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Abstract

This thesis regards the numerical simulation of inviscid compressible ideal gases which are
described by the Euler equations. We propose a novel implicit explicit (IMEX) relaxation
scheme to simulate flows from compressible as well as near incompressible regimes. The
Mach number, which gives the ratio between the gas and sound speed, plays an important
role in the design of the scheme, as it has great influence on the flow behaviour and physical
properties of solutions of the Euler equations. Our focus is on an accurate resolution of
the Mach number independent wave associated with the gas velocity, also called material
wave. Apart from strongly supersonic regimes, the material wave is rather slow compared
to the other two acoustic waves which tend to infinity for small Mach numbers, thus
also called the fast waves. A special feature of our scheme is that it can account for the
influence of a gravitational field on the fluid flow and is applicable also in small Froude
number regimes which are characterized by a strong gravitational potential.

To address these problems, we use a relaxation model which is designed to separate
the slow Mach number independent waves from the fast Mach number dependent acoustic
waves. The relaxation model is then numerically solved with an IMEX approach in which
the slow waves are treated explicitly while the fast waves are integrated implicitly. The
approach proposed in this work results in a single scalar PDE for the implicit fast waves,
while on the explicit part a Godunov-type scheme based on an approximate Riemann solver
is applied. The time step of the IMEX scheme is constrained only by the eigenvalues of
the explicitly treated system of equations and is independent of the Mach number allowing
for large time steps especially in low Mach number regimes.

Despite using an upwind scheme in the main explicit part, where the physical variables
are updated, the scheme has a Mach number independent diffusion. This is a necessary
property to obtain accurate solutions also for small Mach numbers. In addition, the
scheme is provably asymptotic preserving (AP), which means that the obtained numerical
solutions in the near incompressible flow regime have the correct physical limit behaviour.
Contributing to the AP property is the use of centred differences in the implicit part which
preserve the well-preparedness of the pressure.

In presence of a gravitational source term, the scheme is well-balanced for arbitrary
a priori known hydrostatic equilibria independently of the considered Mach and Froude
regime. As the scheme provably preserves the positivity of density and internal energy
throughout the simulation, the scheme is well suited for physical applications. To increase
the accuracy of the presented scheme a natural extension to second order is provided which
keeps all properties of the first order scheme. Applications in multiple space dimensions
are realized by applying dimensional splitting in the explicit step of the IMEX scheme
while the implicit scalar PDE is extended to include multiple space derivatives.

The theoretical properties of the given schemes are numerically validated by various
test cases performed on Cartesian grids in multiple space dimensions.

Keywords All-speed schemes, IMEX discretization, relaxation, Euler equations, gravity,
finite volumes, asymptotic preserving, well-balanced
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Riassunto

Questa tesi riguarda la simulazione numerica dei gas ideali comprimibili non viscosi che
sono descritti dalle equazioni di Eulero. Proponiamo un nuovo schema di rilassamento
implicito esplicito (IMEX) per simulare flussi in regimi comprimibili e quasi incomprim-
ibili. Il numero di Mach, che dà il rapporto tra la velocità del gas e quella del suono,
gioca un ruolo importante nel design dello schema, in quanto ha una grande influenza
sul comportamento del flusso e sulle proprietà fisiche delle soluzioni delle equazioni di
Eulero. Il nostro obiettivo è una risoluzione accurata dell’onda associata alla velocità del
gas, detta anche onda materiale che è indipendente dal numero di Mach. A parte regimi
fortemente supersonici, l’onda materiale è piuttosto lenta rispetto alle altre due onde acus-
tiche che tendono all’infinito nel regime a basso numero di Mach, perciò chiamate anche
onde veloci. Una caratteristica speciale di questo schema risiede nel fatto che può tener
conto dell’influenza di un campo gravitazionale sul flusso del fluido ed è applicabile anche
per regimi con numero di Froude piccolo, che sono caratterizzati da un forte potenziale
gravitazionale.

Per affrontare questi problemi, utilizziamo un modello di rilassamento che è stato
progettato appositamente in questo lavoro per separare le onde lente indipendenti dal
numero di Mach dalle onde acustiche veloci dipendenti dal numero di Mach. Il modello
di rilassamento viene poi risolto numericamente con un approccio IMEX in cui le onde
lente sono trattate esplicitamente mentre le onde veloci sono integrate implicitamente.
L’approccio proposto in questo lavoro risulta in un’unica PDE scalare per le onde veloci
implicite, mentre alla parte esplicita viene applicato uno schema di tipo Godunov basato su
un solutore di Riemann approssimato. Il passo temporale dello schema IMEX è vincolato
solo dagli autovalori del sistema trattato esplicitamente ed è indipendente dal numero di
Mach, consentendo grandi passi temporali soprattutto nei regimi a basso numero di Mach.

Nonostante l’utilizzo di uno schema upwind nella parte principale esplicita, dove le
variabili fisiche vengono aggiornate, lo schema presenta una diffusione indipendente dal
numero di Mach che è necessaria per ottenere soluzioni accurate anche per bassi valori del
numero di Mach. Inoltre, si può dimostrare che lo schema preserva il limite asintotico, il
che significa che le soluzioni numeriche ottenute nel regime di flusso quasi incomprimibile
presentano un comportamento limite dal punto di vista fisico corretto. A ciò, contribuisce
l’uso delle differenze centrate nella parte implicita che conserva la dipendenza correta
rispetto al numero di Mach.

In presenza di un termine di sorgente gravitazionale lo schema è ben bilanciato per
equilibri idrostatici arbitrari noti a priori e questa proprietà è indipendente dal regime di
Mach e Froude considerati. Poiché si verifica che lo schema preserva la positività della
densità e dell’energia interna durante tutta la simulazione, esso è adatto alle applicazioni
fisiche. Per aumentare l’accuratezza dello schema presentato è prevista una naturale es-
tensione al secondo ordine che mantiene tutte le proprietà dello schema del primo ordine.
Si possono realizzare applicazioni a più dimensioni spaziali applicando il solutore di Rie-
mann dimensione per dimensione nella fase esplicita dello schema IMEX mentre la PDE
scalare implicita è estesa per includere multipli derivati spaziali.

Le proprietà teoriche degli schemi presentati sono validate numericamente con vari casi
test eseguiti su griglie cartesiane in varie dimensioni spaziali.
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Parole chiave schemi a tutte le velocità, discretizzazione IMEX, rilassamento, equazioni
di Eulero, gravità, volumi finiti, conservazione asintotica, mantenimento dell’equilibrio

Kurzzusammenfassung

Diese Arbeit befasst sich mit der numerischen Simulation von reibungsfreien kompress-
iblen idealen Gasen, die durch die Euler-Gleichungen beschrieben werden. Wir schlagen
ein neuartiges implizites explizites (IMEX) Verfahren vor, welches auf einem Relaxation-
sansatz basiert, um kompressible und nahezu inkompressible Strömungen zu simulieren.
Die Machzahl, welche das Verhältnis zwischen der Gas- und Schallgeschwindigkeit an-
gibt, spielt eine wichtige Rolle in der Entwicklung des Verfahrens, da sie großen Ein-
fluss auf das Strömungsverhalten und die physikalischen Eigenschaften der Lösungen der
Euler-Gleichungen hat. Unser Schwerpunkt liegt auf einer genauen Auflösung der von
der Machzahl unabhängigen Welle, die durch die Gasgeschwindigkeit beschrieben und als
Materialwelle bezeichnet wird. Abgesehen von stark supersonischen Bereichen, ist die Ma-
terialwelle ziemlich langsam verglichen mit den beiden anderen akustischen Wellen, die für
kleine Machzahlen gegen unendlich streben und deswegen auch als schnelle Wellen beze-
ichnet werden. Eine Besonderheit unseres Verfahrens ist, dass es den Einfluss eines Gravi-
tationsfeldes auf die Flüssigkeitsströmung berücksichtigen kann und auch auf Strömungen
anwendbar ist, die durch kleine Froudezahlen, welche auf ein starkes Gravitationspotential
zurückgehen, gekennzeichnet sind.

Um diese Probleme zu lösen, verwenden wir ein Relaxationsmodell, das so konzipiert
ist, dass die langsamen machzahlunabhängigen Wellen von den schnellen machzahlabhängi-
gen akustischen Wellen getrennt werden können. Das Relaxationsmodell wird dann nu-
merisch mit einem IMEX-Ansatz gelöst, bei welchem die langsamen Wellen explizit und die
schnellen Wellen implizit integriert werden. Der in dieser Arbeit vorgeschlagene Ansatz
führt zu einer einzigen skalaren PDE für die impliziten schnellen Wellen, während auf
den expliziten Teil ein auf einem approximativen Riemann-Löser basierendes Godunov-
Verfahren angewendet wird. Der Zeitschritt des IMEX-Verfahrens wird nur durch die
Eigenwerte des explizit diskretisierten Gleichungssystems begrenzt und ist unabhängig
von der Machzahl, so dass insbesondere in Anwendungen mit niedriger Machzahl große
Zeitschritte möglich sind.

Trotz der Verwendung einer upwind -Diskretisierung im expliziten Hauptteil des Ver-
fahrens, in dem die physikalischen Variablen aktualisiert werden, hat das Verfahren eine
von der Machzahl unabhängige Diffusion, die notwendig ist, um auch für kleine Machzahlen
akkurate Lösungen zu erhalten. Darüber hinaus ist das Verfahren nachweislich asymp-
totisch erhaltend (AP), was bedeutet, dass numerische Lösungen in nahezu inkompress-
iblen Strömungsbereichen das korrekte physikalische Grenzverhalten aufweisen. Zu dieser
Eigenschaft trägt auch die Verwendung von zentralen Differenzen im impliziten Teil bei,
welche die korrekte Abhängikeit des Durcks hinsichtlich der Machzahl bewahren.

Ist ein Gravitationsquellterm gegeben, erhält das Verfahren beliebige a priori bekannte
hydrostatische Gleichgewichte, unabhängig von den betrachteten Mach- und Froudezahlen.
Da das Verfahren nachweislich die Positivität von Dichte und interner Energie während
der gesamten Simulation bewahrt, eignet sich das Schema gut für aus der Physik stam-
menden Anwendungen. Um die Genauigkeit des vorgestellten Verfahrens zu erhöhen, wird

iii



eine natürliche Erweiterung auf zweite Ordnung hergeleitet, die alle Eigenschaften des
Verfahrens erster Ordnung erhält. Applikationen in mehreren Raumdimensionen können
durch die Anwendung des Riemann-Lösers entlang jeder Raumrichtung in der expliziten
Phase des IMEX-Verfahrens realisiert werden, während die skalare implizite PDE auf
mehrere räumliche Ableitungen erweitert wird.

Die theoretischen Eigenschaften der vorgestellten Verfahren werden durch verschiedene
numerische Tests, die auf kartesischen Gittern in mehreren Raumdimensionen durchgeführt
werden, validiert.

Schlüsselwörter Verfahren geeignet für alle Strömungsgeschwindikeiten bezüglich der
Machzahl, IMEX Diskretisierung, Relaxation, Euler Gleichungen, Schwerkraft, finite Vol-
umen, asymptotisch erhaltend, gleichgewichtserhaltend
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Introduction

Context and scope of the study

Atmospheric flows of compressible invicid gases, as arising e.g. in meteorology and as-
trophysics, are often modelled by the compressible Euler equations. Thereby large scale
differences in the flow regime driven by thermodynamical processes are observed. The
main quantity through which the flow is characterised is the Mach number. It can be
used to measure the compressibility of the fluid flow since it is defined as the ratio of the
gas velocity in relation to the present sound speed. Compressible flows are described by a
Mach number around one, whereas flows with higher Mach number are called supersonic.
Especially low Mach number flow, with Mach numbers reaching close to zero, is challeng-
ing since it exhibits properties that are characteristic in incompressible flows. Amongst
them are a divergence free velocity field and constant density.

Including a gravitational field in the considered model is important to obtain a proper
description of atmospheric events. Thereby hydrostatic equilibrium states can arise which
are characterized by a balance of the gravity against a pressure-gradient force. Many
physical flow phenomena are in principle perturbations around such a stationary state.
Adding gravity introduces another scale into the considered model given by the Froude
number which states the ratio of the flow inertia to the external gravitational field. High
Froude numbers correspond to a negligible gravitational influence leading back to the
homogeneous Euler equations widely studied in mathematical fluid dynamics.

Here, in contrast, we want to take into account both low Mach and low Froude fluid
flows and aim at constructing stable and computationally efficient numerical methods
applicable in all flow regimes, also called all-speed schemes. These kind of schemes are
necessary as one scheme suffices to accurately approximate compressible as well as near
incompressible flows. To guarantee the correct incompressible limit behaviour with respect
to a vanishing Mach number, schemes have to be asymptotic preserving (AP), which means
that in the low Mach number limit a consistent dicretization of the incompressible Euler
equations must be achieved. Closely connected to the AP property is the requirement of a
Mach number independent bound for the artificial diffusion of the numerical scheme. This
bound is essential in the low Mach number regime as it has been observed that standard
schemes are extremely diffusive for small Mach numbers leading to unreliable numerical
solutions.

A property that becomes crucial when working with a gravitational source terms in this
context is the capturing of hydrostatic equilibria on machine precision, also called well-
balancing. As mentioned above, one is interested in the simulation of small perturbations
around equilibria. To resolve those small perturbations, it is necessary that the underlying
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INTRODUCTION

equilibrium is captured exactly, even on coarse grids and thus the well-balanced property
is required. Besides, for a numerical scheme to be of interest in physical applications,
quantities as density and internal energy have to be positive throughout the simulation.
This important property is also referred to as positivity preserving or positivity property.
Summarizing, the purpose of this thesis is the construction of an all-speed scheme with
the above mentioned properties.

Numerical method

The Euler equations exhibit two acoustic waves whose speeds tend to infinity as the Mach
number goes to zero. We are not much interested in the propagation of those fast waves
transporting the sound but rather in the slow material wave which carries most of the
energy. Therefore the focus of the numerical scheme is on an accurate resolution of this
slow waves.

Standard explicit methods are not well suited for this task mainly for two reasons.
Due to stability reasons, the time step is oriented to the fast acoustic waves decreasing
the time step almost to zero as the Mach number is reduced leading to huge CPU times.
In addition all waves are resolved including the acoustic waves which are not our prior
interest.

Implicit methods on the other hand do not require a time step restriction and the time
step can be chosen to obtain the desired resolution of the slow waves. A big drawback
with respect to the implicit treatment of the Euler equations is that without any further
simplifications or treatments, one has to solve a non-linear implicit system. Therefore a
lot of computational effort has to be put into solving this non-linear system implicitly,
often with iterative methods whose convergence is not always guaranteed.

Trying to combine the best of both approaches, we decided for an implicit-explicit
(IMEX) discretization of the equations. With a clever splitting of the Euler flux, a Mach
number independent time step restriction can be achieved resulting only from the ex-
plicitly treated flux terms. Thereby the decreasing time step in the simulation of near
incompressible flow can be avoided and the focus of the simulation lies on the resolution
of the slow waves.

Part of this clever splitting is to treat the non-linear advective terms explicitly, as the
crucial point in choosing the implicitly treated terms is to avoid solving a non-linear im-
plicit system. To achieve this, we make use of relaxation techniques which are applied on
the continuous equations obtaining a viscous approximation of the Euler equations and a
linearisation of the wave structure. This allows us to use complex Riemann solvers which
provide the basis for the positivity and well-balanced property of the all-speed scheme.
The implicit part can be reduced to solving only one linear scalar PDE reducing the com-
putational effort compared to a standard fully implicit scheme and moreover avoiding the
possible non-convergence of non-linear solvers. Although the discretized linear system is
ill conditioned for small Mach numbers yielding slowly convergent linear iterative solvers,
we can overcome this problem by using a simple standard preconditioner leading to ac-
curate solutions after few iterations. Due to the structure of the relaxation source term,
it suffices to only update the physical variables in the explicit main part of the scheme
and the computational effort does not increase due to the presence of relaxation variables
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INTRODUCTION

which can be seen as mere auxiliary variables.

The thesis provides a three step guide on how an all-speed scheme with the above
explained properties is obtained. Starting from the compressible Euler equations with a
gravitational source term, we pass on to an all-speed scheme for the homogeneous Euler
equations, arriving finally at a well-balanced all-speed scheme for the Euler equations with
gravity.

Organization of the thesis

In detail, the thesis is organized as follows.

The first chapter is concerned with the basics of the Euler equations on a continuous
level. Beginning with the definition of solutions to general conservation laws, to which
the homogeneous Euler equations belong, their physical properties as well as their wave
structure are addressed. Fundamental to the work in this thesis are the solution of Rie-
mann problems and relaxation techniques which are described subsequently. The chapter
is concluded by the extension of the Euler equations to include gravitational source terms.

The second chapter is devoted to the explicit finite volume discretization which pro-
vides the basis of the schemes presented in the remainder of the thesis. The focus lies
on Godunov-type schemes and the construction of approximate Riemann solvers. To give
an idea how approximate Riemann solvers can be obtained using a relaxation model, an
example based on a Suliciu relaxation model is given. This is followed by the extension
of Godunov type schemes to multiple dimensions in case of the Euler equations followed
by an extension to second order accuracy in space and different time integration methods.
Chapter 2 is concluded by briefly discussing an extension of Godunov-type methods to
source terms and defining discrete stationary solutions and well-balanced schemes in the
context of Riemann solvers.

In the third chapter, an explicit Godunov-type scheme for the compressible Euler
equations with a source term is constructed. Important features are the well-balanced
property for arbitrary given hydrostatic equilibria and the positivity property. The central
task is thereby to extend the scheme to second order preserving the properties of the first
order scheme which are numerically verified. The main focus of the test cases is on the
performance of the scheme in the resolution of small perturbations of hydrostatic equilibria
and its behaviour in case of strong rarefactions. The content of this chapter is already
published in the Int. Journal for Numerical Methods in Fluids [78].

The goal of the forth chapter is the development of an all-speed scheme for the ho-
mogeneous Euler equations. The task therein was the construction of a stable asymptotic
preserving IMEX scheme, which exhibits a time step and numerical diffusion that are both
independent of the Mach number. It is based on a relaxation model which allows for one
linear implicit scalar equation only and the use of a Riemann solver in the explicit part to
which the positivity property of the resulting scheme is closely connected. An extension to
second order accuracy is provided which possesses the properties of the first order scheme
verified also numerically. The applicability of the scheme on low Mach number flows and
its performance in compressible as well as near incompressible flows are the main focus of
the numerical tests. The content of this chapter is already published in Communications
in Computational Physics [79].

3



INTRODUCTION

The all-speed IMEX scheme from Chapter 4 is augmented in the fifth chapter to be
able to numerically treat gravitational source terms. One task thereby is the derivation
of the limit equations and the definition of well-prepared data in the presence of source
terms. An essential part of the work is to combine the concepts of well-balancing arbitrary
hydrostatic equilibria from Chapter 3 with the IMEX formalism derived in Chapter 4.
The resulting all-speed IMEX scheme is asymptotic and positivity preserving as well as
well-balanced. The extension to second order is based on the time integration scheme
introduced in Chapter 4 with the space reconstruction techniques discussed in Chapter
3 leading to the preservation of all the aforementioned properties. Numerical examples
verify the low Mach, low Froude properties of the numerical scheme as well as its ability to
preserve hydrostatic equilibria on machine precision. It is concluded with a rising bubble
test case, a meteorological phenomenon, which requires at least a second order scheme, as
well as well-balancing and a good performance of the scheme in the low Mach, low Froude
regime. The content of this chapter is already published in the Journal of computational
Physics [77].

The thesis is completed by a chapter of Conclusions wherein the results of this work are
summarized and perspectives for future research are given. Especially interesting are the
extension of the all-speed IMEX schemes to higher order accuracy and their application
on two phase flows.
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Chapter 1

The Euler equations

This chapter is dedicated to an introduction to the Euler equations and a review of its
properties that will be important in the remainder of this work. The given review is
non-exhaustive and is mainly based on the following standard text-books for hyperbolic
problems [52, 37, 80, 11].

We first give a brief repetition of the notion of solutions in the context of hyperbolic
conservation laws, of which the homogeneous Euler equations are an example. Then we
turn to the thermodynamic background of the Euler equations followed by a brief analysis
of the wave structure. This lays the ground for the study of Riemann problems which
also play an important role in the numerical methods that will be applied throughout this
work. Since in general the solution of Riemann problems for non-linear hyperbolic prob-
lems are complex and difficult to obtain, we consider relaxation methods which provide
a viscous approximation of the original equations. Riemann problems for the relaxation
model are in general easier to solve as they have a linearised wave structure. Subsequently
we give the non-dimensional formulation of the Euler equations and address their asymp-
totic behaviour with respect to a vanishing Mach number which lay the ground for the
construction of the all-speed schemes described later on in this work. Th chapter is com-
pleted by considering the Euler equations in the presence of a gravitational field modelling
atmospheric flows.

1.1 Solutions of conservation laws

Physical models that describe atmospheric flows are often based on conservation laws. Let
d denote the number of space dimension and w : Rd × R→ Ω ⊂ Rk be a vector of k con-
served quantities mapping to the set of admissible states Ω. Regarding the homogeneous
Euler equations, w consists of the density, momentum and energy. The time variation of
w on any volume V ⊂ Rd is equal to the losses through the boundary ∂V described by a
flux function f : Ω→ Rk with f = (f1, . . . , fd)

T . Formally this process can be written as

∂t

∫
V
w(x, t)dx +

∫
∂V
f(w(x, t)) · n dV = 0, (1.1)

where n denotes the outward pointing normal to the boundary ∂V , x = (x1, . . . , xd) the
spatial coordinate and ∂t the partial derivative with respect to the time t. System (1.1) is

5



CHAPTER 1. THE EULER EQUATIONS

referred to as the integral formulation of conservation laws. Assuming w and f(w) to be
at least continuously differentiable, we can apply the Gauss divergence theorem on (1.1)
to obtain ∫

V
∂tw(x, t) +∇ · f(w(x, t)) dx = 0. (1.2)

Since relation (1.2) has to be true for all control volumes V , we can write the differential
form as

∂tw(x, t) +
d∑
i=1

∂xifi(w(x, t)) = 0 (1.3)

with (x, t) ∈ Rd × R+. We will consider (1.3) equipped with an initial condition

w0(x) = w(x, 0), x ∈ Rd, (1.4)

which is referred to as Cauchy or initial value problem (IVP). Throughout the manuscript
we will consider different aspects of the Euler equations which are an example of a hyper-
bolic system of PDEs.

Definition 1.1. A conservation law (1.3) is called hyperbolic if the flux Jacobians ∇wfi(w)
are diagonalizable for any w ∈ Ω and i = 1, . . . , d. This means it has k real eigenvalues
λκ(w) and k linearly independent corresponding eigenvectors rκ(w), κ = 1, . . . , k. If all
eigenvalues λκ are distinct, system (1.3) is called strictly hyperbolic.

A solution of the differential form (1.3) has to be continuously differentiable. Such
a solution is called classical or strong solution. In practice classical solutions may exists
only for a short time interval until discontinuities are developed. This may occur even
for smooth initial data. Since discontinuous functions are not solutions of (1.3) in the
classical sense, we introduce the concept of weak solutions in the distributional sense.

Definition 1.2. A function w ∈ (L∞loc(Rd×R+))k is called a weak solution of the Cauchy
problem (1.3) with an initial condition w0 ∈ (L∞loc(Rd))k, if it satisfies

∫ ∞
0

∫
Rd

(
〈w, ∂tφ〉+

d∑
i=1

〈fi(w), ∂xiφ〉

)
dx dt+

∫
Rd

〈
w0(x), φ(x, 0)

〉
dx = 0 (1.5)

for all test functions φ ∈ (C∞0 (Rd × R+))k, where 〈·, ·〉 denotes the euclidean product in
Rk.

The weak formulation (1.5) is obtained by taking the scalar product of (1.3) and
the test function φ which is then integrated on R+ × Rd. Thereby all derivatives are
passed to the test function φ. By construction, every classical solution is a weak solution.
Unfortunately not every weak solution is admissible. The following condition helps to
identify which discontinuities are admissible. Let Γ be a surface in the (x, t) space across
which w is discontinuous and outside of which w is continuously differentiable. Let ñ =
(nt, n1, . . . , nd) be the normal to Γ and w+, w− the limits of w on each side of Γ given by

w±(x, t) = lim
ε→0

w((x, t)± εn).
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1.1. SOLUTIONS OF CONSERVATION LAWS

Then the following jump condition, called the Rankine-Hugoniot condition,

(w+ − w−)nt +

d∑
i=1

(fi(w+)− fi(wi))ni = 0 (1.6)

must hold along the surface of discontinuity Γ. If ñ 6= 0, we can set ñ = (−S, e), where
S ∈ R and e is a unit vector of Rd. Then (1.6) can be written as

S(w+ − w−) =
d∑
i=1

(fi(w+)− fi(wi))ei. (1.7)

Thereby e and S may be interpreted as the direction and the speed of the discontinuity
described by Γ. Summarizing, to obtain admissible discontinuous solutions, one may
reformulate the problem in terms of the differential form (1.3) for regions of smooth
solutions while the Rankine-Hugoniot condition must hold across discontinuities.

To illustrate the non-uniqueness of weak solutions, we consider briefly the Burgers’
equation which is a non-linear scalar conservation law. The following example can be
found in [52].

Example 1.3. The one dimensional Burgers’ equation is given by

∂tu+ ∂x

(
u2

2

)
= 0. (1.8)

We consider a discontinuous initial datum consisting of two constant states uL, uR given
by

u0(x) =

{
uL, if x ≤ 0,

uR, if x > 0.
(1.9)

Following the Rankine-Hugoniot conditions, the speed of propagation of the discontinuity
is given with u− = uL, u+ = uR by S = (uL + uR)/2. Then the function

u1(x, t) =

{
uL, if x ≤ S t,

uR, if x > S t,
(1.10)

is a weak solution of the Cauchy problem (1.8),(1.9) for uL < uR and uL > uR. The
family of functions

um(x, t) =


uL if x ≤ Smt,
um if Sm t < x ≤ um t,

x/t if um t ≤ x ≤ uR t,

uR if x > uR t,

(1.11)

are weak solutions of the same Cauchy problem for uL < uR for any um ∈ [uL, uR] and
Sm = (uL + um)/2. This shows that for uL < uR infinitely many weak solutions can be
constructed.
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CHAPTER 1. THE EULER EQUATIONS

This example shows that using only the Rankine-Hugoniot conditions does not lead to
physical meaningful or unique solutions. To select the physically relevant solution, we can
use in addition entropy conditions. Assuming a convex domain Ω, then a strictly convex
function η : Ω→ R is called an entropy function for system (1.3) if there exist d functions
Ψi : Ω→ R, called entropy fluxes, such that

〈∇wη(w),∇wfi(w)〉 = ∇wΨi(w), i = 1, . . . , d. (1.12)

For a classical solution w of (1.3) an additional conservation law can be obtained by taking
the scalar product of (1.3) with ∇wη and which is given by

∂tη(w) +

d∑
i=1

∂xiΨi(w) = 0. (1.13)

From equation (1.13) immediately follows that the entropy is conserved in smooth regions
whereas this is not in general true for a weak solution and in particular not true for
discontinuous solutions. To determine the behaviour of the entropy across discontinuities,
the evolution of the entropy function for the related viscous problem in the vanishing
viscosity limit is studied and a weak formulation of the entropy condition can be obtained.

Definition 1.4. A weak solution w of (1.3) is called entropy solution, if it satisfies

∫ ∞
0

∫
Rd

(
η(w) ∂tφ+

d∑
i=1

Ψi(w) ∂xiφ

)
dx dt+

∫
Rd
η(w0(x)) φ(x, 0)dx ≥ 0 (1.14)

for all non-negative test functions φ ∈ C∞0 (Rd × R+), φ(x, t) ≥ 0 and for every convex
entropy function.

Summarizing, we can write the entropy inequality in the distributional sense as

∂tη(w) +
d∑
i=1

∂xiΨi(w) ≤ 0 (1.15)

and we obtain the formal criterion that the entropy has to decrease across discontinuities.

This shifts the problem to finding entropy functions and if possible all entropy functions
associated with a non-linear system of conservation laws. However in practical examples
derived from physical principles it is possible to find an entropy function which has a
physical meaning as we will see in case of the Euler equations in the following section.

1.2 Properties of the Euler equations

The homogeneous Euler equations are derived from the physical principles of conservation
of mass and energy together with Newton’s second law of motion which states that a change
in momentum is directly proportional to the applied force. Since the Euler equations
are used to describe inviscid gas flows, the change in momentum is only driven by the
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applied pressure, as viscous effects and external forces are absent. Putting these physical
considerations together gives the system of the Euler equations

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + pI) = 0,

∂tE +∇ · (u(E + p)) = 0,

(1.16)

where ρ(x, t) > 0 denotes the density, ρu(x, t) the momentum field, I ∈ Rd×d the identity
matrix and E(x, t) > 0 the total energy. The latter is given by the sum of kinetic and
internal energy as

E = ρ

(
1

2
|u|2 + e

)
. (1.17)

In addition to the conserved variables w = (ρ, ρu, E) arise the velocity field u(x, t) and
the specific internal energy e(x, t) > 0. The set of physical admissible states contain the
states w with positive density and internal energy denoted by

Ωphy = {w ∈ Ω; ρ > 0, e > 0} . (1.18)

The system is closed by a pressure law p(x, t) > 0 which is given by an equation of state
(EOS). It connects the pressure arising in the momentum and energy equations to the
internal energy and the specific volume τ = 1/ρ via the first law of thermodynamics. Here
we assume an ideal gas law for which the pressure can computed by

p(τ, e) = (γ − 1)
e

τ
= (γ − 1)ρe. (1.19)

The adiabatic exponent γ can be estimated by γ = 5/3 for a mono-atomic gas and by
γ = 1.4 for a two-atomic gas. To complete the review of the underlying physical properties
of the Euler equations, we shortly turn to the notion of entropy.

1.2.1 Entropy

The physical entropy can be interpreted as the amount of disorder present in the system.
The second law of thermodynamics states that the total entropy in an isolated system
is non-decreasing and is constant for reversible processes. The thermodynamical specific
entropy s(τ, e) > 0 is defined by the following relations

∂s

∂τ
(τ, e) =

p(τ, e)

T (τ, e)
> 0,

∂s

∂e
(τ, e) =

1

T (τ, e)
> 0, (1.20)

where T (τ, e) is the temperature. For an ideal gas, we have

s(τ, e) = s0 + cv ln (p(τ, e)τγ) , (1.21)

where cv is the specific heat at constant volume and s0 constant. A strictly convex
(mathematical) entropy function η is given by η(τ, e) = −s(τ, e)/τ associated with the
entropy fluxes Ψi = −ρuis, i = 1, . . . , d. We can write the entropy inequality for the Euler
equations (1.16) in the sense of distributions as

∂tη +∇ · (ηu) ≤ 0. (1.22)

We would like to remark here, that the thermodynamical entropy increases with time, ac-
cording to the second law of thermadynamics, whereas the (mathematical) convex entropy
is a decreasing function.

9



CHAPTER 1. THE EULER EQUATIONS

1.2.2 Eigenstructure and Hyperbolicity

This section is devoted to the hyperbolicity of the Euler equations and an analysis of its
eigenstructure. The algebraic properties that are established in this section prepare the
ground for the study of Riemann problems in the subsequent section.

For simplicity, we consider the one dimensional (1D) case where the vectors u = u and
x = x consist only of one component. The Euler equations in 1D are given by

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂tE + ∂x(u(E + p)) = 0.

(1.23)

We can write equations 1.23 in quasi-linear form

∂tw +A(w)∂xw = 0, (1.24)

where A(w) = ∂wf(w) denotes the flux Jacobian with

f(w) =

 ρu
ρu2 + p
u(E + p)

 . (1.25)

The quasi-linear formulation is invariant under a smooth variable transformation v =
ϕ(w), as well as all concepts derived from it in the remainder of this section. Therefore,
we can use primitive variables v = (ρ, u, e) instead of the conserved variables w = (ρ, ρu,E)
to determine the hyperbolicity of the Euler equations (1.23). Using the primitive variables
v we can write with B(v) = ∇wϕ(w)A(w)∇wϕ(w)−1 the following non-conservative system

∂tv + B(v)∂xv = 0 (1.26)

with

B(v) =

 u ρ 0
∂ρp
ρ u ∂ep

ρ

0 p
ρ u1

 . (1.27)

The eigenvalues of B(v) are given by

λ1 = u− c, λ2 = u, λ3 = u+ c, (1.28)

where c denotes the speed of sound which is defined as

c =
√
τ(p ∂ep− ∂τp) =

√
γτp =

√
γ
p

ρ
> 0

for an ideal gas (1.19). For w ∈ Ωphy, that is positive density and internal energy, the
sound speed c is positive. Therefore all eigenvalues are real and can be given in the
order λ1 < λ2 < λ3. The eigenvalues represent the wave speeds with which information
is propagated. Since λ1,3 contain the sound speed, they are also referred to as acoustic
waves. The associated eigenvectors are given by

r1 =

 1
−c/ρ
p/ρ2

 , r2 =

 1
0
−e/ρ

 , r3 =

 1
c/ρ
p/ρ2

 (1.29)
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and are linearly independent which establishes that the one dimensional Euler equations
(1.23) are strictly hyperbolic.

Connected to each eigenvalue λi is a characteristic field, called λi-field, whose proper-
ties are determined by the associated eigenvector(s). A λi-field is called linear degenerate
if for all w ∈ Ω and all corresponding eigenvectors holds

〈∇wλi, ri〉 = 0 (1.30)

and genuinely non-linear if 〈∇wλi, ri〉 6= 0 for all w ∈ Ω. Straightforward calculations show
that the characteristic fields associated to the acoustic waves λ1,3 = u ± c are genuinely
non-linear and the field associated to λ2 = u is linear degenerate.

Another useful concept connected to the eigenstructure are Riemann invariants. With
their help can be specified which quantities remain invariant across a wave λi. For a
λi-field, an associated Riemann invariant Ii(w) fulfils the following PDE

〈∇wIi(w), ri〉 = 0. (1.31)

Using the eigenvectors (1.29) associated to the eigenvalues λi of matrix B(v), we find the
following Riemann invariants

λ1 = u− c : I1
1 = u+

2c

γ − 1
, I2

1 = eρ−(γ−1), (1.32)

λ2 = u : I1
2 = u, I2

2 = p, (1.33)

λ3 = u+ c : I2
3 = u− 2c

γ − 1
, I2

3 = eρ−(γ−1). (1.34)

Riemann invariants play an important role in finding a solution to a Riemann problem as
detailed in the next section.

1.2.3 Riemann Problem

A Riemann problem is a special type of Cauchy problem, where the initial data consists
of two constant states wL and wR. Riemann problems arise in a physical context in the
so called shock-tube problem. Here, we consider one gas consisting of two different initial
configurations defined by wL and wR which are separated by a membrane. Removing the
membrane triggers the interaction of the two gas configurations. The study of Riemann
problems is also important regarding the construction of numerical schemes as they nat-
urally arise from a finite volume discretization which is addressed in Chapter 2. For the
1D Euler equations (1.23) the Riemann problem is given by

∂tw + ∂xf(w) = 0,

w0(x) =

{
wL if x < 0,

wR if x > 0,

(1.35)

where the initial states are wL = (ρL, (ρu)L, EL) and wR = (ρR, (ρu)R, ER). The solution
to the Riemann problem (1.35) is a similarity solution, that means it is a function of x/t,
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x

u− c
u

u+ c

x = 0

wR

w∗Rw∗L

wL

Figure 1.1: Solution structure (1.36) of the Riemann Problem (1.35) of the 1D Euler
equations (1.23).

alone, where t > 0, which means it is self similar. The solution consists of four constant
states separated by the three waves λ1 < λ2 < λ4 and can be written as

w(x, t) = w̃(x/t) =


wL if x

t < λ1,

w∗L if λ1 <
x
t < λ2,

w∗R if λ2 <
x
t < λ3,

wR if λ3 <
x
t .

(1.36)

The states w∗L, w
∗
R are called intermediate states. The structure of solution (1.36) is de-

picted in Figure 1.1.
In principle, we distinguish three different types of waves also called elementary waves.

In a shock wave, the left and right states wL, wR are connected through a single jump
discontinuity in a genuinely non-linear λi-field. The discontinuity moves with a speed Si
which is given by the Rankine Hugoniot condition (1.6). Entropy violating shocks are
ruled out via the Lax entropy condition, that is

λi(wL) > Si > λi(wR). (1.37)

The Lax entropy condition can be deduced for a convex flux from the entropy inequality
(1.15). For details, we refer to [25]. This means the family of curves dx(t)

dt = λi for a curve
x(t), also called characteristic lines or characteristics, run into the discontinuity.

In a contact wave, the left and right states wL, wR are connected through a discontinu-
ity in a linearly degenerate λi-field. As in the case of a shock wave, the Rankine-Hugoniot
condition determines the shock speed Si, but due to (1.30) the characteristic lines run
parallel to the discontinuity and we have λi(wL) = Si = λi(wR).

In a rarefaction wave, the left and right states wL, wR are connected by a smooth
transition in a genuinely non-linear λi-field. In this case, the characteristic lines diverge
from each other such that λi(wL) < λi(wR)

We have already seen that the 1D Euler equations (1.23) exhibit three waves of which
the middle wave λ2 = u is linearly degenerate and the acoustic waves are genuinely non-
linear. Accordingly, the middle wave, connecting the states w∗L and w∗R, is a contact wave
with the Riemann invariants u and p. This means velocity and pressure are invariant
across this wave, whereas there is a jump in the density. This also applies for all density
dependent quantities as specific internal energy and sound speed.
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The acoustic waves λ1 and λ3 can correspond to a rarefaction or a shock wave. They
connect the states wL, w

∗
L and w∗R, wR respectively. According to the Riemann invariants

I1,3 in (1.32) and (1.34) all three quantities ρ, u and p change across the acoustic waves.
The exact solution of the Riemann problem is difficult to obtain due to the non-linear
nature of the Euler equations and we refer to [80, 52] for a detailed study of the solution
strategy. The obtained exact solution is complex and cannot be given in a closed form.

Therefore we turn to an approximation of the Euler equations using relaxation tech-
niques. The advantage of considering relaxation models is that they have a linearised wave
structure leading to less complex Riemann solutions.

1.3 Relaxation approaches for the Euler equations

A relaxation model for a system of conservation laws (1.3) is a system of PDEs of the form

∂tW +∇ · F (W ) =
1

ε
R(W ), (1.38)

with a state vector W : Rd × R+ → Rq and a flux function F : Rq → Rq with q > k.
The relaxation model (1.38) is a perturbation of the original system (1.3). Therefore, we
assume it to be hyperbolic. The relaxation source term R : Rq → Rq drives the solution
W to its relaxation equilibrium M(w) ∈ Rq as the relaxation time ε tends to zero. In
relaxation equilibrium it has to hold W = M(w) and R(M(w)) = 0, where M denotes
the equilibrium manifold. Formally we can connect the relaxation system to the original
system (1.3) via a linear operator Q : Rq → Rk for which in equilibrium holds QM(w) = w
and QF (M(w)) = f(w).

The relaxation model (1.38) consists of more equations than the original system of
conservation laws, but is in general easier to solve due to a linearised wave structure. The
thereby obtained solution W of the relaxation model provides an approximate solution
w = QW of the original system of conservation laws (1.3).

