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Primum Graius homo mortalis tollere contra
Est oculos ausus primusque obsistere contra;

Quem neque fama deum nec fulmina nec minitanti
Murmure compressit caelum, sed eo magis acrem

Inritat animi virtutem, effringere ut arta
Naturae primus portarum claustra cupiret.

Ergo vivida vis animi pervicit et extra
Processit longe flammantia moenia mundi

Atque omne immensum peragravit mente animoque,
Unde refert nobis victor quid possit oriri,

Quid nequeat, finita potestas denique cuique
Qua nam sit ratione atque alte terminus haerens.
Tito Lucrezio Caro, “De Rerum Natura”, Libro I

Ma guardate l’idrogeno tacere nel mare,
Guardate l’ossigeno al suo fianco dormire.

Soltanto una legge che io riesco a capire
Ha potuto sposarli senza farli scoppiare,

Soltanto la legge che io riesco a capire
Fabrizio de André, “Un chimico”
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3.4 The Lemâıtre model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Approximated models . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Defects of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Conclusions 79

Appendices 83

A Derivation of linearized Einstein Equations 85

A.1 Perturbed Ricci tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Choice of harmonic gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3 Perturbed Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS v

A.4 Perturbed source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B Green function for the constant coefficients case 95
B.1 Reduction of dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Discriminant and 2D Green function . . . . . . . . . . . . . . . . . . . . . . 96
B.3 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.4 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C Growing rate of density contrast for constant Hubble parameter 99

D About N and M integrals 101
D.1 Derivation of the integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.2 Calculation of the integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

E ODEs for the averaged metric components 105
E.1 Reduction of the dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
E.2 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

F Explicit evolution and fictitious components 111
F.1 Three epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
F.2 No matter epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
F.3 No dark energy epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliografy 117



vi CONTENTS



Introduction: The Concordance
Model and its open problems

The Cosmological Concordance Model (CCM) is the best description of the evolution
of the universe we managed to have today. It applies the standard physical laws, assuming
they were valid in the past, fixing the parameters with the actual observations.

First of all, the Concordance Model applies General Relativity, describing the whole
space-time as a manifold, curved by the energy-matter following the Einstein Equations
[1]

Gµν := Rµν −
1

2
Rgµν = 8πGTµν . (0.0.1)

The energy-momentum tensor Tµν follows the laws of physics. The Einstein Equations are
highly non-linear PDEs, impossible to solve in their most general form, so some simplifying
postulates are needed.

It is usually assumed the Cosmological Principle, i.e., the homogeneity and isotropy
of the space, at any instant. The anthropocentrism is outdated, so that it has been
abandoned the existence of any preferential point or direction. However, notice that
the Cosmological Principle can be seen as a philosophical statement, because we cannot
observe the Universe from other location rather than Earth. Its empirical validity can
only be checked indirectly, from the goodness of the cosmological theories built on it.

At the human scale, or even at the Solar System ones, the matter is evidently inho-
mogeneous, thus the Cosmological Principle could seem to be ill posed. For larger and
larger scales, a set of measures supported the reaching of a better and better homogene-
ity1 [2], [3], [4] and isotropy [5]. Hence, it is usually considered a good assumption for a
whole-universe theory. Anyway, the existence of an homogeneity scale and its greatness is
currently under debate; see e.g. [6], [7], and [8], [9], [10], [11].

0.1 The FLRW universe

A spatially homogeneous metric takes the form of the Friedmann-Lemâıtre-Robertson-
Walker metric

ds2 = −dt2 + a(t)2

[
dr2

1−Kr2
+ r2dΩ2

]
(0.1.1)

everywhere, where t is the time coordinate, r the radial one, and dΩ2 := dθ2 + sin2 θdφ2

includes the two angular coordinates on a sphere. Here a(t) is the expansion parameter,

1Notice here the difference between an observed homogeneity and a true spatial homogeneity, due to
the relativistic retard. As one observes deeper and deeper along the past light cone one departs from
our present time hypersurface in a FLRW model, so even the standard model becomes observationally
inhomogeneous. For this reason, observations on deep redshift are essential to support or confute the
homogeneity; see the following references.

1



2 INTRODUCTION

taken s.t. a(t0) := 1 today, and K is the actual gaussian spatial curvature. Moreover, the
Hubble parameter is usually defined as H(t) := ȧ/a.

For a perfect fluid, Tµν := (ρ+p)UµUν−pgµν , which is comoving Uµ = ∂t with respect
to the FLRW coordinates, there survive just two independent Einstein Equations{

ȧ2+k
a2 = 8

3πGρ
2äa+ȧ2+k

a2 = −8πGp
; (0.1.2)

and the Energy Conservation says

ρ̇ = −3H(ρ+ p). (0.1.3)

Let the fluid be a superposition of components ρ :=
∑

w ρw with State Equations pw =
wρw.2 Thus, assuming that the transformation of components into each others is negligi-
ble,

ρw(t) = ρw0a(t)−3(1+w). (0.1.4)

Replacing this into the Einstein Equations, one finds the Friedmann Equation for the
universe expansion

ȧ2

a2
=
∑
w

Ωw0a
−3(1+w) + ΩK0a

−2, (0.1.5)

where are defined the cosmological parameters

Ωw(t) :=
8πG

3H2
0

ρw(t), ΩK0 := − K

H2
0

s.t.
∑
w

Ωw0 + ΩK0 = 1. (0.1.6)

With only matter and radiation as components, (0.1.5) returns a growing, decelerating
solution a(t), with an initial singularity a(tBB) = 0 [12]. Such “Big Bang” model is
empirically supported by the following results:

• The measure of luminosity distance of far galaxies returned the Hubble Law ḋ = H0d
with H0 > 0, which support an homogeneous expansion of the space [13].

• It was found the Cosmic Microwave Background [14], that suggest the decoupling
between matter and radiation at a redshift z ∼= 1100 [15], when the expansion lead
the temperature of the universe at low enough values [16], [17], [18].

• The abundance of deuterium, helium and lithium in the universe are coherent with
their production during primordial nucleosythesis, when the average temperature
has gone down enough to allow the formation of atomic nuclei [16], [17], [18].

The formation of structures, like star and galaxies, is described [19], [20], [21], [22], [23],
[24] as the collapse of a certain inhomogeneity of matter inside the universe (0.1.1). In the
Friedmann Model it is assumed to be small enough to not break the Cosmological Principle;
however, it has consequences on the Cosmic Microwave Background inhomogeneities we
see nowadays.

2E.g., the radiation has a zero-trace energy-momentum tensor, which means w = 1/3. The pressure of
matter is negligible, w.r.t. c2, hence the matter is described as a “dust” with w = 0.
We do not specify the starting and finishing values for the sums on w, because in principle we can imagine
the presence of components with any value of w ∈ R; e.g., we can’t write ”

∑∞
w=0”, because it would

the possibility of a cosmological constant w = −1. On the other hand, we will not write ”
∑+∞
w=−∞”, or

”
∑
w∈R”, because the usual models do not contain components as w = −

√
2 or w = 1000. w rarely varies

outside [−1; 1], although we can not exclude other possibilities. From now on, we will write just ”
∑
w”,

meaning by this
∑
w∈W , for a certain setW ⊂ R of values, differently chosen for any model of the universe.
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0.2 The dark energy

Some better measures of luminosity distances of far objects allowed the evaluation of
the deceleration parameter

q0 := − ä(t0)

H2
0

=
∑
w

1 + 3w

2
Ωw0. (0.2.1)

It was expected to be positive, since there are only known matter and radiation as com-
ponents. Surprisingly, it turned out to be negative[25],[26]; hence, the universe expansion
is accelerating.
It requires, in a FLRW model, some kind of new component with w < −1/3. Such forms
of energy are of exotic type. The most simple kind is the dark energy, or cosmological
constant, with w = −1, which can be expressed as a covariant correction of Einstein
Equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (0.2.2)

It seems to be some kind of “energy of vacuum”, i.e. an energy which belongs to the space
itself, with a constant density ρΛ := Λ

8πG .

0.3 The dark matter

Another unexpected fact about universe components is a contribution to the matter
parameter which does not correspond to any visible matter. It behaves as a type of matter3

which does not interact through electromagnetism, avoiding to emit or absorb light - in
this sense it is “dark”.

Dark matter was discovered measuring the virial of the Coma Cluster [27]: it corre-
sponded to a gravitational mass quite bigger than the observed one. It was interpreted
as the presence of an invisible mass. Afterwards, the evidences of dark matter increased,
outlining a universe with far more dark matter than the observable one, at least the 80%
of the total. We can divide these phenomena in two categories: global dark matter effects,
which consists in unexpected values of cosmological parameters, and local dark matter
effects, that arise from observations of astronomical objects.

0.3.1 Local dark matter (DM) phenomena

• In a spiral galaxy, the rotation velocity of the objects around the center is determined
by the gravitational attraction of the mass inside their orbit. Since the luminous
mass declines beyond the arms, the rotation curves are expected to decrease as 1/

√
r

about. Instead, they remains flat for all the halo [28]. It seems to require there the
presence of non-luminous matter.

• Many components systems interacting with newtonian gravity must obey the Virial
Theorem, which links the velocity distribution to the total mass. Applying it to
elliptic galaxy or galaxy clusters, the observed luminous mass does not match with
the virial predictions [27], [29], [30].

• For GR, any massive objects curves the space-time, so that a light ray passing by
is deviated. Such gravitational lensing allows to measure the gravitational mass of
stars, galaxies and galaxy clusters. This provides an independent proof that the
gravitation of extended objects is quite bigger than their observable mass [31].

3i.e. a zero-pressure energy
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These are the most important local DM phenomena, but there are other ones: X-rays
emitted by hot gas [30], etc. . .

0.3.2 Global dark matter phenomena

• According to the most recent measures [32],[33]

q0 =
1

2
ΩM0 − ΩΛ0 = −0.527± 0.0105

ΩK0 = 1− ΩR0 − ΩM0 − ΩΛ0 = 0.02± 0.02

ΩR0 = 8.24× 10−5 ± 10−7. (0.3.1)

This leads to a fraction ΩΛ0 = 0.685± 0.007 of actual dark energy, but provides also
a value for the parameter ΩM0 = 0.315±0.007 for the total actual matter (see §2.1.2
for a rigorous definition of these Ω parameters). However, the observed matter is
only ΩBM0 = 0.0486±0.0010, which means an amount of dark matter in the universe
of ΩDM0 = 0.266± 0.008 = (84.4± 4.4)%× ΩM0.

• The Fourier study of CMB inhomogeneities gives peaks which are related to cosmo-
logical parameters. The first one determines the curvature ΩK0 of the universe; the
second one gives the density of baryonic matter, i.e. the matter which interacts with
photons; while the third peak returns to the gravitational potential of matter, hence
it is related also to non baryonic matter [15], [34]. It returns a similar amount of
dark matter.

• The amount of observed matter is not enough to collapse on itself and form the
structure we see (stars, galaxies, etc.), if the time passed is just the measured age
if universe ∼ 13.8Gy. However, the presence of dark matter would provide early
some regions of gravitational attraction, where galaxies and clusters fall [35], [24].
It allows the structure formation in such a short time.

These are the most important global DM phenomena, but there are other ones: the baryon
acoustic oscillations [36], [37], the Lyman-alpha forest [38], etc. . .

0.4 Inflation

A third patch on the Friedman model is the addition of the inflation epoch: a certain
period in the early universe when the expansion was not dominated by the radiation or
the matter, but increased exponentially [39], [40]. The most simple description is given
by a huge amount of dark matter which filled the universe, making the metric to be a de
Sitter space, for a time long enough to give a ∼ e60 expansion factor.

Such a inflation solves the “horizon problem”: widely separated regions of the ob-
servable universe results to be in thermal equilibrium, although in a big bang with only
the matter and radiation they have never come into causal contact. Instead, causal link
is allowed in inflationary universe. Moreover, the inflation leads to the observed spatial
flatness without requiring fine tuning on the parameters.

0.5 Baryogenesis

Here we cite one last open problem in cosmology: the asymmetry between matter and
anti-matter. According to the Standard Model, there is a fundamental symmetry between
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particles and their respective anti-particles4, such that their decay times are equal and any
creation or destruction of a particle must correspond to a creation or destruction of an
anti-particle. Hence, assuming that at the Big Bang instant there was an equal number of
particles and anti-particles, it should be the same today. Instead, we observe astronomical
structures of matter only.

The Concordance Model describes the disappearance of the anti-matter during a early
epoch of the universe, named the Matter-AntiMatter Recombination. However, a small
part of matter must have survived. This is usually expressed assuming that the amounts
of matter and anti-matter at the very beginning were not exactly the same, and their
difference is what we see today. However, this cosmological phenomenon could be a clue
that the fundamental symmetry is slightly broken [41], [42], [43], [44].

4Here we are not talking about the C symmetry, which is broken for electroweak interactions. We refer
to the conservation of baryonic number, and to similar conservation laws for any generation of leptons.
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Chapter 1

Attempts to explain dark matter
and dark energy

We can define the dark matter as a set of phenomena for which the apparent gravitation
is quite bigger with respect to what it would be expected from the observable matter.
Notice that what we “expect” is what it is returned by the theoretical models and related
conventions, which are normally used to describe the system. For the phenomena localized
in galaxies or clusters, such model is the newtonian one, since the relativistic corrections
are usually assumed to be negligible. For the phenomena concerning the universe globally,
we refer to the Concordance Model on FLRW metric.

1.1 True dark matter

The simplest explanation for the discrepancy between the model and the observable
matter, would be the presence of some unobserved matter. It would not surprise that our
current knowledge about the composition of the whole universe can be quite incomplete.
However, we can try to classify the possible kinds of dark matter according to the known
laws of physic.

First of all, we may wonder if such a invisible matter travels near to the speed of light,
what is called “hot” dark matter, or has a negligible v � c, being a “cold” dark matter.

1.1.1 Hot dark matter

Only microscopic particles can reach so high speeds. There are a lot of particles
proposed to constitute the hot dark matter; the most natural choice among the Standard
Model is the neutrino. Indeed, we know that neutrinos have small masses1, and they do
not have electromagnetic interactions, but just gravitational or weak interactions. Usually,
the neutrinos travel nearly at the speed of light and are very hard to be observed.

Anyway, it is possible to estimate the number of neutrinos. Before the CMB, it was
produced a Cosmic Neutrino Background; even if we can not observe it directly, we can
estimate its magnitude from other cosmic parameters. Also the neutrino production in
stars can be estimated. The total amount from these contributions is not enough to justify
the dark matter in the galaxies, neither the global dark matter [46].

There are other proposal for hot dark matter particles; e.g. sterile neutrinos, the
neutrinos with right-handed chirality, which have neither weak interactions according to

1We know that because it was observed the oscillation between the three families of leptons, for free
neutrinos. See e.g. [45]

7



8 1. Attempts to explain dark matter and dark energy

the Standard Model [47]. A particle of such a kind has few relations to any cosmic
parameter and is hardly detectable.

But all speculations about hot dark matter have to deal with the good concordance
between local and global dark matter phenomena. Both of them reveal a fraction of dark
matter which is about 85% of the total. Instead, any kind of hot dark matter would
have a too high speed to belong to a gravitationally closed system [48]. Hence, it would
contribute to the global phenomena but not to the local ones. The gap between them can
be just a few percentage points. This leads to the conclusion that only a small part of the
dark matter can be “hot”, and it is necessary some other explanation.

1.1.2 Cold dark matter: WIMPs

A particle that constitutes cold dark matter would be quite massive, in order to have
low velocities. A such hypothetical particle is usually imagined to have weak interactions,
so that it can be produced thermally in the early Universe. The abundance of dark matter
today puts some requirements on the cross section, to be obtained, which would be valid
for a particle with a mass of the order of 100GeV . All these features are resumed naming
them “Weakly Interactive Massive Particles”.

The Standard Model does not contain WIMPs, but similar particles appear in some
beyond-SM hypotheses, especially in supersymmetric models. In the Minimal Supersym-
metric Standard Model (MSSM), there exist four combinations between superpartners of
the weak gauge bosons (bino and wino) and the superpartner of Higgs boson (higgsino),
that have zero charge and no color. These leptons are called “neutralinos”: Ñ0

j , for j from
1 to 4. The lightest neutralino would have a mass around 300GeV , and would be stable
if R-parity is conserved.

Ñ0
1 resulted to be an excellent WIMP candidate, a coincidence which is known as

“WIMP miracle” [49]. No other supersymmetric particles has a such similarity to WIMPs.
If the sneutrinos would exist with the amount required for the dark matter, their interac-
tion events would be already detected, according to MSSM. Also gravitinos are proposed
by SUGRA2, but they would have a mass of 1eV about, hence their thermal production
would not be enough to constitute a relevant fraction of the dark matter.

The WIMP miracle was a strong argument which made the SUSY cheering. However,
the LHC detection beyond the 100GeV energy scale did not find any particle, except
for the Higgs boson [50], [51], [52]. This seems to exclude the SUSY hypothesis; and
even if SUSY particle would exist with some bigger masses, they would not have the
characteristics required for WIMPs.

The lightest neutralino was the best candidate for a WIMP, but not the only one. E.g.
in extra-dimensional theories there are analogous particles, called “Lightest Kaluza-Klein
Particles”(LKPs).

There was a lot of detection experiments which tried to see interactions with WIMPs,
i.e. weak interactions similar to those of neutrinos, except for the bigger mass. Even if
there are no dark matter effects inside the Solar System (the orbits of planets follow the
GR, indeed), weakly interactive particles should pass through the Earth, hence a particle
detector should find them. But no relevant events was detected, up to now [53], [54],
[55], [56], [57]. This seems to exclude the existence of any kind of WIMPs: neutralinos,
LKPs, axions (another hypothetical elementary particle, postulated to resolve the strong
CP problem in QCD) or any other.

2SUGRA means “SUper Gravity models”, i.e. quantum theories of gravity which are supersymmetric.
In quantum gravity, the graviton is the particle associated to the gµν field, and its supersymmetric partner
is called gravitino.
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If dark matter is constituted by some massive particles, they have no weak interactions.
This makes their detection very hard, even if they would exist. Moreover, it is not clear
how they could be produced; they should exist from the very beginning of universe, without
relation to other parameters. This situation suggests to consider dark matter which is not
a particle.

1.1.3 Cold dark matter: MaCHOs

Some kinds of astrophysical objects do not emit radiations: black holes, neutron stars,
brown dwarfs and unassociated planets (i.e. planets that are not orbiting around a star).
If they are present with a big enough number, along the halos of galaxies, they could
constitute the dark matter without requiring any hypothetical particle. These are called
“Massive Compact Halo Objects”.

It is hard to detect MaCHOs, but it is possible with gravitational microlensing. Some
research groups enumerated the microlensing which happens when a dark galactic object
passes nearly in front of a star, with respect the our line-of-sight. A further statistical
analysis estimated the total amount of MaCHOs, which turned up to be not more than
the 8% of the required dark matter [58], [59].

The microlensing technique applies to objects between 1022kg (less than the mass of
the Moon) and 1032kg (hundred times the mass of the Sun). This rules out the planets,
the brown dwarfs and any relic of stars. However, for black holes there is another pro-
posed origin, besides star’s deaths. If sufficiently dense regions underwent gravitational
collapse, soon after the Big Bang, they would produce “Primordial black holes” [60]. Some
considerations restrain the amount of primordial black holes with mass below 1022kg.

• The Hawking radiation has an inverse proportion to the mass of black hole, thus
black holes with mass less than 1011kg have a lifetime shorter than the age of the
universe [61].

• Black holes with a little more masses could be now observed to evaporate and ex-
plode. The searching of such explosions [62] concluded that black holes with mass
up to 1013kg contribute to dark matter to less than the one percent.

• Even if the microlensing of the star light can be detected only for objects with masses
bigger than 1022kg, the gamma-ray burst provides far more powerful sources. The
observation of such events [63] allowed to estimate the number of black holes with
mass between 5×1014kg and 1017kg, and they cannot contribute importantly to the
dark matter.

• If primordial black holes with masses between 1015kg and 1022kg had abundances
comparable to that of dark matter, neutron stars in globular clusters should have
captured some of them, leading to the rapid destruction of the star. Observing
neutron stars in globular clusters, it was possible to rule out also this range of
masses [64].

Taking all these results together, the only MaCHO candidate capable of explaining
the majority of the dark matter remains the primordial black holes with masses between
1013kg and 5 × 1014kg. Assuming plausibly that they have a negligible amount, we can
conclude that at most the 10% of the dark matter can be constituted by MaCHOs. This
leaves the 77% of the gravitational phenomena unexplained by any kind of imagined true
matter.
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1.2 Alternatives to General Relativity

1.2.1 MOG theories

If our theories predict a certain amount of matter, but any attempt to find such a
matter failed, maybe we should modify the theory itself. This challenging idea led to the
MOdified Gravitational theories: some new terms are added to the usual gravitational
law, small enough for interplanetary distances to justify the usual gravitation in those
limit, but not negligible at galactic scale, so that an apparent dark matter arises.

This line of research started with the MOdified Newtonian Dynamic (MOND), which
inserts a dependence by the acceleration inside the Newton law of gravitation3. It hence
becomes

FG = µ(a)
GMm

r2
,

where the “interpolating function” µ(a) is just a factor 1 for high accelerations, but goes
as a0/a for accelerations smaller than a constant a0. Since for galactic distances the
gravitational acceleration is very small, the MOND law is

ma2/a0 = GMm/r2,

which returns a velocity independent by the radius. The function µ(a) can by always
chosen in order to interpolate the rotation curve of a galaxy, thus explaining this particular
dark matter phenomenon [65]. It can be done the same for the virials of clusters.

Even if the Newton law is often used for the galactic dynamic, we know that the physics
is relativistic; the MOND law cannot be the right gravitational law. Moreover, a lot of
dark matter phenomena involve the GR, as the gravitational lensing, and almost all the
global phenomena.

For these reasons, there were proposed relativistic generalizations of MOND. The
most famous is the Tensor-vector-scalar gravity (TeVeS), obtained adding to the Einstein-
Hilbert lagrangian

LEH = − 1

16πG
R
√
− det gµν (1.2.1)

the lagrangians of a vector field uµ

Lu := − 1

32πG

[
KgαβgµνBαµBβν + 2λ(gµνuµuν − 1)

]√
−g, s.t. Bµν := ∂µuν − ∂νuµ,

and of a scalar field φ

Lφ := −σ
2

2

[
hµν∂µφ∂νφ+

G

2l2
σ2F (kGσ2)

]√
−g, s.t. hµν := gµν − uµuν ;

where K and k are the vector and the scalar coupling constants, l is a constant length,
and F is the interpolating function [66]. This new law explains again the rotation curves
of galaxies and the virial of clusters, and it is consistent also with gravitational lensing
and some cosmological observations, with the suitable interpolation [67].

However, TeVeS does not fit with other kinds of gravitational phenomena, as a universal
gravitational law should do. If the parameters are chosen in order to explain the dark
matter, then the spherically symmetric solutions of such a theory result to be unstable,
so that the stars cannot survive more than a few weeks [68]. Moreover, it was found [69]

3An even more shocking version of MOND inserts the same dependence inside the Second Law of
Dynamics itself, so that it concerns any kind of force F = ma

µ(a)
, not just gravitation.
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that TeVeS does not agree with the observed acoustic peaks of the CMB, that are another
dark matter evidence.

There are other relativistic MOG, as the Scalar-tensor-vector gravity, and its exten-
sion, the Bi-scalar-tensor-vector gravity. However, all the MOG theories have to face the
following fatal lacks.

• The interpolation is not consistent with the scientific methodology. If any galaxy
can be adapted to a MOG law, then this law predicts nothing, and is not a scientific
theory. The MOG interpolation seems similar to the epicycles system.

• Even if any galaxy curve or gravitational lens admit a suitable interpolation, the
other phenomena requires different interpolating functions [70]. There is not a unique
expression for gravity.

• A universal law, instead of an unknown kind of matter, must give the same contri-
bution everywhere. However, the dark matter shows an inhomogeneous distribution
[71]. Some galaxies or clusters have more dark matter contribution than other ones
[72].

• This inhomogeneity of dark matter is particularly evident in some observed collisions
of clusters, as the Bullet Cluster [73]. For such objects, the visible matter is nearer
the center than the dark matter, as it is localized via gravitational lensing. It is
coherent if the ordinary matter feels the friction, and if there is some dark matter
which does not interact electromagnetically; but it is not explainable by any MOG
theory.

• The GR was confirmed with respect to MOG alternatives, from large scale phenom-
ena [74], [75] and from the gravitational waves observations [76].

1.2.2 Other alternative theories of gravity

The MOG theories do not run out the attempts to change the theory of gravitation.
Here we consider briefly the principal alternatives.

Brans-Dicke theory

In 1961 it was developed [77] a theory presuming that the gravitational constant G is
not constant, but can vary in space and time. 1/G is hence replaced by a scalar filed φ.
The Brans-Dicke action for gravity is [78]

S =
1

16π

∫
d4x
√
−g
(
φR− ω

φ
∂µφ∂

µφ

)
,

where ω is the dimensionless Dicke coupling constant.
Adding the matter lagrangian, the field equations are returned to be{

Gµν = 8π
φ Tµν + 1

φ(∇µ∇νφ− gµν2φ) + ω
φ2

(
∂µ∂νφ− 1

2gµν∂λφ∂
λφ
)

2φ = 8π
3+2ωT

.

Such equations predicts the deflection of light and the precession of perihelia, as Gen-
eral Relativity does, but such effects depend on the parameter ω. Thus, the observations
provide a bound on its value. Actually, they requires at least ω > 40000, as for an higher
and higher parameter the theory becomes empirically indistinguishable from General Rel-
ativity. Essentially, The Brans-Dicke theory is less falsifiable than General Relativity,
because it has a tuneable parameter.
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The f(R) gravity

Let us consider again the Einstein-Hilbert action

S =

∫
d4xLEG,

where we remember (1.2.1). A possible generalization [79] consist of substitute some
function f(R) of the Ricci scalar

S =

∫
d4xf(R)

√
−g.

Adding the matter lagrangian, the field equation results to be

f ′(R)Rµν −
1

2
f(R)gµν + (gµν2−∇µ∇ν)f ′(R) = Tµν .

In the Taylor expansion

f(R) := a0 + a1R+ a2R
2 + . . . ,

the term a0 is equivalent to a cosmological constant, while the choice of a1 essentially
fixes the gravitational constant a1. The second order term had an historical role in the
development of the Starobinski inflation [39], since he chose a2 := 1

16πG
1

6M2 , where M has
the dimensions of a mass.
The presence of a certain a2 can provide contributions to the dark matter [80]. However,
observations [81] constrains |a2| < 4 · 10−9m2. Within these limits, the f(R) gravity and
General Relativity are empirically indistinguishable, analogously to the previous alterna-
tives we saw.

Entropic gravity

The studies about the connection between gravity and thermodynamics leaded [82] to
hypothesize that the gravitation is not a fundamental force, but an emergent phenomenon
due to the entropy of bits of space-time information. For strong enough gravitational
accelerations, the statistical analysis returns the classical Newton law. Under a threshold
of approximately a0

∼= 1.2 · 10−10m/s2, the law flexes in a linear relation. This provides a
theoretical justification for the MOND postulates, and gives the same explanation for the
dark matter.

A MOND theory justified with the entropic gravity manages to overcome the lacks
due to the large number of possible interpolations, because the gravitational law is not
postulated ex nihilo, but uniquely derived. However, other lacks of the MOND recur, as
the counterexample of the Bullet Cluster. Moreover, problems arise for the derivation of
Einstein’s equations from entropic gravity, for the energy-momentum conservation [83].

Minimally coupled gravity

A theory of gravitation arises from a lagrangian that includes the space-time metric
and other fields. Besides the Einstein-Hilbert term (1.2.1) for gµν and some other part
for the fields, the gravitational interaction must specify also the coupling term between
the metric and the fields. It is possible to ask that such coupling terms have the minimal
degree. This assumption leads to other alternatives to GR [84].



1.3 Fake dark matter from General Relativity 13

1.3 Fake dark matter from General Relativity

If our theory of gravitation is correct, and if all the kinds of invisible matter provide
too small contributions, how can our model predict an amount of matter that is so bigger
than the observable one? They were developed in the last years many lines of research
that seem to explain unusual gravitational effects, such as dark matter and dark energy,
without true dark matter and without changing the gravitational law. These have different
nature and strategies, but all of them can work because the model is not the theory4.

The model of galactic dynamic, or the Cosmological Concordance Model, are not
identical to our theory of gravitation, the General Relativity. The Friedmann model
assumes the homogeneity of the universe, but it holds just as approximation. The galaxies
are described with the Newtonian dynamics, which is again an approximation of GR. Both
of them are valid as long as such approximations are valid. Thus the dark matter, and
maybe other open problems in cosmology, could be the clue that these approximations
ignore some relevant contributions.

1.3.1 Off-diagonal contributions

The Newton law is often considered a good approximation of the Einstein Equations,
for sub-relativistic velocities and low matter density, as they are inside a galaxy. It is true
for the newtonian gauge, i.e. those choices of variables for which the space-time metric
is diagonal, and their components mimic the newtonian potential, returning an evolution
analogous to the quadratic-inverse law. (Here we must remember that the solar system,
although it has low velocities and densities, is not described in a newtonian gauge, but
rather with the IAU reference frame. All this paragraph is referred to the description
of galaxies.) Higher order terms arise for strong gravity fields. This is the theoretical
justification of the Newtonian framework in galactic studies.

However, this argument is not valid for observers which are not in the newtonian
gauge. A series of works [85], [86], [87], [88] contain deep considerations about the co-
ordinates system, used in General Relativity. These have consequences both for global
effects, due to different time coordinates in use [89], [90], and for local ones, due to an
off diagonal contribution. For a rotating matter source, a comoving observer would have
off-diagonal components in the space-time metric. These are not infinitesimal with re-
spect to sub-relativistic velocities. Hence, a rigorously general relativistic study would in-
clude non-negligible off-diagonal contributions, which are completely ignored in newtonian
framework. A newtonian calculation would interpret them as the gravitation generated
by an invisible source, i.e. a dark matter effect.

Theoretical studies [91] for a general galaxy indicate the explanation for at least a
fraction of the galactic dark matter. A more specific analysis [92] was performed about the
Milky Way, following the principles of relativistic astrometric modelling, which accounts
for the weak field off-diagonal terms of the solar system metric, at work for the data
processing delivered by Gaia. It is a first test of a GR weak field effect at Galactic scale,
with the best stellar sample ever tracing the Galactic potential, that uses a suitable GR
description of the observer and the observable adapted to the BG approximation. Then,
[92] accounts for the 100% of DM to explain the Milky Way observed rotational curve by
testing also the density and using the full set of the Einstein Equations.

4As a matter of fact, any model depends on the chosen theory. The point is that any modifications of
the theory should be able to reproduce what is confirmed by the standard theory of gravity. On the other
side, any GR approximations cannot represent the whole theory.
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1.3.2 Backreaction

Considering now the cosmic scale, we have that the Friedmann model is yet a general
relativistic one. However, the mathematical complexity of GR equations does not ensure
that the small matter inhomogeneity, which is completely ignored by Friedmann, does
generate an equally negligible curvature and gravity. Indeed, remember that all the dark
matter effects are gravitational ones, i.e. are due to an unexpected curvature of space-
time: the rotation galaxy curves, the gravitational lensig, and the universe accelerated
expansion, are all due to the space-time metric. If a more precise resolution of Einstein
Equations gives a suitable correction of the metric, all these phenomena would be naturally
explained without the need of more matter.

The backreaction effect is an example of such deeper study of Einstein Equations.
These equations are highly non-linear, hence the spatial average of the metric generated by
an inhomogeneous matter, in general, is not equal to the metric generated by the average of
the same matter, because the averaging operator is not transparent to the equations. The
Friedmann model implements the second calculation: the matter is approximated as ho-
mogeneous at large scales, and from this averaged source it is calculated the homogeneous
metric. However, the measure of cosmological parameters follows the first calculation: the
real matter is inhomogeneous, generating an inhomogeneous metric, and our measurement
processes take the average of this metric.

The difference between the two averaging methods is the backreaction term. The
kinematical backreaction Q̃D on a region D can be calculated as in [93], §2.1 and §3.2, by
the spatial second fundamental form Kij

Q̃D =
2

3
V arD(Nθ)− 〈N2σ2〉D, (1.3.1)

where θ := −Kijg
ij is the trace, −σij := Kij + 1

3θgij is the shear tensor and σ2 := σijσ
j
i .

The backreaction is a second order correction to the Friedmann metric, which showed to
explain a fraction of the dark matter [94] and also of the dark energy [95].

1.3.3 Fractal cosmology

The backreaction does not depend on the exact conformation of the inhomogeneity,
but just on statistical indices of the spatial curvature, as the variance of its trace and the
average of its free-trace part. Other studies tried to specify the inhomogeneity distribution,
substituting it inside the Einstein Equations instead of the Friedmannian homogeneity.
Such distribution results to be a fractal one.

The Olbers Paradox calculates that, if the universe is static and eternal, and if stars
have always the same absolute luminosity L and density n, then the total luminosity we
should receive from sky is

Itot =

∫ ∞
0

dr4πr2 L

4πr2
n = nL

∫ ∞
0

dr,

which diverges. The Paradox was historically solved with the Hubble Law, for which the
universe is not static neither eternal, but Mandelbrot noticed [96] that it is possible a
solution already in newtonian gravity, if density of the star is not homogeneous: if the
stars lie on a fractal of Haussdorf dimension D, after a certain scale R0, the average density
decreases with the scale as n(r)|r≥R0

∼= krD−3; for D < 2 it returns

Itot =

∫ ∞
0

dr4πr2 L

4πr2
n = n(0)L

∫ R0

0
dr+kL

∫ ∞
R0

rD−3dr = R0

(
n(0) +

n(R0)

2−D

)
L <∞.
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This can be considered the foundation of hierarchical cosmology. A couple of arguments
found by Fournier and Hoyle, from classical physics as well, suggested that D = 1.

The astronomical observations highlighted a hierarchical distribution for the matter
structures, increasing the scale [97], [98]. The galaxies belong to galaxy clusters, which
belong to superclusters, which belong to “filaments”, and so on. Such a hierarchy is
mathematically described as a fractal. At large scales, the filaments are divided by big
“void bubbles”, forming what is called “the cosmic fractal”. The Mandelbrot’s intuition
is thus empirically confirmed [99].

A more modern measure of the fractal dimension is due to [100]. Here it was noticed
that the average density n(r) ∼= krD−3 is not well defined for fractals, e.g. cannot be
chosen a suitable value for the coefficient k. It was considered the correlation function for
the number density of galaxies, defined as

Γ(r) :=
〈n(r0)n(r)〉
〈n〉

.

In radial coordinate, it is the average conditional density, i.e. the density of a shell
as a function of density of other shells. It is well defined for fractals, resulting to be
Γ(r) = c(D)rD−3. Applying this definition to the observed distribution of galaxies, it was
found the value D ∼= 1.2, consistent for different scales up to superclusters. A following
work [101] used more recent observations about galaxy distribution, obtaining now

D ∼= 2. (1.3.2)

To solve the Einstein Equations with a fractal source would be a formidable task. A
possible way to build a fractal model starts from the observation that, around any point
of the fractal, it can be approximated considering the total matter inside a sphere5: it
should go as M(r) ∼= ΦrD. Such a “homogenized” source seems to violate the Copernican
Principle, giving to the Earth a preferential role in the universe, as the center of a power
law; but the Earth has not any particular role in this framework. Indeed, if any other
point of the fractal is chosen, the “homogenization” would return the same law with a
new center. It just describes the gravitation as it is summarily seen by a certain “material
observer”, i.e. an observer which stays where there is some matter, which is a point of the
fractal. It is hence regained a “Conditional Cosmological Principle”: the equivalence of
all the material observers, what implies that D and Φ do not depend on the chosen point
[102].

Such a power law for matter generates a Lemaitre-Tolman-Bondi metric. It distorts
the measure of luminosity distances for far galaxies, which is the essential observation for
estimate the universe expansion. Thus, if our universe has really a LTB metric, but we used
a FLRW metric for interpreting the observations, our values for the universe acceleration
contains a fake contribution. The dark energy phenomenon can be fully explained in this
model, choosing a fractal dimension of D = 2.87± 0.02 [103].

There is a discrepancy between the fractal dimension estimated by density correlation,
and by the luminosity distances. A possible explanation can be given by a limit of the
cosmic fractal. It was hence postulated that, at very large scales, the distribution of matter
stops to be self-similar, approaching more and more to the friedmannian homogeneity [3],
[104]. The loss of self-similarity has the suggestive name of “End of Greatness”[105], and
e.g. in [4] its scale is valuated to be LEG ∼= 100Mpc; however, we saw in the Introduction
how the value of LEG, and even its existence, is currently debated.

