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Introduction and Motivation

Introduction and Motivation

The principles behind the de�nition of circulant and Toeplitz structures constitute a signi�cant
example on how a fascinating and elegant mathematical theory can be useful for the solution
of real problems resulting in science and engineering. According to this, the aim of the current
thesis is of dual nature: it seeks to expand the well-known theoretical knowledge on such matrix
structures and to apply the results to real-life problems.

The importance of circulant and Toeplitz operators is indeed a consequence of the connection
with a variety of problems in Physics, Probability Theory, Cryptology, Engineering and Applied
Sciences. In general, the intrinsic nature of these problems is continuous. In fact, a great deal
of applications requires the solution of a Partial Di�erential Equation (PDE). However, this
kind of continuous equation often does not admit an analytical solution, which needs to be
approximated by means of a numerical method.

Several numerical methods that perform these kinds of approximations consist in creating
a sequence of discrete problems and computing the corresponding numerical solutions, which
converge to a quantity that permits to reconstruct the solution of the original PDE. If the PDE
and the numerical method are both linear, the computation of the numerical solution reduces
to solving a sequence of linear systems with increasing dimensions [5, 33, 64].

It often happens that the sequence of the coe�cient matrices of these systems is a sequence
of structured matrices with a certain type of either time or space invariance. This is the reason
why the studies on circulant and Toeplitz matrices and of all the structures constructed with
them have maintained high popularity over the years [23, 35, 114, 133, 140].

From a theoretical point of view, dealing with circulant matrices does not require signi�cant
computational e�orts, since they constitute a class for which most matrix-theoretic questions
may be resolved in closed form [35, 64, 100]. Indeed, the circulant matrices form an algebra
and in particular they are simultaneously diagonalized by the discrete Fourier matrix. The
latter theoretical aspect has two consequences in Numerical Analysis. On one hand, linear
equations with circulant coe�cient matrices do not present computational di�culties, since
they may be quickly � with respect to the matrix-size � solved using only few fast Fourier
transforms [32, 138]. On the other hand, this computational advantage causes them to be
frequently chosen in several contexts, for instance when it is needed to approximate the inverse
of a Toeplitz matrix, and in addition their built-in periodicity makes them suitable for many
applications [29�31, 52, 123]. Moreover, circulant matrices are a subclass of Toeplitz operators
and hence they are part of an additional fascinating context. Indeed, the study of the properties
of Toeplitz matrices by means of their generating functions represents an exceptional example
of interplay between matrix theory and function theory. In fact, there exists a correspondence
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between the analytic properties of the generating functions and the algebraic properties of the
associated Toeplitz matrices [113, 115, 140]. However what is even more signi�cant is that,
under certain hypotheses, the generating function can be an elegant and e�cient tool that
provides an asymptotic approximation of the singular values and eigenvalues of Toeplitz matrices
[36, 41, 42, 115, 140], which is e�ective also for moderate dimensions. Typically, in the unilevel
setting, the approximation error is proportional to the inverse of the matrix-size.

In order to better explain the meaning of the aforementioned approximation features, we
have to deal with the concept of asymptotic distributions. The informal meaning of eigenvalue
and singular value distribution of a given matrix-sequence {An}n, which is rigorously presented
in Chapter I, is that, for n su�ciently large, a uniform sampling of a given function f �
which is called the spectral symbol � provides an approximation of the eigenvalues of An and,
analogously, a uniform sampling of |f | � which in this case is called the singular value symbol �
over its domain gives an approximation of the singular values of An.

As we already suggested, for Toeplitz matrix-sequences the candidate asymptotic symbol
is the generating function, however this conjecture is veri�ed only under speci�c hypotheses.
The broad studies that have been carried out in the past few decades provide us with a clear
outline on the topic. Indeed, Szeg® in [67] showed that the eigenvalues of the Toeplitz matrix
Tn[f ] generated by real-valued f ∈ L∞([−π, π]) are asymptotically distributed as f . Moreover,
Avram and Parter [6, 103] proved that the singular values of Tn[f ] are distributed as |f | for a
complex-valued f ∈ L∞([−π, π]). Tyrtyshnikov [134, 135, 140] later extended the spectral and
singular value theorems to Toeplitz matrices Tn[f ] generated by functions f ∈ L1([−π, π]).

In this well-structured framework, there is one feature missing: if a Toeplitz matrix is not
Hermitian, in general we cannot discover its spectral properties by studying the generating
function. Since the knowledge of the spectral information is crucial in the design and in the
convergence analysis of fast solution methods for Toeplitz systems, as we will explain in more
detail later, it might be convenient to develop a strategy that permits us to transform non-
Hermitian linear systems into a form for which a spectral analysis is easier.

Indeed, under the hypothesis that the Toeplitz matrix Tn[f ] possesses real entries, a smart
symmetrization procedure can be applied. Namely, as suggested in [104], we can premultiply
Tn[f ] by the anti-identity matrix Yn ∈ Rn×n in order to study the symmetrized matrix YnTn[f ].