In the following we will review two relaxation strategies. The first one is mainly
connected to Jin & Xin [43] and we will use that approach to derive a relaxation system
fitted for the Euler equations (1.23) as described by Suliciu in [74, 75].

1.3.1 Jin-Xin Relaxation

To provide a basis for the Suliciu relaxation, which will be the relaxation method used
in the remainder of this work, it suffices to consider a scalar conservation law in one
dimension

∂tu+ ∂xf(u) = 0 (1.39)

with u(x, 0) = u0(x) and the eigenvalue is given by λ = ∂uf(u). The associated relaxation
system is given by

∂tu+ ∂xυ = 0,

∂tυ + a2∂xu =
1

ε

(
f(u)− υ

)
,

(1.40)

with the initial condition for the relaxation variable v given by υ(x, 0) = f
(
u0(x)

)
. The

relaxation time is again denoted by ε > 0, where the constant a > 0 is a relaxation
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parameter. The eigenvalues of the relaxation system (1.40) are given by λ± = ±a and
the flux function is diagonalisable in the characteristic variables υ ± au. The relaxation
system is therefore hyperbolic. We will show in the following that the original system can
be obtained from the vanishing viscosity limit ε→ 0 of the relaxation system. Therefore
we perform a Chapman Enskog analysis and look at the first order approximation in ε of
the relaxation variable υ = υ0 + ευ1 +O(ε2) where υ0 = f(u). We can rewrite the second
equation in (1.40) for υ and obtain

υ = f(u)− ε(∂tυ + a2∂xu)

= f(u)− ε
(
a2 − (∂uf(u))2

)
∂xu+O(ε2)

(1.41)

Inserting the expansion (1.41) into the first equation of (1.40) yields

∂tu+ ∂xf(u) = ε∂x

((
a2 − (∂uf(u))2

)
∂xu

)
. (1.42)

Provided that
a2 ≥ (∂uf(u))2 , (1.43)

equation (1.42) is a parabolic equation with a positive dissipation. For ε → 0 we obtain
from equations (1.41) and (1.42) in the limit the original equations

υ = f(u), ∂tu+ ∂xf(u) = 0. (1.44)

Therefore we can set as equilibrium M(u) = (u, f(u))T .
Condition (1.43) guarantees a stable diffusive approximation of the original equations

and also provides an interlacing of the eigenvalues

− a ≤ ∂uf(u) ≤ a (1.45)

which was first referred to as the subcharacteristic condition for the relaxation parameter
a by Liu in [57]. A dissipative entropy condition was formulated for general non-linear
relaxation systems by Chen, Levermore and Liu [19] and therein, as well as a little later in
[61], was also established that (1.41) and (1.42) indeed govern the asymptotic behaviour
of the relaxation system if time goes to infinity or ε goes to zero.

1.3.2 Suliciu Relaxation

To directly apply the relaxation (1.40) on (1.23), we write the one dimensional Euler
equations in Lagrangian coordinates. Unlike the Eulerian framework, in which the Euler
equations (1.23) are given, the Lagrangian framework tracks a particular fluid particle.
The position of the particle ξ at time t is given by x̄(ξ, t) for which holds

∂x̄

∂ξ
=

1

ρ
= τ. (1.46)

According to the first Newtonian law the velocity of the particle is given by

∂x̄

∂t
(ξ, t) = u(x̄(ξ, t), t). (1.47)
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1.3. RELAXATION APPROACHES FOR THE EULER EQUATIONS

Let ϕ̄(ξ, t) = ϕ(x̄(ξ, t), t) ∈ L∞(R,R+) denote an Eulerian variable ϕ in Lagrangian
coordinates. Then we can write the transformation

∂ϕ̄

∂ξ
(ξ, t) = τ

∂ϕ

∂x̄
(ξ, t),

∂ϕ̄

∂t
(ξ, t) = ρu

∂ϕ̄

∂ξ
(ξ, t) +

∂ϕ

∂t
(ξ, t),

(1.48)

with which we obtain
∂xϕ = ρ ∂ξϕ̄, ∂tϕ = ∂tϕ̄− ρu ∂ξϕ̄. (1.49)

Using this transformation on the Euler equations (1.23), we can write in Lagrangian
coordinates

∂tτ − ∂ξu = 0,

∂tu+ ∂ξp = 0,

∂t

(
e+

u2

2

)
+ ∂ξ(pu) = 0.

(1.50)

For the sake of simplicity, we have dropped the bar in the notation of the Lagrangian
variables. The non-linear character of (1.50) is given by the non-linear pressure law p.
Therefore the pressure is relaxed by applying the Jin Xin relaxation (1.40) on the second
equation of (1.50) and we obtain

∂tu+ ∂ξπ = 0,

∂tπ + a2∂ξu =
1

ε
(p− π).

(1.51)

Transforming back in Eulerian variables, we can write a relaxation system for (1.23) in
conserved variables as

∂tρ+ ∂x(ρu) = 0,

∂tρu+ ∂x(ρu2 + π) = 0,

∂tE + ∂x(u(E + π)) = 0,

∂tρπ + ∂x(ρuπ + a2u) =
ρ

ε
(p− π).

(1.52)

Comparing the relaxation equation for ρπ with the actual pressure evolution

∂tρp+ ∂x(ρup) + ρ2c2∂xu = 0, (1.53)

which is derived from the internal energy equation, we see that the relaxation parameter
is an approximation of ρc. Indeed we can show that under the subcharacteristic condition

a ≥ ρc (1.54)

the relaxation system (1.52) is a stable diffusive approximation of the original equations
(1.23). Following the Chapman Enskog analyis of the Jin-Xin relaxation, we find using
(1.53)

π = p− ερ
(
a2

ρ2
− c2

)
∂xu+O(ε2). (1.55)
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CHAPTER 1. THE EULER EQUATIONS

Inserting this in the momentum and energy equation of (1.52), we find

∂tρu+ ∂x(ρu2 + p) = ε ∂x

(
ρ

(
a2

ρ2
− c2

)
∂xu

)
, (1.56)

∂tE + ∂x(u(E + p))) = ε ∂x

(
ρ

(
a2

ρ2
− c2

)
∂x

(
u2

2

))
. (1.57)

Due to the subcharacteristic condition, the diffusion coefficient is positive and in the limit
ε→ 0 the original equations are recovered. The relaxation equilibrium is given by

M(w) = (ρ, ρu,E, ρp). (1.58)

To obtain further information about the relaxation model, we perform an analysis of
the eigenstructure. For the relaxation model, we define primitive variables V = (ρ, u, e, π)
and rewrite the relaxation system (1.52) in non-conservative form

∂tV + B(V)∂xV = 0. (1.59)

The matrix B(V) is given by

B(V) =


u ρ 0 0
0 u 0 1

ρ

0 π
ρ u 0

0 a2

ρ 0 u

 . (1.60)

The eigenvalues are given by

λ− = u− a

ρ
< λu = u < λ+ = u+

a

ρ
, (1.61)

where λu has multiplicity two. Due to the subcharacteristic condition, we have the inter-
lacing of the eigenvalues given by

u− a

ρ
< u− c < u < u+ c < u+

a

ρ
. (1.62)

which is depicted in Figure 1.2. The associated eigenvectors are linearly independent and
are given by

ru1 =


1
0
0
0

 , ru2 =


0
0
1
0

 , r± =


ρ2

a2

± 1
a
π
a2

1

 . (1.63)

Therefore, the relaxation model is hyperbolic. Furthermore we can compute that all
characteristic fields are linearly degenerate which makes the computation of the exact
solution of the associated Riemann problem to the relaxation model rather uncomplicated.
The exact solution of the Riemann problem is given in Section 2.1.2 where it is used to
construct an approximate Riemann solver for the Euler equations (1.23).

Until now we have considered the Euler equations in dimensional variables which are
used to construct numerical methods for compressible flow. The basis for the development
of numerical methods for all-speed flow form the non-dimensional Euler equations whose
derivation and properties are addressed in the following section.
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x

u− c
u

u+ c

u− a/ρ u+ a/ρ

Figure 1.2: Interlacing of the eigenvalues of the Euler equations (1.23) and the Suliciu
relaxation model (1.52).

1.4 The incompressible limit of the Euler equations

To keep the derivations as general as possible, we turn back to the Euler equations (1.16)
in d space dimensions. The flow regime of the Euler equations can be characterized by the
so called Mach number which gives the ration between the gas velocity |u| and the sound
speed c. Even though the Mach number does not directly appear in the dimensional
form of the Euler equations (1.16), it plays a crucial role for the properties of the gas
under consideration as well as for the design of stable numerical schemes. To visualize the
influence of the Mach number in the equations, we rewrite (1.16) in its so called scaled or
non-dimensional form. Therefore we write each variable as a non-dimensional quantity,
denoted by (̃·), multiplied by a reference value, denoted by the subscript (·)r. The reference
value contains the units in the SI standard formulation which means we give the reference
time tr in seconds [s], the reference space xr in meters [m], the reference velocities ur, cr
in [m/s] and the reference density ρr in [kg/m3]. The remaining reference pressure pr
and internal energy er can be computed by pr = ρrc

2
r and er = c2

r . In this spirit, the
dimensional variables can be written as

x = x̃ xr, t = t̃ tr, u = ũ
xr
tr
,

ρ = ρ̃ ρr, p = p̃ ρrc
2
r , e = ẽ c2

r .
(1.64)

Relations (1.64) are inserted into the Euler equations (1.16) and after some algebraic
manipulations the non-dimensional Euler equations are obtained. Thereby most of the
reference values cancel out and the only non-dimensional quantity left is the reference
Mach number defined as

M =
ur
cr
. (1.65)

Omitting the tilde in the notation of the non-dimensional variables, the scaled equations
read

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u +
p

M2
I) = 0,

∂tE +∇ · (u(E + p)) = 0.

(1.66)
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CHAPTER 1. THE EULER EQUATIONS

where the non-dimensional total energy is given by

E = ρ

(
1

2
M2|u|2 + e

)
. (1.67)

We see from equations (1.66) that the Mach number has an influence on the pressure
gradient in the momentum equation. The Mach number also arises in the acoustic waves.
The wave speeds for (1.66) are given by

λ− = un −
c

M
, λu = un, λ+ = un +

c

M
, un = 〈u,n〉 . (1.68)

Especially for small Mach numbers, the pressure term becomes large and the acoustic wave
speeds tend to infinity. Possible consequences that arise in the construction of a stable
numerical scheme for small Mach numbers regarding the time integration are discussed in
Section 2.3.

Small or vanishing Mach numbers can arise when the reference sound speed tends to
infinity which is typical for incompressible materials. The investigation of the low Mach
limit started with the seminal work by Klainerman & Majda [46, 47] for the isentropic
Euler equations. The non-isentropic case is studied for example in [26, 70, 40]. Therein it
was formally shown that in the low Mach limit M → 0 the compressible Euler equations
(1.66) tend under suitable boundary conditions to the incompressible Euler equations

ρ = const,

∂tu + u · ∇u +∇P = 0,

∇ · u = 0.

(1.69)

We will give a short review on how the incompressible equations (1.69) are formally ob-
tained from (1.66) following Dellacherie [26]. First the non-dimensional equations are
reformulated in primitive variables ρ,u, p obtaining

∂tρ+∇ · (ρu) = 0,

ρ(∂tu + u · ∇u) +
∇p
M2

= 0,

∂tp+ u · ∇p+ ρc2∇ · u = 0.

(1.70)

Suppose an asymptotic expansion of the variables ρ,u, p with respect to the Mach number
as

ρ(x, t) = ρ0(x, t) +O(M),

p(x, t) = p0(x, t) +Mp1(x, t) +M2p2(x, t) +O(M3),

u(x, t) = u0(x, t) +O(M).

(1.71)

Then we insert (1.71) into (1.70) and separate the O(M−2) and O(M−1) terms. Thereby
we find ∇p0 = 0 and ∇p1 = 0 which means that the pressure is constant in space up
to a perturbation in M2. Therefore we can write for the pressure expansion p(x, t) =
p0(t) +M2p2(x, t) +O(M3) and we find for the O(M0) terms

∂tρ0 +∇ · (ρ0u0) = 0,

ρ0 (∂tu0 + u0 · ∇u0) +∇p2 = 0,

∇ · u0 =
∂tp0(t)

ρ0c2
0

,

(1.72)
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1.5. THE EULER EQUATIONS WITH A SOURCE TERM

where c0 = c(p0, ρ0). For a bounded domain V with slipping or periodic boundary condi-
tions, we find via the Gauss theorem that

∫
V ∇ · u dx = 0. Therefore when solving the

Euler equations on such a domain V , we find ∂tp0(t) = 0 since ρ0c
2
0 > 0. This means the

pressure is given by

p(x, t) = p0 +O(M2), where p0 = const. (1.73)

Then it follows directly from (1.72) that ∇ · u0 = 0. At this point we can define the so
called set of well-prepared data in the context of the Euler equations as

Ωwp = {w ∈ Ωphy;∇ρ0 = 0,∇ · u0 = 0,∇p0 = 0,∇p1 = 0} . (1.74)

Thereby a solution w of the compressible Euler equations which is well-prepared, is close
to a solution of the incompressible Euler equations (1.69) for small Mach numbers.

The goal of this work is to develop all-speed schemes, which are numerical methods
that are stable and produce an accurate solution for all Mach regimes. This includes
taking into account the physical properties of the flow. This means that for small Mach
numbers, a discretization of the non-dimensional Euler equations (1.66) has to be a con-
sistent discretization of the incompressible Euler equations (1.69) such that the diagram
depicted in Fig. 1.3 is satisfied. A scheme that has this property is called asymptotic
preserving (AP). In terms of invariant domains we can formulate the AP property such
that if the initial condition w0(x) is well-prepared, i.e. lies in Ωwp, then the numerical
approximation of w(x, t) lies in Ωwp for all later times t > 0.

A great part of the description of the all-speed scheme for the Euler equations (1.66)
presented in Chapter 4 is dedicated to the proof and the numerical testing of the AP
property. The same applies for the all-speed scheme for the Euler equations with a grav-
itational potential presented in Chapter 5. To lay the basis for the latter case, we give a
short review on the compressible Euler equations with a gravitational source term in the
following section.

w∆
M w∆

0

wM w0

M → 0

discrete

∆→ 0∆→ 0

M → 0

continuous

Figure 1.3: Diagram of the asymptotic limit: wM denotes the solution of the compressible
equations, w∆

M the discrete solution of compressible equations, w0 solution to the limit
equations and w∆

0 the discrete solution of the limit equations.

1.5 The Euler equations with a source term

For atmospheric flows, arising in meteorology or in astrophysical applications, the influence
of a gravitational potential is very important. Due to the presence of a gravitational
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CHAPTER 1. THE EULER EQUATIONS

field, the gas is accelerated and the conservation of momentum does not hold any more.
Therefore the Euler equations (1.16) are augmented by source terms and the full equations
read

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + pI) = −ρ∇Φ,

∂tE +∇ · (u(E + p)) = −u · ρ∇Φ,

(1.75)

where the gravitational potential Φ : Rd → R is assumed to be a smooth function. For
simplicity we consider here the special case of a given time-independent potential. In the
case of self-gravitation, which we will not consider here, the gravitational potential Φ is
described by a Poisson equation

∆Φ = 4πgρ, (1.76)

where g denotes a gravitational constant. The total energy of the system (1.75) is given
by

EΦ = E + ρΦ = ρ

(
1

2
|u|2 + e+ Φ

)
(1.77)

containing also the potential energy ρΦ. Rewriting the last equation in (1.75) in terms of
the total energy EΦ with a time-independent potential Φ, gives the conservation of the
total energy

∂tE
Φ +∇ ·

(
u(EΦ + p)

)
= 0, (1.78)

as considered for example in [10]. Since the momentum is not conserved, system (1.75) is
called a system of balance laws.

Equations (1.75) can be written in compact notation in the variables (w,Φ) as a Cauchy
problem

∂tw +∇ · f(w) = −s(w)∇Φ,

∂tΦ = 0,

w0(x) = w(x, 0),

(1.79)

where the flux function and the source term are given by

f(w) =

 ρu
ρu⊗ u + p I

u(E + p)

 , s(w) =

 0
ρ

ρ · u

 . (1.80)

Analogue to the homogeneous case, we can define the concept of weak solutions for the
Cauchy problem (1.79).

Definition 1.5. A function w ∈ (L∞loc(Rd × R+))k is a weak solution of (1.79) with an
initial condition w0 ∈ (L∞loc(Rd))k, if it satisfies∫ ∞

0

∫ d

R

(
〈w, ∂tφ〉+

d∑
i=1

〈fi(w), ∂xiφ〉+ 〈s(w)∇Φ, φ〉

)
dxdt

+

∫
Rd

〈
w0(x), φ(x, 0)

〉
dx = 0

(1.81)

for all test functions φ ∈ (C∞0 (Rd × R+))k.
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To rule out inadmissible weak solutions, we can define Rankine-Hugoniot conditions.
Since the potential is assumed to be smooth and therefore bounded, the Rankine-Hugoniot
conditions established for the homogeneous case (1.6) still hold. A notion of entropy can
also be established for (1.79) and we refer for details for example to [11, 28, 65] and
references therein.

To analyse the wave structure of (1.75), let us consider for simplitiy the one dimensional
case of the equations (1.75) with x = x. We can rewrite the inhomogeneous equations
(1.75) in primitive variables V = (ρ, u, e,Φ) in non-conservative form

∂tV + B(V)∂xV = 0 (1.82)

with

B(V) =


u ρ 0 0
∂ρp
ρ u ∂ep

ρ 1

0 p
ρ u 0

0 0 0 0

 . (1.83)

The matrix B(V) has the eigenvalues

λ1 = u− c, λ2 = u, λ3 = u+ c, λ4 = 0, (1.84)

where the zero wave speed corresponds to the gravitational potential. The associated
eigenvalues are given by

r1 =


1
−c/ρ
p/ρ2

0

 , r2 =


1
0
−e/ρ

0

 , r3 =


1
c/ρ
p/ρ2

0

 r4 =


1
−u/ρ
p/ρ2

(u2 − c2)/ρ

 . (1.85)

The eigenvectors are linearly degenerate as long as u 6= 0. However in a resonant point,
that is u = c, the eigenvalue λ4 = 0 has multiplicity two and the eigenvector r4 coincides
with r1 which means B(V) is not diagonalizable. Apart from that resonant point, the
system is hyperbolic and we immediately see that the characteristic field associated to
the zero eigenvalue is linear degenerate. Therefore it exhibits a contact wave which is
well-defined. Considering a Riemann problem with piecewise constant initial data, the
potential only jumps across the λ = 0 curve.

Especially interesting are stationary solutions of (1.79) which are independent of time
and fulfil the following balance between flux and source term

∇ · f(w) = s(w)∇Φ. (1.86)

An important class of stationary solutions of the Euler equations with gravity are given
by hydrostatic equilibria which are stationary states at rest, that is u = 0. Inserting
this constraint into (1.86) with the flux given by system (1.75), we find the hydrostatic
equilibrium equation

∇p = −ρ∇Φ. (1.87)

System (1.87) is under-determined since the pressure p is a dependent variable of density
and internal energy and therefore (1.87) equipped with an initial condition w0(x) might

21



CHAPTER 1. THE EULER EQUATIONS

have infinitely many solutions. If however additional information on the physical frame-
work is supplied, the uniqueness of solutions can be recovered. Here we will assume one
class of EOS, that is frequently used to model atmospheric or astrophysical flows. Let p
fulfil the following relation

p = χρΓ (1.88)

with the constant χ > 0 and Γ ∈ (0,∞). An isothermal atmosphere is given by χ = R T ,
where R is the specific gas constant and T a fixed temperature. The adiabatic exponent
is given by Γ = 1 and the isothermal EOS reads

p = RTρ. (1.89)

Inserting this relation in the hydrostatic equation (1.87) yields for a constant C

ρ(x) = exp

(
C − Φ(x)

RT

)
, p(x) = RTρ(x). (1.90)

For Γ ∈ (0, 1)∪ (1,∞) one obtains a polytropic atmosphere, where the equilibrium solution
reads for a constant C

ρ(x) =

(
Γ− 1

χΓ
(C − Φ(x))

)1/(Γ−1)

, p(x) = χρ(x)Γ. (1.91)

A special case of the polytropic atmosphere is the isentropic atmosphere which is obtained
for Γ = γ. This choice leads to the fact, that the energy equation in (1.16) and (1.75) is
always fulfilled and the mass and momentum equations are sufficient to describe the gas.

In nature, often fluctuations around such equilibrium solutions occur. To accurately
compute their evolution, one has to make sure that hydrostatic equilibrium solutions
of (1.87) are numerically well captured and the numerical method does not contribute
spurious fluctuations itself. Therefore it is a goal of this work to develop schemes for the
Euler equations with a gravitational source term (1.75) that are able to preserve a discrete
version of the hydrostatic equilibrium on machine precision.
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Chapter 2

Finite volume methods

This chapter is dedicated to the numerical methods used to approximate the evolution of
compressible gases given by Euler equations which were described in the previous chap-
ter. A good approximation of the continuous equations has to preserve their properties
also on the discrete level. Since integral formulation of the considered homogeneous equa-
tions have the conservation property, the finite volume (FV) framework provides a fitting
discretization framework which naturally leads to methods in conservation form.

The numerical methods based on the FV framework discussed in this chapter are
taken from the text-books by Bouchut [11], Leveque [52] and Toro [80]. First we give a
brief derivation of the general form of conservative schemes in one space dimension in the
FV framework continued by the Godunov scheme based on exact Riemann solvers and
Godunov-type schemes based on approximate Riemann solvers. A strategy to extend the
one dimensional Godunov schemes to multiple space dimensions is given by considering
split dimensional Riemann problems. Subsequent we give a brief review on the MUSCL
approach to obtain a scheme that is second order accurate in space based on a first order
FV scheme introduced in the previous section. Concerning the numerical treatment of
the time derivatives, we give examples of second order explicit time integration schemes
and motivate the use of an implicit-explicit (IMEX) approach when considering the Euler
equations for small Mach numbers. The chapter is completed by addressing Godunov
type schemes for hyperbolic problems with source terms as arising in the case of the Euler
equations with a gravitational potential.

2.1 First order finite volume schemes for conservation laws

We consider the following one dimensional (1D) initial value problem for a system of
hyperbolic conservation laws{

∂tW (x, t) + ∂xF (W (x, t)) = 0,

W 0(x) = W (x, 0),
(2.1)

where W : R × R+ 7→ Ω ⊂ Rk is the vector of conserved variables, F : Ω → Rk the flux
function. The set Ω denotes the set of admissible states.

The first step towards a numerical scheme is the discretization of the computational
domain I ⊂ R which is given by an interval in 1D. Throughout this work we will consider
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Figure 2.1: Finite volume discretization.

a Cartesian mesh with a uniform grid size ∆x. In this spirit, the interval I is subdivided
into N grid cells Ci = (xi−1/2, xi+1/2) of length ∆x with the cell center xi = i∆x for
i = 1, . . . , N . The time line R+ is discretized as tn+1 = tn + ∆t where the time increment
∆t is variable and can underlie a stability restriction.

As the name finite volume indicates, the solution of (2.1) on the cell Ci is approximated
by the average of the solution at time tn over Ci as follows

Wn
i ≈

1

∆x

∫
Ci

W (x, tn)dx. (2.2)

This results in a piecewise constant approximation at time tn as illustrated in Fig. 2.1. To
obtain the update Wn+1

i at the next time level tn+1 from known cell averages Wn
i at the

previous time step, let us look at the average of the IVP (2.1). Assuming W sufficiently
smooth on (tn, tn+1], we integrate (2.1) on Ci × (tn, tn+1] which yields∫

Ci

W
(
x, tn+1

)
dx−

∫
Ci

W (x, tn) dx

+

∫ tn+1

tn
F
(
W (xi+1/2, t)

)
dt−

∫ tn+1

tn
F
(
W (xi−1/2, t)

)
dt = 0. (2.3)

Rearranging the terms and using the definition of cell averages (2.2), leads to

Wn+1
i = Wn

i −
1

∆x

(∫ tn+1

tn
F (W (xi+1/2, t))dt−

∫ tn+1

tn
F (W (xi−1/2, t))dt

)
. (2.4)

According to (2.4), the cell average on cell Ci at the new time is updated by determining
the fluxes through the cell interfaces xi−1/2, xi+1/2. In practise the exact integrals of the
flux function are in general difficult to obtain. Therefore, we define the numerical flux as
an approximation of the flux average along x = xi±1/2 on (tn, tn+1] given by

F∆
i+1/2 ≈

1

∆t

∫ tn+1

tn
F (W (xi+1/2, t))dt.

Inserting this definition into (2.4), the state Wn+1 can be obtained by the recursive relation

Wn+1
i = Wn

i −
∆t

∆x

(
F∆
i+1/2 −F

∆
i−1/2

)
, where W 0

i ≈
1

∆x

∫
Ci

W 0(x)dx. (2.5)
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An explicit scheme can be obtained, when the numerical flux F∆
i+1/2 is given in dependence

of data at the previous time step only. For a first order approximation it suffices to base
the numerical flux at the interface xi+1/2 on the direct neighbours Wn

i ,W
n
i+1 and we can

write F∆
i+1/2 as a function of these values given by F∆

i+1/2 = F(Wn
i ,W

n
i+1). The explicit

scheme is then given by

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wn

i ,W
n
i+1)−F(Wn

i−1,W
n
i )
)
. (2.6)

A method, that can be written in the form of (2.6) is said to be conservative as it is a
discrete analogue of the integral formulation (1.1) of the IVP. Indeed, summing (2.6) over
all cells Ci for i = 1, . . . , N , we obtain the Riemann sum approximation

∆x
N∑
i=1

Wn+1
i = ∆x

N∑
i=1

Wn
i −∆t

(
F∆
N+1/2 −F

∆
1/2

)
. (2.7)

Due to the telescope sum, the flux terms cancel out and only the fluxes over the boundaries
remain. To obtain a scheme that is conservative on the whole computational domain
I = [x1/2, . . . , xN+1/2], the choice of boundary condition is important. To simplify the
notation, we introduce ghost cells to extend the computational domain as depicted in
Figure 2.2. In the fully discrete scheme (2.6), the fluxes at the boundaris depend on the
ghost cells W0 at the left and on WN+1 at the right boundary. Those are set according
to the chosen boundary condition. Throughout the manuscript, the following boundary
conditions are used

• Periodic boundary conditions: Due to the periodicity, we have W0 = WN and
WN+1 = W1 which means that in the update (2.6), the fluxes at the boundaries
coincide and the simulated quantities are conserved on the computational domain.

• Dirichlet/Exact boundary conditions: The value at the boundary is given exactly.
Especially when knowing the exact solution W (x, t) of (2.1), for example when
computing convergence rates, the values of the ghost cells are given by

Wn
0 ≈

1

∆x

∫
C0

W (x, tn)dx, Wn
N+1 ≈

1

∆x

∫
CN+1

W (x, tn)dx. (2.8)

• Neumann boundary conditions: They describe a zero flux over the boundary and are
given by ∂xW (x1/2, t) = 0 and ∂xW (xN+1/2, t) = 0 in one dimension. The simplest
way of approximation is to set W0 = W1 and WN+1 = WN . Another option is to
approximate the derivative by higher order extrapolation methods based on interior
domain values.

Before defining a specific numerical flux function F , we have to give criteria what
forms a good flux function. Above all, the numerical solution should converge to the true
solution of (2.1) as the grid is refined, that is ∆ = (∆x,∆t) → 0. A necessary condition
for convergence is consistency. A scheme is consistent with the original conservation law
(2.1) if the numerical flux function reduces to the true flux F in case of constant flow, i.e.
F(W,W ) = F (W ).
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WN+2· · ·

· · ·

computational domain Ighost cells ghost cells

Figure 2.2: Discretization of the computational domain with ghost cells.

A second necessary condition is that information must be propagated at the cor-
rect physical speeds determined by the eigenvalues of the flux Jacobian ∂WF (W ). This
condition can be reformulated as a restriction on the time step ∆t also known as the
Courant-Friedrichs-Lewy (CFL) condition

∆x

∆t
≤ λmax, (2.9)

where
λmax = max

i,κ
|λκ(Wn

i )|, κ = 1, . . . , k, i = 1, . . . , N, (2.10)

is the maximum of the absolute value of all eigenvalues. It ensures, that the information
in the numerical scheme is not propagated faster than the correct physical speed.

Unfortunately these conditions are only necessary but not sufficient to ensure conver-
gence. However, the following result of Lax and Wendroff reassures that when a convergent
method is found that the resulting numerical solution is an approximation of a weak so-
lution for (2.1).

Theorem 2.1 (Lax-Wendroff, taken from [37]). Let W∆l
be given by a scheme (2.5) which

is in conservation form and consistent with (2.1). Assume there exists a sequence ∆xl → 0
such that the ratio ∆xl/∆tl is constant. Suppose the following holds:

• ‖W∆l
‖L∞(R×R+) ≤ K, K const.

• The sequence W∆l converges in L1
loc(R× R+) to a function W .

Then W is a weak solution of (2.1).

To numerically verify convergence and the rate of convergence of the schemes through-
out this work, we compute the L1 norm of the difference between numerical and exact
solution at a final time tm = T on a sequence of refined grids

errl1,T = ∆xl

Nl∑
i=1

|Wm
i −W (x, T )| . (2.11)

The convergence rates between two consecutive grids are then computed as

rate1,T =
log
(

errl−1
1,T /errl1,T

)
log (∆xl−1/∆xl)

. (2.12)
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The Lax-Wendroff Theorem does not ensure that the obtained weak solution is an
admissible weak solution. To rule out entropy violating numerical solutions, it is required
to be consistent with the entropy condition. We refer to e.g. [11, 25, 37] for details on
entropy stability for explicit FV schemes of type (2.5).

2.1.1 Godunov’s scheme

Looking at the piecewise constant solution given by the cell averages Wi for i = 1, . . . , N ,
depicted in Figure 2.1, we see that at each interface arises a local Riemann problem

∂tW + ∂xF (W ) = 0

W 0(x) =

{
Wn
i if x < xi+1/2

Wn
i+1 if x > xi+1/2.

(2.13)

The basis of the (exact) Godunov scheme is the assumption that a solution of the Riemann
problem (2.13) exists and that it can be given analytically in an explicit or implicit expres-
sion. In general, the scheme can be divided in three parts, also known as the Reconstruct-
Evolve-Average (REA) algorithm. In the reconstruction step, a piecewise polynomial

function W̃ (x, tn) is defined from cell averages at time tn. For a first order scheme Go-

dunov proposed to use the cell average value on the grid cell, that is W̃ (x, tn) = Wn
i for

x ∈ (xi−1/2, xi+1/2). In the evolution step, the local Riemann Problems (2.13) are solved

exactly. The solution W̃ (x, tn+1) at the next time step tn+1 = tn+ ∆t is piecewise defined

by the local Riemann solutions Wi+1/2

(
x−xi+1/2

t−tn ;Wn
i ,W

n
i+1

)
at t = tn+1 on x ∈ (xi, xi+1)

for i = 1, . . . , N . To ensure that the Riemann solutions do not interact, it has to be ensured
that the waves from adjacent Riemann problems travel maximal of distance ∆x/2. This
can be achieved by adjusting the time increment ∆t as depicted in Figure 2.3 for the local
Riemann problems at the interfaces xi−1/2, xi+1/2. The CFL restriction for Godunov’s
scheme is thus given by

∆t ≤ 1

2

∆x

λmax
, (2.14)

where λmax is the largest absolute wave speed on the whole computational domain at time
tn as defined in (2.10). To maintain the cell average structure at the new time level, the

solution W̃ (x, tn+1) is averaged in the last step of the RSA algorithm over each grid cell
as

Wn+1
i =

1

∆x

∫
Ci

W̃ (x, tn+1)dx. (2.15)

The procedure of Godunov’s scheme is depicted in Figure 2.4.

As we have seen previously, it is desirable to have a scheme in conservation form when
approximating conservation laws. To see that Godunov’s scheme fulfils this property, we
analyse the solution W̃ (x, tn+1) on cell Ci. Let λ−i+1/2 be the fastest wave speed from the

Riemann problem at interface xi+1/2 travelling into the cell Ci from the right and λ+
i−1/2

the fastest wave from the Riemann problem at xi−1/2 travelling into the cell Ci from the
left, as illustrated in Figure 2.4. We can divide the cell Ci into three distinct intervals on
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which holds

W̃ (x, tn+1) =


Wi−1/2(

x−xi−1/2

t−tn ), x ∈ [xi−1/2, xi−1/2 + λ+
i−1/2∆t],

Wn
i , x ∈ [xi−1/2 + λ+

i−1/2∆t, xi+1/2 − λ−i+1/2∆t],

Wi+1/2(
x−xi+1/2

t−tn ), x ∈ [xi+1/2 − λ−i+1/2∆t, xi+1/2].

(2.16)

Since W̃ (x, tn+1) is an exact solution of the local Riemann problem (2.13) on (tn, tn+1],
integrating the equations (2.1) on these three distinct intervals given in (2.16) yields

Wn+1
i = Wn

i −
∆t

∆x

(
F (Wi+1/2(0))− F (Wi−1/2(0))

)
. (2.17)

While rearranging (2.17), we have used that the Riemann solutions Wi−1/2

(
0

t−tn
)

and

Wi+1/2

(
0

t−tn
)

are constant along t ∈ (tn, tn+1].

The update (2.17) in conservation form is also known as the second formulation of
Godunov’s method which is easy to apply in practice. In addition, since the Riemann
solutions are only evaluated at the interfaces, the quite restrictive CFL condition (2.14)
can be relaxed to allowing the incoming waves to travel up to the whole distance ∆x.

2.1.2 Godunov type scheme

In practice, calculating the exact Riemann solution can be very complicated and compu-
tationally inefficient, as in the case of the Euler equations where the pressure is given by
an implicit relation. Therefore, in Godunov type schemes, the exact Riemann solution is
replaced by an approximation. Like Godunov’s scheme, schemes of Godunov type have
to be consistent with the original conservation law. Therefore, an approximate Riemann
solver WR(x/t;Wi,Wi+1) has to satisfy

WR (x/t;W,W ) = W, for all W ∈ Ω. (2.18)

In addition, it has to fulfil the integral consistency condition∫ xi+1

xi

WR

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx =

∫ xi+1

xi

W̃

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx, (2.19)

x

t

∆t

xi−1 xi− 1
2

xi xi+ 1
2

xi+1

Figure 2.3: Illustration of the CFL condition for the first version of Godunov’s method.
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tn x

t

tn+1

xi−1 xi−1/2 xi xi+1/2 xi+1

Wn
iWn

i−1 Wn
i+1

Wi−1/2

(
x−xi−1/2

∆t

)
Wi+1/2

(
x−xi+1/2

∆t

)
1

∆x

∫ xi+1/2

xi−1/2

W̃ (x, tn+1)dx

λ+
i−1/2 λ−i+1/2λ−i−1/2 λ+

i+1/2

Figure 2.4: Illustration of the (exact) Godunov scheme.

where W̃ (x/t;Wi,Wi+1) denotes the exact Riemann solution of (2.13) on (tn, tn+1]. Anal-

ogously to Godunov’s scheme, the approximate solution W̃∆(x, tn+1) at the new time level
tn+1 is piecewise given by the local approximate Riemann solutions WR stemming from
the Riemann problems at the interfaces xi+1/2, i = 1, . . . , N . The cell averages on Ci at
tn+1 are then updated by

Wn+1
i =

1

∆x

∫
Ci

W̃∆(x, tn+1)dx

=
1

∆x

∫ xi

xi−1/2

WR

(
x− xi−1/2

∆t
,Wi−1,Wi

)
dx

+
1

∆x

∫ xi+1/2

xi

WR

(
x− xi+1/2

∆t
,Wi,Wi+1

)
dx.

(2.20)

To be able to apply the Lax-Wendroff theorem in case of convergence, we will conclude the
introduction to Godunov-type methods with the derivation of its conservation form. We
reformulate the integral consistency condition (2.19) by integrating the Riemann problem

(2.13) on [xi, xi+1]× (tn, tn+1]. For an exact solution W̃ follows∫ xi+1

xi

W̃

(
x− xi−1/2

∆t
;Wi,Wi+1

)
dx =∫ xi+1

xi

W̃ (0;Wi,Wi+1) dx−
∫ tn+1

tn
F

(
W̃

(
∆x

2(t− tn)
;Wi,Wi+1

))
dt

+

∫ tn+1

tn
F

(
W̃

(
− ∆x

2(t− tn)
;Wi,Wi+1

))
dt. (2.21)

From the initial condition of the Riemann Problem we obtain immediately∫ xi+1

xi

W̃ (0;Wi,Wi+1) dx =
∆x

2

(
Wn
i +Wn

i+1

)
. (2.22)

Under the CFL condition of Godunov’s scheme (2.14), that ensures

W̃

(
− ∆x

2(t− tn)
;Wi,Wi+1

)
= Wn

i and W̃

(
∆x

2(t− tn)
;Wi,Wi+1

)
= Wn

i+1 (2.23)
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for all t ∈ (tn, tn+1], we can determine the flux integrals in (2.21). Using the integral
consistency condition (2.19) we obtain for the approximative Riemann solver

1

∆x

∫ xi+1

xi

WR

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx =

1

2

(
Wn
i +Wn

i+1

)
− ∆t

∆x

(
F
(
Wn
i+1

)
− F (Wn

i )
)
. (2.24)

The update of the cell average (2.20) can then be expressed by

Wn+1
i =

1

2

(
Wn
i +Wn

i+1

)
− ∆t

∆x

(
F
(
Wn
i+1

)
− F (Wn

i )
)

+
1

∆x

∫ xi

xi−1/2

WR

(
x− xi−1/2

∆t
;Wi−1,Wi

)
dx

− 1

∆x

∫ xi+1

xi+1/2

WR

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx. (2.25)

Defining the numerical flux as

F
(
Wn
i ,W

n
i+1

)
=

F
(
Wn
i+1

)
− ∆x

2∆t

(
Wn
i+1 −

2

∆x

∫ xi+1

xi+1/2

WR

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx

)
, (2.26)

we find the conservation form of the Godunov type scheme as

Wn+1
i = Wn

i −
∆x

∆t

(
F(Wn

i ,W
n
i+1)−F(Wn

i−1,W
n
i )
)
. (2.27)

To arrive at the numerical flux (2.26), we have reformulated the right local Riemann
solution in (2.25) in terms of the integral consistency (2.24). Therefore F is also called
the right numerical flux. An equivalent numerical flux formulation can be obtained if the
left local Riemann solution is reformulated instead. This yields the following left numerical
flux

F
(
Wn
i ,W

n
i+1

)
=

F (Wn
i ) +

∆x

2∆t

(
Wn
i −

2

∆x

∫ xi+1/2

xi

WR

(
x− xi+1/2

∆t
;Wi,Wi+1

)
dx

)
. (2.28)

Both flux definitions are consistent and as soon as the integral consistency condition is sat-
isfied by the approximate Riemann solver WR, the fluxes fulfil the so called conservativity
identity

F(Wi,Wi+1) = F(Wi,Wi+1). (2.29)

Finding approximative Riemann solvers is still an active field of research. Well known
is for example the HLL scheme which was developed by Harten, Lax and van Leer [41]. It
is based on an approximate Riemann solver with a simplified wave structure that consists
only of the slowest and fastest wave speed arising in the Riemann fan. This means an
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expression for only one intermediate state has to be found. Consequently, when looking at
the Euler equations, the acoustic waves have a reasonable resolution, whereas the contact
wave in between is quite diffusive. To correct this, a modification, the HLLC scheme was
proposed, introducing back the contact wave into the approximate Riemann solver. This
generates two unknown intermediate states and is thus closer to the true wave structure.
The intermediate states can be determined by using additional knowledge of Riemann
invariants across the middle wave allowing for a better description of the contact wave.
See [81] for a short review of HLLC schemes for different conservation and balance laws.