5The matter is defined as the integral of the T00 component, for a certain gauge. The radius r of the
sphere is defined integrating the ds = gijdx

idyj space metric.
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A mixed model considers then an internal LTB metric, joining it with an external
FLRW metric; it is called “Swiss cheese model”, e.g. in [106] and [107]. Below the End
of Greatness, the cosmic fractal would have the dimension D ∼= 2 as estimated, and the
contributes of the FLRW metric beyond the End of Greatness would justify the value
D ∼= 2.87, obtained from a completely fractal model.

LTB is a valid approximation just for the actual instant. An extension to ancient times
was investigated [108], using a more general Lemâıtre solution, describing the evolution
of the fractal matter and also of the radiation component. The origin of the fractal was
brought back to the M-AM recombination epoch, which leaves relevant inhomogeneities
where the matter was slightly more dense than anti-matter, due to quantum fluctuations.
These results will be presented in §3.

However, we stress here that The LTB spacetime is not a necessary tool to build a
fractal model, as that can be achieved within the FLRW cosmology. See e.g. [109] for a
review.

1.3.4 Retarded potentials

Another line of research considers the retarded gravitational potential generated by the
inhomogeneous, expanding distribution of matter in the universe. Since it is anisotropic,
the Birkhoff Theorem [110] does not hold and the central point can be influenced by far
objects.

The potentials from far objects are retarded, so they depend on the past matter density,
which is greater than the actual one. The causal propagation in gravity, and so its retarded
potentials, was recently confirmed by the observation of gravitational waves [111]. This
provides a magnification effect on the total metric tensor, obtained as a superposition of
all retarded potentials from all past times, which predictably have a singularity at the
Big Bang time. However, there is also a reduction of the gravitational potential with the
distance. It is necessary a precise calculation to see if it prevails the magnification or the
reduction; in the first case, we would have an explanation of dark matter and/or dark
energy effects, as a distortion of the tensor metric not due to a proportional presence of
matter.

This idea was preliminary developed in [112], which is only partially general-relativistic.
It is used a linearized gravity model on a minkowskian background, imposing the expansion
of the universe; only the matter itself moves, on a fixed Minkowski background. From
averaging the generated potentials, it arises an effective FLRW metric. Its expansion rate
must coincide with the imposed Hubble parameter; this returns a compatibility condition,
which fixes the amount of apparent matter related to the FLRW. The calculations give an
about five times bigger effective matter, in (8) of [112]. It is near to the amount of dark
matter it is usually believed to exist, more the 80% of the total.

A relevant role is attribute to a particular stochastic, fractal distribution of matter.
Although the resultant gravitational force has zero average, it has statistical fluctuations
that were numerically studied. The formulas (10) and (11) of [112] showed that the
gravitational force would be consistent with the dark matter effects we observe in galaxies
and clusters.

A truly GR model was proposed in [113]. Here the retarded potentials and their super-
position are approximated with linear perturbation theory, assuming that at large scale
the matter distribution is almost homogeneous, so the inhomogeneities can be seen as
small perturbations. Hence we have a background metric (homogeneous) and a perturbed
one (of which it is taken the spatial average), whose differences are interpreted with suit-
able amounts of fictitious dark matter and dark energy, dependent on the small amount
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of matter inhomogeneity. The PDEs for the retarded potentials are mathematically diffi-
cult to solve, thus in this first paper it is considered an un-physical background universe
with constant Hubble parameter, which allows exact solutions; however, some arguments
indicate that the real universe would return qualitatively the same phenomena.

In the subsequent paper [114] there were developed integral techniques which apply
to all kinds of background expansion. It was obtained the “retarded potential model” for
any combination of universe components - radiation, matter and cosmological constant -
confirming the “magnification effect” for the real universe.
It was found a set of possible solutions, depending on the free parameters of the model.
One of these fully explains the dark matter, but it required a larger cosmological constant
than the usual; another one fully explains the cosmological constant, but it required more
dark matter; and a third one explains a relevant fraction of both dark matter and dark
energy. It will need some more empirical restrains to know which one of these solutions
is that of the real universe, but anyway a redefinition of the cosmological parameters will
be necessary. Moreover, there, was checked that the perturbations are small with respect
to the background, and therefore the perturbative method is valid. All these results will
be exposed in §2.

[113] and [114] investigated only global dark matter effects6. But the “retarded poten-
tial framework” can provide also local dark matter effects, since inhomogeneous matter
generates inhomogeneous potentials. The anomalies in rotation curves and virials would
be due to a statistical maximum of metric distortion around the galaxies and the clusters,
which acts as an halo of effective dark matter. The correspondence of these maximums
with the galaxies would not be a coincidence: during the formation of structure, the bary-
onic matter would fall into the gravitational wells, generated by far fields, so we would
have automatically the formation of galaxies inside them.

6Remember that all the dark energy phenomena regards global observations.
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Chapter 2

Retarded perturbations on FLRW
background

In this chapter we will develop the methods of retarded perturbations, following [113]
and [114]. After the basic definitions §2.1 and the derivations of the fundamental equations
(2.2.13) in §2.2, we will apply them to the more reasonable gauge choices: the harmonic
gauge §2.3, and then the newtonian gauge §2.5 .

The background for our perturbations will be always a FLRW universe, in this chapter,
while an inhomogeneous background will be considered in the next chapter, following [108].
Our study will contain any possible FLRW background, with any partition in physical
components (matter, radiation, dark energy, and so on). An exact solution of (2.2.13)
will be possible just for a particular background §2.4, but some averaging theorems (in
Appendix E) will allow us to reach quantitative results in §2.6 for any background. The
consequences of these general studies for our real universe will be shown in §2.7, getting
new evaluations for the cosmological parameters.

Notations

We will adopt the following terminology.
With “radiation” we mean any component of the universe with a pressure p = wρ with
w = 1

3 . We call “matter” any component with w = 0; and “dark energy” any one with
w = −1. A component with w < 0 will be called “exotic”.

Moreover, we call “total matter” the quantity of matter ΩM0, which is required in the
Cosmological Standard Model in order to explain the observed deceleration parameter;
analogous for the “total dark energy” ΩΛ0. We call “dark matter” ΩDM0 the part of total
matter that is not observed, unless indirectly via gravitational phenomena. The observed
part is essentially the “baryonic matter” ΩBM0

∼= ΩM0 − ΩDM0.

We adopt the most minus signature and natural units, so that c = 1. τ is the conformal
time for the unperturbed metric, and x is the spatial coordinate.

Any quantity has associated an “unperturbed” version Q̄(τ), computed using the back-
ground metric ḡµν , and a “perturbed” version Q(x; τ) computed using the real metric
gµν ; this Q is the “true” version, since the background description is just an homoge-
neous approximation of an inhomogeneous universe. Its “perturbation” is the difference
Q̃(x; τ) := Q(x; τ)− Q̄(τ), which we consider negligible beyond the first order.

The dot will always denote derivation with respect to the conformal time: Q̇ := ∂τQ.
a(τ) is the unperturbed expansion parameter, so that t̄ =

∫
a(τ)dτ is the usual (unper-

turbed) time. H(τ) := ȧ
a is the Hubble parameter for the unperturbed model. τ , a and

19
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H are written without the overline, with abuse of notation, for better readability. Their
perturbed versions will be a and H.

τ0 is the “present” instant for the unperturbed universe, defined s.t. a(τ0) := 1. t0 is the
“present” time for the true model, defined as a(t0) := 1. The “0” label means evaluation
at the present time, i.e. the instant in which the observer lives, both for unperturbed and
perturbed quantities. Notice that in general t0 6= t(τ0), with still a little abuse of notation.

2.1 Framework

2.1.1 Perturbative method

Let us consider a universe, filled with any choice of components, each one charac-
terised by its constant w. ρ =

∑
w ρw is the true matter-energy density. Only the matter

component ρM (x; τ) can be inhomogeneous. Let us call its homogeneous part 1

ρ̄(τ) := min
x
ρ(x; τ). (2.1.1)

Now consider a background universe, approximating our true universe at zero order, so
assuming it filled with a perfectly homogeneous ρ̄. We assume this universe to be spatially
flat, in order to keep all calculations as simple as possible. For the same reason, we assume
irrotational matter. Then, for a more realistic description of the universe, we perform a
first order perturbative calculation. The perturbation of the energy-matter, which in fact
consists only on matter, is

ρ̃(x; τ) := ρ(x; τ)− ρ̄(τ) = ρM (x; τ)− ρ̄M (τ). (2.1.2)

Notice that this inhomogeneity is always non negative. In a symmetric way, we could
also define

ρ̄(τ) := max
x

ρ(x; τ); (2.1.3)

in such a case, ρ̃ would be non positive. It is a matter of convenience to fix the choice
with always positive or negative ρ̃.

Along all this chapter, we will assume the Cosmological Principle. This means that ρ̃
will be considered small, with respect of ρ̄, so that the perturbation method is acceptable.

2.1.2 Background evolution

The background metric is

ḡµν(τ) = a(τ)2(dτ ⊗ dτ − δijdxi ⊗ dxj). (2.1.4)

a(τ) solves the Friedmann Equations{
3H2 = 8πGa2ρ̄

˙̄ρ = −3H(ρ̄+ p)
, (2.1.5)

with p(τ) =
∑

w pw(τ) =
∑

w wρ̄w(τ). Indeed, the only inhomogeneity is on matter, which
has no pressure. From the second Friedmann Equation we know

ρ̄w(τ) = ρ̄w0a(τ)−3(1+w).

1We can interpret it as the density of the intergalactic medium. It is very low, but it is not zero, since
even between the galaxies we don’t have the perfect void. However, a universe can also have ρ̄ ≡ 0; this
would mean that all its matter is inhomogeneous.
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We can describe the background components as

Ω̄w(τ) := a(τ)2 ρ̄w(τ)

ρ̄0
= Ω̄w0a(τ)−1−3w (2.1.6)

s.t. ρ̄0 =
3H2

0
8πG , so

∑
w Ω̄w0 = 1. The first Friedmann Equation says now that H(τ)2 =

H2
0

∑
Ω̄w(τ), from which we get a ODE for the evolution of a(

ȧ

H0

)2

=
∑
w

Ω̄w0a
1−3w. (2.1.7)

We define a(τ) as a maximal solution of this ODE, with maximal domain (τI ; τF )
from an “initial” to a “final” time, eventually unbounded. The initial condition for a is
provided by the request that limτ→τI a(τ) = 0. The radius of the visible universe results
to be R(τ) = τ − τI ; notice that it is always infinite if τI = −∞.

2.1.3 Comparison with the Cosmological Concordance Model

Averaging it ρ̃ on the whole space, we get 〈ρ̃〉(τ). The average of a certain S on the
whole x ∈ R3 is defined as the average on some increasing sequence of compact domains
D ⊂ R3 filling the whole space in the limit

〈S〉 := lim
D↗R3

〈S〉D. (2.1.8)

The exact process of averaging is described in [115]. Since we need the average on the
whole space, we perform the averaging prescription called J(S, ρ, V0, A,Bs,∆Bs) with the
thickness ∆Bs tending to infinity, and with trivial weight ρ ≡ 1. The choice of B and Bs
are hence irrelevant, and we take V := A := τ . Indeed, we do not need a lightlike gradient
for V , as it is prescribed in [115] for averaging cosmological observables: a set of measures
suffers from the delay of information, due to the speed of light, but the quantities ρ or gµν
we need to average are not measures, but rather inhomogeneous fields that we want to
consider as they were homogeneous, at a certain instant of the time foliation. Moreover,
the relativistic delay of information is already accomplished by the study of the retarded
potentials, as in §2.2. For these reasons, we choose a time section for V .
As we will see in §2.5, the space-time can be put in the form gµν = a2[(1 + 2Ψ)dτ ⊗ dτ +
(−1+2Ψ)δijdxi⊗dxj ]. Its determinant is g = −a8(1−4Ψ)+o(ΩIM0), and we can rewrite

the factors in J(S, 1, τ0, τ, Bs,∆Bs → ∞) as nµ∇µΘ(V0 − V ) = δ(V0 − V )
∂µA∂µV√
|∂νA∂νA|

=

δ(V0 − V )
√
|gµν∂µV ∂νV |, where ∂µV = δµτ and gττ = 1

a2(1+2Ψ)
. Thus we have

J(S, ρ ≡ 1, V0 := t̄0, A := t̄, Bs,∆Bs →∞) =

=

∫
d4x
√
−gS

1︷︸︸︷
ρ nµ∇µΘ(V0 − V )

1︷ ︸︸ ︷
Θ(Bs + ∆Bs −B)Θ(B −Bs) =

=

∫
d4xa4

√
1− 4Ψ + o(ΩIM0)S δ(τ0 − τ)

a
√

1 + 2Ψ
= a(τ)3

∫
S(x; τ)[1− 3Ψ(x; τ)]d3x|τ=τ0 + o(ΩIM0).

The a3 factor is simplified dividing by the volume J(1, ρ, V0, A,Bs,∆Bs). Thus, for a
first order calculation, this cosmological average is equal to the average of S − 3ΨS on a
usual euclidean metric. Notice that the second term vanishes whenever S is a first order
quantity, as it will be throughout this chapter.
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We can define the “inhomogeneous matter” as a part of the total matter component

ΩIM (τ) :=
〈ρ̃〉(τ)

ρ0
=

8πG

3H2
0

〈ρ̃〉(τ). (2.1.9)

The Cosmological Concordance Model measures the cosmic components via the ob-
served deceleration parameter{∑

w Ωw0 = 1
1
2

∑
w(1 + 3w)Ωw0 = q0 := −∂2

t a0

H2
0

, (2.1.10)

but it assumes a homogeneous ρ. Since it is not our case, a will be obtained by just an
adaptation of the true space-time metric to a FLRW one

〈gµν〉 := dt⊗ dt− a(t)δijdxi ⊗ dxj . (2.1.11)

This provides a distortion of the expansion law, so that in general a(t) 6= a(t̄), q0 6=
− ä
H2

0
, and Ωw0 6= Ω̄w0. Interpreting the distortion as the unexpected presence of matter

and dark energy, we will see an effect of “fictitious matter and dark energy”. We evaluate
them as ΩFM0, ΩFΛ0.

Remark 1. Since they come from a global evaluation and we used a first order approxima-
tion, these fictitious components will result to be proportional to the total perturbation
ΩIM0. Thus, these global effects do not depend on the spatial distribution of the matter
inhomogeneities, but only on their total amount.

The matter and the dark energy components used in the CCM have a “true” and a
fictitious part

ΩM0 := ΩTM0 + ΩFM0, ΩΛ0 := ΩTΛ0 + ΩFΛ0. (2.1.12)

Indeed, we should consider the possibility that it exists a certain amount of matter of
unknown nature, as WIMPs or MaCHOs; or that our framework is not able to explain a
part of the dark matter phenomena, which find explanation from an alternative theory of
gravity, or from the backreaction, or the fractal cosmology. Similarly, we should consider
the possibility that a dark energy truly exists, although its quantity is different from what
is assumed by the CCM. Our goal is to correct the cosmological parameters related to
dark matter and dark energy, according to the retarded potentials’ mechanism.

The other components are all “true”. The “true” parts must be proportional to the
same components of the background universe

ΩTw0 :=
Ω̄w0∑
w′ ΩTw′0

=
Ω̄w0

1− ΩFM0 − ΩFΛ0
, (2.1.13)

with the exception of matter, for which we have to add again the inhomogeneous part

ΩTM0 =
Ω̄M0

1− ΩFM0 − ΩFΛ0
+ ΩIM0 := ΩHM0 + ΩIM0 := ΩBM0 + ΩTDM0. (2.1.14)

Remember that ΩIM0 can be considered as positive or negative. In the second case,
the homogeneous approximation ρ̄ is a rounding up, so that ΩHM0 > ΩTM0.

Some of the true matter must be the baryonic matter we know to exists. If there is still
some part left, it is “true dark matter” ΩTDM0. It is some kind of matter that actually
exists, which gravitational action is not just a relativistic effect, but that is not a directly
observable matter, like MaCHOs, WIMPs, and so on and so forth.

To fit the two conditions (2.1.10) two more parameters are needed, e.g. ΩFM0, ΩFΛ0.
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2.1.4 Classification of possible results

We can apply this framework to a universe filled by any choice of components {w}.

Definition 1. We will call “selfconsistent” a choice for which

• all calculations return a finite result;

• the linearized Einstein Equations give a unique solution;

• the perturbative method is justified by small enough perturbations g̃µν with respect
to the background ḡµν .

We can write the last condition as{
|g̃µν | � |gµν |
|ΩIM0| � ΩTM0

,

where the second condition means that the Cosmological Principle holds in beyond-End
of Greatness limit.

Selfconsistence means that the choice of {w} returns a physical universe which is
mathematically possible.

Definition 2. We will call “acceptable” a choice for which{
∀w : 0 ≤ ΩTw0 ≤ 1

ΩTDM0 ≥ 0
.

The second part states that all the baryonic matter we see is really existing, so it is
included in the model.

Acceptability means that the choice of {w} returns a universe that is coherent with
our empirical data.

Remark 2. Notice that the fictitious components can be negative, and such a case means
that the dark matter and/or the dark energy is not explained at all, but rather its quantity
is more than what is predicted by the CCM.

Definition 3. We will call “good” the choices for which both the dark matter and the
dark energy are explained, at least for some fraction, i.e.{

ΩTDM0 < ΩDM0

ΩTΛ0 < ΩΛ0

.

Even better choices are whose which fully explain the dark matter and/or the dark
energy, i.e. ΩTDM0 = 0, ΩTΛ0 = 0.

2.2 Einstein Equations linearized on a FLRW background,
with an irrotational perfect fluid

As usual [23], [24], we express the perturbation as

gµν(τ ;x) = gµν(τ) + g̃µν(τ ;x) = a(τ)2

(
1 ~0
~0 −δij

)
+ a(τ)2

(
2A − ~B
− ~B hij

)
. (2.2.1)
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As about the energy-momentum tensor, we set

Tµν(τ ;x) = (ρ+ p)UµUν − pgµν = Tµν(τ) + T̃µν(τ ;x), (2.2.2)

where in general the energy density is ρ = ρ+ ρ̃, the pressure is p = p and the four-velocity
field is Uµ = aδµτ + Ũµ.

The unperturbed Ricci tensor and the unperturbed Einstein tensor are

Rµν =

(
−3Ḣ ~0
~0 (Ḣ + 2H2)δij

)
, Gµν =

(
3H2 ~0
~0 −(2Ḣ +H2)δij

)
. (2.2.3)

The unperturbed Einstein Equations are nothing but the Friedmann equations (2.1.5),
which means an evolution as (2.1.7)

After performing the scalar-vector-tensor decomposition of the metric

~B := ~∇B + B̂, hij := 2Cδij + 2
(
∂ij − 1

3δij∇
2
)
E + (∂iÊj + ∂jÊi) + 2Êij

s.t. ~∇ · B̂ = 0, ~∇ · Ê = 0,
∑

j ∂jÊij = 0,
∑

j Êjj = 0
(2.2.4)

we can express the perturbation of the Ricci tensor as in (A.1.11), (A.1.12), (A.1.13).
We can use the geometric condition gµνU

µUν = 1 = gµνU
µ
U
ν
, to get the perturbation of

velocities as

Ũµ = a−1

(
−A
~v

)
, Ũµ = a

(
A −~v − ~B

)
(2.2.5)

and so, remembering p̃ = 0, the perturbation of stress-energy tensor is

T̃µν = a2

(
ρ̃+ 2ρA −~q − ρ ~B
−~q − ρ ~B −phij

)
, (2.2.6)

where ~v(τ ;x) is the field of spatial velocities, and we defined ~q := (ρ + p)~v. The last
has nothing to do with the deceleration parameter q0, but it is an expression for the
(irrotational) velocity field.

2.2.1 Choose the harmonic gauge

We want now to deduce the equations for the retarded potentials. To this end, we fix
the harmonic gauge, usually convenient for studying gravitational waves [116]. Abstracting
from the background metric, the harmonic condition on the perturbation of connection is

Γ̃λµµ = 0. (2.2.7)

We obtain a scalar and a vector condition on A, ~B, hij{
Ȧ+∇2B + 3Ċ + 4HA = 0

~∇A+ ~̇B − ~∇C +∇2 ~E + 2H ~B = 0
. (2.2.8)

In this gauge, the second order part of R̃µν is a flat d’alambertian 2 := ηµν∂
µ∂ν . Indeed,

we can rewrite the perturbation of Ricci as

R̃µν =

[
1

2
2−H∂τ − 2(Ḣ +H2)

](
2A − ~B
− ~B hij

)
+ Ḣ

(
0 ~0
~0 hij − 2Aδij

)
. (2.2.9)

See Appendix A. This is what we are looking for, because predictably the linearized
Einstein Equations will have the form of wave equations.
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Following again the gravitational waves formalism, we express the Einstein Field Equa-
tions as

Rµν = 8πGSµν = 8πG

(
Tµν −

1

2
T λλ gµν

)
. (2.2.10)

The linearized version, simplified using equations (2.1.5), is
2A− 2HȦ+ 2(Ḣ − 2H2)A = 4πGa2ρ̃

2 ~B − 2H ~̇B + 2(Ḣ − 2H2) ~B = 16πGa2~q

2hij − 2Hḣij = 4(ḢA+ 2πGa2ρ̃)δij

. (2.2.11)

These contains the linearized Conservation Laws for energy and momentum{
˙̃ρ+ ~∇ · ~q + 3Hρ̃− 3(ρ+ p)Ċ = 0

~̇q + 4H~q + (ρ+ p)(~∇C +∇2Ê) + [(ρ̇+ ṗ) + 2H(ρ+ p)] ~B = 0
. (2.2.12)

See Appendix A for explicit calculations.

2.2.2 Simplification of wave equations

First, we observe that hij has no traceless source, hence we can choose a solution with
hij = 2Cδij .

Moreover, let us decompose ~q := ~∇q + q̂. The divergenceless part B̂ has only q̂ as
source and both of them are decoupled from the rest of the system. Indeed, they survive
only in the wave equation for ~B and in the Momentum Conservation, which becomes

0 = ~∇
[
q̇ + 4Hq + (ρ+ p)C + [(ρ̇+ ṗ) + 2H(ρ+ p)]B

]
+
[

˙̂q + 4Hq̂ + [(ρ̇+ ṗ) + 2H(ρ+ p)]B̂
]
.

We set both to zero, because we considered an irrotational dust as inhomogeneous matter.
The system (2.2.11) becomes

2A− 2HȦ+ 2(Ḣ − 2H2)A = 4πGa2ρ̃

2B − 2HḂ + 2(Ḣ − 2H2)B = 16πGa2q

2C − 2HĊ = 2ḢA+ 4πGa2ρ̃

. (2.2.13)

The Conservation Laws become{
˙̃ρ+∇2q + 3Hρ̃− 3(ρ+ p)Ċ = 0

q̇ + 4Hq + (ρ+ p)C + [(ρ̇+ ṗ) + 2H(ρ+ p)]B = 0
. (2.2.14)

A general solution of the PDE system (2.2.11) has also a g̃µν term such that

2g̃µν − 2H ˙̃gµν + 2(Ḣ − 2H2)g̃µν = 0,

describing gravitational waves on an expanding space-time. We will not consider it, since
we are seeking for selfconsistent choices, so we want that the linearized Einsten Equations
have a unique solution.
For a given distribution of matter and velocities as source, the PDEs return the correspon-
dent space-time metric perturbation. For a bounded distribution of matter, the solution
without gravitational waves is such that the metric is asymptotically zero, and we choose
this solution as gravitational potential. Similarly to the usual wave equation, the charac-
teristic curves are light rays, and so the potentials are retarded accordingly to the speed
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of light.
Near τI , the matter inhomogeneities cannot have yet generated the metric perturbations
A,B,C. For a selfconstistent solution we ask that A,B,C are zero at τI , as initial condi-
tions for (2.2.13).

Remark 3. Here we notice that any effect we will find with the retarded perturbation
approach should be added to the fictitious dark energy/matter which arises in [95] or [94].
Indeed, the backreaction effect is due to the local inhomogeneity on a certain compact
support D, while the retarded perturbations come mostly from far and ancient inhomo-
geneities, external to the region D, giving a global contribution that cannot be reduced to
the fields in D.

Let us consider now the total metric gµν = a2

(
1 + 2A −~∇B
−~∇B (2C − 1)δij

)
. The spatial

part is flat, even for its perturbed version, so we won’t have backreaction. Indeed, on any
D, the spatial second fundamental form Kij will have a constant trace θ := −Kijg

ij and
an identically zero shear tensor σij := −Kij − 1

3θgij ≡ 0. So the kinematical backreaction
(1.3.1) will be always zero.

Moreover, the backreaction is a second-order quantity, so it never can be found in a
calculation at first order, as it is the ours.

2.3 Averaged metric in harmonic gauge

All the wave equations have the PDE form

2u+H(τ)u̇+K(τ)u = S(τ ;x) (2.3.1)

on the generic field u, with time dependent coefficients H,K and source S.
Let G(τ, x; τ ′, x′) be its Green function2. It is zero for |x−x′| > τ−τ ′, because of causality.
It is also spatially homogeneous and isotropic

G(τ, x; τ ′, x′) = G(τ, x− x′; τ ′, 0) = G(τ, |x− x′|; τ ′, 0).

Assuming separation of variables for a generic source, S(τ ;x) = T (τ)S0(x), we can express
the retarded potential through convolutions

u(τ ;x) =
∫ τ
τI
dτ ′
∫
d3x′G(τ, x; τ ′, x′)T (τ ′)S0(x′) =

∫
|x′−x|<τ−τI S0(x′)f(τ ; |x′ − x|)d3x′

s.t. f(τ ; |r|) :=
∫ τ
τI
G(τ, r; τ ′, 0)T (τ ′)dτ ′.

(2.3.2)
The auxiliary quantity f represents the superposition of all the retarded potentials

generated by a point of the source at all times, from the Big Bang up to now. The
resultant solution u is again the superposition for all the causally linked points.

2.3.1 Average theorems

To study the global effects, we take the average of these potentials over all the space,
obtaining a function depending only on time. We get

Proposition 2.3.1. A field as in (2.3.2) has average

〈u〉(τ) = 4π〈S0〉
∫ R(τ)

0
f(τ ; r)r2dr, (2.3.3)

where R(τ) := τ − τI is the radius of observable universe.
2i.e. the asymptotically vanishing solution for a source δ(τ − τ ′)δ(3)(x− x′)
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Proof. The spatial average of u(τ ;x) is defined as (2.1.8). Let us fix the time τ . What we
obtain immediately for u, from (2.1.8), is

〈u〉(τ) := lim
D→R3

1

|D|

∫
D
u(τ ;x)d3x =

= lim
D→R3

1

|D|

∫
D
d3x

∫
|x′−x|<R(τ)

d3x′S0(x′)f(τ ; |x− x′|) =

= lim
D→R3

1

|D|

∫
D
d3x

∫
|r|<R(τ)

d3rS0(r + x)f(τ ; |r|) =

=

∫
|r|<R(τ)

f(τ ; |r|)
[

lim
D→R3

1

|D|

∫
D
d3xS0(r + x)

]
d3r =

=

∫
|r|<R(τ)

f(τ ; |r|)
[

lim
D+r→R3

〈S0〉D+r

]
d3r =

=

∫
r<R(τ)

f(τ ; r)〈S0〉4πr2dr,

where we call D+ r := {x+ r|x ∈ D} in the fourth passage, and we changed the variables
to polar in the fifth passage. This proves the proposition.

Remark 4. A and C are not decoupled, in general. The source 2ḢA of C has not separable
variables, as we assumed. Thus, the previous Proposition is not applicable to u = C, unless
for the cases in which the separation of variables for A(τ ;x) is valid.
It is for the constant Hubble parameter case, since the coupling term in ḢA vanishes.
Moreover, we will show in §2.4.5 that a decoupling procedure is possible whenever the
universe is dominated by a single component. A general universe with choice {w} can
be always approximately described sticking a succession of epochs, each one with single-
component domination.

For B it is necessary a different procedure, since it is not a component of the metric,
but their partial derivatives ~∇B are. Its average results to be zero.

Proposition 2.3.2. For a field as in (2.3.2) it holds

〈~∇u〉 = 0. (2.3.4)

Proof. Similarly to u, we find now the average of ~∇u.

〈~∇u〉(τ) := lim
D↗R3

1

|D|

∫
D
~∇u(τ ;x)d3x =

= lim
D↗R3

1

|D|

∫
D
d3x

∫
|x′−x|<R(τ)

d3x′S0(x′)~∇xf(τ ; |x− x′|) =

= lim
D↗R3

1

|D|

∫
D
d3x

∫
|r|<R(τ)

d3rS0(r + x)~∇rf(τ ; |r|) =

=

∫
|r|<R(τ)

(
~∇rf(τ ; |r|)

)[
lim
D↗R3

1

|D|

∫
D
d3xS0(r + x)

]
d3r =

=

∫
|r|<R(τ)

r

|r|
f ′(τ ; |r|)〈S0〉d3r = 0,

because it is an integral of an odd function over a symmetric region.
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2.3.2 Comparison with homogeneous metric

Applying the first Proposition to A and C, with the caveats of Remark 4, and the
other one to B, we find that the averaged metric is diagonal.

〈gµν〉 = gµν + 〈g̃µν〉 = a(τ)2(1+2〈A〉(τ))dτ ⊗dτ −a(τ)2(1−2〈C〉(τ))δijdxi⊗dxj , (2.3.5)

where

〈A〉(τ) = 16π2G〈ρ̃〉(τ0)

∫ R(τ)

0
fA(τ ; r)r2dr,

〈C〉(τ) = 4π(2Ḣ0〈A〉(τ0) + 4πG〈ρ̃〉(τ0))

∫ R(τ)

0
fC(τ ; r)r2dr, s.t.

fA,C(τ ; |r|) :=

∫ τ

τI

GA,C(τ, r; τ ′, 0)T (τ ′)dτ ′, T (τ) =
ρ̃(τ, x)

ρ̃(τ0, x)
,(

2− 2H∂τ + 2(Ḣ − 2H2)
)
GA(τ, x; τ ′, x′) = δ(τ − τ ′)δ(3)(x− x′),

(2− 2H∂τ )GC(τ, x; τ ′, x′) = δ(τ − τ ′)δ(3)(x− x′). (2.3.6)

Since the averaged metric we found is diagonal, it is possible to compare it to the
homogeneous metric (2.1.11), defining suitably the variables

dt := a(τ)
√

1 + 2〈A〉(τ)dτ, a := a(τ)
√

1− 2〈C〉(τ). (2.3.7)

We can express the correspondence with suitable “perturbations”

dt := t̃dt s.t. t̃ :=
√

1 + 2〈A〉,

a := aã s.t. ã :=
√

1− 2〈C〉. (2.3.8)

Remark 5. We can have singularities if t̃ or ã reaches zero. It could happen for times
ancient enough, and our perturbation theory is no more valid for previous instants, since
imaginary quantities are not allowed.

If 〈C〉(tBB) = 1
2 , then a(tBB) = 0 even if a(tBB) 6= 0. tBB would be a perturbed Big

Bang, and we can set tBB = 0 w.l.o.g.

If 〈A〉(tmin) = −1
2 , then the perturbation theory looses validity even if there is no Big

Bang. In this case, too much early epochs remain simply not describable by the model.
This provides a cut off for the time integration.

Getting an expression for 〈A〉 and 〈C〉, we will be able to replace ∂2
t a inside (2.1.10),

so that the two parameters ΩFM0,ΩFΛ0 will be fixed.

2.4 Constant Hubble parameter case

To obtain some explicit solution of (2.3.1), at least for a simple case, from now on we
consider a universe with constant Hubble parameter, so that

H ≡ H0 := −2H0; K ≡ K0 := −4H2
0 for A and B, K ≡ 0 for C. (2.4.1)

In this case the system is completely decupled, so the problem in Remark 4 is overcome.
Physically, we have a universe dominated by only one component Ω̄w0 = 1, which is a
suitable form of exotic energy such that w = −1

3 . It is the same expansion assumed in



2.4 Constant Hubble parameter case 29

[112], since the background expansion law is a(τ) = eH0τ and a(t) = H0t, but now it is
treated in a general relativistic context.

Following the derivation in Appendix B, we obtain the Green function for (3.2.17) with
constant coefficients.

G(τ ;x) =
e

1
2
H0τ

4π

−δ(τ − |x|)
|x|

+

√
K

τ2 − |x|2
J ′0

(√
K(τ2 − |x|2)

)
θ(τ − |x|)

 , (2.4.2)

where we defined the discriminant K := −K0 −
(H0

2

)2
, J ′0 is the first derivative of the

zeroth order Bessel function, and θ is the Heaviside function.
Notice that for A and B we have K = 3H2

0 , whence it comes a factor
√

3, while for C it
is K = −H2

0 , for which J0 is replaced by I0, the zeroth order modified Bessel function. We
easily recognize the causality in the potential, since the first term propagates at the speed
of light and the second one slower. The second term is some kind of “echo”, due to the
difference of the differential operator from a pure d’alembertian. For constant coefficients,
the PDE is homogeneous in time, so G(τ, x; τ ′, 0) = G(τ − τ ′, x; 0, 0) = G(τ − τ ′;x).

2.4.1 Density contrast growing rate

To get an explicit expression for 〈A,C〉, what we need now is an evaluation of their
source 4πGa2ρ̃ = S(τ ;x) = T (τ)S0(x). Since S0 ∝ ρ̃0, it is enough to compute the
growing law T (τ) of the matter inhomogeneities, due to the progressive attraction of more
and more material from the medium ρ. Let us measure it with the density contrast of
matter

δM :=
ρ̃

ρM
∝ ρ̃a3 ∝ S0aT. (2.4.3)

This quantity is studied in perturbative cosmology, since it describes the formation of
structures; see e.g. [24], [117] and [118]. Hence we know, for real universe, that it holds the
separation of variables for the density contrast whenever it dominates a single component.
When the matter dominates, it is

δM ∝ a⇒ T (τ) = cost.

When to dominate is dark energy, the matter structures are ripped apart with the same
expansion rate of the universe

δM = cost.⇒ T (τ) = a(τ)−1.

When to dominate is radiation, the density contrast is well described by

δM ∝ ln

(
4

y

)
, s.t. y :=

a(τ)

aRM
,

as [24], [117], [118] say again, and aRM is the value of a for which the matter starts to
dominate on the radiation; see §2.7.2 for the rigorous definition. Thus, the T function is

T (τ) = a(τ)−1 ln

(
4aRM
a(τ)

)
= a(τ)−1[ln(4aRM )− ln a(τ)].

Our case is different from each of these, since it dominates a particular form of exotic
energy. It has a w parameter between that of matter and that of cosmological constant,
thus we assume an analogous growing law

δM ∝ an, (2.4.4)
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where the parameter n is a “growing rate”, which predictably has some value between 1
and 0.3 A plausible choice is n ∼= 2/3, since it is proportional to the proximity of w = −1/3
exotic energy to the w = 0 matter and the w = −1 dark energy.
We will use

ρ̃(τ ;x) = a(τ)n−3ρ̃0(x) ⇒ T (τ) = a(τ)n−1. (2.4.5)

We can obtain a condition on the growing rate from the linearized Einstein Equation
(2.2.13) and Conservation Laws (2.2.14)

n ∈ (−Φ;−1) t (ϕ; 1), (2.4.6)

where ϕ = Φ−1 :=
√

5−1
2
∼= 0.618 . . . is the golden ratio. The derivation can be found in

Appendix C.
δM must grow, for gravity, so the physically acceptable values are ϕ < n < 1. Notice that
the choice n ∼= 2/3 is compatible.

2.4.2 A formula for the effective density

Now we can evaluate the average metric with the formula (2.3.3). Substituting (2.4.2)
in (2.3.6), and , remembering R(τ) ≡ +∞ in our case, one finds

〈A〉(τ) = 4π

(
1

3
N (n/

√
3)− 1

n2

)
G〈ρ̃0〉
H2

0

a(τ)n−1,

〈C〉(τ) = 4π

(
M(n)− 1

n2

)
G〈ρ̃0〉
H2

0

a(τ)n−1. (2.4.7)

The integrals

N (n) :=

∫ ∞
0

∫ ∞
0

e−n(x+y)J
′
0(
√
y(y + 2x))√
y(y + 2x)

x2dydx,

M(n) :=

∫ ∞
0

∫ ∞
0

e−n(x+y) I
′
0(
√
y(y + 2x))√
y(y + 2x)

x2dydx (2.4.8)

are defined in Appendix D.
Since I0 grows exponentially, M is divergent for n ≤ 1. Analogously, N diverges for

n ≤ −1. For the admissible ranges, we can follow the procedure of Appendix D, finding
the exact results

N (n) =
1

n2 + 1
− 1

n2
, M(n) =

1

n2 − 1
− 1

n2
. (2.4.9)

Remark 6. The divergence could be interpreted as an infinite quantity of apparent dark
matter, in the constant coefficient case, due to the expansion law near the first instant
τI = −∞. However, any known physical theory fails near the Big Bang, so we should put
a cut-off on integrals N ,M that makes them finite.

