
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347487822

Early and Quick Function Points Analysis: Evaluations and Proposals

Preprint · December 2020

DOI: 10.13140/RG.2.2.32720.33286

CITATIONS

0
READS

162

2 authors:

Some of the authors of this publication are also working on these related projects:

Defining Thresholds for Software Faultiness Estimation View project

Geng Liu

Hangzhou Dianzi University

12 PUBLICATIONS 63 CITATIONS

SEE PROFILE

Luigi Lavazza

Università degli Studi dell'Insubria

196 PUBLICATIONS 2,362 CITATIONS

SEE PROFILE

All content following this page was uploaded by Luigi Lavazza on 19 December 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347487822_Early_and_Quick_Function_Points_Analysis_Evaluations_and_Proposals?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347487822_Early_and_Quick_Function_Points_Analysis_Evaluations_and_Proposals?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Defining-Thresholds-for-Software-Faultiness-Estimation?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geng-Liu-8?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geng-Liu-8?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hangzhou-Dianzi-University?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Geng-Liu-8?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luigi-Lavazza?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luigi-Lavazza?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita-degli-Studi-dellInsubria?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luigi-Lavazza?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luigi-Lavazza?enrichId=rgreq-110ea11a08cf2780c79c39ed09fc1207-XXX&enrichSource=Y292ZXJQYWdlOzM0NzQ4NzgyMjtBUzo5NzAzOTQ4MTUxNzI2MDhAMTYwODM3MTU2MTE1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Early and Quick Function Points Analysis:
Evaluations and Proposals

Geng Liua, Luigi Lavazzab,∗

aHangzhou Dianzi University, Hangzhou, China
bUniversità degli Studi dell’Insubria, Varese, Italy

Abstract

Measuring Function Points following the standard process is sometimes long and
expensive. To solve this problem, several early estimation methods have been
proposed. Among these, the “NESMA Estimated” method is one of the most
widely used; it has also been selected by the International Function Point User
Group as the official early function point analysis method, under the name
of ‘High-level FPA’ method. A large-scale empirical study has shown that
the High-level FPA method—although sufficiently accurate—tends to under-
estimate the size of software. Underestimating the size of the software to be
developed can easily lead to wrong decisions, which can even result in project
failure. In this paper we investigate the reasons why the High-level FPA method
tends to underestimate. We also explore how to improve the method to make
it more accurate. Finally, we propose size estimation models built using differ-
ent criteria and we evaluate the estimation accuracy of these new models. Our
results show that it is possible to derive size estimation models from historical
data using simple regression techniques: these models are slightly less accurate
than those delivered by the High-level FPA method in terms of absolute esti-
mation errors, but can be used earlier than the High-level FPA method, are
cheaper, and do not underestimate software size.

Keywords: Function Points, Functional Size Measurement, NESMA
Estimated, Early Size Estimation, Function Point Analysis, High-level FPA

1. Introduction

Function Points (FP) were introduced by Albrecht at IBM in the late sev-
enties [1], to measure functional requirements of software. Albrecht aimed at
defining a measure that was correlated to the value of software, and could be
useful to assess the cost of developing software applications.

∗Corresponding author
Email addresses: liugeng@hdu.edu.cn (Geng Liu), luigi.lavazza@uninsubria.it

(Luigi Lavazza)

Preprint submitted to Journal of Systems and Software December 19, 2020

Today, Function Point Analysis (FPA) is still widely used [2, 3], since it is
a practical method for measuring the size of a software application in the very
early stages of a project, often before actual development starts. Accordingly,
software size measures expressed in FP are often used for cost estimation.

The success of Function Point Analysis led to the creation of the Interna-
tional Function Points User Group (IFPUG), an association that keeps FPA up
to date with respect to the evolving software technologies, publishes the official
FP counting manual [4], and certifies professional FP counters. FPA was also
recognized as an international standard by the ISO [5]. Function Points are also
the subject of many research activities [6].

In some conditions, performing the standard FP measurement process may
be too long and expensive, with respect to developers’ needs. In fact, standard
FP measurement can be performed only after completing the software require-
ments elicitation stage, while functional measures could be needed earlier, before
functional requirements have been elicited completely and at the required detail
level.

Therefore, many methods were invented and used to provide estimates of
functional size measures based on less or coarser grained information than re-
quired by standard FPA. Among these early estimation methods, the most
widely known and used method is the “NESMA estimated” method [7], which
was adopted by IFPUG as the official early function point analysis methods [8],
under the name of ‘High-level FPA’ (HLFPA) method.

A large-scale empirical study [9] has shown that the HLFPA method—
although sufficiently accurate for early and quick estimation of functional size—
tends to underestimate the size of software. Underestimating the size of the
software to be developed can easily lead to wrong decisions, which can increase
the risk of project failure. This risk is particularly relevant because early esti-
mation methods are used also as a replacement of the standard FPA process,
not only when the requirements are not fully specified, but also when the anal-
ysis and specification phase is complete, and actual development have to be
planned and organized. In this case, the motivation for using an early estima-
tion method is just to save time and money: this is actually the usage envisioned
by industry people working with NESMA [7], and one of the uses anticipated
by IFPUG [8].

In this paper we investigate the reasons why the HLFPA method tends to
under-estimate. We also explore how to improve the method to make it less
prone to under- (or over-) estimating.

The goals of the paper can be stated via the following research questions:

RQ1 Why does the HLFPA method underestimate?

RQ2 Is it possible to modify the HLFPA method so that its estimation accuracy
improves, especially with respect to underestimation?

RQ3 Is it possible to build alternative estimation methods that are as easy and
quick to apply as HLFPA, but are more accurate?

2

RQ4 Is it possible to build estimation methods that are even easier and quicker
to apply than HLFPA, but are no less accurate?

The main contributions of the paper are the following:

1. We illustrate the reasons why the HLFPA method underestimates. These
reasons can be generalized to similar estimation methods and situations.

2. We show that it is possible to build regression models that are structurally
equivalent to the HLFPA method, i.e., they require exactly the same data,
hence involve the same estimation cost as HLFPA. These models allow
estimating size without underestimating (on average), but are slightly less
accurate than HLFPA.

3. A method requiring less information than the HLFPA method—hence
quicker and cheaper—is also illustrated. This method is slightly less accu-
rate than HLFPA, though. We give the data that illustrate the expected
accuracy level that can be achieved, thus enabling practitioners to evaluate
the best trade-off between earliness and speed on one side and accuracy
on the other side.

The mentioned contributions will likely be helpful for the numerous software
development organizations that use Function Points. For instance, organizations
that develop software for public administration in Brazil, Italy, Japan, South
Korea, and Malaysia must provide software size measured in IFPUG FP, because
local laws make this compulsory. For these organizations, obtaining early size
estimations is extremely important, particularly for bidding purposes. Other
organizations need FP measures because they use effort estimation tools (like
Galorath’s Seer-SEM [10], for instance) that require the size expressed in FP as
input (together with a number of parameters that account for the development
process and technology, non functional requirements, human factors, etc.).

