MSI compared with MSS tumors (CD8 ILI and PLI, P = .0001 and 

P < .0001; CD3 ILI and PLI, P = .003 and P = .0003, respectively; Figures 4 and 5). The expression of 

the PD-L1 receptor, on both TCs and lymphocytes, was more positively associated with MSI than 

with MSS (P < .0001; Figure 2). In addition, we found a significant linear correlation between the 

expression of PD-L1 on TCs and CD3/CD8 immunoreactivity on ILI lymphocytes. In addition, we 

observed a positive correlation between CD8 PLI and CD3 PLI cells and between CD8 ILI and CD3 ILI 

cells (Table 12, see in appendix). No significant differences between the 2 groups were found for 

the Crohn-like lymphoid reaction. 

 

 

 

Figure 5: PD-L1 expression and CD3 and CD8 T cell contents in MSI compared with MSS tumors. The 

expression of PD-L1 receptor, both on TC and on intratumoral (ILI) and peritumoral (PLI) lymphocytes, were 

significantly associated with MSI than with MSS cases (A panel, p-value <.0001). CD3 (panel B) and CD8 

lymphocytes (panel C) were prevalent in MSI compared to MSS tumors (CD8 ILI and PLI: p-value 0.0001 and 

<0001 respectively; CD3 ILI and PLI: p-value 0.003 and 0.0003 respectively). 

 

 

1.4 Survival Analysis 

The OS of the patients was poor, with a median OS of 9 months. Compared with MSS, the 

presence of MSI was associated with a 34% decrease in the hazard of mortality, although this was 

not statistically significant (HR, 0.66; 95% CI, 0.34-1.28; P = .2). The 30-month survival probability 

was 32% for those with MSI and 14% for those with MSS (P = .3, log-rank test). Intratumoral CD8 

as a continuous variable was associated with a 33% decrease in mortality (HR, 0.67; 95% CI, 0.45-

0.99; P = .04). The adjustment for covariates, such as gender, age at diagnosis, tumor site, and the 
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presence of peritoneal metastases, decreased the HR only slightly to 0.72 (95% CI, 0.47-1.10). 

Peritumoral CD8, CD3, and PD-L1 were also protective with respect to mortality during the follow-

up period (HR, < 1 for all), although none of the associations were statistically significant (P > .05 

for all). Finally, with respect to tumors with MSS and low intratumoral CD8 expression, the 

combined presence of MSI and CD8 decreased the hazard of mortality of mortality ≤ 63% (HR, 

0.37; 95% CI, 0.14-0.97; P = .2) that decreased only slightly after multivariable adjustment (HR, 

0.52; 95% CI, 0.17-1.55). 

 

2. Part II 
2.1 Clinicopathological Features 

The main clinicopathologic features of the seven patients with CRbC are reported in Table 13). 

Patients were four males and three females, aged 63–85 years (mean age: 70.5 years; median age: 

65 years). Four tumors were localized in the right colon (one in the cecum, one in the ascending 

colon, and two in the hepatic flexure) and three in the left colon (one in the splenic flexure, one in 

the sigmoid colon, and one in the rectum). Presenting symptoms included nonspecific abdominal 

symptoms, weight loss, and evidence of gastrointestinal bleeding. All patients underwent radical 

surgical procedures (right-sided or left-sided colectomy with node dissection). Five of the six 

patients, for whom detailed data were available, had positive regional nodes and three of them 

also had intra-abdominal and/or liver metastases. The stage evaluated after surgical procedures 

was IIA for one patient, IIIB for two patients, IIIC for two patients, IVA for one patient, and was not 

defined in one case. Five patients died of disease within 2–11 months (mean 5.5 months) after 

surgery. Two patients are still alive (May 2019) 186 months and 216 months, respectively, after 

surgery. 

Patients with PDMCs were two males and two females aged 53–94 years (mean: 75 years; median 

76 years). Three neoplasms were in the right colon (two in the ascending colon and one in the 

cecum) and one neoplasm was in the left colon (sigmoid colon). All four patients underwent 

radical surgical treatment, and all were at stage IIIC. Two patients died of disease within 5–11 

months (average 8 months), one patient is still alive after 124 months (May 2019). For one case, 

the follow-up was not available. 
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Table 13 Clinicopathological data of CRbCs and poorly differentiated medullary carcinomas 

(PDMC) included in our study. 

Cases Gender Age Site 
Size 

(cm) 
Type 

Site of 

metastases 
Treatment Outcome* 

CRbC 1 F 63 Right colon 10 Pure N Surgery 2 m 

CRbC 2 F 76 Left colon 4 Pure - Surgery+CT 7 m 

CRbC 3 M 85 Left colon 6 Pure N, L Surgery 2 m 

CRbC 4 M 65 Right colon 6 Pure N Surgery 216 m (alive) 

CRbC 5 M 63 Left right 6 Pure N Surgery 10 m 

CRbC 6 M 64 Right colon 6 Composite N Surgery - 

CRbC 7 F 77 Right colon 7 Composite absence Surgery 187 m (alive) 

PDMC1 M 79 Right colon 10 - N Surgery 11 m 

PDMC2 F 94 Right colon 8 - N Surgery 5 m 

PDMC3 F 53 Left colon 13 - N Surgery - 

PDMC4 M 73 Right colon 8 - N Surgery 124 m (alive) 

 

2.2 Pathologic Findings 

Grossly, the neoplasms (both CRbCs and PDMCs) were reported as huge ulcerated masses 

completely replacing the intestinal wall, measuring from 4–13 cm (average size: 7.6 cm). 

Histologically, CRbCs consisted of sheets of poorly cohesive cells subdivided in clusters by delicate 

strands of stroma (Figure 6A).  

Two types of neoplastic cells were found: large pleomorphic rhabdoid cells and smaller round to 

polygonal cells. The large cells had pleomorphic eccentrically located nuclei and abundant 

cytoplasm containing large eosinophilic paranuclear “rhabdoid” inclusions (Figure 6 A, I ). The 

smaller cells were more uniform in size and had less abundant cytoplasm with less evident 

eosinophilic bodies. The proportion of these cell types varied between tumors.  

The rhabdoid cellular aspects were predominant (>75%) in five cases and patchy in two cases. One 

case had a focal adenocarcinomatous component and another case showed solid medullary areas 

that blended with rhabdoid areas. Extensive coagulative necrosis was detected in all cases. All 
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neoplasms contained among the tumor cells many infiltrating neutrophils with several cells 

showing emperipolesis. Tumor budding was present in all cases and graded as high.  