For example, a natural cut off (Remark 5) for our theory is τmin such that

a(τmin)1−n = −
(

1

3

1

(n/
√

3)2 + 1
− 1

3

1

(n/
√

3)2
− 1

n2

)
8πG

H2
0

〈ρ̃0〉 = 3

(
2

n2
− 1

n2 + 3

)
ΩIM0+o(ΩIM0).

(2.4.10)
As we will see (Remark 8), the pole in n = 1 will be canceled by a factor (n − 1), so we
can extend the N ,M functions also for n < 1, which are the physical values. What we
perform is essentially a renormalization via analytic continuation.

3This n has nothing to do with the numerical density of stars for the Olbers Paradox, in §1.3.3
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The divergence and the necessity of a renormalization is a clue of the unphysicality of
the constant coefficients case we are studying. Indeed, the metric perturbations (2.4.7) do
not satisfy the First Selfconsistence Condition (see Corollary 2.6.1). They do not go to
zero at τI , as we required in §2.2.2; on the contrary, they have an asymptote, since n < 1.
These lacks will be fully overcome in §2.6, with a general study of the selfonsistence.

In the constant coefficients case, the second relation of (2.1.10) can be expressed with
an “effective density”

Ωeff :=
∑
w

(1 + 3w)Ωw0 = −2
äD(t0)

H2
0

. (2.4.11)

Remark 7. The effective density results to be proportional to the deceleration parameter:
Ωeff = 2q0. This means it may be negative, for universes with some components w <
−1/3.
Pay attention: this is not a violation of the weak energy condition. The true matter-energy

density is ρ+ ρ̃, which is always positive. This ρeff :=
3H2

0
8πGΩeff is only a fictitious density,

without physical existence.

To obtain an explicit expression for the effective density, we will use the following
conventions:

K(n) := 8π

(
1

3
N (n/

√
3)− 1

n2

)
G = 8π

(
1

n2 + 3
− 2

n2

)
G,

K ′(n) := 8π

(
M(n)− 1

n2

)
G = 8π

(
1

n2 − 1
− 2

n2

)
G.

Moreover, we use t as most suitable variable, with t0 := t(t0).

Theorem 2.4.1. If on a spatially flat metric dominated by a w = −1
3 dark matter-kind,

we put an inhomogeneity of matter ρ̃, the present deceleration parameter of the averaged
perturbed metric can be interpreted with an amount of effective density

ρeff (〈ρ̃0〉; H0;n) =
3(1− n)

16πG
H4

0 t
2
0

H2
0 t

2
0 − 1

[(1 +K/K ′)H2
0 t

2
0 −K/K ′]2

×

×
[(

(3− n)K/K ′ + (7− n)
)
H2

0 t
2
0 −

(
(5− n)K/K ′ − (n+ 3)

)]
, (2.4.12)

such that K
′Hn−1

0 〈ρ̃0〉tn+1
0 + 1 = H2

0 t
2
0

H0 = H0
2

(1−n)H2
0 t

2
0+(1+n)√

(1+K/K′)H2
0 t

2
0−K/K′

. (2.4.13)

Proof. Remember

a(t) = H0t

√
1−K ′Hn−3

0 〈ρ̃0〉tn−1
.

We can differentiate it exploiting

dt

dt
=

√
1 +KHn−3

0 〈ρ̃0〉tn−1
,

and substituting inside the first two equations of (2.1.10) we get (2.4.13). Remember
the known parameters are 〈ρ̃0〉,H0, n, so this system determines t0, H0. Differentiating a
again, we get (2.4.12).
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This gives the quantity of fictitious matter and other components an observer would
need to justify the measured distortion of deceleration parameter, if there is an average
inhomogeneity of matter 〈ρ̃0〉. Substituting the values for 〈ρ̃0〉, it is possible to evaluate
the magnitude of these effects.

Remark 8. The factor (1− n) in the ρeff compensates for the pole at n = 1 inside K ′(n).
This justifies the renormalization we performed for the M,N integrals.

2.4.3 Numerical values

Since we assumed inhomogeneities are small, so that we can use the perturbative
approach, here it is possible to expand all the theorem’s quantities at the first order in
〈ρ̃0〉. From (2.4.13) we get

t0 =
1

H0
+
K + (n+ 1)K ′

2H3
0

〈ρ̃0〉+ o(〈ρ̃0〉),

H0 = H0 +
K + nK ′

2H0
〈ρ̃0〉+ o(〈ρ̃0〉). (2.4.14)

The factor (H2
0 t

2
0 − 1) inside ρeff has no zeroth order term, so we must take only the

zeroth order term for all the other factors, which simplifies the calculation of

ρeff =
3(1− n)

16πG
H2

0

K ′Hn−1
0 t̄n+1

0 〈ρ̃0〉
[(1 +K/K ′)−K/K ′]2

[
((3− n)

K

K ′
+ (7− n))− ((5− n)

K

K ′
− (n+ 3))

]
+ o(〈ρ̃0〉) =

=
3

2
(1− n)

K ′

8πG

[
−2

K

K ′
+ 10

]
〈ρ̃0〉+ o(〈ρ̃0〉) = 3(1− n)

[
5
K ′

8πG
− K

8πG

]
〈ρ̃0〉+ o(〈ρ̃0〉) =

=3(1− n)

[
5

(
1

n2 − 1
− 2

n2

)
−
(

1

n2 + 3
− 2

n2

)]
〈ρ̃0〉+ o(〈ρ̃0〉) =

=3(1− n)

[
5

n2 − 1
− 1

n2 + 3
− 8

n2

]
〈ρ̃0〉+ o(〈ρ̃0〉).

(2.4.15)

We see clearly here how the pole n = 1 vanishes. We can express our result in terms of
the quantity

ract(n) :=
ρeff
ρIM0

; (2.4.16)

its name means “ratio”. Hence we have

ract(n) =
ΩM0 − 2ΩΛ0

ΩIM0

∼= 3

(
n− 1

n2 + 3
+ 8

n− 1

n2
− 5

n+ 1

)
. (2.4.17)

Except for matter and cosmological constant, which are almost fictitious, the only
component is ΩE0 := Ωw0|w=− 1

3
, that particular kind of dark energy which gives a back-

ground expansion with constant Hubble parameter H(τ) ≡ H0. Remembering ΩE0 = 1,
as it was dominant in the background expansion, we have at first order

ΩE0 =

(
H0

H0

)2

= 1 +
K + nK ′

H2
0

〈ρ̃0〉+ o(〈ρ̃0〉). (2.4.18)
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Since the sum of all Ωw0 is always 1, we can define another quantity which describes such
“sum”, getting

sum(n) :=
ΩM0 + ΩΛ0

ΩIM0

∼=−
K + nK ′

8πG
= −3

[(
1

n2 + 3
− 2

n2

)
+ n

(
1

n2 − 1
− 2

n2

)]
=

=3

(
2

n
+

2

n2
− 1

n2 + 3
− n

n2 − 1

)
.

(2.4.19)

This allows us to obtain ΩΛ,M0 as function of the perturbation ΩIM0. As we did not
put any cosmological constant in the true universe, and we put the matter only as the
inhomogeneous one,

ΩFΛ0 = ΩΛ0
∼=
sum(n)− ract(n)

3
ΩIM0

ΩM0
∼=

2sum(n) + ract(n)

3
ΩIM0

ΩFM0 = ΩM0 − ΩIM0
∼=
(

2sum(n) + ract(n)

3
− 1

)
ΩIM0 (2.4.20)

are the fictitious matter (with the exception of ΩIM0, which is a real matter added to the
background) and the fictitious cosmological constant.

Evaluation of parameters with n ∼= 2/3

Remembering the condition (2.4.6), we can try to replace a numerically simple choice
as n ∼= 2/3; this gives

ract(2/3) ∼= −27.29; sum(2/3) =∼= 25.23⇒
ΩΛ0

ΩIM0

∼= 17.51;
ΩM0

ΩIM0

∼= 7.72;
ΩFM0

ΩIM0

∼= 6.72 . (2.4.21)

In particular, we obtain ΩM0 > ΩIM0 and ΩFM0 > 0, so the magnification effect is verified.
We can compare the formulas (2.4.21) with the most recent measures of cosmological

parameters in our universe [33].

ΩB0 = 0.043±0.004; ΩM0 = 0.315±0.007; ΩDM0
∼= 0.272±0.011 ΩΛ0 = 0.685±0.007 .

What we find is

ΩIM0
∼=

ΩM0

7.72
∼= 0.0408⇒ ΩFM0

∼= 6.72ΩIM0
∼= 0.274, (2.4.22)

which is inside the confidence interval of ΩDM0; i.e. all the dark matter is explained in
this model.

The real matter is just the baryonic one, divided into inhomogeneous ΩIM0 and ho-
mogeneous ΩHM0

∼= 0.0022; unfortunately, the relevant fraction of inhomogeneous matter
(about 95%) breaks put out outside the Definition 1 of selfconsistence universe.

We can evaluate also the correction on cosmological constant

ΩFΛ0
∼= 17.51ΩIM0

∼= 0.714⇒ ΩTΛ0
∼= −0.029, (2.4.23)

which is outside the 3σ interval of ΩΛ0; i.e. this model explains too much cosmological
constant, requiring finally a certain negative value for this parameter.
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Evaluation of parameters with ΩIM0 := 1/sum

The excessive value of ΩFΛ0 in the last evaluation is due to the fact that, with a
parameter ΩIM0

∼= 0.0408, it returns ΩM0 + ΩΛ0 = sum(n)ΩIM0 > 1, hence they cannot
fit with the empirical ΩM0 +ΩΛ0 = 1. Imposing this physical request, we have a constraint
on the model’s quantities

ΩIM0 =
1

sum(n)
⇒ ΩM0 =

1

3

(
2 +

ract(n)

sum(n)

)
; ΩΛ0 =

1

3

(
1− ract(n)

sum(n)

)
. (2.4.24)

Now, substituting the empirical ΩM0 (or equivalently ΩΛ0), one fixes the value n ∼= 0.6761
as solution of an algebraic equation. We notice that it falls inside the acceptable interval
(ϕ; 1), and it is very near to the conjectured 2/3. With this growing rate,

ΩIM0 =
1

sum(0.6761)
∼= 0.0402, (2.4.25)

which means ΩHM0
∼= 0.0028 as homogeneous matter.

We managed to find a really good model, which explains fully both the dark matter
and dark energy, assuming a constant coefficients background expansion with growing rate
n ∼= 0.6761, and a perturbation with an amount ΩIM0

∼= 0.0402 of inhomogeneous matter.
Unfortunately, this is not a selfconsistent model. Indeed it breaks the Cosmological Prin-
ciple, as ΩIM0

∼= 93.51%ΩM0. Moreover, we will see in §2.6 that it breaks also the First
Selfconsistence Condition.

Remember that all these values are provisional. The quantitative results could change
in a model with non constantly expanding background. Comparing Figure 2.1, 2.2 and
2.3, that describe the 2D Green function Γ of §B.2 for different dominant components,
we can imagine that the inhomogeneity effects could be stronger under a dominance of
radiation or matter, since the “echos” result to develop faster (the same shape to get which
under constant expansion it needs τ − τ ′ = 50Gy, is reached under matter in 20Gy and
under radiation in 13Gy). The real universe passed a phase of radiation dominance and
then of matter dominance, so we can expect higher values for ract(n), sum(n) and a more
complete explanation of the dark matter and the cosmological constant.

2.4.4 An inflation-like effect

If we are able to evaluate the fictitious quantity of cosmological constant, it would be
interesting to obtain its variation during time and check if in the past was bigger. It would
provide an explanation for the inflationary theory. So we fix a past instant t1. We put
our observer at this time and we wander how much inhomogeneity effect he sees. As in
previous calculations (2.1.7), the observer considers a purely homogeneous model4(

ȧD
H1

)2

=
∑
w

Ωw1a
−3w−1
D . (2.4.26)

Since he lives in t1, its effective expansion parameter is fixed as aD(t1) = 1. This means it
is reduced by a factor a1 := a(t1) with respect to a(t). The setting of parameters (2.1.10)
becomes 

aD(t1) := 1 = a(t1)
a1

ȧD(t1) = H1 := ȧ(t1)
a1

äD(t1) := ä(t1)
a1

. (2.4.27)

4Coherently with the previous notation, we write Q1 := Q(t1) for any quantity.
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From them we have the analogous of (2.4.13) and (2.4.12)

ρeff (〈ρ̃0〉;HD1;n) =
3(1− n)

16πG

H4
0 t

2
1

a4
1

H2
0 t

2
1 − a2

1

[(1 +K/K ′)H2
0 t

2
1 − (K/K ′)a2

1]2
×

×
[(

(3− n)K/K ′ + (7− n)
)
H2

0 t
2
1 −

(
(5− n)K/K ′ − (n+ 3)

)
a2

1

]
, s.t.K

′Hn−1
0 〈ρ̃0〉tn+1

1 + a2
1 = H2

0 t
2
1

H1 = H0
2

(1−n)a−2
1 H2

0 t
2
1+(1+n)√

(1+K/K′)H2
0 t

2
1−(K/K′)a2

1

. (2.4.28)

Remark 9. Notice that setting t1 = t0, a1 = 1 and H1 = H0, we turn back to (2.4.13) and
(2.4.12).

We expand again the quantities in (2.4.28) at the first order in 〈ρ̃0〉

H0 = H1a1 +
K + nK ′

2H1
an−2

1 〈ρ̃0〉+ o(〈ρ̃0〉);

ΩM1 − 2ΩΛ1 = ract(n)an−3
1 ΩIM1 + o(ΩIM1). (2.4.29)

It is also

ΩE1 =

(
H0

H1a1

)2

= 1 +
K + nK ′

H2
1

an−3
1 〈ρ̃0〉+ o(〈ρ̃0〉), (2.4.30)

from which
ΩM1 + ΩΛ1 = sum(n)an−3

1 ΩIM1 + o(ΩIM1). (2.4.31)

We get the past fictitious matter and cosmological constant as functions of ΩIM1

ΩFΛ1 = ΩΛ1
∼=
sum(n)− ract(n)

3
an−3

1 ΩIM1

ΩM1
∼=

2sum(n) + ract(n)

3
an−3

1 ΩIM1

ΩFM1 = ΩM1 − ΩIM1
∼=
(

2sum(n) + ract(n)

3
− 1

)
an−3

1 ΩIM1. (2.4.32)

However, we live in t0 and we are not able to measure ΩIM1, as an observer in t1 does.
We should convert our formulas with

ΩIM1 =

(
H0

H1

)2

an−3
1 ΩIM0. (2.4.33)

The factor ΩIM0 is yet at the first order of the perturbation, so we must evaluate the
others at zeroth order, for which

H0 = H0 +O(〈ρ̃0〉) = H1a1 +O(〈ρ̃0〉),

so (2.4.32) becomes

ΩFΛ1 = ΩΛ1
∼=
sum(n)− ract(n)

3
a2n−4

1 ΩIM0

ΩM1
∼=

2sum(n) + ract(n)

3
a2n−4

1 ΩIM0

ΩFM1
∼=
(

2sum(n) + ract(n)

3
− 1

)
a2n−4

1 ΩIM0 (2.4.34)
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Evaluating again n ∼= 0.6761 and ΩIM0
∼= 0.0402, the time dependence of the cosmo-

logical constant is
ΩFΛ1

∼= 0.685a−2.65
1 . (2.4.35)

So ΩΛ was pretty greater in the past, what can be interpreted as an inflationary epoch. It
was even too much large, according to these equations. The cosmological constant reaches
the maximum physical value ΩFΛ1 = 1 at

a1 = ammin := (0.685)
1

2.65 ∼= 0.867 . (2.4.36)

We labeled it with “mmin” to distinguish it from the cut off “min” of Remarks 5 and 6.
Before this instant, our equations for ΩFΛ1 are no more valid. We can heuristically state
that in the previous epoch the cosmological constant is completely dominant ΩFΛ1 :∼= 1.
This states until we reach the natural cut off (2.4.10). With our parameters, it is

amin =

[
3

(
2

n2
− 1

n2 + 1

)
ΩIM0

] 1
1−n ∼= 0.0820 . (2.4.37)

We can summarize our knowledge about the cosmological constant variations as

ΩFΛ(t) ∼=


unknown for a(t) < 8.20 · 10−2

1 for 8.20 · 10−2 < a(t) < 0.867

0.685 · a(t)−2.65 for a(t) > 0.867

. (2.4.38)

We can interpret the second epoch as inflation.

2.4.5 Is the constant coefficients case representative for the real universe
dynamics?

The answer to the question may not be clear, since a constant expansion is pretty
different from the our real universe. Previously, we calculated the fictitious matter in a
constant coefficients universe, but even if we found some, there could be doubts about the
presence of the same effect in a universe with not constant expansion. The general solution
for the wave equations is quite difficult to get and it needs numerical integration, but here
we show that it would lead to the same effect. This is because the Green functions have
the same shape in any case, inducing similar averaged metric and similar distortion on
a(t).

As we saw in Remark 4, the averaging procedure is not applicable as long as A,C are
coupled. It is possible to decouple their PDEs whenever the universe is dominated by a
single component, Ωw0 = 1. Indeed, we can define an auxiliary field D with equation

2D − 2HḊ = 8πG(1− α)a2ρ̃ s.t. α :=
2

3w + 1
(2.4.39)

and get C and its average as

C =
D −A
1− 2α

. (2.4.40)

For a general background, with more components, it is possible to approximate the devel-
opment of A,C neglecting at each instant all the components except the biggest one. The
obtained law is a gluing of more single-component developments.

The general PDE (3.2.17) is isotropic, which allows us to reduce the dimension of the
problem, analogously to Appendix §B.2; notice that in this case there is no more the time
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symmetry, hence the potentials depends on their initial instant τ ′. The one-dimensional
retarded potentials Γ(τ, r; τ ′) for A, with τ := τ0 at the present instant, and τ ′ taken at a
past instant, were displayed in Figure 2.1,2.2,2.3 (from [113]) for some single-component
cases. Almost all of them have the same shape, which allowed us to believe that in general
case a similar apparent matter will arise. The numerical value of ΩFM0 is different for our
real universe, but we could expect the same qualitative effect.
The only difference is for the cosmological constant’s dominance: in this case, the gravita-
tional wave equation has a pure d’alembertian, thus we have no the “echo” term. However,
even if in our universe there is a cosmological constant, it is not dominant until very recent
times.

These cheering considerations leads us to develop more general mathematical instru-
ments for the study of retarded potentials. The Theorem in §2.5 will be applicable to any
choice of components, allowing us to find in §2.7 effective dark matter and dark energy
from retarded potentials of our universe.

Figure 2.1: ΓA(τ0, r; τ0− 50Gy) for the dom-
inance of w = −1

3 dark energy-kind
Figure 2.2: ΓA(τ0, r; τ0− 20Gy) for the dom-
inance of matter

Figure 2.3: ΓA(τ0, r; τ0− 13Gy) for the dom-
inance of radiation
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2.5 Averaged metric in newtonian gauge

The previous Theorems express the metric in the harmonic gauge, but what is the
gauge of the metric in the comparison formula (2.1.11)? For the local effects (about
galaxies, clusters...) it is used the newtonian approximation, i.e. the newtonian gauge.
For the global effects, cosmologists assume a FRWL metric, which is diagonal. Anyway,
it is a reasonable choice also to compare our perturbed metric to a diagonal one, and the
metric is diagonalized in the newtonian gauge.

2.5.1 Gauge transformation

Lemma 2.5.1. Via the transformation τ ′ = τ − B(x; τ), the metric gµν is expressed in
the newtonian gauge as

gµ′ν′ = a(τ ′)2

(
2Ψ + 1 ~0
~0 (2Φ− 1)δij

)
, (2.5.1)

where the gravitational potentials are

Ψ = A+ Ḃ +HB

Φ = C −HB. (2.5.2)

From now on we will use the newtonian coordinates, without writing the primes. Notice
that the second gauge condition (2.2.8) guarantees

Ψ ≡ Φ, (2.5.3)

so we will call it just Ψ from now on.
The fictitious effects of matter and dark energy are not independent from the gauge, and
this makes important the choice of the newtonian gauge.

Remark 10. The dependence on the gauge can be quite surprising, but it is coherent with
the Lusanna’s line of research, e.g. [89]. The recent measures on the Milky Way [92] arises
for analogous reasons, due to the suitable definition of the observers, where the rotation
of the galaxy generates a certain rotational ~B.

2.5.2 Averaging theorems

What we will compare with the CCM is just the average of the metric, since the
metric itself is not homogeneous and never allows for an exact equivalence. Such an
average depends only on time

〈gµν〉 = a2

(
2〈Ψ〉+ 1 ~0

~0 (2〈Ψ〉 − 1)δij

)
, (2.5.4)

where we know from the last Lemma

〈Ψ〉 = 〈A〉+ 〈Ḃ〉+H〈B〉 = 〈C〉 −H〈B〉. (2.5.5)

Now we express the averaging theorems in §2.3.1 and §2.4.5 as

Lemma 2.5.2. Let us consider the Green functions for (2.2.13)(
2− 2H∂τ + 2(Ḣ − 2H2)

)
Gτ ′(x; τ) = δ(3)(x)δ(τ − τ ′)

(2− 2H∂τ )GCτ ′(x; τ) = δ(3)(x)δ(τ − τ ′), (2.5.6)
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and let us assume the separation of variables for the matter inhomogeneity

ρ̃(x; τ) := ρ̃0(x)T (τ). (2.5.7)

Then we can express the average of metric distrortions as follows

〈A〉(τ) = 4πG〈ρ̃0〉uA(τ) =
3

2
ΩIM0H

2
0uA(τ), (2.5.8)

s.t.

uA(τ) :=

∫
|r|<R(τ)

∫ τ

τI

Gτ ′(r; τ)a(τ ′)2T (τ ′)dτ ′d3r. (2.5.9)

The separation of variables does not hold exactly for A, but we can approximate

A(x; τ) ∝ uA(τ). (2.5.10)

Then, in the same way

〈C〉(τ) =
3

2
ΩIM0H

2
0 (2uAC(τ) + uC(τ)), (2.5.11)

s.t.

uAC(τ) :∼=
∫
|r|<R(τ)

∫ τ

τI

GCτ ′(r; τ)Ḣ(τ ′)uA(τ ′)dτ ′d3r (2.5.12)

and

uC(τ) :=

∫
|r|<R(τ)

∫ τ

τI

GCτ ′(r; τ)a(τ ′)2T (τ ′)dτ ′d3r. (2.5.13)

Here we use the u functions to describe the time evolution of the perturbations.
The separation of variables for ρ̃ holds when there is a single component dominating.
Recall §2.4.1 for its formulas.

Since we are in the newtonian gauge, we need also the average of B, which appears in
both the expressions of 〈Ψ〉. We can get it averaging the second gauge condition (2.2.8).

Lemma 2.5.3.

〈B〉(τ) =
3

2
ΩIM0H

2
0uB(τ), (2.5.14)

s.t.

uB(τ) := a(τ)−2

∫ τ

τI

a(τ ′)2(2uAC(τ ′) + uC(τ ′)− uA(τ ′))dτ ′. (2.5.15)

Proof. We know that 〈Ḃ〉 + 2 ȧa〈B〉 = 〈C〉 − 〈A〉. After expressing 〈B〉(τ) := a(τ)−2b(τ),
we get

a(τ)−2ḃ(τ) = 〈C〉 − 〈A〉 =
3

2
ΩIM0H

2
0 (2uAC(τ) + uC(τ)− uA(τ))⇒

b(τ) =
3

2
ΩIM0H

2
0

∫ τ

τI

a(τ ′)2(2uAC(τ ′) + uC(τ ′)− uA(τ ′))dτ ′,

which proves the assertion.
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2.5.3 Formulas for the fictitious components

The fictitious components are determined by (2.1.10). We can rewrite it using the
auxiliary variables ract and sum, defined as in §2.4.3{

sumΩIM0 + o(ΩIM0) := ΩFM0 + ΩFΛ0 = 1−
∑

w ΩTw0

ractΩIM0 + o(ΩIM0) := ΩFM0 − 2ΩFΛ0 = 2q0 −
∑

w(1 + 3w)ΩTw0

. (2.5.16)

For an evaluation of these, we need to know the perturbations of q0 and ΩTw0. The
magnitude of the perturbations is determined by the comparison with the CCM metric

a2[(2〈Ψ〉+ 1)dτ2 + (2〈Ψ〉 − 1)δijdxidxj ] = 〈gµν〉 := dt2 − a2δijdxidxj ⇒

dt = t̃adτ :=
√

1 + 2〈Ψ〉adτ, a = ãa :=
√

1− 2〈Ψ〉a. (2.5.17)

The conditions at the present time are
a(t0) := 1

H0 = ∂ta|t0
q0 = −∂2

t a
H |t0

. (2.5.18)

From the first of these, we obtain the value of a0 := a(t0) 6= a(τ0) = 1, since

1

a0
= ã0 =

√
1− 2〈C〉0 − 2H0〈B〉0 ⇒

a0 = 1 + 〈C〉0 +H0〈B〉0 + o(ΩIM0).

Now, we can consider a as the time variable. By now, we denote with a prime the
derivatives with respect to a. From (2.5.17)

dt = t̃adτ = t̃
a

∂τa
∂τa =

t̃

H
da,

so that for any given quantity Q depending on the time, we have

Q′ :=
dQ

da
=
H

t̃

dQ

dτ
=
H

t̃
Q̇.

Using the relation in (2.5.18), we can find firstly the perturbations of ΩTw0. Indeed,
from definition (2.1.6)

ΩHw =
8πG

3H2
0

a2ρ̄w0 =

(
H0

H0

)2

ã2Ω̄w. (2.5.19)

From the second equation in (2.5.18), we can compute(
H0

H0

)2

ã2
0 = 1 + 2[〈A〉0 +H0〈B〉0 −H ′0〈B〉0 + 〈C〉′0] + o(ΩIM0). (2.5.20)

For any w it is ΩTw0 = ΩHw0, with the exception of ΩTM0 = ΩHM0 + ΩIM0. Thus

sumΩIM0 + o(ΩIM0) = 1−
∑
w

ΩTw0 = 1− ΩIM0 −
(
H0

H0

)2

ã2
0

∑
w

Ω̄w ⇒

(sum+ 1)ΩIM0 + o(ΩIM0) = 1− [1 + 2(〈A〉0 +H0〈B〉0 −H ′0〈B〉0 + 〈C〉′0) + o(ΩIM0)]1 =

= −2[〈A〉0 +H0〈B〉0 −H ′0〈B〉0 + 〈C〉′0] + o(ΩIM0).
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As for the perturbation of q0, we must remember that its zeroth order part is not zero,
in general, but the background has a deceleration

q̄0 =
1

2

∑
w

(1 + 3w)Ω̄w0. (2.5.21)

It is distorted by the perturbation, then at first order we expect to have

q0 := q̄0 + qΩΩIM0 + o(ΩIM0) (2.5.22)

for some coefficient qΩ. We can compute each of these from the third of (2.5.18), obtaining

q0 = −H
′
0

H0
+

[
〈A〉′0 + 2〈C〉′0 + 〈C〉′′0 −

H ′0
H0

(〈C〉0 + 〈C〉′0 −H ′0〈B〉0)−H ′′0 〈B〉0
]

+ o(ΩIM0).

(2.5.23)
In particular, this means that

1

2

∑
w

(1 + 3w)Ω̄w0 = q̄0 = −H
′
0

H0
. (2.5.24)

Together with (2.5.19), this gives

1

2
ractΩIM0 + o(ΩIM0) = q0 −

1

2

∑
w

(1 + 3w)ΩTw0

= [q̄0 + qΩΩIM0 + o(ΩIM0)]− 1

2
(1 + 3w)|w=0ΩIM0

− [1− (sum+ 1)ΩIM0 + o(ΩIM0)]
1

2

∑
w

(1 + 3w)Ω̄w0 ⇒

1

2
(ract+ 1)ΩIM0 + o(ΩIM0) = (sum+ 1)ΩIM0q̄0 + qΩΩIM0 + o(ΩIM0).

Theorem 2.5.4. At first order, the effects of the matter inhomogeneities can be interpreted
in terms of total fictitious components{

ΩFM0 = 2sum+ract
3 ΩIM0 + o(ΩIM0)

ΩFΛ0 = sum−ract
3 ΩIM0 + o(ΩIM0)

, (2.5.25)

where the auxiliary quantities are
1
2(sum+ 1)ΩIM0 = −〈A〉0 −H0〈B〉0 +H ′0〈B〉0 − 〈C〉′0
1
2(ract+ 1)ΩIM0 = 〈A〉′0 + 2〈C〉′0 + 〈C〉′′0 −H ′′0 〈B〉0

+
H′0
H0

(2〈A〉0 + 2H0〈B〉0 −H ′0〈B〉0 + 〈C〉′0 − 〈C〉0)

. (2.5.26)

Now we should solve (2.2.13), replacing the resultant A,B,C inside (2.5.26). The
general PDEs (2.2.13) are a formidable mathematical task. We obtained in Appendix B
an exact solution for the case with constant coefficients, but it seems to be impossible an
analytical solution when the coefficients depend on τ . However, here we are investigating
only the global effects, which depend only on the average of A,B,C, as (2.5.26) shows.
We can take inspiration from the surprising simplification of the superposition of the
retarded potentials, which happens for constant coefficients case, as we can appreciate
in calculations of Appendix D. We guess that, even in the spatially extended functions
A,B,C can have quite complicate forms, their averages on total space can meet similar
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simplifications. Hence, we can study such averages without trying to solve explicitly the
PDEs (2.2.13) for the non constant coefficients case.

From Lemmas 2.5.2 and 2.5.3 we have

〈A〉 =
3

2
ΩIM0H

2
0uA(τ), 〈B〉 =

3

2
ΩIM0H

2
0uB(τ), 〈C〉 ∼=

3

2
ΩIM0H

2
0 (2uAC(τ) + uC(τ));

where the us are studied in Appendix E. Frome those results, we get

Theorem 2.5.5. If τI > −∞ and a(τ)2T (τ) ∈ L1
loc([τI ; τF )), then

üA(τ) + 2Hu̇A(τ) + 2(2H2 − Ḣ)uA(τ) = −a(τ)2T (τ)

üAC(τ) + 2Hu̇AC(τ) = −Ḣ(τ)uA(τ)

üC(τ) + 2Hu̇C(τ) = −a(τ)2T (τ). (2.5.27)

Otherwise, 〈A〉, 〈B〉, 〈C〉 always diverge.

Proof. From Lemmas E.2.1, E.2.2 and E.2.3, all the us are

u(τ) =

∫ R(τ)

−R(τ)
v(r; τ)dr = v̂(ω; τ)|ω=0.

The v̂s obey equations like (E.2.2). Writing them for the us we have the assertion.

2.6 Epochs with single component case

It is still impossible to solve analytically the evolution (2.1.7) for a and the ODEs
(2.5.27) for a general choice of components {Ω̄w0}w. Moreover, for such a general choice
it is quite difficult to determine the form of the source ρ̃ ∝ T (τ). However, we are able to
solve exactly the equations when a single component Ω̄w dominates. We can approximate
the general evolution as a succession of “epochs”; during each epoch, we consider just the
dominant component

∀τ | Ω̄w(τ) = max
w′

Ω̄w′(τ) : Ω̄w0
∼= 1,

so that each epoch has a single-component evolution. The full evolution is obtained
sticking the partial functions, imposing that a(τ) ∈ C0(τI ; τF ), since (2.1.7) is first order,
〈A〉, 〈C〉 ∈ C1(τI ; τF ), since (2.5.27) are second order; and 〈B〉 ∈ C0(τI ; τF ), because uB
is obtained by an integral in (2.5.15).

Here we stress that the framework of this section allows to study the retarded perturba-
tions effects on any possible universe, with any choice of components {w}. In this way, we
will find mathematical inconsistencies for some choices, e.g. when the previous Theorem
provides a divergence for the averaged metric. That is, the retarded perturbations forbid
the existence of some universes. We will enunciate these prohibitions as Selfconsistence
Conditions (SCs).

2.6.1 The First Selfconsistence Condition

Let’s start solving (2.1.7) for a general epoch with Ω̄w′0
∼= δw′,w.(

ȧ

H0

)2

= a1−3w ⇒

a(τ) =

{(
1
αH0(τ − c)

)α
w 6= −1

3

eH0(τ−c) w = −1
3

s.t. α(w) :=
2

1 + 3w
; (2.6.1)
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where c is an integration constant. We get immediately the coefficients of (2.5.27)

H(τ) =

{
α
τ−c w 6= −1

3

H0 w = −1
3

,

2H =

{
2 α
τ−c w 6= −1

3

2H0 w = −1
3

,

2(2H2 − Ḣ) =

{
22α2+α

(τ−c)2 w 6= −1
3

4H2
0 w = −1

3

. (2.6.2)

Recalling (2.1.6) and that a(τ) is increasing (at least) near τI , we see that the epochs
must be in order of decreasing w. In particular, during the first epoch it dominates
wM := max{w}. Setting the initial condition

lim
τ→τI

a(τ) = 0⇒

τI

{
= −∞ α(wM ) < 0 ∨ w = −1

3

∈ R α(wM ) > 0
. (2.6.3)

By definition, it is always α 6= 0. From the previous Theorem we get immediately

Corollary 2.6.1 (First Selfconsistence Condition). A selfconsistent choice of components
{w} must be such that wM > −1

3 .

In particular, a selfconsistent universe must develop the metric perturbations as de-
scribed by (2.5.27), with non constant coefficients.

Remark 11. In §2.4 we studied the constant coefficient case, filling the universe with an
exotic component s.t. w = −1

3 . This breaks the First Selfconsistence Condition, which
explains the divergences we found in §2.4.2: it is the contribution of rv(r; τ)|r=R(τ) ≡ ∞.
It is possible to extract finite results even when the I SC is broken, as we did with a
renormalization via analytic continuation. A general renormalization method could be to
neglect always the term rv(r; τ)|r=R(τ) ≡ ∞ of Lemma E.2.3, using (2.5.27) for any wM .

As long as the I SC holds, we can fix τI := 0 without lost of generality.

2.6.2 Decoupling

As we say in Lemma 2.5.2, for general coefficients of (2.2.13) we have just an approxi-
mated solution of 〈C〉. This is due to the coupling between C and A. Another advantage
of the single component evolution is to allow the decoupling the PDEs of A and C. as we
said previously. {

2A− 2α Ȧ
τ−c − 2α(2α+ 1) A

(τ−c)2 = 4πGa2ρ̃

2C − 2α Ċ
τ−c + 2α A

(τ−c)2 = 4πGa2ρ̃
.

Let α 6= −1
2 .5 Then it is convenient to use again the auxiliary field of §2.4.5

D := A+ (2α+ 1)C, (2.6.4)

which must satisfy the PDE

2D − 2
α

τ − c
Ḋ = 8(α+ 1)πGa2ρ̃. (2.6.5)

5The case α = − 1
2

happens only for the exotic component w = − 5
3
.
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All the results in §2.5 hold true for D, so that

〈D〉 = 3ΩIM0H
2
0uD(τ) s.t.

üD + 2
α

τ − c
u̇D = −(α+ 1)a(τ)2T (τ). (2.6.6)

From these we get an exact formula for 〈C〉

〈C〉 =
〈D〉 − 〈A〉

2α+ 1
=

3

2
ΩIM0H

2
0

2uD(τ)− uA(τ)

2α+ 1
. (2.6.7)

Remark 12. Notice that in the dark energy epoch α = −1 and the ODE for uD is free of
source. However, this does not imply that uD is zero, i.e. 〈C〉 6= 〈A〉 in general.