One of the main contributions of this thesis is to give a spectral distribution result for
sequences of the form {YnTn[f ]}n [53]. In particular, in Chapter II we show that the generating
function f of Tn[f ] plays a fundamental role: we prove a result which informally means that
roughly half of the eigenvalues of YnTn[f ] are positive and they are approximated by a uniform
sampling of |f | and roughly half of the eigenvalues are negative and they are approximated by
a uniform sampling of −|f |. Moreover, the proof is based on a new tool, which analyses the
eigenvalue distribution of special 2-by-2 block matrix-sequences and has a general character,
and, therefore, can be potentially used in di�erent contexts.

A second goal of this thesis is to extend the latter setting, providing asymptotic distribution
results for the analogous symmetrization of the sequence {h(Tn[f ])}n, where h is an analytic
function [52]. In particular, we consider a function f in L∞([−π, π]) with real Fourier coe�-
cients and an analytic function h with convergence radius r such that ‖f‖∞ < r. Under these
hypotheses, we prove that the matrix-sequence {h(Tn[f ])}n is distributed in the singular value
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Introduction and Motivation

sense as h ◦ f , which is a result with intrinsic signi�cance. We exploit this property further to
investigate the spectral distribution of the symmetrized sequence {Ynh(Tn[f ])}n and show that
its spectral symbol is given by

φ|h◦f |(ϑ) =

{
|h ◦ f(ϑ)|, ϑ ∈ [0, 2π],

−|h ◦ f(−ϑ)|, ϑ ∈ [−2π, 0),

which informally means that, for a su�ciently large n, roughly half of the eigenvalues of
Ynh(Tn[f ]) are approximated by a uniform sampling of |h◦f | and roughly half of the eigenvalues
are approximated by a uniform sampling of −|h ◦ f |. The proof of this result is based on the
properties of the Generalized Locally Toeplitz (GLT) sequences, which form a particular class
of matrix-sequences to which Toeplitz matrix-sequences with Lebesgue integrable generating
functions belong [12, 13, 62, 63].

As we already mentioned, the study on Toeplitz-related sequences is crucial in many applic-
ations, when it is required to solve particular linear systems with structured coe�cient matrices
[16, 58]. In some cases, direct solution methods represent the best choice for their robustness and
predictable behaviour. However, it often happens that the size of the linear systems increases
as we seek more accuracy in the approximation of the solution of the problem. Thus, the com-
putational complexity of the algorithm is a fundamental aspect in the development of feasible
solution methods. If the bandwidth of the matrix is su�ciently small, Gaussian elimination is a
reasonable choice [73]. However, if the Toeplitz matrices are not sparse or possess a multilevel
structure, which often happens if the initial problem is a multidimensional PDE, many direct
solvers � such as the standard Gaussian elimination � do not exploit the structure of the matrices
and the computational cost could be not a�ordable even with high-performance computers. To
overcome this, in the past decades many solution algorithms of iterative nature have been em-
ployed for the solution of linear systems with Toeplitz coe�cient matrices [66, 70, 99, 108].

Some of the most successful iterative procedures that have been developed involve two key
ingredients: Krylov subspace methods and preconditioning. Krylov subspace methods are a
class of iterative solvers for a system of linear equations. Among them, it is worth citing the
Conjugate Gradient (CG) method, developed by Hestenes and Stiefel [71] in 1952, the Minimal
Residual (MINRES) method, designed by Paige and Saunders [102] in 1975, and the Generalized
Minimal Residual (GMRES) method, conceived by Saad and Schultz [109] in 1986. On the other
hand, preconditioning involves the alteration of the original linear system in order to accelerate
the computation of the approximated solution.

From a theoretical point of view, in order to develop an e�cient preconditioner for a linear
system Ax = b, one strategy is to look for a matrix P such that the chosen Krylov subspace
method converges faster for a linear system with coe�cient matrix P−1A. In practice, in this
�rst case, in order to �nd the solution of the original system it is necessary to solve a linear
system with coe�cient matrix P . A second approach is to construct an approximate inverse P̃
of A as a preconditioner, which requires to perform matrix-vector multiplications with matrix
P̃ . Advanced preconditioning strategies do not involve the construction of a matrix, they consist
in the development of a procedure whose on a vector has the same role as the matrix-vector
multiplication with matrix P̃ . Since the goal of preconditioning is to speed up the convergence
of the chosen method, it is evident that the operations of solving a linear system with mat-
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rix P , multiplying a vector by P̃ or applying the preconditioning procedure should not be as
computationally expensive as the solution of the initial system.

As far as Toeplitz linear systems are concerned, a suitable preconditioner P might be sought
in the class of circulant matrices. Indeed, many results on how circulant matrices approximate
well Toeplitz matrices have been obtained [29�31]. Moreover, as we already pointed out, a linear
system with a coe�cient matrix in the circulant algebra can be quickly solved making use of a
fast Fourier transform algorithm.

A signi�cant feature of some Krylov methods such as the Conjugate Gradient and the Min-
imal Residual methods is that the convergence rate of the algorithm can be estimated using only
the eigenvalues of the system matrix. Therefore, it is evident that the knowledge of the spectral
distributions of the coe�cient matrix-sequences for linear systems of increasing dimension is of
critical importance in the design of a good preconditioner.