Structure of the Article

The remainder of the paper is organized as follows. Section 2 briefly presents
Function Points Analysis and the High-level FPA method. Section 3 reports the
results from the analysis of HLFPA method’s estimation accuracy, published
in a previous paper [9]. Section 4 discusses the causes of HLFPA method’s
inaccuracy, especially as far as underestimation is concerned. Section 5 shows
that the HLFPA method cannot be improved just by changing the values of
parameters, based on the observation of the frequency of functional components’
complexity levels. Section 6 illustrates the derivation of statistical models of
functional size expressed in Function Points. The estimation accuracy of these
models is evaluated and compared to the HLFPA method’s. Section 7 provides
guidelines for using our results in practical size estimation. In Section 8 we
discuss the threats to the validity of this study. Section 9 reports about related
work. Finally, in Section 10 we draw some conclusions and outline future work.

3

Scope of the paper

IFPUG defines both unadjusted FP (UFP) and adjusted FP. The former
are a measure of functional requirements. The latter are obtained by correct-
ing unadjusted FP in order to obtain an indicator that is better correlated to
development effort. Noticeably, the ISO standardized only unadjusted FP, rec-
ognizing UFP as a proper measure of functional requirements [5]. Following the
ISO, in this paper we deal only with UFP, even when we speak generically of
Function Points or FP.

In this paper we deal only with the estimation of functional size. Such
measure is considered important because it is the base of many effort estimation
methods. However, effort estimation is out of this paper’s scope.

2. Functional Size Measurement Methods

To make the paper as self-contained as possible, Section 2.1 illustrates FP
measurement, and Section 2.2 illustrates the High-level FPA method. Readers
that are familiar with these methods can safely skip this section.

2.1. Function Point Analysis

This section provides a concise introduction to FPA. Readers are referred to
the official documentation [4] for further details.

Function Point Analysis was originally introduced by Albrecht to measure
the size of data-processing systems from end-users’ point of view, with the goal
of estimating the development effort [1].

The initial interest sparked by FPA, along with the recognition of the need for
maintaining FPA counting practices updated, led to founding the IFPUG (In-
ternational Function Points User Group). The IFPUG (http://www.ifpug.org/)
maintains the counting practices manual [4], provides guidelines and examples,
certifies professional FP counters, and oversees the standardization of the mea-
surement method.

Albrecht’s basic idea—which is still at the basis of the IFPUG method—is
that the “amount of functionality” released to the user can be evaluated by
taking into account 1) the data used by the application to provide the required
functions, and 2) the transactions (i.e., operations that involve data crossing the
boundaries of the application) through which the functionality is delivered to the
user. Both data and transactions are evaluated at the conceptual level, i.e., they
represent data and operations that are relevant to the user. Therefore, IFPUG
Function Points are counted on the basis of functional user requirements (FURs)
specifications. The boundary indicates the border between the application being
measured and the external applications and user domains.

FURs are modeled as a set of base functional components (BFCs), which
are the measurable elements of FURs: each of the identified BFCs is measured,
and the size of the application is obtained as the sum of the sizes of BFCs.

The IFPUG model of a software application to be measured is shown in
Figure 1 as a UML class diagram. IFPUG BFCs are data functions (also known

4

Figure 1: The IFPUG model of software

Table 1: FPA weight table

Complexity
Function type Low Average High

ILF 7 10 15
EIF 5 7 10
EI 3 4 6
EO 4 5 7
EQ 3 4 6

as logical files), which are classified into internal logical files (ILF) and external
interface files (EIF), and elementary processes (EP)—also known as transaction
functions—which are classified into external inputs (EI), external outputs (EO),
and external inquiries (EQ), according to the activities carried out within the
considered process and its main intent.

So, the functional size of a given application, expressed in unadjusted Func-
tion Points, SizeUFP , is given by the sum of the sizes of the different types of
functions, as shown in equation (1).

SizeUFP =
∑

f∈ILFs

SizeILF (f) +
∑

f∈EIFs

SizeEIF (f) + (1)

∑
f∈EIs

SizeEI(f) +
∑

f∈EOs

SizeEO(f) +
∑

f∈EQs

SizeEQ(f)

In equation (1), ILFs is the set of all data functions of type ILF , EIs is the
set of all transaction functions of type EI, etc. Also, SizeX(f) is the weight of
function f , which depends on its complexity, and its type (X ∈ {ILF, EIF, EI,
EO, EQ}, as described in Table 1.

The complexity of a data function (ILF or EIF) depends on the RETs
(Record Element Types), which indicate how many types of information (e.g.,

5

sub-classes, in object-oriented terms) can be contained in the given logical data
file, and DETs (Data Element Types), which indicate how many types of ele-
mentary information (e.g., attributes, in object-oriented terms) can be contained
in the given logical data file.

The complexity of a transaction depends on the number of FTRs—i.e.,
the number of types of logical data files used while performing the required
operation—and the number of DETs—i.e., the number of types of elementary
data—that the considered transaction sends and receives across the boundaries
of the application.

Details concerning the determination of complexity can be found in the
official documentation [4].

The core of FPA involves three main activities:

1. Identifying data and transaction functions.

2. Classifying data functions as ILF or EIF and transactions as EI, EO or
EQ.

3. Determining the complexity of each data or transaction function.

The first two of these activities can be carried out even if the FURs have
not yet been fully detailed. On the contrary, activity 3 requires that all details
are available, so that FP counters can determine the number of RET or FTR
and DET involved in every function. Activity 3 is also relatively time- and
effort-consuming [11]. The HLFPA method does not require activity 3, thus
allowing for size estimation when FURs are not fully detailed: it only requires
that the complete sets of data and transaction functions are identified and classi-
fied. Since the method lets measurers skip the most time- and effort-consuming
activity, it is relatively fast and cheap.

2.2. The High-level FPA method

NESMA defined two size estimation methods: the ‘NESMA Indicative’ and
the ‘NESMA Estimated’ methods. IFPUG adopted these methods as the official
early function point analysis methods, under the names of ‘Indicative FPA’ and
‘High-level FPA,’ respectively [8]. The Indicative FPA method proved definitely
less accurate [12, 13]. Hence, in this paper we consider only the High-level
FPA method.

The High-level FPA method requires the identification and classification of
all data and transaction functions, but does not require the assessment of the
complexity of functions: ILF and EIF are assumed to be of low complexity, EI,
EQ and EO are assumed to be of average complexity. Hence, estimated size is
computed as follows:

EstSizeUFP = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ (2)

In formula (2), #ILF is the number of data functions of type ILF, #EI is the
number of transaction functions of type EI, etc.

6

3. Evaluation of HLFPA estimation accuracy

In this section, we report an evaluation of the HLFPA method from previous
work [9]. The results reported here1 motivate the research illustrated in the
remainder of the paper.

3.1. The Dataset

The dataset that was used in [9], and is used in this paper as well, includes
data from 479 software projects developed and used by a Chinese financial
enterprise. The data are subject to non-disclosure agreement, therefore we
cannot publish them is a replication package. Some descriptive statistics of the
dataset are given in Table 2.