On the contrary, both the intratumoral and peritumoral lymphoid infiltration was absent or 

inconspicuous in all cases. Prominent vascular space invasion was detected in all cases and 

perineural invasions in two cases. Mitoses per 2 mm2 varied from 8–38 (average 16). PDMCs 

contained solid areas of medullary carcinoma alternating with areas of loosely cohesive medium 

to large sized cells with eccentric nuclei and eosinophilic cytoplasm, but without well-defined 

paranuclear cytoplasmic hyaline inclusions (Figure 6B). Focal areas of glandular differentiation 

with mucin production and groups of signet ring cells were identifiable in two cases.  

Compared to CRbCs, PDMCs showed more frequent expansive growth, minor budding, more 

abundant stromal component, more consistent peritumoral lymphoid infiltration, and comparable 

tumor necrosis and vascular spaces invasion. 
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Figure 6. Morphological and immunohistochemical features in CRbCs and PDMCs. (A) and (I) CRbC showing 

non-cohesive rhabdoid cells admixed with numerous neutrophils (hematoxylin and eosin stain, 200× and 

400×, scale bar 100 and 50 μm); (B) PDMC showing a cohesive medullary area adjoining an area of loosely 

cohesive cells (hematoxylin and eosin stain, 200×, scale bar 100 μm); (C) CrbC with strong immunostaining 

for vimentin predominantly in the paranuclear region of the cytoplasm (vimentin, 200×, scale bar 100 μm); 

(D) PDMC showing negative immunostaining for vimentin (vimentin, 200×, scale bar 100 μm); (E) complete 

loss of SMARCB1 (INI) expression) in a CRbC (INI-1, 400×, scale bar 50 μm); (F) loosely cohesive area of a 

PDMC showing SMARCB1 (INI) nuclear positivity (INI-1, 200×, scale bar 100 μm); (G) p53 nuclear expression 

in a CRbC (p53, 400×, scale bar 50 μm); (H) beta catenin nuclear expression in a CRbC (beta catenin, 400×, 

scale bar 50 μm); (L) CRbC showing few CD8-positive tumor infiltrating lymphocytes (CD8, 400x, scale bar 

50 µm). 

 

2.3 Immunohistochemical Findings 

Immunohistochemistry of CRbCs showed strong cytoplasmic paranuclear positivity for vimentin 

in the majority (≥ 75%) of tumor cells (Figure 6C) in five cases and in significant areas (≥30%) of 

twocases (Table 13). Pancytokeratin was variously positive in all cases. Six of the seven cases were 

positive for epithelial membrane antigen (EMA). Complete loss or reduced expression of nuclear 

SMARCB1 (INI-1) (Figure 6E) was found in five and two neoplasms, respectively. β-catenin 

displayed a variable (20% – 100%) nuclear staining (Figure 6H) in five out of seven cases. p53 

(Figure 6G) was strongly expressed (≥ 60% of neoplastic cells) in all cases. The proliferative index 

(Ki-67) varied from 38–90% (average 58%). The average number of CD8+ peritumoral lymphocytes 

was 31.7 (range 5–73) and that of intratumoral CD8+ lymphocytes 17.1 (range 3–38) (Figure 6L). 

All the remaining immunohistochemical markers including CK7, CK20, CDX-2, synaptophysin, and 

desmin were negative. The four PDMCs were positive for pancytokeratin, but negative for 

vimentin (Figure 6D).  

All cases showed intact nuclear SMARCB1 (INI-1) expression. Nuclear-catenin positive staining (in 

15–80% of tumor cells) was present in two of four cases. TP53 positivity (in ≥ 60% cells) was 

observed in two of four neoplasms. The proliferation index (Ki-67) varied from 60–80% (mean 

70%). The mean number of CD8+ peritumoral lymphocytes was 52 (range 23–106) and that of 

intratumoral CD8+ lymphocytes was 6.5 (range 2–15) CK7 and CK20 were negative in all cases. 

CDX2 immunoreactivity was found in two of four cases. 
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Table 13. Main immunohistochemical results in CRbCs and PDMCs included in this study 

 

 

2.4 Molecular Findings 

MSI was observed in two out of seven (28%) CRbCs and in all four PDMCs (Table 14). CIMP analysis 

was possible in a total of nine neoplasms including six CRbCs and three PDMCs. CIMP-H was 

observed only in the three PDMCs while all the CRbCs were classified as CIMP-negative. MLH1 was 

methylated in all four MSI cancers in which the CIMP status was assessed. Somatic mutation 

analysis by next generation sequencing (NGS) sequencing was possible in all cases except for the 

CRbC 7 sample, showing high levels of DNA fragmentation and degradation. NGS analysis showed 

an average of 1,306,777 reads per sample with a median read length of 119 bp. The mean number 

of mapped reads in targeted regions per sample was 183,856, and average coverage per sample 

was 1689. BRAF and TP53 mutations were observed in almost all tumors, occurring in nine out of 

10 cases (five CRbCs and four PDMCs) and in nine out of 10 neoplasms (six CRbCs and three 

PDMCs), respectively. BRAF V600E mutation was detected in all cases except for CRbC 3 exhibiting 

a coexistence of NRAS G12D with a class III BRAF variant (i.e., BRAF G466A). TP53 mutations were 

mainly missense pathogenetic variants in 273, 245, 272, and 278 codons, while only two TP53 

frameshifts mutations were observed in one case (PDMC 1). Two KRAS mutations were found in 

two BRAF wild-type cases, whereas PIK3CA mutations were detected in one CRbC and in one 

PDMC (Table 14).  
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For most cases exhibiting co-occurrence of BRAF and TP53 mutations, TP53 mutant allelic fractions 

(mAFs) were higher than BRAF mAFs (Table 14). Interestingly, in three cases showing BRAF mAFs 

higher than TP53 mAFs, we found two simultaneous TP53 mutations (case PDMC 1) or coexistence 

of TP53 and PIK3CA mutations (cases CRbC 6 and PDMC 3).  

These findings are consistent with the “two-hits hypothesis” for tumor-suppressor genes but also 

suggest a driver role of anti-apoptotic/pro-survival pathways in these tumors that may be likely 

involved very early and together with the constitutive activation of the mitogen-activated protein 

kinase (MAP) kinase pathway. In two cases, we observed KRAS or BRAF mAFs >50% (CRbC 5 and 

PDMC 3) that were suggestive of copy number gains in wild-type alleles activation of the mitogen-

activated protein kinase (MAP) kinase pathway. In two cases, we observed KRAS or BRAF mAFs 

>50% (CRbC 5 and PDMC 3) that were suggestive of copy number gains in wild-type alleles. 