Combining the literature on circulant preconditioning and the aforementioned spectral results
on symmetrized Toeplitz sequences, in this thesis we prove the e�ectiveness of preconditioning
strategies for the matrix-sequences {YnTn[f ]}n and {Ynh(Tn[f ])}n. Indeed, the �nal goal of our
�ndings is to exploit the derived spectral clustering information on the preconditioned matrix-
sequences in order to estimate the convergence rate of MINRES for the related preconditioned
linear systems [52, 53].

Following the preconditioning strategy suggested by Pestana and Wathen in [104], given a
circulant matrix Cn such that {C−1

n Tn[f ]}n is distributed in the singular value sense as the
function 1, we propose as preconditioner for the symmetrized matrix Yn(Tn[f ]) the absolute
value circulant matrix |Cn|. The latter is de�ned by

|Cn| = Fn|Λn|FH
n ,

where Fn is the n×n Fourier matrix, and |Λn| is the diagonal matrix in the eigendecomposition
of Cn with all entries replaced by their magnitude.

Finally, we prove that the derived preconditioned matrix-sequence is distributed in the ei-
genvalue sense as

φ1(ϑ) =

{
1, ϑ ∈ [0, 2π],

−1, ϑ ∈ [−2π, 0),

under the mild assumption that f is sparsely vanishing. The latter implies that roughly half of
the eigenvalues are clustered at 1 and roughly half of the eigenvalues are clustered at −1, which
is a desirable property for the fast convergence of the preconditioned Minimal Residual method.

Along with the low � with respect to the matrix size � computational cost of performing
one iteration, a crucial property of a preconditioned iterative method is its optimality, that is,
the algorithm should have a convergence rate independent of the matrix size. While circulant
preconditioning for Toeplitz linear systems often leads to optimal Krylov subspace iterations
[30, 40, 114, 116], in the multilevel and multilevel block Toeplitz settings the performances
of (multilevel block) circulant preconditioners deteriorate (see [101, 120, 124] and references
therein). This is a reason why also the class of multigrid methods is of great interest in this con-
text. In fact, multigrid methods achieve a fast convergence rate by constructing via consecutive
projections a proper sequence of linear systems of decreasing dimensions.
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Introduction and Motivation

In the case of circulant and Toeplitz matrix-sequences generated by a scalar-valued function,
the convergence and optimality analysis of multigrid methods has been obtained in a compact
and elegant form. This has been done �rstly in the unilevel case in [27, 56, 82] and then in the
multilevel case [57, 119, 127]. The cited works provide the convergence analysis of the two-grid
method with proper choices of grid transfer operators, while the V-cycle analysis is present in
more recent works [3, 4]. Following this approach, the importance of asymptotic distributions
becomes evident once again: the grid transfer operators are de�ned exploiting the analytical
properties of the symbols associated to the matrix-sequences for which the multigrid method is
designed.

In the block-circulant and block-Toeplitz setting, that is, in the case where the matrix entries
are small generic matrices instead of scalars, some algorithms have already been proposed re-
garding speci�c applications, but the attention to theoretical results is still marginal. Namely,
when the generating function is matrix-valued and non-trivial, there is still a substantial lack
of an e�ective projection proposal and of a rigorous convergence analysis. A further aim of this
thesis is to �ll this theoretical gap.

According to the classical Ruge and Stüben convergence analysis in [107], the two-grid con-
vergence can be proven validating both a smoothing property and an approximation property.
The �rst is easily generalizable in the block setting and we show how it mainly regards the
choice of the speci�c relaxation parameter for the selected smoother [39]. Conversely, mimicking
the proof for the approximation condition from the scalar structures is non-trivial, owing to the
non-commutativity of the involved matrix-valued symbols.

In our analysis, we mainly focus on the crucial choice of conditions on the trigonometric
polynomial used to construct the projector in order to ensure the optimal convergence rate
of the two-grid method [39], since the generalization of the conditions present in the scalar
setting is not su�cient for this purpose. Firstly, we assume the trigonometric polynomial that
generates the block-circulant matrix used in the construction of the grid transfer operator to
be unitarily diagonalizable at all points and to satisfy a speci�c commutativity condition. This
approach provides us with the tools to de�ne a class of grid transfer operators suitable for the
achievement of the two-grid convergence. Then, we prove the approximation property in a more
general case, observing that many multigrid methods, known in the literature, usually do not
�t in the previous setting, having, for instance, a non-diagonalizable matrix-valued symbol. In
both cases, we prove that the two-grid convergence rate is optimal, independent from the matrix
size, in the case of positive de�nite block matrices with generic blocks [20, 39].

Furthermore, taking inspiration from the approach in [21], we propose a measure of the ill-
conditioning of the symbol at the coarser levels in order to choose a robust grid transfer operator
that yields to fast multigrid convergence for more than two grids.

To show the numerical validity of our theoretical results, we consider the case of large positive
de�nite block linear systems stemming from quadrilateral Lagrangian Finite Element Methods
(FEM) � denoted in the sequel as Qs � applied to the Poisson problem [64]. An important step
for the numerical approximation involves the solution of linear systems which possess a natural
block (and multilevel block) Toeplitz structure, up to a low rank correction.