Table 2: Descriptive statistics of the analyzed dataset.

IFPUG FP HLFPA #ILF #EIF #EI #EO #EQ

Mean 3554 3435 80.6 42.3 269.3 130.0 233.0
Stdev 6673 6694 172.2 123.9 495.0 561.3 548.0
Median 1155 1122 22 5 90 23 57
Min 4 4 0 0 0 0 0
Max 80880 87100 2169 1198 3551 10452 7099

Figure 2 shows the distribution of the projects’ sizes. The distribution of
sizes in the dataset is skewed, as is often the case in empirical software engi-
neering data. Specifically, most projects are small. However, 257 projects (54%)
are over 1000 FP, and large projects are well represented (91 projects have size
exceeding 5000 FP).

3.2. The Analysis

For each of the 479 project in the dataset, we computed the estimated size
according to the HLFPA method described in Section 2.2.

To assess the estimates, in Figure 3(left) we plot the values of the estimates
with respect to the actual size measured according to the standard IFPUG
counting manual [4]. In the figure, we also draw the HLFPA estimates = UFP
line: if the estimates were perfect, all the points would lie on this line. As a
matter of fact, most points are quite close to the line, thus indicating that in
general the estimates are close to the actual measures.

To better appreciate the accuracy of estimates, in Figure 3(right) the situ-
ation for the 462 out of 479 projects having size not greater than 20,000 UFP
is shown. It can be observed that most points are below the y=x line, thus
indicating that the HLFPA method tends to underestimate.

To verify if and to what extent the HLFPA method underestimates the
IFPUG size, in Figure 4 a boxplot of HLFPA estimation errors is given (errors

1The results reported here are slightly different from those given in [9], because of an
improved analysis procedure, which corrected a minor error in the previous analysis.

7

Figure 2: Distributions of project sizes in the dataset (a logarithmic scale is used in the
histogram on the right hand side).

Figure 3: Standard IFPUG UFP measures vs. HLFPA estimates: complete dataset (left) and
zoom on projects not greater than 20,000 UFP (right).

8

Figure 4: Boxplot of HLFPA estimation errors: all errors (left), errors excluding outliers
(center), all relative errors (right).

are defined as the standard IFPUG size measure minus the estimate). It can
be seen that both the median (shown as a thick horizontal segment) and the
mean (shown as a blue diamond) are above the zero error line; namely the
median error is 10 UFP, while the mean error is 119 UFP. Actually, 283 out
of 479 projects (over 59%) are underestimated. We can thus conclude that—in
the considered dataset—the HLFPA method tends to underestimate functional
size.

3.3. Accuracy Evaluation

It is now necessary to evaluate quantitatively the accuracy of HLFPA esti-
mates. As suggested by Shepperd and McDonell [14], HLFPA estimates were
compared with the estimates yielded by “baseline” models. Shepperd and Mc-
Donell also proposed that the accuracy of a given estimation method be mea-
sured via the Mean Absolute Residual (MAR):

MAR =

∑
i=1..n |yi − ŷi|

n
(3)

where yi indicates the actual size of the ith project and ŷi indicates the estimated
size of the ith project [14].

As a referenced model, Shepperd and MacDonell suggest to use random
estimation, based on the known (actual) values of previously measured projects.
A random estimation ŷi is obtained by picking at random yj , with j 6= i. In our
case, the size of a software application would be estimated by picking at random
the size of one of the other applications from the historical dataset. Of course, in
this way there are n−1 possible estimates for yi, so to compute the MAR of rnd
we need to average all these possible values. Shepperd and MacDonell suggest
to make a large number of random estimates (typically, 1000), and then take the
mean MARrnd. Achieving a MAR value substantially smaller than MARrnd is
a necessary condition that estimation methods must satisfy, otherwise we could
simply guess and get equivalent or even better estimates.

9

Shepperd and MacDonell observed also that the value of the 5% quantile of
the random estimate MARs can be interpreted like α for conventional statistical
inference, that is, any accuracy value that is better than this threshold has a
less than one in twenty chance of being a random occurrence. Accordingly, the
MAR of a proposed model should be compared with the 5% quantile of the
random estimate MARs, to make us reasonably sure that the model is actually
more accurate than the random estimation.

We also used “constant” models as baseline, proposed, among others, by
Lavazza and Morasca [15] and Di Martino et al. [16]. With the mean—respectively,
median—constant model, the estimated effort for a project is given by the
mean—respectively, median—of all other projects’ actual efforts.

In Figure 5, the distribution of absolute errors is given. The blue diamond is
the mean, i.e, the MAR of the estimates. The median of absolute residuals is 75
UFP, however the MAR is definitely greater (315 UFP), because of several large
errors. In Figure 5, the 5% quantile of absolute residuals for random estimates,
the MAR of the mean model and the MAR of the median model are shown
as, respectively, solid, dashed and dotted lines. The MAR of HLFPA estimates
is much smaller than any baseline. Consequently, the HLFPA method easily
satisfies the necessary conditions for being considered an acceptable estimation
method.

Figure 5: Boxplot of HLFPA absolute estimation errors: all errors (left) and excluding outliers
(right).

In general, relatively large estimation errors are deemed acceptable in very
large projects. To help practitioners appreciate the “importance” of errors with
respect to the size of the project, in Figure 6 we give the boxplot representing
the distribution of absolute relative errors (the relative error of an estimate is
the estimation error divided by the actual size).

Figure 6 shows that the great majority of estimate errors are less than 10%
(the median absolute relative error is 0.083); moreover, in only 34 out of 479
cases, errors are greater than 25%. Considering that HLFPA estimates are
produced without considering the details of functional requirements, this level

10

Figure 6: Boxplot of absolute relative errors.

of accuracy is likely acceptable by most practitioners.
In Figure 6 the blue diamond indicates the MMRE (Mean Magnitude of

Relative Errors): its value is 0.1. MMRE has been criticized for being a biased
indicator (see for instance [17]); nevertheless we report its value because—when
used in conjunction with sound indicators—it can provide an intuitive and rep-
resentative indication of the “importance” of estimation errors.

4. Observations on HLFPA estimation accuracy

The data available from the dataset support some observations concerning
the foundations of the HLFPA estimation method.

Figure 7: Distributions of BFCs.

As described in Section 2.2, the HLFPA estimation method weights all data
functions as being of low complexity and all transaction functions as being of
average complexity. We checked whether these conditions hold in our dataset.

11

Figure 7 shows the distributions of base functional components into the low, av-
erage and high complexity classes, evaluated according to the IFPUG counting
manual. It is easy to see that HLFPA assumptions hold only for data functions.
This mismatch between HLFPA assumptions and the actual distributions of
functions’ complexity may explain the tendency of HLFPA method to underes-
timate.