 

Table 14.  Results of MSI, CIMP and mutation analyses in CRbC and PDMC included in this study 

ID  MSI CIMP BRAF (mAF) KRAS (mAF) NRAS (mAF) PIK3CA (mAF) TP53 (mAF) 

CRbC 1 MSS no 

CIMP  

V600E (7.5) WT WT WT R273C (11.9) 

CRbC 2 MSS no 

CIMP 

V600E (22.6) WT WT WT R273C (29.7) 

CRbC 3 MSS no 

CIMP 

G466A (25.1) WT G12D (28.2) WT G245S (55.7) 

CRbC 4 MSS no 

CIMP 

WT Q61K (19.7) WT WT R273C (30.9) 

CRbC 5 MSS no 

CIMP 

WT G13D (86.5) WT WT P278A (56.9) 

CRbC 6 MSI no 

CIMP 

V600E (21.2) WT WT H1047R (29.1) R273C (22.2) 

CRbC 7 MSI - V600E* - - - - 

PDMC1  MSI CIMP-H V600E (43.31) WT WT WT P152fs*18 (37.9) 

V73fs*50 (34.3) 

PDMC2 MSI - V600E (21.85) WT WT WT WT 

PDMC3 MSI CIMP-H V600E (68.89) WT WT R93Q (33.6) 

M772I (39.5) 

V272M (33.1) 

PDMC4 MSI CIMP-H V600E (43.27) WT WT WT Y163C (41) 

Legend: -: not available data; mAF: mutated Allelic Fraction; * this mutation was found using Real-Time PCR 

Easy ® BRAF kit (Diatech Pharmacogenetics, Jesi, Italy). 

 



64 
 

 

 

 

 

 

 

 

 

DISCUSSION 

 

 

 

 

 

 

 

 

 

 



65 
 

BRAF mutations are reported in about 10% of metastatic CRCs and are almost exclusively non-

overlapping with RAS mutations. In most cases V600E (1799 T-A nucleotide change) mutations are 

observed, which confer constitutive kinase activity and lead to aberrant activation of MAPK 

pathway [2, 4, 24]. 

BRAF-mutated CRCs constitute a distinct subgroup with specific characteristics as underlined by 

their peculiar gene expression signature and have also been associated with MSI and CIMP 

phenotype. Frequent clinicopathological features of these tumors include: female sex, right side, 

advanced age at diagnosis, stage IV at onset, poor prognosis with less than 1 year life expectancy, 

higher rate of nodal and peritoneal metastases and low rate of lung involvement, mucinous 

histology and poor differentiation [2,3,40,41].  

Although it is clinically considered an unique entity, increasing evidences by literature report a 

significant clinical and biological heterogeneity.  

Around 20% of patients with BRAFV600E mCRC patients survives beyond 24 months from the 

initial diagnosis. The reason for this prognostic heterogeneity has not been identified yet. 

According to molecular consensus subtypes (CMS), BRAFV600E mutant mCRC are identified for the 

vast majority in the CMS1 subgroup while the few remaining are scattered across the other CMS 

subtypes. However, CMS classification does not explain this prognostic heterogeneity. 

Barras and coworkers from a cohort of 218 BRAFV600E mutant CRC identified two subtypes of 

disease with different prognosis: BM1 (BRAF mutant 1) and BM2 (BRAF mutant 2) [34]. These two 

subgroups were characterized by substantial differences both at transcriptomic and proteomic 

level and they are independent from patients’ gender, sidedness, MMR status and PI3K status. 

BM1 is less common (1/3 of cases) and is characterized by strong activation of AKT/mTOR, KRAS, 

4EBP1 and epithelial-mesenchymal transition features. On the other hand, BM2 represent most of 

cases and it is characterized by cell cycle deregulation, high level of CDK1 and low level of cyclin 

D1. Despite prognostic subdivision, this classification has no direct implication for the BRAFV600E 

treatment decision algorithm. In addition to molecular characterization, a retrospective platform 

of 395 BRAFV600E mutant mCRC led to the identification of three different prognostic subgroups 

based on the use of clinical data [177]. 

Even if this classification Even if this classification might have potential implication for treatment 

decision and for guiding translational research, its integration with molecular classification such as 

BM1/BM2 or CMS is warranted [177]. 
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BRAF mutations do not cause the same functional effect and they do not have the same clinical 

impact [5]. Little is known about non-V600E mutations but studies conducted on these uncommon 

mutations (especially at 594 and 596 codons, detected in <1% of mCRC) identify a rare and 

unexplored molecular subtype of mCRC with clinical and pathological features very different from 

BRAF V600E mutated and with surprisingly better clinical outcome even when compared with non-

mutated ones. Unlike BRAFV600E-mutated CRC, tumors with mutations in codons 594 and 596 

exhibited better overall survival, were less likely to have high-grade or right-sided tumors, are not 

associated with microsatellite instability [5, 46]. 

Moreover, based on MMR status, it seems that MSI/BRAF-CRC and MSS/BRAF CRC represent two 

different subgroups of the same disease. Indeed, although both subsets likely derive from the 

serrated pathway in which BRAF mutation acts as a driver, MSS/BRAF tumors share many typical 

aspects of traditional colorectal tumors which develop from the conventional pathway [6,7,45] 

The conventional pathway is characterized by KRAS mutations, CIN, absence of CIMP and of MMR 

defects.  

At present two main serrated pathways have been described, namely sessile and traditional ones, 

which differ in the lesions encountered along the oncogenic process: SSA (sessile serrated 

adenoma) and TSA, (traditional serrated adenoma), respectively. On the one hand, SSAs are 

characterized by BRAF mutations, CIMP-H and MLH1 promoter methylation. On the other hand, 

TSA lesions harbour KRAS or BRAF mutations and can be MSS, CIMP-H or CIMP-L [42]. 

From a clinical point of view, MSI is usually considered a molecular marker of a favourable 

prognosis regardless of BRAF/KRAS mutations and CIMP status. It is associated with a lower 

frequency of late-stage diseases [9, 42]. While MSI CRCs at early stage usually show a better 

prognosis and longer DFS compared to MSS tumors, related to the increased immune response in 

MSI tumor, the prognostic benefit appears lost in advanced stage [10,11,12]. It suggests that the 

detrimental prognosis seen in late stage MSI cancers is driven by presence of BRAF mutation [45]. 

MSI test is recommended for patients with stage II CRC to evaluate chemotherapy-based 

strategies. In fact, 5-fluorouracil treatment has no positive effect on survival in patients with MSI 

CRCs.  

MSS cancers, developing from traditional serrated adenomas (TSA) or sessile serrated adenomas 

(SSA) is usually related to a poor prognosis in both early and metastatic setting. Several studies 

reported that MSS CRCs, associated with BRAF mutations, show higher mortality and decreased 

OS with respect to both MSI/BRAF mutated and MSS/KRAS mutated cancers. Thus, MSI-H CRC 
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patients without the BRAF mutation demonstrated the best prognosis, while MSS/BRAF V600E 

patients exhibited the worst; MSS/BRAF-WT and MSI/BRAF V600E CRCs seems to have an 

intermediate prognosis [42, 45]. 