2.6.3 Solving the ODEs

To solve (2.5.27) for a general w, we need the form of T (τ). We will assume

δM ∝ a(τ)n, (2.6.8)

with n(w) a regular function, of which we know n(0) = 1 and n(−1) = 0. This assumption
does not certainly hold for the radiation epoch (w = 1

3), when

δM ∝ ln(4aR)− ln a(τ) s.t. aR = max{a(τ)|Ω̄R(τ) = max Ω̄w(τ)}. (2.6.9)

Let us start by solving for uA. In general, it has a term uIA generated by the source
−a(τ)2T (τ) = −a(τ)n−1, and a term uHA without sources. They result to be

uIA(τ) =H−2
0 uA0(H0τ)nA s.t. nA = (n− 1)α+ 2

and uA0 = − α(1−n)α

(nα− α+ 2)(nα+ α+ 1) + 2α(2α+ 1)
, (2.6.10)

uHA(τ) ∝(H0τ)nH s.t. n2
H + (2α− 1)nH + (4α2 + 2α) = 0. (2.6.11)

The exponent of uHA is

nH =

(
1

2
− α

)
±
√

1

4
− 3α− 3α2. (2.6.12)

It has an imaginary part if and only if

α ∈
(
−∞;α(w+) := − 1√

3
− 1

2

)
t
(
α(w−) :=

1√
3
− 1

2
; +∞

)
⇔

⇔ w ∈ (w− ∼= −0.9521;w+
∼= 8.2855).

Because of the arbitrariness of the integration constants c1 and c2, we can write in
general

H2
0uA(τ) = uA0(H0τ)(n−1)α+2

+

{[
cA1 sin(

√
ξ lnH0τ) + cA2 cos(

√
ξ lnH0τ)

]
(H0τ)

1
2
−α w ∈ (w;w+)[

cA1(H0τ)
√
−ξ + cA2(H0τ)−

√
−ξ
]

(H0τ)
1
2
−α w 6∈ (w;w+)

,(2.6.13)
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where ξ := 3α2 + 3α− 1
4 . The solution for D is simpler.

H0uD(τ) = uD0(H0τ)(n−1)α+2 + cD1(H0τ)1−2α + cD2

s.t. uD0 = − α(1−n)α

(nα− α+ 2)(nα+ α+ 1)
. (2.6.14)

Using this, we get for C

H2
0uC(τ) = uC0(H0τ)(n−1)α+2 + cD1(H0τ)1−2α + cD2

+

{
− 1

2α+1

[
cA1 sin(

√
ξ lnH0τ) + cA2 cos(

√
ξ lnH0τ)

]
(H0τ)

1
2
−α w ∈ (w;w+)

− 1
2α+1

[
cA1(H0τ)

√
−ξ + cA2(H0τ)−

√
−ξ
]

(H0τ)
1
2
−α w 6∈ (w;w+)

s.t. uC0 :=
2(α+ 1)uD0 − uA0

2α+ 1
. (2.6.15)

The evolution of B is determined by Lemma 2.5.3.

uB(τ) = H−3
0

uC0 − uA0

(n+ 1)α+ 3
(H0τ)(n−1)α+3 + uHB(τ)

s.t. uHB(τ) = a(τ)−2

∫
a(τ ′)2

(
2uHD(τ ′)− uHA(τ ′)

2α+ 1
− uHA(τ ′)

)
dτ ′. (2.6.16)

2.6.4 Particular components

In the following sections, we will need the single-component solutions for some partic-
ular components.
The dark energy has w = −1 < w−. The perturbations evolve as

H2
0uA(τ) = uA0|w=−1(H0τ −H0cΛ)3 + cA1Λ(H0τ −H0cΛ)2 + cA2Λ(H0τ −H0cΛ);

H2
0uC(τ) = uC0|w=−1(H0τ −H0cΛ)3 − cA1Λ(H0τ −H0cΛ)2 − cA2Λ(H0τ −H0cΛ)

+ cD1Λ(H0τ −H0cΛ)5 + cD2Λ;

H3
0uB(τ) = −2cA1Λ(H0τ −H0cΛ)3 − 2cA2Λ(H0τ −H0cΛ)2 ln |H0τ −H0cΛ|

+
1

4
cD1Λ(H0τ −H0cΛ)6 − cD2Λ(H0τ −H0cΛ) + cBΛ(H0τ −H0cΛ)2.

(2.6.17)

Indeed, α(−1) = −1⇒
√
ξ = 1

2 and n(−1) = 0, thus

uA0|w=−1 = uC0|w=−1 =
1

2
,⇒ uC0 − uA0|w=−1 = 0. (2.6.18)
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The matter has w = 0 ∈ (w−;w+). The perturbations evolve as

H2
0uA(τ) = uA0|w=0(H0τ −H0cM )2 + (H0τ −H0cM )−

3
2 [cA1M sin

(√
71

2
ln(H0τ −H0cM )

)

+ cA2M cos

(√
71

2
ln(H0τ −H0cM )

)
];

H2
0uC(τ) = uC0|w=0(H0τ −H0cM )2 + cD1M (H0τ −H0cM )−3 + cD2M +

1

5
(H0τ −H0cM )−

3
2×

×

[
cA1M sin

(√
71

2
ln(H0τ −H0cM )

)
+ cA2M cos

(√
71

2
ln(H0τ −H0cM )

)]
;

H3
0uB(τ) =

uC0 − uA0

7
|w=0(H0τ −H0cM )3 +

1

2
cD1M (H0τ −H0cM )−2 +

1

5
cD2M (H0τ −H0cM )

− 1

50
(H0τ −H0cM )−

1
2 [(3cA1M +

√
71

2
cA2M ) sin

(√
71

2
ln(H0τ −H0cM )

)

+ (3cA2M −
√

71cA1M ) cos

(√
71

2
ln(H0τ −H0cM )

)
] + cBM (H0τ −H0cM )−4.

(2.6.19)

Indeed, α(0) = 2⇒
√
−ξ =

√
71
2 and n(0) = 1, thus

uA0|w=0 = − 1

30
, uC0|w=0 = − 17

150
⇒ uC0 − uA0

7
|w=0 = − 2

175
. (2.6.20)

For the peculiar evolution during the radiation epoch, we don’t use T = an. The pertur-
bations evolve as

H2
0uA(τ) =

1

8
(H0τ)

[
ln

(
H0τ

4aR
− 3

8

)]
+ uHA(τ);

H2
0uC(τ) =

1

8
(H0τ)

[
5 ln

(
H0τ

4aR
− 63

8

)]
+ uHC(τ);

H3
0uB(τ) =

1

8
(H0τ)2

[
ln

(
H0τ

4aR
− 17

8

)]
+ uHB(τ). (2.6.21)

2.6.5 Other Selfconsistence Conditions

Recalling our definition of a “selfconsistent” universe, the First Selfconsistence Condi-
tion ensures that there exist finite solutions for 〈A〉, 〈B〉, 〈C〉. We must require also that
these solutions are unique and that they describe small enough perturbations. The initial
conditions for (2.2.13) were

lim
τ→0
〈A〉(τ), 〈B〉(τ), 〈C〉(τ) = 0. (2.6.22)

These functions are described by (2.6.13), (2.6.16) and (2.6.15) accordingly to the domi-
nating w near τ = 0, i.e. wM . The initial conditions put some constraints on wM and on
the integration constants: we can satisfy (2.6.22) if all uHA, uHB, uHC ≡ 0, and also

0 = lim
τ→0

(H0τ)(n(wM )−1)α(wM )+2 ∝ lim
τ→0

a(τ)n(wM )+3wM ⇔ n(wM ) + 3wM > 0

0 = lim
τ→0

(H0τ)(n(wM )−1)α(wM )+3 ∝ lim
τ→0

a(τ)
n(wM )+3wM+ 1

α(wM )

⇔ n(wM ) + 3wM +
1

α(wM )
> 0.
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For the I SC one has α(wM ) > 0, so that the first limit implies the second one.

Theorem 2.6.2 (Second Selfconsistence Condition). A selfconsistent choice of compo-
nents must be such that n(wM ) + 3wM > 0.

Remark 13. For a monotonically increasing n(w), the II SC is equivalent to

wM > w0 (2.6.23)

for some limit value w0. We can estimate it with a linear interpolation n(w) ∼= 1 + w, a
generalization of the choice n(−1/3) ∼= 2/3 we did in §4, that gives w0

∼= −1
4 .

With a bigger generality, remembering from §2.4.1 that6 n(−1
3) ∈ (ϕ; 1) and that n(0) = 1,

we have

−1

3
< w0 < 0. (2.6.24)

The II SC is not necessary if wM = 1
3 , for which always

lim
τ→0

(H0τ)

[
ln

(
H0τ

4aR
− 3

8

)]
= 0; (2.6.25)

and the same for B and C.

Corollary 2.6.3. The II SC ensures that the perturbations are small near the Big Bang.

Proof.
|〈g̃µν〉|
|ḡµν |

∝ |〈Ψ〉| = |〈C〉 −H〈B〉| →τ→0 0� 1; (2.6.26)

where the second term is H〈B〉 ∝ 1
τ (H0τ)(n(wM )−1)α(wM )+3 ∝ an(wM )+3wM →τ→0 0 for the

II SC again.

Do the initial conditions (2.6.22) fix uniquely 〈A〉, 〈B〉, 〈C〉? Not always. There are
values of w for which uHA, uHB, uHC go to zero even if the integration constants are not
fixed to zero. Such cases are not selfconsistent, because the solutions are not unique. This
is forbidden by

Theorem 2.6.4 (Third Selfconsistence Condition). A selfconsistent choice of components
must be such that w− < wM ≤ 1.

Proof. Let us try any non zero choice for the integration constant, and check if nevertheless
uHA tends to zero; if it is the case, the corresponding value of w will not be selfconsistent.

First, let us consider the case wM ∈ (w−;w+). Remembering (2.6.13)

lim
τ→0

uHA(τ) = 0⇔ lim
τ→0

(H0τ)
1
2
−α(wM ) = 0⇔ α(wM ) <

1

2
⇔ wM > 1,

otherwise the limit does not exixt because of oscillations. This forbids the values wM ∈
(1;w+).

Considering now the case wM 6∈ (w−;w+), it means α(wM ) ∈
[
− 1√

3
− 1

2 ; 1√
3
− 1

2

]
, and

in particular α < 1
2 . Recalling (2.6.13), for a choice cA1 6= 0, cA2 = 0√

1

4
− 3α− 3α2 +

1

2
− α|wM >

1

2
− α(wM ) > 0

⇒ lim
τ→0

(H0τ)

√
1
4
−3α−3α2+ 1

2
−α|wM = 0

⇒ lim
τ→0

uHA(τ) = 0,

6ϕ ∼= 0.618... is the golden ratio.
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and this is enough to forbid all the values wM 6∈ (w−;w+).

For the allowed values wM ∈ (w−; 1], the integration constants for uC are fixed to zero
as well, since (2.6.15) has the same functional form of (2.6.13). From (2.6.16) and (2.6.22)
we see that also uHB is fixed to zero, so that the metric perturbations are unique.

The Three Selfconsistence Conditions we proved allow only a “selfconsistence inter-
val” for the component dominating near the Big Bang:

wM ∈ (w0; 1]. (2.6.27)

Remark 14. Our universe contains certainly radiation and matter as homogeneous com-
ponents, and probably dark energy. The biggest w is that of radiation, and wM = 1

3 is
included in the selfconsistence interval. This is not obvious. Some universes, as the “con-
stant coefficient universe” studied in §4.2, break the Three Selfconsistence Conditions.
The selfconsistence of our universe provides an empirical reinforcement to our model.

When I and III SC hold, the requirement of selfconsistence is reduced to asking that
the perturbations are small enough to neglect orders higher than the first. This constitues
a last Condition.

Lemma 2.6.5 (Fourth Selfconsistence Condition). A selfconsistent choice of components
must have an inhomogeneous matter such that ΩIM0 � ΩTM0, and such that ∀t ∈ [0; t0] :
|〈Ψ〉| � 1

2 .

Proof. The first requirement on ΩIM0 is the same we asked in Definition 1. The other
requirement is evident from (2.5.4), where 2〈Ψ〉 = 2〈Φ〉 are the perturbations of the metric,
and must be smaller than 1.

This is no more a Condition on w, but on ΩIM0, so that the selfconsistence interval
remains the same. Indeed, 〈A〉, 〈B〉, 〈C〉 are proportional to ΩIM0, and so are 〈Ψ〉, 〈Φ〉:
the IV SC defines a maximum value ΩM

IM0 for the inhomogeneity.

Remark 15. Notice that the IV SC does not imply the II SC since, in the limit case
wM = w0, 〈Ψ〉 does not tend to zero, but it could be small nevertheless.

2.7 A model for the real universe

2.7.1 The 1-manifold of possible universes

Until now, our computations concerned a general choice of components {Ω̄w0}w, for
which we found the Selfconsistence Conditions. Now we will apply this general method to
our universe.

It contains just three components: the radiation ΩR0, the matter ΩM0 and the dark
energy ΩΛ0. These are fixed by the measures of ΩR0, of q0 = ΩR0 + 1

2ΩM0 − ΩΛ0 and of
the space flatness [32] 1 = 1−Ωk0 = ΩR0 + ΩM0 + ΩΛ0. The background components are
as well Ω̄R0, Ω̄M0 and Ω̄Λ0, on which the model puts the constraints

(
H0
H0
ã0

)2
Ω̄R0 = ΩR0

ΩFM0 +
(
H0
H0
ã0

)2
Ω̄M0 + ΩIM0 = ΩM0

ΩFΛ0 +
(
H0
H0
ã0

)2
Ω̄Λ0 = ΩΛ0

. (2.7.1)
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Notice that these are not independent, since Ω̄R0 + Ω̄M0 + Ω̄Λ0 := 1. We have only two
independent constraints from

[1− (sum + 1)ΩIM0]Ω̄R0 = ΩR0

2sum+ract
3 ΩIM0 + [1− (sum + 1)ΩIM0]Ω̄M0 + ΩIM0 = ΩM0

sum−ract
3 ΩIM0 + [1− (sum + 1)ΩIM0]Ω̄Λ0 = ΩΛ0 = 1− ΩR0 − ΩM0

. (2.7.2)

However, we have three unknown parameters: the inhomogeneity ΩIM0 and other two
among Ω̄R0, Ω̄M0 and Ω̄Λ0. This means that the components of our universe are not com-
pletely determined by (2.7.2), but we will find more possible solutions, when a parameter
changes. We choose Ω̄M0 ∈ [0; 1] as parameter, with ΩΛ0(ΩR0; ΩM0) = 1− ΩR0 − ΩM0,

ΩIM0(ΩR0; ΩM0) =
1

1 + sum(ΩR0; ΩM0)

(
1− ΩR0

Ω̄R0

)
(2.7.3)

and Ω̄R0 = Ω̄R0(Ω̄M0) is determined by the last independent constraint of (2.7.2).

We will have to check which of these values of Ω̄M0 gives selfconsistent (i.e., if for them
hold the IV SC), acceptable and evetually good solutions.

2.7.2 Epochs of evolution

Applying (2.1.6),

Ω̄R = Ω̄R0a
−4, Ω̄M = Ω̄R0a

−3, Ω̄Λ ≡ Ω̄Λ0.

So we can get the values of a for which the matter starts to be more than the radiation,
and the same for other couples

Ω̄R ≥ Ω̄M ⇔ a ≤ aRM := a(τRM ) =
Ω̄R0

Ω̄M0

Ω̄M ≥ Ω̄Λ ⇔ a ≤ aMΛ := a(τMΛ) =
3

√
Ω̄M0

Ω̄Λ0

Ω̄R ≥ Ω̄Λ ⇔ a ≤ aRΛ := a(τRΛ) =
4

√
Ω̄R0

Ω̄Λ0
. (2.7.4)

The evolution of the universe until now is for 0 ≤ a ≤ a0
∼= 1. During this time, there

may have been three or two epochs, depending on the values Ω̄R0, Ω̄M0 and Ω̄Λ0.

Lemma 2.7.1. A selfconsistent background evolution can be divided in epochs in the
following ways.

• If aRM < aMΛ < a0, then there are three epochs: for radiation [0; τRM ], matter
[τRM ; τMΛ], and dark energy [τMΛ; τ(t0)].

• If the first inequality does not hold, then there are just two epochs: radiation [0; τRΛ]
and dark energy [τRΛ; τ(t0)].

• If the second inequality does not hold, then there are just two epochs: radiation
[0; τRM ] and matter [τRM ; τ(t0)].
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Proof. Since the radiation exists, we know Ω̄R0 > 0, so that aRM > 0 and aRΛ > 0 for any
values of Ω̄M0, Ω̄Λ0. Thus, we have always a radiation epoch, which is the first one after
the Big Bang. The presence of other epochs depends on our parameter: the quantity of
homogeneous matter Ω̄M0.

We will not consider the case with only the radiation epoch, because it would mean that
aRM , aRΛ ≥ a0

∼= 1, which appens for high values of Ω̄R0; but we know from the measures
[32] that the radiation is far more less than the matter. Moreover, if the homogeneous
matter would be so little, it would mean that ΩIM0

∼= ΩTM0, that is not selfconsistent.

Let us consider the two cases with a matter epoch. From (2.6.1) we get the background
evolution

a(τ) =


H0τ τ ∈ [0; τRM ]
H2

0
4 (τ − cM )2 τ ∈ [τRM ; τMΛ]

1
H0(cΛ−τ) τ ∈ [τMΛ; τF ]

, (2.7.5)

where the continuity determines

H0τRM = aRM ⇒ H0cM = aRM − 2
√
aRM ,

H0τMΛ = 2
√
aMΛ +H0cM , H0cΛ = H0τMΛ + 4(H0τMΛ −H0cM )−2. (2.7.6)

On the other hand, in the case such that there is no matter epoch, the evolution is

a(τ) =

{
H0τ τ ∈ [0; τRΛ]

1
H0(cR−τ) τ ∈ [τRΛ; τF ]

, (2.7.7)

where the continuity determines

H0τRΛ = aRΛ ⇒ H0cR = aRΛ +
1

aRΛ
. (2.7.8)

The explicit evolution laws can be found in Appendix F. Now we employ the most
recent measures of the cosmological parameters. The space flatness is confirmed by [32]

Ωtot = 1− Ωk0 = 1.02± 0.02. (2.7.9)

Thus we can assume ΩR0 + ΩM0 + ΩΛ0 = Ωtot := 1. We have also

ΩR0 = 8.24× 10−5 ± 10−7[32], ΩM0 = 0.315± 0.007[33]. (2.7.10)

These are coherent with

ΩΛ0 = 0.685± 0.007, q0 = −0.527± 0.0105. (2.7.11)

Moreover,

ΩBM0 = 0.0486± 0.0010[33]⇒ ΩDM0 = 0.266± 0.008. (2.7.12)

The fraction of matter unexplained by the CCM is 84.57%.
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2.7.3 Searching for good solutions

For any value of the free parameter Ω̄M0, we can get a numerical solution of Ω̄R0.
Following §2.7.2 we have, for any chosen value, the evolution of a(τ) and, from the formulas
of Appendix F, the quantities ract and sum, and thus ΩIM0, ΩFM0 and ΩFΛ0.

Imposing (2.7.2), there could be one or more solutions for Ω̄R0, or no one, depending on
Ω̄M0. For any solution, we have to check if it is acceptable. The selfconsistence checking
will require to compute the evolution of 〈Ψ〉, since we have to find that its maximum is
less than 1

2 . Getting a set of selfconsistent and acceptable solutions, we will seek if some
of them are also good.

Applying this planwork with a numerical algorithm, we find that for a generic Ω̄M0

there are up to two acceptable values of Ω̄R0. E.g. we can find

Ω̄R0|Ω̄M0=0.5
∼=

{
10.97× 10−5

0.2216
. (2.7.13)

The set of solutions with Ω̄R0 ∼ 10−4 have a radiation density quite near to the value
of the CCM. We can call them the “principal” solutions, and “secondary” solutions the
others. Indeed, following these solutions with continuity, for Ω̄M0 = 0.315 ∼= ΩM0 we find
trivially

ΩIM0 = 0⇒ ΩFM0 = ΩFΛ0 = 0, Ω̄w0 ≡ Ωw0. (2.7.14)

The secondary solutions are not selfconsistent, since all of them have ΩIM0 > 99% ·ΩTM0,
so that they break the Cosmological Principle. Moreover, the secondary solutions have
quite big perturbations 2 max〈Ψ〉 > 0.5: they are smaller than 1 anyway, but not small
enough.

On the other hand, the principal solutions are selfconsistent. ΩIM0
ΩTM0

becomes greater

as Ω̄M0 runs away from ΩM0, but it is always less than 45%. It is the same for 2 max〈Ψ〉,
which is always smaller than 0.28� 1.
For values Ω̄M0 > 0.9997 we would find ΩTΛ0 < 0, which is not acceptable. For values
Ω̄M0 < 0.0819 we would find ΩTM0 < ΩBM0, which is not acceptable. This mean that the
acceptable principal solutions range in the interval Ω̄M0 ∈ [0.0819; 0.9997].
However, most of the principal solutions are not good. We find just a little interval around
Ω̄M0

∼= 0.2 for which are explained some fraction of both dark matter and dark energy.
For the values Ω̄M0 = 0.2, Ω̄R0

∼= 10.03× 10−5, Ω̄Λ0
∼= 0.8 it is

ΩIM0
∼= −0.0316, ΩTM0

∼= 0.1327⇒ |ΩIM0| ∼= 23.8% · ΩTM0 � ΩTM0,

2 max〈Ψ〉 ∼= 0.0485� 1,

ΩFM
∼= 0.1823⇒ ΩTDM0

∼= 0.0841 ∼= 63.39% · ΩTM0,

ΩFΛ
∼= 0.0276⇒ ΩTΛ0

∼= 0.6572 ∼= 95.96% · ΩΛ0. (2.7.15)

For Ω̄M0 > 0.2 we start soon to have ΩFM0 < 0, so that the solutions are no more
good. For Ω̄M0 < 0.2 it starts vice versa to be ΩFΛ0 < 0, and the solutions are no more
good as well.

2.7.4 Searching for solutions without dark energy or dark matter

We can seek if there is a selfconsistent and acceptable solution which fully explains
the dark energy as fictitious. From the last paragraph, we know it would require an high
Ω̄M0, for which ΩFM0 < 0 and the dark matter is more than in the CCM.
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The condition of nonexistence of dark energy is Ω̄Λ0 := 0, to that it is automatically fixed
Ω̄R0 = 1− Ω̄M0. The (2.7.2) are solved by

Ω̄R0
∼= 26.31× 10−5, Ω̄M0

∼= 0.9997, Ω̄Λ0 = 0. (2.7.16)

In such a case we find

ΩIM0
∼= 0.2516, ΩTM0

∼= 0.5647⇒ |ΩIM0| ∼= 44.56% · ΩTM0 � ΩTM0,

2 max〈Ψ〉 ∼= 0.2792� 1,

ΩFM
∼= −0.2507⇒ ΩTDM0

∼= 0.5161 ∼= 91.39% · ΩTM0,

ΩFΛ
∼= 0.685⇒ ΩTΛ0

∼= 0. (2.7.17)

On the opposite, we can seek if there is a selfconsistent and acceptable solution that
fully explains the dark matter as fictitious. From the last paragraph, we know it would
require a small Ω̄M0, for which ΩFΛ0 < 0 and the dark energy is more than in the CCM.
The condition of nonexistence of dark matter is Ω̄TM0 := ΩMB0. The corresponding value
of Ω̄R0 is fixed by (2.7.2), which we solve numerically

Ω̄R0
∼= 9.59× 10−5, Ω̄M0

∼= 0.0819, Ω̄Λ0
∼= 0.9170. (2.7.18)

In such a case we find

ΩIM0
∼= −0.0218, ΩTM0 = ΩMB0

∼= 0.0486⇒ |ΩIM0| ∼= 44.84% · ΩTM0 � ΩTM0,

2 max〈Ψ〉 ∼= 0.1608� 1,

ΩFM = ΩDM0
∼= 0.266⇒ ΩTDM0 = 0,

ΩFΛ
∼= −0.1039⇒ ΩTΛ0

∼= 0.7888 ∼= 115.17% · ΩΛ0.
(2.7.19)

2.8 Defects of the model

We approximated our calculations in many points. To overcome them would be an
improvement of the framework.

• Solving numerically the evolution a(τ) it would not be necessary any sticking, but
recall that this would require the form of T (τ) for the multi-component case.

• Even if we found always that 2 max〈Ψ〉 is far smaller than 1, it could not be consid-
ered fully negligible, so that an higher order calculation could provide some relevant
corrections.

• Moreover, we assumed a spatially flat background metric and an irrotational matter,
which is not the most general framework.

In the present chapter we considered the global dark matter effects only. Our cosmo-
logical model requires also the calculation of the local effects, to be empirically verified.
This needs to overcome the averaging of gµν , and the distribution of fictitious dark matter
would depend on the spatial distribution of inhomogeneities ρ̃0. A study of such distribu-
tion could start from the fractal properties of the matter structures at large scales [100],
[101]. The fluctuations of the resultant potential Ψ0(x) should be compared to the dark
matter halo of the galaxies.

Further improvements may also be expected to shed some light on the choice of the
homogeneous density ρ̄, which turned out to be a tricky feature within the perturbative
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approach based on retarded potentials. In §2.1.1 it was chosen ρ̄ := minx ρ(x) or ρ̄ :=
maxx ρ(x), but it is not yet clear if these are physically sensible choices. If ρ̄ is taken as
the average of ρ, as seems to be more physically meaningful, it returns 〈ρ̃〉 = 0, which
means no effects at all from a first order calculation. We will overcome this problem with
the next chapter, considering a fractal matter distribution, rather than an homogeneous
one with small perturbations.
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Chapter 3

The LTB background

3.1 Retarded potentials and the fractal

A tantalizing possibility is that deeper insights on cosmological matter inhomogeneities
may be gained by merging the two approaches presented in §1.3.4 and §1.3.3. Along this
chapter we will indeed consider a fractal matter distribution, at least up to the LEG scale
(remember that we called LEG the “End of Greatness”, in §1, i.e. the length scale at which
the universe becomes, eventually, homogeneous). We leave undetermined such parameter.
One can substitute e.g. LEG ∼= 100Mpc, as measured in [3], or the different values in [8],
or [10], and so on. It can be even expressed the hypotheses of inexistence of a homogeneity
scale, as claimed e.g. in [6], making LEG tend to infinity.

We will describe the resulting metric, and consider the “Swiss cheese homogeniza-
tion”’ as the zeroth order approximation, and we will then deal with a first order per-
turbative description of the real fractal ρ(x). Within the choice of a LTB background,
the effects due to retarded potentials will also be effectively dealt with, thus allowing for
a more reliable evaluation of cosmological parameters, such as the cosmological constant
and the dark matter amount.

The previous computations with retarded potentials have improved the explanation of
the dark matter effects, as well as of the dark energy effects. However, from [103] it is
known that a suitable LTB background can explain the appearance of dark energy. It is
thus reasonable to expect that a combination of the above two approaches may result in
considerable advances in the explanation, at least to some non-negligible extent, of both
dark matter and dark energy.

At the end of the last chapter, we stressed that for a homogeneous background we
can not manage to define the background density in a fully satisfactory and physical way.
This issue does not arise at all in the fractal approach, because no such a thing as spatial
averaging exists for a fractal, which is endowed with a lower and lower average as the space
region under consideration widens up; eventually, the average tends to zero because of the
void bubbles. The growth of void bubbles prevents the determination of a unique real
fractal density Φ. Moreover, the approximation Φ(r)rD in §1.3.3 do not hold for too large
scales, since r cannot be a coordinate, but some observable distance. If one tries to define
Φ(r) := r−DM(r), this will result in Φ(r) oscillating indefinitely. Within a fractal, such
an issue can be overcome by choosing the minimum Φ of the oscillations as the reference
for the definition of the homogenization ρ̄(r). One can appreciate that this procedure
is physically meaningful, because the perturbation ρ̃(x) may have negative and positive
values here and there, but its average will certainly be positive, so that first order effects
will not vanish.

55
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All in all, in this thesis we aim at consistently determining the parameters of our
model: D,Φ, LEG, ρ̃0, ρΛ0, ρR0. They will be obtained by fitting the experimental data,
such as those linked to the dark matter effects and to the luminosity distances of SNe
Ia. Furthermore, local metric distortions due to retarded effects will be compared to the
expected dark matter inside the single galaxy or cluster, thus discerning to what extent
they can effectively be explained as relativistic effects.

3.1.1 The origin of the fractal, and the three epochs

The perturbative approach should concern the LTB approximation for ancient times,
when most perturbations were generated. The validity of the LTB model over time would
actually be an interesting issue per se, because the solution used so far is valid just around
the current instant. Back in time, for ancient times, we know that radiation dominates,
and the evolution of the metric gets distorted.

For what concerns the origin of the fractal distribution of matter, we put forward
the conjecture that it arises out as a consequence of the matter-antimatter (M-AM) re-
combination process. In fact, as a tiny fraction of matter survives the annihilation, it
is conceivable that it was not homogeneously distributed, but rather it is scattered only
across those regions in which the matter itself turned out to have a slightly larger density.
Before the recombination, the inhomogeneity of matter would be mainly due to quantum
uncertainty, being very small. However, after recombination only a ∼ 10−9 fraction of the
pre-existing matter survives, and thus its inhomogeneity is magnified of a factor ∼ 109.
For our purposes, we can suppose that matter was already distributed as a fractal in very
ancient times1; in fact, this solves also the problem of structure formation: dark matter is
not actually needed, if matter was sufficiently concentrated at the very beginning.

In our model, the evolution of the Universe is characterized in terms of three different
epochs, as follows.

1. Before M-AM recombination. The Universe is well described by FLRW, and quantum
uncertainty is the unique source of perturbations.

2. M-AM recombination. It generates a matter remnant with fractal distribution, ex-
hibiting a non-negligible inhomogeneity. It generates a large amount of homogeneous
radiation, as well.

3. After M-AM recombination. At zeroth order, it is approximated by a LTB Universe,
starting with the dominance of a homogeneous radiation, progressively fading away
into an epoch in which fractal matter gets dominant. The first order perturbations
better approximate the actual fractal, and they give rise to retarded distortions.
The superposition of these latter for all times effectively results into dark matter
phenomena, both globally and locally, as the fractal geometry causes a distortion of
the luminosity distances which appears as a Universe acceleration.

1Note that most models of fractal cosmology assume that fractality is observed through galaxy distribu-
tion. Here, we do not mean that the formation of galaxies happened so soon, at the M-AM recombination.
The ancient fractal, as obtained by the M-AM recombination, is imagined as an inhomogeneous ionized gas,
with matter and radiation still coupled. Only much later, certainly after the matter-radiation decoupling,
the matter clumped together in order to form of galaxies.
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3.1.2 The “Swiss cheese” metric

In this paper we will consider a Swiss cheese metric2

ds̄2 =

{
−dt2 + A′2

f2 dr
2 +A(r; t)2dΩ2, LG ≤ r ≤ LEG

−dt2 + a(t)2[dx2 + x2dΩ2], x ≥ LEG
, (3.1.1)

where the coordinate arbitrariness is fixed as

A(r; 0) ≡ A0(r) := r, a(0) ≡ a0 := 1,

and we use a prime “ ′ ” for r-derivative and a dot “ ˙ ” for t-derivative.
Today, the matter inside dominates and is homogenized as

M̄0(r)|[LG;LEG] = ΦrD ⇒ ρ̄0(r)|[LG;LEG] =
D

4π
ΦrD−3. (3.1.2)

The matter outside is already homogeneous, with some value

ρ̄0(x)[LEG;∞) ≡ ρ̄0,out. (3.1.3)

The fractal dimension D ∼= 2 can be measured as in [101]. It does not deform the luminosity
distances everywhere, but just until LEG, which can be coherent to the different measure
in [103].

For r < LG, the exact metric depends on the distribution of matter in a galaxy. A first
simplification is to consider the fractal of matter as made of balls, whose minimum radius
is the average radius of a galaxy, LG ∼= 30kpc; hence, the galaxy would be approximated
as a homogeneous sphere, and thus below LG another Friedmann metric would arise. We
are aware that the galaxy is a multi-structured object and that its internal metric is far
more complicated than a FLRW one, but such a complexity would be an obstacle for an
introductory fractal model of the whole universe, what is the goal of this Chapter, so we
decide to roughly approximate the galaxies to homogeneous spheres.

We consider as A(r; t) is a FLRW metric during also epoch 1. It gains an inhomogeneity
during epoch 2, and the epoch 3 sees the evolution of fractal. From now on, we will try
to describe such A(r; t), especially during epoch 3.

3.2 The LTB metric is not suitable for describing epoch 3

3.2.1 Pure matter

A universe filled with only matter regulates the Friedmann Equation outside as(
ȧ

a

)2

=
8

3
πGρ̄0,outa

−3. (3.2.1)

There are no singularities of density, thus the metric must be almost everywhere twice
derivable: ḡµν ∈ C1. Such a requirement contains the Darmois junction, which defines the
dependence x(r; t). These have especially the consequences

ḡtr ∈ C1(LEG)⇒ ẋ(LEG; t) ≡ 0⇒ x(LEG; t) ≡ LEG;

ḡΩΩ ∈ C0(LEG)⇒ A(LEG; t) = a(t)x(LEG; t) = LEGa(t), (3.2.2)

2The variable A has nothing to do with the perturbative quantitiy A = O(ΩIM0) we used in the previous
chapter. In this chapter, we call with this letter a component of the background metric.
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where we remember the general form of the metric ds̄ = ḡttdt
2 + ḡrrdr

2 + ḡΩΩdΩ2, so that
the last component describes both the angular coordinates.

Within the fractal assumption M̄0(r) := ΦrD, and setting f := 1, we get the function

A(r; t) = r

[
1 +

3

2
H0(r)t

] 2
3

= r

[
1 +

3

2

√
2GΦr

D−3
2 t

] 2
3

. (3.2.3)

For Darmois (3.2.2), it yields to

a(t) =
1

LEG
A(LEG; t) =

[
1 +

3

2

√
2GΦL

D−3
2

EG t

] 2
3

. (3.2.4)

Moreover, by differentiating Darmois, one obtains

h0 :=
ȧ0

a0
=
Ȧ0(LEG)

A0(LEG)
= H0(LEG) =

√
2GΦL

D−3
2

EG ⇒

a(t) =

[
1 +

3

2
h0t

] 2
3

, H0(r) = h0

(
r

LEG

)D−3
2

. (3.2.5)

By imposing the Friedmann equation to hold outside, the following results are achieved(
ȧ

a

)2

=
8

3
πGρ̄0,outa

−3 = h2
0a
−3 ⇒ ȧ2 = h2

0a
−1 s.t. h2

0 =
8

3
πGρ̄0,out ⇒

a(t) =

[
3

2
h0(t− tI)

] 2
3

⇒
[
1 +

3

2
h0t

] 2
3

=

[
3

2
h0(t− tI)

] 2
3

⇒

tI = −2

3
h−1

0 , (3.2.6)

and

2GΦLD−3
EG = H0(LEG)2 =

8

3
πGρ̄0,out ⇒

M̄0(LEG) = ΦLDEG =
4

3
πL3

EGρ̄0,out. (3.2.7)

Thus, the Swiss cheese metric has a time singularity at

tS = −2

3

(
LG
LEG

) 3−D
2

h−1
0 > tI , (3.2.8)

at which A′(LG; tS) goes to infinity. Here the validity of our pure matter model reaches
an end.

Remark 16. Usually, the Big Bang is set at the time singularity of the metric. However,
for the pure matter model such a singularity depends on r

tBB(r) = −2

3

(
r

LEG

) 3−D
2

h−1
0 , (3.2.9)

such that tS := maxr tBB(r) (3.2.8) is just the first instant without singularity.
It is not clear the physical meaning of this result, which describes different Big Bang

times for different regions of the universe. Such an inhomogeneous Big Bang was theoret-
ically conjectured, e.g. in [119]; however, let us assume from now on that the Big Bang
should be the same for the whole Universe.
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Therefore, the pure matter does not provide a satisfactory description, and multi-
component model is needed. In particular, a component with a larger w, such as radiation,
will do the job: if it dominates in the early Universe, with an initial homogeneous density,
it would grant the synchronicity of Big Bang for all r. This reasoning implies that the pure
matter Swiss cheese metric (3.1.1) with (3.2.3) can be a good approximation only near the
current instant, but generally the evolution must concern a multi-component model.

3.2.2 The flat LTB model

A consistent description of the expansion of the Universe would involve many compo-
nents - namely matter, radiation, and eventually dark energy - and their evolutions.