Table 3: Total HLFPA estimation errors, by function type

Estimation error
Function type UFP %

ILF 24421 1.43
EIF 6053 0.36
EI 36666 2.15
EO 16475 0.97
EQ -26446 -1.55

All 57569 3.36

To better understand the origin of estimation errors, we compute the total
approximation error due to each function type. Table 3 shows the estimations
error for the entire dataset, by function type. Remember that estimation errors
are defined as the actual size minus the estimated size, hence positive errors in-
dicate underestimation. Table 3 shows that the HLFPA method underestimates
all types of functions, except EQ; however, the overestimation of EQ does not
compensate for the underestimation of the other function types. As a result,
HLFPA underestimates the size of most software applications (as shown in Fig-
ure 4) and the size of the entire set of applications (as shown in the bottom row
of Table 3).

The observations reported above let us answer RQ1 (Why does HLFPA
method underestimate?). In fact, the hypothesis that most data functions are
of low complexity appears correct, but the average and high complexity data files
lead the HLFPA method to underestimate the size of data functions. Concern-
ing transactional functions, the hypothesis that most transactional functions are
of average complexity appears incorrect for all types of transactions. The rela-
tively high number of high complexity EI and EO leads the HLFPA method to
underestimate both EI and EO. The relatively high number of low complexity
EQ leads the HLFPA method to overestimate the size of EQ, but not sufficiently
to compensate the underestimation of all other types of functions.

5. Alternative weighting

The analysis of the distributions of function complexity illustrated in Sec-
tion 4 suggests that considering all functions of a given type as low complexity
leads inevitably to underestimation. Similarly, considering all functions of a
given type as high complexity would lead to overestimating. Hence, to avoid

12

both underestimation and overestimation, it looks reasonable to use weights
corresponding to average complexity (this is actually the simplified FP (sFP)
approach [18]). In conclusion, we can redefine the estimation method as in the
following formula (4), which is structurally identical to the original HLFPA for-
mula (2), but with weights corresponding to average complexity for all function
types.

EstSizeUFP = 10 #ILF + 7 #EIF + 4 #EI + 5 #EO + 4 #EQ (4)

We computed the estimated size of every application in the dataset using
this ‘modified HLFPA’ method. Then, we computed the errors of the modified
HLFPA method’s estimates and compared them with the HLFPA method’s
errors.

Figure 8(left) shows the boxplots representing the distributions of errors of
the estimated and modified HLFPA methods (outlier errors are not reported to
keep the figure readable). The modified HLFPA method tends to overestimate;
it is also characterized by higher mean and median absolute errors, as shown in
Figure 8(right).

Figure 8: Distributions of HLFPA and modified HLFPA methods’ estimation errors (left) and
absolute errors (right).

The results reported above let us answer RQ2 (Is it possible to modify the
HLFPA method so that its estimation accuracy improves, especially with respect
to underestimation?) even without applying formal statistical tests. It appears
that adopting a fixed weight for all the functions of a given type does not let us
improve the accuracy of the HLFPA method.

Other choices of weights could not correct the problem either. Specifically,
we tested several combinations of weights without obtaining any improvement
over HLFPA. For instance, assuming that ILF, EIF, EI, EO are of average com-
plexity, and EQ are of low complexity, yields MAR=411 UFP, while HLFPA’s
MAR is 311 UFP.

13

6. Basing Estimates on Statistical Models

Organizations that need a quick estimation method for functional size and
have historical data can consider building their own models, instead of using
predefined estimation models. In fact, based on quantitative data from previous
software projects, an organization can derive statistical models that correlate
the size of software applications to the number of involved ILF, EIF, EI, EO
and EQ. In this section we look for such models and evaluate the accuracy of
the estimates they yield.

All the statistical models presented here satisfy the conditions usually re-
quired from statistically valid ordinary least squares (OLS) regression models
(e.g., p-value< 0.05, normally distributed residuals, etc.), also when not explic-
itly stated.

6.1. A Linear Regression Model based on FPA Functions

We considered building a linear regression model (LRM) having the number
of ILF, EIF, EI, EO and EQ (i.e., #ILF, #EIF, #EI, #EO, #EQ) as indepen-
dent variables and the actual size measured in FP as the dependent variable. We
shall refer to this model as LRM5, to stress that it uses 5 independent variables.

Before proceeding to build models, we checked the multicollinearity among
the independent variables in the dataset by using the Farrar-Glauber multi-
collinearity test [19]. The test showed that the candidate independent variables
are not multicollinear, hence we proceeded to build the model using all of these
variables.

We built an ordinary least squares linear regression model with null intercept.
In this way, the obtained model is structurally identical to formulae (2) and (4).
In fact, the obtained model is

SizeUFP = 6.82 #ILF +4.03 #EIF +5.64 #EI+5.08 #EO+3.34 #EQ (5)

The adjusted R2 of the model is 0.996; such a high value was expected,
since the correlation between the independent and dependent variable is a con-
sequence of the definition of Function Points.

To evaluate the accuracy of estimates based on linear regression models, we
performed a 10-times 10-fold cross validation.

Figure 9(left) shows the boxplots of the estimation errors of the HLFPA
method and LRM5. It is easy to observe that LRM5 does not underestimate
size, on the contrary, it tends to overestimate, much like HLFPA tends to un-
derestimate.

Concerning the accuracy of estimates, Figure 9(right) shows the boxplots
illustrating the distributions of absolute estimation errors of the HLFPA method
and of LRM5. It is easy to see that the performances of the two methods are
extremely similar, HLFPA being slightly more accurate. The MAR of HLFPA
estimates is 315 UFP, while the MAR of LRM5 is 348 UFP (see also Table 4):
considering that the mean size of the projects in our dataset is over 3500 UFP
(see Table 2), a 33 UFP MAR difference is hardly noticeable.

14

Figure 9: The distributions of HLFPA method’s and LRM5’s estimation errors (left) and
absolute errors (right).

To evaluate if the estimates provided by a method are significantly better
than those provided by the other method, we tested the statistical significance of
the differences among absolute errors yielded by the used methods [17]. Namely,
we compared the absolute residuals provided by the two methods via Wilcoxon
rank sum test [20]: the test indicated that LRM5’s absolute residuals are greater
than HLFPA’s. However the effect size—computed via Hedges’s g [21]—is def-
initely negligible: g=0.04 indicates a close to nil difference.

6.2. A Linear Regression Model based on Unclassified Data and Transaction
Functions

Some Function Points estimation methods do not require that data functions
are classified into ILF and EIF and transaction functions are classified into EI,
EO, and EQ. So, the estimate is based on the number of data functions (#DF)
and transaction function (#TF) only. Clearly, skipping the classification makes
the estimation faster and cheaper, though possibly at the expenses of accuracy.

We looked for OLS linear regression models that use as independent variable
the number of data functions and the number of transaction functions. We refer
to this model as LRM2, to stress that the model uses 2 independent variables.

We obtained the following model:

SizeUFP = 5.76 #DF + 4.42 #TF (6)

The adjusted R2 of the model is 0.995.
To evaluate the accuracy of estimates yielded by LRM2, we performed a

10-times 10-fold cross validation.
Figure 10 shows the boxplots of the estimation errors of the HLFPA method

and LRM2. It is easy to see that the LRM2 model does neither underestimate
nor overestimate size, on average.