Firstly, we propose a classical multigrid strategy that follows a functional approach, that
is, we de�ne the prolongation operator as the inclusion operator between the coarser and �ner
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functional spaces [55]. We analyse the prolongation matrix as a cut block-Toeplitz matrix and
we prove that its symbol satis�es the hypotheses for the optimality of the two-grid and V-cycle
convergence rate. We perform an analogous analysis also to a second multigrid strategy, where
we choose a linear interpolation prolongation operator.

The last projecting strategy that we present for the Qs sti�ness matrices has a more general
interest, namely, it can be applied to every positive de�nite Toeplitz matrix-sequence with
generating function f that is singular at exactly one point ϑ0 in its domain. Indeed, for the
Qs sti�ness matrices, the construction of the grid transfer operators depends on a suitable
trigonometric polynomial, which is chosen based only on an algebraic analysis of the symbol
f associated with the linear systems matrix-sequence. In particular, the class of grid transfer
operators is generated by the following matrix-valued trigonometric polynomial pz:

pz(ϑ) = Fs




z(1 + cosϑ)

1 + cosϑ
. . .

1 + cosϑ



FH
s ,

where s is the block-size. As we will explain, the choice of a function such as 1 + cosϑ on
the diagonal is connected to the behaviour of the eigenvalues of f(ϑ) varying ϑ. Moreover, the
circulant structure of pz(ϑ) is a consequence of the study of the eigenvector associated to the
null eigenvalue of f(ϑ0). In order to have an optimal two-grid convergence rate, the choice z = 1

is feasible and has a general character. On the other hand, for the extension of the optimal
convergence rate to more than two grids, we numerically study a better choice of the parameter
z such that the aforementioned conditioning of the symbol at the coarser levels does not worsen.

The last chapter of this thesis is dedicated to the design of a fast solution method for
systems of linear equations with a more complicated structure. To this end, we consider the
space-time discretization of the linear anisotropic di�usion equation [15], using an isogeometric
analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation in
time [16]. The solution method for the resulting space-time linear system includes a newly
proposed preconditioner for the Preconditioned GMRES (PGMRES) algorithm, which involves
a few iterations of an appropriate multigrid method. Both the preconditioning and the multigrid
strategy are designed following the leading concepts on the development of iterative solvers for
structured matrices that constitute the basis of the whole thesis, that is, exploiting the spectral
information on the derived matrices, which is known from the eigenvalue distribution results
provided in [16]. Moreover, we pay particular attention to the development of an algorithm that
can be parallelized and performs well on parallel computers, since this is an aspect that has
been of great interest in recent years, due to the physical constraints for the clock frequency
of processors. The numerical experiments con�rm that our preconditioned solution method
possesses good parallel scaling properties and is competitive in terms of robustness and run-
time.

We conclude this general introductory part brie�y describing the contents of the thesis
chapter by chapter.

InChapter I we set the notation used throughout the thesis and we provide the fundamental
de�nitions and results that are preliminary to the subsequent chapters. In particular, we give the
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Introduction and Motivation

de�nition of circulant and Toeplitz matrices � and their generalizations to the block and block
multilevel cases � and we present their main structural and spectral features. Then, we formally
introduce the concepts of asymptotic distributions and of approximating classes of sequences
and provide the minimal notions for understanding the basics of the GLT theory, which is an
essential tool in Chapter III. We also give an overview of iterative methods and report in more
detail results for the preconditioned MINRES method and for multigrid methods.

In Chapter II, we consider the sequence of matrices {YnTn[f ]}n, where Tn[f ] is the n-by-n
Toeplitz matrix generated by a function f in L1([−π, π]) and Yn is the anti-identity matrix.
Because of the unitary nature of Yn, the singular values of Tn[f ] and YnTn[f ] coincide. However,
the eigenvalues are a�ected substantially by the action of Yn. Under the assumption that the
Fourier coe�cients of f are real, we prove that {YnTn[f ]}n is distributed in the eigenvalue sense
as

φg(ϑ) =

{
g(ϑ), ϑ ∈ [0, 2π],

−g(−ϑ), ϑ ∈ [−2π, 0),

with g(ϑ) = |f(ϑ)|. A generalization of this result to the block Toeplitz case is also shown.
Next, we consider the circulant preconditioning introduced by J. Pestana and A. Wathen [104]
and prove that the preconditioned matrix-sequence is distributed in the eigenvalue sense as φ1
under mild assumptions on f . A number of numerical experiments is provided and critically
discussed.

InChapter III, we extend the results proven inChapter II to matrix-sequences of the form
{h(Tn[f ])}n, where h is an analytic function. In particular, we provide the singular value distri-
bution of the sequence {h(Tn[f ])}n, the eigenvalue distribution of the sequence {Ynh(Tn[f ])}n,
and the conditions on f and h for these distributions to hold. The �nal goal of the chapter is to
exploit our theoretical �ndings for the fast solution of linear systems stemming from some ap-
plications of interest. In particular, we provide e�cient circulant preconditioning strategies for
the matrix-sequence {Ynh(Tn[f ])}n in several settings. Starting from the case where the function
h is simply a polynomial, we �nally study the case of the exponential of a real nonsymmetric
Toeplitz matrix stemming from computational �nance, in particular, from the option pricing
framework in jump-di�usion models, where a partial integro-di�erential equation (PIDE) needs
to be solved.