To this aim, we need to make ρ̄M (r; t) explicit; the functional dependence on time is
obtained to be

ρ̄M (r; t) =
D

π
ΦrD−3 1

[2 + 3H0(r)t][2 +DH0(r)t]
. (3.2.10)

It should be remarked that ρ̄M (r; t) goes as the inverse of the volume

ρ̄M (r; t) =
4

[2 + 3H0(r)t][2 +DH0(r)t]
ρ̄M (r; 0) =

r2

A2 (r; t)A′(r; t)
ρ̄M0(r), (3.2.11)

as expected, since matter is still (see §3.3.4 for confirmation). On the other hand, the
dark energy does not depend on t, so its density reads

ρ̄Λ(r; t) = ρ̄Λ0 (r) . (3.2.12)

In case it is a cosmological constant, it should also be independent of r.
Analogously to the FLRW model, one would expect that the radiation density goes as

ρ̄R (r; t) ∝
(

r2

A2 (r; t)A′(r; t)

) 4
3

, (3.2.13)

but this should better be confirmed by a more detailed computation, cfr. (3.2.34) further
below.

We will henceforth carry out a detailed treatment of the flat LTB model. The LTB
metric returns a diagonal Einstein tensor, with

Gtt = −Ȧ
A

(
2
Ȧ′

A′
+
Ȧ

A

)
;

Grr = −2
Ä

A
− Ȧ2

A2
;

Gθθ = Gϕϕ = −Ä
′

A′
− Ä

A
− Ȧ′Ȧ

A′A
. (3.2.14)

See e.g. [119] for derivation.
Hence, also Tµν is diagonal, implying still matter. Within the assumption of mostly-plus
signature and the symmetries of our system, the energy-momentum tensor of a perfect
fluid reads

Tµν := (ρ+ p)UµUν + pgµν s.t. Uµ = δtµ ⇒
T tt = −ρ, T rr = Tϕϕ = p. (3.2.15)
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Thus, three independent Einstein equations are obtained, namely
− Ȧ
A

(
2 Ȧ
′

A′ + Ȧ
A

)
= −8πGρ

−2 ÄA −
Ȧ2

A2 = 8πGp

− Ä′

A′ −
Ä
A −

Ȧ′Ȧ
A′A = 8πGp.

(3.2.16)

The Ricci equation as a Riccati equation, and its solutions

With a barotropic equation of state ρ = ρ(p), one has four equations for the three
unknowns A, ρ, p. This should imply some constraint on the form of A, ρ, p. Such a
constraint can be obtained from the second and third Einstein equations, as follows:

2
Ä

A
+
Ȧ2

A2
= 8πGp =

Ä′

A′
+
Ä

A
+
Ȧ′Ȧ

A′A
⇒

Ä

A
+
Ȧ2

A2
=
Ä′

A′
+
Ȧ′Ȧ

A′A
. (3.2.17)

We can try to solve this non-linear PDE in A, which we will name Ricci equation, and
search for a set of self-consistent solutions. Exploiting the definition

H :=
Ȧ

A
, (3.2.18)

the identity (3.2.17) can be rewritten in a very simple way,

Ḣ ′ + 3HH ′ = 0. (3.2.19)

For a general Universe, (3.2.19) constrains the possible matter, radiation and/or dark
energy content. It is easy to check that the solution found in [103] satisfies this PDE.
Nevertheless, there is no uniqueness proven for the solutions of (3.2.19), so we can search
for other, different solutions.

Now, (3.2.19) can be rewritten as

0 = ∂r

(
Ḣ +

3

2
H2

)
⇒

Ḣ +
3

2
H2 = c(t), (3.2.20)

where the integration constant c(t) does not depend on r. Eq. (3.2.20) can be recognized
to be a Riccati Equation. For c(t) ≡ 0, we find again the solution in [103], namely

H(r; t) =
2H0(r)

2 + 3H0(r)t
. (3.2.21)

But e.g. for a non-zero, constant c(t) ≡ c we can find different solutions. Calling c := 3
2τ
−2,

we get

H(r; t) =
1

τ
tanh

3t

2τ
+H0(r), (3.2.22)

while for negative c = −3
2α

2 one has the (quite unphysical) solution

H(r; t) = −α tan
3αt

2
+H0(r). (3.2.23)
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On the other hand, we observe that the second Einstein Eq. from (3.2.16) depends
only on H, thus exploiting (3.2.20) we can obtain the following expression for th pressure
p

8πGp = −2
Ä

A
− Ȧ2

A2
= −2Ḣ − 3H2 = −2

(
Ḣ +

3

2
H2

)
= −2c(t). (3.2.24)

Therefore, the integration constant gets related to p itself: c(t) = −4πGp, which implies
that the total pressure must be homogeneous at any time

p(r; t) = p(t). (3.2.25)

Conservation of four-momentum and separability of w’s

Let us now study the conservation of the four-momentum. One can compute the
conservation of energy

ρ̇ = −

(
Ȧ′

A′
+ 2

Ȧ

A

)
(ρ+ p), (3.2.26)

and the conservation of momentum, which turn out to be

p′ = 0. (3.2.27)

This equation is just a confirmation of the result (3.2.25), expressing the homogeneity of
pressure, as it was proven for a perfect fluid in a LTB flat metric3.

Let us now consider a particular type of perfect fluid, namely a single-component one,
defined by p := wρ. The homogeneity of pressure then immediately implies

wρ′ = 0. (3.2.28)

We can thus conclude that no single-component, inhomogeneous flat LTB Universe can
exist, unless such a component is matter. It then turns out that the two solutions for
the single-component case in a flat LTB Universe were actually already both studied: for
w = 0, the pure matter flat LTB model, studied in [119], [120], [102] and [103], is retrieved;
for ρ′ = 0, one simply obtained the well-known FLRW model.

The case of a multi-component perfect fluid is more interesting. By setting

p =
∑
w

pw =
∑
w

wρw, s.t. ρ =
∑
w

ρw (3.2.29)

as usual, the conservation of momentum (3.2.27) allows for inhomogeneities to exist for
any component ρw, but only if the pressure inhomogeneities compensate each other∑

w

wρ′w(r; t) = 0. (3.2.30)

On the other hand, the conservation of energy allows one to study each component sepa-
rately (i.e., by fixing the corresponding w); indeed, (3.2.26) and (3.2.29) yield

∑
w

ρ̇w = −

(
Ȧ′

A′
+ 2

Ȧ

A

)∑
w

(1 + w)ρw. (3.2.31)

3It is known that LTB spacetime is a dust solution, indeed we are going to prove that such a perfect
fluid can be only the dust, essentially.
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Within the assumption of separation of components4, for each component w we find

∂t ln ρw =
ρ̇w
ρw

= −(1 + w)

(
Ȧ′

A′
+ 2

Ȧ

A

)
= −(1 + w)∂t(lnA

′ + 2 lnA) = ∂t
(
A2A′

)−1−w

⇒ ρw(r; t) = ρw0(r)

(
A0(r)2A′0(r)

A2(r; t)A′(r; t)

)1+w

, ∀w.

(3.2.32)

For w = 0 (matter), and choosing the radial coordinate s.t. A0(r) ≡ r (cfr. (3.1.2)), one
retrieves (3.2.11), namely

ρM (r; t) = ρM0(r)
r2

A2(r; t)A′(r; t)
. (3.2.33)

For w = 1/3 (radiation), Eq. (3.2.32) confirms the conjecture (3.2.13), namely

ρR(r; t) = ρR0(r)

(
r2

A2 (r; t)A′ (r; t)

)4/3

. (3.2.34)

For w = −1 (dark energy) the density is constant, and the previous result is confirmed,
namely ρΛ(r; t) = ρΛ0.

To recap, in a flat LTB Universe with just matter and radiation, the radiation must
be homogeneous, and this holds also in presence of a cosmological constant (i.e., of ho-
mogeneous dark energy). Notice that here we deduced it from the conservation of four-
momentum.

3.2.3 The approximation with epochs

No explicit, exact solutions are known for the Einstein field equations in such a general
case, with many components. Thus, we will resort to the so-called “approximation with
epochs” as we did in §2.7 for FLRW background.

We start by noticing that, even if radiation and dark energy are homogeneous, the
matter is not; therefore, it might well be that for some r we could be in an epoch, whereas
for some other r we are already in another one. We will consider the case of dominating
matter further below, and we will now focus on an evolution dominated by radiation.
Moreover, from now on we will not consider the dark energy component in our calculations:
they would be just more complicate, without let a better understanding.

An homogeneous distribution of primordial radiation could be assumed, thus giving
rise to a Friedmannian expansion during the epoch dominated by radiation.

ȧ2 ∼= h2
0ΩR0a

−2 ⇒ a(t) =
[
2
√

ΩR0h0(t− tBB)
]1/2

, s.t. ΩR0 :=
8πG

3h2
0

ρR0, (3.2.35)

with the radiation evolving as ΩR(t) = ΩR0a
−4(t).

Remark 17. ρR0 := ρR(r; t = 0)|r≥LEG is the radiation density today beyond the End
of Greatness , at which it is still uniform. Below LEG, one can reasonably assume that
ρR(r; 0) is not homogeneous, since it developed through an inhomogeneous expansion.
This would imply the current measurements of ΩR0 not to be reliable, since they would
take place inside our galaxy, and thus in a point of the cosmic fractal: these would be
measures of ρR(LG; 0), which could be quite different from the average value ρR0. For
instance, inside a void bubble, the density of the cosmic background would undergo a
completely different development.

4We will see below that such an assumption would not hold during epoch 2 (cfr. §3.3).
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When ΩM (t) ≥ ΩR(t), one would switch to the epoch dominated by matter. ΩM must
also depend on r

ΩM (r; t) :=
8πG

3h2
0

ρ̄M (r; t), s.t. ρ̄M (r; t) ∝

{
a(t)−3, t < tRM (r)
r2

A2A′ , t > tRM (r).
(3.2.36)

For a fixed r < LEG, the “soldering instant” tRM is defined as

ΩM (r; tRM ) := ΩR(tRM )⇔ DΦrD−3

π[2 + 3H0(r)tRM ][2 +DH0(r)tRM ]
ρ̄M (r; 0) = ρR(r; tRM ).

(3.2.37)

“Swiss cheese” with two epochs

Next, we will consider again the Swiss cheese metric, in order to describe a radiation+matter
Universe by soldering the corresponding two one-component solutions together.

Let us consider first the outer expansion, which is simpler. The Friedmann Eq. (3.2.6)
at r > LEG reads

h2 :=

(
ȧ

a

)2

= h2
0(Ω̄R0,outa

−4 + Ω̄M0,outa
−3), s.t. Ω̄w0,out :=

ρ̄w0,out

ρ̄0,out
, ρ̄0,out :=

3h2
0

8πG
.

(3.2.38)
The outside matter density is related to the inside matter density ρ̄M0(r) = D

4πΦrD−3 by

Φ =
4

3
πL3−D

EG ρ̄M0,out. (3.2.39)

If Ω̄M00 > Ω̄R00, it holds that

a(0) := 1 > aRM :=
Ω̄R0,out

Ω̄M0,out
> aBB := 0. (3.2.40)

Thus, during both epochs, the evolution of the Universe can be approximated as if there
were only one component, i.e. the dominating one.

a(t) =

{
(2h0(t− tBB))1/2 , tBB ≤ t ≤ tRM(

3
2h0t+ 1

)2/3
, tRM ≤ t ≤ 0

. (3.2.41)

Thus, one can compute the “soldering instant” tRM as follows

3

2
h0tRM + 1 = a

3/2
RM ⇒ tRM =

2

3
h−1

0 [a
3/2
RM − 1]. (3.2.42)

From the continuity of a(t) at tRM , one obtains also the homogeneity for the Big Bang
instant tBB(r) ≡ tBB.

Let us now consider the inner expansion; for a fixed r < LEG, since the radiation
epoch must be homogeneous, we know that the evolution is

A(r; t) =

{
r (2h0(t− tBB))1/2 , tBB ≤ t ≤ tRM (r)

r
(

3
2H0(r)t+ 1

)2/3
, tRM (r) ≤ t ≤ 0

, (3.2.43)

where we recalled the result (3.2.5). When we try to compute the “soldering instant”
tRM (r) within this regime, we can appreciate the inadequacy of the framework under
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consideration in order to describe a Universe with radiation and matter; indeed, we should
impose the continuity of A(r; t), and thus solve

(2h0(tRM (r)− tBB))3 =

(
3

2
H0(r)tRM (r) + 1

)4

. (3.2.44)

Surely, for r → L−EG, we will retrieve the expression of tRM (3.2.42) computed within the
outside expansion, because H0(LEG) = h0. Nevertheless, let us consider the definition of
tRM (r) as the instant when the matter density and the radiation density are equal; by
defining x := r/LEG, one can write

ρ̄R0,out[2h0(t− tBB)]−2 = ρ̄R0,outa
−4 = ρ̄R(r; t) = ρ̄M (r; t)

= ρ̄M0(r)
r2

A2A′
=
D

3
xD−3ρ̄M0,out

(
1 +

3

2
x
D−3

2 h0t

)−1(
1 +

D

2
x
D−3

2 h0t

)−1

⇒

aRM

(
1 +

3

2
x
D−3

2 h0t

)(
1 +

D

2
x
D−3

2 h0t

)
=
D

3
xD−3[2h0(t− tBB)]2 =

D

3
xD−3

(
1 +

3

2
x
D−3

2 h0t

)8/3

,

(3.2.45)

where we used (3.2.44) in the last step of (3.2.45). As mentioned, for x→ 1− one should
find again t = tRM , thus obtaining(

3

D
aRM

)3(
1 +

D

3
(a

3/2
RM − 1)

)3

= (1 + a
3/2
RM − 1)5 ⇒(

3

D
aRM + aRM (a

3/2
RM − 1)

)3

= a
15/2
RM ⇔

(
3

D
− 1

)
aRM = 0. (3.2.46)

Thus, we obtain that only trivial solutions are allowed for consistency, namely, the trivial
FLRW solution D = 3, or the pure matter solution aRM = 0.

3.2.4 Inadequacy of the flat LTB model

We have found that the Swiss cheese metric, with inhomogeneous matter and non-
zero radiation, cannot be self-consistent when assuming a spatially flat metric and still
energy-matter. In other words, a spatially flat, inhomogeneous LTB solution with still
energy-matter must necessarily contain only matter, and possibly some dark energy, whose
evolution ∝ V ol0 allows to preserve the homogeneity (however, dark energy cannot dom-
inate near the Big Bang, which will necessarily be inhomogeneous in any such model; cfr.
Remark 16 above).

By setting to zero the velocity field, the conservation of momentum implies the ho-
mogeneity of pressure (p′ = 0) at any instant, so that there are no forces. Within this
framework, one can appreciate that the inconsistency between inhomogeneous matter and
non-zero radiation can be traced back to the homogeneity of pressure. Indeed, since the
matter has vanishing pressure, the conservation of momentum yields homogeneous ra-
diation density, at any instant. But the expansion iself is inhomogeneous, due to the
matter inhomogeneity; as a consequence, even if the radiation is homogeneous at a given
instant, it will evolve inhomogeneously with the expansion, thus breaking the conservation
of momentum.

In a Universe undergoing a two-epochs evolution (as we are assuming in this Section),
the conservation of momentum approximately holds during both epochs: as for the homo-
geneous expansion during the radiation-dominated epoch, so for the zero pressure expan-
sion during the matter-dominated epoch. However, the “two-epochs approximation” fails
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in proximity of the “soldering instant” tRM , namely when radiation and matter are about
to be equal. In such an intermediate period of time, the pressure is no more negligible, but
the expansion is still inhomogeneous. The inconsistency arises because the conservation
of momentum prevents the determination of a well-defined “soldering instant” tRM .

It is here worth remarking that this inconsistency cannot be solved by adding other
components, possibly aiming at compensating the inhomogeneity of the pressure of radia-
tion. Indeed, even if some other ρw allows to set wρ′w + 1

3ρ
′
R = p′ := 0 for a given instant,

this cannot hold for other instants, because the w component evolves as ∝ (V ol)−1−w with
w 6= 1

3 , whereas the radiation evolves ∝ V ol−4/3.

The above clashing of volumetric expansions implies that the consistent way to add
the radiation, or any other component with w 6= 0,−1, to the LTB model, is at most
two-fold, as one could consider a non-vanishing velocity field v (yielding a fourth Einstein
equation, the one sourced by the component Ttr of energy-momentum tensor), and/or a
non-vanishing spatial curvature.

3.2.5 The non-flat LTB model

Let us generalize the LTB metric by adding a non-vanishing spatial curvature k := k(r),

ds2 = −dt2 +
(A′)2

f2
dr2 +A2dΩ2, s.t. f(r)2 = 1− k(r)2. (3.2.47)

The treatment of this metric given in [119] yields the Einstein tensor to be diagonal again;
in particular, Gtr = 0. In turn, this implies a diagonal energy-momentum tensor, and for
a perfect fluid the conservation of momentum yields the following result:

0 = ∂rT
r
r + 2Γθrθ(T

r
r − T θθ ) = p′. (3.2.48)

However, the aforementioned inconsistency plaguing the flat LTB Universe is not (yet)
resolved in such a non-flat Universe. In fact, a still energy-matter evolves as ∝ (V ol)−1−w,
with some dependence on f in the formula of the volume V ol; consequently, the conser-
vation of momentum still allows only matter and dark energy within an inhomogeneous
Universe, still exhibiting an inhomogeneous Big Bang (cfr. Remark 16 above).

Thus, one must necessarily consider a non-vanishing velocity field (v 6= 0) within a
non-flat LTB Universe. Since (compare with §3.4.1)

T tr = −(ρ+ p)v

√
1 +

(
f

A′
v

)2

6= 0, (3.2.49)

this would imply a non-vanishing Gtr, again forbidden by [119]. The only way out is
to consider a moving energy-matter (v 6= 0) within a Universe with the most general
type of (non-vanishing) spatial curvature (although the spherical symmetry is required
nevertheless), namely k = k (r; t), thus implying f2 = 1 − k(r; t)2 = f(r; t)2. Indeed, the
(tr)-component of the Einstein Eqs. results to be

A′

A

ḟ

f
= −4πG(ρ+ p)v

√
1 +

(
f

A′
v

)2

. (3.2.50)

Thus, we have four variables A, ρ, v, f for four Einstein Eqs. (namely, the three diagonal
components (tt), (rr), (θθ), and the non-diagonal component (tr)).
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3.3 Expansion during M-AM recombination

3.3.1 Inseparability of components

Let us consider again (3.2.31). In the treatment given above, we have assumed the
separation of (3.2.31) into each of its w-components, and we have obtained that an inho-
mogeneous LTB Universe with non-vanishing radiation requires a non-zero velocity field
and a spatial curvature k depending both on t and r. However, during the M-AM recom-
bination (corresponding to the epoch 2; cfr. §3.1.1), the separation of Eq. (3.2.31) into its
w-components is a sufficient but not necessary condition for the solution of (3.2.31) itself.
In general, some mixing terms among the different components w’s can occur, as a conse-
quence of the recombination between matter and antimatter, in which a huge quantity of
w = 0 (matter) component gets transformed into the w = 1/3 (radiation) component5.

For simplicity’s sake, let us consider now the case with matter (w = 0) and radiation
(w = 1/3) only6. Eq.s (3.2.29) and (3.2.27) imply

ρR = ρR(t) = 3p(t). (3.3.1)

Then, the equation of the conservation of the energy (3.2.31) can be written as

ρ̇M + ρ̇R = −

(
Ȧ′

A′
+ 2

Ȧ

A

)(
ρM +

4

3
ρR

)
⇔

⇔ ρ̇M = −∂t(A
2A′)

A2A′
ρM −

[
3ṗ+ 4

∂t(A
2A′)

A2A′
p

]
. (3.3.2)

It can be integrated as

ρM (r; t) =

[
KM (r) +

∫ t
0 ṗ(τ)A2(r; τ)A′(r; τ)dτ

]
A2(r; t)A′ (r; t)

− 4p(t), (3.3.3)

where KM (r) = r2[ρM0(r) + 4p0].

3.3.2 Einstein equations

Having obtained the explicit functional dependence of the matter density and its rela-
tion with the pressure, let us now try to solve the Einstein equations (3.2.16) within the
flat LTB model7. By specifying only matter and radiation, and recalling (3.3.1), Einstein
equations read 

Ȧ2

A2 + 2 Ȧ
′Ȧ

A′A = 8πG[ρM + 3p(t)]

2 ÄA + Ȧ2

A2 = −8πGp(t)
Ä′

A′ + Ä
A + Ȧ′Ȧ

A′A = −8πGp(t)

, (3.3.4)

where we stressed the fact that the pressure depends only on time, as expressed by (3.3.1),
which in turn guarantees the conservation of momentum. From the treatment given in the
previous Section, the conservation of energy is given by(3.3.2), whereas the equation of

5This may result into an overly simplified physical picture during M-AM recombination, but nevertheless
we search for a solution within this framework.

6From now on, we will not put any dark energy as a component, since we want to explain the luminosity
distance observations as a consequence of the fractal metric. It is possible an analogous model with a
cosmological constant, but it would further complicate the equations.

7A detailed treatment of the Einstein equations for the non-flat LTB model with k = k(r; t) and v 6= 0
will be given in §3.4.
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state for matter and radiation has been taken into account by specifying ρ = ρM + ρR =
ρM + 3p.

From the treatment of §3.2.2, we know that equating the second and third Einstein
equations, one obtains a Riccati equation (3.2.20) for the Hubble parameter H (3.2.18)

Ḣ +
3

2
H2 + 4πGp(t) = 0, (3.3.5)

where Eq. (3.2.24) has been recalled. We have discussed above the solutions for p (t) = 0
(vanishing pressure) and for p(t) = p 6= 0 (non-vanishing, constant pressure), respectively
given by Eqs. (3.2.21) (obtained in [103]) and (3.2.22). Following the usual method to
solve such a class of differential equations (cfr. e.g. [121]), we define the auxiliary variable
y (r; t) as follows

H =:
2

3

ẏ

y
, (3.3.6)

in terms of which the Riccati equation (3.3.5) becomes linear

ÿ = −6πGp(t)y. (3.3.7)

It can be appreciated that y provides an alternative description of the expansion of Uni-
verse, in place of the coefficient A (r; t); indeed, by recalling (3.2.18) and (3.3.6), one gets
A3 = y2, and A2A′ ∝ yy′.

Hence, one can rewrite the Eq. (3.3.2) of conservation of energy as

ρ̇M = −∂t(yy
′)

yy′
ρM −

[
3ṗ+ 4

∂t(yy
′)

yy′
p

]
. (3.3.8)

Analogously, one can rewrite the other Einstein equations

6πG[ρM + 3p(t)] =
ẏ′ẏ

y′y
;

− 6πGp(t) =
ÿ

y
. (3.3.9)

By construction, the third Einstein equation from (3.3.4) is equivalent to the second one
via (3.3.7): both of them are (3.3.7) again. Thus, the Einstein system (3.3.4) can be
rewritten in a simpler way in terms of the y function (3.3.6) as follows{

ẏ′ẏ
y′y = 6πG [ρM + 3p(t)]

ÿ = −6πGp(t)y
. (3.3.10)

We observe that it is useless to substitute ρM from the first Einstein equation inside (3.3.2),
since it gives again (3.3.7).

Thus, we end up with the system (3.3.10) composed by two independent PDE’s in
terms of the functions y (r; t) (3.3.6) and ρM (r; t) (3.3.3), but the 1-variable function p(t)
remains here undetermined. It is then evident that some other condition is needed in order
to obtain a consistent evolution of the Universe; it is easy to realize that such a missing
condition should be provided by the law of transformation from matter to radiation as
resulting from the M-AM recombination, which we did not consider yet.
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3.3.3 New variables

We observe that the linear Riccati equation (3.3.7) does not actually depend on r;
thus, since it is a second order equation, its general solution y(r; t) will be given by a
linear combination of two purely t-dependent functions y1(t) and y2(t), with r-dependent
coefficients,

y(r; t) := c1(r)y1(t) + c2(r)y2(t), (3.3.11)

where

ÿ1,2(t) =: −6πGp(t)y1,2(t). (3.3.12)

The conditions at t = 0 can be fixed e.g. by setting{
y1(0) = 0 = ẏ2(0)

ẏ1(0) = 1 = y2(0)
, (3.3.13)

which yields

y(r; t) = A0(r)3/2

[
3

2
H0(r)y1(t) + y2(t)

]
. (3.3.14)

Next, we notice the importance of the variable

V := y2 = A3 ⇒ yy′ =
1

2
V ′, (3.3.15)

which represents the volume of the sphere centred in ~0 with radius r. By exploiting the
definition (3.3.15), the first Einstein equation of (3.3.10) can be recast in the following
form (where ρ = ρM + 3p)

ẏ′ẏ = 3πGρV ′, (3.3.16)

whereas the equation of energy conservation (3.3.8) and the formula of ρM (r; t) (3.3.3)
respectively acquire the following forms

ρ̇ = − V̇
′

V ′
(ρ+ p) , (3.3.17)

and

ρ =
1

V ′

[
KM (r)−

∫ t

p(τ)V̇ ′ (r; τ) dτ

]
, (3.3.18)

By inspecting Eq. (3.3.17), one can appreciate that an even better variable to be used
would be the total energy inside the sphere of radius r,

E(r; t) :=

∫ r

ρ(s; t)dV (s; t) = M(r; t) + 3p(t)V (r; t), (3.3.19)

where

M(r; t) :=

∫ r

0
ρM (s; t)V (s; t)ds. (3.3.20)

By virtue of the fact that definition (3.3.19) implies

E′ = ρV ′, (3.3.21)

the first Einstein equation (3.3.16) boils down to

ẏ′ẏ = 3πGE′. (3.3.22)
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It can be integrated in r, obtaining

ẏ2 = 6πGE ⇒ Ė =
1

3πG
ẏÿ = −2yẏp = −pV̇ , (3.3.23)

where the second Einstein equation (3.3.10) was used and definition (3.3.15) recalled.
Finally, by integrating further in t, one gets

E(r; t) = E0(r)−
∫ t

0
p(τ)V̇ (r; τ)dτ, (3.3.24)

where E0(r) = M0(r) + 3p0.
The evaluation of (3.3.23) today (i.e. for t = 0) and the use of the time derivative of

(3.3.14) yields the relation between E0(r) ≡ E(r; 0) and H0(r) (by recalling the conditions
(3.3.13)),

ẏ2 (r; 0) = 6πGE0 (r)⇔ H2
0 (r) =

8

3
πG

E0 (r)

A0(r)3
=

8

3
πGρ0(r), (3.3.25)

where we defined ρ := E/V = ρ̄M + 3p as the average density of energy inside the ball of
radius r. The equation on the r.h.s. of (3.3.25) is a well known relation for FRW model,
but in the framework under consideration it depends on r. Analogously to FRW, we can
define the Ω parameters as

ΩM (r; t) :=
8πGMρ̄M

3H2
, ΩR(r; t) :=

8πGp

H2
s.t. ΩM0(r) + ΩR0(r) := 1, (3.3.26)

where ΩM0(r) ≡ ΩM (r; 0) and ΩR0(r) ≡ ΩR(r; 0).

3.3.4 General form

By plugging the time derivative of y(r; t) (3.3.14) into (3.3.23), one obtains

6πGE(r; t) = ẏ2(r; t) = A0(r)3

[
3

2
H0(r)ẏ1(t) + ẏ2(t)

]2

. (3.3.27)

On the other hand, by exploiting the first Einstein equation of (3.3.10) an recalling the
definition (3.3.15), one could get a similar expression for ρ, but it turns out to be non-
polynomial.

Pure matter

Let us consider the pure matter case: p ≡ 0. From the second Einstein equation of
(3.3.10), one gets

y1(t) = t, y2 = 1 (3.3.28)

yielding to

A(r; t) = y2/3(r; t) = A0(r)

[
3

2
H0(r)t+ 1

]2/3

. (3.3.29)

Since p = 0, Eqs. (3.3.19) and (3.3.24) imply that

Ṁ = Ė = 0, (3.3.30)

and the first Einstein equation of the system (3.3.10) simplifies down to

ρM (r; t) = ρM0 (r)
A′0(r)[

A′0(r)
(

3
2H0(r)t+ 1

)
+A0(r)H ′0(r)t

] [
3
2H0(r)t+ 1

] , (3.3.31)
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such that

ρM0 (r) =
1

4πG

H0(r)
[

3
2A
′
0(r)H0(r) +A0(r)H ′0(r)

]
A′0(r)

. (3.3.32)

This is consistent with what we already know.

Pure radiation

On the other hand, in the case of pure radiation ρM ≡ 0, Eqs. (3.3.19) and (3.3.23)
imply

E = 3pV ⇒ Ė = 3(ṗV + pV̇ ) = −pV̇ ⇔ V̇

V
= −3

4

ṗ

p
⇔ V (r; t) = A0(r)3p(t)−3/4, (3.3.33)

and by recalling (3.3.15) one obtains

A0(r)3p(t)−3/4 = V := y2 = A0(r)3

(
3

2
H0(r)y1(t) + y2(t)

)2

. (3.3.34)

Therefore, in this case it holds that

H0(r) ≡ H0; (3.3.35)

3

2
H0y1(t) + y2(t) = p(t)−3/8. (3.3.36)

From

H2
0 =

8

3
πG

E0 (r)

A0(r)3
= 8πGp0 ⇔ p0 =

H2
0

8πG
, (3.3.37)

one gets

p (t) =
1

32πG

(
t+

1

2H0

)−2

. (3.3.38)

This result allows to explicitly solve the second Einstein equation of (3.3.10) yielding that

y1 (t) =
(2H0t+ 1)3/4 − (2H0t+ 1)1/4

H0
, y2 (t) =

3(2H0t+ 1)1/4 − (2H0t+ 1)3/4

2
,

(3.3.39)
finally leading to the following expression

y = A0(r)3/2

[
3

2
H0

1

H0

(
(2H0t+ 1)3/4 − (2H0t+ 1)1/4

)
+

1

2

(
3(2H0t+ 1)1/4 − (2H0t+ 1)3/4

)]
= A0(r)3/2(2H0t+ 1)3/4,

(3.3.40)

implying

A (r; t) = y (r; t)2/3 = A0(r)
√

2H0t+ 1, (3.3.41)

in which we recognize a feature of the FLRW model with pure radiation.
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Beyond pure models

The two functional forms (3.3.28) and (3.3.40), respectively concerning the cases of
pure matter and pure radiation can be recognized to belong to a more general family of
solutions8, of the form

y ∝ (t+ θ)
1±a

2 , s.t.

{
a = 1 for pure matter

a = 1
2 for pure radiation

, (3.3.42)

where θ is a suitable parameter with the dimension of a time.
Again, the second Einstein equation of (3.3.10) implies

p(t) =
1− a2

24πG
(t+ θ)−2. (3.3.43)

By recalling the definition (3.3.26) of ΩR(r; t), one then gets

1− a2

24πGθ2
= p(0) =

ΩR0(r)H0(r)2

8πG
⇔ θ−1(r; a) = H0(r)

√
3

1− a2
ΩR0(r). (3.3.44)

Notice that such a result implies that in general θ does depend on r (as well as on the
parameter a).

We should now remember that we are considering the expansion of the Universe during
M-AM recombination only in presence of matter and radiation (namely, we are disregard-
ing the contribution of dark energy, for simplicity’s sake). Thus, ρM ≥ 0 and p ≥ 0 always,
which imply |a| ≤ 1. Furthermore, it is reasonable to assume θ > 0, so that the Big Bang
happened in some past instant tBB = −θ. Within these assumptions, the expression of
y(r; t) for the family of solutions under consideration reads

y1 (t; a) =
θ

α

[(
t

θ
+ 1

) 1+a
2

−
(
t

θ
+ 1

) 1−a
2

]
;

y2 (t; a) =
1

2α

[
(a− 1)

(
t

θ
+ 1

) 1+α
2

+ (a+ 1)

(
t

θ
+ 1

) 1−α
2

]
, (3.3.45)

which finally allows one to explicitly write down the functional form of the a-parametrized
family of solutions under consideration

y(r; t; a) =
A3

0(r)

2a

[(
a+

√
3

1− a2

ΩR0(r)
− 1

)(
t

θ
+ 1

) 1+a
2

+

(
a−

√
3

1− a2

ΩR0(r)
+ 1

)(
t

θ
+ 1

) 1−a
2

]
,

(3.3.46)
where θ = θ (r; a) given by (3.3.44). In turn, this implies the formula

A (r; t) = y2/3(r; t) =
A2

0(r)

(2a)2/3
×

×

[(
a+

√
3

1− a2

ΩR0(r)
− 1

)(
t

θ
+ 1

) 1+a
2

+

(
a−

√
3

1− a2

ΩR0(r)
+ 1

)(
t

θ
+ 1

) 1−a
2

]2/3

.

(3.3.47)

8We should bear in mind that, physically, the “right” p(t) depends on the M-AM recombination law.
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3.4 The Lemâıtre model

Now we consider again the epoch 3, for which we saw the LTB solution is not general
enough. Thus, in this section we will use its generalization, called the Lemâıtre model. It
was described e.g. in [122] and [123]. We choose the coordinates which diagonalize the
metric tensor, and we redefine t with respect to eq. (7) of [123] in order to get gtt := −1,
which will mean that the energy-matter has some radial velocity Uµ. Hence, in our gauge
the metric results to be

ds2 = −dt2 +

(
A′

f

)2

dr2 +A2(dθ2 + sin2 θdφ2), (3.4.1)

where the spatial curvature is k(r; t) =
√

1− f(r; t)2, as (3.2.47).

3.4.1 Einstein equations

We will now adopt the tetrad formalism, in which ds2 = ηabe
a ⊗ eb, and which allows

us to compute the Vielbein as

e0 = dt, e1 =
A′

f
dr, e2 = Adθ, e3 = A sin θdφ. (3.4.2)

We compute the Einstein tensor analogously to [119],

G0
0 = −2

Ȧ′Ȧ

A′A
− Ȧ2

A2
− k2

A2
+ 2

f ′f

A′A
+ 2

(
Ȧ

A
− ḟ

f

)
ḟ

f
;

G1
0 = −2

ḟ

A
;

G1
1 = −2

Ä

A
− Ȧ2

A2
− k2

A2
+ 2

ḟ2

f2
;

G2
2 = G3

3 = −Ä
A
− Ä′

A′
− Ȧ′Ȧ

A′A
+
f ′f

A′A
+
f̈

f
+

(
2Ȧ′

A′
+
Ȧ

A

)
ḟ

f
. (3.4.3)

On the other hand, in presence of a non-vanishing velocity field, the energy-momentum
tensor reads

T ab = (ρ+ p)UaUb + pδab s.t. Ua =
√
v2 + 1e0 + ve1 =

√
v2 + 1dt+ v

A′

f
dr, (3.4.4)

namely

T 0
0 = −(ρ+ p)(v2 + 1) + p = −ρ− v2(ρ+ p);

T 1
0 = v

√
v2 + 1(ρ+ p);

T 1
1 = p+ v2(ρ+ p);

T 2
2 = T 3

3 = p. (3.4.5)

Thus, we can finally write the Einstein equations for the Lemâıtre model

2 Ȧ
′Ȧ

A′A + Ȧ2

A2 + k2

A2 − 2 f ′f
A′A − 2

(
Ȧ
A −

ḟ
f

)
ḟ
f = 8πGρ+ 8πGv2(ρ+ p)

ḟ
A = −4πGv

√
v2 + 1(ρ+ p)

2 ÄA + Ȧ2

A2 + k2

A2 − 2 ḟ
2

f2 = −8πGp− 8πGv2(ρ+ p)

Ä
A + Ä′

A′ + Ȧ′Ȧ
A′A −

f ′f
A′A −

f̈
f −

(
2Ȧ′

A′ + Ȧ
A

)
ḟ
f = −8πGp

. (3.4.6)
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Notice that we don’t express them in terms of the M variable, defined in eq. (10) of [123].
We stress that M is not the “empirical amount of mass” we defined in §3.3.3 and we will
use again in §3.4.2.

The velocity v represents the matter which falls on itself. We can assume that it will
be small almost always, w.r.t. c = 1. Thus, we can approximate (3.4.6) up to the first
order in v. 