2.1.3 Suliciu relaxation Godunov type scheme for the Euler equations

To conclude the revision of Godunov type schems, we give the derivation of a Godunov type
scheme for the Euler equations using the Suliciu relaxation model (1.52). The approximate
Riemann solvers that are presented in the manuscript lateron are derived following the
steps given here. We consider the homogeneous part of the relaxation model (1.52) to
construct the Riemann solver which corresponds to “ε =∞” given by

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + π) = 0,

∂tE + ∂x(u(E + π)) = 0,

∂t(ρπ) + ∂x(ρuπ + a2u) = 0.

(2.30)

The relaxation source term will be treated in a subsequent step

∂t(ρπ) =
ρ

ε
(p− π) . (2.31)

Equation (2.31) is treated by projection which means, we consider the relaxation source
term in the limit ε = 0. Due to its stiffness for small ε > 0 it is treated implicitly by a
backward Euler step

ρn+1πn+1 = ρnπn +
∆t

ε

(
ρn+1pn+1 − ρn+1πn+1

)
. (2.32)

Rearranging the terms we have the following update for πn+1

ρn+1πn+1 =
ε

ε+ ∆t
ρnπn +

∆t

ε+ ∆t
ρn+1pn+1. (2.33)

Taking the limit ε → 0 we find immediately πn+1 = pn+1 since ρn+1 > 0, where pn+1 is
calculated from the total energy En+1 at tn+1 via the considered equation of state.

Concerning the equations (2.30), we have seen in Section 1.3.2 that the wave structure
has a fixed ordering which is given by

λ− = u− a

ρ
< λu = u < λ+ = u+

a

ρ
. (2.34)

The fields associated to the eigenvalues are linearly degenerate and we can calculate the
exact solution WRS to the Riemann problem of the homogeneous part of the Suliciu
relaxation model (2.30). To illustrate what happens at the interfaces, we will consider a
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general Riemann problem for the equations (2.30) consisting of two initial constant states
WL and WR at x = 0. The Riemann solution consists of four constant states, separated
by the three waves λ−, λu, λ+ leading to two unknown intermediate states W ∗L,W

∗
R. It is

given by

WRS

(x
t

;WL,WR

)
=


WL for x

t < λ−,

W ∗L for λ− < x
t < λu,

W ∗R for λu < x
t < λ+,

W ∗R for λ+ < x
t ,

(2.35)

for t > 0. Due to the linear degeneracy of all characteristic fields, we find algebraic relations
to compute the intermediate states W ∗L,W

∗
R by determining the Riemann invariants across

each wave. According to the eigenvectors ru1,2 in (1.63), the Riemann invariants associated
with λu are given by

Iu1 = u, Iu2 = π, (2.36)

which means that velocity and pressure do not change across the middle wave which gives

u∗L = u∗R = u∗ and π∗L = π∗R = π∗. (2.37)

For the acoustic waves λ± we have the following invariants

I±1 = u± a

ρ
, I±2 = π ∓ au, I±3 = e− π2

2a2
. (2.38)

Combining the relations (2.37) with (2.38), we can form an algebraic system from which
the intermediate states can be computed. It is given as follows

uL −
a

ρL
= u∗ − a

ρ∗L
, uR +

a

ρR
= u∗ +

a

ρ∗R
, (2.39)

πL + auL = π∗ + au∗, πR − auR = π∗ − au∗, (2.40)

eL −
π2
L

2a2
= e∗L −

π∗2

2a2
, eR −

π2
R

2a2
= e∗R −

π∗2

2a2
. (2.41)

Straightforward computations yield

u∗ =
1

2
(uL + uR)− 1

2a
(πR − πL), (2.42)

π∗ =
1

2
(πL + πR)− a

2
(uR − uL), (2.43)

1

ρ∗L
=

1

ρL
− 1

a
(uL − u∗),

1

ρ∗R
=

1

ρR
− 1

a
(u∗ − uR), (2.44)

e∗L = eL −
1

2a2
(π2
L − π∗

2), e∗R = eR −
1

2a2
(π2
R − π∗

2). (2.45)

To fully determine the intermediate states, we have to set the initial value for the relaxed
pressure π. We start with initial data in relaxation equilibrium and set πL = pL and
πR = pR calculated from the total energy E via the considered equation of state.
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Since we have constructed an exact Riemann solution to the relaxation system, the
numerical flux function at the interface xi+1/2 is given by F (WRS(0;Wi,Wi+1)). In detail
it is given by

F(Wi,Wi+1) = F (WRS(0;Wi,Wi+1)) =


F (Wi) if 0 < λ−,

F (W ∗i ) if λ− < 0 < λu,

F (W ∗i+1) if λu < 0 < λ+,

F (Wi+1) if λ+ < 0.

(2.46)

To fully determine the fluxes, we have to specify how to compute the relaxation parameter
a in the Riemann solver. The aim is to choose the parameter a as small as possible to
reduce the diffusiveness of the Riemann solution and to choose it as large as necessary to
guarantee stability by fulfilling the subcharacteristic condition a ≥ cρ given in (1.54). One
possibility would be to determine the parameter a globally on the whole computational
domain according to the subcharacteristic condition (1.54). This can be done by setting

a ≥ max
i∈{1,...,N}

(√
γρni p

n
i

)
. (2.47)

However, looking at the local Riemann solution using the global estimate (2.47) can result
in a larger relaxation parameter than necessary, since the Riemann problem depends only
on the left and right states WL,WR. Bouchut in [11, Prop. 2.18] gives a formula on how to
set the relaxation parameter a locally such that the subcharacteristic condition is satisfied.
In our context for an ideal gas law with ρL, ρR > 0, we can directly compute the local
relaxation parameter a∗ = max(aL, aR) following Prop. 2.18, where aL, aR are defined by

aL =
√
γρLpL + 2ρL max

(
pR−pL√
γρRpR

+ uL − uR, 0
)

aR =
√
γρRpR + 2ρR max

(
pL−pR
aL

+ uL − uR, 0
)
 if pR − pL ≥ 0,

aR =
√
γρRpR + 2ρR max

(
pL−pR√
γρLpL

+ uL − uR, 0
)

aL =
√
γρLpL + 2ρL max

(
pR−pL
aR

+ uL − uR, 0
)
 if pR − pL < 0.

(2.48)

Now that the intermediate states are well-defined, the first order scheme for the relaxation
model is given by

Wn+1
i = Wn

i −
∆t

∆x
(F(Wi,Wi+1)−F(Wi−1,Wi)) (2.49)

with the numerical flux F defined in (2.46) under the CFL condition according to (2.14)

∆t

∆x
max

(∣∣∣∣∣ui +
a∗i−1/2

ρi

∣∣∣∣∣ ,
∣∣∣∣∣ui − a∗i+1/2

ρi

∣∣∣∣∣
)
≤ 1

2
. (2.50)

Now, we have constructed a Godunov scheme for the relaxation system (1.52), but ac-
tually we are interested in solving the original equations (1.16). The connection can be
established in the notation introduced in Section 1.3 as follows. Let the relaxation system
be denoted by

∂tW + ∂xF (W ) = R(W ) (2.51)
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and the original equations by

∂tw + ∂xf(w) = 0. (2.52)

Let WRS be an approximate or exact Riemann solver for the relaxation system (1.52),
then

WR(x/t;wL, wR) = QWRS(x/t;M(wL),M(wR)) (2.53)

is an approximate Riemann solver for the original equations (1.16), where M(w) denotes
the state vector of the relaxation system in equilibrium

M(w) = (ρ, ρu,E, ρp)T (2.54)

and the linear operator Q is given by

Q =

1 0 0 0
0 1 0 0
0 0 1 0

 . (2.55)

The consistency of WR follows directly from the consistency of WRS as

WR(x/t;w,w) = QWRS(x/t;M(w),M(w)) = QM(w) = w. (2.56)

Since WRS fulfils the integral consistency condition and Q is a linear operator, we have
from (2.24) that

∫ xi+1

xi

WR

(
x− xi+1/2

∆t
;wi, wi+1

)
dx =∫ xi+1

xi

QWRS

(
x− xi+1/2

∆t
;M(wi),M(wi+1)

)
dx =

1

2

(
QM (wni ) +QM

(
wni+1

) )
− ∆t

∆x

(
QF

(
M
(
wni+1

))
−QF

(
M (wni )

))
. (2.57)

Following the steps in Section 2.1.1, we can write the Godunov type scheme for the original
equations as

wn+1
i = wni −

∆x

∆t

(
f(wni , w

n
i+1)− f(wni−1, w

n
i )
)

(2.58)

with

f(wi, wi+1) = QF (M(wi+1))− ∆x

2∆t
QM(wi+1)

− 1

∆x
Q

∫ xi+1

xi+1/2

WRS

(
x− xi+1/2

∆t
;M(wi),M(wi+1)

)
dx

= QF(M(wi),M(wi+1)),

where F is the numerical flux of the Godunov type scheme (2.46) developed for the
relaxation system.
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2.1.4 The dimensional split Riemann Problem

So far, we have focused on Godunov’s and Godunov type schemes to solve one dimensional
conservation laws. To numerically solve the two or three dimensional Euler equations,
requires basically only the knowledge about the one dimensional split multi-dimensional
Riemann problem. The two dimensional Suliciu relaxation model with the velocity field
u = (u1, u2)T and x = (x1, x2)T is given by

∂tρ+ ∂x1(ρu1) + ∂x2(ρu2) = 0,

∂t(ρu1) + ∂x1(ρu2
1 + π) + ∂x2(ρu1u2) = 0,

∂t(ρu2) + ∂x1(ρu1u2) + ∂x2(ρu2
2 + π) = 0,

∂tE + ∂x1(u1(E + π)) + ∂x2(u2(E + π)) = 0,

∂t(ρπ) + ∂x1(ρu1π + a2u1) + ∂x2(ρu2π + a2u2) =
ρ

ε
(p− π),

(2.59)

which can be written in compact notation as

∂tW + ∂x1F1(W ) + ∂x2F2(W ) = 0 (2.60)

with the state vector W and the flux functions F1 and F2 given by

W =


ρ
ρu1

ρu2

E
ρπ

 , F1(W ) =


ρu1

ρu2
1 + π

ρu1u2

u1(E + π)
ρu1π + a2u1

 , F2(W ) =


ρu2

ρu2
2 + π

ρu2u1

u2(E + π)
ρu2π + a2u2

 . (2.61)

The dimensional split Riemann problem in x1-direction is then given by

∂tW + ∂x1F1(W ) = 0

W 0(x) =

{
WL if x1 < 0,

WR if x1 > 0.

(2.62)

The initial data consists of a jump along the x1-direction while it is constant along the x2-
direction. The wave structure compared to the genuinely one dimensional problem (1.52)
is almost identical, whereas the middle contact wave u in the 1D case is now associated
to u1 and has multiplicity three instead of two. All characteristic fields are still linear
degenerate and the structure of the Riemann solution is the same as in the truly one
dimensional case (2.35). Since the multiplicity of the acoustic waves remains one, we
obtain an additional Riemann invariant for the outer waves given by I±4 = u∗2. This means
that the additional velocity component varies only over the middle wave leading to

u2
∗
L = u2L and u2

∗
R = u2R. (2.63)

The solution of the intermediate states ρ, u1, e and π is then given by the one-dimensional
Riemann Problem (2.42) with u = u1 and for u2 by (2.63).

To numerically solve the two dimensional problem (2.60), we first extend the finite
volume framework to two dimensions. On a two dimensional Cartesian grid, the x1- and x2-
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Figure 2.5: Update of the cell averages on a Cartesian grid in two dimensions. The fluxes
along the interfaces are obtained by solving dimensional split Riemann problems in x1-and
x2-direction.

directions are aligned with the coordinate directions, given by the vectors e1 = (1, 0)T and
e2 = (0, 1)T . The computational domain is subdivided equidistant along the coordinate
directions. Let Cij = [x1,i−1/2, x1,i+1/2]× [x2,j−1/2, x2,j+1/2] denote a rectangle grid cell of
area ∆x1∆x2, then the cell average Wn

ij at time tn on cell Cij is given by

Wn
ij =

1

∆x1∆x2

∫
Cij

W (x, tn)dx. (2.64)

An explicit finite volume scheme to solve (2.60), is given by

Wn+1
ij = Wn

ij +
∆t

∆x

(
F1(Wn

ij ,W
n
i+1,j)−F1(Wn

i−1,j ,W
n
ij)
)

+
∆t

∆y

(
F2(Wn

ij ,W
n
i,j+1)−F2(Wn

i,j−1,W
n
ij)
)
.

(2.65)

The cell averages are updated in a single step involving the flux contributions along all cell
interfaces as depicted in Figure 2.5. The numerical fluxes F1 and F2 are obtained by solv-
ing the dimensional split Riemann problem (2.62) along x1- and x2-direction respectively.
Each dimensional split Riemann problem consists of a truly one dimensional problem
(1.52) with u = ui = 〈ei,u〉 and passively advecting the remaining velocity component
uj = 〈ej ,u〉 , j 6= i with ui for i, j = 1, 2.

The time step restriction for scheme (2.65) is given by the more restrictive CFL con-
dition that arises when solving the two dimensional split Riemann problems. A three
dimensional problem can be solved analogously on a Cartesian grid by adding a third
component in x3-direction to the numerical scheme (2.65).
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Since multi-dimensional problems can be reduced to one dimension via dimensional
splitting, we will consider only the 1D case in the remainder of this chapter.

2.2 Second order reconstructions

Godunov’s and the Godunov type schemes, developed in the previous sections, are first
order accurate. In space, this is mainly connected to the fact, that in the reconstruc-
tion step of the REA algorithm, the piecewise polynomial function W̃ (x, tn) = W̃n(x)
coincides with the constant cell average Wn

i on cell Ci which is a conservative first or-
der reconstruction. To ensure the conservation property of the scheme, the reconstructed
piecewise polynomial function W̃n(x) has to be conservative, that is

1

∆x

∫
Ci

W̃n(x)dx = Wn
i . (2.66)

To find a good second order reconstruction, we follow the MUSCL (Monotonic Upstream
centred scheme for Conservation laws) approach for simplicity in one dimension. The
MUSCL approach can be straightforwardly extended to multiple dimensions using the
notion of split dimensional Riemann problems and applying the reconstruction along each
direction separately. The stencil is the same as for the first order scheme and is depicted
in Figure 2.5.

We construct a linear function with slope σi on cell Ci based on the cell averages Wn
i

as follows
W̃n(x) = Wn

i + σi(x− xi) for x ∈ (xi−1/2, xi+1/2) (2.67)

which has the conservation property independent of the slopes σi. We immediately see
that W̃n(xi) = Wn

i . The values for the one sided limits x → x+
i−1/2 and x → x−i+1/2 are

called the inner interface values and are given by

W+
i−1/2 = Wn

i − σi
∆x

2
and W−i+1/2 = Wn

i + σi
∆x

2
. (2.68)

Since the slopes σi are a first order approximation of ∂xW (x, tn) of the true solution, we
find with a Taylor expansion

W+
i−1/2 = W (xi−1/2, t

n) +O(∆x2) and W−i+1/2 = W (xi+1/2, t
n) +O(∆x2). (2.69)

This means that the interface values obtained by the reconstruction (2.67) are second
order accurate. The Riemann problem that has to be solved is now based on the left and
right inner interface values

∂tW + ∂xF (W ) = 0

W 0(x) =

{
W−i+1/2 if x < xi+1/2

W+
i+1/2 if x > xi+1/2.

(2.70)

A Godunov type scheme for a numerical flux F , based on an approximate Riemann solution
for (2.70), is then given by

Wn+1
i = Wn

i −
∆t

∆x

(
F
(
W−i+1/2,W

+
i+1/2

)
−F

(
W−i−1/2,W

+
i−1/2

))
. (2.71)
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The scheme is second order accurate in space and and only first first order accurate in
time, see [11]. To completely determine the linear function W̃n(x) we need to find the
slopes σi. Therefore define the left and right slopes on cell Ci as

σL =
1

∆x
(Wi −Wi−1), σR =

1

∆x
(Wi+1 −Wi). (2.72)

A natural choice would be centred slopes due to symmetry

σi =
σL + σR

2
=
Wn
i+1 −Wn

i−1

2∆x
(2.73)

or upwind slopes

σi = σR =
Wn
i+1 −Wn

i

∆x
, σi = σL =

Wn
i −Wn

i−1

∆x
(2.74)

which yield a centred three point stencil. Unfortunately, both choices are known to induce
spurious oscillations especially when calculating shock solutions due to over or undershoots
produced by the reconstruction. Therefore, so called slope limiters can be used which have
the task to prevent the appearance of those over and undershoots in the numerical solution.
Consequently spurious oscillations can be reduced or completely avoided. The slope limiter
that is used throughout the manuscript is the minmod limiter which is defined as

σi = minmod(σL, σR) =


min(σL, σR) if σL, σR ≥ 0,

max(σL, σR) if σL, σR ≤ 0,

0 else.

(2.75)

The minmod function is only one possibility to achieve an explicit oscillation free sec-
ond order scheme. For other limiting strategies and a theoretical and numerical study
comparing different limiters, including the minmod function (2.75) see [76].

Reconstructions using centred slopes (2.73) and minmod slopes (2.75) are compared
in Figure 2.6. We see from the definition (2.75) that using minmod slopes preserves the
minimum and maximum of cell average values over the computational domain by setting
the slope σi to zero whenever the sign of the left and right slopes σL, σR on cell Ci differ.
This leads to a reduction of the order near maxima or minima. In contrast, the interface
values reconstructed with centred slopes under and overshoot the minimum and maximum
of the numerical solution. This becomes problematic when an upper or lower bound of
certain variables has be preserved by the scheme.

In context of the Euler equations, this concerns the positivity of density ρ and internal
energy e. To ensure ρ, e > 0 throughout the simulation, we can profit from the property
of the minmod limiter to keep the interface values of both quantities positive. We remark,
that the set of physical states (1.18) for the Euler equations (1.16) given by

Ωphy(w) =
{
w ∈ Ω ⊂ Rd+2; ρ > 0, e > 0

}
(2.76)

is a convex invariant domain. This means if W 0(x) ∈ Ωphy then it follows W (x, t) ∈ Ωphy

for all x ∈ I ⊂ R, t > 0. A numerical scheme preserves the convex invariant domain Ωphy

if from Wn
i ∈ Ωphy follows Wn+1

i ∈ Ωphy for all i = 1, . . . , N under some CFL condition.
For the second order scheme in space (2.71) holds the following result taken from [11].
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Figure 2.6: Second order reconstruction of interface values, red: minmod slopes, black:
centred slopes. The reconstruction with the centred slopes overshoots the maximum value
Wi−1 and undershoots the minimum Wi+1 whereas the maximum and minimum values
are preserved by the reconstruction using a minmod limiter.

Proposition 2.2. If under a CFL condition the first order scheme (2.27) preserves an
invariant domain, and if the reconstruction (2.67) also preserves this invariant domain,
then under the half original CFL condition, the second-order scheme (2.71) also preserves
this invariant domain.

Therefore it will be a goal to develop approximate Riemann solvers that preserve the
convex invariant domain Ωphy, in the sense that if for two states holds WL,WR ∈ Ωphy,
then the approximate Riemann solver ensures

WR(x/t;WL,WR) ∈ Ωphy for any x/t. (2.77)

From this property follows directly that the first order scheme (2.27) preserves the invariant
domain Ωphy as due to the integral consistency of the approximate Riemann solver, we
can write the update

Wn+1
i =

1

∆x

(∫ xi

xi−1/2

WR

(
x− xi−1/2

∆t
,Wi−1,Wi

)
dx

+

∫ xi+1/2

xi

WR

(
x− xi−1/2

∆t
,Wi,Wi+1

)
dx

)
(2.78)

as a convex combination of states in Ωphy since the CFL condition prevents the interaction
of the Riemann solutions.

2.3 Time integration methods

So far, we have focused on the space accuracy of the numerical scheme. To extend the
scheme (2.71) to second order accuracy in time, we can use time integration concepts from
the theory of ordinary differential equations (ODE). Therefore we integrate the conserva-
tion law (2.1) on cell Ci and write it as a system of ODEs in time

∂tWi(t) = −ϕi(W (t)) (2.79)
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with Wi(t) ≈ 1
∆x

∫
Ci
W (x, t)dx and ϕi(W (t)) ≈ 1

∆x

∫
∂Ci

F (W (x, t))dx. Depending on the
properties of the right hand side function ϕi, which contains the flux function, explicit,
implicit or implicit-explicit (IMEX) numerical time integrators can be applied.

A popular choice to solve (2.79) with a non-stiff right hand side are explicit Runge
Kutta (RK) methods since they are available for high orders and easily applicable. For
a second order scheme, the Heun method is widely used. A feature of this method is
that it preserves invariant domains without any further reduction of the CFL condition
associated to the second order scheme in space (2.71) provided that the Riemann solver
fulfils property (2.77). It belongs to the class of predictor corrector methods. To evolve
data from tn to tn + ∆t the solution is predicted using a forward Euler scheme (2.6) and
then corrected using the trapezoidal rule. In total it is given by

W
(1)
i = Wn

i −∆tϕi (Wn) ,

W
(2)
i = W

(1)
i −∆tϕi

(
W (1)

)
,

Wn+1
i =

1

2

(
Wn
i +W

(2)
i

)
.

(2.80)

The time step ∆t is determined by the CFL condition of the first Euler step when comput-

ing W
(1)
i . When computing the second stage W (2), the CFL condition is not necessarily

fulfilled. A modification of the Heun method which allows different time increments for
each Euler step was proposed in [6]. It is also second order accurate and given by

W
(1)
i = Wn

i −∆t1ϕi (Wn) ,

W
(2)
i = W

(1)
i −∆t2ϕi

(
W (1)

)
,

Wn+1
i =

(
1− 2∆t1∆t2

(∆t1 + ∆t2)2

)
Wn
i +

2∆t1∆t2
(∆t1 + ∆t2)2

W
(2)
i .

(2.81)

The time steps ∆t1,∆t2 are chosen in accordance with the CFL condition of the first and
second step respectively. For fixed ∆t1 = ∆t2 = ∆t, we recover Heun’s method (2.80).
The final time increment is given by

∆t =
2∆t1∆t2

∆t1 + ∆t2
. (2.82)

Since the final update of (2.81) is a convex combination of the states Wn
i ∈ Ωphy and

W
(2)
i , which is obtained by subsequent first order updates that lie in Ωphy, also this

scheme preserves invariant domains.
As we have seen, when deriving Godunov’s scheme, the CFL condition for an explicit

scheme depends on the fastest absolute value of the wave speeds arising in the Riemann
fan. Explicit schemes become very costly when due to stability requirements the time step
is strongly restricted. We illustrate this problem of stiffness at the example of the Euler
equations in the low Mach regime. As we have seen in Section 1.4, the fastest wave speed
is given by u+ c

M and therefore the time restriction for a first order scheme is given by

∆t

∆x
≤ c̃ M

max
i
|Muni + cni |

(2.83)
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where c̃ is a positive constant. Especially in the low Mach regime the CFL condition (2.83)
is problematic since ∆t→ 0 in the limit M → 0. An option to circumvent the restrictive
CFL condition (2.83) is the use of implicit schemes. They have the advantage that the
time step can be chosen unconditionally large. Keeping in mind the non-linear character of
the Euler equations, using an implicit scheme means solving a non-linear implicit system
each time step. This requires iterative methods like the Newton algorithm which is very
costly since each step the Jacobian of the residual and large matrix vector products have
to be calculated. In addition, to ensure a good quality of the numerical solution, the time
step cannot be chosen arbitrarily large but has to be oriented at the focus of the numerical
simulation. In case of the low Mach regime of the Euler equations, we are not interested
in the fast acoustic waves, that is the spreading of the sound, but rather in the slower
dynamics that evolve with the wave speed u. Therefore a CFL restriction

∆t

∆x
≤ c̃

max
i
|uni |

(2.84)

would be sufficient to follow the slow wave. This can be achieved by using an IMEX
approach where ϕi(t) in the ODE (2.79) is split in two parts ϕexi and ϕimi which will be
integrated explicitly or implicitly in time respectively:

∂tWi(t) = −ϕexi (W (t))− ϕimi (W (t)). (2.85)

A first order scheme consisting of a forward and a backward Euler step is given by

Wn+1
i = Wn

i −∆tϕexi (Wn)−∆tϕimi (Wn+1). (2.86)

The CFL condition associated to the IMEX scheme (2.86) is based on the fastest wave
speeds associated to ϕexi . To obtain a CFL condition independent of the Mach number
in case of the Euler equations, the terms associated to the fast acoustic waves have to be
treated implicitly. The main challenge consists in identifying those terms and avoiding to
solve a non-linear implicit system at the same time.

The all-speed IMEX schemes given in Chapters 4 and 5 are developed under the aspect
of being computationally efficient with respect to allowing large time steps in the low Mach
number regime. Non-linear implicit systems can be avoided due to the linearisation of the
characteristic fields by using a Suliciu relaxation approach. An extension of the IMEX
scheme to second order will be discussed in the Chapters 4 and 5 since it is not based on
a standard IMEX Runge Kutta method.

2.4 Source terms

We consider a one dimensional initial value problem for a balance law of the following
form

∂tW (x, t) + ∂xF (W (x, t)) = S(W (x, t))∂xZ(x),

∂tZ(x) = 0,

W 0(x) = W (x, 0),

(2.87)
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where Z : R→ R is a given smooth scalar time independent function and S(W ) : Ω→ Rk.
We remark, that the extra equation for the time derivative of Z is not important for the
formulation of the continuous equations, but is essential when analysing the solution to a
Riemann problem for (2.87). The IVP problem for the one dimensional Euler equations
with a gravitational source term (1.75) can be written in the form of (2.87). The bal-
ance law (2.87) is not conservative in the presence of a non-zero source term and thus a
numerical scheme approximating solutions of (2.87) is not in conservation form.

2.4.1 Godunov type scheme with a source term

To construct a Godunov type scheme for (2.87), we define the associated Riemann problem
at the interface xi+1/2 by

∂tW + ∂xF (W ) = S(W )∂xZ, (2.88)

W 0(x) =

{
Wi if x < xi+1/2,

Wi+1 if x > xi+1/2,
. (2.89)

The function Z is approximated in the finite volume framework as piecewise constant

Zi =
1

∆x

∫
Ci

Z(x)dx for x ∈ (xi−1/2, xi+1/2), for all i = 1, . . . , N. (2.90)

An exact solution of the inhomogeneous Riemann problem (2.88) is in general very chal-
lenging. Therefore we turn directly to finding an approximative Riemann solver WR. Due
to the presence of the source term, WR also depends on the values of Z. To emphasize
this, we write

WR

(
x− xi+1/2

t− tn
;Wi, Zi,Wi+1, Zi+1

)
. (2.91)

For completeness, we state again the definition of an approximate Riemann solver ac-
counting for its dependence on Z. First, it has to verify

WR(x/t;W,Z,W,Z) = W for all W ∈ Ω and x/t ∈ R. (2.92)

It has to fulfil the integral consistency condition with respect to an exact solution W̃ of
the local Riemann problem (2.88)∫ xi+1

xi

WR

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
dx

=

∫ xi+1

xi

W̃

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
dx. (2.93)

Analogously to the integral consistency for the conservation law in Section 2.1.2, we can
reformulate it by integrating (2.88) on [xi, xi+1]× (tn, tn+1] to obtain

1

∆x

∫ xi+1

xi

WR

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
dx =

1

2
(Wn

i +Wn
i+1)− ∆t

∆x
(F (Wn

i+1)− F (Wn
i ))

+
1

∆x

∫ xi+1

xi

∫ tn+1

tn
S

(
W̃

(
x− xi+1/2

t− tn
;Wi, Zi,Wi+1, Zi+1

))
∂xZ(x)dtdx. (2.94)
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In general it is not possible to calculate the exact integral expression of the source term.
Therefore, we define the first order numerical approximation

S(Wi,Wi+1)
Zi+1 − Zi

∆x
≈

1

∆x∆t

∫ xi+1

xi

∫ tn+1

tn
S

(
W̃

(
x− xi+1/2

t− tn
;Wi, Zi,Wi+1, Zi+1

))
∂xZ(x)dtdx, (2.95)

where S denotes the numerical source which has to fulfil the consistency condition

S(W,W ) = S(W ) for all W ∈ Ω. (2.96)

Turning back to the REA algorithm, we consider a piecewise constant initial data

W̃∆(x, tn) = Wn
i for x ∈ Ci. (2.97)

Then the solution at time tn+1 is piecewise given by approximate Riemann solutions

W̃∆(x, tn+1) = WR

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
for x ∈ (xi, xi+1), (2.98)

under the CFL condition

∆t

∆x
max
i,κ
|λκ(Wn

i , Zi,W
n
i+1, Zi+1)| ≤ 1

2
, i = 1, . . . , N, κ = 1, . . . , k. (2.99)

The update at time tn+1 on cell Ci is then defined as

Wn+1
i =

1

∆x

∫
Ci

W̃∆(x, tn+1)dx

=
1

∆x

∫ xi

xi−1/2

WR

(
x− xi−1/2

∆t
,Wi−1, Zi−1,Wi, Zi

)
dx

+
1

∆x

∫ xi+1/2

xi

WR

(
x− xi+1/2

∆t
,Wi, Zi,Wi+1, Zi+1

)
dx.

(2.100)

Defining the right numerical flux as

F(Wi, Zi,Wi+1, Zi+1) =

F (Wi+1)− ∆x

2∆t

(
Wi+1 −

2

∆x

∫ xi+1

xi+1/2

WR

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
dx

)
, (2.101)

we can formulate a numerical scheme consistent with the balance law (2.87) as

Wn+1
i = Wn

i −
∆t

∆x
(F(Wi, Zi,Wi+1, Zi+1)−F(Wi−1, Zi−1,Wi, Zi))

+ ∆tS(Wi,Wi+1)
Zi+1 − Zi

∆x
. (2.102)
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Defining analogously the left numerical flux as

F(Wi, Zi,Wi+1, Zi+1) =

F (Wi) +
∆x

2∆t

(
Wi −

2

∆x

∫ xi+1/2

xi

WR

(
x− xi+1/2

∆t
;Wi, Zi,Wi+1, Zi+1

)
dx

)
. (2.103)

we can define the numerical scheme as

Wn+1
i = Wn

i −
∆t

∆x

(
F(Wi, Zi,Wi+1, Zi+1)−F(Wi−1, Zi−1,Wi, Zi)

)
+ ∆tS(Wi−1,Wi)

Zi − Zi−1

∆x
. (2.104)

Both numerical fluxes, F ,F are consistent because of the consistency property of the
approximate Riemann solver. The schemes (2.102) and (2.104) are equivalent since the
approximate Riemann solver fulfils the integral consistency condition (2.93) and are a
consistent discretization of the IVP (2.87). Due to the dependence of the Riemann problem
on the source term, the numerical fluxes don’t fulfil the conservativity identity (2.29) which
is not surprising since the underlying equations are not conservative.

2.4.2 Discrete stationary solutions and well-balanced schemes

Stationary states of the balance law (2.87) are given by ∂xF (W ) = S(W )∂xZ. For
the numerical scheme (2.102) we can define discrete stationary states. Let two states
(Wi, Zi), (Wi+1, Zi+1) fulfil the discrete equilibrium

F(Wi, Zi,Wi+1, Zi+1)−F(Wi−1, Zi−1,Wi, Zi) = S(Wi,Wi+1)(Zi+1 − Zi) (2.105)

for all i = 1, . . . N , then the states Wi define a discrete piecewise constant stationary
solution.

A numerical scheme, that is able to fulfil (2.105) exactly for a discrete stationary
solution is called well-balanced. This means the scheme fulfils

Wn+1
i = Wn

i for all i = 1, . . . , N. (2.106)

In general, numerical schemes are not well-balanced. For a Godunov type scheme, the
well-balanced property is closely connected to the approximative Riemann solver. Let
WR(x/t;Wi, Zi,Wi+1, Zi+1) be an approximate Riemann solver based on the two states
(Wi, Zi), and (Wi+1, Zi+1) fulfilling the discrete equilibrium (2.105). Then it is called
well-balanced or at rest if it satisfies

WR

(
x− xi+1/2

t− tn
;Wi, Zi,Wi+1, Zi+1

)
=


Wi if

x− xi+1/2

t− tn
< 0,

Wi+1 if
x− xi+1/2

t− tn
> 0.

(2.107)

With this definition follows that a Godunov type scheme is well-balanced if the approxi-
mate Riemann solver is at rest. This follows directly from the update (2.100) where due
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to the well-balanced property of the approximate Riemann solver holds

WR

(
x− xi−1/2

∆t
,Wi−1, Zi−1,Wi, Zi

)
= Wi for all x ∈ (xi−1/2, xi)

WR

(
x− xi+1/2

∆t
,Wi, Zi,Wi+1, Zi+1

)
= Wi for all x ∈ (xi, xi+1/2).

(2.108)

From this we can conclude Wn+1
i = Wn

i and therefore the Godunov type scheme is well-
balanced.

The objective of Chapter 3 and 5 is to define a well-balanced approximate Riemann
solver for compressible and all-speed flow respectively. Therein also the extension to second
order is addressed. The Godunov type scheme with source term can be straightforwardly
extended to multiple dimensions following the approach of split dimensional Riemann
problems from Section 2.1.4.
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Chapter 3

A well-balanced scheme for the
Euler equations with gravity

The compressible Euler equations with a gravitational source term (1.75) are important in
many applications, be it in atmospheric modelling or in astrophysical stellar evolution. It
is typical for those applications that solutions are not far from a hydrostatic equilibrium
state. Therefore it is necessary to have a numerical method that captures those hydrostatic
equilibria on machine precision in order to resolve the evolution of small perturbations near
the equilibrium even on a coarse grid. This can be achieved with well-balanced methods.

In literature a variety of approaches to develop those methods can be found. A wide
range of schemes are based on finite volume methods [44, 45], central schemes [82] or
discontinuous Galerkin approaches [55, 56, 18], see also references therein. Challenging
is also the treatment of the source term. Since in Riemann solver based schemes, as
the Godunov type scheme, the intermediate states depend on the source term, it can
be included in the flux formulation, as done in [28, 20]. More often the source term is
discretised separately from the numerical flux as done eg. in [18, 84, 44, 45].

Common to a lot of well-balanced schemes is that they are algebraically consistent
with a certain class of equilibria, for example hydrostatic equilibria with constant entropy
[44] or isothermal and polytropic equilibria [28, 17, 18]. An interesting approach is found
in Käppeli [45], where a discrete approximation of the hydrostatic equilibrium is used to
achieve a second order accuracy to general equilibria. Depending on the distribution of the
hydrostatic equilibria this second order approximation might still give reasonable results
with an error close to machine precision, whereas in general the numerical error remains
of second order.

In contrast, here we present a method where a given arbitrary hydrostatic equilibrium
is well-balanced by reformulating the relevant hydrostatic background. This hydrostatic
background is not restricted to be of a certain class of hydrostatic equilibria. We give a
general recipe on how to use this reformulation in terms of a reference equilibrium state
in the scheme to obtain a generality in application. However we would like to stress that
this reference state can be chosen by the user to fit the practical purpose.

Furthermore we show that by choosing a reconstruction procedure in so called equi-
librium variables leads to a second order scheme that is well-balanced as well as preserves
the invariant domain Ωphy with respect to the positivity of density and internal energy.
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The results presented in this chapter are already published in [78]. The chapter is
organized as follows. Section 3.1 is devoted to the parametrisation of the source term
with respect to an arbitrary reference equilibrium. We will utilize the time-independent
nature of stationary solutions to rewrite the derivative of the potential in terms of time-
independent functions that describe the steady-state solution. In Section 3.2, we describe
the relaxation model that is used to derive an approximate Riemann solver. Subsequent
we give the description of the numerical scheme which is of Godunov type as discussed in
Section 2.4. This includes an extension to second order with special focus on a positivity
preserving linear reconstruction of the interface values.

For the resulting scheme, the main properties, which are the positivity and the well-
balanced property of the scheme, are proven in Section 3.5. It is followed by a section with
numerical results to validate the main properties given in Section 3.5. Therein are included
well-balanced test cases for isothermal, polytropic and a general stationary equilibrium.
To show the accuracy of the second order scheme, we consider two analytical solutions
of the Euler equations with gravity (1.75). The first one is a two dimensional solution
from [18] and we also give a novel analytic solution based on an isothermal equation of
state which we test in three dimensions. Additionally, the convergence of the source term
is shown by balancing a general non-isothermal stationary state against an isothermal
equilibrium. To demonstrate that the scheme is indeed applicable to simulate fluctuations
around an equilibrium state, we calculate a Rayleigh-Taylor instability taken from [53]
in two dimensions. The numerical section is concluded by a modification of the Einfeldt
strong rarefaction test [32] adopted to the presence of a gravitational field.

3.1 The reformulation of the gravitational field

As we have seen in Section (1.5), hydrostatic steady states for the Euler equations with
gravity (1.75) are solutions of the hydrostatic equilibrium described by the equations

u = 0,

∇p = −ρ ∇Φ.
(3.1)

Since the system is under-determined depending on the chosen pressure law, the solutions
to (3.1) might have quite a different structure and physical behaviour. This can be already
seen from the isothermal (1.90) and polytropic (1.91) examples given in Section (1.5). In
practise one might not want to change the numerical scheme in dependence of the EOS
under consideration. In addition, for most applications the underlying hydrostatic equi-
librium is known in advance and can be computed from the EOS describing the physical
regime. Therefore we seek for a reformulation of the gravitational potential in terms of
the hydrostatic equilibrium relation (3.1) that can be easily incorporated in the system
of equations (1.75). Let ρ̄ and p̄ be solutions of the hydrostatic equilibrium (3.1). Since
they are stationary, they are time-independent. Following the approach used in [36], we
choose two time-independent functions α and β such that they coincide with the given
hydrostatic solution described by ρ̄ and p̄ as

ρ̄(x) = α(x) and p̄(x) = β(x). (3.2)
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Since the density and the pressure are strictly positive, we also require α, β > 0. By
construction α and β fulfil the hydrostatic equation and we can write

∇β = −α∇Φ. (3.3)

This relation describes a connection between the reference equilibrium defined by α, β
and the gravitational potential Φ. Rewriting (3.3), leads to the following expression of the
gravitational potential

∇Φ(x) = −∇β(x)

α(x)
. (3.4)

Now we can replace the potential gradient in the Euler equations (1.75) and in the hydro-
static equation (3.1). We will consider the following formulation of the Euler equations
with gravity

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + pI) =
ρ

α
∇β,

∂tE +∇ · (u(E + p)) = u · ρ
α
∇β,

(3.5)

which exhibits the following formulation of the hydrostatic equation

∇p =
ρ

α
∇β. (3.6)

We would like to remark, that both formulations of the Euler equations with gravity given
by (1.75) and (3.5) are equivalent, as long as α, β are smooth functions. The approach
(3.2) to rewrite the potential strongly relies on the fact that the considered gravitational
field is assumed to be time-independent during the evolution of gas given by the Euler
equations (3.5).