In Chapter IV, we propose a general two-grid convergence analysis, proving an optimal
convergence rate independent of the matrix size, in the case of positive de�nite block-circulant
matrices with generic blocks. The proof of the approximation property is not a straightforward
generalization of the scalar case, we have to require additional conditions on the block symbol
of the grid-transfer operator. In particular, we analyse a �rst case when the trigonometric
polynomial that generates the block-circulant matrix used in the construction of the grid transfer
operator is unitarily diagonalizable at all points and satis�es a speci�c commutativity condition.
However, most of the known multigrid methods do not �t in this particular setting, which
suggests that the hypotheses for the optimal two-grid convergence rate can be relaxed, namely,
we prove the approximation property for a grid transfer operator with a block symbol that might
be non-diagonalizable. In this case, it becomes clear that not only the eigenvalue functions of
the symbol are crucial for the convergence of the method, but also the eigenvectors should be
carefully analysed. Then, we provide a generalization of the convergence results to multilevel
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block-circulant matrices, where the multilevel grid transfer operator possesses a tensor structure.
In Chapter V, we exploit the theoretical �ndings of Chapter IV to develop and analyse

multigrid strategies for the solution of linear systems stemming from the Qs Finite Elements
approximation of elliptic partial di�erential equations with Dirichlet boundary conditions and
where the operator is div (−a(x)∇·), with a continuous and positive over [0, 1]k. Firstly, we
propose a classical multigrid strategy that follows a functional approach, that is, we de�ne
the prolongation operator as the inclusion operator between the coarser and �ner functional
spaces. We analyse the prolongation matrix as a cut block-Toeplitz matrix and we prove that
its symbol satis�es the hypotheses for the two-grid and V-cycle convergence and optimality.
We perform an analogous analysis also for a second multigrid strategy, where we choose a
linear interpolation prolongation operator. Finally, we present a third class of grid transfer
operators, which has a di�erent genesis. According to the analysis, we show how to exploit the
properties of the eigenvalue functions to de�ne a class of grid transfer operators that satisfy the
theoretical conditions of Chapter IV. In this way, we explain how to choose the trigonometric
polynomial that generates the block-Toeplitz matrix used in the construction of the grid transfer
operator focusing only on algebraic considerations on the symbol of the linear system matrix-
sequence. Even though we focus on the Qs sti�ness matrices, the presented procedure has a
wider interest, since it might be applied to every matrix-sequence that falls into the theoretical
setting. Results of numerical experiments that test all the considered methods are presented,
both in one dimension and in higher dimension, showing an optimal behaviour in terms of the
dependency on the matrix size and a robustness with respect to the dimensionality.

In Chapter VI we consider the space-time discretization of the (linear) anisotropic di�usion
equation, using an isogeometric analysis (IgA) approximation in space and a discontinuous
Galerkin (DG) approximation in time. Drawing inspiration from a former spectral analysis,
we propose for the resulting space-time linear system a new preconditioner for the PGMRES
algorithm, which involves a few iterations of an appropriate multigrid method. The performance
of our preconditioned solution method is illustrated through numerical experiments, which show
its competitiveness in terms of robustness, run-time and parallel scaling.

A conclusion chapter ends the present thesis including a list of open questions, perspectives,
and future issues to be addressed in further researches.

xii



Chapter I

Preliminary De�nitions and Results

The present chapter introduces the notation used throughout the thesis and provides the fun-
damental de�nitions and results that are preliminary to the subsequent chapters.

First, we illustrate how to work with matrix-valued functions and their associated eigenvalue
functions. Moreover, we formally introduce the concepts of approximating classes of sequences
and of asymptotic distributions.

Then, we give the de�nition of circulant and Toeplitz matrices, we present their main struc-
tural and spectral features and their generalizations to the block and block multilevel cases. We
also provide the minimal tools for understanding the basics of the Generalized Locally Toeplitz
theory. Furthermore, we write a suitable de�nition of function of matrices and we study its
meaning in the Toeplitz case.

In the �nal sections of the chapter we recall the fundamentals on iterative methods, paying
particular attention to preconditioned Krylov solvers, especially the preconditioned MINRES
method, and on multigrid methods, for which we follow an algebraic Ruge-Stüben approach.

I.1 General Notation

The following list describes the notation that is used throughout the thesis.

� Km×n is the space of m× n matrices with coe�cients in K ∈ {R,C}, R,C being real and
complex numbers, respectively.

� If x = [xj ]
n
j=1 is a vector, then

� xT denotes the transpose of x;

� xH denotes the conjugate transpose of x;

� If A = [aij ]
n
i,j=1 ∈ Cn×n, we denote by

� AT the transpose of A;

� AH the conjugate transpose of A;

� rank(A) the rank of A;

� tr(A) the trace of A;

1



Chapter I. Preliminary De�nitions and Results

� det(A) the determinant of A;

� λj(A), j = 1, . . . , n, the eigenvalues of A;

� σj(A), j = 1, . . . , n the singular values of A;

� Λ(A) the spectrum of A.