2 Ȧ
′Ȧ

A′A + Ȧ2

A2 + k2

A2 − 2 f ′f
A′A − 2 ȦA

ḟ
f = 8πGρ+ o(v)

ḟ = −4πGvA(ρ+ p) + o(v)

2 ÄA + Ȧ2

A2 + k2

A2 = −8πGp+ o(v)
Ä
A + Ä′

A′ + Ȧ′Ȧ
A′A −

f ′f
A′A −

f̈
f −

(
2Ȧ′

A′ + Ȧ
A

)
ḟ
f = −8πGp

(3.4.7)

where we used than ḟ = O(v) from the second equation. Moreover, the first equation can
be rewritten in the more compact form

∂r[A(Ȧ2 + k2)] = 8πG
A′A2

f
[(f − Ȧv)ρ− Ȧvp]. (3.4.8)

3.4.2 Conservation laws

In order to write the energy-momentum conservation, by recalling the energy-momentum
tensor (3.4.4)-(3.4.5), one can approximate

Uµ =
√
v2 + 1dt+ v

A′

f
dr ⇒ Uµ = −

√
v2 + 1∂t + v

f

A′
∂r, (3.4.9)

which implies

T tt = −ρ+ o(v);

T tr = −vA
′

f
(ρ+ p) + o(v);

T rt = v
f

A′
(ρ+ p) + o(v);

T rr = p+ o(v);

T θθ = T φφ = p. (3.4.10)

Hence, the conservation of energy reads

ρ̇ =

[
−∂t(A

′A2/f)

(A′A2/f)
+ v

f

A′
∂r(A

′A2/f)

(A′A2/f)
+ ∂r

(
v
f

A′

)]
(ρ+p)+v

f

A′
(ρ′+p′)+o(v), (3.4.11)

whereas the conservation of momentum is

p′ =

[
2
v

A2
∂t

(
A′A2

f

)
+
A′A2

f
∂t

( v

A2

)]
(ρ+ p) + v

A′

f
(ρ̇+ ṗ) + o(v). (3.4.12)

We can rewrite the conservation laws by calling A′A2

f := V ′, where V (r; t) is the volume
inside the sphere of radius r. The conservation of energy simplifies

∂t(V
′ρ) = ∂r

[
A2v(ρ+ p)

]
− V̇ ′p. (3.4.13)

The l.h.s. of (3.4.13) is related to the total energy inside the sphere, defined by (3.3.19)
as E(r; t) :=

∫ r
0 ρ(s; t)V ′(s; t)ds, such that (3.3.21) holds, namely E′ = V ′ρ. Within
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the assumption of separation of (3.4.13) into its w-components (which holds with a good
approximation after the M-AM recombination, when the transformations occur only in
the stars), one can write

Ė′ = ∂r
[
A2v(ρ+ p)

]
− V̇ ′p⇒ Ė′w = (1 + w)∂r

[
v
f

A′
E′w

]
− wV̇

′

V ′
E′w, ∀w. (3.4.14)

Indeed, for the static case v = 0 we have just the volume deformation E′w ∝ (V ′)−w. For
the general case, the matter component has a particularly simple law,

Ṁ ′ = ∂r

[
v
f

A′
M ′
]
⇒ Ṁ = v

f

A′
M ′. (3.4.15)

Moreover, the conservation of momentum (3.4.12) becomes

V ′p′ = ∂t

[
v
A′

f
V ′(ρ+ p)

]
. (3.4.16)

3.4.3 Approximated models

The PDE system to solve is given by the Einstein Equations (3.4.7), to which they are
added the conservation laws.

∂r[A(Ȧ2 + 1− f2)] = 8πGA′A2

f [(f − Ȧv)ρ− Ȧvp]
ḟ = −4πGvA(ρ+ p) + o(v)

2 ÄA + Ȧ2

A2 + k2

A2 = −8πGp+ o(v)
Ä
A + Ä′

A′ + Ȧ′Ȧ
A′A −

f ′f
A′A −

f̈
f −

(
2Ȧ′

A′ + Ȧ
A

)
ḟ
f = −8πGp

Ṁ = v f
A′M

′

3∂t(V
′ρR) = 4∂r(vA

2ρR)− V̇ ′ρR
V ′ρ′R = ∂t

[
vA
′

f V
′(3ρM + 4ρR)

]
. (3.4.17)

The independent variables are A, f, v, ρM , ρR, and the quantities V :=
∫ r

0
A′A2

f and M :=∫ r
0 V

′ρM have been defined.
The resultant system is quite difficult to solve. The solution we need has some condi-

tions9 put on the initial time tR, and some others10 on the final instant. Hence, we can
not use even a numerical approach, at least at the first step, because it would require a
complete set of conditions at a certain instant, the initial or the final one. If we put the
initial condition, it is not ensured that we will find an acceptable final state (it is very
improbable, indeed), and vice versa.

What we need is a model, at least an approximated one, which satisfies some conditions
both at the start and at the end. If it does not solve exactly the PDEs, we can nevertheless
take it as a zeroth order, perturbing to the right version, even numerically.

r as a label

The crucial observation is that, for an only matter universe, the evolution law results

to be A(r; t) = r
[
1 + 3

2H0(r)t
]2/3

. A FLRW universe with pure matter has analogously

9A = ra(t), 1− f2 = Kr2, ρR = ρR(t)
10A = r, f = 1, M = ΦrD
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a(t) =
[
1 + 3

2H0t
]2/3

. Hence, the inhomogeneous universe has, at radius r, a metric

A(r; t) = rar(t) s.t. ȧ2
r
a2
r

= H0(r)2a−3
r . If it is considered just the spherical region until r,

and the total matter inside is considered as it was homogeneous, the consequent evolution
law in t depends on the label r exactly as the LTB solution.

This observation works exactly just for pure matter. We see that setting v := 0, f := 1.
The Conservations of Matter and Radiation give ρM ∝ (A′A2)−1 and ρR ∝ (A′A2)−4/3.
Substituting inside the I EE

∂r(Ȧ
2A) = 8πG

(
ρM0 +

ρR0
3
√
A′A2

)
A′0A

2
0. (3.4.18)

We see that it is exactly integrable for pure matter, but the radiation returns a non
trivial term. Hence, from now on remember that the “radius as label” method is an
approximation. It is good near M-AM, when the universe is almost FLRW; and near
today, when the matter dominates; but it is worse during the intermediate period.

With this caveat, we try to write

A(r; t) := rar(t) s.t.
ȧ2
r

H0(r)2
= ΩM0(r)a−1

r + ΩR0(r)a−2
r . (3.4.19)

Since we consider here just the final components, let ΩK0 := 0. The Omegas are defined
as usual, s.t. ΩM0 + ΩR0 = 1.

We can solve it with exact integrations

da

dt
=
H0

a

√
ΩM0a+ ΩR0 ⇒∫ t

tBB

H0dt =

∫ t

tBB

ada√
ΩM0a+ ΩR0

= [2ΩM0a
√

ΩM0a+ ΩR0]ttBB − 2[
2

3
(ΩM0a+ ΩR0)3/2]ttBB

⇒ 3

2
H0(t− tBB) = (ΩM0a− 2ΩR0)

√
ΩM0a+ ΩR0 + 2Ω

3/2
R0 , (3.4.20)

where we used the fact a(tBB) := 0. Moreover, setting a(0) := 1

− 3

2
H0tBB = (ΩM0 − 2ΩR0)

√
ΩM0 + ΩR0 + 2Ω

3/2
R0 = ΩM0 + 2ΩR0(Ω

1/2
R0 − 1)

⇒ 3

2
H0t = (ΩM0a− 2ΩR0)

√
ΩM0a+ ΩR0 + (2ΩR0 − ΩM0). (3.4.21)

This is the exact evolution law a = a(t), expressed implicitly. The explicit dependence
can be obtained with the Cardano’s Formula.

Now we set the parameters of real universe. First of all, the time singularity tBB(r)
must be spatially homogeneous; since t = 0 is today, we can call T the age of the universe,
so that −tBB ≡ T . Then, we put the fractal ρM0 := DΦ

4π r
D−3. The evolution law token at

t = −T gives the last constraint

3

2
H0T = ΩM0 + 2ΩR0(Ω

1/2
R0 − 1)⇒ 2(1− ΩM0)3/2 + 3ΩM0 − 2 = T

√
3

2
DGΦr

D−3
2 Ω

1/2
M0.

(3.4.22)
ΩM0(r) can be expressed as the solution of a high order algebraic equation, and is fixes
also H0, ΩR0 and ρR0.

It is difficult to solve exactly the algebraic equation of ΩM0(r). Here we show an
approximated solution, using the fact that ΩR0 � ΩM0. Indeed, the evolution equation
at −T becomes

3

2
H0T = ΩM0 + 2ΩR0(Ω

1/2
R0 − 1) ∼= ΩM0 − 2ΩR0

∼= ΩM0. (3.4.23)
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Substituting ρM0,

3

2
H0T ∼=

2

3
DGΦrD−3H−2

0 ⇒ H0(r) ∼= 3

√
4DGΦ

9T
r
D
3
−1

⇒ ΩM0(r) ∼=
3

2
T

3

√
4DGΦ

9T
r
D
3
−1 =

3

√
3

2
DGΦT 2r

D
3
−1,

ρR0(r) =
3H2

0

8πG
− ρM0

∼=
1

4π

[
3

√
2D2Φ2

3GT 2
r1−D

3 −DΦ

]
rD−3. (3.4.24)

The numerical parameters D,Φ, T can be deduced from astronomical measures.
Even if the formulas are somehow simple, this model has a important lack: the expan-

sion is not homogeneous near −T , because also the radiation is not homogeneous. It goes
as

ȧ2 ∼−T H2
0 ΩR0a

−2 ⇒ ar(t) ∼ ρR0(r)1/4

√
4

(
2

3
πG

)1/2

(t+ T ), (3.4.25)

which expands faster for bigger r.

Step functions

The last model can be improved admitting an evolution of the Ωs. Indeed, we know
that the matter and radiation densities do not change just because the expansion, but
they move through r, as is described by the PDEs. Here is how the radiation can be
homogeneous near −T and inhomogeneous at t = 0: ΩR0 changes with time.

This fact can be roughly described inserting initial and final values HI ,ΩMI ,ΩRI ;HF ,ΩMF ,ΩRF .
In other words, H0 = H0(t) is a step function that jumps from HI to HF , and the same
for the others. The jumps happen in some middle instant tm, when we consider all the
changes are concentrated.

The evolution law can be written with differentials as

Hdt =
ada√

ΩMa+ ΩR
= d

[
2ΩMa

√
ΩMaΩR

]
− d

[
4

3
(ΩMa+ ΩR)3/2

]
=

=
2

3
d[(ΩMa− 2ΩR)

√
ΩMa+ ΩR]. (3.4.26)

Setting a(−T ) := 0 and a(0) := 1, it is respectively{
3
2HI(t+ T ) = (ΩMIa− 2ΩRI)

√
ΩMIa+ ΩRI + 2Ω

3/2
RI −T ≤ t ≤ tm

3
2HF t = (ΩMFa− 2ΩRF )

√
ΩMFa+ ΩRF − (ΩMF − 2ΩRF ) tm ≤ t ≤ 0

. (3.4.27)

For the Einstein Equations are of second order, it must be a(t) ∈ C1(tm). Calling
am := a(tm), we can write such request as

1
HI

[
(ΩMIam − 2ΩRI)

√
ΩMIam + ΩRI + 2Ω

3/2
RI

]
= 3

2(tm + T ) =

= 1
HF

[
(ΩMFam − 2ΩRF )

√
ΩMFam + ΩRF − (ΩMF − 2ΩRF )

]
+ 3

2T

H2
I (ΩMIam + ΩRI) = ȧ2

ma
2
m = H2

F (ΩMFam + ΩRF )

. (3.4.28)

Moreover, we can set the initial and final states as{
ΩMI(r) + ΩRI(r) = 1 = ΩMF (r) + ΩRF (r)

HI(r)
2ΩRI(r) = 8

3πGρRI ; HF (r)2ΩMF (r) = 2
3DGΦrD−3

. (3.4.29)
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These are 6 conditions; but we have 7 functions: ΩMI(r), ΩRI(r), ΩMF (r), ΩRF (r), HI(r),
HF (r) and am(r) (which is equivalent to tm).

For the last condition, we remember that the change of matter and radiation densities
depends both on v, according to the Conservation Laws{

∂t(V
′ρM ) = ∂r(A

2vρM )

∂t
(
(V ′)4/3ρR

)
= 4

3
3
√
V ′∂r(A

2vρR)
. (3.4.30)

Since here the ρs have a jump at tm, all these derivatives have a Dirac delta peak. For this
reason, we can neglect the variation ∂t(V

′), ∂r(ρM ) and ∂r(ρR), taking them approximately
constant w.r.t. the jumps. The Conservation Laws become{

V ′∆(ρM ) ∼= ρM∆(A2v)

(V ′)4/3∆ (ρR) ∼= 4
3

3
√
V ′ρR∆(A2v)

⇒ 4

3
∆(ln ρM ) ∼=

∆(A2v)

V ′
∼= ∆(ln ρR). (3.4.31)

The ∆s on the ρs are intended as ∆(f) := limt→t+m f(t)− limt→t−m f(t). Thus, the last can
be rewritten as

4

3
(ln ρMF − ln ρMI) ∼= ln ρRF − ln ρRI ⇔

(
ρMF

ρMI

)4/3
∼=
ρRF
ρRI

. (3.4.32)

This fixes completely the functions of the model. The only parameters remained are just
numbers: T, ρRI , D,Φ.

For a set of solvable algebraic equations, we exploit the approximations ρRI � ρMI , ρMF �
ρRF , am � 0. These return

ΩRI
∼= 1, ΩMI

∼= 0, ΩMF
∼= 1, ΩRF

∼= 0⇒

HI(r) ∼=
√

8

3
πGρRI , HF (r) ∼=

√
8

3
πGρMF =

√
2

3
DGΦr

D−3
2 ,

0 ∼=
1

HI

[
(ΩMIam − 2ΩRI)

√
ΩMIam + ΩRI + 2Ω

3/2
RI

]
=

=
1

HF

[
(ΩMFam − 2ΩRF )

√
ΩMFam + ΩRF − (ΩMF − 2ΩRF )

]
+

3

2
T ∼=

a
3/2
m − 1

HF
− 3

2
T

⇒ am(r) ∼=
[
1− 3

2
THF

]2/3
∼=

[
1− T

√
3

2
DGΦr

D−3
2

]2/3

. (3.4.33)

Since now it is known, we find from the other constrains

8

3
πGρRI ∼= H2

I (ΩMIam + ΩRI) = H2
F (ΩMFam + ΩRF ) =

8

3
πG(ρMFam + ρRF )

⇒ ρRF (r) ∼= ρRI − ρMFam ∼= ρRI −
DΦ

4π
rD−3

[
1− T

√
3

2
DGΦr

D−3
2

]2/3

,

(
ρMF

ρMI

)4/3
∼=
ρRF
ρRI

⇒ ρMI(r) ∼= ρMF

(
ρRI
ρRF

)3/4
∼= ρMF

(
ρRI

ρRI − ρMFam

)3/4

. (3.4.34)

The four parameters of our simplified model can be empirically fixed, in order to
compare quantitatively the previsions with observations. Following [100], we evaluate
D ∼= 1.2, between the scales of magnitude LG ∼= 105ly and LEG ∼= 3× 108ly. The fractal
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density can be obtained from the amount of observed matter

ΦLDEG
∼= M(LEG) ∼=

4

3
πL3

EGρB0 =
H2

0

2G
L3
EGΩB0

⇒ Φ ∼=
H2

0

2G
L3−D
EG ΩB0

∼= 9.974× 1024kg/lyD, (3.4.35)

where H0
∼= 6.867 × 10−11y−1 and ΩB0

∼= 0.044 are the parameters of the Cosmological
Concordance Model. Analogously, we can evaluate the amount of radiation

H2
0

2G
L3
EGΩR0

∼=
∫ LEG

0
ρRF 4πr2dr ∼=

4

3
πL3

GρRI+

+

∫ LEG

LG

4πr2ρRI −DΦrD−1

(
1− T

√
3

2
DGΦr

D−3
2

)2/3
 dr =

=
4

3
πL3

EGρRI −

[
ΦrD2F1

(
−2

3
,

2D

D − 3
; 3
D − 1

D − 3
;T

√
3

2
DGΦr

D−3
2

)]LEG
LG

⇒

ρRI ∼=ρR0 + 2.5ρMF (LEG)2F1

(
−2

3
,−4

3
;−1

3
;T
√

1.8GΦL−0.9
EG

)
+

− 2.5

(
LG
LEG

)3

ρMF (LG)2F1

(
−2

3
,−4

3
;−1

3
;T
√

1.8GΦL−0.9
G

)
, (3.4.36)

where 8πG
3H2

0
ρR0 := ΩR0

∼= 8.24 × 10−5 are CCM parameters again, and 2F1 is the hy-

pergeometric function. The last parameter T can be evaluated from other cosmological
observations.

3.5 Defects of the model

Of course, our calculations admit further improvements, for instance provided by a
more precise solution to the evolution equations of the Lemâıtre model, as discussed in §3.4.
After our analysis, we may reasonably wonder that a more detailed analysis would describe
the fall of the matter fractal onto itself, thus providing self-consistency and stability within
fractal cosmology, while the homogeneous FLRW would just be an unstable solution.
Future works might also improve the description of the second epoch, e.g. implementing
the transformation law of matter into radiation.

It is worth pointing out here that the whole theoretical framework dealing with LTB
and Lemâıtre models provides a smooth approximation to the actual fractal dynamics.
Indeed, a more realistic model for fractal cosmology should make use of distributional
General Relativity, which is a quite formidable task, or at least of a first order perturbative
approximation towards the anisotropic distribution. These latter perturbative methods,
applied to an LTB or Lemâıtre background, should expectedly provide some amount of
effective dark matter, due to retarded potentials of §2. Since the fractal approach is able
to explain dark energy phenomena [103], it is conceivable that a combined framework will
be able to overcome many of the drawbacks of the Cosmological Concordance Model.



Conclusions: What has been done
and what remains to be done

Along this PhD thesis we developed theoretical models and solutions to improve the
Cosmological Standard Model. We proposed some partial answers to its open problems,
as those of the dark matter and the dark energy, and we showed also links to the problems
of the inflation and of the baryogenesis. These open a lot of future perspectives, both for
cosmology and theoretical physics.

Looking back

We developed in §2 the “retarded perturbations” framework, managing to apply it to
a model of our universe, complete with all the components. The large number of variables
leaves a free parameter, depending on which we found a one-dimensional set of possible
solutions. Within this interval, more dark matter is explained less as less dark energy is,
and vice versa. At an end of the range, dark matter is fully explained as a relativistic
effect, but the same effect caused an underestimation of dark energy in the Cosmological
Standard Model. At the other end of the range the numbers are analogous, with dark
matter and dark energy exchanged. For a particular value, both dark matter and dark
energy found a partial explanation. A new observation or a new test would determine
which is the right solution, but anyway a correction of the parameters of the CCM is
required.

Better measures of the density parameters will improve our estimations of ΩFM0 and
ΩFΛ0, but they can not fix the right parameter Ω̄M0. The difference between Ω̄R0 and

the measured ΩR0, e.g., is not matter of measure precision, but of the factor
(
H0
H0
ã0

)2
,

which concerns the background universe and is not measurable. Rather, a measure of the
actual gravitational force ~∇Ψ(x; t0) could put the restraint we need. Another possible
measure could be the estimation of the matter inhomogeneity at large scale ΩIM0, i.e. the
deviation from the exact Cosmological Principle.

A fascinating concept we introduced is that of Selfconsistence Principle. They are
pure mathematical statements that a universe must follow, in order to have a well defined
evolution, taking account of the retarded potentials effects. We proved e.g. that any
inhomogeneity generates a diverging perturbation, unless at least one component of the
universe has w > −1/3. We can interpret that as an a priori requirement of “necessity” of
radiation, or of some other component with high w. Such mathematical restrictions to
the laws of the physics should be taken with caution, since they appear as philosophical
statements. Indeed, any mathematical result is built on some hypotheses and axioms,
which have a scientific and empirical nature. It is conceptually impossible that pure
mathematics fixes the physics.

Other key issues about retarded potentials are the choice of the gauge and the averaging

79
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procedure. In §2, we performed firstly the calculations in the harmonic gauge, and after in
the newtonian one. The final results ΩFM0,ΩFΛ0 are not gauge-independent, what raises
doubts about their physical meaning. Does the quantity of dark matter depend on the
frame in which we measure it? If it is so, what we defined as “fictitious matter” is not an
intrinsic quantity, and it could have no relevance. The interpretation we give in this thesis
is that the gauge-dependence of ΩFM,Λ0 just proves that they are not real components,
but only apparent phenomena, arising from our choice of coordinates. In a sufficiently
good frame, we would measure only the real matter and dark energy, but it is not the
frame we are using today for the astronomical observations.

The exact path for exploiting calculation must be improved, not only for the gauge
but also for the averaging formula, when 〈gµν〉 is evaluated. E.g. in [115] are shown
more possible formulas to average cosmological quantities. Our current results should be
compared with other choice of averaging, wondering which is the most suitable. We need
to reflect especially about the retard of information, i.e. if the averaging should be taken
on a space-like sheet, or instead on a light cone.

We have started in §3 a systematic development of the framework focussed on the
analysis of the consequences of fractal cosmology on the evolution of the Universe. We
have proposed a genesis of the cosmic fractal, as well as a partition in epochs, both suitable
to obtain quantitative results. Only the first epoch can consistently be described with the
usual FLRW solution; on the other hand, the LTB solution was exploited for the second
epoch, and we proved that an even more general Lemâıtre solution is necessary for the
third epoch, because of general restrictions arising from the momentum conservation in
the LTB metric.

The “necessity” of radiation stated by the Selfconsistence Principles is somehow con-
firmed in the fractal framework, since without it the LTB solution leads to inhomogeneous
Big Bangs. However, it is the presence of such radiation that led us to abandon the LTB
metric, introducing the Lemâıtre one for the fractal cosmological models.

Here we highlight also the role of the End of Greatness LEG in our model. Letting it be
an indeterminate parameter, our model is adaptable to the various empirical evaluations
about the homogeneity scale; and it allows also to include the idea that the homogeneity
is never reached, with the particular choice LEG → ∞. Moreover, a suitable LEG can
explain the different values of the fractal dimension D, found with different methods.
Such difference can be a new way to determine LEG.

Looking ahead

The study of local dark matter effects would provide corrections to the standard new-
tonian approximations for the dynamic of galaxies and clusters. For such calculations,
we cannot assume an irrotational matter as we did here. The rotation of galaxies could
provide a rotational term for the non diagonal components of the metric B̂ , which con-
tributes to fictitious dark matter effects [91], [92]. A further publication will follow this
line of research, improving the model in [91]. The total amount of the local fictitious
effects could be compared to the global fictitious effects ΩFM0 we found here, and the
equivalence between them could be the additional restraint we need to fix uniquely the
parameter Ω̄M0.

The recently observed gravitational waves have quite far sources, e.g. in [111] it was
calculated a redshift z ∼= 0.09. Hence, they originated a relevant amount of time ago,
and traveled on the space while it was expanding, maybe in a non negligible way. In the
next future, more and more ancient gravitational waves will be predictably detected, so
that the expansion of the space during their journey will be less and less negligible. The
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study of the Equation (2.2.13) without source will be useful for the interpretation of such
waves. We can imagine that they will exhibit a shape of a Bessel function, more than a
goniometric function.

To obtain a theoretical prevision of the dark matter distribution mathematical tools
able to describe the baryonic matter distribution would be necessary. Since the matter
inhomogeneity seems to have a fractal shape [100], it could be useful a study of singular
distributions as sources in General Relativity, and their application to cosmology. The
concentrations of matter on supports with dimension less that 2 have long been believed
to be banned, because pure mathematical reasons, showed in [127]. However, this no-go
theorem can be bypassed, developing the suitable formalism. This is currently under inves-
tigation and will be matter for other future articles. The application of such a theory will
allow far more precise fractal cosmological models, without the LTB-like homogenization.

Finally, we would like to remark that a deeper quantitative analysis of the LTB metric
is of potential relevance also in other frameworks, such as the IR-completion of gravity
[124], [125], or within the attempts to explain the tension of the Hubble parameter [126].
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Appendix A

Derivation of linearized Einstein
Equations

A.1 Perturbed Ricci tensor

The linearized Einstein Equations on a Minkowskian background are very well known
from the study of gravitational waves, e.g. in [116]. They are deduced from the definitions
of the Ricci and Einstein tensors, neglecting the terms in g̃, ∂g̃ of orders higher than one,
and this is what we are going to do. However, in our case the background metric is a
FLRW one, which has a non zero connection

ḡµν = a2ηµν ⇒ ḡµν = a−2ηµν ⇒ ∀µ : Γ̄τµµ = Γ̄µτµ = Γ̄µµτ = H; others Γ̄λµν = 0. (A.1.1)

This will lead to additional terms respect to the usual PDE of gravitational waves.

We wrote the perturbation on metric as is usual in perturbative cosmology

g̃µν = a2

(
2A −Bi
−Bi hij

)
:= a2hµν ⇒ g̃µν = −ḡµαḡνβ g̃αβ = a−2

(
−2A −Bi

−Bi −hij
)

= a−2hµν

(A.1.2)
where we used the greek indices for four-dimensional quantities, which are raised and
lowered by gµν , and the latin ones for the three-dimensional, which follow the euclidean
metric δij .

As we said, the perturbation on the connection is defined at the first order as

Γ̃λµν := Γλµν − Γ̄λµν = g̃λρΓ̄ρµν +
1

2
ḡλρ(∂µg̃νρ + ∂ν g̃ρµ − ∂ρg̃µν) =

=
∑
ρ

hλρηρρΓ̄
ρ
µν +

1

2a2
ηλλ[∂µ(a2hνλ) + ∂ν(a2hλµ)− ∂λ(a2hµν)]. (A.1.3)

We perform the calculations keeping the coordinates τ, {i}31, in order to find also the
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Conservation of Four-Momentum afterward.

Γ̃τττ = hττ Γ̄τττ −
∑
l

hτlΓ̄lττ +
1

2a2
∂τ (a2hττ ) = (−2A)H − 0 + a−2∂τ (a2A) = −2A

ȧ

a
+

2aȧA+ a2Ȧ

a2

= Ȧ;

(A.1.4)

Γ̃ττj = hττ Γ̄ττj −
∑
l

Γ̄lτj +
1

2a2
∂j(a

2hττ ) = 0− hτjH +
1

2
∂jhττ

= ∂jA+HBj ; (A.1.5)

Γ̃τij = hττ Γ̄τij −
∑
l

hτlΓ̄lij +
1

2a2
[∂i(a

2hjτ ) + ∂j(a
2hτi)− ∂τ (a2hij)] =

= (−2A)(δijH)− 0 +
1

2

[
∂i(−Bj) + ∂j(−Bi)−

2aȧhij + a2ḣij
a2

]
= −2HAδij − ∂(iBj) −Hhij −

1

2
ḣij , (A.1.6)

where we used the symmetric notation ∂(ivj) := 1
2(∂iBj + ∂jBi);

Γ̃kττ = hkτ Γ̄τττ −
∑
l

hklΓ̄lττ −
1

2a2
[2∂τ (a2hkτ )− ∂k(a2hττ )] =

= (−Bk)H − 0− ∂τ (a2(−Bk))
a2

+
1

2
∂k(2A) = −BkH + 2HBk + Ḃk + ∂kA

= ∂kA+HBk + Ḃk; (A.1.7)

Γ̃kτj = hkτ Γ̄ττj −
∑
l

hklΓ̄lτj −
1

2a2
[∂τ (a2hjk) + ∂j(a

2hkτ )− ∂k(a2hτj)] =

= 0− hkjH −Hhjk −
1

2
ḣjk −

1

2
∂jhkτ +

1

2
∂khjτ = Hhjk −Hhjk −

1

2
ḣjk +

1

2
(∂jBk − ∂kBj)

= ∂{jB
k} − 1

2
ḣkj , (A.1.8)

where we used the antisymmetric notation ∂{ivj} := 1
2(∂iBj − ∂jBi);

Γ̃kij = hkτ Γ̄τij −
∑
l

hklΓ̄lij −
1

2a2
[∂i(a

2hjk) + ∂j(a
2hki)− ∂k(a2hij)] =

= (−Bk)(Hδij)− 0− 1

2
(∂ihjk + ∂jhki − ∂khij)

= −HBkδij − γkij , (A.1.9)

where we defined the purely spatial connection γkij = γkij := 1
2(∂ihjk + ∂jhki − ∂khij).

Analogously, the perturbed Ricci tensor is defined as

R̃µν := Rµν − R̄µν = ∂σΓ̃σµν − ∂νΓ̃σµσ + Γ̃σσρΓ̄
ρ
µν + Γ̄σσρΓ̃

ρ
µν − Γ̃σµρΓ̄

ρ
σν − Γ̄σµρΓ̃

ρ
σν . (A.1.10)

To express it, we performed the scalar-vector-tensor decomposition for the metric pertur-
bation. For a vector as ~B, it means to exploit the exact succession of differential operators
on the 3D vector fields, isolating the part on the kernel of divergence operator ~∇ · B̂ = 0,
and the part on the image of the gradient operator ~∇B. Then, Bi := ∂iB + B̂i and
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~∇ · ~B = ∇2B.
The same decomposition can be performed for each indices of the tensor hij , getting

hij = ∂ijh + ∂iĥj + ∂j ĥi +
ˆ̂
hij ; where the two vectors ĥ are the same because symme-

try and
∑

j ∂j ĥj =
∑

j ∂j
ˆ̂
hij = 0. We find again the variables of §2.2 defining h :=

2E, ĥj := Êj ,
ˆ̂
hij := 2Êij + 2

(
C − 1

3∇
2E
)
δij , where it was isolated the traceless part∑

j Êjj = 0. In such a way, C describes the trace of hij , since tr(h) =
∑

j hjj =∑
j ∂

2
j h + 2

∑
j ∂j ĥj +

∑
j

ˆ̂
hjj = ∇2E + 0 + 2

(
C − 1

3∇
2E
)

3 = 6C. Hence we have∑
j ∂jhij = 2∂iC +∇2Ei, if it is defined the vector ~E := 4

3
~∇E + Ê.

With these instruments we calculate

R̃ττ =∂τ Γ̃ττ +
∑
l

∂lΓ̃
l
ττ − ∂τ

(
Γ̃τττ +

∑
l

Γ̃lτ l

)
+

ρ=τ︷ ︸︸ ︷
Γ̃σσρΓ̄

ρ
ττ +

ρ=τ︷ ︸︸ ︷
Γ̄σσρΓ̃

ρ
ττ −

ρ=σ︷ ︸︸ ︷
Γ̃στρΓ̄

ρ
τσ −

ρ=σ︷ ︸︸ ︷
Γ̃στρΓ̄

ρ
τσ =

=∂τ (Ȧ) +
∑
l

(∂lA+HBl + Ḃl)− ∂τ

Γ̃στσ︷ ︸︸ ︷(
Ȧ+

∑
l

∂{lBl} −
1

2
ḣll

)
+Γ̃στσH + 4HȦ− Γ̃στσH −HΓ̃στσ =

=∇2A+H~∇ · ~B + ~∇ · ~̇B +
1

2
tr(ḧ) +H[4Ȧ−

Γ̃στσ︷ ︸︸ ︷(
Ȧ− 1

2
tr(ḣ)

)
] =

=∇2A+H∇2B +∇2Ḃ + 3C̈ +H(3Ȧ+ 3Ċ)

=[∇2A+∇2Ḃ + 3C̈] +H[3Ȧ+∇2B + 3Ċ];

(A.1.11)

R̃τj =∂τ Γ̃ττj +
∑
l

∂lΓ̃
l
τj − ∂jΓ̃στσ +

ρ=j︷ ︸︸ ︷
Γ̃σσρ + Γ̄ρτj +

ρ=τ︷ ︸︸ ︷
Γ̄σσρ + σΓρτj −

{ρ;σ}={τ ;j}︷ ︸︸ ︷
Γ̃στρΓ̄

ρ
jσ −

ρ=σ︷ ︸︸ ︷
Γ̄στρΓ̃

ρ
jσ =

=∂τ (HBj + ∂jA) +
∑
l

∂l

(
∂{jBl} −

1

2
ḣjl

)
− ∂j(Ȧ− 3Ċ) + Γ̃σσjH+

+ 4HΓ̃ττj − Γ̃ττjH − Γ̃jττH −HΓ̃σjσ = ḢBj +HḂj +
1

2
∂j ~∇ · ~B −

1

2
∇2Bj+

− 1

2
(2∂jĊ +∇2Ėj) + 3∂jĊ + 3H(HBj + ∂jA)− (∂jA+HBj + Ḃj)H =

=ḢBj +
1

2
∂j∇2B − 1

2
∇2Bj + 2∂jĊ −

1

2
∇2Ėj + 2H2Bj + 2H∂jA

=

[
1

2
∇2(∂jB −Bj) + 2∂jĊ −

1

2
∇2Ėj

]
+ 2H[∂jA] + (Ḣ + 2H2)[Bj ];

(A.1.12)

R̃ij =∂τ Γ̃τij +
∑
l

∂lΓ̃
l
ij − ∂j

(
Γ̃τiτ +

∑
l

Γ̃lil

)
+

ρ=τ︷ ︸︸ ︷
Γ̃σσρΓ̄

ρ
ij +

ρ=τ︷ ︸︸ ︷
Γ̄σσρΓ̃

ρ
ij −

{ρ;σ}={τ ;j}︷ ︸︸ ︷
Γ̃σiρΓ̄

ρ
jσ −

{ρ;σ}={τ ;i}︷ ︸︸ ︷
Γ̄σiρΓ̃

ρ
jσ =

=∂τ

(
−2HAδij − ∂(iBj) −Hhij −

1

2
ḣij

)
+
∑
l

∂l(−HBlδij − γlij)+

− ∂j

[
(HBi + ∂iA) +

∑
l

(−HBlδil − γili)

]
+ Γ̃σστHδij + 4HΓ̃τij − Γ̃τijH − Γ̃jiτH −HΓ̃τji −HΓ̃ijτ =



88 A Appendix

=− 2ḢAδij − 2HȦδij − ∂(iḂj) − Ḣhij −Hḣij −
1

2
ḧij −H~∇ · ~Bδij+

− 1

2

∑
l

∂l(∂ihjl + ∂jhil − ∂lhij)− ∂l

(
HBi + ∂iA−HBi −

1

2

∑
l

∂ihll

)
+H[(Ȧ− 3Ċ)δij+

+ 2

(
−2HAδij − ∂(iBj) −Hhij −

1

2
ḣij

)
−
(
∂{iBj} −

1

2
ḣij

)
−
(
∂{jBi} −

1

2
ḣij

)
] =

=− ∂(iḂj) −
1

2
ḧij −

1

2
[∂i(2∂jC +∇2Ej) + ∂j(2∂iC +∇2Ei)−∇2hij ]− ∂ijA+ 3∂ijC+

+H[−2Ȧδij − ḣij −∇2Bδij + Ȧδij − 3Ċδij − 4HAδij − 2∂(iBj) − 2Hhij − ḣij + ḣij ]+

+ Ḣ(−2Aδij − hij) = −∂(iḂj) +
1

2
(∇2 − ∂2

τ )hij + ∂ijC −∇2∂(iEj) − ∂ijA+

+H[−Ȧδij − ḣij −∇2Bδij − 3Ċδij − 2∂(iBj)]− 2H2(2Aδij + hij) + Ḣ(2Aδij + hij)

=

[
1

2
2hij − ∂ijA− ∂(iḂj) + ∂ijC −∇2∂(iEj)

]
−H[Ȧδij +∇2Bδij + 2∂(iBj) + 3Ċδij + ḣij ]+

− (Ḣ + 2H2)[2Aδij + hij ], (A.1.13)

where we used the flat d’alembertian 2 := ∇2 − ∂2
τ .

A.2 Choice of harmonic gauge

The general expression for R̃µν is quite complicate, but we can anyway look for a
suitable gauge which simplifies it. The Einstein Equations do not yield a unique solution,
but there remain 4 degrees of freedom, which allow change of variables

xµ → xµ + δxµ.

We are seeking for the Einstein Equation linearized at the first order, hence the allowed
transformations must have δxµ = O(g̃µν).
What we want to find with the present calculation is the retarded potential generated by
an inhomogeneous source. Mathematically, retarded potentials are particular solutions of
second order, linear PDEs, whose solution in vacuum are waves. Hence, we want to write
the linearized Einstein Equation in the form of wave equations. Our choice of the suitable
gauge will be then inspired by the formalism of the gravitational waves.