Relation (3.4) suggests that∇Φ is a function of α and β. However in practise it is found
that rather α and β are depending on Φ as it is initially known. Using the definition of
α, β in (3.2) we can give the reference equilibrium states for the isentropic and polytropic
equilibria given in (1.90) and (1.91) respectively as

α(x) = exp

(
C − Φ(x)

RT

)
, β(x) = RTα(x), (3.7)

and

α(x) =

(
Γ− 1

χΓ
(C − Φ(x))

)1/(Γ−1)

, β(x) = χαΓ. (3.8)

As we have seen in Section 1.5, associated to the time-independent potential Φ is a
zero eigenvalue. Due to the rewritten potential gradient (3.4) this zero eigenvalue is now
associated to β. This can be seen when analysing the eigenstructure of the quasi-linear
formulation in the primitive variables given by V = (ρ,u, e, β). This zero eigenvalue is
problematic when deriving a Riemann solver, since the waves do not have a fixed order.
This problem can be resolved, when modifying the standard Suliciu relaxation model given
in Section 1.3.2. How it is done exactly is subject of the next section.
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3.2 The Suliciu relaxation model

The overall aim of this chapter is to derive a Godunov type scheme based on an ap-
proximate Riemann solver. The Suliciu relaxation model that is used to construct the
approximate Riemann solver for the Euler equations (3.5) with the modified source term
is based on an approach from [28] that was applied on the original system (1.75). Therein
was suggested to approximate the potential Φ by a new variable Z which is transported
with the gas velocity u. This yields an additional relaxation equation, apart from the
Suliciu relaxation of the pressure which can be derived analogously as in the homogeneous
case (1.52). Here Z approximates β instead of Φ, since the zero eigenvalue is associated
to β due to the rewritten source term. The full relaxation model then reads

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u + πI) =
ρ

α
∇Z,

∂tE +∇ · (u(E + π)) = u · ρ
α
∇Z,

∂t(ρπ) +∇ · (ρπu + a2u) =
ρ

ε
(p− π),

∂t(ρZ) +∇ · (ρZu) =
ρ

ε
(β − Z).

(3.9)

The constant a > 0 denotes the relaxation parameter which has to fulfil a subcharacteristic
condition that is specified later on in Lemma 3.1. To construct a scheme for multiple
space dimensions on a Cartesian grid, we consider dimensional split Riemann problems.
Therefore, we analyse the relaxation model in two dimensions with u = (u1, u2) considering
the x1-direction. The equations read

∂tρ+ ∂x1(ρu1) = 0,

∂t(ρu1) + ∂x1(ρu2
1 + π) =

ρ

α
∂x1Z,

∂t(ρu2) + ∂x1(ρu1u2) = 0

∂tE + ∂x1(u1(E + π)) = u1
ρ

α
∂x1Z

∂t(ρπ) + ∂x1(ρπu1 + a2π) =
ρ

ε
(p− π)

∂t(ρZ) + ∂x1(ρZu1) =
ρ

ε
(β − Z).

(3.10)

The following lemma sums up some important properties regarding the structure and
stability of the relaxation model (3.10). The proof can be obtained by adapting the steps
explained in Sections 1.2 and 1.3.2. Alternatively, the proof can be established analogously
to [28].

Lemma 3.1. The relaxation system (3.10) is hyperbolic and is a stable diffusive approx-
imation of (3.5) under a subcharacteristic condition a ≥ ρc. It has the following ordered
eigenvalues

λ− = u1 −
a

ρ
< λu = u1 < λ+ = u1 +

a

ρ
(3.11)

where λu has multiplicity 4. In addition, the characteristic fields associated to the eigen-
values λ±, λu are linear-degenerate.
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To shorten notation, we will refer to the relaxation model (3.10) by

∂tW + ∂x1F1(W ) = S1(W ) +
1

ε
R(W ) (3.12)

where

W =



ρ
ρu1

ρu2

E
ρπ
ρZ

 , F1(W ) =



ρu1

ρu2
1 + π

ρu1u2

u1(E + π)
ρπu1 + a2π

ρZu1

 , S1(W ) =



0
ρ
α∂xZ

0
u1

ρ
α∂xZ
0
0

 , R(W ) =



0
0
0
0

ρ(p− π)
ρ(β − Z)

 .

(3.13)
The corresponding original equations to the dimensional split relaxation model (3.10) is
referred to as

∂tw + ∂x1f1(w) = s1(w) (3.14)

where w = (ρ, ρu1, ρu2, E)T and

f1(w) =


ρu1

ρu2
1 + π

ρu1u2

u1(E + π)

 , s1(w) =


0

ρ
α∂xβ

0
u1

ρ
α∂xβ

 . (3.15)

The relaxation equilibrium of the relaxation model is given by

W eq =M(w) = (ρ, ρu1, ρu2, E, ρp, ρβ)T . (3.16)

The linear operator which connects the relaxation model to the original system is given
by

Q =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 . (3.17)

We can easily see that QM(w) = w and QF1(M(w)) = f1(w) as well as QS1(M(w)) =
s1(w).

3.3 The approximate Riemann solver

Since we are interested in the ε → 0 limit of the relaxation model, the relaxation source
term 1

εR(W ) is stiff. Therefore, we split the operators as follows

∂tW + ∂x1F1(W ) = S1(W ), (3.18)

∂tW =
1

ε
R(W ). (3.19)

System (3.18) is then used to define the numerical flux at the interfaces via solving the
arising Riemann problems. Afterwards in a separate step, system (3.19) is used to ensure
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that the initial conditions at each stage for (3.18) are at relaxation equilibrium W eq [11].
Due to the stiffness, the relaxation source term is treated implicitly for a time step ∆t and
then the limit ε→ 0 is taken. Following the steps in (2.32) and (2.33) we find directly the
update at the new time step tn + ∆t as

πn+1 = pn+1, Zn+1 = β. (3.20)

As established in Lemma 3.1, all characteristic fields are linear degenerate and this
enables us to solve the Riemann problem of (3.18) without much effort. The basis for this
is laid by the Riemann invariants associated to the linear-degenerate fields given in the
following lemma.

Lemma 3.2. The Riemann invariants with respect to λ± are

I±1 = u1 ±
a

ρ
, I±2 = π ∓ au1, I±3 = e− π2

2a2
, I±4 = Z, I±5 = u2 (3.21)

and with respect to λu

Iu1 = u1, Iu2 = π − ρ

α
Z. (3.22)

Proof. The proof consists in calculating the eigenvectors to the respective eigenvalues and
verifying condition (1.30). The straightforward computations are for example given in
[28, 52] and can be easily adapted to the equations considered here.

From the Riemann invariants (3.21) and (3.22), we obtain 12 relations for in total 12
unknown intermediate values, as the solution consists of four constant states separated by
the eigenvalues given in Lemma 3.1 and which is depicted in Figure 3.1. The fact, that
the eigenvalues are ordered, simplifies the construction of the Riemann solver, as only one
wave configuration has to be considered for the determination of the intermediate states.
For the problematic of constructing a Riemann solver for the Euler equations with gravity
with a changing order of eigenvalues see [85], where 6 different wave configurations have
to be considered.

To simplify the solution and to obtain a free parameter that will later ensure the
well-balanced property, we keep ρ

α =: κ̂(ρ, α) fixed in the Riemann problem. This means
the second Riemann invariant for λ = u1 is approximated by Iu2 = π − κ̂Z, κ̂ > 0. The
discretization of κ̂, appearing in the intermediate states of the Riemann solution and
denoted by κ, will be later defined such that the Riemann solver is at rest when the
solution is in hydrostatic equilibrium. This strategy has already been applied successfully
in [28, 29]. Now with the help of Lemma 3.2 we can construct a solution to a Riemann
problem in dependence of κ for system (3.18).

Lemma 3.3. Consider an initial value problem for system (3.18) with initial data

W 0(x) =

{
WL x1 < 0,

WR x1 > 0,
(3.23)
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which is constant along the x2-direction. Then the solution consists of four constant states
separated by contact discontinuities and has the following structure for t > 0

WRS

(x1

t
;WL,WR

)
=


WL

x1
t < λ−

W ∗L λ− < x1
t < λu

W ∗R λu < x1
t < λ+

WR λ+ < x1
t

. (3.24)

Furthermore a solution for the intermediate states W ∗L/R is given by

u∗1 =
1

2
(u1,L + u1R)− 1

2a
(πR − πL − κ(ZR − ZL)), (3.25)

π∗L = πL + a(u1,L − u∗1), π∗R = πR + a(u∗1 − u1,R) (3.26)

1

ρ∗L
=

1

ρL
− 1

a
(u1,L − u∗1),

1

ρ∗R
=

1

ρR
− 1

a
(u∗1 − u1,R) (3.27)

e∗L = eL −
1

2a2
(π2
L − π∗L

2), e∗R = eR −
1

2a2
(π2
R − π∗R

2), (3.28)

Z∗L = ZL, Z∗R = ZR, (3.29)

u∗2,L = u2,L, u∗2,R = u2,R, (3.30)

where κ = κ(ρL, αL, ρR, αR).

Proof. The solution structure (3.24) directly follows from the linear degeneracy of the
eigenvalues stated in Lemma 3.2. To derive the solution for the states W ∗L/R one uses the

Riemann invariants (3.21) and (3.22) and solves the resulting system.

The relaxation parameter a can be determined locally analogously to the homogeneous
case defined in equation (2.48) which was taken from [11]. The value a in the Riemann
problem is then obtained by taking the maximum a = max(aL, aR) where the left and right
relaxation parameters are obtained from the initial condition of the Riemann problem
WL,WR. Since the solution of the Riemann problem depends on the source term, so do

x1

u∗1
u1,L −

a

ρL
u1,R +

a

ρR

x1 = 0

u∗1 = 0

ρR

u1,R, u2,R

ZR, eR, πR

ρ∗R, u
∗
1, π

∗
R

u2,R, e
∗
R

ZR

ρ∗L, u
∗
1

u2,L, e
∗
L, π

∗
L

ZL

ρL

u1,L, u2,L

eL, πL, ZL

Figure 3.1: Wave structure of the Riemann problem of the Relaxation model (3.18).
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aL and aR. This is expressed by replacing the pressure terms pR − pL in (2.48) by the
discrete hydrostatic equation pR − pL − κ(βR − βL).

To fully determine the approximate Riemann solution, it remains to give an explicit
form of the function κ(ρL, αL, ρR, αR). We seek κ such that we achieve the well-balanced
property. Indeed from (3.25) we see, that controlling the intermediate velocity u∗1 is the
key to achieve this property. The choice for κ is discussed in the next lemma.

Lemma 3.4. Let the initial condition WL,WR in (3.23) be given at relaxation equilibrium
(3.16). Furthermore assume that WL,WR are a discrete stationary solution, that is they
fulfil the relations

u1,L = 0, u1,R = 0,
ρL,R
αL,R

= 1,
pL,R
βL,R

= 1. (3.31)

If the function κ is discretized such that

κ(ρL, αL, ρR, αR) = 1, (3.32)

for a discrete stationary solution WL,WR, then the intermediate states in (3.24) satisfy

W ∗L = WL, W ∗R = WR,

that is the approximate Riemann solver is at rest.

Proof. Let WL,WR be given satisfying (3.31). If u∗1 = 0, we immediately have from (3.25)-
(3.29) together with u1,L,R = 0 that W ∗L = WL and W ∗R = WR. It remains to show, that
u∗1 = 0. Combining (3.33) with (3.31) we have that

πR − πL − κ(ZR − ZL) = pR − pL − (βR − βL) = 0

since the initial condition of the Riemann problem is in relaxation equilibrium. Therefore
we find u∗1 = 0 and the proof is completed.

In the following we will use a symmetric second order discretization for κ given by

κ(ρL, ρR, αL, αR) =
1

2

(
ρR
αR

+
ρL
αL

)
. (3.33)

We can immediately verify, that this approximation fulfils the requirement (3.32) for an
piecewise constant stationary solution WL,WR.

We conclude the section by stating the positivity property of the Riemann solver
defined in Lemma 3.3. Therefore we define the analogue of Ωphy for the relaxation system
(3.9) which is given by

Ωphy(W ) =
{
W ∈ Rd+4; ρ > 0, e > 0

}
. (3.34)

The connection to Ωphy(w) defined for the original equations (1.75) is easily computed by
Ωphy(QW

eq) = Ωphy(QM(w)) = Ωphy(w).

Lemma 3.5. Given initial data WL,WR ∈ Ωphy(W
eq), then there is WRS(xt ;WL,WR) ∈

Ωphy(W
eq) for the relaxation parameter a sufficiently large. This means the approximate

Riemann solver is robust with respect to the positivity of density ρ and internal energy e.
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Proof. Using the intermediate states for the density (3.27) and the velocity (3.25), we can
write

1

ρ∗L
=

1

ρL
− 1

2a
(u1,R − u1,L) +

1

2a2
(pR − pL − κ(βR − βL)) . (3.35)

Since ρL > 0, all terms that could become negative can be controlled by choosing the
relaxation parameter large enough to ensure the positivity of ρ∗L. The positivity of ρ∗R can
be shown analogously. For the intermediate state for the internal energy we have

e∗L = eL +
1

2a2

(
− π2

L +
1

2
(pL + pR − κ(βR − βL))2

)
+

1

2a

(
pL + pR − κ(βR − βL)

)
(uL − uR)

+
1

8
(uL − uR)2.

This formula contains only positive terms or terms which can be controlled by a chosen
sufficiently large. For e∗R there can be found a similar formula.

Especially this result means that QWRS(xt ;WL,WR) ∈ Ωphy(w). We remark that the
positivity of the intermediate densities ρ∗L,R guarantees the ordering of the approximate
wave speeds

u1,L −
a

ρL
< u∗1 < u1,R +

a

ρR
. (3.36)

We conclude the discussion of an approximate Riemann solver for (3.18) by a remark on
the entropy stability.

Remark 3.6. Let ∂tη + ∂x(ηu1) ≤ 0 be an entropy inequality for the Euler equations
with gravity. Then the approximate Riemann solver is consistent with the entropy inequal-
ity. This follows directly from Theorem 8 given in [28], since the proof given there is
independent of the treatment of source term and thus can be directly applied here.

3.4 Numerical scheme

In this section, we describe the numerical scheme associated with the approximate Rie-
mann solver developed in the previous section. We consider a Cartesian mesh with a uni-
form grid size ∆x as defined in Chapter 2. The numerical scheme consists of a Godunov
type scheme and a subsequent projection step (3.20). The fundamentals of the Godunov
type scheme with a source term were discussed in Section 2.4. We use the properties
stated therein to construct the first order scheme. Additionally an extension to second
order is given with the focus on a linear reconstruction that preserves the well-balanced
and the positivity property.

3.4.1 First order scheme

To define the Godunov-type scheme, we consider the local Riemann problem for (3.18) at
the interface x = x1,i+1/2 depending on the left and right cell averages Wn

i ,W
n
i+1. The cell
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averages are defined in (2.2). The local dimensional split Riemann problems are given by

∂tW + ∂x1F1(W ) = S1(W ),

W 0(x) =

{
M(wni ) = W eq,n

i if x1 < x1,i+1/2

M(wni+1) = W eq,n
i+1 if x1 > x1,i+1/2

.
(3.37)

Note that in comparison to the IVP for the Godunov type scheme with a source term
discussed in Section 2.4, the variable Z is now contained in the state variables of the
relaxation system W as defined in (3.13) and the initial condition for Z is defined by
W 0(x). The initial condition is given in relaxation equilibrium (3.16).

To give the numerical scheme as compact as possible, we write the numerical flux and
source term together in one formulation. Looking at the Riemann solution, we see that
the update of u∗1 in (3.25) is dependent on the source term κni+1/2(Zi+1−Zi) and therefore
also influences the position of the middle wave u∗1 in the wave structure of the Riemann
problem depicted in Figure 3.1. Depending on u∗1, the source term has an influence on the
fluxes at the interface. Let λ−L = u1,L + a/ρL and λ+

R = u1,R + a/ρR. Then, the update
for the physical variables w = (ρ, ρu1, ρu2, E) is given by

wn+1
i = wni −

∆t

∆x

(
f−1 (wni , w

n
i+1)− f+1 (wni−1, w

n
i )
)
, (3.38)

where the numerical fluxes are defined by

f±1 (wi, wi+1) = QF±1 (M(wi),M(wi+1)), (3.39)

where(
F−1 (WL,WR), F+

1 (WL,WR)
)

=

(
F1(WL), F1(WL) + S̄1(WL,WR)

)
if λ−L > 0(

F1(W ∗L), F1(W ∗L) + S̄1(WL,WR)
)

if u∗1 > 0 > λ−L(
F1(W ∗L), F1(W ∗R)

)
if u∗1 = 0(

F1(W ∗R)− S̄1(WL,WR), F1(W ∗R)
)

if λ+
R > 0 > u∗1(

F1(WR)− S̄1(WL,WR), F1(WR)
)

if λ+
R < 0

,
(3.40)

where

S̄1(WL,WR) = S1(WL,WR)(ZR − ZL)

=

(
0,

1

2

(
ρL
αL

+
ρR
αR

)
, 0, u∗1

1

2

(
ρL
αL

+
ρR
αR

)
, 0, 0

)T
(ZR − ZL).

From the flux definition (3.40), we directly see that in general f−1 (wi, wi+1) 6= f+1 (wi, wi+1),
since we include the source term into the flux definition and the Euler equations with a
gravitational potential are not conservative.
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To see that the numerical scheme (3.38) is consistent with the balance law (3.5), we
first show that the approximate Riemann solver

WR

(x
t

;wL, βL, wR, βR

)
= QWRS

(x
t

;M(wL),M(wR)
)

for the original equations (3.5) and the source term discretization

s̄1(wL, βL, wR, βR) = QS̄1(M(wL),M(wR)

are consistent. Using the definition of the intermediate states and the structure of the
Riemann solver for the relaxation model given in Lemma 3.3, we immediately find for all
w ∈ Ω that

WR

(x
t

;w, β,w, β
)

= QWRS

(x
t

;M(w),M(w)
)

= w (3.41)

and for the source term discretization

QS1(M(w),M(w)) = s1(w). (3.42)

Following the steps in [27], we integrate the original system (3.14) on Ci × (tn, tn+1] and
use the solution of the Riemann problem WR to find

wn+1
i = wni −

∆t

∆x

(
f1

(
WR(0;wni , βi, w

n
i+1, βi+1)

)
− f1

(
WR(0;wni−1, βi−1, w

n
i , βi)

) )
+

1

∆x

∫
Ci

∫ tn+1

tn
s1

(
W̃∆(x, t)

)
dtdx. (3.43)

We recall that W̃∆(x, t) is a function piecewise given by approximate Riemann solutions
and defined in (2.98). The source term integral is split into two parts given by

1

∆x

∫
Ci

∫ tn+1

tn
s1

(
W̃∆(x, t)

)
dtdx

= ∆t
(
s̄+

1 (wni−1, βi−1, w
n
i , βi) + s̄−1 (wni , βi, w

n
i+1, βi+1)

)
(3.44)

with

s̄+
1 (wL, βL, wR, βR) =

1

∆x∆t

∫
x<0

∫ tn+1

tn
s1

(
WR

(x
t

;wL, βL, wR, βR

))
dtdx (3.45)

s̄−1 (wL, βL, wR, βR) =
1

∆x∆t

∫
x>0

∫ tn+1

tn
s1

(
WR

(x
t

;wL, βL, wR, βR

))
dtdx. (3.46)

Depending on the wave position u∗1 we can determine the value of the sorce terms s̄±. We
begin with the rectangle [x1,i, x1,i+1/2]× (tn, tn+1] and study the value of the source term
at the left of the interface x = xi+1/2. If u∗1,i+1/2 > 0, then ZL = ZR = Zi is constant, see
also Figure 3.1, and we find due to the consistency of the source discretization

s̄−1 (wi, βi, wi+1, βi+1) = 0. (3.47)
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If u∗1,i−1/2 < 0, then Z jumps across the u∗1 wave and

s̄−1 (wi, βi, wi+1, βi+1) =
1

∆x
s1(wi, βi, wi+1, βi+1). (3.48)

Using the sign function we can write

s̄−1 (wi, βi, wi+1, βi+1) =
−sign(u∗1,i+1/2) + 1

2∆x
s1(wi, βi, wi+1, βi+1). (3.49)

Considering the rectangle [x1,i−1/2, x1,i]× (tn, tn+1], we find analogously

s̄+
1 (wi−1, βi−1, wi, βi) =

sign(u∗1,i−1/2) + 1

2∆x
s1(wi−1, βi−1, wi, βi). (3.50)

Using the source term definitions (3.50),(3.49), we directly obtain the formulation of
scheme (3.38) with an upwinded source as

wn+1
i = wni +

∆t

∆x
(f1(WR(0;wi, βi, wi+1, βi+1))− f1(WR(0;wi−1, βi−1, wi, βi))

+ ∆t

(
−sign(u∗1,i+1/2) + 1

2∆x
s1(wi, βi, wi+1, βi+1)

+
sign(u∗1,i−1/2) + 1

2∆x
s1(wi−1, βi−1, wi, βi)

)
. (3.51)

Alternatively, one can derive a scheme that uses a centred symmetric discretization of the
source term as done in [27, 28, 29].

3.4.2 A second order extension

In the following, we want to extend the first order scheme to second order accuracy.
We seek this extension such that the second order scheme has the well-balanced and
positivity property. As already discussed in Section (2.2) for the homogeneous case, we
solve a Riemann problem for (3.18), where its initial condition is based on the left and
right interface values

W 0(x) =


M
(
wn,−i+1/2

)
if x1 < x1,i+1/2

M
(
wn,+i+1/2

)
if x1 > x1,i+1/2

, (3.52)

where with ∆w = σi
∆x
2 the interface values are defined as

wn,+i−1/2 = wni −∆w and wn,−i+1/2 = wni + ∆w. (3.53)

The second order scheme in space is then given by

wn+1
i = wni −

∆t

∆x

(
f−1 (wn,−i+1/2, w

n,+
i+1/2)− f+1 (wn,−i−1/2, w

n,+
i−1/2)

)
(3.54)

with the definition of the numerical flux given by (3.39) and (3.40). In the following we
will give a strategy how to obtain the slopes ∆w in (3.53) such that the Riemann solver
defined in (3.24) with initial data (3.52) is at rest and preserves the invariant domain Ωphy.
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A well-balanced hydrostatic reconstruction

To obtain a second order reconstruction of the interface values, we follow the MUSCL ap-
proach described in Section 2.2. Therein a reconstruction based on the conserved variables
Wi was described. However, to ensure that the Riemann solver is at rest for an initial con-
dition given by (3.52) computed from a piecewise constant stationary solution, we base
the reconstruction on so called equilibrium variables. Therefore we adopt an approach
known as the surface gradient method in the context of the shallow-water equations [89, 3]
for treating hydrostatic equilibria. In this context, we define the equilibrium variables by
v = (ρ, u1, u2, q) which consist of the density, the two velocity components and a modified
pressure q. It is defined by the following transformation of the pressure

qi−1 = πi−1 + Si−1/2,

qi = πi

qi+1 = πi+1 − Si+1/2,

(3.55)

where

Si+1/2 =
1

2

(
ρi
αi

+
ρi+1

αi+1

)
(Zi+1 − Zi) (3.56)

is the second order approximation of the source term κ∂xZ with the discretization of
κ defined in (3.33). Note that Si+1/2 appears also in the intermediate state u∗1 in the
Riemann solution (3.25). We can rewrite the intermediate state u∗1 for two initial states
Wi,Wi+1 in terms of Si+1/2 as follows

u∗1,i+1/2 =
1

2
(u1,i + u1,i+1)− 1

2a
(πi+1 − πi − Si+1/2). (3.57)

The slopes σi for the equilibrium variables are computed by using the minmod limiter
(2.75). The interface values in equilibrium variables are then given by

vn,+i−1/2 = vni − σi
∆x

2
, vn,−i+1/2 = vni + σi

∆x

2
. (3.58)

The interface values for the relaxation pressure π are obtained by setting

πn,−i+1/2 = qn,−i+1/2 and πn,+i−1/2 = qn,+i−1/2. (3.59)

The interface values for the momentum and energy are calculated from vn,∓i±1/2 and the

considered EOS. This reconstruction ensures that the Riemann solver (3.24) is at rest for
an initial discrete stationary solution and is subject to the following lemma.

Lemma 3.7. Let the cell averages wni−1, w
n
i , w

n
i+1 form are a discrete stationary solu-

tion, that is they fulfil the relations (3.31). Further, let the initial condition (3.23) of the
Riemann problem be composed of the interface values wn,−i+1/2, w

n,+
i+1/2 obtained under the

reconstruction in equilibrium variables ρ,u, q. Then the approximate Riemann solver WRS
defined in (3.24) with the intermediate velocity defined by (3.57), where Si+1/2 is defined
by (3.56), is at rest.
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Proof. Since the initial condition Wn
i−1 = M(wni−1),Wn

i = M(wni ),Wn
i+1 = M(wni+1) is

given in hydrostatic equilibrium, the velocity components are zero and we have from the
definition of the minmod limiter (2.75) that

u−1,i+1/2 = u+
1,i+1/2 = un1,i = 0 and u−2,i+1/2 = u+

2,i+1/2 = un2,i = 0. (3.60)

We show that u∗1 = 0 from which immediately follows that W ∗i = Wn
i and W ∗i+1 = Wn

i+1.
From the definition of u∗1 given in (3.57) remains

u∗1 = − 1

2a

(
πn,+i+1/2 − π

n,−
i−1/2 − Si+1/2

)
. (3.61)

Since Wn
i ,W

n
i+1 are in relaxation equilibrium and are a discrete hydrostatic equilibrium

solution, we have Si+1/2 = βi+1 − βi. Furthermore, we have due to the reconstruction in
equilibrium variables (3.55) for the left and right slopes

qi − qi−1 = πi − πi−1 − Si−1/2 = βi − βi−1 − Si−1/2 = 0 (3.62)

and analogue qi+1 − qi = 0. From the definition of the minmod limiter we obtain σ = 0
and therefore

πn,−i+1/2 = πni = pni and πn,+i+1/2 = πni+1 = pni+1. (3.63)

Therefore we can further simplify u∗1 and obtain

u∗1 = − 1

2a
(πni+1 − πni − βi+1 + βi) = 0. (3.64)

This completes the proof.

A positivity preserving reconstruction

tn x

tn+1

t

Wn
i−1

xi−1/2 Wn
i

xi+1/2 Wn
i+1

Wn+1
i

1
3∆x

Wn,+
i−1/2

1
3∆x

Wn,?
i

1
3∆x

Wn,−
i+1/2

Wn+1,+
i−1/2 Wn+1,?

i Wn+1,−
i+1/2

Wn,−
i−1/2 Wn,+

i+1/2

Figure 3.2: Positivity reconstruction.

As we have seen in Section 2.2, the positivity of the interface values for density and
internal energy followed directly from the minmod reconstruction in conserved variables.
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However here, we do a reconstruction in equilibrium variables which is in principle a
reconstruction in primitive variables ρ, u1, u2, p. To ensure that the reconstruction also
provides positive density and energy interface values, we derive a limiting procedure for
the slopes σ obtained from the minmod function in the hydrostatic reconstruction. To
do so, we follow the approach of Berthon [6] depicted in Figure 3.2. The update wn+1

i

obtained with the MUSCL scheme (3.54) can be understood as the average on the cell
Ci composed of three values wn+1,+

i−1/2 , w
n+1,?
i , wn+1,−

i+1/2 that were evolved with the first order

scheme respectively. The third state wn,∗i is uniquely defined by the conservation property

wni =
1

3

(
wn,+i−1/2 + wn,∗i + wn,−i+1/2

)
. (3.65)

In other words, the cell Ci is now divided into three regions with the volume ∆x
3 filled with

three constant states. Now, a necessary condition for the second order scheme in space in
order to preserve the invariant domain Ωphy is according to [6] given by

wn,+i−1/2, w
n,?
i , wn,−i+1/2 ∈ Ωphy (3.66)

under one third of the CFL condition of the first order scheme (3.38). This necessary
condition can be rewritten as to require in relaxation equilibrium

ρn,+i−1/2, ρ
n,?
i , ρn,−i+1/2 > 0 and pn,+i−1/2, p

n,?
i , pn,−i+1/2 > 0. (3.67)

Since we have employed a minmod function to obtain the slope for the density ∆ρ, the
positivity of the interface values is guaranteed. For any conserved state w, we immediately
obtain from the conservation property (3.65) that for the middle state holds

w?i = wni . (3.68)

Therefore we obtain ρ?i = ρni and the necessary condition for the density is already ful-
filled by the hydrostatic reconstruction. The interface values of the pressure however are
obtained by calculating the slopes with the transformed pressure q. Therefore in general
we do not obtain the positivity from the minmod limiter. Let the slope for the equilibrium
variable q be denoted by ∆q. Then the positivity of pn,∓i±1/2 is guaranteed as soon as∣∣∣∣∆qpi

∣∣∣∣ < 1. (3.69)

This can be achieved by limiting ∆q and the slope for the pressure can be defined by

∆p = pni max

(
−1,min

(
1,

∆q

pni

))
. (3.70)

It is left to verify whether also p?i > 0. From the conservation property, we have E?i =
Eni > 0. From this we obtain with straightforward calculations the following relation

p?i = pni − (γ − 1)(ρni |∆u|2)− 2(γ − 1)(∆ρ〈∆u,uni 〉) (3.71)

which is a function of ∆u = (∆u1,∆u2)T . Therefore, the positivity of p?i depends on the
value of ∆u which leads to a limiting of the velocity slopes ∆u. Therefore we do the
following Ansatz

∆u = ω∆ū, (3.72)
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with 0 < ω ≤ 1 that preserves the sign of ∆u. For ∆u = 0 we immediately obtain
p?i = pni > 0. For ω > 0 and ∆ū 6= 0, we use (3.72) in (3.71) and consider the following
quadratic function in ω

Π(ω) = pni − 2(γ − 1)∆ρ〈∆ū,uni 〉ω − (γ − 1)ρni |∆ū|2ω2.

The roots ω1,2 of Π(ω) are real, distinct and given by

ω1,2 = −∆ρ〈∆ū,uni 〉
ρni |∆ū|2

∓ 1

ρni |∆ū|2

√
∆ρ2〈∆ū,uni 〉2 + |∆ū|2

ρni p
n
i

γ − 1

A straightforward computation shows that

ω1 < 0 < ω2.

Since Π(ω) is concave, p?i > 0 for ω ∈ [0, ω2). Let ∆ū be the velocity slopes obtained by
the minmod function in the hydrostatic reconstruction, then the limited slopes are given
by

∆u = min(1, ω2)∆ū. (3.73)

Using this limiting procedure does not make the resulting scheme more complex, but
allows for the preservation of the positivity of density and energy also for the second order
scheme. Summing up, we obtain the following result.

Lemma 3.8. Let the initial data be composed by cell averages Wn
i−1 = M(wni−1), Wn

i =
M(wni ), Wn

i+1 = M(wni+1) contained in Ωphy(M(w)). Further, let the initial condition

(3.23) of the Riemann problem be composed by the interface values Wn,−
i+1/2,W

n,+
i+1/2 obtained

by the limited hydrostatic reconstruction (3.70),(3.73). Then the approximate Riemann
solver WRS defined in (3.24) preserves the invariant domain Ωphy for a sufficiently large
relaxation parameter a.

Proof. Due to the limiting of the slopes, the initial data WL = Wn,−
i+1/2 and WR = Wn,+

i+1/2
of the Riemann solver WRS are in Ωphy. The statement follows then directly from Lemma
3.5.

Second order in time

To obtain a fully second order scheme in space and time, we combine the second order
scheme in space given by (3.54) with the second order time integration scheme (2.81),
proposed in [6], that allows for different time increments ∆t1,∆t2 for each computational
stage respectively.

The second order update for the physical variables is given by

w
(1)
i = wni −

∆t1
∆x

(
f−1

(
wn,−i+1/2, w

n,+
i+1/2

)
− f+1

(
wn,−i−1/2, w

n,+
i−1/2

))
,

w
(2)
i = w

(1)
i −

∆t2
∆x

(
f−1

(
w

(1),−
i+1/2, w

(1),+
i+1/2

)
− f+1

(
w

(1),−
i−1/2, w

(1),+
i−1/2

))
,

wn+1
i =

(
1− ∆t

∆t1 + ∆t2

)
wni +

∆t

∆t1 + ∆t2
w

(2)
i

(3.74)
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with the total time step

∆t =
2∆t1∆t2

∆t1 + ∆t2
. (3.75)

This time integration method has the advantage that the CFL criterion can be met for
every single stage independently. In the following section, the CFL conditions for the
first and second order scheme are given. Due to requiring that the first and second
order schemes (3.38) and (3.54) preserve the invariant domain Ωphy, the respective CFL
conditions are more restrictive than one would expect from a second order finite volume
scheme. However, the CFL bounds are necessary for the theoretical study of the properties
of the schemes and could be relaxed in practice.

3.5 Properties of the numerical schemes

In this section we state the central properties in the two-dimensional setting of the first
and second order scheme derived above. As motivated in Section 2.1.4, a scheme for
multiple space dimensions can be obtained from considering the dimensional split Riemann
problems in each direction. The fully two dimensional first order scheme for a uniform
grid size ∆x is then given by

wn+1
ij = wnij−

∆t

∆x

(
f−1 (wni,j , w

n
i+1,j)− f+1 (wni−1,j , w

n
i,j)
)

−∆t

∆x

(
f−2 (wni,j , w

n
i,j+1)− f+2 (wni,j−1, w

n
i,j)
)
,

(3.76)

where f1 denotes the flux in x1-direction and f2 the analogue numerical flux in x2-direction,
as discussed in Section 2.1.4 about dimensional split Riemann problems. The fully second
order scheme can be obtained analogously by adding to (3.74) the flux terms in x2-direction
and performing the linear construction in each space direction separately. We recall that
Cij denotes the two dimensional rectangular grid cell of area ∆x2 for a uniform space
discretization ∆x1 = ∆x2 and the cell averages Wn

ij are computed according to (2.64). We
begin with the well-balanced property.

Theorem 3.9. Let the initial data wnij be a discrete stationary solution, that is fulfilling
(3.31) for all cells Cij on the computational domain. Then the first order scheme (3.76)
is well-balanced.

Proof. Let Wn
i,j = M(wni,j),W

n
i+1,j = M(wni+1,j) be the initial data for the Riemann

problem (3.23) in x1-direction and Wn
i,j = M(wni,j),W

n
i,j+1 = M(wni,j+1) for the Rie-

mann problem in x2-direction. As they form by assumption a discrete stationary so-
lution, we know from Lemma 3.4 that the approximate Riemann solvers are at rest in
each space direction. Therefore in the definition of the numerical flux (3.40) we have
F−1 (Wn

ij ,W
n
i+1,j) = F1(Wn

ij) and F+
1 (Wn

i−1,j ,W
n
ij) = F1(Wn

ij). The analogue relations

we find for the fluxes F±2 in x2-direction. Therefore we get in the update (3.76) with
QF1(Wn

ij) = f1(wnij) and QF2(Wn
ij) = f2(wnij)

wn+1
ij = wnij −

∆t

∆x

(
f1(wnij)− f1(wnij) + f2(wnij)− f2(wnij)

)
= wnij

and thus the first order scheme is well-balanced.
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The analogue result can be stated for the second order scheme.

Theorem 3.10. Let the initial data wnij be a discrete stationary solution, that is fulfilling
(3.31) for all cells Cij on the computational domain. Further let the interface values
wn,∓i±1/2,j, w

n,±
i,j±1/2 be obtained by the hydrostatic reconstruction. Then the second order

scheme (3.76) in two space dimensions is well-balanced.

Proof. Since the requirements of Lemma 3.7 are fulfilled, it follows that the Riemann solver
at each interface is at rest. Since the second order time integration method is composed
of first order steps, we can follow the lines of the proof of Theorem 3.9 and obtain

w
(1)
ij = wnij , w

(2)
ij = wnij

and therefore wn+1
ij = wnij . Thus the second order scheme is well-balanced.

Now we turn to the preservation of the invariant domain Ωphy. For the first order
scheme we can proof the following result.

Theorem 3.11. Let the initial data be given by wnij ∈ Ωphy on all cells Cij on the com-
putational domain. Then under the CFL condition

∆t

∆x
max

(∣∣∣∣∣un1,ij ± ai∓1/2,j

ρnij

∣∣∣∣∣ ,
∣∣∣∣∣un2,ij ± ai,j∓1/2

ρnij

∣∣∣∣∣
)
≤ 1

4
(3.77)

and a sufficiently large local relaxation parameter ai±1/2,j, ai,j±1/2, the first order scheme

(3.76) preserves the invariant domain Ωphy, that is wn+1
ij ∈ Ωphy.

Proof. We begin the proof with the analysis of one spatial dimension. Due to the integral
consistency of the approximate Riemann solver, the update (3.38) can be rewritten as

wn+1
i =

1

∆x1

(∫ xi

xi−1/2

WR

(
x− xi−1/2

∆t
, wni−1, w

n
i

)
dx

+

∫ xi+1/2

xi

WR

(
x− xi−1/2

∆t
, wni , w

n
i+1

)
dx

)
, (3.78)

see also [11]. Due to the CFL condition, we know that the Riemann solutions are not
interacting and therefore we have WR(xt ;w

n
i−1, w

n
i ),WR(xt , w

n
i , w

n
i+1) ∈ Ωphy from Lemma

3.5. By convexity of Ωphy and the relation (3.78) we have wn+1
i ∈ Ωphy. Now we extend

the analysis to two space dimensions. For this we can rewrite the update formula (3.76)
as

wn+1
i = wni −

∆t

∆x

2∑
l=1

(
f−l (wi, wi+1)− f+l (wi−1, wi)

)
=

1

2

2∑
l=1

(
wni −

2∆t

∆x

(
f−l (wi, wi+1)− f+l (wi−1, wi)

))
︸ ︷︷ ︸

∈ Ωphy due to (3.78)

. (3.79)

Therefore by the convexity of (3.79), we have wn+1
i ∈ Ωphy.
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Now we prove the preservation of the invariant domain for the second order method.
Since we decided to reconstruct in equilibrium variables and followed the strategy in [6] to
define a slope limiting, we will use results of Berthon given in [6] to ensure the positivity.
We give the following Theorem as a summary of the work from [6] within our context.

Theorem 3.12. Let the initial data be given by wij ∈ Ωphy on all cells Cij on the compu-
tational domain. Then under the minimum ∆t computed according to the directional CFL
conditions

∆t

∆x
max

(∣∣∣∣∣un,+1,i−1/2,j −
ai−1/2,j

ρn,+i−1/2,j

∣∣∣∣∣ ,
∣∣∣∣∣un,−1,i+1/2,j +

ai+1/2,j

ρn,−i+1/2,j

∣∣∣∣∣ ,
∣∣∣∣∣un1,ij ± a

ρnij

∣∣∣∣∣
)
<

1

4
· 1

3
(3.80)

∆t

∆x
max

(∣∣∣∣∣un,+2,i,j−1/2 −
ai,j−1/2

ρn,+i,j−1/2

∣∣∣∣∣ ,
∣∣∣∣∣un,−2,i,j+1/2 +

ai,j+1/2

ρn,−i,j+1/2

∣∣∣∣∣ ,
∣∣∣∣∣un2,ij ± a

ρnij

∣∣∣∣∣
)
<

1

4
· 1

3
(3.81)

and a sufficiently large local relaxation parameter ai±1/2,j , ai,j±1/2, the two dimensional

second order scheme preserves the invariant domain Ωphy, that is wn+1
ij ∈ Ωphy.