15

Figure 10: The distributions of HLFPA method’s and LRM2’s estimation errors (left) and
absolute errors (right).

Concerning accuracy, Figure 10(right) shows the boxplots illustrating the
distributions of absolute estimation errors of the HLFPA method and of LRM2.
It appears that the performances of the two methods are similar, HLFPA being
slightly more accurate. The MAR of HLFPA estimates is 315 UFP, while the
MAR of LRM2 is 342 UFP (see also Table 4).

To evaluate if the estimates provided by LRM2 are significantly better than
those provided by the HLFPA method, we compared the absolute residuals
provided by the two methods via Wilcoxon rank sum test, which indicated that
LRM2’s absolute residuals are greater than HLFPA’s. However the effect size—
computed via Hedges’s g [21]—is definitely negligible: g=0.03 indicates a close
to nil difference.

In conclusion, even without classifying function into ILF, EIF, EI, EO and
EQ, it is possible to obtain a statistically significant model that does not un-
derestimate and provides marginally less accurate estimates than the HLFPA
method.

Table 4: Comparison of estimation models’ accuracy

Error Relative error Absolute error Abs. rel. error
Mean Median Mean Median Mean Median Mean Median

HLFPA 112 6 0.025 0.026 315 73 0.100 0.081
LRM5 -80 -9 -0.032 -0.023 348 88 0.121 0.094
LRM2 7 2 -0.004 0.007 342 89 0.119 0.100

6.3. Final Observations on Statistical Models

The observations reported in Section 6.1 let us answer RQ3 (Is it possible
to build alternative estimation methods that are as easy and quick to apply as

16

HLFPA, but are more accurate?). Our results support only a negative answer:
LRM5, which is based on the number of ILF, EIF, EI, EO and EQ, is marginally
less accurate than HLFPA, as summarized in Table 4. However, some project
managers could prefer LRM5 because it tends to overestimate, while HLFPA
tends to underestimate.

Concerning RQ4 (Is it possible to build estimation methods that are even
easier and quicker to apply than HLFPA, but are no less accurate?), the results
described in Section 6.2 let us give a partially positive answer. On the one
hand, HLFPA is slightly more accurate: it features MAR=315 UFP vs. LRM2’
MAR=342 UFP, and HLFPA’s MMRE is 10%, while LRM2’s MMRE is 11.9%.
Wilcoxon rank sum test confirms that LRM2’s absolute residuals are greater
than HLFPA’s. On the other hand, the difference between LRM2’s errors and
HLFPA’s errors is negligible according to Hedges’s g (and probably also to
many developers). In conclusion, the best answer to RQ4 is probably that
even without classifying functions—hence, more quickly and cheaply than via
HLFPA—it is possible to get a model (LRM2) that is only very slightly less
accurate than the HLFPA method and makes the probability of overestimation
and underestimation approximately equal, as shown in Figure 10.

The availability of models based on the number of unclassified data and
transaction functions is particularly interesting, since it allows software project
managers to get size estimates even earlier than with the HLFPA method or
the LRM based on classified functions. To this end, practitioners are likely
interested in knowing how much LRM2 and LRM5 differ in terms of accuracy.
Figure 11 and Table 4 compare LRM5’s and LRM2’s distributions of errors and
absolute errors. LRM5’s accuracy is so close to LRM2’ that most practitioners
will likely prefer LRM2, accepting a very small loss of accuracy in exchange of
faster and cheaper size estimates.

Figure 11: The distributions of LRM5’s and LRM2’s estimation errors (left) and absolute
errors (right).

Finally, it can be observed that the HLFPA method is ready to use: after

17

the ILF, EIF, EI, EO and EQ have been counted, the arguments required by
formula (2) are available, and a size estimate can be produced. On the contrary,
LRM models have to be derived from the available data via statistical analysis.
However, carrying out the statistical analysis is fairly easy and takes a very
short time. In fact, the core of the program for performs the analysis is just 50
lines of R code, and running the program takes just a few seconds.

7. Guidelines

7.1. Function Size Estimation with no Historical Data

Organizations that do not own historical data can use the High-level FPA
method to estimate the size of software. However, HLFPA estimates are affected
by some error, as all estimates are. When using the HLFPA method, software
developers must consider that—based on our findings—the obtained size mea-
sures are probably underestimated, as Figures 4 and 6 show. Therefore, one
could try to compensate for the underestimation by scaling the estimates ob-
tained via the HLFPA estimated method: Figure 6 suggests that by increasing
the estimates by 3.5% we should obtain more realistic and prudent estimates.
In fact, such correction leads to size estimation errors that have the distribution

Figure 12: Estimation errors of scaled HLFPA estimates.

illustrated by the boxplot in Figure 12: the median and the mean errors (which
are definitely above zero in Figure 4) are close to zero. The MAR is 303 UFP,
while the median absolute error is 79 UFP.

7.2. Function Size Estimation with no Historical Data

Organizations that have historical data can build their own models—as we
did in Section 6—to estimate the size of software. In such case, it is recom-
mended that the accuracy of the obtained models is evaluated, based on his-
torical data, to get a rough idea of the likely reliability of new estimates. For

18

instance, Figure 6 shows that for the projects in our dataset, estimation errors
in the [4%, 14%] range are quite probable, while errors above 30% are very rare.

The computation of estimation errors lets project managers answer impor-
tant questions; for instance, they can evaluate the impact of size estimation
errors on effort estimates. Consider for instance an organization that esti-

mates effort using the model Êff = 30 Size1.2. If they feed the model with
a size estimate that is underestimated by 10%, they get 30 (0.9 Size)1.2 =

0.88 30 Size1.2 = 0.88 Êff . So, they know that underestimating the size by
10% results in underestimating effort by 12%. Based on this knowledge, they
can decide whether the size estimation method being used is acceptably accurate
or not.

Functional measures are used—to some extent—in agile processes as well.
Usman et al. performed a survey concerning effort estimation in agile environ-
ments [22]. They collected data from 60 agile practitioners from 16 different
countries and found that 17% of the projects used function points (possibly in
combination with other measures). To be effectively usable in an agile context,
measures must be obtained easily and seamlessly. In this respect, it can be
observed that the number of transactions and the number of logic data files can
be easily derived from stories. Consider for instance the story “As a student, I
want to purchase a parking pass, so that I can drive to school:” realizing that
“parking pass” is a logical data file, and that “pass purchasing” is a transaction
is immediate. Hence, the story accounts for a data file and a transaction func-
tions, and—according to (6)—its size is 5.76 + 4.42 = 10.18 FP. In conclusion,
in principle the LRM2 we propose can be applied in an agile context as well,
since its independent variables are very easy to collect based on artifacts that
are commonly used in agile processes.