The studies on gravitational waves use perturbative methods analogous to the ours,
with a certain perturbation g̃µν on the metric which carries the waves. However, it is
usually assumed a minkowskian background, that we can see as the particular case

a ≡ 1⇒ g̃µν = hµν , H ≡ 0⇒

Γλµν = Γ̃λµν + o(h) =
1

2
ηλρ(∂µhνρ + ∂νhρµ − ∂ρhµν) + o(h)⇒ (A.2.1)

Rµν = R̃µν + o(h) = ∂νΓλµλ − ∂λΓλµν + o(h) =
1

2
(2hµν − ∂2

λµh
λ
ν − ∂2

λνh
λ
µ + ∂2

µνh
λ
λ) + o(h)

(A.2.2)

Following e.g. [116] §10.1, we see that if the 4 degrees of gauge freedom are chosen s.t.
gµνΓλµν := 0, i.e. the harmonic gauge. For (A.2.1), it means

∂µh
µ
ν =

1

2
∂νh

µ
µ; (A.2.3)
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and substituting inside (A.2.2) one finds

Rµν =
1

2
2hµν . (A.2.4)

The Einstein Equations in the form

Rµν = 8πG

(
Tµν −

1

2
gµνT

λ
λ

)
(A.2.5)

are indeed a tensorial wave equation, where the field hµν appears as a pure d’alembertian.
Its general solution in vacuum is the usual three-dimensional wave.

We perform an analogous choice, which we call again “harmonic gauge”. Since on a
minkowskinan background it is Γλµν = Γ̃λµν , we generalize the gauge condition as gµν Γ̃λµν :=
0.
It results to be the right choice. We can make it explicit, for any background metric, as

0 = Γ̃λµµ =g̃µν Γ̄λµν + ḡµν Γ̃λµν = g̃µν ḡλρΓ̄ρµν + ḡµν
[
g̃λρΓ̄ρµν +

1

2
ḡλρ(∂µg̃νρ + ∂ν g̃ρµ − ∂ρg̃µν)

]
=

=(g̃µν ḡλρ + ḡµν g̃λρ)Γ̄ρµν +
1

2
ḡλρ(ḡµν∂µg̃νρ + ḡµν∂µg̃ρν − ḡµν∂ρg̃µν) =

=(ḡλρg̃µν + ḡµν g̃λρ)Γ̄ρµν + ḡλρ (ḡµν∂µg̃νρ − ḡµν∂ρg̃µν)⇒

0 = ḡλσΓ̃σαα =g̃αβΓ̄λαβ + ḡλσ ḡ
αβ g̃σρΓ̄ραβ + ḡαβ∂αg̃βλ −

1

2
ḡαβ∂λg̃αβ =

=(−ḡαµḡβν g̃µν)(ḡλσΓ̄σαβ) + (ḡλσ ḡ
αβ)(−ḡσµḡρν g̃µν)Γ̄ραβ + ḡαβ∂αg̃βλ −

1

2
ḡαβ∂λg̃αβ =

=− g̃µν ḡλσΓ̄σµν −

δµλ︷ ︸︸ ︷
ḡλσ ḡ

σµ g̃µν ḡαβΓ̄ναβ + ḡαβ∂αg̃βλ −
1

2
ḡαβ∂λg̃αβ =

=− g̃αβ ḡλσΓ̄σαβ − g̃λσ ḡαβΓ̄σαβ + ḡαβ∂αg̃βλ −
1

2
ḡαβ∂λg̃αβ ⇒

∀λ : ḡαβ∂αg̃βλ =
1

2
ḡαβ∂λg̃αβ + Γ̄σαβ(ḡλσ g̃αβ + ḡαβ g̃λσ).

(A.2.6)

If we absorb in the notation R̃
(I,0)
µν any term of R̃µν which is of the zeroth or of the first

order in hµν , we find that the purely second order part is

R̃µν =∂σΓ̃σµν − ∂νΓ̃σµσ + Γ̃σσρΓ̄
ρ
µν + Γ̄σσρΓ̃

ρ
µν − Γ̃σµρΓ̄

ρ
σν − Γ̄σµρΓ̃

ρ
σν =

=∂σ

[
g̃σρΓ̄ρµν +

1

2
ḡσρ(∂µg̃νρ + ∂ν g̃ρµ − ∂ρg̃µν)

]
− ∂ν

[
g̃σρΓ̄ρµσ +

1

2
ḡσρ(∂µg̃σρ + ∂σ g̃ρµ − ∂ρg̃µσ)

]
+

+ R̃(I,0)
µν = R̃(I,0)

µν +
1

2
∂σ(ḡσρ∂µg̃νρ + ḡσρ∂ν g̃ρµ − ḡσρ∂ρg̃µν)− R̃(I,0)

µν +

− 1

2
∂ν(ḡσρ∂µg̃σρ + ḡσρ∂σ g̃ρµ − ḡσρ∂ρg̃µσ) + R̃(I,0)

µν =

=
1

2
ḡσρ(∂2

σµg̃νρ + ∂2
σν g̃ρµ − ∂2

σρg̃µν) + R̃(I,0)
µν +

− 1

2
∂ν

ḡσρ∂µg̃σρ + ḡσρ∂σ g̃ρµ −

1

2
ḡρσ∂µg̃ρσ +

R̃
(I,0)
µν︷ ︸︸ ︷

Γ̄ϕρσ(ḡµϕg̃ρσ + ḡρσ g̃µϕ)


+ R̃(I,0)

µν =
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=
1

2
∂µ(ḡρσ∂σ g̃νρ) + R̃(I,0)

µν +
1

2
ḡσρ(∂2

σν g̃ρµ − ∂2
σρg̃µν)− 1

2
[ḡσρ

(
∂2
νµg̃σρ + ∂2

νσ g̃ρµ −
1

2
∂2
νµg̃ρσ

)
+

+ R̃(I,0)
µν ] + R̃(I,0)

µν =
1

2
∂µ

1

2
ḡσρ∂ν g̃σρ +

R̃
(I,0)
µν︷ ︸︸ ︷

Γ̄ϕσρ(ḡνϕg̃σρ − ḡσρg̃νϕ)

+
1

2
ḡσρ

(
−∂2

σρg̃µν −
1

2
∂2
µν g̃σρ

)
+

+ R̃(I,0)
µν =

1

2
ḡσρ

(
1

2
∂2
µν g̃σρ

)
+ R̃(I,0)

µν +
1

2
ḡσρ

(
−∂2

σρg̃µν −
1

2
∂2
µν g̃σρ

)
+ R̃(I,0)

µν =

=− 1

2
ḡσρ∂2

σρg̃µν + R̃(I,0)
µν ⇒

R̃(II)
µν =− 1

2
(ḡσρ∂2

σρ)g̃µν ,

(A.2.7)

where it is used the previous relation (A.2.6). This formula is valid for any background,
showing that with harmonic gauge the linearized Einstein Equations have always, as second
order term, the background Laplace-Beltrami operator applied to the perturbation g̃µν .
Specifying this formula for the our background, we have

R̃µν =− 1

2
ḡσρ∂2

σρg̃µν + R̃(I,0)
µν = −1

2
(a−2ησρ)∂2

σρ(a
2hµν) + R̃(I,0)

µν =

=− 1

2
a−2ησρ(a2∂2

ρσhµν + R̃(I,0)
µν ) + R̃(I,0)

µν = −1

2
ησρ∂2

σρhµν + R̃(I,0)
µν ⇒

R̃(II)
µν =

1

2
2hµν , (A.2.8)

since we use the most-minus convention ηµν = diag(+;−;−;−).
This is perfectly analogous to the result (A.2.4), and we know that with this gauge choice
we will have some wave equations. However, only the second order part will be a wave
operator, while in our case we can find some first order and zeroth order terms, for which
the usual three-dimensional wave will not be a solution.

Now we simplify our expression for R̃µν exploiting the gauge conditions (A.2.6). First

of all, we rewrite them in terms of A, ~B,C, Ê.
For λ = τ we have a scalar condition.

0 =Γ̃τµµ =

µ=ν︷ ︸︸ ︷
ḡµν Γ̃τµν +

µ=ν︷ ︸︸ ︷
g̃µν Γ̄τµν = a−2

Γ̃τττ −
∑
j

Γ̃τjj

+

g̃ττ +
∑
j

g̃jj

H =

=a−2Ȧ− a−2
∑
j

(
−2HAδjj − ∂(jBj) −Hhjj −

1

2
ḣjj

)
+H(−2a−2A) +H

∑
j

(−a−2hjj) =

=a−2[Ȧ+ 6HA+ ~∇ · ~B + 6HC + 3Ċ − 2HA− 6HC]⇒
0 =Ȧ+∇2B + 3Ċ + 4HA. (A.2.9)

For λ = i we have a vector condition.

0 =Γ̃iµµ =

µ=ν︷ ︸︸ ︷
ḡµν Γ̃iµν +

{µ;ν}={i;τ}︷ ︸︸ ︷
g̃µν Γ̄iµν = a−2

Γ̃iττ −
∑
j

Γ̃ijj

+ 2g̃iτH =

=a−2(∂iA+HBi + Ḃi)− a−2
∑
j

(−HBiδjj − γijj) + 2(−a−2Bi)H =
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=a−2

∂iA+HBi + Ḃi + 3HBi +
∑
j

(
∂jhij −

1

2
∂ihjj

)
− 2HBi


=a−2[∂iA+ 2HBi + Ḃi + 2∂iC +∇2Ei − 3∂iC]⇒

0 =~∇A+ ~̇B − ~∇C +∇2 ~E + 2H ~B =

=~∇
[
A+ Ḃ − C +

4

3
∇2E + 2HB

]
+ [

˙̂
B +∇2Ê + 2HB̂]. (A.2.10)

These were written in (2.2.8).

Let us substitute them inside the component of R̃µν .

R̃ττ =∇2A+∇2Ḃ + 3C̈ +H(3Ȧ+∇2B + 3Ċ) =

=∇2A− ∂τ (Ȧ+ 4HA) +H(2Ȧ− 4HA) = ∇2A− Ä− 4ḢA− 4HȦ+ 2HȦ− 4H2A

=2A− 2HȦ− 4(Ḣ +H2)A (A.2.11)

R̃τj =− 1

2
∇2Bj +

1

2
∂j∇2B + 2∂jĊ −

1

2
∇2Ėj + 2H∂jA+ (Ḣ + 2H2)Bj =

=− 1

2
∇2Bj −

1

2
∂j(Ȧ+ 3Ċ + 4HA) + 2∂jĊ +

1

2
∂τ (∂jA+ Ḃj − ∂jC + 2HBj) + 2H∂jA+

+ (Ḣ + 2H2)Bj = −1

2
∇2Bj +

1

2
B̈j + ḢBj +HḂj + (Ḣ + 2H2)Bj

=− 1

2
2Bj +HḂj + 2(Ḣ +H2)Bj

(A.2.12)

R̃ij =
1

2
2hij − ∂ijA− ∂(iḂj) + ∂ijC −∇2∂(iEj)+

−H(Ȧδij +∇2Bδij + 2∂(iBj) + 3Ċδij + ḣij)− (Ḣ + 2H2)(2Aδij + hij) =

=
1

2
2hij + 2H∂(iBj) −H(2∂(iBj) − 4HAδij + ḣij)− (Ḣ + 2H2)(2Aδij + hij)

=
1

2
2hij −Hḣij − (Ḣ + 2H2)hij − 2ḢAδij . (A.2.13)

These are compactly expressed in (2.2.9).

A.3 Perturbed Conservation Laws

Now we perturb the energy-momentum at the first order in ρ̃, which must be of the
same order of g̃µν , looking for linearized Conservation Laws and linearized Einstein Equa-
tions.

The energy-momentum tensor depends on the perturbation of four-velocity Ũµ. Its
expression can be obtained remembering that a four-velocity must be always normalized

ḡµνŪ
µŪµ = 1 = gµνU

µUν = ḡµνŪ
µŪµ + g̃µνŪ

µŪν + 2ḡµνŪ
µŨν ⇒

Ūµ = a−1δµτ , 0 = g̃µνŪ
µŪν + 2ḡµνŪ

µŨν = g̃ττa
−1a−1 + 2a2a−1Ũ τ = 2(A+ aŨ τ )⇒

Ũµ =
1

a

(
−A
~v

)
, (A.3.1)

where we defined the three-vector velocity vi := aŨ i, which is a first order variable as ρ̃.
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The indices is lowered as

Ũµ =g̃µνŪ
ν + ḡµνŨ

ν = a2hµτa
−1 + a2ηµνŨ

ν = a
(

2A − ~B
)

+ a
(
−A −~v

)
=a
(
A −(~v + ~B)

)
. (A.3.2)

In order to get the linearized Conservation Laws, we need to write the energy-momentum
tensor with a raised indices

T̃µν = [(ρ+p)UµUν−pgµν ]− [(ρ̄+p)ŪµŪν−pḡµν ] = ρ̃ŪµŪν+(ρ̄+p)(ŨµŪν+ŪµŨν), (A.3.3)

since gµν = δµν = ḡµν . Hence,

T̃ ττ =ρ̃Ū τ Ūτ + (ρ̄+ p)(Ũ τ Ūτ + Ū τ Ũτ ) = ρ̃a−1a+ (ρ̄+ p)(−a−1Aa+ a−1aA)

=ρ̃; (A.3.4)

T̃ iτ =(ρ̄+ p)Ũ iŪτ = (ρ̄+ p)a−1via

=qi; (A.3.5)

T̃ τj =(ρ̄+ p)Ũ τ Ūj = (ρ̄+ p)a−1a(−vj −Bj)
=− qj − (ρ̄+ p)Bj ; (A.3.6)

T̃ ij = 0. (A.3.7)

Notice that these provides natural definitions for the variable ρ̃ := T̃ ττ . Moreover, we
defined the perturbed momentum qi := T̃ iτ , which is a first order variable as well.
We write compactly

T̃µν =

(
ρ̃ −qj + (ρ̄+ p)Bj
qi 0

)
. (A.3.8)

The Conservation of Four-Momentum is expressed in perturbation as

0 = ∇µTµν = ∂µT
µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α ⇒

0 = ∂µT̃
µ
ν + Γ̃µµαT̄

α
ν + Γ̄µµαT̃

α
ν − Γ̃αµν T̄

µ
α − Γ̄αµν T̃

µ
α . (A.3.9)

We can substitute the perturbations we found. For ν = τ we get the Conservation of
Energy

0 =∂µT̃
µ
τ +

α=τ︷ ︸︸ ︷
Γ̃µµαT̄

α
τ +

α=τ︷ ︸︸ ︷
Γ̄µµαT̃

α
τ −

α=µ︷ ︸︸ ︷
Γ̃αµτ T̄

µ
α −

α=µ=τ︷ ︸︸ ︷
Γ̄αµτ T̃

µ
α =

=∂τ T̃
τ
τ +

∑
l

∂lT̃
l
τ +

(
Γ̃τττ +

∑
l

Γ̃llτ

)
ρ̄+ 4HT̃ ττ − Γ̃τττ ρ̄−

∑
l

Γ̃llτ (−p)−HT̃ ττ =

=∂τ ρ̃+
∑
l

∂lq
l + (ρ̄+ p)

∑
l

(
∂{lBl} −

1

2
ḣll

)
+ 3Hρ̃⇒

0 = ˙̃ρ+ ~∇ · ~q + 3Hρ̃− 3(ρ̄+ p)Ċ. (A.3.10)
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For ν = j we get the Conservation of Momentum

0 =∂µT̃
µ
j + +

α=j︷ ︸︸ ︷
Γ̃µµαT̄

α
j +

α=τ︷ ︸︸ ︷
Γ̄µµαT̃

α
j −

α=µ︷ ︸︸ ︷
Γ̃αµj T̄

µ
α −

{α;µ}={τ ;j}︷ ︸︸ ︷
Γ̄αµj T̃

µ
α =

=∂τ T̃
τ
j +

(
Γ̃ττj +

∑
l

Γ̃llj

)
(−p) + 4HT̃ τj −

(
ρ̄Γ̃ττj − p

∑
l

Γ̃llj

)
−H(T̃ τj + T̃ jτ ) =

=∂τ [−qj − (ρ̄+ p)Bj ]− (ρ̄+ p)(∂jA+HBj) + 3H[−qj − (ρ̄+ p)Bj ]−Hqj =

=q̇j + 4Hqj + (ρ̄+ p)(∂jA+ Ḃj) + [( ˙̄ρ+ ṗ) + 4H(ρ̄+ p)]Bj =

=q̇j + 4Hqj + (ρ̄+ p)(∂jC − 2HBj −∇2Ej) + [( ˙̄ρ+ ṗ) + 4H(ρ̄+ p)]Bj ⇒
0 =~̇q + 4H~q + (ρ̄+ p)(~∇C −∇2 ~E) + [( ˙̄ρ+ ṗ) + 4H(ρ̄+ p)] ~B, (A.3.11)

where it is used the vector gauge condition.

A.4 Perturbed source

Now we write the perturbation of energy-momentum tensor, full covariant

T̃µν =Tµν − T̄µν = ρ̃ŪµŪν + (ρ̄+ p)(ŨµŪν + ŪµŨν)− pg̃µν ⇒ (A.4.1)

T̃ττ =ρ̃Ūτ Ūτ + (ρ̄+ p)(Ũτ Ūτ + Ūτ Ũτ )− pg̃ττ = ρ̃aa+ (ρ̄+ p)(aAa+ aaA)− p2a2A

=a2(ρ̃+ 2ρ̄A);
(A.4.2)

T̃τj =(ρ̄+ p)Ūτ Ũj − pg̃τj = (ρ̄+ p)aa(−vj −Bj)− pa2(−Bj)
=− a2(qj + ρ̄Bj); (A.4.3)

T̃ij =− pg̃ij = −a2phij . (A.4.4)

Compactly

T̃µν = a2

(
ρ̃+ 2ρ̄A −(~q + ρ̄ ~B)

−(~q + ρ̄ ~B) −phij

)
. (A.4.5)

We saw that linearized Einstein Equations are put in the form of wave equations if
they are expressed with the matrix source Sµν := Tµν − 1

2gµνT . Thus we calculate

T̃ =g̃µν T̄µν + ḡµν T̃µν = a−2(−2A)a2ρ̄+
∑
j

a−2(−hjj)a2p+ a−2a2(ρ̃+ 2ρ̄A)−
∑
j

a−2(−a2phjj)

=ρ̃,

(A.4.6)

indeed T = ρ+ 3p and T̄ = ρ̄+ 3p. Substituting,

S̃µν =T̃µν −
1

2
T̄ g̃µν −

1

2
T̃ ḡµν =

=a2

(
ρ̃+ 2ρ̄A −(~q − ρ̄ ~B)

−(~q − ρ̄ ~B) −phij

)
− 1

2
(ρ̄− 3p)a2

(
2A − ~B
− ~B hij

)
− 1

2
ρ̃a2

(
1 ~0
~0 −δij

)
=

=
a2

2

(
2ρ̃− 4ρ̄A− 2ρ̄A+ 6pA− ρ̃ −2~q − 2ρ̄ ~B + ρ̄ ~B − 3p ~B

−2~q − 2ρ̄ ~B + ρ̄ ~B − 3p ~B 2phij − ρ̄hij + 3phij + ρ̃δij

)

=
a2

2

(
ρ̃+ 2(ρ̄+ 3p)A −2~q − (ρ̄+ 3p) ~B

−2~q − (ρ̄+ 3p) ~B ρ̃δij + (p− ρ̄)hij

)
. (A.4.7)
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Since the Einstein Equations holds for the background quantities, we can linearize
them as R̃µν = 8πGS̃µν . Its (ττ) component is

2A− 2HȦ− 4(Ḣ +H2)A =8πG
a2

2
[ρ̃+ 2(ρ̄+ 3p)A] = 4πGa2ρ̃+ 2(−3Ḣ)A⇒

2A− 2HȦ+ 2(Ḣ − 2H2)A =4πGa2ρ̃, (A.4.8)

where we exploited the Friedman Equations (2.1.5) as

4πGa2(ρ̄+ 3p) =

(
3

2
H2

)
+ 3

(
−Ḣ − 1

2
H2

)
= −3Ḣ.

We substitute the same inside the (τj) component

−1

2
2Bj +HḂj + 2(Ḣ +H2)Bj =8πG

a2

2
[−2qj − (ρ̄+ 3p)Bj ] = −8πGa2qj − (−3Ḣ)Bj ⇒

2 ~B − 2H ~̇B + 2(Ḣ − 2H2) ~B =16πGa2~q.

(A.4.9)

Exploiting analogously the Friedman Equations as

4πGa2(p− ρ̄) =

(
−Ḣ − 1

2
H2

)
−
(

3

2
H2

)
= −Ḣ − 2H2,

we simplify also the (ij) component

1

2
2hij −Hḣij − (Ḣ + 2H2)hij − 2ḢAδij =8πG

a2

2
[ρ̃δij + (p− ρ̄)hij ] = 4πGa2ρ̃δij + (−Ḣ − 2H2)hij ⇒

2hij − 2Hḣij =4(ḢA+ 2πGa2ρ̃)δij .

(A.4.10)
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Green function for the constant
coefficients case

Here we are going to derive the Green function for the PDE (2.3.1) with constant
coefficients

2G+H0∂τG+K0G = δ(3)(x)δ(τ). (B.0.1)

It is well known that solution for H0 = K0 = 0 is a pure shock

− 1

4π|x|
δ(τ − |x|).

We can expect a similar term for our Green function, but it cannot be the only one.
Indeed, it is possible to set to zero the first order term with a rescaling

G := e
1
2
H0τf,

but the zeroth order terms remains for f unless K0 = −1
2H

2
0, which would be just a

particular case. The general Green function will have a shock term plus some other terms
due to H0,K0.
We can nonetheless study the characteristic lines of the PDE (B.0.1), which come out to
be light rays again, since the second order part is always a d’alembertian. Hence, any
additional term in G(τ ;x) can arise only at |x| < τ . It is nothing more the Causality
Principle, which ensure us we are working in a relativistc frame. We can thus imagine the
Green function as the usual shock term, which travels with the speed of light, and a new
term due to the lower order parts, which travels slower than light, as a sort of “echo”.

B.1 Reduction of dimensions

The first step to solve G is to write it as a function of only r := |x|; τ . Indeed, as the
source S(τ ;x) = δ(3)(x)δ(τ) is radially symmetric, so it must be G(τ ;x).

It could be not so clear how to write the Dirac delta as function of r, so we consider
it as the weak limit of mollificators

Nε(x) :=
1√
πε
e−x

2/ε2 ⇀ε→0 δ(x) (B.1.1)

Then we have the mollified source

Sε(τ ;x) := Nε(x)Nε(y)Nε(z)δ(τ) =
1

π3/2ε3
e−r

2/ε2δ(τ) ⇀ε→0 δ(3)(x)δ(τ), (B.1.2)
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which generates a mollified Green function

Gε(τ ;x) := uε(τ ; |x|) ⇀ε→0 G(τ ;x). (B.1.3)

In terms of such uε(τ ; r), we have

∇2Gε =
2

r
u′ε + u′′ε ,

where the prime denotes derivation in r. We can define a further auxiliary variable so that

uε := vε/r ⇒ ∇2Gε = v′′ε /r. (B.1.4)

Substituting inside (B.0.1), one finds

(∂2
r − ∂2

τ )vε +H0v̇ε +K0vε = rSε =
r

π3/2ε3
e−r

2/ε2δ(τ) = − 1

2π
N ′ε(r)δ(τ). (B.1.5)

Performing the weak limit in ε and rescaling of − 1
2π , (B.0.1) is reduced to

G(τ ;x) = − 1

2π|x|
v(τ ; |x|) s.t. 2(τ ;r)v +H0v̇ +K0v = δ′(r)δ(τ). (B.1.6)

B.2 Discriminant and 2D Green function

The second step is to remove the first order term. As we said above, the suitable
rescaling is

v(τ ; r) := e
1
2
H0τf(τ ; r). (B.2.1)

Indeed, the PDE in v becomes

δ′(r)δ(τ) =e
1
2
H0τf ′′ −

(
e

1
2
H0τ f̈ + 2

1

2
H0e

1
2
H0τ ḟ +

1

4
H2

0f

)
+H0

(
e

1
2
H0τ ḟ +

1

2
H0e

1
2
H0τf

)
+

+K0

(
e

1
2
H0τ
)

= e
1
2
H0τ

[
f ′′ − f̈ +

(
1

4
H2

0 +K0

)
f

]
⇒

f ′′ − f̈ + K̄f =e−
1
2
H0τδ′(r)δ(τ) = δ′(r)δ(τ),

(B.2.2)

where is was defined the “discriminant” K̄ := 1
4H

2
0 +K0.

The third step is to express such a f with a convolution. We need the Green function
of the 2D differential operator ∂2

r − ∂2
τ − K̄, that we call Γ(τ ; r). One has

f(τ ; r) = Γ(τ ; r) ∗ δ′(r) = Γ′(τ ; r) ∗ δ(r) = Γ′(τ ; r), (B.2.3)

where we exploited the properties of convolution.
Substituting in (B.1.6), the problem is reduced to

G(τ ;x) = −e
1
2
H0τ

2π|x|
Γ′(τ ; |x|) s.t. Γ′′ − Γ̈− K̄Γ = δ(r)δ(τ). (B.2.4)



B.3 Fourier transforms 97

B.3 Fourier transforms

As a fourth step, we find an expression for Γ with the Fourier transform. Following
the usual method for the resolution of PDEs

Γ(τ ; r) :=

∫
Γ̂(ω; k)ei(ωτ−kr)dωdk ⇒

− k2Γ̂− ω2Γ̂− K̄Γ̂ = 1⇒ Γ̂ =
1

ω2 − k2 − K̄
⇒

Γ(τ ; r) =

∫
ei(ωτ−kr)

ω2 − k2 − K̄
dωdk. (B.3.1)

A possible way to solve such a double integral requires to recall the Green function for
the d’alambertian in 2+1 dimensions, with variables t, x, y. Analogously to the passages
above, we can express it in Fourier transform.∫

ei(k0t−k1x−k2y)

k2
0 − k2

1 − k2
2

dk0dk1dk2 =
1

2π
√
t2 − x2 − y2

θ(|t| −
√
x2 + y2),

where θ is the Heaviside function.
We can reach the integral for Γ choosing k0 := ω and k1 := k. We find

1

2π
√
τ2 − r2 − y2

θ(|τ | −
√
r2 + y2) =

∫
ei(ωτ−kr−k2y)

ω2 − k2 − k2
2

dkωdkdk2 =

∫
Φ(τ ; r)|K̄=k2

2
e−ik2ydk2 ⇒

Γ(τ ; r) =

∫
1

2π
√
τ2 − r2 − y2

θ(|τ | −
√
r2 + y2)eik2ydy|K̄=k2

2
=

=
1

2π

∫
1√

τ2 − r2 − y2
θ(|τ | − |r|)θ(

√
τ2 − r2 − |y|)eiK̄1/2ydy =

=
1

2π
θ(|τ | − |r|)

∫ 1

−1

1√
1− ξ2

eiK̄
1/2
√
τ2−r2ξdξ.

(B.3.2)

At the second line it was exploited the inverse of the Fourier transform; at the third line
we used the equivalence |τ | ≥

√
r2 + y2 ⇔ |y| ≤

√
τ2 − r2; and finally we changed the

variables as y :=
√
τ2 − r2ξ.

B.4 Bessel functions

The fifth and final step requires to solve the integral from −1 to 1. We define it as a
function of its parameter

j(x) :=

∫ 1

−1

eixξ√
1− ξ2

dξ.

It is not an analytic function, but we can characterize it as it solves some particular
differential equation. The right combination of its derivatives is

j′′ + j′/x+ j =

∫ 1

−1

−ξ2 + iξ/x+ 1√
1− ξ2

eixξdξ =

∫ 1

−1

1− ξ2√
1− ξ2

eixξdξ +
i

x

∫ 1

−1

ξ√
1− ξ2

eixξdξ =

=

∫ 1

−1

√
1− ξ2eixξdξ +

i

x
[−
√

1− ξ2eixξ]1−1 −
i

x

∫ 1

−1
−
√

1− ξ2ixeixξdξ =

=

∫ 1

−1

√
1− ξ2eixξdξ −

∫ 1

−1

√
1− ξ2eixξdξ = 0.

(B.4.1)
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This is a particular case of the Bessel Equation

x2j′′ + xj′ + (x2 − α2)j = 0,

which is solved by the Bessel functions of first Jα(x) and second type Yα(x). The integral
j(x) must be some combination of J0 and Y0.

We can get the right combination of Bessel functions evaluating

j(0) =

∫ 1

−1

dξ√
1− ξ2

= [sin−1 ξ]1−1 = π. (B.4.2)

Since Y0 diverges at zero and J0(0) = 1, we know

j(x) = πJ0(x). (B.4.3)

Substituting in (B.3.2) we have the 2D Green function

Γ(τ ; r) =
1

2π
θ(|τ | − |r|)J0

(√
K̄(τ2 − r2)

)
. (B.4.4)

From its derivative, the shock term and the echo term emerges.

Γ′(τ ; r) = −1

2
δ(|τ | − r)J0

(√
K̄(τ2 − r2)

)
+

1

2
θ(|τ | − |r|) 2K̄r

2
√
K̄(τ2 − r2)

J ′0

(√
K̄(τ2 − r2)

)
=

=
1

2

−δ(|τ | − r) + 2

√
K̄

τ2 − r2
J ′0

(√
K̄(τ2 − r2)

)
θ(|τ | − |r|)

 .
(B.4.5)

Applying it to (B.2.4) we have the Green function as in (2.4.2).



Appendix C

Growing rate of density contrast
for constant Hubble parameter

We consider a background expansion with constant parameter, hence dominated by a
w = −1/3 exotic energy. We assume a density contrast with separable variable and such
that

ρ̃a3 ∝ ρ̃/ρ̄M = δM (τ ;x) ∝ a(τ)n.

Observing the linearized Einstein Equation (2.2.13) and Conservation Laws (2.2.14) we
note that, for w = −1/3, the three variables C, ρ̃, q are the only ones that appear in the
equations 

2C − 2H0Ċ = 4πGa2ρ̃

0 = ˙̃ρ+ 3H0ρ̃+∇2q − 2ρ̄Ċ

0 = q̇ + 4H0q + 2
3 ρ̄C

. (C.0.1)

These are the wave equation for C, the Conservation of Energy and the Conservation of
Momentum. Indeed, Ḣ = 0 make A vanish from the C’s wave equation; the factors were
evaluated as ρ̄+ p = ρ̄−1/3 − 1

3 ρ̄−1/3 = 2
3 ρ̄; and we used

ρ̄w = ρ̄w0a
−3(1+w) = |w=−1/3

3H2
0

8πG
a−2 ⇒ ˙̄ρ =

3H2
0

8πG
(−2ȧ)a−3 = −2Hρ̄⇒

( ˙̄ρ+ ṗ) + 2H(ρ̄+ p) =
2

3
˙̄ρ+ 2H

(
2

3
ρ̄

)
=

2

3
(−2Hρ̄+ 2Hρ̄) = 0,

making B vanish from the Conservation of Momentum.

With suitable substitutions, we can reach a differential equation for the only ρ̃, which
allows to characterize its evolution in time. Deriving the Conservation of Energy,

0 =¨̃ρ+ 3H0
˙̃ρ+∇2q̇ − 2

3H2
0

8πG
(−2H0a

−2Ċ + a−2C̈) =

=¨̃ρ+ 4H0
˙̃ρ+ 3H0

˙̃ρ+ 12H2
0 ρ̃+∇2(q̇ + 4H0q) +

3H2
0

8πG
a−2(2H0Ċ − C̈ − 4H0Ċ) =

=¨̃ρ+ 7H0
˙̃ρ+ 12H2

0 ρ̃+∇2

(
− H2

0

8πG
a−2C

)
− 3H2

0

8πG
a−2(C̈ + 2H0Ċ),

where it is used again the Conservation of Energy in the first passage, and the Conservation
of Momentum in the second one.
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We managed to remove q. Substituting the C’s wave equation,{
∇2C + 3C̈ + 6H0Ċ = 4πG

H2
0
a2(¨̃ρ+ 7H0

˙̃ρ+ 12H2
0 ρ̃)

∇2C − C̈ − 2H0Ċ = 4πGa2ρ̃
⇒

4(C̈ + 2H0Ċ) = 4
πG

H2
0

a2(¨̃ρ+ 7H0
˙̃ρ+ 11H2

0 ρ̃),

so we remove also ∇2C, and only time derivatives remain.
Now we need to remove finally C, and we do that applying to C both the differential
operators of the last equation and of the C’s wave equation.

H2
0 (∂2

τ + 2H0∂τ )4πGρ̃ = H2
0 (∂2

τ + 2H0∂τ )(∇2 − ∂2
τ − 2H0∂τ )C =

= (∇2 − ∂2
τ − 2H0∂τ )πGa2(∂2

τ + 7H0∂τ + 11H2
0 )ρ̃⇒

4H2
0a

2(4H2
0 ρ̃+ 4H0

˙̃ρ+ ¨̃ρ+ 2H02H0ρ̃+ 2H0
˙̃ρ) =

= a2(∇2 − ∂2
τ − 4H0∂τ − 4H2

0 − 2H0∂τ − 4H2
0 )(∂2

τ + 7H0∂τ + 11H2
0 )ρ̃⇒

4H2
0

¨̃ρ+ 24H3
0

˙̃ρ+ 32H4
0 ρ̃ = ∇2(¨̃ρ+ 7H0

˙̃ρ+ 11H2
0 ρ̃)− ( ¨̃̈ρ+ 13H0

˙̃̈ρ+ 61H2
0

¨̃ρ+ 122H3
0

˙̃ρ+ 88H4
0 ρ̃)⇒

∇2H2
0P2(H−1

0 ∂τ )ρ̃ = H4
0P4(H−1

0 ∂τ )ρ̃, (C.0.2)

where are defined the suitable polynomials

P2(x) := x2 + 7x+ 11 (C.0.3)

P4(x) := x4 + 13x3 + 65x2 + 146x+ 120 = (x+ 2)(x+ 4)(x2 + 7x+ 15) (C.0.4)

to express compactly the fourth order differential operators.
According to our assumptions on separation of variables and growing rate, we have to

substitute inside (C.0.2) a source

ρ̃(τ ;x) = X(H0x)T (H0τ), (C.0.5)

with an unknown spatial factor X which can be fixed by the actual matter inhomogeneity,
and the time factor is

T (H0τ) = ana−3 = a(τ)n−3 = e(n−3)H0τ . (C.0.6)

The substitution returns

(∇2X)P2(n− 3)T = XP4(n− 3)T ⇒ ∇2X =
p4(n)

p2(n)
X, (C.0.7)

where

p2(x) := P2(x− 3) = x2 + x− 1, (C.0.8)

p4(x) := P4(x− 3) = (x− 1)(x+ 1)(x2 + x+ 3). (C.0.9)

In other words, X is a eigenfunction for the laplacian, with eigenvalue p4(n)/p2(n).
We recall that form of X is unknown, so we can not know what is its eigenvalue.

However, it must be a negative numbers, for the properties of the laplacian. This provides
an inequality for n, easy to solve

(n− 1)(n+ 1)(n2 + n+ 3)

n2 + n− 1
< 0⇒ −Φ < n < −1 ∨ φ < n < 1, (C.0.10)

where −Φ = −
√

5−1
2 , φ =

√
5−1
2 = Φ−1 are the roots of the polynomial p2(x) = x2 + x− 1.

φ ∼= 0.61803398875 . . . is the “golden ratio”, a very important number for theoretical and
applied mathematics.



Appendix D

About N and M integrals

D.1 Derivation of the integrals

The integrals introduced in §2.4.2 comes from the averaging formulas of §2.3.1, applied
to a source as in §2.4.1 and with the Green function 2.4.2.
The separation of variables for the source S(τ ;x) = S0(x)T (τ) is guaranteed by (2.4.4),
for which

S(τ ;x) = 4πGa(τ)2ρ̃(τ ;x) = 4πGρ̃0(x)a(τ)n−1 ⇒
S0 := ρ̃0, T := 4πGan−1. (D.1.1)

This is the source for both A and C.