Proof. The proof is a straightforward application of the Theorem 2.5 given in [6] since
by Theorem 3.11 the first order scheme is preserves the invariant domain. Due to the
limiting procedure, the interface values wn,−i−1/2,j , w

n,+
i+1/2,j are contained in Ωphy. Due to

the CFL condition the Riemann solutions do not interact and by Lemma 3.8 the Riemann
solutions lie in Ωphy. The second order time integrator (2.81) used in the second order
scheme is therefore a convex combination of positivity preserving states and we obtain
wn+1
ij ∈ Ωphy.

The results given here can be straightforwardly extended to three dimensional prob-
lems.

3.6 Numerical results

To illustrate the properties presented in Section 3.5, we present several numerical experi-
ments. We assume an ideal gas law with the equation of state given by

p = RTρ = (γ − 1)ρe

where we set γ = 5/3 if not otherwise specified.
We would like to stress that in all test cases the slope limiter given by (3.70),(3.73)

was not necessary to ensure the positivity. All computations are carried out on double
precision and errors are given in the L1-norm. We start with well-balanced tests for
different atmospheres and potentials.

3.6.1 Well-balanced tests

For the well-balanced tests, we consider different stationary solutions in one, two and three
space dimensions using the second order scheme. The computations are performed on a
uniform grid on the domain [0, 1]d, where d denotes the number of dimensions, up to a
final time Tf = 1.0.
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As a first example, we consider an isothermal hydrostatic atmosphere (1.90) in three
space dimensions with a quadratic potential Φ(x) = 1

2(x2
1 + x2

2 + x2
3) and choosing for the

constant C = 0. The gas constant and temperature is set as R = 1, T = 1. The reference
equilibrium given in terms of α and β is set according to (3.7).

The second example as is a polytropic atmosphere (1.91) in two dimensions for which
we set C = 0 and χ = 1. In this case we choose a linear gravitational field given by
Φ(x) = x1 + x2. The functions α and β are given by (3.8).

The last example we consider is a non-polytropic and non-isothermal stationary state
with the potential Φ(x) = −

∑d
j=1 sin(2πxj). This corresponds to a non-constant gravi-

tational acceleration over the computational domain. A steady state solution using this
potential is given by

ρ(x) = cρ − 2 Φ(x),

u = 0,

p(x) = cp − cρ Φ(x)− 1

2

d∑
j=1

cos(4πxj) +
d∑

i,j=1,j>i

sin(2πxi) sin(2πxj).

(3.82)

The parameters cρ and cp are chosen such that the initial condition for the density and
pressure are positive. Since the hydrostatic equilibrium solution (3.82) is periodic on
the domain [0, 1]d we use periodic boundary conditions. The reference equilibrium states
α, β are given by definition by α = ρ and β = p. For this general stationary state
calculations are performed in one, two and three space dimensions with cρ = 3.0, 5.0, 7.0
and cp = 3.0, 8.0, 14.5 respectively. In all tests Neumann boundary conditions are used,
since they fulfil the hydrostatic equilibrium. Alternatively also exact boundary conditions
can be applied. The numerical results in terms of the L1 error with respect to the exact
hydrostatic solution are given in Tables 3.1 for the isothermal test, in Table 3.2 for the
polytropic test and in Table 3.3 for the stationary solution (3.82). As can be seen, the
errors are of order of machine precision independent of the number of space dimensions
and space resolution. Even for coarse grids the well-balancing is ensured and it will not be
necessary to use an especially fine grid to capture fluctuations around an equilibrium as
we will see in Section 3.6.3. But before we will have a look at the accuracy of the schemes.

N ρ ρu ρv ρw E

50 5.996E-017 1.450E-016 1.450E-016 1.438E-016 7.404E-017

150 4.930E-017 2.121E-016 2.121E-016 2.128E-016 6.426E-017

Table 3.1: L1 error with respect to initial values in density, momentum and energy for
isothermal equilibrium at Tf = 1.0.
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N ρ ρu ρv E

100 4.796E-017 1.188E-016 1.188E-016 8.684E-017

500 1.036E-016 5.525E-016 5.525E-016 2.209E-016

Table 3.2: L1 error with respect to initial values in density, momentum and energy for a
polytropic equilibrium at Tf = 1.0.

N ρ ρu1 ρu2 ρu3 E

200 2.187E-016 3.742E-015 1.263E-015

1000 2.220E-018 5.149E-016 4.529E-017

100 9.294E-017 2.285E-015 2.285E-015 1.214E-015

500 5.571E-016 6.459E-015 6.459E-015 3.257E-015

50 2.137E-016 3.092E-015 3.098E-015 3.032E-015 2.174E-015

150 4.930E-015 1.292E-014 1.299E-014 1.298E-014 5.000E-014

Table 3.3: L1 error with respect to initial values in density, momentum and energy for a
general stationary state at Tf = 1.0 for the dimensions d = 1, 2, 3.

3.6.2 Accuracy

To numerically verify the order of convergence, we consider the accuracy of the whole
scheme, as well as the order of accuracy of the source term discretization.

Source term

To verify the accuracy of the source term, we model the case, where an equilibrium solution
is balanced with a not corresponding reference hydrostatic equilibrium solution α, β. In
practise this can happen if the reference equilibrium is too complicated to compute or the
nature of the chosen pressure law changes during the simulation. However the scheme
will still converge with second order to the correct equilibrium solution. To demonstrate
this, we consider in one dimension the equilibrium solution (3.82) where we choose an
isothermal reference equilibrium (3.7). To see the accuracy of the discretization of the
hydrostatic equilibrium (3.1), we choose the first order scheme.

For the given discretization Si+1/2 from (3.56) one finds with a straightforward Taylor
expansion in one dimension that

∂xp(xi+1/2)− ρ

α
(xi+1/2)∂xβ(xi+1/2) =

1

∆x
(pi+1 − pi − Si+1/2) +O(∆x2).

This shows that the hydrostatic equilibrium is approximated by second order for a hydro-
static equilibrium solution that does not coincide with the chosen α and β. From Table
3.4, we see that indeed the first order scheme converges to the hydrostatic equilibrium
solution (3.82) with order two.
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N ρ ρu E

50 9.083E-06 — 5.171E-05 — 1.841E-05 —

100 1.673E-06 2.441 1.303E-05 1.989 3.433E-06 2.423

200 3.428E-07 2.287 3.268E-06 1.995 7.114E-07 2.271

400 7.632E-08 2.167 8.182E-07 1.998 1.595E-07 2.157

800 1.790E-08 2.092 2.047E-07 1.999 3.757E-08 2.086

1600 4.328E-09 2.048 5.120E-08 1.999 9.106E-09 2.045

Table 3.4: L1 error and convergence rates at Tf = 1.0 balancing (3.82) with an isothermal
equilibrium.

Exact solutions

Now we turn to numerically verify the accuracy of the second order scheme. To demon-
strate that the second order extension of the first order scheme has the expected accuracy,
we compare the numerical solution to an exact solution of the Euler equations with gravity.
We will consider two different solutions. The first exact solution of (1.75) for a quadratic
gravitational potential is given by

ρ(x, t) = exp

(
1

RT

(
1

2

d∑
i=1

u2
i −

d∑
i=1

ζi
ηi

cos(ηit)∂xiΦ(x)− Φ(x)

))
,

ui(t) = ζi sin(ηit),

p(x, t) = RTρ(x, t),

Φ(x) =
1

2

d∑
i=1

η2
i x

2
i ,

(3.83)

where the constants ζi > 0 denote the amplitude of the velocities ui and ηi > 0 are scaling
constants. The velocity field is time dependent and for u = 0 we obtain the isother-
mal hydrostatic equilibrium solution (1.90). Thus, we have set α and β according to
the isothermal equilibrium solution (3.7). The calculations are performed for the three
dimensional problem on the domain [0, 1]3 starting with 25 cells using exact boundary
conditions (2.8). To be far enough from the equilibrium solution to be able to observe
stable convergence rates, we have set high velocity amplitudes ζ1,2,3 = 20 and the scal-
ing constant is set to η1,2,3 = 1. The time frame is chosen such that the velocities are
monotone increasing in time, where the density and pressure is exponentially decaying on
the computational domain. The L1 error and convergence rates are given in Table 3.6. It
can be seen that the convergence rates are around two for the velocity field. The rates
for density and energy are slightly below but approaching two. This can be explained by
the use of the minmod limiter function as the density and pressure are almost constant in
some parts of the computational domain and the calculated slopes are almost zero.

A second exact solution in two space dimensions for a linear potential taken from [18]
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is given by

ρ(x, t) = 1 + 0.2 sin(π(x1 + x2 − t(u10 + u20))),

u1(t) = u10 ,

u2(t) = u20 ,

p(x, t) = p0 + t(u10 + u20)− (x1 + x2) +
0.2

π
cos(π(x1 + x2 − t(u10 + u20))).

(3.84)

Here the velocity field is constant throughout the simulation. For a zero velocity field, the
exact solution (3.84) fulfils the hydrostatic equation (3.1) which is used to define α and
β. They are given by

α(x) = 1 + 0.2 sin(π(x1 + x2)),

β(x) = p0 − (x1 + x2) +
0.2

π
cos(π(x1 + x2)).

(3.85)

For the parameters, we choose u10 = 20, u20 = 20 to be sufficiently far from the equilibrium
solution and p0 = 4.5 which ensures the positivity of the pressure. The two dimensional
computational domain is given by [0, 1]2 and the computations are performed with exact
boundary conditions up to a final time Tf = 0.01. The L1 error and convergence rates are
given in Table 3.5. It can be seen that the convergence rates throughout all variables are
around 1.9 but approaching two. Since the density and pressure have a maximum on the
computational domain, the slopes calculated with the minmod limiter function reduces to
zero at the maximum and therefore the numerical convergence rates are reduced.

3.6.3 Perturbations of equilibrium solutions

As already mentioned before, the main motivation of using well-balanced schemes is that
they are able to capture the hydrostatic equilibrium at machine precision. Therefore they
allow an accurate description of small fluctuations on the equilibrium state even for coarse
meshes.

Evolution of a small pressure perturbation

With the following numerical test, taken from [53], the evolution of a small perturbation in
one dimension which is added to an initial isothermal hydrostatic solution is investigated.
Therefore the equilibrium pressure is perturbed by a Gaussian centred at x = 0.5 with an
amplitude η. The initial data is given by

ρ(x) = exp(−Φ(x)), (3.86)

p(x) = exp(−Φ(x)) + η exp(−100(x− 0.5)2). (3.87)

For the simulation we use a linear potential Φ(x) = x and the functions α and β are
chosen according to the isothermal atmosphere (3.7). In the first numerical experiment,
we choose quite a large perturbation with the amplitude of η = 10−3. The final time
T = 0.2 is chosen such that the resulting waves are still inside the computational domain
[0, 1] and at the boundary the hydrostatic equilibrium is fulfilled. Therefore Neumann
boundary conditions are sufficient. To illustrate the behaviour of the perturbation, the
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Figure 3.3: Evolution of the perturbation in pressure (left) and velocity (right) at time
Tf = 0.2 for an initial Gaussian pressure perturbation (3.86) with an amplitude η = 10−3.

difference between the pressure and initial data p(x)−p0(x) and the velocity perturbation
are plotted.

The numerical solutions plotted in Figure 3.3 are computed by the first and second
order scheme with 100 cells respectively. In addition the initial pressure perturbation
as well as a reference solution also computed with the second order scheme using 32000
cells are given. Overall can be said that the first and second order well-balanced scheme
capture the evolution of the perturbation accurately. This can especially be seen at the
boundaries, where the solution is still in equilibrium. Due to the higher accuracy of the
second order scheme, the resulting waves travelling towards the left and right boundary
are well captured. As expected, the first order scheme is more diffusive but still gives a
good description.

To see how the well-balanced scheme performs compared to an unbalanced one, we redo
the same test case and choose the reference equilibrium polytropic instead of isothermal.
This results in a not well-balanced scheme. As the before chosen amplitude of η = 10−3 is
quite large, we set now η = 10−8. This perturbation is now of the order of the error that
arises when the background atmosphere is calculated with the not well-balanced scheme.
In Figure 3.4, the initial perturbation, the solution for the well-balanced scheme with 500
cells and the solution for the unbalanced scheme with 250 and 500 cells are displayed. As
can be seen, the peaks in the pressure perturbation are also captured from the unbalanced
scheme but the behaviour near the boundary, where the solution is in a stationary state,
is off as well as the behaviour of the velocity. As the number of cells increases, the solution
seems to converge to the solution of the well-balanced scheme, but a quite fine mesh is
needed to have a good resolution of the travelling waves. This underlines the importance of
using well-balanced schemes to correctly resolve perturbations upon an equilibrium state
especially on coarse grids.

Rayleigh-Taylor instability

Rayleigh-Taylor instabilities arise at the interface between two gases with different densi-
ties where the lighter gas is accelerated towards the heavier gas for example by gravity.
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Figure 3.4: Evolution of the perturbation in pressure (left) and in velocity (right) compar-
ing a well-balanced scheme to a not well-balanced scheme for an initial Gaussian pressure
perturbation (3.86) with an amplitude η = 10−8.

In this test case, taken from [53], in a radial set up from [17], this two layers of gas
are modelled by a gas in isothermal equilibrium at the core, where a perturbation in
density builds the second layer. The gravitational field is modelled in radial coordinates
by Φ(r) = r acting away from the core. The considered computational domain is given by
[−1, 1]2 and the two initial density layers are given by

p =

{
exp(−r) r ≤ r0

exp(− r
µ + r0

1−µ
µ ) r > r0

, ρ =

{
exp(−r) r ≤ ri(θ)
1
µ exp(− r

µ + r0
1−µ
µ ) r > ri(θ)

,

where

µ =
exp(−r0)

exp(−r0) + ∆ρ

and the interface curve is given by

ri(θ) = r0(1 + ν cos(kθ)).

This results in a jump in density by an amount of ∆ρ at the interface defined by r = ri(θ)
whereas the pressure is continuous. Following [17], we take ∆ρ = 0.1, η = 0.02, k = 20.
For the computation, we use the second order well-balanced scheme on a mesh consisting
of 240 × 240 cells and the results for the density are given in Figure 3.5. The picture on
the top left displays the initial condition. For r < r0(1−η) and r > r0(1+η), it is in stable
equilibrium but due to the discontinuous density, a Rayleigh-Taylor instability develops at
the interface of the two density layers. The other pictures in Figure 3.5 show the numerical
solution at times t = 2.9, 3.8 and t = 5.0 from the top right to the bottom right. It can be
seen that the characteristic mushroom like instabilities develop around the discontinuous
interface. These can be seen due to the application of a well-balanced scheme. Using a non
well-balanced scheme instead would lead to spurious disturbances developing away from
the density interface. Since a Cartesian mesh and dimensional splitting is used to calculate
a numerical solution in a radial set-up, the instabilities evolve along the coordinate axes
and thus the solution is not completely radially symmetric.
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Figure 3.5: Rayleigh-Taylor instability in density in radial gravitational field at times t = 0
(top left), t = 2.9 (top right), t = 3.8 (bottom left) and t = 5.0 (bottom right).
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3.6.4 Strong rarefraction test

We conclude this section on numerical validation of the properties of the scheme by turning
to the positivity preserving property. A classical test-case in this context is a strong
rarefaction test. The rarefaction test performed here, follows the two dimensional 1-2-0-3
rarefaction test from [32] which is developed for the homogeneous Euler equations with a
zero source term. Originally the density and energy are chosen constant and are given by
ρ = 1 and E = 3. The x1-component of the velocity jumps from −2 to 2 whereas the x2

component of the velocity is zero, that is

u1 =

{
−2 for x1 < 0.5,

+2 for x1 ≥ 0.5,
u2 = 0

The jump in u1 launches two strong rarefaction waves in opposite directions along the x1

coordinate. To include the presence of the gravitational field, we modify this set-up and
define ρ and p to be in isothermal equilibrium with a quadratic potential

Φ(x) =
1

2

(
x1 − 0.5)2 + (x2 − 0.5)2

)
centred around x = (0.5, 0.5). To have the initial maximal energy to be Emax = 3, we set
R T = γ − 1 and γ = 1.4.

The calculations were performed with the first and the second order scheme on 100
cells in each direction on the domain [0, 1]2 up to Tf = 0.1. The results given in Figure
3.6 are projected on the x1 axis and show the density, the velocity component u1 and the
energy. As can be seen, the density and energy come close to zero at the center of the cell
as the rarefaction waves travel to the left and right, but remain positive throughout the
computations.

3.7 Conclusion

In this chapter, we constructed a method for well-balancing arbitrary given hydrostatic
equilibria of the compressible Euler equations with gravity. A key element in achieving
the well-balanced and the positivity preserving property of the developed Godunov type
scheme was the use of a relaxation procedure to be able to compute an approximate
Riemann solution to the Riemann problems arising at the interfaces due to the finite
volume discretization. To this first order scheme, a quite natural extension to multiple
dimensions as well as to second order was given that inherited the well-balanced and
positivity property of the first order scheme.

The overall aim of this work is to extend the scheme, that provably works well in
the compressible regime, to all speeds, especially to near incompressible regimes. As a
first step in this direction we focus on the construction of an all-speed scheme for the
homogeneous Euler equations in the following chapter before we turn to the construction
of an all-speed scheme for the Euler equations with a gravitational potential in Chapter
5.
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Figure 3.6: Density, velocity u1 and energy for the strong rarefaction test based on an
isothermal atmosphere at Tf = 0.1.
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Chapter 4

An all-speed scheme for the Euler
equations

In this chapter, we consider the non-dimensional Euler equations in d-space dimensions
which were derived from the homogeneous Euler equations (1.16) in Section (1.4) by a
scaling argument. They are given by the following set of equations

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u +
p

M2
I) = 0,

∂tE +∇ · (u(E + p)) = 0.

(4.1)

where the total energy is given by

E = ρ

(
e+M2 1

2
|u|2

)
(4.2)

and M is the reference Mach number as defined in (1.65) which gives the ratio between the
velocity of the gas and the sound speed. Depending on the magnitude of the Mach number
the characteristic nature of the flow changes. This renders the numerical simulation of
these flows very challenging but also yields a very interesting research subject with a wide
range of applications, for example in astrophysical stellar evolution or multi-material flows
[60, 2]. For large Mach numbers, the flow is governed by compressible effects, whereas
in the low Mach limit the solution of the Euler equations (4.1) are close to solutions of
the incompressible Euler equations (1.69). This behaviour was studied for example in
[47, 26, 70]. We refer to [34] for a study of the full Euler equations.

Standard schemes designed for compressible flows like the Roe scheme [66] or standard
Godunov type schemes fail due to excessive diffusion when applied in the low Mach regime.
A lot of work is dedicated to cure this defect, see for instance [40, 83, 26, 60]. To ensure
accurate solutions in the low Mach regime is the development of asymptotic preserving
(AP) schemes which are consistent with the limit behaviour of the Euler equation as M
tends to zero, see for example [23, 31, 9] and references therein.

Due to the hyperbolic nature of (4.1) the time step for an explicit scheme is restricted
by a stability CFL condition that depends on the inverse of the fastest wave speed. In
the case of (4.1), the acoustic wave speeds tend to infinity as M tends to zero which
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CHAPTER 4. AN ALL-SPEED SCHEME FOR THE EULER EQUATIONS

leads to very small time steps to guarantee the stability of an explicit scheme. As a side
effect all waves will be resolved by the explicit scheme although the fast acoustic waves
are often not of interest in application. Implicit methods on the other hand allow larger
time steps but introduce diffusion on the slow wave which leads to a loss of resolution.
In addition at each iteration a non-linear often ill conditioned algebraic system has to be
solved. Implicit-explicit (IMEX) methods try to overcome those disadvantages by treating
the stiff parts implicitly and thus allow for a Mach number independent time step. Many
of those schemes are based on a splitting of the pressure in the spirit of Klein [48] in a
slow compressible and fast acoustic component, since the stiffness of the system is closely
related with the pressure, see for example [23, 62, 48]. As the IMEX scheme presented in
[62] is only weakly asymptotic preserving as it suffers of a lack of stability for small Mach
numbers, the authors recently presented an AP IMEX scheme applicable in the low Mach
regime of the full Euler equations [87].

A way to avoid solving non-linear implicit systems is using a relaxation approach.
The idea behind using relaxation is to modify the flux function in the equations which
makes it easier to solve them implicitly as done in [1] through Jin Xin relaxation [43] or
in [7] by applying a Suliciu relaxation. The linear degenerate structure of models using a
Suliciu relaxation approach, as described in Section 1.3.2, allows to use accurate Godunov-
type finite volume methods due to the knowledge about the exact Riemann solution. This
approach was used in [12] to construct an explicit AP relaxation scheme for the barotropic
Euler equations. The scheme was very recently extended in [13] to a first order AP IMEX
relaxation scheme for the full Euler equations. We want to stress that the Suliciu relaxation
model and the IMEX relaxation scheme described in [13] differ in important aspects from
those presented in this chapter and were developed independently.

The relaxation model we use here is based on a pressure splitting and results from
relaxing the slow pressure component in a Suliciu relaxation manner whereas the fast
pressure part is relaxed by coupling it with an additional fast velocity obtained by relaxing
the momentum equation. The flux is then split such that only two terms concerning
relaxation variables are treated implicitly which leads to solving only one linear scalar
equation implicitly. We do not split the flux terms of the original Euler equations but
treat the whole flux in the explicit step. This leads to a conservative explicit part for
which we use a Godunov-type scheme. The use of a Riemann solver allows us to prove
with little effort the positivity preserving property of the scheme which is important in
physical applications. In addition the way the flux is split leads to an asymptotic preserving
scheme.

To have a relevant scheme for applications, an extension to second or higher order is
necessary. Higher order schemes in time can be achieved by using IMEX Runge Kutta
(RK) methods as for example in [9, 30]. As standard in finite volume schemes, higher order
accuracy in space is achieved by reconstructing the cell interface values using WENO
schemes, as for example in [72, 24]. Here, we use a MUSCL approach as described in
Section 2.2 to achieve a second order extension which maintains the positivity of density
and internal energy from the first order scheme.

The results presented in this chapter are already published in [79]. The chapter is
organized as follows. In the next section we describe the relaxation model for the full
Euler equations that is used to derive the IMEX scheme. Section 4.2 is dedicated to the
structure of the first order time semi-discrete scheme for which in the subsequent section
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the asymptotic preserving property is proven. It is followed by the derivation of the fully
discrete scheme which is given in Section 4.4. Thereby mainly the construction of the
Riemann solver for the Godunov type scheme used in the explicit part is addressed. In
addition the main properties of the resulting IMEX scheme are proven. Especially, the
diffusion introduced by the Riemann solver is studied which is provably independent of the
Mach number. In Section 4.5 we give a second order extension for the first order scheme
based on the MUSCL approach. It is followed by a section of numerical results to validate
the main properties given in Sections 4.4 and 4.5.

4.1 Suliciu Relaxation model

To simplify the non-linear structure of the Euler equations (4.1) we make use of the Suliciu
relaxation approach that is described for example in [74, 11, 22] and references therein.
Compared to the relaxation studied by Jin and Xin in [43], the original system of equations
can be found almost unchanged as a part of the relaxation model. Whereas in the Jin Xin
relaxation approach a linearisation of the flux is achieved by relaxing every component of
the flux function, in the Suliciu type relaxation only a few terms of the flux are relaxed in
a fashion that is tailored to the problem. This leads to a reduced diffusion introduced by
the relaxation process compared to the Jin Xin relaxation.

Following the usual Suliciu relaxation procedure, as described in Section 1.3.2, the key
element is the relaxation of the whole pressure by introducing a new variable π, where its
evolution is given by

∂t(ρπ) +∇ · (ρπu + a2u) =
ρ

ε
(p− π). (4.3)

Here ε denotes the relaxation time and a > 0 is the constant relaxation parameter. To
guarantee a stable diffusive approximation of the original Euler equations the relaxation
parameter must meet the subcharacteristic condition a > ρc. We want to profit from the
properties of the Suliciu relaxation also for the non-dimensional Euler equations. In the
following, we describe the relaxation model that was first introduced in [7]. Following
[50], in a first step the pressure is decomposed into a slow dynamics and a fast acoustic
component given by

p

M2
= p+

1−M2

M2
p.

Approximating the slow and the fast pressure in the momentum equation in (4.1) by the
variables π and ψ respectively, the momentum equation becomes

∂t(ρu) +∇ ·
(
ρu⊗ u + π +

1−M2

M2
ψ

)
= 0

The evolution of the new variables π and ψ are then developed in the spirit of a Suliciu
relaxation approach. The evolution for π is given by the Suliciu relaxation equation (4.3).
However, applying the standard Suliciu relaxation method also on the pressure ψ, would
only lead to non relevant diffusion terms and not to a low Mach scheme as shown in [7].
To overcome this, the authors of [7] introduced a new velocity variable û ∈ Rd which is
relaxed to the gas velocity u and couples with the pressure ψ. The form of the evolution
equations for û and ψ is chosen, such that
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• the resulting model is in conservation form

• the resulting model has ordered eigenvalues, which results in a clear wave structure

• the resulting model is a stable diffusive approximation of the non-dimensional Euler
equations (4.1)

• the resulting numerical scheme has a Mach number independent diffusion.

Considering the above points leads to the following relaxation model

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(
ρu⊗ u + πI +

1−M2

M2
ψI
)

= 0,

∂tE +∇ ·
(
u(E +M2π + (1−M2)ψ)

)
= 0,

∂t(ρπ) +∇ · (ρπu + a2u) =
ρ

ε
(p− π),

∂t(ρû) +∇ ·
(
ρu⊗ û +

1

M2
ψI
)

=
ρ

ε
(u− û),

∂t(ρψ) +∇ · (ρψu + a2û) =
ρ

ε
(p− ψ).

(4.4)

The relaxation model (4.4) differs from the one given in [7] in the following points:

1. In the relaxation equation for û, we use 1/M2 instead of 1/M4 as proposed by the
authors in [7]. This is due to the upwind discretization used in [7] which requires
1/M4 in order to have a Mach number independent diffusion of the numerical scheme.
Here instead we use centred differences in the implicit part to ensure the Mach
number independent diffusion of the numerical scheme and therefore 1/M2 suffices.

2. We have simplified the model in the sense that we do not distinguish between the
given reference Mach number M and the local Mach number Mloc. This is not
a restriction in practice, because the choice of M is given by the application as
illustrated in the numerical results. Especially for the Mach number dependent
shock test case in Section 7.1.2 we directly compare our results to a scheme that
uses the local Mach number Mloc.

The following lemma sums up some properties of system (4.4). The proof including the
Chapman-Enskog stability analysis can be done by adapting the steps explained in Sections
1.2.2 and 1.3. Alternatively, the proof can be established analogously to [7].

Lemma 4.1. The relaxation system (4.4) is hyperbolic and is a stable diffusive approxi-
mation of (4.1) under the Mach number independent subcharacteristic condition a > ρc.
Considering the xi-direction, the relaxation system (4.4) has the following linearly degen-
erate eigenvalues

λu = ui, λ
± = ui ±

a

ρ
, λ±M = ui ±

a

Mρ
,

where λu has multiplicity 2d, where d is the number of considered space dimensions. For
M < 1, the eigenvalues have the ordering

λ−M < λ− < λu < λ+ < λ+
M .
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In the case of M = 1 the waves given by λ± and λ±M collapse to the waves λ± which
have then multiplicity 2 respectively. Lemma 4.1 also states that the eigenvalues depend
on the relaxation parameter a and therefore the diffusion of the resulting scheme depends
on a. In general, a larger a leads to a more diffusive numerical solution whereas if a is
chosen too small it can give rise to instabilities.

To shorten notations we will refer to the original system (4.1) by

∂tw +∇ · f(w) = 0, (4.5)

where w = (ρ, ρu, E)T denotes the physical variables and the flux function is given by

f(w) =

 ρu
ρu⊗ u + p

M2 I
u(E + p)

 .

The relaxation model (4.4) is given by

∂tW +∇ · F̃ (W ) =
1

ε
R(W ), (4.6)

where

W =



ρ
ρu
E
ρπ
ρû
ρψ

 , F̃ (W ) =



ρu

ρu⊗ u + πI + 1−M2

M2 ψI
u(E +M2π + (1−M2)ψ)

ρπu + a2u
ρu⊗ û + 1

M2ψI
ρψu + a2û

 , R(W ) =



0
0
0

ρ(p− π)
ρ(u− û)
ρ(p− ψ)

 . (4.7)

Since ε is the relaxation time, it is indicating how fast the perturbed system (4.4) is
reaching its equilibrium (4.1). The relaxation equilibrium state is defined as

W eq =M(w) = (ρ, ρu, E, ρp(ρ, e), ρu, ρp(ρ, e))T . (4.8)

The connection between (4.5) and (4.6) can be established through the matrix Q ∈
R(2+d)×2(2+d) defined by

Q =
(
I2+d 02+d

)
(4.9)

where d denotes the number of space dimensions. For all equilibrium states M(w), we
have R(M(w)) = 0 and the physical variables are then recovered by w = QM(w) and the
fluxes are connected by f(w) = QF̃ (M(w)).

4.2 Time semi-discrete scheme

As we have seen in Lemma 4.1, the largest absolute eigenvalue |λ±M | of the relaxation
model (4.4) tends to infinity as M goes to 0. Using a time explicit scheme results in a very
restrictive CFL condition (2.83) that tends to 0 as M → 0. By using an IMEX approach
as done for example in [64, 9], we can avoid the Mach number dependence of the time
step.
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We rewrite the relaxation system (4.4)/(4.6) in the following form:

∂tW +∇ · F (W ) +
1

M2
∇ ·G(W ) =

1

ε
R(W ). (4.10)

In (4.10), we have split the flux F̃ in (4.6) into a flux function F which will contain the
explicit terms and a flux function G which will contain the terms treated implicitly. For
efficiency, we want to have as many explicit terms as possible as long as the eigenvalues of
F are independent of the Mach number. To avoid especially inverting a large non-linear
system, we treat the non-linear advection terms explicitly. This results in the following
flux functions

F (W ) =



ρu

ρu⊗ u + πI + 1−M2

M2 ψI
u
(
E +M2π + (1−M2)ψ

)
ρπu + a2u
ρu⊗ û
ρψu

 and G(W ) =



0
0
0
0
ψI

a2M2 û

 . (4.11)

We see, that F contains in equilibrium M(w) the flux f of the Euler equations (4.1)
whereas G only acts on the relaxation variables û, ψ. To obtain a time semi-discrete
scheme we perform the implicit and explicit steps in the following order

Implicit: ∂tW +
1

M2
∇ ·G(W ) = 0, (4.12)

Explicit: ∂tW +∇ · F (W ) = 0, (4.13)

Projection: ∂tW =
1

ε
R(W ). (4.14)

The relaxation source term in (4.14) is solved by projecting the variables onto the equi-
librium manifold corresponding to ε = 0 and thereby reaching the relaxation equilibrium
stateM(w) defined in (4.8). As the relaxation source term in (4.14) is stiff for small ε, it
is treated implicitly for a time step ∆t and then the limit ε → 0 is taken. Following the
steps (2.32) and 2.33, we find

πn+1 = p(2), ψ = p(2), ûn+1 = u(2), (4.15)

where the superscript (2) denotes the solution after the second step (4.13). The projection
step can be then summarized as Wn+1 = M(w(2)) = W (2),eq. The formal time semi-
discrete scheme for the relaxation model (4.4) is then given by

W (1) −Wn,eq +
∆t

M2
∇ ·G

(
W (1)

)
= 0, (4.16)

W (2) −W (1) + ∆t∇ · F
(
W (1)

)
= 0, (4.17)

Wn+1 = W (2),eq, (4.18)

where we consider the data at time tn to be at relaxation equilibrium Wn,eq. First we solve
the implicit equation (4.38) to gain W (1), followed by the explicit step where we calculate
W (2). The final projection step ensures that the initial condition at the subsequent time
step is in relaxation equilibrium W eq. The procedure given by (4.16) - (4.18) results in a
first order scheme in time.
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4.3 Asymptotic properties

We consider as continuous limit equations the incompressible Euler equations given by

ρ = const.

∂tu + u · ∇u +∇P = 0

∇ · u = 0

(4.19)

with a dynamical pressure described by P . As we have seen in Section 1.4, the limit
equations can be formally derived using a Mach number expansion of the variables ρ,u, p
given by

ρ(x, t) = ρ0(x, t) +O(M),

u(x, t) = u0(x, t) +O(M),

p(x, t) = p0(x, t) +Mp1(x, t) +M2p2(x, t) +O(M3),

(4.20)

and considering slipping or periodic boundary conditions, see for example [40, 26]. This
formal limit derivation leads to the following set of well-prepared data

Ωwp = {w ∈ Ωphy,∇ρ0 = 0,∇p0 = 0,∇ · u0 = 0} (4.21)

which can be written in terms of the Mach number expansion as

ρ = ρ0 +O(M), ρ0 = const, (4.22)

u = u0 +O(M), ∇ · u0 = 0, (4.23)

p = p0 +O(M2), p0 = const. (4.24)

For simplicity we show the AP property for the time semi-discrete scheme. The same
steps can be followed with the fully discretized scheme that will be given in Section 4.4.

To show the AP property, we will exploit some properties of the fast pressure ψ(1)

obtained in the implicit step (4.25).

4.3.1 Asymptotic behaviour of ψ(1)

Due to the sparse structure of G defined in (4.11), the implicit part reduces to solving
only two coupled equations in the relaxation variables û, ψ given by

∂t(ρû) +
1

M2
∇ψ = 0,

∂t(ρψ) + a2∇ · û = 0,
(4.25)

with the eigenvalues λ̃±M = ± a
ρM . As done in [23], we rewrite the coupled system (4.25)

into one linear equation for ψ starting from the time-semi-discrete scheme

ρ(1) − ρn

∆t
= 0, (4.26)

(ρû)(1) − (ρû)n

∆t
+

1

M2
∇ψ(1) = 0, (4.27)

(ρψ)(1) − (ρψ)n

∆t
+ a2∇ · û(1) = 0. (4.28)
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To emphasize that (4.25) also depends on the density, we have included the density update
(4.26) into the time semi-discrete system. From equation (4.26) we see that ρ(1) = ρn.
To simplify notation we define τn = 1/ρn. Inserting (4.27) into (4.28) we can reduce the
implicit system to only one equation with an elliptic operator for ψ given as

ψ(1) − ∆t2a2

M2
τn∇ · (τn∇ψ(1)) = ψn −∆ta2τn∇ · un. (4.29)

On the right hand side of (4.29) we have already made use of the fact that ûn = un since
we start from equilibrium data. We will see that the correct scaling of ψ(1) with respect
to the Mach number is important not only for showing the AP property of the scheme,
but also for the positivity of density and internal energy as well as for a Mach number
independent diffusion of the fully discretized scheme.

To prevent O(M) pressure perturbations at the boundaries which would destroy the
well-prepared nature of the pressure, we require boundary conditions on ψ which preserve
the scaling of the pressure in time. For a computational domain D, we set

ψ
(1)
0 = pn0

ψ
(1)
1 = 0

}
on ∂D. (4.30)

The following lemma states that the fast pressure ψ(1) after the implicit step is still well-
prepared using the boundary condition (4.30).

Lemma 4.2 (Scaling of ψ(1)). Let wn ∈ Ωwp be equipped with the boundary conditions
(4.30). Then the Mach number expansion of ψ(1) after the first stage satisfies

ψ(1) = pn0 +M2ψ
(1)
2 +O(M3),

where pn0 is constant.

Proof. Let us assume that the expansion of ψ(1) is given by

ψ(1) = ψ
(1)
0 +Mψ

(1)
1 +M2ψ

(1)
2 +O(M3). (4.31)

Since wn ∈ Ωwp, the data at tn is well-prepared as defined in (4.22),(4.23) and (4.24). We
insert the therein given Mach number expansion of wn and the Mach number expansion of
ψ(1) given by (4.31) into the implicit update for ψ (4.29). Separating the O(M−2) terms,
we find {

∆ψ
(1)
0 = 0 in D

ψ
(1)
0 = pn0 on ∂D

with the boundary condition for ψ
(1)
0 given in (4.30). This leads to ψ

(1)
0 = pn0 on D.

Separating the O(M−1) terms and using that ψ
(1)
0 = pn0 = const, we find{

∆ψ
(1)
1 = 0 in D

ψ
(1)
1 = 0 on ∂D
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which leads to ψ
(1)
1 = 0 on D. As a last step, we collect the O(M0) terms and use that

ψ
(1)
0 = pn0 as well as ψ

(1)
1 = 0 on D. It is not necessary to impose special boundary

conditions for ψ
(1)
2 . Thus we find

∆ψ
(1)
2 = 0 in D, (4.32)

from which follows the stated Mach number expansion for ψ(1) and the proof is completed.

4.3.2 Asymptotic preserving property

We show that the time discretization of (4.4) in the M → 0 limit coincides with a time
discretization of the incompressible Euler equations (4.19). We consider well-prepared
data wn ∈ Ωwp and the Mach number expansion of ψ(1) from Lemma 4.2. For the total
energy defined in (4.2), we find the following Mach number expansion

E = ρ0e0 +M(ρ1e0 + ρ0e1) +M2

(
1

2
|u0|2 + ρ2e0 + ρ1e1 + ρ0e2

)
+O(M3).

Inserting the Mach number expansions of wn, ψ(1) and En into the density, momentum
and energy equation of (4.17) and considering the O(M0) order terms we have

ρn+1
0 − ρn0

∆t
+∇ · ρn0un0 = 0,

ρn+1
0 un+1

0 − ρn0un0
∆t

+∇ · (ρn0un0 ⊗ un0 ) +∇ψ(1)
2 = 0,

ρn+1
0 en+1

0 − ρn0en0
∆t

+∇ · un0
(
ρn0e

n
0 + ψ

(1)
0

)
= 0.

(4.33)

Let us assume that the pressure at time tn+1 has the following Mach number expansion

pn+1 = pn+1
0 +Mpn+1

1 +O(M2). Note that we have from Lemma 4.2 that ψ
(1)
0 = p0 and

thus ∇ψ(1)
0 = ∇p0 = 0. Since wn ∈ Ωwp we have ∇ρn0 = 0 and ∇ · un0 = 0. Further we use

p0 = (γ − 1)ρ0e0. Equipped with that we can simplify (4.33) to

ρn+1
0 − ρn0

∆t
= 0, (4.34)

un+1
0 − un0

∆t
+ un0 · ∇un0 +

∇ψ(1)
2

ρn0
= 0, (4.35)

pn+1
0 − pn0

∆t
= 0. (4.36)

Especially from equations (4.34) and (4.36) we see that ρn+1
0 and pn+1

0 are constants.
Looking at the O(M1) terms we have from the energy equation

pn+1
1 + ∆t∇ · un1 = 0.

This means the density and pressure at time tn+1 are well-prepared up to O(∆t) perturba-
tion as in (4.22), (4.24). To be consistent with a time discretization of the incompressible
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Euler equations (4.19) the divergence of u0 at time tn+1 defined by ∇ · un+1
0 has to be at

least of order ∆t. To show this, we apply the divergence on the velocity update (4.35)
which gives

∇ · un+1
0 = ∇ · un0 + ∆t∇ ·

(
un0 · ∇un0 +

∆ψ
(1)
2

ρn0

)
. (4.37)

In the proof of Lemma 4.2, we have shown that ∆ψ
(1)
2 = 0 on ∂D, see (4.32). Using (4.32)

together with ∇ · un0 = 0, we can simplify (4.37) to

∇ · un+1
0 = ∆t∇ · (un0 · ∇un0 ) = O(∆t).