8. Threats to Validity

First, we should consider the correctness of the given data. In fact, the data
in the analyzed dataset were derived from the analysis and measurement of
functional requirements: both these activities could be affected by errors, which
would end up in the dataset. Concerning this threat, we are reasonably sure
that the used data are of good quality, since they were collected by professionals
in industrial contexts where functional size measures are quite important, hence
great attention is posed in the measurement activities. Even so, we cannot
exclude that some errors are present; however, in such case most errors would
affect IFPUG measures and estimates in similar ways. Hence, these errors
should not be able to affect our results to an appreciable extent.

Second, we need to consider external validity, specifically, whether we can
generalize the results of our study outside the scope and context that character-
ize the considered software projects. On the one hand, our dataset is much larger
than the datasets usually involved in software engineering empirical studies; be-
sides, our dataset includes data from fairly big projects (e.g., over 20,000 FP),
which are rarely represented in historical datasets. In this sense, our dataset

19

represents a quite large and varied sample. On the other hand, all the consid-
ered projects are from the economic, financial and banking domain, hence we
cannot be sure that the results of our study apply equally well in other domains.
In this respect, readers are reminded that previous studies show some difference
in accuracy when estimates concern real-time software applications [13].

Another threat may come from using MMRE among the accuracy indicators,
since MMRE is a biased indicator, as pointed out in the literature (see for
instance [17]). We used MMRE, together with other indicators—like MAR and
the boxplots of residuals—to provide a more complete picture of the accuracy of
our results, and compared the precision of different models via sound statistical
tests, namely Wilcoxon rank sum test (also known as Mann-Whitney test).
Therefore, the role of MMRE in the presented evaluations is marginal.

9. Related Work

The quest for measures that are available in the early stages of the software
lifecycle dates back to decades ago. In 1992, Bock and Klepper proposed the
FP-S method [23]. Bock and Klepper were motivated by the need of reducing
the time required to complete the function point counting task at McDonnell
Douglas Corporation. To avoid the time-consuming activity required to deter-
mine the complexity of each BFC, they used a multiple regression procedure to
determine the weight to be applied to each BFC. They used a fairly small his-
torical dataset (39 projects), and obtained acceptably accurate estimates. Bock
and Klepper reported as one of the main positive aspects of FP-S the elimina-
tion of measure variance due to the subjectivity that is inherently present in FP
measures. The absence of variance due to subjective evaluations characterizes
also HLFPA estimates, as well as those proposed in Sections 6.

In 1998, Horgan et al. proposed a size estimation method named “Early E
model” [24]. With the Early E model, the estimated size is computed based
on the Raw Function Points (RFP), which are defined as in formula (7) (in
practice, RFP is the number of Base Functional Components).

RFP = #ILF + #EIF + #EI + #EO + #EQ (7)

The estimated size is obtained as EstSizeUFP = W · RFP , where W is the
Weighting Constant, which is computed based on historical project data, as
follows:

W =

∑n
i=1

FPi

RFPi

n
(8)

In formula (8) n is the number of projects in the historical dataset, while FPi

is the size of the ith project computed according to Albrecht’s FPA, and RFPi

is its RFP number.
The Early E model is applicable in the early stage of the software lifecycle.

In fact, it only requires that the first of the activities listed in Section 2.1 is
performed. As such, it is applicable even before the High-level FPA and LRM5
methods.

20

Horgan et al. reported that the proposed model provides estimation errors
not greater than 25% for 94% of the estimates. With our dataset, we found—
via a 10-times 10-fold cross-validation—that Early E model provides estimation
errors not greater than 25% for almost 90% of the estimates. We also found that
Early E’s MAR is 360 UFP (and MMRE=12.3%). We may conclude that Early
E appears usable, but it is less accurate than the other methods considered in
the paper, and it is not even much faster to apply: LRM2 only requires that
BFCs are classified into data and transactions (which is practically immediate)
and yields a slightly smaller MAR (342 UFP).

Santillo, Conte and Meli proposed the “Early & Quick Function Point”
(EQFP) method. The EQFP method [25] uses analogy and analysis. The
former involves discovering similarities between a new piece of a software ap-
plication and similar pieces that were classified and measured during previous
measurement activities. The latter provides software object with weights de-
rived from statistical analysis, thus guaranteeing stability for the estimates, at
least in a given environment. Santillo et al. reported that estimates are within
±10% of the real size in most real cases, while the savings in time and costs are
between 50% and 90%.

Santillo also proposed “Easy Function Points,” an approximation technique
for functional size measures [26]. Santillo suggested probabilistic approaches,
where the measurer can indicate the minimum, medium and maximum weight
of each BFC, together with the expected probability that the weight is actually
minimum, medium or maximum. This leads to estimate not only the size, but
also the probability that the actual size is equal to the estimate.

Lavazza et al. studied the relationships between BFCs and size measures
expressed in FP and found that it is possible to build statistically significant
estimation models for UFP based on BFCs [27]. Specifically, they used Least
Median Squares robust regression models. They conclude that not only BFCs
can be used as predictors of the size expressed in UFP, but FP measures could
be altogether replaced by measured based on a smaller set of BFCs.

Several other early estimation methods were proposed. We cannot give here
a complete account of all Function Points early estimation methods; instead,
in Table 5, we provide a list of the most popular ones. For each method,
references to its definition and to empirical evaluations are given, together with
the indication of which data are used and how they are weighted. For instance,
the ISBSG average weight method computes estimates as the weighted sum
of all the function types (EI, EO, EQ, ILF and EIF), each weighted with the
corresponding mean weight observed in the ISBSG dataset. A review of older
FP estimation methods was published by Meli and Santillo [40].

Lavazza and Liu [13] used 7 real-time applications and 6 non real-time ap-
plications to evaluate the accuracy of the E&QFP [25] and HLFPA methods
with respect to full-fledged Function Point Analysis. The results showed that
the Indicative FPA method yields the greatest errors. On the contrary, the
HLFPA method yields size estimates that are close to the actual size. Specifi-
cally, the HLFPA method proved fairly good in estimating both Real-Time and
non Real-Time applications.

21

Table 5: Early estimation methods: definitions and evaluations
Method name Definition Used functions Weight Evaluation
NESMA indicative [28, 29] data fixed [7, 30, 31, 32, 9, 16, 13]
NESMA estimated (HLFPA) [28, 29] all functions fixed [7, 30, 31, 32, 9, 16, 13]
Early & Quick FP [25, 33] all functions statistics [13, 34]
Tichenor ILF model [35] ILF fixed [13]
simplified FP (sFP) [18] all functions fixed [13]
ISBSG average weights [36] all functions statistics [13]
SiFP [37] data and trans. statistics [38, 39]

Using a database concerning over 100 applications, NESMA empirically eval-
uated the accuracy of the NESMA Estimated and Indicative FPA approximation
methods [12]. The results showed that size measures of the high-level function
point analysis and the detailed function point analysis are very close. Moreover,
the Indicative method gives a good estimate of the size of several applications.

van Heeringen described the accuracy—as well as the difference in mea-
surement effort—of the NESMA Estimated and NESMA Indicative methods,
by measuring 42 projects [7]. The results show that the estimation error of
NESMA Estimated was in the [-6%, +15%] range, with average 1.5%; the esti-
mation error of NESMA Indicative was in the [-15%, +50%] range, with average
16.3%. In both cases the estimation error was evaluated with respect to detailed
measurement.