� If A, B ∈ Cn×n, we write

� A ≥ B if A and B are Hermitian and A − B is Hermitian Positive Semi-De�nite
(HPSD);

� A > B if A and B are Hermitian and A−B is Hermitian Positive De�nite (HPD);

� On,m is the n×m zero matrix. When the dimension is clear from the context, the subscript
is omitted.

� Im is the m × m identity matrix. When the dimension is clear from the context, the
subscript is omitted.

� Ym is the m×m anti-identity matrix.

� Fm is the m×m Fourier matrix, that is

Fm =
1√
m

[
e−ı̂ 2πij

m

]m−1

i,j=0
.

� on denotes the vector [0, 0, . . . , 0]T ∈ Rn.

� en denotes the vector [1, 1, . . . , 1]T ∈ Rn.

� µk denotes the Lebesgue measure in Rk. If not speci�ed otherwise, �measure� always refers
to the Lebesgue measure.

� ı̂ is the imaginary unit, that is ı̂2 = −1.

� If A ∈ Cn1×n2 and B ∈ Cm1×m2 , the Kronecker product of A and B is the n1m1 × n2m2

matrix de�ned by

A⊗B = [aijB]i=1,...,n1 , j=1,...,n2 =




a11B . . . a1n2B

a21B . . . a2n2B
...

. . .
...

an11B . . . an1n2B



.

� Let D be a measurable subset of Rk and let fm, f : D → C be measurable functions for
all m ∈ N. We say that the sequence fm converges to f in measure and we write

fm → f in measure

if, for every ε > 0,
lim

m→∞
µk{|fm − f | > ε} = 0.
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I.2. Matrix Norms

� Given D a measurable subset of Rk, we denote by

� Lp(D) the space of measurable functions f : D → C such that
∫

D
|f |p dµk <∞, 1 ≤ p <∞;

� L∞(D) the space of measurable functions f : D → C such that

ess supD|f | <∞.

� If D is a measurable subset of Rk, given f ∈ Lp(D), the quantity ‖f‖p is the Lp-norm of
f , that is

‖f‖p =





(∫
D |f |p dµk

) 1
p , if 1 ≤ p <∞,

ess supD|f |, if p = ∞.

� Given two sequences {an}n and {bn}n, with an ≥ 0 and bn > 0 for all n, the notation
an = O(bn) means that there exists a constant C, independent of n, such that an ≤ Cbn

for all n and the notation an = o(bn) means that an/bn → 0 as n→ ∞.

� A vector i = (i1, i2, . . . , ik) ∈ Zk is called a k-index or simply a multi-index.

� For all n = (n1, n2, . . . , nk) ∈ Zk we de�ne the multi-index length by N (n) = n1n2 . . . nk.

� 0, 1, 2,. . . respectively indicate (0, 0, . . . , 0), (1, 1, . . . , 1), (2, 2, . . . , 2), . . . .

� For all n, m ∈ Zk, n ≤ m means ni ≤ mi, ∀ i = 1, . . . , k.

� If n, m ∈ Zk are such that n ≤ m, the multi-index range n, . . . ,m is the set

{j ∈ Zk : n ≤ j ≤ m}.

� Given n,m ∈ Zk, with n ≤ m, the notations
∑m

j=n,
∏m

j=n and
⊗m

j=n respectively indicate
the summation, product, and Kronecker product over all multi-indices j = n, . . . ,m.

� If m ∈ Nk then
x = [xi]

m
i=1

is a vector of size N (m) whose components xi, i = 1, . . . ,m are sorted in accordance with
the lexicographic ordering. Similarly

A = [aij]
m
i,j=1

is the N (m) × N (m) matrix whose components are indexed by two multi-indices, both
varying in 1, . . . ,m according the lexicographic ordering.

I.2 Matrix Norms

In the following subsections we include the de�nitions and the properties of two fundamental
classes of matrix norms, namely p-norms and Schatten p-norms.
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Chapter I. Preliminary De�nitions and Results

I.2.1 p-norms

Given 1 ≤ p ≤ ∞ and x ∈ Cn, we denote by ‖x‖p the p-norm of x, i.e.,

‖x‖p =
{

(
∑n

i=1 |xi|p)
1/p , if 1 ≤ p <∞,

maxi=1,...,n |xi|, if p = ∞.
(I.1)

The p-norm of a matrix A ∈ Cn×n is the matrix norm induced by the vector norm ‖ · ‖p,

‖A‖p = max
x∈Cn, ‖x‖p=1

‖Ax‖p.