To our knowledge, no clinical-pathological studies have been reported in the literature that have 

comprehensively characterized BRAF CRC according to MMR status, highlighting the 

histopathological, molecular and clinical characteristics of the BRAF MSI groups compared to MSS 

CRCs. 

We performed a comprehensive clinicopathologic analysis of a well-characterized series of 59 

BRAF-mCRC cases to highlight any differences between MSI and MSS tumors. Our series included 

22 MSI and 37 MSS neoplasms. As expected, we found that MSI was significantly more frequent in 

CRC from the right colon, with a poor grade of differentiation and abundant TILs. In contrast, MSS 

BRAF-mCRC cases were characterized by a striking stromal reaction, immunohistochemical 

accumulation of p53, and a high percentage of neuroendocrine marker expression (17%). 

Neuroendocrine differentiation, detected by greater synaptophysin expression, was significantly 

more frequent in MSS tumors than in the MSI tumors. This finding is new and highlights the 

importance of evaluating the potential for neuroendocrine differentiation in BRAF-mCRC to 

identify a distinct subset of tumors with different prognosis and to define tailored treatments for 

these patients. To date, neuroendocrine differentiation has been reported in BRAF-CRC at widely 

variable frequencies, ranging from 5% to 51.5% and is considered a negative prognostic marker. 

Although no association between the outcome and MANEC histologic type was observed in our 

series, likely for the limited number of these tumors (7 cases), our data are in line with the recent 

hypothesis that the BRAF mutation might be an oncogenic driver of neuro endocrine carcinoma of 

the gastrointestinal tract [18, 19, 20] 

Since the prognostic and predictive implications of TILs and inhibitory PD-1/PD-L1 proteins in 

mCRC, especially in BRAF-CRCs, are poorly understood and the clinical relevance of a pronounced 

host immune reaction remains elusive including MSI and MSS, a second purpose of our study was 

to characterize PD-L1 expression in the context of TILs and Crohn-like lymphoid reaction by 

comparing MSI and MSS BRAF-mCRC. In our study, MSI tumors exhibited a "hot phenotype," with 

rich intra- and peritumoral TILs mainly composed of a high CD8 T-cell content, demonstrated by a 

strong positive correlation between CD3 and CD8 immunoreactivity with both ILI and PLI. In 

contrast, no significant differences between the 2 groups were found for the Crohn-like lymphoid 

reaction. Moreover, most PD-L1+ tumors also contained TILs, and MSI cases were more likely to be 
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associated with PD-L1 expression in the TCs than were MSS tumors. Univariate analysis 

demonstrated that the presence of MSI and high CD8 T-cell content were associated with a 34% 

and 33% decrease in the hazard of mortality, respectively.  Also, the combined presence of MSI 

and a high CD8 T-cell content decreased the hazard of mortality by ≤ 63%, which was only slightly 

decreased after multivariable adjustment. No other variable was associated with improved 

prognosis on univariate or multivariate analysis. Although further studies are needed to confirm 

our data, these results have demonstrated that a pronounced host immune reaction, intratumoral 

CD8 T-cell, and the presence of MSI might have an independent prognostic role. These results are 

in agreement with previous data obtained from large series of patients with stage I to III CRC and 

suggest the importance of a simultaneous evaluation of MSI status and CD8 T-cell content in BRAF-

mCRC to identify a subgroup of biologically less aggressive tumors. At present, conflicting data 

have been reported regarding the prognostic role of PD-L1 expression in BRAF-mCRC and no 

information is available regarding a possible association between the outcomes and CD3+/CD8+ 

lymphocytes in these tumors. Some investigators have shown that the expression of PD-L1 on 

tumor cells and lymphocytes was associated with better outcomes [158 – 160] but others have 

reported that PD-L1 expression is a negative prognostic marker [161]. Masugi et al [162] analyzed 

PD-L1 expression in a series of 823 CRC cases at all stages. BRAF mutation was present in 15% of 

the cases, and they found that PD-L1 expression was greater in MSS than in MSI tumors. However, 

its expression did not correlate with CD3+/CD8+ lymphocytes or with prognosis. In contrast, 2 

recent studies analyzed 454 and 181 CRC tumors and found that PD-L1 expression was associated 

with BRAF mutation and several histological features, including medullary histotype, a poor degree 

of differentiation, and the presence of a rich inflammatory infiltrate [162]. 

The BRAF-mCRC is clinically characterized by dismal prognosis and poor response to standard 

treatment. All the published series recognised that BRAFV600E mutation is a strong negative 

prognostic determinant in mCRC and BRAF-mutated metastatic patients have an extremely poor 

life-expectancy of around 12 months [2, 40,41,43, 76]. 

Although numerous studies show that BRAF V600E mutation is associated with reduced survival 

(OS, DFS or cancer specific survival) especially in MSS tumors. Its role in MSI is not clearly defined. 

Intensified strategies of first line chemotherapy have been invastigated for BRAF CRC patients who 

mostly do not receive second line treatments. 

The TRIBE trial showed that the combination of FOLFOXIRI regimen (5-fluorouracil, leucovorin, 

oxaliplatin, irinotecan) plus bevacizumab is associated with a better outcome than the 
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combination of FOLFIRI and bevacizumab (leucovorin, 5-fluorouracil, irinotecan) as first line 

therapy: 16 patients with BRAF-mutant tumors treated with FOLFOXIRI + bevacizumab had a 

median OS of 19 months, with better outcomes, although not statistically significant, in 

comparison of the combination of FOLFIRI + bevacizumab (10.7 months).  Thus, FOLFOXIRI plus 

bevacizumab is now considered the standard of care for the first line treatment for BRAF CRC 

patients with good performance status [22]. Howewer, the TRIBE-2 study and a meta analysis have 

recently demonstrated no benefit from this regimen if compared to standard doublet cytotoxic 

combinations [172, 173]. 

In our series, the prognosis of the patients was poor with a median survival of 9 months. As 

expected, among the patients who had received active treatment, the median survival was 12.5 

months. In contrast, the patients who had received palliative care at diagnosis had a median 

survival of 4 months. Only a few patients had received a triplet regimen plus bevacizumab, which 

according to the TRIBE study results seems to be the best treatment for these patients. 

Furthermore, many patients had received anti-EGFR therapy during the first or subsequent 

treatment lines.  