Now we apply Proposition 2.3.1 to A and C. The auxiliary variable f , as is defined in
(2.3.2), is obtained for A substituting (2.4.2) with K̄ = 3H2

0 .

fA(τ ; r) =

∫ τ

τI

GA(τ − τ0; r)T (τ0)dτ0 =

=

∫ τ

−∞

e−H0(τ−τ0)

4π

[
−δ(τ − τ0 − r)

r
+

√
3H0√

(τ − τ0)2 − r2
J ′0(
√

3H0

√
(τ − τ0)2 − r2)θ(τ − τ0 − r)

]
×

× 4πGe(n−1)H0τ0dτ0 =

=Ge−H0τ

[
−e

nH0(τ−r)

r
+
√

3H0

∫ τ−r

−∞
enH0τ0

J ′0(
√

3H0

√
(τ − τ0)2 − r2)√

(τ − τ0)2 − r2
dτ0

]
=

=Ge−H0τ

[
−e

nH0(τ−r)

r
+
√

3H0

∫ ∞
0

enH0(τ−σ−r)J
′
0(
√

3H0

√
(σ + r)2 − r2)√

(σ + r)2 − r2
dσ

]

=Ga(τ)n−1

[
√

3H0

∫ ∞
0

e−nH0(σ+r)J
′
0(
√

3H0

√
σ(σ + 2r))√

σ(σ + 2r)
dσ − e−nH0r

r

]
. (D.1.2)

We performed the change of variable τ0 := τ −σ−r, and remember that R(τ) ≡ −τI =∞
for the solution with w = −1/3.
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Thus, for Proposition 2.3.1 we have

〈A〉(τ) =4π〈S0〉
∫ ∞

0
fA(τ ; r)r2dr =

=4π〈ρ̃0〉
∫ ∞

0
Gan−1

[
√

3H0

∫ ∞
0

e−nH0(σ+r)J
′
0(
√

3H0

√
σ(σ + 2r))√

σ(σ + 2r)
dσ − e−nH0r

r

]
r2dr =

=4πG〈ρ̃0〉an−1

[
√

3H0

∫ ∞
0

∫ ∞
0

e−nH0(σ+r)J
′
0(
√

3H0

√
σ(σ + 2r))√

σ(σ + 2r)
r2dσdr −

∫ ∞
0

e−nH0rrdr

]
=

=4πG〈ρ̃0〉an−1

[
√

3H0

∫ ∞
0

∫ ∞
0

e−n/
√

3(x+y) J ′0(
√
y(y + 2x))

(
√

3H0)−1
√
y(y + 2x)

(
√

3H0)−4x2dydx− 1

n2H2
0

]

=4π

(
1

3
N (n/

√
3)− 1

n2

)
G〈ρ̃0〉
H2

0

a(τ)n−1, (D.1.3)

where we see it is defined the integral

N (n) :=

∫ ∞
0

∫ ∞
0

e−n(x+y)J
′
0(
√
y(y + 2x))√
y(y + 2x)

x2dydx. (D.1.4)

The two integration variables were both rescaled of
√

3H0, in order to get an adimensional
quantity.
With a perfectly similar calculation one find also

〈C〉(τ) = 4π

(
M(n)− 1

n2

)
G〈ρ̃0〉
H2

0

a(τ)n−1, s.t. (D.1.5)

M(n) :=

∫ ∞
0

∫ ∞
0

e−n(x+y) I
′
0(
√
y(y + 2x))√
y(y + 2x)

x2dydx. (D.1.6)

D.2 Calculation of the integrals

We observe that the M integral has the same form of N , with the exception of the
modified Bessel function I0 instead of J0. From now on, all the manipulations on N can
be reproduced on M with this little variation.

To solve (D.1.4), the first step will be the change of variables (x; y)→ (x; s := x+ y).

N (n) =

∫ ∞
0

∫ ∞
0

e−n(x+y)J
′
0(
√
y(y + 2x))√
y(y + 2x)

x2dydx =

∫ ∞
0

x2

[∫ ∞
x

J ′0(
√
s2 − x2)√
s2 − x2

e−nsds

]
dx =

=

∫ ∞
0

e−ns

[∫ s

0

J ′0(
√
s2 − x2)√
s2 − x2

x2dx

]
ds;

(D.2.1)

the two-dimensional integration dominion is 0 < x < s <∞.
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The internal integral can be evaluated as

J ′0(
√
s2 − x2)√
s2 − x2

x2 =
dJ0(
√
s2 − x2)

d
√
s2 − x2

x2

√
s2 − x2

=
dJ0(
√
s2 − x2)

dx

(
d
√
s2 − x2

dx

)−1
x2

√
s2 − x2

=

=∂xJ0(
√
s2 − x2)

(
−x√
s2 − x2

)−1 x2

√
s2 − x2

= −∂xJ0(
√
s2 − x2)x⇒∫ s

0

J ′0(
√
s2 − x2)√
s2 − x2

x2dx =−
∫ s

0
x∂xJ0(

√
s2 − x2)dx = −[xJ0(

√
s2 − x2)]s0 +

∫ s

0
J0(
√
s2 − x2)dx =

=

∫ s

0
J0(
√
s2 − x2)dx− s.

With this second step, the integral becomes

N (n) =

∫ ∞
0

e−ns
[∫ s

0
J0(
√
s2 − x2)dx− s

]
ds =

∫ ∞
0

∫ s

0
J0(
√
s2 − x2)e−nsdxds−

∫ ∞
0

se−nsds =

:=− 1

n2
+

∫ ∞
0
N (n; s)e−nsds.

(D.2.2)

Following the same passages, one finds

M(n) = − 1

n2
+

∫ ∞
0
M(n; s)e−nsds s.t. M(n; s) :=

∫ s

0
I0(
√
s2 − x2)dx. (D.2.3)

The evaluation of such N (n; s) is matter for the third passage, where we exploit the
Taylor expansions

J0(x) =
∞∑
j=0

(−1)j

(j!)2
(x/2)2j =

∞∑
j=0

(−)j
1

4j(j!)2
(x2)j , I0(x) =

∞∑
j=0

1

4j(j!)2
(x2)j

(s2 − x2)j =

j∑
k=0

(
k
j

)
(s2)j−k(−x2)k =

j∑
k=0

(−)k
j!

k!(j − k)!
x2ks2(j−k).

Since the difference between N and N is only for a sign, we will call from now on

N+ :=M, N− := N . (D.2.4)

Thus we can write at once

N±(n; s) =

∫ s

0

 ∞∑
j=0

(±)j
1

4j(j!)2
(s2 − x2)j

 dx =

∫ s

0

 ∞∑
j=0

(±)j
1

4j(j!)2

j∑
k=0

(−)k
j!

k!(j − k)!
x2ks2(j−k)

 dx =

=
∞∑
j=0

(±)j
1

4jj!

j∑
k=0

(−)k

k!(j − k)!

(∫ s

0
x2kdx

)
s2(j−k) =

∞∑
j=0

(±)j
1

4jj!

[
j∑

k=0

(−)k

k!(j − k)!(2k + 1)

]
s2j+1.

(D.2.5)

It is known that
j∑

k=0

(−)k

k!(j − k)!(2k + 1)
=
√
π/2

1

(j + 1/2)!
,
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and it holds for the properties of Gamma function

(j + 1/2)! = (j + 1/2)(j − 1/2)! =
(2j + 1)!!

2j
(j − j + 1/2)! =

√
π/2

(2j + 1)!!

2j
;

Thus the internal sum is just 2j

(2j+1)!! and

N±(n; s) =
∞∑
j=0

(±)j

2jj!(2j + 1)!!
s2j+1. (D.2.6)

We reach the fourth and last step of the calculation, when we integrate (D.2.6) against
the exponential, as is prescribed by (D.2.2) and (D.2.3).

N±(n) +
1

n2
=

∫ ∞
0
N±(n; s)e−nsds =

∞∑
j=0

(±)j

2jj!(2j + 1)!!

(∫ ∞
0

s2j+1e−nsds

)
=

=

∞∑
j=0

(±)j

2jj!(2j + 1)!!
(2j + 1)!n−2j−2 =

1

n2

∞∑
j=0

(±)j
(2j)!!

2jj!
n−2j =

1

n2

∞∑
j=0

(±n−2)j ⇒

N±(n) =
1

n2

1

1− (±n2)
− 1

n2
=

1

n2 ∓ 1
− 1

n2
. (D.2.7)

These are the formulas we used in §2.4.2.



Appendix E

ODEs for the averaged metric
components

Here we study the quantities

uA(τ) =

∫ τ

τI

[∫
|r<R(τ)|

Gτ ′(r; τ)d3r

]
a(τ ′)2T (τ ′)dτ ′,

uAC(τ) =

∫ τ

τI

[∫
|r<R(τ)|

GCτ ′(r; τ)d3r

]
Ḣ(τ ′)uA(τ ′)dτ ′,

uC(τ) =

∫ τ

τI

[∫
|r<R(τ)|

GCτ ′(r; τ)d3r

]
a(τ ′)2T (τ ′)dτ ′,

uB(τ) = a(τ)−2

∫ τ

τI

a(τ ′)2
(
2uAC(τ ′) + uC(τ ′)− uA(τ ′)

)
dτ ′;

expressed with the Green functions for non constant parameters

(
2− 2H∂τ + 2(Ḣ − 2H2)

)
Gτ ′(x; τ) = δ(3)(x)δ(τ − τ ′),

(2− 2H∂τ )GCτ ′(x; τ) = δ(3)(x)δ(τ − τ ′).

We seek for simple ODEs which regulate such u functions.

E.1 Reduction of the dimensions

Since the Green functions are symmetric under spatial rotation, we can reduce the
spatial dimensions to one, as we did already in the constant coefficients case (cfr. §B.1)

Gτ ′(r; τ) = − 1

2π|r|
∂rΓτ ′(|r|; τ) s.t.(

∂2
r − ∂2

τ − 2H∂τ + 2(Ḣ − 2H2)
)

Γτ ′(r; τ) = δ(r)δ(τ − τ ′); (E.1.1)
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and the same for GCτ ′(r; τ). This allow us to express in another way the terms as∫
|r<R(τ)|

Gτ ′(r; τ)d3r =

∫ R(τ)

0

[
− 1

2πr
∂rΓτ ′(r; τ)

]
4πr2dr

= −2

∫ R(τ)

0
r∂rΓτ ′(r; τ)dr

= 2

(∫ R(τ)

0
Γτ ′(r; τ)dr − [rΓτ ′(r; τ)]

R(τ)
r=0

)
.

Now let us define the auxiliary field

vA(r; τ) :=

∫ τ

τI

Γτ ′(r; τ)a(τ ′)2T (τ ′)dτ ′; (E.1.2)

and similar for vAC and vC . Then, we can prove

Lemma E.1.1. The metric perturbations evolve as

uA(τ) =

∫ R(τ)

−R(τ)
vA(r; τ)dr − 2[rvA(r; τ)]

R(τ)
r=0 ,

uAC(τ) =

∫ R(τ)

−R(τ)
vAC(r; τ)dr − 2[rvAC(r; τ)]

R(τ)
r=0 ,

uC(τ) =

∫ R(τ)

−R(τ)
vC(r; τ)dr − 2[rvC(r; τ)]

R(τ)
r=0 ; (E.1.3)

where the v fields solve the 2D PDEs(
∂2
r − ∂2

τ − 2H∂τ + 2(Ḣ − 2H2)
)
vA(r; τ) = δ(r)a(τ)2T (τ),(

∂2
r − ∂2

τ − 2H∂τ
)
vAC(r; τ) = δ(r)Ḣ(τ)uA(τ),(

∂2
r − ∂2

τ − 2H∂τ
)
vC(r; τ) = δ(r)a(τ)2T (τ). (E.1.4)

Proof. Let us start from the time derivatives of vA.

v̇A(r; τ) = [Γτ ′(r; τ)a(τ ′)2T (τ ′)]|τ ′=τ +

∫ τ

τ ′
∂τΓτ ′(r; τ)a(τ ′)2T (τ ′)dτ ′,

v̈A(r; τ) = ∂τ [Γτ ′(r; τ)a(τ ′)2T (τ ′)]|τ ′=τ + [∂τΓτ ′(r; τ)a(τ ′)2T (τ ′)]|τ ′=τ

+

∫ τ

τ ′
∂2
τΓτ ′(r; τ)a(τ ′)2T (τ ′)dτ ′.

Γτ ′(r; τ) satisfies a wave equation, so it holds a causality principle

∀|r| > τ − τ ′ : Γτ ′(r; τ) ≡ 0.

Setting τ ′ = τ it becomes

∀|r| > 0 : Γτ (r; τ) ≡ 0.

Continuity in r = 0 requires

[Γτ ′(r; τ)a(τ ′)2T (τ ′)]|τ ′=τ = Γτ (r; τ)a(τ)2T (τ) ≡ 0;
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so that the boundary terms of v̇A and v̈A must vanish. Now, we can check by substitution

∂2
rvA − v̈A − 2Hv̇A + 2(Ḣ − 2H2)vA

=

∫ τ

τI

[∂2
rΓτ ′ − ∂2

τΓτ ′ − 2H∂τΓτ ′ + 2(Ḣ − 2H2)Γτ ′ ]a(τ ′)2T (τ ′)dτ ′

=

∫ τ

τI

δ(r)δ(τ − τ ′)a(τ ′)2T (τ ′)dτ ′ = δ(r)a(τ)2T (τ).

Notice that this PDE is symmetric under r → −r, so that vA(r; τ) = vA(−r; τ). This
allows us to write

uA(τ) =

∫ τ

τI

[∫
|r<R(τ)|

Gτ ′(r; τ)d3r

]
a(τ ′)2T (τ ′)dτ ′

= 2

∫ τ

τI

(∫ R(τ)

0
Γτ ′(r; τ)dr − [rΓτ ′(r; τ)]

R(τ)
r=0

)
a(τ ′)2T (τ ′)dτ ′

= 2

(∫ R(τ)

0
vA(r; τ)dr − [rvA(r; τ)]

R(τ)
r=0

)

=

∫ R(τ)

−R(τ)
vA(r; τ)dr − 2[rvA(r; τ)]

R(τ)
r=0 .

The proof is analogous for vAC and vC .

We will not try to write explicitly these Γτ ′(r; τ) or v(r; τ). Instead, we will exploit
their properties to get simple characterizations for their averages.

E.2 Fourier transform

Inspired again by the constant coefficients case, we can eliminate the derivatives w.r.t.
the spatial variable r by writing (E.1.4) for the vs in Fourier transform, analogously to
§B.3 . If we define

vA(r; τ) :=
1

2π

∫
v̂A(ω; τ)e−irωdω; (E.2.1)

then, the corresponding PDE becomes(
−ω2 − ∂2

τ − 2H∂τ + 2(Ḣ − 2H2)
)
v̂A(ω; τ) = a(τ)2T (τ). (E.2.2)

The analogous holds for the other vs. Now we manipulate the term in the us.

Lemma E.2.1. ∫ R(τ)

−R(τ)
vA(r; τ)dr = v̂A(ω; τ)|ω=0,∫ R(τ)

−R(τ)
vAC(r; τ)dr = v̂AC(ω; τ)|ω=0,∫ R(τ)

−R(τ)
vC(r; τ)dr = v̂C(ω; τ)|ω=0. (E.2.3)
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Proof. First, consider that vA satisfies the wave equation (E.1.4), so that we can impose
the causality condition

∀|r| > τ − τI = R(τ) : vA(r; τ) ≡ 0.

Therefore ∫ R(τ)

−R(τ)
vA(r; τ)dr =

∫ +∞

−∞
vA(r; τ)dr.

After applying the Fourier transform and switching the integrals we find∫
vA(r; τ)dr =

∫ [
1

2π

∫
v̂A(ω; τ)e−irωdω

]
dr

=

∫ [∫
1

2π
e−irωdr

]
v̂A(ω; τ)dω =

∫
δ(ω)v̂A(ω; τ)dω;

which proves the assertion. For the others vs the proof is analogous.

Now, we need to evaluate the boundary terms [rv(r; τ)]
R(τ)
r=0 .

Lemma E.2.2. The term rv(r; τ)|r=0 always vanishes.

Proof. For Fourier properties

rvA(r; τ)|r=0 = −i
∫
∂ωv̂A(ω; τ)e−irωdω|r=0 = −i

∫
∂ωv̂A(ω; τ)dω = −i[v̂A(ω; τ)]+∞−∞.

For an evaluation of v̂A(ω; τ) when ω goes to infinity, we can manipulate the corresponding
ODE

v̂A(ω; τ) =
1

ω2
[(−∂2

τ − 2H∂τ + 2(Ḣ − 2H2))v̂A(ω; τ)− a(τ)2T (τ)]

∼ω→±∞ 1

ω2
(−∂2

τ − 2H∂τ + 2(Ḣ − 2H2))v̂A(ω; τ).

A solution is

v̂A(ω; τ) ∼ω→±∞ 0;

which proves the assertion. The proof is analogous for the others vs.

For the other term, we don’t need the Fourier transform.

Lemma E.2.3. The term rv(r; τ)|r=R(τ) vanishes if and only if τI > −∞ and a(τ)2T (τ) ∈
L1
loc([τI ; τF )). Otherwise, it it divergent.

Proof. We know that vA satisfies a wave equation (E.1.4), whose principal symbol is the
same as for a 2D d’alembertian. As in §2.4, near the wave boundary r → R(τ) the solution
depends on the principal symbol only, and we can neglect the terms −2Hv̇A+2(Ḣ−2H2)
in that asymptotic region:

vA(r; τ) ∼r→R(τ) v̄A(r; τ) s.t. (∂2
r − ∂2

τ )v̄A(r; τ) = δ(r)a(τ)2T (τ).

It is easily solved by

v̄A(r; τ) = S(τ − |r|) s.t. S(x) :=

∫ x

τI

a(τ)2T (τ)dτ.
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Notice that S diverges if a(τ)2T (τ) 6∈ L1
loc([τI ; τF )). After replacing it

rvA(r; τ)|r=R(τ) = lim
r→R(τ)

rv̄A(r; τ) = lim
r→τ−τI

rS(τ − |r|)

= lim
x→τI

(τ − x)S(x) = lim
x→τI

(τ − x)

∫ x

τI

a(τ)2T (τ)dτ.

Let now consider the case τI > −∞, so that the requirement on S becomes a(τ)2T (τ) ∈
L1
loc([0; τF )). Then, the integral

∫ x
τI
a(τ)2T (τ)dτ goes to zero and rvA(r; τ)|r=R(τ) ≡ 0. On

the other hand, in the case τI = −∞ we see that τ − x→ +∞. Since a(τ)2T (τ) is always
positive, we get the divergence rvA(r; τ)|r=R(τ) ≡ +∞.

The proof is analogous for vC . For vAC we obtain

rvAC(r; τ)|r=R(τ) = lim
x→τI

(τ − x)

∫ x

τI

Ḣ(τ)uA(τ)dτ.

As before, it diverges if τI = −∞. If τI > −∞ but a(τ)2T (τ) 6∈ L1
loc([τI ; τF )), then

uA(τ) =
∫ R(τ)
−R(τ) vA(r; τ)dr − 2rvA(r; τ)|r=R(τ) ≡ −∞ as we saw, and also vAC diverges. If

we have a(τ)2T (τ) ∈ L1
loc([τI ; τF )), then uA(τ) = v̂A(0; τ) for Lemmas E.2.1 and E.2.2; it

converges, and the first of (2.2.13) assures that Ḣ(τ)uA(τ) ∈ L1
loc([τI ; τF )).

Putting the last Lemmas all together, we obtain the us as solutions of the ODEs of
Theorem 2.5.5 .
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Appendix F

Explicit evolution and fictitious
components

From the results of §2.7, now we can get the formulas for the evaluation of fictitious
dark matter and dark energy. They are different for the three cases described in Lemma
2.7.1. Let us start with the case where we have all the three epochs.

F.1 Three epochs

Applying (2.6.21), (2.6.19) and (2.6.17), we get the evolution of 〈A〉

H2
0uA(τ) =



1
8(H0τ)

[
ln
(
H0τ

4aRM

)
− 3

8

]
τ ∈ [0; τRM ]

− 1
30(H0τ −H0cM )2

+(H0τ −H0cM )−
3
2 [cA1M sin

(√
71
2 ln(H0τ −H0cM )

)
+cA2M cos

(√
71
2 ln(H0τ −H0cM )

)
] τ ∈ [τRM ; τMΛ]

1
2(H0τ −H0cΛ)3 + cA1Λ(H0τ −H0cΛ)2

+cA2Λ(H0τ −H0cΛ) τ ∈ [τMΛ; τ(t0)]

(F.1.1)
where the C1 regularity fixes the integration constants cA1M , cA2M s.t.



−1
8

(
3
8 + ln 4

)
(H0τRM ) = − 1

30(H0τRM −H0cM )2

+(H0τRM −H0cM )−
3
2 [cA1M sin

(√
71
2 ln(H0τRM −H0cM )

)
+cA2M cos

(√
71
2 ln(H0τRM −H0cM )

)
]

1
8

(
5
8 − ln 4

)
= − 1

15(H0τRM −H0cM ) + (H0τRM −H0cM )−
5
2

×[cA1M

[
−3

2 sin
(√

71
2 ln(H0τRM −H0cM )

)
+
√

71
2 cos

(√
71
2 ln(H0τRM −H0cM )

)]
+cA2M

[
−3

2 cos
(√

71
2 ln(H0τRM −H0cM )

)
−
√

71
2 sin

(√
71
2 ln(H0τRM −H0cM )

)]
]

(F.1.2)
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(the left hand terms have been simplified using aRM = H0τRM ), and cA1Λ, cA2Λ s.t.



− 1
30(H0τMΛ −H0cM )2 + (H0τMΛ −H0cM )−

3
2

×
[
cA1M sin

(√
71
2 ln(H0τMΛ −H0cM )

)
+ cA2M cos

(√
71
2 ln(H0τMΛ −H0cM )

)]
= 1

2(H0τMΛ −H0cΛ)3 + cA1Λ(H0τMΛ −H0cΛ)2 + cA2Λ(H0τMΛ −H0cΛ)

− 1
15(H0τMΛ −H0cM )− 1

2(H0τMΛ −H0cM )−
5
2

×[(3cA1M +
√

71cA2M ) sin
(√

71
2 ln(H0τMΛ −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τMΛ −H0cM )

)
]

= 3
2(H0τMΛ −H0cΛ)2 + 2cA1Λ(H0τMΛ −H0cΛ) + cA2Λ

(F.1.3)
the evolution of 〈C〉

H2
0uC(τ) =



1
8(H0τ)

[
5 ln

(
H0τ

4aRM

)
− 63

8

]
τ ∈ [0; τRM ]

− 17
150(H0τ −H0cM )2 + cD1M (H0τ −H0cM )−3 + cD2M

1
5(H0τ −H0cM )−

3
2 [cA1M sin

(√
71
2 ln(H0τ −H0cM )

)
+cA2M cos

(√
71
2 ln(H0τ −H0cM )

)
] τ ∈ [τRM ; τMΛ]

1
2(H0τ −H0cΛ)3 − cA1Λ(H0τ −H0cΛ)2

−cA2Λ(H0τ −H0cΛ) + cD1Λ(H0τ −H0cΛ)5 + cD2Λ τ ∈ [τMΛ; τ(t0)]

(F.1.4)
where the C1 regularity fixes the integration constants cD1M , cD2M s.t.



−1
8

(
63
8 + 5 ln 4

)
(H0τRM ) = − 17

150(H0τRM −H0cM )2

+cD1M (H0τRM −H0cM )−3 + cD2M + 1
5(H0τRM −H0cM )−

3
2

×
[
cA1M sin

(√
71
2 ln(H0τRM −H0cM )

)
+ cA2M cos

(√
71
2 ln(H0τRM −H0cM )

)]
−1

8

(
23
8 + 5 ln 4

)
= −17

75(H0τRM −H0cM )− 3cD1M (H0τRM −H0cM )−4

− 1
10(H0τRM −H0cM )−

5
2 [(3cA1M +

√
71cA2M ) sin

(√
71
2 ln(H0τRM −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τRM −H0cM )

)
]

(F.1.5)
and cD1Λ, cD2Λ s.t.



− 17
150(H0τMΛ −H0cM )2 + 1

5(H0τMΛ −H0cM )−
3
2 [cA1M sin

(√
71
2 ln(H0τMΛ −H0cM )

)
+cA2M cos

(√
71
2 ln(H0τMΛ −H0cM )

)
] + cD1M (H0τMΛ −H0cM )−3 + cD2M

= 1
2(H0τMΛ −H0cΛ)3 − cA1Λ(H0τMΛ −H0cΛ)2 − cA2Λ(H0τMΛ −H0cΛ)

+cD1Λ(H0τMΛ −H0cΛ)5 + cD2Λ

−17
75(H0τMΛ −H0cM )− 3cD1M (H0τMΛ −H0cM )−4 − 1

10(H0τMΛ −H0cM )−
5
2

×[(3cA1M +
√

71cA2M ) sin
(√

71
2 ln(H0τMΛ −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τMΛ −H0cM )

)
] = 3

2(H0τMΛ −H0cΛ)2

−2cA1Λ(H0τMΛ −H0cΛ)− cA2Λ + 5cD1Λ(H0τMΛ −H0cΛ)4

(F.1.6)
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and the evolution of 〈B〉

H3
0uB(τ) =



1
8(H0τ)2

[
ln
(
H0τ

4aRM

)
− 17

8

]
τ ∈ [0; τRM ]

− 2
175(H0τ −H0cM )3 + 1

2cD1M (H0τ −H0cM )−2

+1
5cD2M (H0τ −H0cM )− 1

50(H0τ −H0cM )−
1
2

×[(3cA1M +
√

71
2 cA2M ) sin

(√
71
2 ln(H0τ −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τ −H0cM )

)
]

+cBM (H0τ −H0cM )−4 τ ∈ [τRM ; τMΛ]

−2cA1Λ(H0τ −H0cΛ)3 − 2cA2Λ(H0τ −H0cΛ)2 ln |H0τ −H0cΛ|
+1

4cD1Λ(H0τ −H0cΛ)6 − cD2Λ(H0τ −H0cΛ) + cBΛ(H0τ −H0cΛ)2 τ ∈ [τMΛ; τ(t0)]

.

(F.1.7)
where the continuity fixes the integration constants cBM , cBΛ s.t.

−1
8

(
17
8 + ln 4

)
(H0τRM )2 = − 2

175(H0τRM −H0cM )3 + 1
2cD1M (H0τRM −H0cM )−2

+1
5cD2M (H0τRM −H0cM )− 1

50(H0τRM −H0cM )−
1
2

×[(3cA1M +
√

71cA2M ) sin
(√

71
2 ln(H0τRM −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τRM −H0cM )

)
] + cBM (H0τRM −H0cM )−4

− 2
175(H0τMΛ −H0cM )3 + 1

2cD1M (H0τMΛ −H0cM )−2 + 1
5cD2M (H0τMΛ −H0cM )

− 1
50(H0τMΛ −H0cM )−

1
2 [(3cA1M +

√
71cA2M ) sin

(√
71
2 ln(H0τMΛ −H0cM )

)
+(3cA2M −

√
71cA1M ) cos

(√
71
2 ln(H0τMΛ −H0cM )

)
] + cBM (H0τMΛ −H0cM )−4

= −2cA1Λ(H0τMΛ −H0cΛ)3 − 2cA2Λ(H0τMΛ −H0cΛ)2 ln |H0τMΛ −H0cΛ|
+1

4cD1Λ(H0τMΛ −H0cΛ)6 − cD2Λ(H0τMΛ −H0cΛ) + cBΛ(H0τMΛ −H0cΛ)2

(F.1.8)
Now, in order to get the fictitious components ΩFM0,ΩFΛ0 we need only to apply the

formulas (2.5.26). Recalling

H ′0
H0

= −q̄0 = −1

2

∑
w

(1 + 3w)Ω̄w0 = −Ω̄R0 −
1

2
Ω̄M0 + Ω̄Λ0 = 1− 2Ω̄R0 −

3

2
Ω̄M0. (F.1.9)

In a similar way, we can evaluate the term
(H′0)2

H2
0

+
H′′0
H0

from (2.1.7)

H(a)2 = H2
0

∑
w

Ω̄w0a
−1−3w ⇒ 2HH ′′ + 2(H ′)2 = H2

0

∑
w

(−1− 3w)(−2− 3w)a−3−3w ⇒

(H ′0)2

H2
0

+
H ′′0
H0

=
1

2

∑
w

(1 + 3w)(2 + 3w)Ω̄w0 = 3Ω̄R0 + Ω̄M0 + Ω̄Λ0 = 1 + 2Ω̄R0. (F.1.10)

Thus, (2.5.26) become
1
2(sum+ 1)ΩIM0 = −〈A〉0 − (2Ω̄R0 + 3

2 Ω̄M0)H0〈B〉0 − 〈C〉′0
1
2(ract+ 1)ΩIM0 = 〈A〉′0 + 2〈C〉′0 + 〈C〉′′0 + (1− 6Ω̄R0 − 3Ω̄M0)H0〈B〉0

+(1− 2Ω̄R0 − 3
2 Ω̄M0)(2〈A〉0 − 〈C〉0 + 〈C〉′0)

. (F.1.11)

Here, all perturbations are evaluated today, when the dark energy dominates

a(τ) =
1

H0(cΛ − τ)
⇒ H0τ −H0cΛ = −a−1
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〈A〉 =
3

2
ΩIM0[

1

2
(−a−1)3 + cA1Λ(−a−1)2 + cA2Λ(−a−1)]⇒

〈A〉0 =
3

2
ΩIM0[−1

2
+ cA1Λ − cA2Λ], 〈A〉′0 =

3

2
ΩIM0[

3

2
− 2cA1Λ + cA2Λ]; (F.1.12)

〈B〉 =
3

2

ΩIM0

H0
[−2cA1Λ(−a−1)3 − 2cA2Λ(−a−1)2 ln | − a−1|

+
1

4
cD1Λ(−a−1)6 − cD2Λ(−a−1) + cBΛ(−a−1)2]⇒

H0〈B〉0 =
3

2
ΩIM0[2cA1Λ +

1

4
cD1Λ + cD2Λ + cBΛ]; (F.1.13)

〈C〉 =
3

2
ΩIM0[

1

2
(−a−1)3 − cA1Λ(−a−1)2 − cA2Λ(−a−1) + cD1Λ(−a−1)5 + cD2Λ]⇒

〈C〉0 =
3

2
ΩIM0[−1

2
− cA1Λ + cA2Λ − cD1Λ + cD2Λ],

〈C〉′0 =
3

2
ΩIM0[

3

2
+ 2cA1Λ − cA2Λ + 5cD1Λ],

〈C〉′′0 =
3

2
ΩIM0[−6− 6cA1Λ + 2cA2Λ − 30cD1Λ].

(F.1.14)

Replacing (F.1.12), (F.1.13) and (F.1.14) inside (F.1.11), we obtain ract and sum.

F.2 No matter epoch

For different values of Ω̄R0, Ω̄M0, we would have only the radiation and dark energy
epochs. Applying (2.6.21), (2.6.19) and (2.6.17), we get the evolution of 〈A〉

H2
0uA(τ) =


1
8(H0τ)

[
ln
(
H0τ

4aRM

)
− 3

8

]
τ ∈ [0; τRΛ]

1
2(H0τ −H0cR)3 + cA1Λ(H0τ −H0cR)2

+cA2Λ(H0τ −H0cR) τ ∈ [τRΛ; τ(t0)]

(F.2.1)

where the C1 regularity fixes the integration constants cA1Λ, cA2Λ s.t.
−1

8

(
3
8 + ln 4

)
(H0τRΛ) = 1

2(H0τRΛ −H0cR)3

+cA1Λ(H0τRΛ −H0cR)2 + cA2Λ(H0τRΛ −H0cR)
1
8

(
5
8 − ln 4

)
= 3

2(H0τRΛ −H0cR)2 + 2cA1Λ(H0τRΛ −H0cR) + cA2Λ

(F.2.2)

For the evolution of 〈C〉 we get

H2
0uC(τ) =


1
8(H0τ)

[
5 ln

(
H0τ

4aRM

)
− 63

8

]
τ ∈ [0; τRMΛ]

1
2(H0τ −H0cR)3 − cA1Λ(H0τ −H0cR)2

−cA2Λ(H0τ −H0cR) + cD1Λ(H0τ −H0cR)5 + cD2Λ τ ∈ [τRΛ; τ(t0)]

(F.2.3)
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where the C1 regularity fixes the integration constants cD1Λ, cD2Λ s.t.
−1

8

(
63
8 + 5 ln 4

)
(H0τRΛ) = 1

2(H0τRΛ −H0cR)3 − cA1Λ(H0τRΛ −H0cR)2

−cA2Λ(H0τRΛ −H0cR) + cD1Λ(H0τRΛ −H0cR)5 + cD2Λ

−1
8

(
23
8 + 5 ln 4

)
= 3

2(H0τRΛ −H0cR)2 − 2cA1Λ(H0τRΛ −H0cR)

−cA2Λ + 5cD1Λ(H0τRΛ −H0cR)4

(F.2.4)

For the evolution of 〈B〉 we have

H3
0uB(τ) =



1
8(H0τ)2

[
ln
(
H0τ

4aRM

)
− 17

8

]
τ ∈ [0; τRΛ]

−2cA1Λ(H0τ −H0cR)3

−2cA2Λ(H0τ −H0cR)2 ln |H0τ −H0cR|
+1

4cD1Λ(H0τ −H0cR)6 − cD2Λ(H0τ −H0cR)

+cBΛ(H0τ −H0cR)2 τ ∈ [τRΛ; τ(t0)]

(F.2.5)

where the continuity fixes the integration constant cBΛ s.t.

−1

8

(
17

8
+ ln 4

)
(H0τRΛ)2 = −2cA1Λ(H0τRΛ −H0cR)3

− 2cA2Λ(H0τRΛ −H0cR)2 ln |H0τRΛ −H0cR|

+
1

4
cD1Λ(H0τRΛ −H0cR)6 − cD2Λ(H0τRΛ −H0cR)

+ cBΛ(H0τRΛ −H0cR)2 (F.2.6)

All perturbations are evaluated today, when it dominates the dark energy, as in §7.2.
Substituting (F.1.12), (F.1.13) and (F.1.14) inside (F.1.11), we obtain ract and sum as
well.

F.3 No dark energy epoch

A last possibility is that there are only the radiation and matter epochs. Applying
(2.6.21), (2.6.19) and (2.6.17), we get the same evolutions of 〈A〉, 〈B〉 and 〈C〉 as in
§7.3, just without the last parts. All perturbations are evaluated today, when the matter
dominates.

〈A〉 =
3

2
ΩIM0[− 1

30
(2a1/2)2 + (2a1/2)−

3
2

×

[
cA1M sin

(√
71

2
ln(2a1/2)

)
+ cA2M cos

(√
71

2
ln(2a1/2)

)]
]⇒

〈A〉0 =
3

2
ΩIM0[− 2

15
+
cA1M

2
√

2
sin

(√
71

2
ln 2

)
+
cA2M

2
√

2
cos

(√
71

2
ln 2

)
],

〈A〉′0 =
3

2
ΩIM0[− 2

15
− 3cA1M +

√
71

8
√

2
sin

(√
71

2
ln 2

)

− 3cA2M −
√

71

8
√

2
cos

(√
71

2
ln 2

)
]; (F.3.1)
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〈B〉 =
3

2

ΩIM0

H0
[− 2

175
(2a1/2)3 +

1

2
cD1M (2a1/2)−2

+
1

5
cD2M (2a1/2)− 1

50
(2a1/2)−

1
2 [(3cA1M +

√
71cA2M ) sin

(√
71

2
ln(2a1/2)

)

+ (3cA2M −
√

71cA1M ) cos

(√
71

2
ln(2a1/2)

)
] + cBM (2a1/2)−4]⇒

H0〈B〉0 =
3

2
ΩIM0[− 16

175
+

1

8
cD1M +

2

5
cD2M −

3cA1M +
√

71cA2M

50
√

2
sin

(√
71

2
ln 2

)

− 3cA2M −
√

71cA1M

50
√

2
cos

(√
71

2
ln 2

)
+

1

16
cBM ]; (F.3.2)

〈C〉 =
3

2
ΩIM0[− 17

150
(2a1/2)2 + cD1M (2a1/2)−3 + cD2M

+
1

5
(2a1/2)−

3
2

[
cA1M sin

(√
71

2
ln(2a1/2)

)
+ cA2M cos

(√
71

2
ln(2a1/2)

)]
]⇒

〈C〉0 =
3

2
ΩIM0[−34

75
+

1

8
cD1M + cD2M +

cA1M

10
√

2
sin

(√
71

2
ln 2

)

+
cA2M

10
√

2
cos

(√
71

2
ln 2

)
],

〈C〉′0 =
3

2
ΩIM0[−34

75
− 3

16
cD1M −

3cA1M +
√

71

40
√

2
sin

(√
71

2
ln 2

)

− 3cA2M −
√

71

40
√

2
cos

(√
71

2
ln 2

)
],

〈C〉′′0 =
3

2
ΩIM0[

15

32
cD1M +

21cA1M + 12cA2M + 3
√

71

160
√

2
sin

(√
71

2
ln 2

)

+
21cA2M − 12cA1M − 5

√
71

160
√

2
cos

(√
71

2
ln 2

)
]. (F.3.3)

Substituting (F.3.1), (F.3.2) and (F.3.3) inside (F.1.11), we obtain ract and sum.
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