In summary, we have shown the following theorem.

Theorem 4.3 (AP property). Let wn ∈ Ωwp. Then under the boundary conditions (4.30)
the scheme (4.16), (4.17), (4.18) is asymptotic preserving when M tends to 0, in the sense
that if wn ∈ Ωwp then it is wn+1 ∈ Ωwp up to O(∆t) and in the limit M → 0 the time-
semi-discrete scheme is a consistent discretization of the incompressible Euler equations
(4.19).

4.4 Derivation of the fully discrete scheme

For simplicity, we develop the fully discretized scheme in one space dimension, but it can
be straightforwardly extended to d dimensions. In the implicit update (4.29), the space
derivatives read

∇ · (τ∇ψ) = ∂x1(τ∂x1ψ) + · · ·+ ∂xd(τ∂xdψ) and ∇ · u = ∂x1u1 + · · ·+ ∂xdud

for u = (u1, . . . , ud) and in the explicit part we can obtain a multi-dimensional scheme by
considering dimensional split Riemann problems as discussed in Section 2.1.4.

In the following we use a Cartesian grid on a computational domain D devided in N
cells Ci = (xi−1/2, xi+1/2) of step size ∆x. We use a standard finite volume setting, where
we define at time tn the piecewise constant functions

w(x, tn) = wni , for x ∈ Ci.

Using this notation, we apply centred differences on the implicit update (4.29) and obtain

ψ
(1)
i −

∆t2

∆x2

a2

M2
τni

(
τni−1/2ψ

(1)
i−1 −

(
τni−1/2 + τni+1/2

)
ψ

(1)
i + τni+1/2ψ

(1)
i+1

)
=

ψni −
∆t

2∆x
a2τni

(
uni+1 − uni−1

)
, (4.38)

where τi+1/2 = (τi+1 + τi) /2. Due to the centred differences, the update is second order
accurate in space.

For the explicit part, we will use a Godunov type finite volume scheme following [41]
which we will describe in the following section.
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4.4.1 Godunov type finite volume scheme

In the explicit step we consider the following equations as defined in (4.11), (4.17)

∂tρ+ ∂xρu = 0,

∂t(ρu) + ∂x

(
ρu2 + π +

1−M2

M2
ψ

)
= 0,

∂tE + ∂x

((
E +M2π + (1−M2)ψ

)
u
)

= 0,

∂t(ρπ) + ∂x
(
ρπu+ a2u

)
= 0,

∂t(ρû) + ∂x(ρûu) = 0,

∂t(ρψ) + ∂x(ρψu) = 0,

(4.39)

which have the following properties:

Lemma 4.4. System (4.39) admits the ordered linear degenerate eigenvalues

λ− = u− a

ρ
< λu = u < λ+ = u+

a

ρ
,

where the eigenvalue λu has multiplicity 4. The relaxation parameter a, as well as all
eigenvalues, are independent of the Mach number .

The Riemann invariants with respect to λu are

Iu1 = u, Iu2 = M2π + (1−M2)ψ (4.40)

and with respect to λ±

I±1 = u± a

ρ
, I±2 = π ∓ au,

I±3 = e− M2

2a2
π2 − 1−M2

a2
πψ,

I±4 = û, I±5 = ψ.

(4.41)

Proof. We rewrite the equations (4.39) using primitive variables V = (ρ, u, e, π, û, ψ) in
quasi-linear form

∂tV + B(V)∂xV = 0, (4.42)

where the matrix B(V) is given by

B(V) =



u ρ 0 0 0 0

0 u 0
1

ρ
0

1−M2

M2

0
M2π + (1−M2)ψ

ρ
u 0 0 0

0
a2

ρ
0 u 0 0

0 0 0 0 u 0

0 0 0 0 0 u


.
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It is easy to check that λu, λ± are eigenvalues of B(V). Associated to these eigenvalues,
we find for M > 0 the respective linearly independent eigenvectors

ru1 =



0

0

0

1− 1

M2

0

1


, ru2 =



0

0

0

0

1

0


, ru3 =



0

0

1

0

0

0


, ru4 =



1

0

0

0

0

0


, r± =



ρ2

a2

±1

a
M2π + (1−M2)ψ

a2

1

0

0


.

Therefore, system (4.39) is hyperbolic. Furthermore, using equation (1.30), we can com-
pute that all characteristic fields are linear degenerate. It is straightforward to check with
the help of equation (1.31), that (4.40) and (4.41) are Riemann invariants. Since Riemann
invariants are invariant under change of variables, the Riemann invariants of (4.42) are
the same as for the equations in conservation form (4.39).

We remark that in the case M = 1, the first four equations of system (4.39) coin-
cide with the Suliciu relaxation model for the homogeneous compressible Euler equations
considered in Section 1.3.2. Especially the eigenstructure and Riemann invariants of the
compressible model (1.52) are recovered in for M = 1.

We will follow the theory of Harten, Lax and van Leer [41] for deriving a Riemann solver

WRS

(
x
t ;W

(1)
L ,W

(1)
R

)
based on the states W (1) after the implicit step. Due to the linear-

degeneracy of the characteristic fields from Lemma 4.4, we can solve the Riemann problem
exactly. The Riemann solution, as displayed in Figure 4.1, consists of four constant states
separated by contact discontinuities and is given by

WRS

(x
t

;W
(1)
L ,W

(1)
R

)
=


W

(1)
L

x
t < λ−,

W ∗L λ− < x
t < λu,

W ∗R λu < x
t < λ+,

W
(1)
R λ+ < x

t .

(4.43)

To compute the intermediate states W ∗L,R, we use the Riemann invariants as given in

Lemma 4.4. Note that since the eigenvalues λ± have multiplicity 1, we get the expected 5
Riemann invariants. This does not hold in general for eigenvalues with higher multiplic-
ity, see eg. [11]. Nevertheless, the invariants (4.40) and (4.41) give enough relations to
determine the solution to a Riemann problem for (4.39) as shown in the following lemma.

Lemma 4.5. Consider an initial value problem for system (4.39) with initial data given
by

W 0(x) =

{
W

(1)
L x < 0,

W
(1)
R x > 0.

(4.44)
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Then the solution consists of four constant states separated by contact discontinuities and
has the structure given in (4.43). Furthermore, dropping the superscript (1), an exact
solution for the intermediate states W ∗L/R is given by

u∗ = u∗L = u∗R =
1

2
(uL + uR) +

1

2a

(
(πL − πR) +

1−M2

M2
(ψL − ψR)

)
,

π∗L =
1

2
(πL + πR) +

a

2
(uL − uR)− 1−M2

M2

1

2
(ψL − ψR),

π∗R =
1

2
(πL + πR) +

a

2
(uL − uR) +

1−M2

M2

1

2
(ψL − ψR),

1

ρ∗L
=

1

ρL
+

1

a
(u∗ − uL),

1

ρ∗R
=

1

ρR
+

1

a
(uR − u∗),

e∗L = eL −
1

2a2

(
π2
L − π∗L

2 + (1−M2)(πL − π∗L)ψL

)
,

e∗R = eR −
1

2a2

(
π2
R − π∗R

2 + (1−M2)(πR − π∗R)ψR

)
,

ψ∗L,R = ψL,R,

û∗L,R = ûL,R.

(4.45)

Proof. The solution structure follows directly from the linear degeneracy of the eigenvalues
given in Lemma 4.4 and the ordering of the eigenvalues. To derive the solution for the
intermediate states W ∗L,R one uses the Riemann invariants given in (4.40) and (4.41) and
solves the resulting system of equations.

From the intermediate states (4.45) and from the equations (4.39) we see, that the
relaxation variables ψ, û are only passively advected in the explicit step. To define a
Godunov scheme for (4.39), we consider the local Riemann problem at the interface x =

xi+1/2 depending on the left and right cell averages W
(1)
i ,W

(1)
i+1 after the implicit step. It

x

u∗

unL −
a

ρnL
unR +

a

ρnR

x = 0

ρnR

unR, û
(1)
R

ψ
(1)
R , enR, π

n
R

ρ∗R, u
∗, π∗R

û
(1)
R , e∗R

ψ
(1)
R

ρ∗L, u
∗

û
(1)
L , e∗L, π

∗
L

ψ
(1)
L

ρnL

unL, û
(1)
L

enL, π
n
L, ψ

(1)
L

Figure 4.1: Structure of the Riemann solution of the explicit part of the relaxation model
(4.4).
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is given by

∂tW + ∂xF (W ) = 0,

W 0(xi) =

{
W

(1)
i if x < xi+1/2

W
(1)
i+1 if x > xi+1/2

.
(4.46)

Given the solution of the Riemann problem (4.43), the numerical fluxes are defined as
follows

F
(
W

(1)
i ,W

(1)
i+1

)
=



F
(
W

(1)
i

)
λ−L > 0

F
(
W
∗,(1)
i

)
u∗ > 0 > λ−L

F
(
W
∗,(1)
i+1

)
λ+
R > 0 > u∗

F
(
W

(1)
i+1

)
λ+
R < 0

where λ−L = uL−a/ρL and λ+
R = uR+a/ρR. To avoid interactions between the approximate

Riemann solvers at the interfaces xi+1/2, we have a CFL restriction on the time step of

∆t

∆x
max
i

∣∣∣∣uni ± a

ρni

∣∣∣∣ ≤ 1

2
(4.47)

which is independent of the Mach number. This leads to the following update of the
explicit part

W
(2)
i = W

(1)
i − ∆t

∆x

(
F
(
W

(1)
i ,W

(1)
i+1

)
−F

(
W

(1)
i−1,W

(1)
i

))
. (4.48)

The complete numerical scheme is then given by (4.38),(4.48) and (4.18). It also
includes the updates of the relaxation variables in the explicit step which are redundant,
since they will get updated in the subsequent projection step. Defining the numerical
fluxes by

f
(
wni , ψ

(1)
i , wni+1, ψ

(1)
i+1

)
= QF

(
WRS(0;W

(1)
i ,W

(1)
i+1)

)
, (4.49)

where W
(1)
i ,W

(1)
i+1 are obtained from the implicit update (4.38) with initial data Wi =

M(wi) for i = 1, . . . , N , the update of the physical variables can be written as

wn+1
i = wni −

∆t

∆x

(
f
(
wni , ψ

(1)
i , wni+1, ψ

(1)
i+1

)
− f
(
wni−1, ψ

(1)
i−1, w

n
i , ψ

(1)
i

))
. (4.50)

We want to remark that writing the update for the physical variables in the form (4.50),
it is not necessary to compute the relaxation variable û at all in the numerical scheme
since it does not appear in the implicit or explicit step. This reduces the computational
costs of the IMEX scheme.

As we have remarked earlier, in the limit case M = 1, the relaxation model (4.4)
reduces to a Suliciu relaxation model for the compressible Euler equations since all ψ-
terms are being cancelled and the eigenvalues λ± and λ±M collapse. Analogously, in the
scheme the implicit step becomes redundant, since in the Riemann solution (4.45) the
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ψ-terms are cancelled, too. Thus the scheme reduces to an explicit Godunov-type scheme
based on an approximate Riemann solver for the compressible Euler equations discussed
in Section (2.1.2).

For M > 1 the order of the eigenvalues changes to λ− < λ−M < λu < λ+
M < λ+.

The scheme is still stable because the CFL condition (4.47) is determined by the largest
eigenvalue in the explicit step which are now the largest ones. Since the order of the
eigenvalues of the explicit part has not changed, the Riemann solver is still valid in the
case of M > 1.

We continue now with some properties of the first order scheme.

4.4.2 Positivity of density and internal energy

The property of the scheme to preserve the domain Ωphy is linked to the used Riemann
solver. In our case it is essential that the density and internal energy of the Riemann
solution (4.45) are positive. This is shown in the following lemma.

Lemma 4.6. Let the initial data W
(1)
L,R of the Riemann problem (4.44) be composed of

w
(1)
L,R ∈ Ωphy ∩ Ωwp and ψ(1) satisfying the boundary conditions (4.30). Then there is a

relaxation parameter a large enough but independent of M such that

QWRS

(x
t

;W
(1)
L ,W

(1)
R

)
∈ Ωphy.

Proof. Since the proof only concerns data after the implicit step, we will drop the super-
script (1). We have to prove, that ρ∗L,R > 0 and e∗L,R > 0. Using the intermediate states
for the density and the velocity in the Riemann solution (4.45), we can write

1

ρ∗L
=

1

ρL
− 1

2a
(uR − uL) +

1

2a2

(
πR − πL −

1−M2

M2
(ψR − ψL)

)
. (4.51)

For the internal energy e∗L, we insert the definition of π∗L from (4.45) into e∗L to obtain

e∗L = eL +
1

8
(uL − uR)2+

1

2a2

(
−π2

L +
1

4

(
πL + πR +

1−M2

M2
(ψR − ψL)

)2

+
1

2
ψL(1−M2)

(
πR − πL +

1−M2

M2
(ψR − ψL)

))
+

1

4a
(uR − uL)

(
πL + πR +

1−M2

M2
(ψR − ψL) + (1−M2)ψL

)
.

Both the update of the intermediate density and internal energy depend on the left and
right states WL,R only. From Lemma 4.2, we know ψL,R = p0 + O(M2). The difference
ψR − ψL = O(M2) cancels with the 1/M2. All possibly negative terms in e∗L and ρ∗L can
then be controlled by the relaxation parameter a > 0 independent of the Mach number.
The same argument holds for ρ∗R and e∗R.
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We remark that the positivity of the intermediate densities ρ∗L,R guarantees the order-
ing of the approximate wave speeds

uL −
a

ρL
< u∗ < uR +

a

ρR
. (4.52)

The positivity property for the first order scheme is given in the next result.

Theorem 4.7 (Positivity property 1). Let the initial state be given as

wni ∈ Ω = Ωphy ∩ Ωwp

satisfying the boundary condition described in (4.30). Then under the Mach number inde-
pendent CFL condition

∆t

∆x
max
i

∣∣∣∣ui ± a

ρni

∣∣∣∣ ≤ 1

2
,

the numerical scheme defined by (4.38),(4.50) preserves the positivity of density and in-
ternal energy, that is

wn+1
i ∈ Ωphy

for a relaxation parameter a sufficiently large, but independent of M .

Proof. Due to the construction of the numerical scheme, the update of the physical vari-
ables is only done through the explicit step (4.50). Therefore we can adopt the proof of
Theorem 3.11 in Chapter 3 using the positivity of the Riemann solver from Lemma 4.6.
The key element is, that we can write the update for wn+1

i as a convex combination of
Riemann solvers which satisfy QWRS ∈ Ωphy according to Lemma 4.6:

wn+1
i =

1

∆x

∫ xi

x
i− 1

2

QWRS

(
x− xi−1/2

∆t
,W

(1)
i−1,W

(1)
i

)
dx

+

∫ x
i+ 1

2

xi

QWRS

(
x− xi+1/2

∆t
,W

(1)
i ,W

(1)
i+1

)
dx

)
(4.53)

This result can be extended to multiple space dimensions by considering dimensional
split Riemann problems and defining the update for wn+1

i as a sum of the contributions of
the resulting fluxes at the interface. Since we are using dimensional splitting, the update
in d dimensions can be written as a sum of updates as given in (4.53) in each dimension
and due to convexity we have wn+1

i ∈ Ωphy as was done in the proof of Theorem 3.11.

4.4.3 Mach number independent diffusion

Although we are using a Godunov type upwind scheme in the explicit part, our scheme
does not suffer from an excessive numerical diffusion as M tends to 0. As we will show
in the following this is due to the well-prepared implicitly treated fast pressure ψ(1). In
order to do so, we investigate the numerical diffusion vector D ∈ R2+d defined by

D =
f(wni ) + f(wni+1)

2
−QF

(
WRS

(
W

(1)
i ,W

(1)
i+1

))
, (4.54)
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where the Matrix Q is defined in (4.9). Given well-prepared initial data wni ∈ Ωwp, we have
the following Mach number expansion for the physical variables as given in (4.22),(4.23)
and (4.24)

ρi = ρ0 +O(M), ρi+1 = ρ0 +O(M)
ui = u0,i +O(M), ui+1 = u0,i+1 +O(M)
ei = e0 +O(M), ei+1 = e0 +O(M)
πi = p0 +O(M2), πi+1 = p0 +O(M2)

(4.55)

From Lemma 4.2, we have for ψ after the implicit step

ψi = p0 +O(M2), ψi+1 = p0 +O(M2). (4.56)

The Mach number expansion of the states W
(1)
i ,W

(1)
i+1 used in the Riemann solver WRS

is composed of the expansions (4.55) and (4.56). Inserting them into the formulas of the
intermediate states (4.45) of the Riemann solution (4.43), we have the following scaling of
W ∗i ,W

∗
i+1 with respect to the Mach number

u∗i+1/2 = (u0,i + u0,i+1)/2 +O(1)

= u0,i+1/2 +O(1)

τ∗i = τ0 +O(1), τ∗i+1 = τ0 +O(1)
e∗i = e0 +O(1), e∗i+1 = e0 +O(1)
π∗i = p0 +O(1), π∗i+1 = p0 +O(1),
ψ∗i = p0 +O(M2), ψ∗i+1 = p0 +O(M2).

(4.57)

From (4.57) it is evident that the lowest order of M in the intermediate states is O(M0).
Inserting (4.57) in the interface flux gives for λ−L < 0 < λ+

R:

QF
(
WRS

(
W

(1)
i ,W

(1)
i+1

))
=

 ρ0u0,i+1/2 +O(1)

ρ0u
2
0,i+1/2 + p0

M2 +O(1)

u0,i+1/2(E0 + p0) +O(1)

 , (4.58)

for λ−L > 0:

QF
(
WRS

(
W

(1)
i ,W

(1)
i+1

))
=

 ρ0u0,i +O(1)
ρ0u

2
0,i + p0

M2 +O(1)

u0,i(E0 + p0) +O(1)

 , (4.59)

and for λ+
R < 0:

QF
(
WRS

(
W

(1)
i ,W

(1)
i+1

))
=

 ρ0u0,i+1 +O(1)
ρ0u

2
0,i+1 + p0

M2 +O(1)

u0,i+1(E0 + p0) +O(1)

 . (4.60)

Therefore, using respectively (4.58), (4.59) and (4.60) in (4.54), the diffusion vector with
respect to the Mach number is given by

D =

O(1)
O(1)
O(1)

 .

This shows that the diffusion introduced by the Riemann solver does not suffer from a
O(M−1) dependent diffusion in the momentum equation.
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4.5 Second order extension

In this section we extend the first order scheme given by (4.50) and (4.38) to second
order accuracy. We seek a natural extension of the first order scheme that preserves the
positivity property and the low Mach properties. We begin with a second order IMEX
time integration method based on the SSP-RK2 (2.80) and its variable time step version
(2.81) based on results from [6].

4.5.1 A second order time integration scheme

Instead of solving one explicit update in one stage of the SSP-RK2 method (2.80), here,
one stage consists of solving an implicit equation and a system of explicit equations with a
subsequent projection to relaxation equilibrium. The time integration scheme is a convex
combination of first order steps. The second order time semi-discrete scheme is given by

W (1) =Wn,eq +
∆t

M2
∇ ·G

(
W (1)

)
,

W (2) =W (1) + ∆t∇ · F
(
W (1)

)
,

W
(1)

=W (2),eq +
∆t

M2
∇ ·G

(
W

(1)
)
,

W
(2)

=W
(1)

+ ∆t∇ · F
(
W

(1)
)
,

Wn+1 =
1

2
W

(2),eq
+

1

2
Wn,eq.

(4.61)

The relaxation equilibrium states Wn,eq,W (2),eq,W
(2),eq

are defined as in (4.8). As in the
first order scheme, we can rewrite the integration scheme (4.61) in terms of the update
for the physical variables only. Writing the first order time update (4.50) in time-semi
discrete form

wn+1 = wn −∆t∇ ·QF (W (1)),

where Q is defined in (4.9), we can directly give the second order time semi-discrete scheme
for the physical variables w = (ρ, ρu, E). Based on this we can write (4.61) in a more
compact form as

w =wn −∆t∇ ·QF
(
W (1)

)
w =w −∆t∇ ·QF

(
W

(1)
)

wn+1 =
1

2
wn +

1

2
w.

(4.62)

where W (1) and W
(1)

are solutions of the implicit step (4.38) where the initial condition
is given by wn and w respectively.

The time integration scheme (4.62) can be extended to variable step sizes ∆t1,∆t2
for each stage respectively as given in [6] for an explicit scheme, see also Section 2.3
equation (2.81). This has the advantage that the CFL criterion can be met at each stage
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independently. It is given by

w =wn −∆t1∇ ·QF
(
W (1)

)
w =w −∆t2∇ ·QF

(
W

(1)
)

wn+1 =

(
1− ∆t

∆t1 + ∆t2

)
wn +

∆t

∆t1 + ∆t2
w.

(4.63)

with an overall time step

∆t =
2∆t1∆t2

∆t1 + ∆t2
. (4.64)

In Section 4.6 we will use the time integration method (4.63) in the numerical simulations
and numerically verify that it is second order accurate.

4.5.2 A second order space reconstruction

As it is standard in the finite volume setting, we apply a reconstruction to get a higher
accuracy for the values at the interfaces xi+1/2. To get second order accuracy, we follow the
MUSCL approach discussed in Section 2.2 and consider piecewise linear functions in the
conserved variables w = (ρ, ρu, E) at time level tn and in addition reconstruct also ψ(1).
As we are working on a Cartesian grid, we reconstruct along each dimension separately.
In one dimension the linear function in (wi, xi) for x ∈ (xi−1/2, xi+1/2) is given by

w̃n(x) = wni + σi(x− xi),

where σi = (σρi , σ
ρu
i , σ

E
i ) and for the fast pressure ψ, we define

ψ̃(1)(x) = ψ
(1)
i + σψi (x− xi).

The slopes σi are computed from the neighbouring cells using a limiter function. To
have a second order extension that preserves the positivity properties of the first order
scheme, see Theorem 4.7, we choose the minmod limiter defined in (2.75). The slopes are
then computed as

σi = minmod

(
wni − wni−1

∆x
,
wni+1 − wni

∆x

)
, σψi = minmod

(
ψ

(1)
i − ψ

(1)
i−1

∆x
,
ψ

(1)
i+1 − ψ

(1)
i

∆x

)
.

The interface values are then defined as in (2.68) by

w±i∓1/2 = wni ∓ σi
∆x

2
, ψ

(1),±
i∓1/2 = ψ

(1)
i ∓ σ

ψ
i

∆x

2
. (4.65)

To define the Godunov type scheme for the explicit step, the initial values of the local
Riemann problems are given by the values at the interface xi+1/2 as

w0(x) =

{
w−i+1/2 if x < xi+1/2

w+
i+1/2 if x > xi+1/2

, ψ0(x) =

{
ψ

(1),−
i+1/2 if x < xi+1/2

ψ
(1),+
i+1/2 if x > xi+1/2

. (4.66)
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The full second order scheme based on the time integration method (4.63) is given by

wi =wn − ∆t1
∆x

(
f
(
w−i+1/2, ψ

(1),−
i+1/2, w

+
i+1/2, ψ

(1),+
i+1/2

)
− f
(
w−i−1/2, ψ

(1),−
i−1/2, w

+
i−1/2, ψ

(1),+
i−1/2

))
wi =wi −

∆t2
∆x

(
f
(
w−i+1/2, ψ

(1),+
i+1/2, w

+
i+1/2, ψ

(1),+
i+1/2

)
− f
(
w−i−1/2, ψ

(1),−
i−1/2, w

+
i−1/2, ψ

(1),+
i−1/2

))
wn+1
i =

(
1− ∆t

∆t1 + ∆t2

)
wni +

∆t

∆t1 + ∆t2
wi.

(4.67)

with the definition of the flux function f from (4.49) based on the Riemann solver (4.43)
with the intermediate states (4.45) and the time step ∆t defined by (4.64).

Since we are using the minmod limiter on the conservative variables to determine the
slopes, we immediately get that for the interface values given by (2.68) holds

w+
i−1/2, w

−
i+1/2 ∈ Ωphy ∩ Ωwp

based on cell averages with wni ∈ Ωphy∩Ωwp. In addition, due to the linear reconstruction,

the expansion of the interface values ψ
(1),+
i−1/2 and ψ

(1),−
i+1/2 with respect to the Mach number

is preserved. This means by Lemma 4.6 that the Riemann solver with initial data (4.66)
still ensures the positivity of density and internal energy. By Theorem 4.7 the first order
scheme has the positivity property and therefore, the second order scheme (4.67) is a
convex combination of states in Ωphy. From this we have wn+1

i ∈ Ωphy. Thus, we have
proven the following result for the second order scheme:

Theorem 4.8 (Positivity property 2). Let the initial state be given as

wni ∈ Ωphy ∩ Ωwp

with the boundary condition described in (4.30). Then under the Mach number independent
CFL condition

∆t

∆x
max
i

(∣∣∣∣∣un,+i−1/2 ±
a

ρn,+i−1/2

∣∣∣∣∣ ,
∣∣∣∣∣un,−i+1/2 ±

a

ρn,−i+1/2

∣∣∣∣∣
)
≤ 1

4
,

the numerical scheme defined by (4.67),(4.38) preserves the positivity of density and in-
ternal energy, that is

wn+1
i ∈ Ωwp

for a relaxation parameter sufficiently large, but independent of M .

From the fact, that the second order scheme is a convex combination of first order
steps, follows also the AP property of the second order scheme, as well as the Mach
number independent diffusion. The latter one is ensured since ψ is still well-prepared
after the linear reconstruction of the interface values.

The second order scheme, as well as the first order scheme, can be extended to mul-
tiple space dimensions considering dimensional split Riemann problems and updating the
variables by considering the contribution of all the fluxes at the cell interfaces as discussed
in Section 2.1.4.
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Test case dim M a ca

SOD shock tube test 1D 1.0 1.77 1.5

Mach number dependent shock test 1D 6.2 · 10−3 1.87 2.5

Gresho vortex test 2D 10−1, 10−2, 10−3 3.08 2.5

Accuracy test 2D 10−1, 10−2, 10−3 6.61 5.0

Table 4.1: Relaxation parameter a for the initial data for each test case.

4.6 Numerical results

In the following section, we numerically validate the theoretical properties of the proposed
scheme. In all considered test cases, we assume an ideal gas law with the equation of state
given by

p = (γ − 1)ρe.

For solving the implicit non-symmetric linear system given by (4.38), we use the GMRES
algorithm combined with a preconditioner based on an incomplete LU decomposition [4].
For obtaining a global estimate for the relaxation parameter a, that is needed to determine
∆t and is also used in the implicit part (4.38), we choose the maximum over all locally
computed values of a, given in (2.47), multiplied by a constant ca independent of M to
guarantee the subcharacteristic condition and the stability in accordance with Lemma
4.1. The Riemann solver allows for a smaller relaxation parameter which is calculated
locally on each cell following the procedure of Bouchut [11] given in (2.48) fulfilling the
subcharacteristic condition locally. This leads to a reduced numerical diffusion in the
Riemann solver that is introduced by the relaxation procedure.

In Table 4.1, we give ca and the resulting relaxation parameter a computed from the
initial data. Since a depends on ρ and p it can vary during the simulation, but it is of
roughly the same order independently of the Mach number in the respective test case.

4.6.1 Shock test cases

To verify that our proposed IMEX schemes capture discontinuities accurately, we perform
a SOD shock tube test [73] in the regime M = 1 and a Mach number dependent Riemann
problem with M ≈ 6.2 · 10−3 taken from [1].

SOD shock tube test

The computational domain for the SOD shock tube test [73] is [0, 1] and the initial data
is given using γ = 1.4 by

ρL = 1 kg
m3 , ρR = 0.125 kg

m3 ,

uL = 0 m
s , uR = 0 m

s ,

pL = 1 kg
ms2

, pR = 0.1 kg
ms2

,
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where we place the initial discontinuity at x = 0.5. Since the regime is compressible, we
set M = 1 and the initial data is given in dimensional form. This test also demonstrates
that the collapse of the eigenvalues λ± and λ±M in the case of M = 1 is not problematic.
We see in Figure 4.2 that the first as well as the second order scheme captures the shock
positions correctly. As expected, the second order scheme is more accurate than the first
order scheme.

Mach number dependent Riemann problem

The setting of this test case is in the low Mach regime, where the contact wave travels
with a Mach number of M ≈ 6.2 · 10−3. The initial data is taken from [1] and is given by

ρL = 1 kg
m3 , ρR = 1 kg

m3 ,

uL = 0 m
s , uR = 0.008 m

s ,

pL = 0.4 kg
ms2

, pR = 0.399 kg
ms2

.

(4.68)

The discontinuity is placed at x0 = 0.5 on the domain [0, 1] with γ = 1.4 and the final time
is given by T = 0.25s. To transform the initial data (4.68) into non-dimensional quantities,
we define for a variable φ the relation φ = φr φ̂, where φ denotes the dimensional variable,
φr the reference value which contains the units and φ̂ the non-dimensional quantity. For
the reference values we have the following relations

ur =
xr
tr
, pr = ρrc

2
r , cr =

ur
M
.

We choose the scaling in space to be xr = 1m, the scaling in density to be ρr = 1 kg
m3 and

the scaling in velocity to be ur = M m
s . This yields the following scaling of the sound

speed cr = 1ms , the time tr = Ms and the pressure pr = 1 kg
ms2

. Then the non-dimensional
initial data is given by

ρL = 1, ρR = 1,

uL = 0, uR = 0.008/M,

pL = 0.4, pR = 0.399.

(4.69)

In the simulation, we choose M = 6.2 · 10−3 which is the Mach number on the contact
wave.

In Figure 4.3a we show the influence of the space and time step on the density profile
computed with the first order scheme (IMEX1) and the second order scheme (IMEX2).
The contact wave is always reproduced sharply whereas the acoustic waves are smoothed
since the time step is chosen according to the CFL restriction (4.47) associated with the
contact wave. Choosing a finer mesh, and thus having a time step closer to the one oriented
at the acoustic waves, allows us to also resolve the acoustic waves as depicted in Figure
4.3b. Moreover can be observed that the numerical approximation converges towards the
exact solution. In Figure 4.4 our results computed with IMEX1 and IMEX2 are plotted
against the implicit Jin Xin relaxation scheme presented in [1] and an explicit upwind
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Figure 4.2: SOD test case for T = 0.1644, γ = 1.4.
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(b) Increased resolution of the acoustic
waves due to mesh refinement (IMEX2).

Figure 4.3: Density profile for the Mach number dependent test case with different number
of grid points and time steps.

second order Suliciu relaxation scheme. Our results obtained with the IMEX schemes
are in good agreement with the results of the implicit scheme. Since the time step for
the explicit upwind scheme depends on the Mach number dependent acoustic waves, all
waves are resolved. This is rather costly since it results in a very small time step. The
implicit scheme is unconditionally stable and the time step can be chosen with respect to
the desired accuracy of the numerical solution.

4.6.2 Gresho Vortex test

In order to demonstrate the low Mach properties, we calculate the solution to the Gresho
Vortex test as given in [60]. The Gresho vortex is a stationary solution of the compressible
Euler equations and its initial data is well-prepared.

The velocity field u is divergence free and defined by the angular velocity in m
s , given

by

uθ =


5r for 0 ≤ r < 0.2

2− 5r for 0.2 ≤ r < 0.4

0 for 0.4 ≤ r
,

where r =
√

(x− x0)2 + (y − y0)2 with x0 = 0.5, y0 = 0.5 on a computational domain of

[0, 1] and γ = 5/3. The pressure distribution in kg
ms2

is given by

p =


p0 + 12.5r2 for 0 ≤ r < 0.2

p0 + 12.5r2 + 4(1− 5r − log(0.2) + log(r)) for 0.2 ≤ r < 0.4

p0 − 2 + 4 log(2) for 0.4 ≤ r
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Figure 4.4: Mach dependent shock test case: Time steps are given by ∆t = 1.1 · 10−7s
(expl.), ∆t = 2.2 · 10−2s (impl.), ∆t = 5.0 · 10−3s (IMEX1), ∆t = 2.5 · 10−3s (IMEX2).
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with p0 =
ρ0u2

Φ,max

γM2
kg
ms2

, where ρ0 = 1. The initial density is given by ρ = 1 kg
m3 and we

transform the initial condition in non-dimensional quantities by using xr = 1m, ρr = 1 kg
m3 ,

ur = 2 · 0.2 πms , pr =
ρ0u2

0
γM2

kg
ms2

and tr = 1mur . The computational domain is given by

[0, 1]× [0, 1]. We use a 40× 40 grid with periodic boundary conditions. The results for a
full turn of the vortex using the IMEX2 scheme together with the initial distribution of the
Mach number are given in Figure 4.5. We see that even for a low resolution, the solution at
T = 1 shows only little dissipation throughout all tested Mach numbers. To further check
the quality of the numerical simulation, we monitor the loss of kinetic energy. Since the
Gresho vortex is a stationary solution of the incompressible Euler equations, the kinetic
energy should be preserved. In Figure 4.6 we show the ratio between the initial kinetic
energy Ekin,0 and the kinetic energy after each time step Ekin,t for the Mach numbers
M = 10−2, 10−3. The graphs for the different Mach numbers are indistinguishable which
shows that the loss of kinetic energy does not depend on the chosen Mach number but
depends on the chosen space discretization and time-step.

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

y

M

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

y

M

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

y

M

0.000

0.002

0.004

0.006

0.008

0.010

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

y

M

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Figure 4.5: Mach number distribution for different maximal reference Mach numbers. Top
left: Initial state for M = 10−1. Top right: M = 10−1, bottom left: M = 10−2, bottom
right: M = 10−3 at t = 1.
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Figure 4.6: Loss of kinetic energy for different grids and reference Mach numbers after
one full turn of the vortex (non-dimensional).

4.6.3 Accuracy

Now we turn to the accuracy of the second order scheme given in Section 4.5. Unfortu-
nately the Gresho vortex is not a smooth enough solution to test second order accuracy,
since its velocity profile is only continuous but not continuously differentiable. Therefore
we propose a C1 velocity profile with which we then calculate a pressure profile to gain
a stationary vortex. A continuously differentiable angular velocity in m

s with uΦ,max = 1
and uθ(0) = 0 and uθ(0.4) = 0 is given by

uθ =


75r2 − 250r3, for 0 ≤ r < 0.2

−4 + 60r − 225r2 + 250r3, for 0.2 ≤ r < 0.4

0 for 0.4 ≥ r

with the radius r =
√

(x− 0.5)2 + (y − 0.5)2. The profile can be easily modified to be a
Ck function, where k ∈ N denotes the degree of continuous differentiability. Under the

condition that the centrifugal forces are balanced, that is ∂rp = uθ(r)2

r , we can calculate

the pressure in kg
ms2

as

p =


p0 + 1406.25r4 − 7500r5 + (10416 + 2

3)r6 for 0 ≤ r < 0.2

p0 + p2(r) for 0.2 ≤ r < 0.4

p0 + p2(0.4) for 0.4 ≥ r

where

p2(r) =65.8843399322788− 480r + 2700r2 − (9666 +
2

3
)r3

+ 20156.25r4 − 22500r5 + (10416 +
2

3
)r6 + 16 ln(r).
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M N ρ u1 u2 p

10−1

20 1.810·10−3 — 1.729·10−2 — 1.729·10−2 — 1.921·10−3 —

40 3.705·10−4 2.288 5.070·10−3 1.770 5.070·10−3 1.770 3.956·10−4 2.279

60 1.246·10−4 2.688 2.403·10−3 1.842 2.403·10−3 1.842 1.343·10−3 2.665

80 5.510·10−5 2.835 1.396·10−3 1.887 1.396·10−3 1.887 5.922·10−5 2.845

10−2

20 1.812·10−3 — 1.731·10−2 — 1.731·10−2 — 1.912·10−3 —

40 3.582·10−4 2.339 5.057·10−3 1.775 5.057·10−3 1.775 3.781·10−4 2.337

60 1.162·10−4 2.777 2.402·10−3 1.837 2.402·10−3 1.837 1.226·10−4 2.777

80 4.881·10−5 3.014 1.386·10−3 1.910 1.386·10−3 1.910 5.151·10−5 3.014

10−3

20 1.811·10−3 — 1.731·10−2 — 1.731·10−2 — 1.912·10−3 —

40 3.580·10−4 2.339 5.057·10−3 1.775 5.057·10−3 1.775 3.778·10−4 2.339

60 1.162·10−4 2.775 2.402·10−3 1.836 2.402·10−3 1.836 1.227·10−4 2.775

80 4.875·10−5 3.019 1.382·10−3 1.920 1.382·10−3 1.920 5.146·10−5 3.019

Table 4.2: L1-error and convergence rates for the solution of the smooth Gresho vortex
test at T = 0.05 (non-dimensional).

As in the Gresho vortex test case, the background pressure is scaled with the Mach number
as

p0 =
ρ0u

2
Φ,max

γM2

kg

ms2
.

To transform the dimensional data into non-dimensional quantities, we use the same ref-
erence values as in the Gresho vortex test case.

To show the accuracy of the IMEX2 scheme, we compute the solution of the smooth
Gresho vortex test on the domain [0, 1]2 with periodic boundary conditions. In Table
4.2 the L1-error between the numerical solution at T = 0.05 and the initial configuration
in non-dimensional quantities as well as the convergence rates are displayed for M =
10−1, 10−2, 10−3. It can be seen that we reach the expected accuracy independently of the
chosen Mach number although we do not recover a full second order convergence in u1

and u2. This is due to the usage of the minmod limiter in the reconstruction step which is
truncating the slopes when reaching a minimum or maximum in the solution to guarantee
the positivity of ρ and e. However, using an unlimited linear reconstruction instead of the
minmod limiter to calculate the slopes will lead to the full second order in all variables.

4.7 Conclusion

We have proposed an all-speed IMEX scheme for the full Euler equations of gas dynamics
which is based on a Suliciu relaxation model. The proposed IMEX scheme is an improve-
ment of explicit schemes since the time step is restricted by the material and not the
acoustic wave speeds. It is also an improvement of implicit schemes since the implicit
part consists only of one scalar linear equation and can be solved very efficiently. The
scheme has the correct numerical viscosity for all Mach numbers as verified by the Gresho
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vortex test case, can capture the correct shock positions as shown by the SOD shock tube
test case as well as by the Mach number dependent Riemann problem. In addition it is
positivity preserving and shows the expected second order convergence rates.

Starting from this encouraging results of the homogeneous model, we extend the
schemes in the following chapter to be able to treat flows in the presence of a gravitational
source term. The aim is to design well-balanced scheme, that inherits all the properties of
the IMEX scheme presented in this chapter combined with the well-balancing techniques
discussed in Chapter 3.
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Chapter 5

An all-speed scheme for the Euler
equations with gravity

The aim of this chapter is the construction of an all-speed scheme for the Euler equations
of gas dynamics with a given gravitational source term in multiple space dimensions. Ap-
plications of this model can be found for example in astrophysics and meteorology. A
broad overview is given in the review of Klein [49] where it is demonstrated that atmo-
spheric flows can have large scale differences. To reflect those scales in the equations,
we use the non-dimensional formulation of the equations which are characterized by the
reference Mach and Froude number denoted by M and Fr respectively.