The 2-norm is also known as the spectral norm. Being an operator norm on Cn×n, the matrix
p-norm satis�es the inequality ρ(A) ≤ ‖A‖p and has the sub-multiplicative property, that is

‖AB‖p ≤ ‖A‖p‖B‖p, ∀A,B ∈ Cn×n. (I.2)

In for some special values of p, a formula for the computation of ‖A‖p is available [65]:

‖A‖1 = max
j=1,...,n

n∑

i=1

|aij |, (I.3)

‖A‖2 =
√
ρ(AHA) =

√
λmax(AHA), (I.4)

‖A‖∞ = max
i=1,...,n

n∑

j=1

|aij |; (I.5)

From Formula (I.4) it is straightforward to see that the 2-norm is unitarily invariant, that is,

‖A‖2 = ‖UAV ‖2 (I.6)

for all A ∈ Cn×n and all unitary matrices U, V ∈ Cn×n.
Moreover, we report the inequality

‖A‖2 ≤
√

‖A‖1‖A‖∞, A ∈ Cn×n, (I.7)

which is useful in combination with equations (I.3)�(I.5) to estimate the spectral norm of a
matrix using its elements. For a proof, see [65, Corollary 2.3.2].

By means of the 2-norm, we de�ne the condition number κ(A) of an invertible matrix A as
the quantity

κ(A) = ‖A‖2
∥∥A−1

∥∥
2
.

Notice that if A is normal the condition number can be written as

κ(A) = ‖A‖2
∥∥A−1

∥∥
2
=
σmax(A)

σmin(A)
=

maxj |λj(A)|
minj |λj(A)|

.

Finally, if A ∈ Cn×n is HPD, then we de�ne the Euclidean norm weighted by A of a vector
x ∈ Cn as

‖x‖A =
∥∥∥A1/2x

∥∥∥
2

and, consequently, we de�ne the weighted Euclidean norm of a matrix B ∈ Cn×n as

‖B‖A =
∥∥∥A1/2BA−1/2

∥∥∥
2
.
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I.3. Matrix-valued Functions and Eigenvalue Functions

I.2.2 Schatten p-norms

Given 1 ≤ p ≤ ∞ and a matrix A ∈ Cn×n, we denote by |||A|||p the Schatten p-norm of A, which
is de�ned by

|||A|||p =
∥∥[σj(A)]nj=1

∥∥
p
,

that is, the Schatten p-norm of A is the p-norm of the vector having as elements the singular
values of A. Since the singular values possess a unitary invariance property, this implies that all
Schatten p-norms are unitarily invariant.

In what follows we list and describe three signi�cant examples of Schatten p-norms.

� The Schatten ∞-norm coincides with the spectral norm. In fact, the quantity |||A|||∞ is
equal to σmax(A) by de�nition, which implies that |||A|||∞ = ‖A‖2.

� The Schatten 2-norm |||A|||2 is also known as the Frobenius norm. It coincides with the
2-norm of the vector containing all the elements of A, that is

|||A|||2 =
( n∑

i,j=1

|xij |2
)1/2

, A ∈ Cn×n. (I.8)

� The Schatten 1-norm |||A|||1 is also known as trace norm.

I.3 Matrix-valued Functions and Eigenvalue Functions

In the following subsection we deal with the concepts of matrix-valued function and its eigenvalue
functions which are broadly used throughout the whole thesis. Given D a measurable subset of
Rk, a matrix-valued function brings values ϑ ∈ D into the space of square matrices Cs×s.

In general, we state that a matrix-valued function f possesses a property such as measurab-
ility, continuity, and boundedness, if all its components fij : D → C, i, j = 1, . . . , s, possess the
same property. We denote by Lp(D, s) the space of the functions such that all their components
lay in Lp(D).

Given a function f ∈ Lp(D, s), we de�ne

‖f‖p =





(∫
D ‖f(ϑ)‖pp dϑ

)1/p
, if 1 ≤ p <∞,

ess supϑ∈D‖f(ϑ)‖∞, if p = ∞.

For a Hermitian matrix-valued function f we write f ≥ 0 (resp. f > 0) if, for almost all ϑ ∈ D,
f(ϑ) is a non-negative (resp. positive) de�nite matrix.

In the case where all the eigenvalues of the matrix f(ϑ) are real for almost every ϑ ∈ D, we
can sort the eigenvalues of the matrix f(ϑ) in increasing order for almost every ϑ ∈ D. Hence,
the eigenvalue function λi(f) is well de�ned as the function taking the value of the i-th largest
eigenvalue of f(ϑ).

Further, adding the hypothesis that f is a continuous matrix-valued function de�ned on an
interval, the existence and continuity of the eigenvalue functions of f is proven in [19, Section
VI.1] and we summarize the result in the following lemma.

Lemma I.3.1. Let f be a continuous map from an interval Q into the space of s × s matrices

such that the eigenvalues of f(ϑ) are real for all ϑ ∈ Q. Then there exist continuous functions

λ1(f(ϑ)), λ2(f(ϑ)), . . . , λs(f(ϑ)) such that, for each ϑ ∈ Q, are the eigenvalues of f(ϑ).
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I.4 Asymptotic Distribution of Matrix-Sequences

In the present section we provide de�nitions and results for the analysis of the spectral and singu-
lar value properties of a generic matrix-sequence {An}n, where the matrices An have dimension
that increases with n. We also introduce the concepts of clustering, asymptotic distributions,
and approximating classes of sequences.

I.4.1 Eigenvalue and Singular Value Distributions of Matrix-Sequences

Before detailing the concepts on asymptotic distributions, we give the de�nition of cluster of
the eigenvalues of a matrix-sequence, which is fundamental in the analysis of preconditioning
strategies for Krylov solvers, as we see in Section I.9.3.