Cândido and Sanches used the NESMA method to estimate the size of Web
applications [41]. They found that the choice of weights used by the NESMA
method did not match the complexity of most BFCs in their Web applications.
As a solution, they proposed to use the weights corresponding to low complexity
for all BFCs. In that way, they improved the accuracy of estimates. This
solution is clearly not generalizable: with our dataset, weighting all BFCs as
they were of low complexity leads to less accurate estimates.

Popović and Bojić compared different functional size measures—including
NESMA Indicative and Estimated—by evaluating their accuracy in effort es-
timation in various phases of the development lifecycle [31]. Not surprisingly,
they found that the NESMA Indicative method provided the best accuracy at
the beginning of the project. With respect to Popović and Bojić, we evaluated
the NESMA method with respect to its accuracy in estimating the actual size
of software, rather than development effort.

Wilkie et al. [30] used five commercial projects to evaluate the cost-benefit
trade-off of size measurement with respect to size estimation; they concluded
that whilst the NESMA Indicative method was insufficiently accurate for the in-
volved commercial organization, the NESMA Estimated approach was definitely
viable.

Morrow et al. used a dataset of 11 projects to evaluate the quality of siz-
ing estimates provided by NESMA methods [32]. They also adapted NESMA
methods’ general principles to enhance their accuracy and extent of relevance,
and empirically validated such an adapted approach using commercial software
projects.

22

10. Conclusions

After over 40 years since their introduction, Function Points are widely
used [2, 3] and studied [42, 43, 44, 45]. However, the effort and time required to
perform FP measurement, together with the need for relatively detailed speci-
fications of functional user requirements, induced practitioners and researchers
to look for fast and easy ways of getting estimates of size measures. To this end,
several techniques were proposed (see Section 9).

Both practitioners and researchers are interested in obtaining the best pos-
sible trade-off between estimation accuracy on one side and measurement time
and effort on the other side. Several FP estimation techniques were proposed
in pursuing the optimization of such trade-off.

The “NESMA Estimated” method emerged as one of the most effective,
and in 2015 it was finally adopted by the International Function Point User
Group as the IFPUG preferred method for “early Function Point Analysis and
consistent cost estimating,” under the name of High-level FPA [8]. The High-
level FPA method avoids the most time-consuming phase of FP measurement,
namely the evaluation of complexity and consequent weighting of BFCs. In ad-
dition, several empirical studies showed that the method is sufficiently accurate
for practical usage.

However, a recent study, carried out using an unusually large dataset (479
project from the banking and financial domain) showed that the HLFPA method
tends to underestimate. Since underestimation may lead to unrealistic devel-
opment plans and possibly to project failure, it is quite important to evaluate
why does the HLFPA method underestimate, and, if so, whether it is possible
to overcome the problem.

In this paper we showed that the reason for size underestimation is that the
HLFPA method assumes that data functions are mainly of low complexity and
transaction functions are mainly of medium complexity, while in the considered
dataset it is not so. Unfortunately, whatever complexity you expect for BFCs,
you may find an application domain or specific software applications charac-
terized by different complexities (for instance, this was observed in [41], where
BFCs had mostly low complexity).

An alternative strategy to size estimation involves deriving the most likely
weight in a given environment by analyzing the data from projects previously
carried out in the same environment. We did that, and derived ordinary least
squared linear regression models linking the size of projects, expressed in un-
adjusted FP, to the number of classified BFCs (i.e., the numbers of ILF, EIF,
EI, EO and EQ). Via 10-times 10-fold cross-validation, we evaluated the accu-
racy of these models, and obtained two opposing results: 1) unlike the HLFPA
method, the linear regression models do not underestimate, and 2) linear re-
gression models yield slightly less accurate estimates.

We also considered further simplifying the HLFPA method, by avoiding the
classification of transactions into EI, EO and EQ, and the classification of data
into ILF and EIF. We derived ordinary least squared linear regression models
linking the size of projects expressed in FP to the number of data functions

23

and the number of transaction functions. The obtained model appears as an
interesting alternative to the HLFPA method, being marginally less accurate
while avoiding underestimation and allowing for even faster estimations.

Future work includes experimenting with additional datasets, if available,
and different techniques for deriving size estimation models.

Acknowledgments

This work have been supported by the “Fondo di Ricerca d’Ateneo” funded
by the Università degli Studi dell’Insubria, by Zhejiang Provincial Science Foun-
dation of China under grant no. LY19F020046, and by the Chinese Scholarship
Council under grant no. 201708330399.

References

[1] A. J. Albrecht, Measuring application development productivity, in: Pro-
ceedings of the joint SHARE/GUIDE/IBM application development sym-
posium, Vol. 10, 1979, pp. 83–92.

[2] C. Jones, Quantifying Software: global and industry perspectives, CRC
Press, 2017.

[3] R. Georgi, T. Vogt, Illustrative Example of a Function Point Analysis for
the NASA Crew Exploration Vehicle Guidance, Navigation and Control
Flight Software (2008).

[4] International Function Point Users Group (IFPUG), Function point count-
ing practices manual, release 4.3.1 (2010).

[5] International Standardization Organization (ISO), ISO/IEC 20926: 2003,
Software engineering – IFPUG 4.1 Unadjusted functional size measurement
method – Counting Practices Manual (2003).

[6] M. de Freitas Junior, M. Fantinato, V. Sun, Improvements to the function
point analysis method: A systematic literature review, IEEE Transactions
on Engineering Management 62 (4) (2015) 495–506.

[7] H. van Heeringen, E. van Gorp, T. Prins, Functional size measurement-
accuracy versus costs–is it really worth it?, in: Software Measurement Eu-
ropean Forum (SMEF 2009), 2009.

[8] A. Timp, uTip – Early Function Point Analysis and Consistent Cost Esti-
mating, uTip # 03 – (version # 1.0 2015/07/01) (2015).

[9] L. Lavazza, G. Liu, An Empirical Evaluation of the Accuracy of NESMA
Function Points Estimates, in: The 14th International Conference on Soft-
ware Engineering Advances (ICSEA 2019), 2019, pp. 24–29.

24

[10] L. Fischman, K. McRitchie, D. D. Galorath, Inside SEER-SEM, CrossTalk
18 (4).

[11] L. Lavazza, On the effort required by function point measurement phases,
International Journal on Advances in Software Volume 10, Number 1 & 2,
2017.

[12] nesma, Early Function Point Analysis.
URL https://nesma.org/themes/sizing/function-point-analysis/

early-function-point-counting/

[13] L. Lavazza, G. Liu, An empirical evaluation of simplified function point
measurement processes, Journal on Advances in Software 6 (1& 2).