In the homogeneous case, the behaviour of the fluid changes in dependence of the
Mach number only. It ranges from compressible flow for large Mach numbers to the
incompressible limit equations for M going to zero. The derivation of the limit equations
can be found eg. in [47, 26, 70] and references therein. To accurately approximate all-
speed flows, asymptotic preserving (AP) schemes are well suited since they are consistent
with the limit behaviour as M tends to zero. The development of those schemes is an
active field of research and we refer to the review of Jin [42] for an introduction. An
important role in the achievement of the AP property is played by the splitting of the
pressure following the studies of Klein [48, 50] as used in the schemes [62, 23, 79, 7]. In
[79, 7] the pressure splitting is combined with a Suliciu relaxation approach [74] which
allows for an easy construction of Riemann Solvers. An example for a Jin-Xin relaxation
approach [43] can be found in [1].

Since for explicit schemes the time step is restricted by the inverse of the largest wave
speed, which scales with 1/M , explicit schemes are not practical for low Mach applications.
Therefore implicit schemes, see for example [7, 1], or implicit-explicit (IMEX) schemes,
see for example [23, 9, 30], are used to have a Mach number independent time step.

The presence of a source term makes it interesting to look at steady states. For a
zero velocity field, we find hydrostatic equilibria, which are characterized by the balance
of the pressure gradient with the weight of the fluid. Most atmospheric-flow phenomena
may be understood as perturbations of such a balanced background state. The scope of
well-balanced schemes is to maintain the background atmosphere at machine precision to
be able to resolve those small perturbations accurately. Since the shape of the equilibrium
state depends on the underlying pressure law, there are schemes focused on well-balancing
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a specific class of equilibria, for example isothermal and polytropic atmospheres [28] or
equilibria with constant entropy [44]. The latter was extended in [45] to the preservation of
hydrostatic equilibria with arbitrary entropy stratification using a second order reconstruc-
tion of the discrete equilibrium equation. A different approach can be found in [35], where
the well-balanced property is achieved by using path-conservative finite volumes schemes.
Higher order well-balanced schemes can be realized by using a high order hydrostatic re-
construction, as done in [86, 51, 39]. Since our aim is to exactly well-balance arbitrary
hydrostatic equilibria, we follow the approaches from [86, 36], also used in [51, 78], and
rewrite the gravitational potential in terms of a reference equilibrium state. Note that the
above mentioned well-balancing techniques were developed for the compressible regime.
Instead the scheme presented here is designed to be well-balanced also in the low Mach,
low Froude regime. It is a natural continuation of the second order AP IMEX scheme
developed for the homogeneous Euler equations [79], presented in the previous chapter,
where the focus was mainly on the construction of an AP scheme with a Mach number
independent time-step as well as the preservation of the positivity of density and internal
energy. Here, we complete the scheme adding a gravitational source term treated in the
framework presented in Chapter 3 and we use that approach to show the well-balanced
and positivity property of the new scheme. One of the main difficulties is to combine
the well-balanced property with the IMEX framework as the approach in Chapter 3 was
developed for a purely explicit scheme.

To our knowledge, this is the first case in which the construction of a well balanced
scheme for general equilibria is addressed which, at the same time, preserves asymptotic
properties in the low Mach regime under a gravitational field for the full Euler equations.
We show the AP property of the scheme by proving that it preserves the divergence free
constraint in the zero Mach number limit when starting from well prepared initial data.
The limit equations are given by the incompressible Euler equations in a gravitational
field. Similar results were found in [8] for the isentropic case with potential temperature.
We refer to [33, 34] for theoretical studies on the isothermal and isentropic case with a
one component linear gravitational field and to [5] for a low Mach scheme that allows for
a gravitational source term, but lacks the well-balanced property.

The results presented in this chapter are already published in [77]. The chapter is
organized as follows. In Section 5.1, we introduce the equations, the notion of hydrostatic
equilibria and the limit equations. Then we give the derivation of the Suliciu type relax-
ation model in Section 5.2. The time semi-discrete scheme with the flux splitting together
with the Mach number expansion of the fast pressure and the asymptotic preserving prop-
erty are discussed in Section 5.3. Subsequent, we give the derivation of the fully discrete
scheme which includes a Godunov type finite volume scheme based on an approximative
Riemann solver in the explicit part. We show that the scheme is well-balanced and that it
preserves the positivity of density and internal energy. The section ends with the extension
to second order. All properties are numerically validated in Section 5.5. In particular,
we give an example of low Mach flow, starting from well prepared initial data, and we
study a low Mach stationary vortex in a gravitational field, with a test we derived from
the classical Gresho vortex test case from [60]. We conclude the numerical tests with a
simulation of a rising hot air bubble which arises in meteorology.
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5.1 The Euler equations with a gravitational source term

The Euler equations with a gravitational source term in d dimensions are given by

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = −ρ∇Φ,

∂tE +∇ · (u(E + p)) = −ρu · ∇Φ

(5.1)

where the total energy E is composed of the kinetic and internal energy given by

E = ρ

(
1

2
|u|2 + e

)
and Φ denotes a smooth given gravitational potential. To highlight the impact of slow and
fast scales in the equations, we formulate (5.1) in its non-dimensional form by rewriting the
variables as a scalar reference value that contains the units, indicated by the subscript (·)r,
multiplied by a non-dimensional quantity indicated by (̃·), as defined in (1.64). Choosing
the reference length xr, time tr, density ρr, sound speed cr and gravitational acceleration
Φr, we can compute the missing reference values as

ur =
xr
tr
, pr = ρrc

2
r , er = c2

r . (5.2)

Inserting the decomposition (1.64),(5.2) in the dimensional equations (5.1) and using the
relations (5.2), we arrive at the non-dimensional Euler equations with a gravitational
source term:

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +
1

M2
∇p = − 1

Fr2
ρ∇Φ

∂tE +∇ · (u(E + p)) = −M
2

Fr2
ρu · ∇Φ.

(5.3)

For simplicity, we have dropped the tilde and, if not otherwise mentioned, we will use the
non-dimensional variables throughout this chapter. The total energy of system (5.3) is
given by

E = ρ

(
1

2
M2|u|2 + e

)
.

Equations (5.3) depend on two non-dimensional quantities, the Mach number M and the
Froude number Fr. The reference Mach number, that is used here, is defined as the ratio
between the reference velocity of the gas and the reference sound speed

M =
ur
cr

while the reference Froude number is defined as the ratio between the reference velocity
of the gas and the velocity introduced by the reference gravitational acceleration

Fr =
ur√
Φr
.
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5.1.1 Hydrostatic equilibria

Also for the non-dimensional equations, we can define hydrostatic equilibria which now
depend on the Mach and Froude number. The stationary states at rest of the non-
dimensional equations (5.3) satisfy for u = 0

1

M2
∇p = − 1

Fr2
ρ∇Φ. (5.4)

As in the dimensional case discussed in Section 1.5, solutions to (5.4) are not unique and,
depending on the relation between the pressure and the density, they can have completely
different behaviour. To demonstrate this, let us for a moment consider the following class
of pressure laws

p = χρΓ (5.5)

with constants χ > 0, Γ ∈ (0,∞). For the class of equation of states (5.5), we obtain for
Γ = 1 (isothermal) with a constant C ∈ R and χ = RT

ρ(x) = exp

(
C − M2

Fr2 Φ(x)

RT

)
, p(x) = RTρ(x) (5.6)

and for Γ ∈ (0, 1) ∪ (1,∞) (polytropic) with a constant C ∈ R

ρ(x) =

(
Γ− 1

χΓ

(
C − M2

Fr2
Φ(x)

)) 1
Γ−1

, p(x) = χρ(x)Γ. (5.7)

Comparing the isothermal and polytropic equilibria (5.6) and (5.7) to the solutions in
dimensional form given by (1.90) and (1.91) respectively, we see that in front of the gravi-
tational potential Φ, appears now the ratio between Mach and Froude number. Especially
if M and Fr are of the same order, the equilibria are independent of these parameters.

To obtain a scheme, that can well-balance arbitrary known equilibria, we rewrite the
potential Φ in terms of a reference equilibrium, expressed by α, β as introduced in Section
3.1. Since arbitrary solutions ρ̄ and p̄ of the hydrostatic equilibrium (5.4) are stationary,
we follow [36] and define two time-independent positive functions

α(x) = ρ̄(x) and β(x) = p̄(x)

representing the equilibrium density and pressure respectively. Since α, β satisfy (5.4), we
can find a new relation for ∇Φ due to the following equivalent description

1

M2
∇β = − 1

Fr2
α∇Φ ⇔ ∇Φ = −Fr

2

M2

∇β
α
. (5.8)

With this definition of the gravitational potential, we can rewrite (5.3) into

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +
1

M2
∇p =

1

M2

ρ

α
∇β,

∂tE +∇ · (u(E + p)) =
ρ

α
u · ∇β.

(5.9)
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We emphasize, that the reference equilibrium has to be known a priori. In general, this
is not a restriction, as in many applications the interest lies in preserving a particular
equilibrium state, from which the functions α and β can be calculated in advance. In
the case of an isothermal or polytropic equilibrium, they can be set according to (5.6)
or (5.7) respectively. Since they represent the given stationary potential ∇Φ, they are
also considered as given stationary functions and it is not necessary to update them in
time. Note, that the equations (5.9) are only depending on the Mach number, but the
dependence on the Froude number is implicitly given in the definition of β in (5.8).

5.1.2 The low Mach limit

Most interesting for the asymptotic analysis from a well-balancing point of view is the case
M = Fr. In this case one can find a balance between the source and pressure terms in
the momentum and energy equation which can also be recovered in the limit M,Fr → 0.
This choice was also considered in [8, 33, 34]. To analyse multi-scale effects and the
formal asymptotic behaviour of (5.3), we express the variables in form of a Mach number
expansion and compare the orders of terms in M . The expansions are given by

ρ = ρ0 +Mρ1 +M2ρ2 +O(M3), u = u0 +Mu1 +M2u2 +O(M3),
e = e0 +Me1 +M2e2 +O(M3), p = p0 +Mp1 +M2p2 +O(M3).

(5.10)

Inserting the expansions (5.10) into the Euler equations (5.9) and collecting the terms of
order O(M−2), we have

∇p0 = −ρ0∇Φ. (5.11)

For the O(M−1) terms, we find

∇p1 = −ρ1∇Φ. (5.12)

This means that the couples p0, ρ0 and p1, ρ1 fulfil the hydrostatic equilibrium and thus
are time-independent. Using this fact, the O(M0) terms can be reduced to

∇ · (ρ0u0) = 0,

∂tu0 + u0 · ∇u0 +
∇p2

ρ0
= −ρ2∇Φ

ρ0
,

∇ · u0 =
u0 · ∇Φ

c2
0

,

(5.13)

where we have used c2
0 = γ p0

ρ0
. An important class of solutions of (5.13) are solutions with

a velocity field orthogonal to the gravitational direction. This directly implies a divergence
free velocity field ∇ · u0 = 0 in (5.13). Associated to this case for a given potential Φ is
the following set of well-prepared data

Ωwp =
{
w ∈ Rd+2; ∇p0 = −ρ0∇Φ, ∇p1 = −ρ1∇Φ,

∇ · (ρ0u0) = 0,∇ · u0 = 0, u0 · ∇Φ = 0
}
. (5.14)
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The well-prepared data for given α, β regarding the modified equations (5.9) are defined
analogously by

Ωαβ
wp =

{
w ∈ Rd+2;∇p0 = ρ0

∇β
α
, ∇p1 = ρ1

∇β
α
,

∇ · (ρ0u0) = 0,∇ · u0 = 0, u0 ·
∇β
α

= 0
}
. (5.15)

We can conclude from this short analysis that well-prepared pressure and density fulfil
the hydrostatic equilibrium up to a perturbation of M2. We want to remark that a more
general set of well-prepared data can be obtained by only requiring the balance between
∇ · u0 and u · ∇Φ/c2

0 in (5.13).

5.2 Suliciu Relaxation model

This section is devoted to the relaxation model which is the bases for the IMEX scheme.
Using a Suliciu relaxation approach as done for example in [74, 11, 22] is one way of
simplifying the non-linear structure of the Euler equations (5.3) in such a way that the
characteristic fields of the relaxation model are linearly degenerate. This structure provides
a natural Riemann solver. The derivation of the relaxation model follows the arguments
given in [23, 79, 7]. As already done in the homogeneous case described in Section 4.1,
following Klein [48], we apply in the momentum and energy equation a splitting of the
pressure p into a slow and a fast component

p

M2
= p+

1−M2

M2
p.

The aim is to relax both the slow and the fast pressure in a Suliciu relaxation manner.
The pressure in relaxation equilibrium is then characterized by

p = M2π + (1−M2)ψ,

where π is the approximation of the slow and ψ of the fast part. To obtain the evolution
of π, we can directly apply the Suliciu relaxation technique which leads to the addition of
the following equation in conservation form

∂t(ρπ) +∇ · (ρπu) + a2∇ · u =
ρ

ε
(p− π),

where a > 0 denotes the relaxation parameter which has to fulfil a subcharacteristic
condition specified in Lemma 5.1. As discussed in [7], applying this Suliciu relaxation
technique also on the fast pressure does not lead to scheme that is accurate for small
Mach numbers. Instead a relaxation equation for the velocity û coupled with the pressure
ψ is added. We apply the same strategy as in the homogeneous case described in Section
4.1 or in [7, 88]. Here in addition, the influence of the source term in the momentum
equation has to be accounted for. As a consequence, the source term will also appear in
the relaxation equation for û. The full relaxation model is developed under the following
objectives:
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• It has a ordered eigenvalues that lead to a clear wave structure easing the construc-
tion of a Riemann solver.

• It is a stable diffusive approximation of the non-dimensional Euler equations with
gravitational source term (5.9).

• The resulting numerical scheme has Mach number independent diffusion.

The achievement of the first objective depends also on the treatment of the source term,
since it is associated to β with a zero eigenvalue. Following [28], we avoid this zero
eigenvalue by relaxing also β. It is approximated by a new variable Z that is transported
with u as

∂tZ + u · ∇Z =
1

ε
(β − Z).

This associates the source term with the eigenvalue u. All these considerations lead to
the following relaxation model

∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇π +
1−M2

M2
∇ψ =

1

M2

ρ

α
∇Z,

∂tE +∇ · (u(E +M2π + (1−M2)ψ)) =
ρ

α
u · ∇Z,

∂t(ρπ) +∇ · (ρuπ + a2u) =
ρ

ε
(p− π),

∂t(ρû) +∇ · (ρu⊗ û) +
1

M2
∇ψ =

1

M2

ρ

α
∇Z +

ρ

ε
(u− û),

∂t(ρψ) +∇ · (ρuψ + a2û) =
ρ

ε
(p− ψ),

∂t(ρZ) +∇(ρuZ) =
ρ

ε
(β − Z).

(5.16)

The following lemma summarizes important properties of the relaxation model (5.16) re-
garding the structure and stability. The proof including the Chapman-Enskog stability
analysis can be done by adapting the steps explained in Sections 1.2.2 and 1.3. Alterna-
tively, the proof can be established analogously to [88].

Lemma 5.1. The relaxation system (5.16) is hyperbolic and a stable diffusive approxi-
mation of (5.9) under the Mach number independent subcharacteristic condition for the
relaxation parameter a > ρc. Considering the xi-direction, it has the following linearly
degenerate eigenvalues

λu = ui, λ
± = ui ±

a

ρ
, λ±M = ui ±

a

Mρ

where λu has multiplicity 2d+ 1, where d is the number of considered space dimensions.

Note, that in the case of M = 1, the waves associated with λ±M and λ± collapse to λ±

with multiplicity 2 respectively. Then the core of the relaxation model (5.16) reduces to
the hyperbolic relaxation model for the Euler equations with gravity (3.9). For M < 1,
the eigenvalues have the following order

λ−M < λ− < λu < λ+ < λ+
M .
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To shorten notation, we will refer to the original system (5.9) as

wt +∇ · f(w) = s(w). (5.17)

where w = (ρ, ρu, E)T denotes the vector of physical variables, while the flux function
f(w) and the source term s(w) are given by

f(w) =


ρu

ρu⊗ u +
1

M2
p I

u(E + p)

 and s(w) =


0

1

M2

ρ

α
∇β

ρ

α
u · ∇β

 .

The relaxation model (5.16) is given by

Wt +∇F̃ (W ) = S(W ) +
1

ε
R(W ), (5.18)

where W = (ρ, ρu, E, ρπ, ρû, ρψ, ρZ)T denotes the state vector and F̃ the flux function
as defined in (5.16). The gravitational source term S(W ) and the relaxation source term
R(W ) are given by

S(W ) =



0
1

M2

ρ

α
∇Z

ρ

α
u · ∇Z

0
1

M2

ρ

α
∇Z

0

0


and R(W ) =



0

0

0

ρ(p− π)

ρ(u− û)

ρ(p− ψ)

ρ(β − Z)


.

The relaxation time ε indicates how fast the perturbed system (5.18) is reaching its
equilibrium (5.17). The relaxation equilibrium state is given by

W eq =M(w) = (ρ, ρu, E, ρp(ρ, e), ρu, ρp(ρ, e), ρβ)T . (5.19)

Following [19], we can connect (5.18) to (5.17) through the matrix Q ∈ R(2+d)×(2(2+d)+1)

defined as

Q =
(
I2+d 0

)
, 0 ∈ R(2+d)×(2+d+1)

where d denotes the number of space dimensions. For all equilibrium states M(w) the
relation R(M(w)) = 0 is satisfied and the physical variables w = (ρ, ρu, E)T are recovered
by w = QM(w) and the flux function by f(w) = Q(F̃ (M(w))).
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5.3 Time semi-discrete scheme

To avoid the very restrictive CFL condition that would arise when using an explicit scheme,
we will construct an IMEX scheme such that the CFL condition is independent of the Mach
number. Therefore, we split the flux function F̃ (W ) and source term S(W ) in (5.16) in
the following way:

∂tW +∇ · F (W ) +
1

M2
∇ ·G(W ) = SE(W ) +

1

M2
SI(W ) +

1

ε
R(W ). (5.20)

Therein, F (W ) and SE(W ) will be treated explicitly while G(W ) and SI(W ) contain
the implicit terms. The functions F (W ), SE(W ), G(W ) and SI(W ) are chosen carfully
to avoid the need to invert a huge non-linear system while the waves associated to the
explicitly treated flux function F (W ) should be independent of the Mach number. We
propose the following definition of flux functions and source terms:

F (W ) =



ρu

ρu⊗ u + πI +
1−M2

M2
ψI(

E +M2π + (1−M2)ψ
)
u

ρπu + a2u

ρu⊗ û

ρψu

ρZu


, SE(W ) =



0
1

M2

ρ

α
∇Z

ρ

α
u · ∇Z

0

0

0

0


,

G(W ) =



0

0

0

0

ψI

a2M2û

0


, SI(W ) =



0

0

0

0
ρ

α
∇Z

0

0


.

(5.21)

Since the implicit operators G and SI are sparse and do not act on the physical variables,
we perform the implicit before the explicit step which is then followed by the integration
of the relaxation source term. This procedure is summarized in the following sequence of
operations:

Implicit: ∂tW +
1

M2
∇ ·G(W ) =

1

M2
SI(W ), (5.22)

Explicit: ∂tW +∇ · F (W ) = SE(W ), (5.23)

Projection: ∂tW =
1

ε
R(W ). (5.24)
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The projection step (5.24) ensures that the updated variables at the new time level Wn+1

are in relaxation equilibrium (5.19) corresponding to ε = 0. Following the same line of
arguments as in the previous chapters, we can set the update of the relaxation variables
directly as

πn+1 = p(2), ûn+1 = u(2), ψn+1 = p(2), Zn+1 = β, (5.25)

where the superscript (2) denotes the solution after the second step (5.23). Considering
the whole state vector W , we can summarize the projection step by Wn+1 = W (2),eq. The
formal time semi-discrete scheme is then given by

W (1) −Wn +
∆t

M2
∇ ·G

(
W (1)

)
=

∆t

M2
SI

(
W (1)

)
, (5.26)

W (2) −W (1) + ∆t ∇ · F
(
W (1)

)
= ∆t SE

(
W (1)

)
, (5.27)

Wn+1 = W (2),eq. (5.28)

To construct a well-balanced scheme, we have to preserve the hydrostatic equilibria of
the time semi-discrete scheme (5.26)-(5.28) which are described by

Implicit

û(1) = 0,

1

M2
∇ψ(1) =

1

M2

ρ(1)

α
∇Z(1),

(5.29)

Explicit

u(1) = 0,

∇π(1) +
1−M2

M2
∇ψ(1) =

1

M2

ρ(1)

α
∇Z(1).

(5.30)

From (5.29) and (5.30) we see that if the implicit step is well-balanced, then the hydrostatic
equation for the explicit step reduces to solvingu(1) = 0,

∇π(1) =
ρ(1)

α
∇Z(1),

which is independent of the Mach number. The aim is to ensure that the explicit as well
as the implicit step are well-balanced to obtain an overall well-balanced IMEX scheme.

5.3.1 Mach number expansion of ψ(1)

Due to the sparse structure of the flux function G and the source term SI in (5.21), the
implicit part reduces to solving only two coupled equations in the relaxation variables û, ψ
given by

∂t(ρû) +
1

M2
∇ψ =

1

M2
κ∇Z,

∂t(ρψ) + a2∇ · û = 0,
(5.31)
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with the eigenvalues λ̃±M = ± a
Mρ , where we defined κ = ρ/α. As done in [23, 79, 8], we

rewrite the coupled system (5.31) into a single equation with an elliptic operator for ψ
starting from the time-semi-discrete scheme

ρ(1) − ρn

∆t
= 0, (5.32)

(ρû)(1) − (ρû)n

∆t
+

1

M2
∇ψ(1) − 1

M2
κn∇Zn = 0, (5.33)

(ρψ)(1) − (ρψ)n

∆t
+ a2∇ · û(1) = 0. (5.34)

Note, that Z is a relaxation variable approximating the equilibrium pressure β and is not
updated in the implicit step and therefore appears at time level tn. From the density
equation (5.32) it follows that ρ(1) = ρn. Together we have κ(1) = ρn

α = κn. Inserting
(5.33) into (5.34) we have

ψ(1) −∆t2a2τn∇ · (τn 1

M2
∇ψ(1)) = ψn −∆t2a2τn∇ · (τn κ

n

M2
∇β)

−∆ta2τn∇ · un,
(5.35)

where we have used τ = 1/ρ. Since the data at time tn is in relaxation equilibrium, we
can set ûn = un and Zn = β on the right hand side of (5.35). Note that, the update
(5.35) is linear in ψ.

Now we analyse the implicit update of ψ(1) with respect to the Mach number. We
assume that the initial data is well-prepared, that is wn ∈ Ωαβ

wp as defined in (5.15). To
preserve the scaling of the pressure, we define the following boundary conditions for ψ on
a computational domain D

∇ψ(1)
0 = ∇pn0

∇ψ(1)
1 = ∇pn1

}
on ∂D. (5.36)

Inserting the Mach number expansion according to Ωαβ
wp for well-prepared data into (5.35)

and separating the O(M−2) terms we find{
∇ ·
(
τn0∇ψ

(1)
0

)
= ∇ · (τn0∇pn0 ) in D

∇ψ(1)
0 = ∇pn0 on ∂D

. (5.37)

This boundary value problem has the unique solution ∇ψ(1)
0 = ∇pn0 on the whole domain

D. Substituting the Mach number expansions of ψ and τ and collecting the O(M−1)
terms leads to

τn1∇ ·
(
τn0∇ψ

(1)
0

)
+ τn0∇ ·

(
τn1∇ψ

(1)
0 + τn0∇ψ

(1)
1

)
= τn1∇ ·

(
τn0
ρn0
α
∇β
)

+ τn0∇ ·
(
τn1
ρn0
α
∇β + τn0

ρn1
α
∇β
)
. (5.38)
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Due to the well-prepared data, we have the relation ρ1
∇β
α = ∇p1 from (5.15). Then we

can simplify the equation (5.38) using ∇ψ(1)
0 = ∇pn0 to{

∇ ·
(
τn0∇ψ

(1)
1

)
= ∇ · (τn0∇p1) in D

∇ψ(1)
1 = ∇pn1 on ∂D

(5.39)

which has the unique solution ∇ψ(1)
1 = ∇pn1 on the whole domain D. As a last step we

look at the O(M0) terms and find using the results from (5.37) and (5.39) that

∇ ·
(
τn0∇ψ

(1)
2

)
= ∇ ·

(
τn0
ρn2
α
∇β
)

in D.

This means the first two terms in the expansion of ψ(1) fulfil the hydrostatic equilibrium
(5.11), (5.12). This proves that the pressure ψ(1) has the correct asymptotic behaviour.

5.3.2 Asymptotic preserving property

Having established the Mach number expansion of ψ(1), we can show now that the time
semi-discrete scheme (5.26) - (5.28) for M → 0 coincides with a time-discretization of the

limit equations (5.13) and that the scheme preserves the set of well-prepared data Ωαβ
wp.

We start by inserting the Mach number expansions given in (5.10) into (5.27). Then we
find for the zero order terms in the density, momentum and energy equation

ρn+1
0 − ρn0 + ∆t ∇ · ρn0un0 = 0,

ρn+1
0 un+1

0 − ρn0un0 + ∆t
(
ρn0un0 ⊗ un0 +∇ψ(1)

2

)
= ∆t

ρn2
α
∇β,

ρn+1
0 en+1

0 − ρn0en0 + ∆t
(
∇ · un0

(
ρn0e

n
0 + ψ

(1)
0

))
= ∆t

ρ0

α
un0 · ∇β.

We can simplify the equations by using ∇ψ(1)
0 = ∇pn0 and well-prepared data wn ∈ Ωαβ

wp:

ρn+1
0 − ρn0 = 0,

un+1
0 − un0 + ∆t

(
un0 · ∇un0 +

∇ψ(1)
2

ρn0

)
= ∆t

ρn2
ρn0 α

∇β,

pn+1
0 − pn0 = 0.

From the first and the last equation we see that ρ0 and p0 do not change in time and looking
at the O(M1) terms in the energy equation we have pn+1

1 = pn1 +O(∆t). This means the
pressure and density at tn+1 are still well-prepared up to perturbations of ∆t. Next, we
analyse the divergence free property of un+1

0 and ρn+1
0 un+1

0 . This is done by applying the
divergence operator on the momentum equation and simplifying using (5.3.1). We obtain

∇ · un+1
0 = ∆t ∇ · (−un0 · ∇un0 ) = O(∆t),

∇ ·
(
ρn+1

0 un+1
0

)
= ∆t ∇ ·

(
−ρn0un0 · ∇un0 −∇ψ

(1)
2 +

ρn2
α
∇β
)

= O(∆t).
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For showing the orthogonality condition for un+1
0 we multiply the momentum equation by

∇β
α and obtain

un+1
0 · ∇β

αn
= ∆t

(
−un0 · ∇un0 −

∇ψ(1)
2

ρn0
+

ρn2
ρn0 α

∇β

)
· ∇β
α

= O(∆t).

Therefore all three conditions are satisfied up to a perturbation in ∆t. An analogue
estimate for the homogeneous case can be found in the method proposed in [23]. This
analysis yields the following result about the asymptotic preserving property.

Theorem 5.2 (AP property). For well-prepared initial data wn ∈ Ωαβ
wp and under the

boundary conditions (5.36) the time semi-discrete scheme (5.26)- (5.28) is asymptotic

preserving when M → 0 in the sense that if wn ∈ Ωαβ
wp then also wn+1 ∈ Ωαβ

wp up to O(∆t)
and in the limit M → 0 the time semi-discrete scheme is a consistent time discretization
of the limit equations (5.13) within O(∆t) terms.

We remark that the analysis still holds if instead of Ωαβ
wp the original well-prepared set

Ωwp is used.

5.4 Derivation of the fully discrete scheme

The derivation of the fully discrete scheme is done in one spatial direction for simplicity,
but it can be extended straightforwardly to multiple dimensions considering dimensional
split Riemann problems in the explicit part and discretizing the expressions

∇ · (τ∇(·)) = ∂x1(τ∂x1(·)) + · · ·+ ∂xd(τ∂xd(·)) and

∇ · u = ∂x1u1 + · · ·+ ∂xdud
(5.40)

with u = (u1, . . . , ud) component-wise in the implicit step. We use a uniform Cartesian
grid on a computational domain D divided in N cells Ci = (xi−1/2, xi+1/2) of step size
∆x. We use a standard finite volume setting, where we define at time tn the piecewise
constant functions w(x, tn) = wni , for x ∈ Ci.

5.4.1 Well-balanced property of the implicit part

Applying central differences in (5.35) we obtain

ψ
(1)
i −

∆t2

∆x2

a2

M2
τni

(
τni+1/2(ψ

(1)
i+1 − ψ

(1)
i )− τni−1/2(ψ

(1)
i − ψ

n+1
i−1 )

)
=

ψni −
∆t2

∆x2

a2

M2
τni

(
τni+1/2κ

n
i+1/2(βi+1 − βi)− τni−1/2κ

n
i−1/2(βi − βi−1)

)
− ∆t

2∆x
a2
(
uni+1 − uni−1

)
, (5.41)

where τi+1/2 = 1
2 (τi+1 + τi). To fully determine the implicit update, we have to define

κi+1/2. Its discretization is important to obtain a well-balanced implicit step, as given in
the following result.
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Lemma 5.3 (Well-balancedness of the implicit part). Let the initial condition wni be
well-balanced, that is

ui = 0,
ρni
αi

= 1,
pni
βi

= 1. (5.42)

If the function κ is discretized such that in the hydrostatic equilibrium holds

κi+1/2 = 1, (5.43)

then it is ψ
(1)
i = ψni for all cells i = 1, . . . N , that means (5.26) is well-balanced in the

sense that W (1) fulfils (5.29).

Proof. From the condition (5.42) we have κi+1/2 = 1. At time level tn we know that
ψn = pn. Therefore we can write

ψni+1 − ψni = βi+1 − βi = κni+1/2(βi+1 − βi). (5.44)

Using u = 0 and inserting (5.44) into (5.41), we have

ψ
(1)
i −

∆t2

∆x2

a2

M2
τni

(
τni+1/2(ψ

(1)
i+1 − ψ

(1)
i )− τni−1/2(ψ

(1)
i − ψ

n+1
i−1 )

)
=

ψni −
∆t2

∆x2

a2

M2
τni

(
τni+1/2(ψni+1 − ψni )− τni−1/2(ψni − ψni−1)

)
. (5.45)

Define the tridiagonal coefficient matrix A by

A = diag(−µτni τni−1/2, 1 + µτni (τni+1/2 + τni−1/2),−µτni τni+1/2),

where µ = ∆t2

∆x2
a2

M2 . Then we can write (5.45) as

Aψ(1) = Aψn ⇔ A(ψ(1) − ψn) = 0. (5.46)

Since the matrix A is strict diagonal dominant it is invertible. Then we have from (5.46)

that ψ
(1)
i = ψni for all i = 1, . . . , N . The proof can be extended to d dimensions using

(5.40) for the space discretization. In d dimensions the coefficient matrix A is an invertible
strict diagonal dominant banded Matrix with 2d+1 diagonals. Therefore the results holds
also in d dimensions.

In the following we will use a second order accurate discretization of κi+1/2 that fulfils
(5.43) and is given by

κi+1/2 =
1

2

(
ρi+1

αi+1
+
ρi
αi

)
. (5.47)
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5.4.2 Godunov type finite volume scheme

Now, we consider the explicit step (5.27) using the explicit operators F and SE defined in
(5.21). In one dimension, we can write

∂tρ+ ∂xρu = 0

∂t(ρu) + ∂x(ρu2 + π +
1−M2

M2
ψ) =

1

M2
κ∂xZ

∂tE + ∂x((E +M2π + (1−M2)ψ)u) = uκ∂xZ

∂t(ρπ) + ∂x((ρπ + a2)u) = 0

∂t(ρû) + ∂x(ρuû) = 0

∂t(ρψ) + ∂x(ρψu) = 0

∂t(ρZ) + ∂x(ρZu) = 0.

(5.48)

The derivation of the Godunove type finite volume scheme follows closely the steps given
eg. in [79, 7, 28, 78, 80]. The omitted proofs to the results given in this section can be done
analogously following those references or the steps for similar results described in previous
chapters. To construct a Riemann solver for (5.48), we follow [28] and include the source
term in the flux formulation. To calculate the Riemann invariants given in Lemma 5.4,
we rewrite (5.48) in non-conservative form using the primitive variables (ρ, u, e, π, û, ψ, Z).
Since Riemann invariants are invariant under change of variables, they are the same as for
the equations in conservation form.

Lemma 5.4. System (5.48) admits the linear degenerate eigenvalues λ± = u ± a
ρ and

λu = u, where the eigenvalue λu has multiplicity 5. The relaxation parameter a as well
as the eigenvalues are independent of the Mach number M . The Riemann invariants with
respect to λu are

Iu1 = u, Iu2 = M2π + (1−M2)ψ − κZ

and with respect to λ±

I±1 = u± a

ρ
, I±2 = π +

a2

ρ
, I±3 = e− M2

2a2
π2 − 1−M2

a2
πψ,

I±4 = û, I±5 = ψ, I±6 = Z.

We will follow the theory of Harten, Lax and van Leer [41] for deriving an approximate

Riemann solver WRS

(
x
t ;W

(1)
L ,W

(1)
R

)
based on the states W (1) after the implicit step

keeping κ fixed while computing the Riemann solution. Due to the linear-degeneracy
from Lemma 5.4, the structure of the approximate Riemann solver is given as follows

WRS

(x
t

;W
(1)
L ,W

(1)
R

)
=


W

(1)
L

x
t < λ−,

W ∗L λ− < x
t < λu,

W ∗R λu < x
t < λ+,

W
(1)
R λ+ < x

t .

(5.49)

To compute the intermediate states W ∗L,R, we use the Riemann invariants as given in
Lemma 5.4.
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Lemma 5.5. Consider an initial value problem with initial data

W 0(x) =

{
W

(1)
L x < 0,

W
(1)
R x > 0.

Then, the solution consists of four constant states separated by contact discontinuities with
the structure given in (5.49). Dropping the superscript (1), a solution for the intermediate
states W ∗L,W

∗
R in dependence of κ, with u∗ = u∗L = u∗R, is given by

u∗ =
1

2
(uL + uR)− 1

2a

(
πR − πL +

1−M2

M2
(ψR − ψL)− κ

M2
(ZR − ZL)

)
,

π∗L =
1

2
(πL + πR)− a

2
(uR − uL) +

1−M2

2M2
(ψR − ψL)− κ

2M2
(ZR − ZL),

π∗R =
1

2
(πL + πR)− a

2
(uR − uL)− 1−M2

2M2
(ψR − ψL) +

κ

2M2
(ZR − ZL),

1

ρ∗L
=

1

ρL
+

1

a2
(πL − π∗L),

1

ρ∗R
=

1

ρR
+

1

a2
(πR − π∗R),

e∗L = eL −
1

2a2
(π2
L − (π∗L)2 + (1−M2)(πL − π∗L)ψL),

e∗R = eR −
1

2a2
(π2
R − (π∗R)2 + (1−M2)(πR − π∗R)ψR),

ψ∗L,R = ψL,R,

û∗L,R = ûL,R,

Z∗L,R = ZL,R.

(5.50)

Having established the structure of the Riemann solver, we can show that it is pre-
serving hydrostatic equilibria.

Lemma 5.6 (Well-balancedness of Riemann Solver). Let the initial condition wnL, w
n
R be

given in hydrostatic equilibrium (5.42). Let the function κ be defined as in (5.43). Then
the intermediate states (5.50) satisfy

W
(1)∗
L = W

(1)
L , W

(1)∗
R = W

(1)
R

that is, the approximate Riemann solver as defined in Lemma 5.5 is at rest.

Proof. From Lemma 5.3, we know that ψ(1) = pn and satisfies

ψ
(1)
L − ψ

(1)
R = κ(Z

(1)
L − Z

(1)
R ). (5.51)

We also know that π
(1)
L,R = πnL,R = pnL,R and since wn is fulfilling (5.42) and with (5.43) we

have π
(1)
L − π

(1)
R = κ(Z

(1)
L − Z

(1)
R ). Then we have

π
(1)
R − π

(1)
L +

1−M2

M2
(ψ

(1)
R − ψ

(1)
L )− κ

M2
(Z

(1)
R − Z

(1)
L ) =

π
(1)
R − π

(1)
L − κ(Z

(1)
R − Z

(1)
L ) = 0.
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Since u
(1)
L,R = unL,R = 0, we find u(1)∗ = 0. With u(1)∗ = 0 and (5.51) and the fact that

ψn = pn = πn = π(1), we can write

π∗L =
1

2
(π

(1)
L + π

(1)
R ) +

1−M2

2M2
(ψ

(1)
R − ψ

(1)
L )− κ

2M2
(Z

(1)
R − Z

(1)
L )

=
1

2
(π

(1)
L + π

(1)
R )− 1

2
(π

(1)
R − π

(1)
L )

= πL.

Analogously follows π∗R = πR. Then it follows directly from the intermediate states (5.50)
that ρ∗L = ρL, ρ∗R = ρR and e∗L = eL, e∗R = eR.

Another important property is that the density and pressure remain positive during
the simulation. This is equivalent to preserving the following invariant domain

Ωphy = {w ∈ Ω, ρ > 0, e > 0} .

We show that the Riemann solver preserves Ωphy.

Lemma 5.7 (Positivity preserving property of Riemann Solver). Suppose the initial data

W
(1)
L,R is composed of w

(1)
L,R ∈ Ωphy∩ Ωα,β

wp and ψ(1) satisfies the boundary conditions (5.36).

Then the solution of the Riemann problem given by QWRS(xt ;W
(1)
L ,W

(1)
R ) is contained in

Ωphy for a relaxation parameter a sufficiently large but independent of M .

Proof. The proof for the intermediate states for the density is done analoguosly to the proof
of Lemma 3.5 or can be taken from [79, 78]. After the implicit step we have u(1) = un,
π(1) = πn and Z(1) = Zn. We use the following notation ∆(·) = (·)R − (·)L. For the

internal energy, the intermediate state π
(1)∗
L is inserted into e∗L and we have

e
(1)∗
L = enL +

1

8
∆u2 +

1

4a
∆un

(
∆πn + 2πnL −∆ψ(1) +

1

M2
H(1) + (1−M2)ψ

(1)
L

)
+

1

2a2

(
− (πnL)2 +

1

4

(
πnL + πnR −∆ψ(1) +

1

M2
H(1)

)2

+
1

2
ψ

(1)
L

(
1−M2

)(
∆πn −∆ψ(1) +

1

M2
H(1)

))
(5.52)

where we have defined H(1) = (ψ
(1)
R −ψ

(1)
L )−κ(ZnR−ZnL). We know from the Mach number

analysis in Section 4.3 that ψ(1) preserves the hydrostatic equilibrium up to a perturbation
of M2, thus H(1) = O(M2). Therefore we find a relaxation parameter a > ρc independent

of M that can control the potentially negative terms in (5.52) and we have e
(1)∗
L > 0.

Analogously we obtain e
(1),∗
R > 0.