Regarding response to anti-EGFR, the predictive role of BRAF mutation is still debated in literature 

[2]. In particular, in the meta-analysis that included two second-line trials and two trials involving 

chemorefractory patients, the lack of a significant efficacy benefit by anti-EGFR monoclonal 

antibodies (mAbs) over standard chemotherapy alone in patients with BRAF mutated tumours was 

considered to support the assessment of tumour BRAF mutation status before the initiation of 

anti-EGFR therapy. Conversely, other recent meta-analysis, concluded that there is currently 

insufficient evidence to definitively consider BRAF mutation a negative predictive biomarker of 

survival benefit from anti-EGFR mAbs for mCRC. The benefit in OS and PFS for BRAF mutated 

tumours treated with anti-EGFR mAbs may be smaller, but further data are required to clarify this 

observation [126, 127]. 

While BRAF inhibitors have produced impressive response rates of ~60–80% in melanoma, 

disappointing results were obtained in BRAF mutant mCRC patients. [2] 

These differences suggest that several resistance mechanisms, primitive or acquired, rapidly 

emerge in CRC. Preclinical data suggests that BRAF inhibitors alone have limited efficacy because 

of a compensatory feedback reactivation of EGFR and its downstream pathways such as MEK and 

ERK. Thus, combination strategies have been developed using combinations of BRAF inhibitors in 
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combination with MEK and EGFR inhibition, and in some cases conventional cytotoxic therapy [2, 

131]. 

Recently, the results of the phase III BEACON trial were published, in which 665 patients with pre-

treated BRAF-mutated mCRC were randomized to receive a triple combination of encorafenib, 

cetuximab, and binimetinib (anti-BRAF, anti EGFR and MEK inhibitor, respectively) vs. encorafenib 

and cetuximab vs. irinotecan/FOLFIRI and cetuximab. The mOS was 9.0 months for the triplet 

combination vs. 5.4 months for standard therapy and 8.4 months for doublet. In the triplet and 

doublet arms the ORR was 26% and 20%, while mPFS was 4.3 months and 4.2 months, 

respectively. This is the largest cohort that has ever been studied and the first phase III trial to 

demonstrate a survival and response advantage in the setting of pre-treated BRAF-mutated CRCs 

[27]. An ongoing study (ANCHOR-CRC) is investigating the effects of the same triplet therapy as a 

first-line treatment for patients with BRAF-mutated CRC [2, 138]. 

Since targeting BRAF V600E seems challenging and multiple mechanisms of acquired resistance 

are rapidly emerging, including activation of the PI3K / AKT and WNT pathways, novel combination 

strategies with target therapies are ongoing and results are awaited [2] 

Moreover, given the strong association of BRAF-V600E mutation with MSI, immunotherapy (such 

as immune-checkpoint inhibitors like pembrolizumab or nivolumab) could play an important role 

in this particular setting. In the phase II study CHECKMATE 142 treatment with nivolumab 

monotherapy, as well as the combination of nivolumab plus ipilimumab, demonstrated 

encouraging results with durable responses in patients with dMMR mCRC (objective response rate 

was 25.5 and 33.3%, respectively). As expected, no antitumor efficacy was observed for pMMR 

tumors (n = 20). Among patients with dMMR mCRC (n = 100), 17 (17%) harbored BRAFV600E 

mutation. Interestingly, clinical activity was observed regardless of the BRAF and KRAS mutational 

statuses and PD-L1 expression [143]. 

In our series, no patient had received immunotherapy. Although the Food and Drug 

Administration has approved pembrolizumab and nivolumab for MSI mCRC, this promising 

treatment option has not yet been approved in Italy and is not currently available except for in 

clinical trials. 

Over the past decade, BRAF mutations have garnered a great deal of attention both because the 

BRAF/MEK inhibitors have revolutionized the melanoma treatment, obtaining a magnificent 

clinical success, and because BRAF mutation is involved as a driver in several kinds of cancers such 

as NSCLC, thyroid cancer, hairy cell leukemia and other very rare tumors. Thus, targeting BRAF 
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appears a potential therapeutic chance for aggressive and unknown neoplasms without efficacy 

standard treatments [14] 

The molecular landscape of colorectal cancer is a very heterogeneous and includes different 

subtypes characterized by specific morphological and molecular alterations [2]. Interestingly, BRAF 

mutation has been found in a very rare and lethal entity of CRC, known as colorectal rabhoid 

carcinoma (CRbC) of which only 39 cases have been reported in literature [28]. In addition, CRbCs 

are often misclassified as poorly differentiated CRC and consequently underdiagnosed. 

The diagnostic hallmark of these neoplasms is the presence of rhabdoid cells characterized by 

round eosinophilic aggregates of intermediate filaments that displace the nucleus to the cell 

periphery. Other consistent morphologic features are: the non-cohesive growth of tumor cells, the 

scarcity of tumor stroma, the abundance of tumor infiltrating neutrophils, and the scarcity of 

lymphocytic infiltration. The main immunohistochemical findings are: the expression of vimentin 

and pancytokeratin within filamentous cytoplasmic inclusions, the loss of membranous E-cadherin, 

the nuclear dislocation of β-catenin, the lack or reduced expression of important markers of 

colonocyte differentiation such as CK20 and CDX2, the marked nuclear p53 accumulation, and the 

high proliferative Ki-67 index [30]. 

The majority of CRbCs consist solely of rhabdoid cells and are indicated as “pure”, while other 

CRbCs combine a rhabdoid component with an adenocarcinoma component most frequently focal 

and confined to the tumor periphery and are designated as “combined”. The presence of a 

transitional zone in combined CRbCs with a continuum between rhabdoid and non-rhabdoid cells 

indicates that rhabdoid cancers cells (RbCs) might have originated from dedifferentiated primary 

colorectal cancer [144]. 

The most relevant immunohistochemical finding for the diagnosis of CRbC is the coexpression in 

tumor cells of pancytokeratin and vimentin. This was found in all CRbCs but not in PDMCs 

examined. Coexpression of a mesenchymal marker such as vimentin and epithelial markers is one 

of the phenomena that characterize the process of epithelial–mesenchymal transition (EMT) 

[163]. This is a unique process in which cells lose epithelial features and acquire mesenchymal 

properties [164]. The process of EMT is characterized by the reduction of epithelial markers and 

increase of mesenchymal markers [165]. E-cadherin is the most important mediator of cell 

adhesion in epithelial tissues and loss of E-cadherin is a crucial step in EMT. During EMT, loss of E-

cadherin is associated with the release of βcatenin, which is consequently translocated to the 

nucleus where it activates the WNT signaling pathway. In colorectal cancer, altered expression of 
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E-cadherin and β-catenin and progressive increase of vimentin in late stages are significantly 

associated with aggressive tumor behaviour and, furthermore, confer resistance to cancer drugs 

[166]. In addition, in a recent study [167] it has been demonstrated that the gene expression 

profile of tumor budding regions in CRC closely matches with consensus molecular subtypes 4 

(CMS4) mesenchymal subtype, while the bulk presents a CMS2 epithelial profile. 