[14] M. Shepperd, S. MacDonell, Evaluating prediction systems in software
project estimation, Information and Software Technology 54 (8) (2012)
820–827.

[15] L. Lavazza, S. Morasca, On the evaluation of effort estimation models,
in: Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, ACM, 2017, pp. 41–50.

[16] S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, Assessing the effectiveness
of approximate functional sizing approaches for effort estimation, Informa-
tion and Software Technology 123 (106308).

[17] B. Kitchenham, L. Pickard, S. MacDonell, M. Shepperd, What accu-
racy statistics really measure [software estimation], in: Software, IEE
Proceedings-, Vol. 148, IET, 2001, pp. 81–85.

[18] L. Bernstein, C. M. Yuhas, Trustworthy systems through quantitative soft-
ware engineering, Vol. 1, John Wiley & Sons, 2005.

[19] D. E. Farrar, R. R. Glauber, Multicollinearity in regression analysis: The
problem revisited, The Review of Economics and Statistics 49 (1) (1967)
92–107.
URL http://www.jstor.org/stable/1937887

[20] J. Cohen, Statistical power analysis for the behavioral sciences Lawrence
Earlbaum Associates, Hillsdale, NJ (1988) 20–26.

[21] R. Rosenthal, H. Cooper, L. Hedges, Parametric measures of effect size,
The handbook of research synthesis 621 (1994) 231–244.

[22] M. Usman, E. Mendes, J. Börstler, Effort estimation in agile software de-
velopment: a survey on the state of the practice, in: Proceedings of the
19th international conference on Evaluation and Assessment in Software
Engineering, 2015, pp. 1–10.

[23] D. B. Bock, R. Klepper, FP-S: a simplified function point counting method,
Journal of Systems and Software 18 (3) (1992) 245–254.

25

https://nesma.org/themes/sizing/function-point-analysis/early-function-point-counting/
https://nesma.org/themes/sizing/function-point-analysis/early-function-point-counting/
https://nesma.org/themes/sizing/function-point-analysis/early-function-point-counting/
http://www.jstor.org/stable/1937887
http://www.jstor.org/stable/1937887
http://www.jstor.org/stable/1937887

[24] G. Horgan, S. Khaddaj, P. Forte, Construction of an FPA-type metric
for early lifecycle estimation, Information and Software Technology 40 (8)
(1998) 409–415.

[25] L. Santillo, M. Conte, R. Meli, Early & Quick Function Point: sizing more
with less, in: 11th IEEE International Software Metrics Symposium (MET-
RICS’05), IEEE, 2005, pp. 41–41.

[26] L. Santillo, Easy Function Points – ‘Smart’ Approximation Technique for
the IFPUG and COSMIC Methods, in: Joint Conf. of the 22nd Int. Work-
shop on Software Measurement and the 7th Int. Conf. on Software Process
and Product Measurement, 2012.

[27] L. Lavazza, S. Morasca, G. Robiolo, Towards a simplified definition of
function points, Information and Software Technology 55 (10) (2013) 1796–
1809.

[28] NESMA–the Netherlands Software Metrics Association, Definitions and
counting guidelines for the application of function point analysis. NESMA
Functional Size Measurement method compliant to ISO/IEC 24570 version
2.1 (2004).

[29] International Standards Organisation, ISO/IEC 24570:2005 – Software En-
gineering – NESMA functional size measurement method version 2.1 –
definitions and counting guidelines for the application of Function Point
Analysis (2005).

[30] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, N. Lester, The
value of software sizing, Information and Software Technology 53 (11)
(2011) 1236–1249.

[31] J. Popović, D. Bojić, A comparative evaluation of effort estimation methods
in the software life cycle, Computer Science and Information Systems 9 (1)
(2012) 455–484.

[32] P. Morrow, F. G. Wilkie, I. McChesney, Function point analysis using
nesma: simplifying the sizing without simplifying the size, Software Quality
Journal 22 (4) (2014) 611–660.

[33] T. Iorio, R. Meli, F. Perna, Early & quick function points® v3. 0: enhance-
ments for a publicly available method, in: Proceedings Software Measure-
ment European Forum (SMEF), 2007, pp. 179–198.

[34] R. Meli, Early & quick function point method-an empirical validation ex-
periment, in: Int. Conf. on Advances and Trends in Software Engineering,
Barcelona, Spain, 2015.

[35] C. Tichenor, The irs development and application of the internal logical
file model to estimate function point counts, in: IFPUG Fall Conference,
1997.

26

[36] R. Meli, L. Santillo, Function point estimation methods: A comparative
overview, in: FESMA, Vol. 99, Citeseer, 1999, pp. 6–8.

[37] R. Meli, Simple function point: a new functional size measurement method
fully compliant with IFPUG 4. x, in: Software Measurement European
Forum, 2011.

[38] L. Lavazza, R. Meli, An evaluation of simple function point as a replacement
of IFPUG function point, in: 2014 Joint Conference of the International
Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM-MENSURA), IEEE,
2014, pp. 196–206.

[39] F. Ferrucci, C. Gravino, L. Lavazza, Simple function points for effort es-
timation: a further assessment, in: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, ACM, 2016, pp. 1428–1433.

[40] R. Meli, L. Santillo, Function point estimation methods: a comparative
overview, in: Software Measurement European Forum (FESMA 1999),
1999.

[41] E. J. Cândido, R. Sanches, Estimating the size of web applications by
using a simplified function point method, in: WebMedia and LA-Web,
2004. Proceedings, IEEE, 2004, pp. 98–105.

[42] J. Liu, Q. Du, J. Xu, A learning-based adjustment model with genetic al-
gorithm of function point estimation, in: 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS), 2018, pp.
51–58.

[43] P. Silhavy, R. Silhavy, Z. Prokopova, Stepwise regression clustering method
in function points estimation, in: Proceedings of the Computational Meth-
ods in Systems and Software, Springer, 2018, pp. 333–340.

[44] R. S. Dewi, A. P. Subriadi, et al., Game complexity factor: A collabo-
rative study of leblanc taxonomy and function points method, in: 2018
International Conference on Electrical Engineering and Computer Science
(ICECOS), IEEE, 2018, pp. 153–158.

[45] G. Liu, L. Lavazza, D. Tosi, Evolution of functional size measures through
ICONIX process phases, Journal of Software: Evolution and Process 32 (5)
(2020) e2240.

27

View publication statsView publication stats

https://www.researchgate.net/publication/347487822

	Introduction
	Functional Size Measurement Methods
	Function Point Analysis
	The High-level FPA method

	Evaluation of HLFPA estimation accuracy
	The Dataset
	The Analysis
	Accuracy Evaluation

	Observations on HLFPA estimation accuracy
	Alternative weighting
	Basing Estimates on Statistical Models
	A Linear Regression Model based on FPA Functions
	A Linear Regression Model based on Unclassified Data and Transaction Functions
	Final Observations on Statistical Models

	Guidelines
	Function Size Estimation with no Historical Data
	Function Size Estimation with no Historical Data

	Threats to Validity
	Related Work
	Conclusions