Analogously to the homogeneous case given in Chapter 4, we consider the local Rie-

mann problem at the interface xi+1/2 consisting of data W
(1)
i ,W

(1)
i+1 after the implicit step.
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To define a first order scheme, we consider the Riemann problem given by
∂tW + ∂xF (W ) = SE(W ),

W 0(x) =

{
W

(1)
i if x < xi+1/2,

W
(1)
i+1 if x > xi+1/2.

(5.53)

The problematic of solving the IVP (5.53) is very close to solving the Riemann problem
for the Euler equations with gravity in the compressible regime described in Section 3.4.1.
Therefore, the derivation of the update for the explicit step follows the steps and argumen-
tation given therein. First we note that the intermediate stat u∗ in the Riemann solution
(5.50) is depending on the source term κ(Zi+1 − Zi). Therefore, the contribution of the
source term to the fluxes over the interface depends on the positioning of the middle wave
u∗. Due to this connection, we choose to define the fluxes at the interface including this
source contribution which leads to a compact formulation of the explicit update. It is
given by

W
(2)
i = W

(1)
i +

∆t

∆x

(
F−

(
W

(1)
i ,W

(1)
i+1

)
−F+

(
W

(1)
i−1,W

(1)
i

))
, (5.54)

where the left and right numerical fluxes are defined by

(F−(WL,WR),F+(WL,WR)) =

(F (WL), F (WL) + S̄(WL,WR) if λ−L > 0

(F (W ∗L), F (W ∗L) + S̄(WL,WR) if u∗1 > 0 > λ−L
(F (W ∗L), F (W ∗R)) if u∗1 = 0

(F (W ∗R)− S̄(WL,WR), F (W ∗R)) if λ+
R > 0 > u∗1

(F (WR)− S̄(WL,WR), F (WR)) if λ+
R < 0

, (5.55)

where λ−L = uL + a/ρL and λ+
R = uR + a/ρR and

S̄(WL,WR) = S(WL,WR)(ZR − ZL)

=

(
0,

1

2

(
ρL
αL

+
ρR
αR

)
, u∗

1

2

(
ρL
αL

+
ρR
αR

)
, 0, 0, 0, 0

)T
(ZR − ZL).

Since the source term is included into the flux definition, the left and right fluxes in general
do not coincide and it is F−i+1/2 6= F

+
i+1/2. To avoid interactions between the approximate

Riemann solutions originating from the interfaces xi+1/2, we have a CFL restriction on
the time step of

∆t

∆x
max
i

∣∣∣∣uni ± a

ρni

∣∣∣∣ ≤ 1

2
(5.56)

which is independent of the Mach number. The explicit update (5.54) is consistent with the
equations in the explicit step (5.23). To see this, the update (5.54) can be reformulated
with an upwinded source term depending on the sign of u∗ analogue to the numerical
scheme (3.51) for the compressible Euler equations with gravity.

The complete first order IMEX scheme is given by (5.41), (5.54) and (5.25). Looking
at the update of the relaxation variables, we see that the explicit update is immediately
overwritten in the subsequent projection step (5.25). To avoid the unnecessary update of
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d+ 3 relaxation variables in the explicit step (5.54), we can directly give the update only
for the physical variables w in dependence of the pressure ψ(1). Defining the numerical
fluxes

f−(wL, ψL, wR, ψR) = QF−(WL,WR), f+(wL, ψL, wR, ψR) = QF+(WL,WR), (5.57)

the update for the physical variables can be written as

wn+1
i = wni −

∆t

∆x

(
f−
(
wni , ψ

(1)
i , wni+1, ψ

(1)
i+1

)
− f+

(
wni−1, ψ

(1)
i−1, w

n
i , ψ

(1)
i

))
. (5.58)

We want to remark that even though through the relaxation procedure the number of
equations in the model was more than doubled, we effectively only solve an explicit scheme
for the physical variables plus one linear scalar implicit equation.

The IMEX scheme for which we show the well-balanced and positivity property, is now
based on the three parts beginning with obtaining ψ(1) from the implicit equation (5.41),
then updating the physical variables (5.58) and finally projecting the relaxation variables
onto equilibrium (5.25).

Theorem 5.8 (Well-balanced property 1). Let wni for all cells Ci, i ∈ {1, N} be given in
hydrostatic equilibrium (5.42) and κ be defined as in (5.43). Then the first order scheme
given by the steps (5.41),(5.58),(5.25) is well-balanced.

Proof. Since wn fulfils the hydrostatic equilibrium, we know from Lemma 5.3 that W
(1)
i =

Wn
i fulfils the hydrostatic equilibrium. From Lemma 5.6 we have that the approximate

Riemann solver at the cell interfaces is at rest. With the definition of the fluxes (5.55),
we have

F+
(
W

(1)
i−1,W

(1)
i

)
= F

(
W

(1)
i

)
, F−

(
W

(1)
i ,W

(1)
i+1

)
= F

(
W

(1)
i

)
.

Using the formulation (5.58) for the update of the variables w, we have

wn+1
i = wni −

∆t

∆x
Q
(
F−(W

(1)
i ,W

(1)
i+1)−F+(W

(1)
i−1,W

(1)
i )
)

= wni .

This shows the well-balanced property in one dimension. Since we apply dimensional
splitting in the multi-dimensional set-up, the proof can be easily extended by giving the
update (5.4.2) as a sum of the flux differences along each dimension.

Theorem 5.9 (Positivity preserving 1). Let the initial state be given as

wni ∈ Ω = Ωphy ∩ Ωαβ
wp

Then under the Mach number independent CFL condition

∆t

∆x
max
i

∣∣∣∣uni ± a

ρni

∣∣∣∣ ≤ 1

2
,

and the boundary conditions (5.36) the numerical scheme defined by (5.41),(5.58) preserves
the positivity of density and internal energy, that is wn+1

i ∈ Ωphy for a sufficiently large
relaxation parameter a independent of M .

An important property for any low Mach scheme is the behaviour of the diffusion. Due
to the fact that ψ(1) is still well-prepared after the implicit step, the diffusion of the scheme
is of order O(M0). The computations are performed analogously to the homogeneous case
in Section 4.4.3.
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5.4.3 Second order extension

In this section, we give a strategy to extend the first order scheme to second order accu-
racy such that the well-balanced and the positivity preserving property are maintained.
Thereby we combine the hydrostatic and positivity preserving reconstructions from Sec-
tion 3.4.2 with the second order IMEX time integration scheme described in Section 4.5.

A second order reconstruction in space

The second order extension in space is realized by a modification of the hydrostatic re-
construction combined with the limiting procedure which were both described in Section
3.4.2. We reconstruct on each cell the equilibrium variables v = (ρ,u, q, ξ) which consist
of the density, the velocity field and the modified pressures q and ξ. They are defined by
the following transformations

qi−1 = π
(1)
i−1 + Si−1/2

qi = π
(1)
i

qi+1 = π
(1)
i+1 − Si+1/2

,


ξi−1 = ψ

(1)
i−1 + Si−1/2

ξi = ψ
(1)
i

ξi+1 = ψ
(1)
i+1 − Si+1/2

, (5.59)

where

Si+1/2 =
1

2

(
ρni
αi

+
ρni+1

αi+1

)
(βi+1 − βi)

denotes the second order discretization of the source term κ∂xZ with the discretization of
κ defined in (5.47). Note that we can write the intermediate velocity u∗ at the interface
in terms of Si+1/2 as follows

u
(1),∗
i+1/2 =

1

2
(uni + uni+1)− 1

2a

(
πni+1 − πni − Si−1/2 +

1−M2

M2

(
ψ

(1)
i+1 − ψ

(1)
i − Si+1/2

))
.

We turn back to the computation of the slopes σi for the equilibrium variables v which are
obtained by applying the minmod limiter (2.75) on each component of v. The interface
values in equilibrium variables are then given by

v+
i−1/2 = v

(1)
i −∆v, v−i+1/2 = v

(1)
i + ∆v, (5.60)

where ∆v = σi∆x/2 denotes the total slope. The interface values in conserved variables
are calculated from the equilibrium variables. To obtain the pressure variables, we have
the simple relation of

π−i+1/2 = q−i+1/2, π+
i−1/2 = q+

i−1/2, ψ−i+1/2 = ξ−i+1/2, ψ+
i−1/2 = ξ+

i−1/2. (5.61)

It can be shown analogously to the proof of Lemma 3.7 that by using the hydrostatic
reconstruction to obtain the interface values W±i+1/2, the Riemann solver (5.49) is at rest,
when considering the following initial values

W 0(x) =

{
W

(1),−
i+1/2 if x < xi+1/2,

W
(1),+
i+1/2 if x > xi+1/2.

(5.62)
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To meet the positivity criterion we apply a limiting procedure on the slopes ∆v to
guarantee w−i+1/2, w

+
i−1/2 ∈ Ωphy. We use the limiter from Section 3.4.2 which we summa-

rize in the following. We can directly apply the limiter design for the compressible regime,
since only πni = pni , but not ψ(1), is important for the positivity for the internal energy at
time level tn. The slope limiter applied on the slopes after the hydrostatic reconstruction
∆v̄ is given by

∆ρ = ∆ρ̄,

∆u = min(1, ω2)∆ū,

∆π = πi max

(
−1,min

(
1,

∆q̄

πi

))
,

(5.63)

where

ω2 = −∆ρ〈∆ū,ui〉
ρi|∆ū|2

+
1

ρi|∆ū|2

√
∆ρ2〈∆ū,ui〉2 + |∆ū|2 ρiπi

γ − 1
. (5.64)

A second order time integration method

To obtain a fully second order scheme in space and time, we combine the second order
space reconstruction with the second order time integration scheme (4.62) used for the
homogeneous case in Section 4.5. The fully discretized second order scheme is given by

wi = wn − ∆t1
∆x

(
f−
(
w−i+1/2, ψ

(1),−
i+1/2, w

+
i+1/2, ψ

(1),+
i+1/2

)
− f+

(
w−i−1/2, ψ

(1),−
i−1/2, w

+
i−1/2, ψ

(1),+
i−1/2

))
wi = wi −

∆t2
∆x

(
f−
(
w−i+1/2, ψ

(1),+
i+1/2, w

+
i+1/2, ψ

(1),+
i+1/2

)
− f+

(
w−i−1/2, ψ

(1),−
i−1/2, w

+
i−1/2, ψ

(1),+
i−1/2

))
wn+1
i =

(
1− ∆t

∆t1 + ∆t2

)
wni +

∆t

∆t1 + ∆t2
wi.

(5.65)

The pressures ψ(1) and ψ
(1)

are obtained by solving the linear implicit system (5.41) with
initial data given by M(wn) and M(w) respectively. The step sizes ∆t1,2 are obtained
according to the CFL condition of the respective stages in (5.65). The time integration
method (5.65) consists of a convex combination of first order temporal integrators and
therefore the second order time integration preserves the AP property shown in Section
5.3.2.

We summarize the well-balanced and positivity preserving property of the second order
scheme (5.65) in the following theorems. The proofs are analogous to the ones shown in
the Sections 3.5 for the explicit scheme for the compressible Euler equations with gravity
and in Section and 4.5 for the all-speed scheme for the homogeneous Euler equations
respectively.

Theorem 5.10 (Well-balanced property 2). Let the initial condition wn be given in hy-
drostatic equilibrium (5.42) and κ be defined as in (5.47). Then, using the hydrostatic
reconstruction (5.59), the second order scheme given by (5.65) is well-balanced.
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Theorem 5.11 (Positivity property 2). Let the initial state be given as wni ∈ Ωphy ∩Ωαβ
wp

satisfying the boundary conditions (5.36) and the limiting procedure given in (5.63) is used.
Then for a sufficiently large relaxation parameter a, under the Mach number independent
CFL condition

∆t

∆x
max
i

(∣∣∣∣∣un,+i−1/2 −
a

ρn,+i−1/2

∣∣∣∣∣ ,
∣∣∣∣uni ± a

ρni

∣∣∣∣ ,
∣∣∣∣∣un,−i+1/2 −

a

ρn,−i+1/2

∣∣∣∣∣
)
<

1

2 · 3
,

where d denotes the dimension, the second order scheme (5.65) preserves the domain Ωphy.

Both results can be extended straightforwardly to multiple space dimensions.

5.5 Numerical results

In this section, we give numerical test cases to validate the theoretical properties of the
first and second order scheme. For all test cases we assume an ideal gas law p = (γ−1)ρe.
The implicit non-symmetric linear system given by (5.41) is solved with the GMRES
algorithm combined with a preconditioner based on an incomplete LU decomposition [4].
To choose the relaxation parameter a, we follow the procedure given in [11] to obtain a
local estimate for a. We calculate a global estimate by taking the maximum of the local
values of a and multiply by a constant ca independent of M to ensure the stability property
given in Lemma 5.1. Even though the proof for the AP property was restricted to the case
M = Fr, the scheme can be applied in regimes with different Mach and Froude numbers.
Especially the well-balanced and accuracy test cases were performed with different Mach
and Froude numbers.

5.5.1 Well-balanced test case

To numerically verify the well-balanced property of the scheme, we compute an isothermal
equilibrium with a linear potential in two dimensions as given in (5.6) where u = (u1, u2) =
0, χ = 1 and γ = 1.4. The equilibrium solutions α and β are set according to the
isothermal equilibrium (5.6). In Table 5.1 we give the L1 error with respect to the initial
configuration at the final time Tf = 1 for different Mach and Froude numbers on the
domain D = [0, 1]2 with 100 cells in each direction. In Table 5.1 the results for the first
order scheme are given. It can be seen that the error compared to the initial isothermal
equilibrium is of machine precision. This means that the solution is still in equilibrium at
a later time Tf . This verifies the well-balanced property given in Theorem 5.4.2. In Table
(5.2), we have repeated the simulation with the second order scheme. The results clearly
show, that also the second order scheme is well-balanced.

5.5.2 Accuracy

To numerically validate the second order accuracy of the proposed scheme, we compare
the numerical solution obtained with the second order scheme to an exact solution of
the Euler equations with gravity as given in [17]. In physical variables, it is given in 2
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M Fr ρ ρu1 ρu2 E

10−1 10−1 2.459E-017 3.605E-016 3.605E-016 2.419E-017

10−2 10−2 5.606E-017 9.999E-017 9.999E-017 5.507E-017

10−3 10−3 2.506E-017 9.811E-016 9.811E-016 2.457E-017

10−4 10−4 2.539E-017 5.304E-017 5.304E-017 2.495E-017

10−2 10−1 6.111E-017 5.6222E-016 5.6222E-016 1.517E-016

10−4 10−2 2.386E-017 5.679E-017 5.679E-017 5.879E-017

Table 5.1: L1-error with respect to the isothermal equilibrium for the first oder IMEX
scheme at T = 1 (non-dimensional).

M Fr ρ ρu1 ρu2 E

10−1 10−1 1.332E-015 1.479E-015 1.479E-015 6.641E-015

10−2 10−2 1.116E-015 1.315E-015 1.315E-015 5.761E-015

10−3 10−3 1.043E-015 1.324E-015 1.324E-015 5.531E-015

10−4 10−4 5.828E-016 5.848E-016 5.848E-016 2.585E-015

10−2 10−1 3.330E-016 4.047E-016 4.047E-016 1.885E-015

10−4 10−2 7.950E-016 6.265E-016 6.265E-016 3.632E-015

Table 5.2: L1-error with respect to the isothermal equilibrium for the second order IMEX
scheme at T = 1 (non-dimensional).
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dimensions with x = (x1, x2) and u = (u1, u2) as

ρ(x, t) = 1 + 0.2 sin (π(x1 + x2 − t(u10 + u20)))
kg

m3

u1(x, t) = u10

m

s

u2(x, t) = u20

m

s
p(x, t) = p0 + t(u10 + u20)− (x1 + x2)

+
0.2

π
cos (π(x1 + x2 − t(u10 + u20)))

kg

ms2
.

(5.66)

For the parameters we set u10 = 20, u20 = 20 and p0 = 4.5. The gravitational potential
is linear and given as Φ(x) = x1 + x2. For u = 0, the solution (5.66) is in hydrostatic
equilibrium and we set α and β as the density and pressure of the stationary state respec-
tively. We want to remark that this equilibrium is neither isothermal nor polytropic. The
computational domain is D = [0, 1]2 and the final time T = 0.01s.

To transform the initial data (5.66) into non-dimensional quantities, we define the
following reference values

xr = 1m, ur = 1
m

s
, ρr = 1

kg

m3
, pr =

1

M2

kg

ms2
, Φr =

1

Fr2

m2

s2
.

We use different values for M and Fr to show that our scheme is second order accurate
independently of the chosen regime. In the computations we use exact boundary conditions
and γ = 5/3. As can be seen from Table 5.3 the L1 error and the convergence rates are of
the same magnitude for all displayed Mach numbers and we achieve the expected second
order accuracy. In addition, to illustrate that the accuracy is independent of the Mach
number, we have plotted the L1- error in Figure 5.1. Due to the limiting procedure that we
apply on the slopes in the reconstruction step to ensure the positivity property, we are not
recovering a full second order convergence. Using unlimited slopes in the reconstruction
step however will lead to the full second order.

5.5.3 Strong Rarefaction Test

Linearized Riemann solvers can fail producing negative pressures or densities in the inter-
mediate states W ∗L,R for very strong rarefactions. In order to demonstrate the positivity
preserving property of our schemes proven in Theorems 5.9 and 5.11, we follow the 1-2-
0-3 strong rarefaction test proposed in [32] designed for the homogeneous equations. We
modified the set-up by launching two rarefaction waves in x-direction on top of an isother-
mal atmosphere. The initial states for ρ and p follow the isothermal equilibrium (5.6)
with a quadratic potential Φ(x) = 1

2

(
(x1 − 0.5)2 + (x2 − 0.5)2

)
centred at x = (0.5, 0.5)

with γ = 1.4 and χ = γ − 1. As reference equilibrium expressed by α and β, we set the
isothermal equilibrium given by (5.6). As in [32], we choose a compressible regime, i.e.
M = 1 and Fr = 1. As initial velocity u = (u1, u2), we set

u1 =

{
−2 for x1 < 0.5,

2 for x1 ≥ 0.5,
u2 = 0.

130



5.5. NUMERICAL RESULTS

M,Fr N ρ
[

kg
m3

]
ρu1

[
kg
m2s

]
ρu2

[
kg
m2s

]
E
[

kg
ms2

]

10−1, 10−1

25 1.139E-03 — 2.278E-02 — 2.278E-02 — 4.562E-01 —

50 3.142E-04 1.858 6.276E-03 1.859 6.276E-03 1.859 1.257E-01 1.859

100 8.427E-05 1.898 1.680E-03 1.901 1.680E-03 1.901 3.366E-02 1.901

200 2.232E-05 1.916 4.438E-04 1.920 4.438E-04 1.920 8.894E-03 1.920

10−2, 10−2

25 1.140E-03 — 2.280E-02 — 2.280E-02 — 4.567E-01 —

50 3.144E-04 1.859 6.280E-03 1.860 6.280E-03 1.860 1.258E-01 1.859

100 8.430E-05 1.899 1.680E-03 1.901 1.680E-03 1.901 3.367E-02 1.901

200 2.233E-05 1.916 4.441E-04 1.919 4.441E-04 1.919 8.901E-03 1.919

10−3, 10−3

25 1.141E-003 — 2.281E-02 — 2.281E-02 — 4.569E-01 —

50 3.144E-04 1.859 6.280E-03 1.861 6.280E-03 1.861 1.258E-01 1.860

100 8.431E-05 1.898 1.680E-03 1.901 1.680E-03 1.901 3.368E-02 1.901

200 2.233E-05 1.916 4.441E-04 1.919 4.441E-04 1.919 8.901E-03 1.919

10−4, 10−4

25 1.141E-03 — 2.280E-02 — 2.280E-02 — 4.582E-01 —

50 3.143E-04 1.860 6.277E-03 1.860 6.277E-03 1.860 1.257E-01 1.864

100 8.430E-05 1.898 1.680E-03 1.901 1.680E-03 1.901 3.367E-02 1.901

200 2.233E-05 1.916 4.441E-04 1.919 4.441E-04 1.919 8.900E-03 1.919

10−4, 10−1

25 1.141E-003 — 2.280E-02 — 2.280E-02 — 4.581E-01 —

50 3.143E-04 1.860 6.277E-03 1.860 6.277E-03 1.860 1.257E-01 1.864

100 8.430E-05 1.898 1.680E-03 1.901 1.680E-03 1.901 3.367E-02 1.901

200 2.233E-05 1.916 4.441E-04 1.919 4.441E-04 1.919 8.900E-03 1.919

10−1, 10−4

25 1.139E-03 — 2.278E-02 — 2.278E-02 — 4.562E-01 —

50 3.142E-04 1.858 6.276E-03 1.859 6.276E-03 1.859 1.257E-01 1.859

100 8.427E-05 1.898 1.680E-03 1.901 1.680E-03 1.901 3.366E-02 1.901

200 2.232E-05 1.916 4.438E-04 1.920 4.438E-04 1.920 8.894E-03 1.920

Table 5.3: L1-error and convergence rates for different Mach and Froude numbers.
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Figure 5.1: L1 error curves in dependence of Mach and Froude number (dimensional).

The simulations were performed with the first and second order scheme with 100 cells
in each space direction on the domain [0, 1]2 up to a final time Tf = 0.1s. In Figure 5.2,
the solution computed with the first and second order scheme is projected onto the x-axis.
As can be seen, the pressure and density are close to zero but remain positive throughout
the simulation.

5.5.4 A stationary vortex in a gravitational field

With this test-case, we want to demonstrate the low Mach properties of our scheme. For
the derivation of a vortex in a gravitational field, we follow the derivation of the Gresho
vortex test case for the homogeneous Euler equations [60] as well as [88]. The velocity
field in the initial condition is chosen such that it fulfils the divergence free property
∇ · u = 0 and the orthogonality property u · ∇Φ = 0. The vortex is placed on top of a
hydrostatic equilibrium solution and therefore the initial condition is contained in the set
of the well-prepared data Ωwp.

To derive the vortex, we consider the non-dimensional Euler equations (5.3) in radial
coordinates (r, θ). The vortex is constructed such that it is axisymmetric, stationary and
has zero radial velocity. A solution has to satisfy

1

M2
∂rp =

ρu2
θ

r
− ρ∂rΦ

Fr2
,

where uθ is the angular velocity. The pressure is split into a hydrostatic pressure p0 and
a pressure p2 associated with the centrifugal forces and in total is given by p = p0 +M2p2
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Figure 5.2: Density, velocity and energy for the strong rarefaction test at Tf = 0.1s.

and has to satisfy

∂rp0 = −M
2

Fr2
ρ∂rΦ, ∂rp2 = ρ

u2
θ(r)

r
.

We choose an isothermal hydrostatic pressure p0 = RTρ and the density is given according
to (5.6) by

ρ = exp

(
−M

2

Fr2

Φ

RT

)
.

The pressure p2 is then given as

p2 =

∫ r

0
exp

(
−M

2

Fr2

Φ(s)

χ

)
uθ(s)

2

s
ds. (5.67)

The velocity profile uθ is defined piecewise as in the Gresho vortex test case as

uθ(r) =
1

ur


5r if r ≤ 0.2,

2− 5r if 0.2 < r ≤ 0.4,

0 if r > 0.4.

To fully determine p2 a continuously differentiable gravitational potential has to be given.
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We define it piecewise as

Φ(r) =


12.5r2 if r ≤ 0.2

0.5− ln(0.2) + ln(r) if 0.2 < r ≤ 0.4

ln(2)− 0.5 rc
rc−0.4 + 2.5 rc

rc−0.4r − 1.25 1
rc−0.4r

2 if 0.4 < r ≤ rc
ln(2)− 0.5 rc

rc−0.4 + 1.25 r2
c

rc−0.4 if r > rc

.

This choice of Φ ensures the use of periodic boundary conditions since Φ is constant at the
boundary and thus we can simulate a closed system. Then we can compute the pressure
p2 according to (5.67) and it is piecewise defined as

p2(r) =
Fr2RT

M2 u2
r


p21(r) if r ≤ 0.2

p21(0.2) + p22(r) if 0.2 < r ≤ 0.4

p21(0.2) + p22(0.4) if r > 0.4

with

p21(r) =

(
1− exp

(
−12.5

M2

Fr2RT
r2

))
p22(r) =

1

(Fr2RT −M2) (Fr2RT − 0.5M2)
exp

(
(−0.5 + ln(0.2))M2

Fr2RT

)
×
(
r−

M2

Fr2RT

(
M4(r(10− 12.5r)− 2)− 4Fr4χ2 + Fr2M2(r(12.5r − 20) + 6)RT

)
+ exp

(
− ln(0.2)M2

Fr2RT

)(
4Fr4RT 2 − 2.5Fr2M2RT + 0.5M4

))
.

As reference values we set xr = 1m, ρr = 1 kg
m3 , ur = 2 ·0.2 πms , tr = 1mur and RT = 1

M2
m2

s2
.

As reference equilibrium expressed by α and β we set the isothermal equilibrium (5.6),
since the vortex is derived from an isothermal steady state. The computations are carried
out with γ = 5/3 and M = Fr on the domain D = [0, 1]2. In Figure 5.3 the initial
Mach number distribution for the vortex with M = 0.1 is given. In Figure 5.4, the Mach
number distribution for different maximum Mach numbers are compared for N = 40 at
t = 1 which corresponds to one turn of the vortex. We see that the accuracy of the vortices
are comparable independently of the chosen Mach number and they show the same amount
of diffusiveness despite of the coarse grid that is used. The periodic boundary conditions
allow us to model a closed system and we can monitor the loss of kinetic energy during the
simulation which is depicted in Figure 5.5. The graphs for the Mach numbers M = 10−2

and M = 10−3 are superposed which shows that the loss of kinetic energy is independent
of the Mach number. This is in agreement with the AP property and demonstrates the low
Mach number properties of the scheme. We remark that although using the second order
scheme, we do not expect to get second order convergence due to the lack of smoothness
in the velocity profile uθ and therefore also in the energy.

5.5.5 Rising bubble test case

The final test case is taken from [58] and models a rising bubble which has a higher tem-
perature than the background atmosphere on the domain D = [0km, 10km]×[0km, 15km].
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Figure 5.3: Initial Mach number distribution for maximal Mach number M = 10−1.
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Figure 5.5: Loss of kinetic energy for different grids and Mach numbers after one full turn
of the vortex (non-dimensional).

The gravitation acts along the x2-direction and is given by

Φ(x) = gx2
m2

s2
,

where g = 9.81m
s2

is the gravitational acceleration. The stratification of the atmosphere is
given in terms of the potential temperature θ defined by

θ = T

(
p0

p

) R
cp

,

where cp is the specific heat at constant pressure and p0 = 105 kg
ms2

, denotes a reference
pressure taken at sea level. Pressure, potential temperature and density are connected by
the following relation

p = p0

(
θR

p0

)γ
ργ = χργ , (5.68)

where cv is the specific heat at constant volume and R = cp−cv. Comparing (5.68) to (5.5),
the atmosphere is isentropic with the polytropic coefficient Γ = γ. We set p(x, 0) = p0

and θ = 300K. Therefore we have

ρ(x, 0) =
p0

θR

and the hydrostatic equilibrium is given by (5.7). To transform the data into non-
dimensional quantities, we define the following reference values

xr = 10000 m, tr = 10000 s, ur = 1
m

s
, ρr = 1

kg

m3
.
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quantity SI unit scaling

x [m] xr

t [s] tr

ρ
[
kg
m3

]
ρr

u, c
[
m
s

]
ur = xr

tr
, M = ur

cr

p
[

kg
m s2

]
pr = Rsρrθr, pr = ρrc

2
r

Φ
[
m2

s2

]
Φr = u2

r
Fr2

Rs

[
m2

s2K

]
—

T, θ [K] θr = u2
r

Rs M2

Table 5.4: Overview over units and scaling relations of the physical quantities used in the
test cases in Section 6.

The scaling of the remaining variables is given in Table 5.4.

The bubble is modelled as a disturbance in the potential temperature centred at
(x1,c, x2,c) = (5km, 2.75km) as

∆θ =

{
∆θ0 cos2

(πr
2

)
if r ≤ 1

0 else

where ∆θ0 = 6.6K and

r =

(
x1 − x1,c

r0

)2

+

(
x2 − x2,c

r0

)2

with the factor r0 = 2.0km. The resulting perturbation in the pressure can be calculated
from equation (5.68).

In the simulation, we choose γ = 1.4 as the air is modelled as a diatomic gas with
the corresponding specific gas constant Rs = 287.058 m2

s2K
. This results in a reference

Mach number of M = 10−2 and Froude regime of Fr = 10−2. Since the bubble is
modelled as a perturbation on top of an isentropic atmosphere, we set α and β according
to (5.7). The grid consists of 120 cells in x1-direction and 180 cells in x2-direction which
results into a uniform space discretization. At the boundaries, we have imposed the
isentropic background atmosphere. In Figure 5.6, we show the density perturbation at
different times t computed with the well-balanced second order scheme. Even though the
density perturbation is of order 10−5, the density profile is clearly visible and there are no
numerical artefacts in the background stemming from errors in calculating the underlying
equilibrium. To demonstrate the importance of accurately capturing the balance between
the pressure gradient and the source term, we show in Figure 5.7 the same test case without
applying the hydrostatic reconstruction (5.59). In contrast to the evolution depicted in the
first frame of Figure 5.6, the bubble seems to have a physically wrong behaviour already
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very early in the simulation. Since it vanishes from the computational domain at a later
time, we compare the results to the first frame of Figure 5.6. The erroneous result is due
to the inaccurate calculation of the pressure at the interface and underlines the necessity
of a well-balanced scheme to perform these kind of test cases.

Figure 5.6: Density perturbation from the rising bubble test case from top left to bottom
right at times t = 0.07, 0.09, 0.13, 0.18.
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Figure 5.7: Density perturbation from the rising bubble test case at t = 0.07. Left: Second
order well-balanced scheme. Right: Second order not well-balanced scheme.
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Conclusion

In this thesis we have studied, both analytically and numerically, the compressible Eu-
ler equations of full gas dynamics in different Mach regimes also in the presence of a
gravitational source term.

First, we studied the compressible Euler equations with a gravitational source term,
corresponding to a Mach and Froude number of one, with the aim to construct a well-
balanced finite volume scheme which is able to preserve arbitrary hydrostatic equilibria
on machine precision. The scheme was based on a Suliciu relaxation model where, in
addition to the pressure relaxation, also the gravitational potential is relaxed by using a
transport equation. Thus the source term was associated with the gas velocity leading to
a fixed wave ordering. The resulting approximate Riemann solver took into account also
the waves issued by the source term, leading to source term dependent intermediate states.
Due to the linear degeneracy of the characteristic fields associated to all eigenvalues of the
relaxation model, the approximative Riemann solver could be constructed without much
effort leading to a Godunov type first order finite volume scheme. It was proven that in
hydrostatic equilibrium the Riemann solver is at rest leading to the well-balancedness of
the scheme.

The idea of relaxing the gravitational potential in addition to the pressure was already
used in [28] to construct a scheme that is well-balanced for isothermal and polytropic
atmospheres. The scheme derived here presented a twofold extension to the therein pro-
posed scheme. The first extension consists of the property to well-balance arbitrary a
priori given hydrostatic equilibria. This was done by rewriting the source term with re-
spect to a reference equilibrium which is intended to be numerically preserved on machine
precision. Secondly, we have given an extension of the first order scheme to second order
accuracy. This is achieved by using a linear reconstruction of the interface values based on
the neighbouring cells. The slopes were obtained by using a minmod limiter. To ensure
the well-balanced property of the second order scheme, a reconstruction in equilibrium
variables was used which was based on a hydrostatic transformation of the pressure.

A second important property of the derived schemes was the preservation of positiv-
ity of density and internal energy. For the first order scheme this property was based
on the feature of the Riemann solver to provide positive intermediate states for density
and internal energy under a sufficiently large relaxation parameter. To ensure that the
second order scheme is also positivity preserving, a limiting procedure for the slopes in
the linear reconstruction was derived. Numerical test cases were performed to validate the
theoretical properties of the first and order scheme. Especially the well-balanced property
and the performance of the schemes to resolve small perturbations around a hydrostatic
equilibrium were assessed.
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Then we turned to the construction of an all-speed scheme for the homogeneous Euler
equations. We considered the non-dimensional formulation of the Euler equations where
the influence of the Mach number on the flow behaviour could be studied. The scheme was
based on a Suliciu type relaxation model which was developed in [7] with the aim to derive
an upwind scheme that could be combined with an explicit or implicit time integrator.
We modified the model to our purpose to construct an IMEX scheme that uses centred
differences in the implicit and an upwind discretization in the explicit part. The model
consisted of a splitting of the pressure into a slow compressible and fast acoustic component
where both parts were relaxed separately. This enabled the separation of the fast Mach
number dependent acoustic parts from the slow Mach number independent dynamics. To
ensure stability under a Mach number independent CFL condition, the fast acoustics were
integrated implicitly. Due to the relaxation approach it was possible to reformulate the
implicit system into one linear equation for the acoustic pressure which was solved with a
GMRES algorithm utilizing the PETSC library [4]. As the resulting coefficient matrix in
the implicit system was ill conditioned, we used a preconditioner based on a incomplete
LU decomposition which increased the precision of the result and drastically decreased
the number or iterations in the GMRES algorithm. Due to the linear degeneracy of the
eigenvalues, resulting from the relaxation model, the construction of a Godunov type
scheme based on an approximate Riemann solver in the explicit part was realizable. The
resulting scheme was proven to be asymptotic preserving with a Mach number independent
diffusion and positivity preserving under a sufficiently large relaxation parameter.

To increase the accuracy while keeping the above mentioned theoretical properties, a
second order extension was given which consisted of a modification of a SSP Runge Kutta
time integrator of second order and the linear reconstruction of the interface reconstruction
of the conserved variables using a minmod limiter. Numerical tests were performed to
verify the properties of the schemes. Especially the performance in the low Mach number
regime was tested.

In the last part, we studied the non-dimensional Euler equations equipped with a
gravitational source term. The aim was to construct a well-balanced IMEX relaxation
scheme which is able to preserve arbitrary hydrostatic equilibria independently of the
Mach and Froude regime of the flow. To achieve this we combined the well-balancing
technique we used for the compressible equations with the IMEX relaxation approach we
used for the all-speed scheme for the homogeneous equations. The well-balanced property
of the resulting IMEX scheme relied on the fact that both the implicit part, consisting of
solving one linear equation for the fast acoustic pressure, and the explicit part, consisting
of a Godunov type scheme based on an approximate Riemann solver, were provably well-
balanced. To analyse the asymptotic preserving property of the scheme, we formally
derived the low Mach limit of the Euler equations where the Froude number is of the same
order as the Mach number. The well-prepared data was found to be a perturbation of an
hydrostatic equilibrium. For this set-up the scheme was proven to be AP and due to a Mach
number independent CFL condition and numerical diffusion, the scheme was suitable for
numerically approximating low Mach, low Froude number flows. An extension to second
order was achieved by combining the hydrostatic reconstruction of the interface values with
the second order IMEX all-speed scheme for the homogeneous equations. The theoretical
properties were numerically verified by several test cases. Especially the performance of
the schemes in the presence of small perturbations around an equilibrium state was tested
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which requires the well-balanced property as well as the ability to accurately resolve low
Mach and low Froude number flows.

Perspectives

The results described in this thesis provide new perspectives and possibilities for further
research projects for which partial results have already been obtained.

The schemes presented in Chapters 3 - 5 are second order accurate and current work
in progress is the extension of the schemes presented therein to higher order.

The construction of explicit higher order well-balanced schemes for the purely com-
pressible Euler equations with gravity is an active field of research, see e.g. [51, 15, 14, 69]
and references therein. To obtain a higher order scheme for a balance law, the space
reconstruction, the time integration method as well as the source term discretization have
to be of higher order. Regarding the explicit higher order interpolation of the interface
values, we use a CWENO reconstruction detailed in e.g. [54, 71, 16]. The higher order
source term discretization is realized by adopting the source term treatment given in [63].
It leads to a higher order source integration which preserves the well-balanced property
when as in our case a reconstruction of the interface values in equilibrium variables is
applied. We can use the same type of equilibrium variables as done in Section 3.4.2 for
the second order well-balanced scheme. To obtain a fully higher order explicit scheme, a
Runge Kutta time integration method of sufficient high order can be used, for example
SSP-RK3 in case of third order [38].

In case of the all-speed IMEX relaxation schemes from Chapters 4 and 5, the straight-
forward extension of the time integration scheme (4.62) to third order proves to be more
difficult. Replacing the underlying SSP-RK2 scheme in (4.61) merely by an SSP-RK3
scheme will not lead to a third order scheme in time. More promising are the higher order
IMEX schemes given in [64] which are designed for solving hyperbolic systems with stiff
relaxation source terms, where only the relaxation source term is treated implicitly. We
will adopt the approaches given in [64] to our IMEX splitting which consists of three parts,
the implicit treatment of the fast acoustic waves, the explicit treatment of the slow waves
and the implicit treatment of the relaxation source term.

The topic of this thesis was the development of all-speed schemes for the simulation of
an ideal gas governed by the inviscid Euler equations. Its flow regime was characterized by
a reference Mach number associated to the specific gas under consideration. The situation
becomes more challenging when two phases are modelled, for example air and water, which
can be described by an ideal gas and a stiffened gas law respectively, as done in [68, 67].
Applications thereof are modelling droplets in air or air bubbles in water. To each phase its
phase velocity and pressure is associated which induces in general two different reference
Mach numbers that give rise to two scales in the equations. Due to the presence of two
phase pressures and velocities, the equations are equipped with a friction and (physical)
pressure relaxation source term. We aim to adopt a similar relaxation model as in the one
Mach number case, given in equation (4.4), to construct an IMEX relaxation scheme that
is suited to simulate two phase flow characterized by two different Mach numbers based
on the model given in [68].

IMEX Runge Kutta schemes are widely used to efficiently solve multi-scale problems
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arising in the context of hyperbolic conservation and balance laws. The design of IMEX
schemes that are total variation diminishing (TVD) to avoid spurious oscillations close to
discontinuities or shocks are therefore very interesting in our field. Unfortunately, TVD
IMEX RK schemes with scale independent CFL condition can only be of first order which
follows directly from the proof given in [38] for implicit unconditionally TVD stable RK
schemes. As the construction of higher order TVD IMEX RK schemes with large time steps
oriented to the slow scales is impossible, we concentrate on giving a general framework on
how to derive highly precise first-order TVD IMEX RK schemes. To obtain theoretical
results, we study a linear scalar hyperbolic two-scale equation. The schemes consist of
a convex combination of a higher order IMEX and a first order scheme consisting of a
forward and backward Euler step, see [59]. They can be easily combined with a MOOD
procedure [21] to locally increase the accuracy in regions where the solution is smooth and
remains oscillation free when higher order IMEX RK schemes are applied.

In a future work, it would be interesting to investigate this approach further and apply
it on two scale non-linear systems of conservation or balance laws in order to study the
behaviour of the TVD IMEX RK schemes in the case of non-linear systems. Thereby also
the problematic of well-balancing has to be taken into account.
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[60] F. Miczek, F. K. Röpke, and P.V.F. Edelmann. New numerical solver for flows at
various Mach numbers. Astron. Astrophys., 576:A50, 2015.

[61] R. Natalini. Convergence to equilibrium for the relaxation approximations of conser-
vation laws. Commun. Pur. Appl. Math., 49(8):795–823, 1996.

[62] S. Noelle, G. Bispen, K. R. Arun, M. Lukáčová-Medvid’ová, and C.-D. Munz. A
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