Previous immunohistochemical results demonstrating loss of membranous E-cadherin in CRbC [28] 

and our results showing β-catenin nuclear localization and loss of colonic epithelial markers (i.e., 

CK20 and CDX2) support the pathogenetic involvement of EMT as an essential player in the 

heterogeneous make-up of CRbC. In addition, the loss of membranous E-cadherin and β-catenin 

suitably explains the discohesive histologic pattern of CRbC. Cells undergoing EMT maintain the 

same genomic background in both mesenchymal and epithelial states, but during the progression 

of EMT, the gene expression profile significantly changes. A series of protein complexes, known as 

chromatin remodelers, are crucial to mediate this event as they can slide, destabilize, or relocate 

nucleosomes in an ATP-dependent manner [168]. The SWI/SNF mating-type switching (SWI) and 

sucrose nonfermenting (SNF) subfamily has specifically been investigated in malignant pediatric 

rhabdoid. These tumors are highly lethal neoplasms of the kidney and brain where SMARCB1 (INI-

1) is frequently mutated either at germline or at somatic level [169]. To date, the role of SMARCB1 

(INI-1) inactivation remains to be determined in CRbC and only few studies reported SMARCB1 

(INI-1) immunohistochemical loss in a small subset of CRbCs that were frequently BRAF-mutant, 

MSI, and CIMP [28, 30, 150]. These data allowed to hypothesize that SMARCB1 (INI-1) may occur 

as a secondary molecular event during EMT in a subset of CRCs characterized by BRAF V600E 

mutation, MSI, and CIMP, virtually conferring a rhabdoid phenotype [30]. In line with this 

hypothesis, Wang et al. [149]. demonstrated that loss of SMARCB1 (INI-1) expression occurs at 

least focally in 0.46% of 3051 CRCs and is associated with higher grade, larger tumor size, poorer 

survival, MSI, and BRAF V600E mutation. 

In this context, our study sheds some light on the biological features of this rare entity thanks to a 

genetic/epigenetic comparative analysis of CRbCs and PDMCs showing BRAF V600E as a common 

prominent genetic feature. A first important finding of our analysis was that CRbC mainly included 

BRAF mutant/MSS cancers without CIMP. By contrast, PDMC only comprised BRAF mutant/MSI 

and CIMP cancers. Two BRAF mutant/MSI cases were observed among CRbCs and in one case we 

could exclude CIMP. Interestingly, both these cases showed a reduced SMARCB1 (INI-1) expression 

but not a complete loss of the protein as we found in the remaining five CRbCs. 
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For the first time, with this work, we suggest that BRAF mutant/MSS cancers include the rare 

entity of CRbCs, characterized by a strong activation of EMT and complete loss or reduced 

expression of SMARCB1 (INI-1). Moreover, a recurrent finding of CRbCs in this study, was the 

abundance of tumor-infiltrating neutrophils which contribute to the formation of the tumor 

microenvironment. Although neutrophils were at first considered to possess defensive functions 

against cancerous cells, it has been demonstrated that some subtypes of neutrophils, known as 

tumor-associated neutrophils (TANs) possess a tumor-supporting function [170]. TANs contribute 

to tumor invasion and angiogenesis through production of matrix metalloproteinases, vascular 

endothelial growth factor (VEGF), and hepatocyte growth factor (HGF). Interestingly, intratumoral 

neutrophils in CRCs have been found to correlate closely with a malignant phenotype and to 

represent an independent factor of poor prognosis for the patients [171]. 

Although BRAF mutant/MSS cancers display hypermethylation events that commonly characterize 

all BRAF mutant cancers, this subset of tumor shows lower frequency of CIMP than BRAF/MSI 

cancers [15, 17]. In line with this observation, CIMP was not found in CRbC in contrast to PDMC, 

analyzing the conventional panel of genes suggested to identified CIMP in tumors of the serrated 

pathways. Although this result does not preclude the presence of gene hypermethylation in 

CRbCs, the use of this gene panel may be useful to distinguish them from tumors of the classical 

serrated pathway. 

Finally, TP53 mutation has been correlated with advanced stages and with conventional pathway 

in CRCs. BRAF mutant/MSS cancers have been found to have a comparably high rate of TP53 

mutation as the BRAF wild-type cancers, whereas BRAF mutant/MSI were confirmed to have a low 

rate of mutation [15]. In our study, all but one tumor showed TP53 mutation and no specific 

differences we observed comparing CRbCs and PDMCs. An interesting observation was that TP53 

mAFs were often higher than BRAF mAF in most of the tumors analyzed. These data emphasize a 

driver role of TP53 in the early phases of the development of these tumors suggesting that in 

addition to the constitutive activation of the MAP kinase pathway through BRAF/RAS mutations, 

simultaneous upregulation of anti-apoptotic pathways may be crucial for the rapid and aggressive 

growth of these tumors. 

Rhabdoid carcinomas seem to be resistant to conventional therapy used for gastrointestinal 

neoplasms (FOLFOX, FOLFIRI scheme associated with monoclonal antibody). Moreover, 

anthracycline based regimes generally used in sarcoma do not seem effective. The co-presence of 
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BRAF and P53 mutations in CRbCs suggests the possible therapeutic role of a double block acting 

on BRAF and p53. 

In summary, CRbCs are characterized by BRAF and less frequently KRAS mutations co-occurring 

with TP53 mutations. Coexpression of pancytokeratin and vimentin, dense neutrophilic infiltration, 

loss/reduced expression of nuclear of SMARCB1/INI, and low frequency of CIMP are useful 

markers to recognize these rare aggressive tumors. Elucidation of the genetic and epigenetic 

landscape alterations of these tumors is crucial to hypothesize specific treatments with novel 

biological agents such as MAPK inhibitors and small molecules blocking p53 degradation and 

epigenetic drugs. 
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The BRAFV600E mutation is a strong predictor of poor prognosis in mCRC and associated with 

resistance to standard chemotherapeutic regimens. Although the best treatment has not yet been 

identified, an aggressive strategy involving triplet chemotherapy and anti VEGFR is currently the 

standard of care for BRAF CRC patients with good performance status. BRAF-targeted therapies 

have shown insufficient efficacy when used alone, but their combination with other targeted 

therapies such as anti-EGFRs, MEK inhibitors or PI3K inhibitors seems promising.  

The results from our study supports the idea that BRAF-mCRC tumors are not a single entity but 

that different clinical, histologic, immunophenotypical, and molecular characteristics allow for the 

recognition of distinct tumor subgroups. The significant heterogeneity of this subtype justifies the 

efforts for increasingly personalized therapeutic approaches. 

 Although our results require validation against independent data, the present study has 

demonstrated a high frequency of MANECs among MSS BRAFmCRC cases, supporting previous 

data on BRAF mutation as oncogenic driver of neuroendocrine carcinoma, and suggests that 

simultaneous evaluation of MSI status and CD8 T-cell content could be a useful strategy for 

identifying a subgroup of patients with a better prognosis and potential eligibility for cancer 

immunotherapy drugs. 

The BRAF mutation has been detected in several types of cancer, representing a potential target of 

tailored therapies for aggressive neoplasms. It has been found in CRbCs, which are highly 

aggressive and very rare cancers with no specific protocols available with proven efficacy. 

Although CRbCs show a wide phenotypic heterogeneity and molecular complexity, our study 

suggests that an integrated analysis of morphological, immunohistochemical, and molecular traits 

helps to recognize these uncommon tumors. Specifically, co-occurrence of BRAF and TP53 

mutations, simultaneous expression of pancytokeratin and vimentin, dense neutrophilic 

infiltration, loss/reduced expression of nuclear of SMARCB1 (INI), and low frequency of CIMP are 

valuable markers to identify CRbCs. Elucidation of their genetic and epigenetic landscape will be 

critical in guiding the clinical development of personalized therapeutic treatments. 

Finally, the place of each of the therapeutic combinations described and the way to sequence 

these new options remains an open question today. Further investigations are therefore justified, 

hence the need to promote the enrolment of BRAF-mt mCRC patients in clinical trials. 
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N° References
Year of 

publication
Age Gender

Size 

(cm)
Site Clinical presentation Type

Site of 

metastasis
Treatment Outcome*

1 Bak and Teglbjaerg (Case 1) 1989 86 F 12 C retrocecal abscess Pure L Palliative 1 w

2 Bak and Teglbjaerg (Case 2) 1989 82 M 5 LC weight loss; abdominal pain Pure - Surgery 1 m

3 Chetty and Bhathal 1993 72 F 6 C abdominal mass Composite L, N Surgery 3 m

4 Yang et al. 1994 75 M 15 RC abdominal mass Pure N Surgery 2 w

5 Macak and Kodet 1995 50 M 6 R rectal bleeding; constipation Composite N Surgery+RCT 6 m

6 Marcus et al. 1996 84 F 7 LC abdominal mass Pure None Surgery 12 m (alive)

7 Nakamura et al. 1999 76 M 14 C Abdominal pain Pure L, N Surgery 3 m

8 Kono et al. 2007 66 M 13 C Abdominal mass, anemia Composite P, N Surgery 1.5 m

9 Oh et al. 2008 69 F  3.5 LC Blood in stools Composite N, L - 6 m

10 Mastoraki et al. 2009 62 F 10 LC Abdominal pain Pure L Surgery 4 m

11 Pancione et al. 2011 71 F 10 C Abdominal pain Pure P, L, N Surgery+CT+Bev+Cet 8 m

12 Han et al. 2010 23 F 6 R

Abdominal pain, bloody 

diarrhea Pure None Surgery+CT 17 m (alive)

13 Remo et al. 2012 73 F 10 RC Rectal bleeding Composite N CT 6 m

14 Lee et al. case 1 2013 62 M 4.5 LC Occult blood in stool Composite N Surgery+CT 36 m (alive)

15 Lee et al. case 2 2013 83 M 6.5 R Rectal mass Composite L, LU, N Surgery 1 m

16 Samalavicus et al. 2013 49 M 7 R

Abdominal pain, weight 

loss Composite N, L Surgery+CT 7 m

17 Baba et al. 2014 45 F - LC Abdominal pain - P Surgery 6 w

18 Romera Barba et al. 2014 77 M - LC Abdominal pain Pure P, N, L Surgery 2 m

19 Agaimy et al. 2014 79 M 9 C - Pure N 6 m

20 Moussaly et al. 2015 87 F 12 RC Abdominal mass Pure P, N, SP, Lu Surgery 2 m

21 Cho et al. 2015 73 M 4 C Abdominal pain Composite P, L, N, B 2 m

22 Kalyan et al. 2015 31 F 7 C Pain, weight loss Composite L, N, B Surgery+RCT 4 m

23 Dhavaleshwar et al 2015 31 F 9 C Abdominal pain Pure L, N Surgery+CT 4 m

24 Agaimy et al. (Case1) 2016 32 M - - - Composite - Surgery -

25 Agaimy et al. (Case2) 2016 34 F - RC - Composite L Biopsy -

26 Agaimy et al. (Case3) 2016 50 M - RC - Composite - Surgery -

27 Wang et al. (Case 1) 2016 56 F 7,5 C - Composite N 15 m

28 Wang et al. (Case 2) 2016 76 M 8 RC - Composite N 13 m (alive)

29 Wang et al. (Case 3) 2016 72 F 6,5 LC - Pure N 5 m

30 D'Amico et al. 2018 65 M 10 RC Abdominal pain, weakness Pure None Surgery 48 m (alive)

31 Remo et al. Case 1 (RC6) 2018 63 M -  LC - - N - 1 m

32 Remo et al. Case 2 (RC7) 2018 71 F - C - - N 8 m

33 Remo et al. Case 3 (RC8) 2018 71 F - R - - N 26 m (alive)

34 Remo et al. Case 4 (RC9) 2018 76 F - RC - - None 6 m (alive)

35 Remo et al. Case 5 (RC10) 2018 65 F - RC - - None 7 m

36 Remo et al. Case 6 (RC11) 2018 81 M - RC - - N 33 m (alive)

37 Remo et al. Case 7  (RC12) 2018 73 M - RC - - N 6 m (alive)

38 Remo (Seok) 2018 63 M - C - Pure NS -

39 Remo (Hoon-kuy) 2018 69 F - LC - Composite None 6 m 

40 This study (84-1522) 2019 63 F 10 RC - Pure N Surgery 2 m

41 This study (86-3722) 2019 76 F 4 LC - Pure - Surgery+CT 7 m

42 This study (87-3203) 2019 85 M 6 LC - Pure N, L Surgery 2 m

43 This study (99-17491) 2019 65 M 6 C - Pure N Surgery 216 m (alive)

44 This study (08-1679) 2019 63 M 6 LC - Pure N Surgery 10 m

45 This study (05-2235) 2019 64 M 6 RC - Composite - Surgery -

46 This study (HSR) 2019 77 F 7 RC - Composite None Surgery 187 m (alive)

Table 5: Reported colorectal carcinomas with Rhabdoid features

Legend: -: Not Available; Not Specified: NS; Cecum: C; Right colon: RC; Left colon: LC; Rectum: R; Lymph nodes: N: lymph nodes; Liver: L; Bone:B; Peritoneum:P; Spleen:SP; Lung: Lu; Month: m; 

Week: w; CRT: Chemioradiotherapy adjuvant; CT: Chemiotherapy; Bev: Bevacizumab; Cet: Cetuximab. *, time from diagnosis to death was reported (or to the last follow-up if the patient was alive)
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Table 8. Antibodies Used and Immunohistochemical Protocols 

Primary Antibody Clone Working Solution Treatment Manufacturer 

CD3 (rabbit monoclonal) 2GV6 Pure MW 5 min’×2 CB, pH 6 Ventana 

CD8 (rabbit monoclonal) SP57 1:2 MW 5 min’×2 CB, pH 6 Ventana 

PD-L1 (rabbit monoclonal) SP142 1:40 MW 5 min’×4 EDTA, pH 8 Spring 

p53 (mouse monoclonal) DO-7 1:500 MW 5 min’×4 CB, pH 6 Dako 

CDX2 (mouse monoclonal) CDX2-88 1:50 MW 5 min’×4 CB, pH 6 Biocare 

Ki-67 (mouse monoclonal) MIB-1 1:100 MW 5 min’×4 CB, pH 6 Dako 

Synaptophysin (rabbit polyclonal) Polyclonal 1:2 MW 5 min’×4 CB, pH 6 Ventana 

EMA E29 1:100 MW 5 min’×2 CB, pH 6 Dako 

CK AE1/AE3 PCK26 1:2 MW 5 min’×4 CB, pH 6 Ventana 

CK7 SP42 1:2 MW 5 min’×2 CB, pH 6 Ventana 

CK20 KS20.8 1:100 MW 5 min’×2 CB, pH 6 Dako 

b-catenin 14 Pure MW 5 min’×4 CB, pH 6 Ventana 

SMARCB1(INI-1) MRQ27 Pure MW 5 min’×6 CB, pH 6 Ventana 

Vimentin V9 Pure MW 5 min’×2 CB, pH 6 Ventana 

Abbreviations: CB=citric acid antigen retrieval buffer; EDTA =ethylenediaminetetraacetic acid; MW= 

microwave antigen retrieval solution. 

Immunohistochemistry was performed manually; formalin-fixed paraffin-embedded sections were 

mounted on poly-L-lysine–coated slides, deparaffinized, and hydrated through graded alcohol to 

water. Endogenous peroxidase activity was quenched in 3% hydrogen peroxide in water for 20 

minutes; proteolytic treatment was performed using different antigen-retrieval solutions (CB, pH 

6; or EDTA, pH 8) in a domestic 750-kW microwave oven. Primary antibodies were applied 

overnight at 4°C and immunostained using the avidin-biotin-peroxidase complex (ABC) method or 

the MACH4 system. For ABC method, the sections were incubated with biotinylated anti-mouse 

immunoglobulins and ABC complex, each for 1 hour at room temperature. The immunoreaction 

was developed with 3.3′-diaminobenzidine tetrahydrochloride as chromogen and nuclei were 

counterstained with hematoxylin. Finally, the sections were dehydrated. 
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Table 9. List of the eight gene promoters analyzed for hypermethylation status using SALSA 
MS-MLPA ME042-C1 CIMP Kit 

ME042-C1  PROBES Length  Chr band  hg18   CUT-OFF FOR METHYLATION 

RUNX3-2 346 01p36.11 01-025.128720 0.39 

RUNX3-2 371 01p36.11 01-025.128920 0.29 

RUNX3-2 258 01p36.11 01-025.129596 0.41 

MLH1-1  355 03p22.2 03-037.009361 0.41 

MLH1-1  463 03p22.2 03-037.009621 0.36 

MLH1-1  130 03p22.2 03-037.009769 0.4 

MLH1-1  178 03p22.2 03-037.010228 0.38 

NEUROG1-1  166 05q31.1 05-134.898938 0.45 

NEUROG1-1  283 05q31.1 05-134.899244 0.41 

NEUROG1-1  212 05q31.1 05-134.899351 0.45 

NEUROG1-1  391 05q31.1 05-134.899479 0.37 

NEUROG1-1  364 05q31.1 05-134.899537 0.32 

NEUROG1-1  201 05q31.1 05-134.899663 0.34 

CDKN2A-2  232 09p21.3 09-021.964676 0.34 

CDKN2A-2  184 09p21.3 09-021.965200 0.4 

CDKN2A-1  335 09p21.3 09-021.984269 0.36 

CDKN2A-up  195 09p21.3 09-021.985277 0.37 

IGF2-4  172 11p15.5 11-002.117590 0.39 

IGF2-3  418 11p15.5 11-002.118681 0.34 

IGF2-3  141 11p15.5 11-002.118895 0.47 

CRABP1-1 206 15q25.1 15-076.419820 0.37 

CRABP1-1  310 15q25.1 15-076.420033 0.36 

CRABP1-2  265 15q25.1 15-076.420493 0.41 

CRABP1-2  318 15q25.1 15-076.420701 0.36 

SOCS1-2  238 16p13.13 16-011.256544 0.32 

SOCS1-2 155 16p13.13 16-011.256960 0.33 

SOCS1-1  399 16p13.13 16-011.257200 0.33 

SOCS1-1  300 16p13.13 16-011.257552 0.29 

CACNA1G-1  273 17q21.33 17-045.993509 0.39 

CACNA1G-1  250 17q21.33 17-045.993745 0.29 

CACNA1G-1  218 17q21.33 17-045.993972 0.38 
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Table 12. Pearson correlation coefficient for PDL-1, CD3 and CD8 at diagnosis 

Variable  PD-L1 TC PD-L1 PLI PD-L1 ILI CD3 PLI  CD3 ILI  CD3 II  CD8 PLI  CD8 ILI  

PD-L1 TC 1,000       NA NA NA     NA    NA     NA    NA 

PD-L1 PLI 0,371 1,000 NA NA     NA    NA     NA    NA 

PD-L1 ILI 0,603 0,632 1,000 NA     NA    NA     NA    NA 

CD3 PLI  0,504 0,261 0,210 1,000     NA    NA     NA    NA 

CD3 ILI  0,726 0,370 0,546 0,605 1,000    NA     NA    NA 

CD3 II  0,228 0,105 0,236 0,372 0,238 1,000     NA    NA 

CD8 PLI  0,645 0,234 0,265 0,822 0,727 0,387 1,000   NA 

CD8 ILI  0,813 0,364 0,539 0,591 0,935 0,265 0,740 1,000 

 

Abbreviations: ILI = intratumoral lymphoid infiltrate; NA =not applicable; PD-L1 = programmed cell death 

ligand 1; PLI = peritumoral lymphoid infiltrate; TC = tumor cell. aStatistically significant correlation. 
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