De�nition I.4.1. Let S ⊆ C be a non-empty subset of C and let {An}n be a matrix-sequence,

with An of increasing size dn. We say that {An}n is strongly clustered at S (in the sense of the

eigenvalues), or equivalently that the eigenvalues of {An}n are strongly clustered at S, if, for

every ε > 0, we have

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = O(1), as n→ ∞, (I.9)

where D(S, ε) =
⋃

z∈S{ω ∈ C : |ω − z| < ε}.
Furthermore, we say that {An}n is (weakly) clustered at S (in the sense of the eigenvalues),

or equivalently that the eigenvalues of {An}n are (weakly) clustered at S, if O(1) is replaced with

o(dn) in the previous relationships.

When the eigenvalues of a matrix-sequence are clustered at 0 with a weaker meaning, the
sequence is said to be sparsely vanishing in the eigenvalue sense. We formally introduce the
latter concept in the following de�nition, specifying the meaning of sparsely vanishing in both
the singular value and in the eigenvalue sense.

De�nition I.4.2. Let {An}n be a matrix-sequence, with An of increasing size dn. We say that

{An}n is sparsely vanishing (s.v.) if

lim
M→∞

lim sup
n→∞

# {i ∈ {1, ..., dn} : σi(An) < 1/M}
dn

= 0.

Moreover, we say that {An}n is sparsely vanishing (s.v.) in the eigenvalue sense if

lim
M→∞

lim sup
n→∞

# {i ∈ {1, ..., dn} : |λi(An)|) < 1/M}
dn

= 0.

Throughout the current subsection, we follow all standard notation and terminology intro-
duced in [62]: let K be either R or C, then we denote with Cc(K) the space of complex-valued
continuous functions de�ned on K with bounded support. The following properties hold.

If g : D ⊂ Rk → Cs×s is a measurable function de�ned on a set D with measure µk(D) such
that 0 < µk(D) <∞, then the expressions η(σ)g and η(λ)g denote the functionals described by the
following relations

η
(σ)
g : Cc(R) → C and η

(σ)
g (F ) =

1

µk(D)

∫

D

∑s
i=1 F (σi(g)) (ϑ)

s
dϑ,

η
(λ)
g : Cc(C) → C and η

(λ)
g (F ) =

1

µk(D)

∫

D

∑s
i=1 F (λi(g)) (ϑ)

s
dϑ,
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De�nition I.4.3. [62, De�nition 3.1](Singular value and eigenvalue distribution of a matrix-
sequence) Let {An}n be a matrix-sequence with An ∈ Cdn×dn .

1. We say that {An}n has an asymptotic singular value distribution described by a functional

η : Cc(R) → C, and we write {An}n ∼σ η, if

lim
n→∞

1

dn

dn∑

j=1

F (σj(An)) = η(F ), ∀F ∈ Cc(R).

If η = η
(σ)
f for some measurable f : D ⊂ Rk → Cs×s de�ned on a set D with 0 < µk(D) <

∞, we say that {An}n has an asymptotic singular value distribution described by f and we

write {An}n ∼σ f . In this case, the function f is referred to as the singular value symbol

of the matrix-sequence {An}n.

2. We say that {An}n has an asymptotic eigenvalue (or spectral) distribution described by a

functional η : Cc(C) → C, and we write {An}n ∼λ η, if

lim
n→∞

1

dn

dn∑

j=1

F (λj(An)) = η(F ), ∀F ∈ Cc(C).

If η = η
(λ)
f for some measurable f : D ⊂ Rk → Cs×s de�ned on a set D with 0 < µk(D) <

∞, we say that {An}n has an asymptotic eigenvalue (or spectral) distribution described by

f and we write {An}n ∼λ f . In this case, the function f is referred to as the eigenvalue (or

spectral) symbol of the matrix-sequence {An}n.

Recalling that a function f is sparsely vanishing if and only if its set of zeros is of Lebesgue
measure zero, we report the following result, which is proven in [62, Chapter 9, pp. 165�166]).

Theorem I.4.1. The following statements are true.

1. Assume {An}n ∼σ f. Then {An}n is sparsely vanishing if and only if f is sparsely van-

ishing.

2. Assume {An}n ∼λ f. Then {An}n is sparsely vanishing in the eigenvalue sense if and only

if f is sparsely vanishing.

3. Assume {An}n is given and assume that every matrix An is normal. Then {An}n is

sparsely vanishing if and only if {An}n is sparsely vanishing in the eigenvalue sense.

Finally, we recall that the essential range ER(f) of a function f : D ⊂ R → C is de�ned
as the set of points z ∈ C such that, for every ε > 0, the measure of the set {f(ϑ) ∈ {ω ∈
C : |ω − z| < ε} is positive. The previous notion has a direct relation with the concept of
spectral distribution. Indeed, if {An}n ∼λ f , then {An}n is weakly clustered at the essential
range ER(f). See [62] for more details.
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I.4.2 Approximating Classes of Sequences

Next, we introduce the de�nition and a key lemma on approximating classes of sequences [118],
which is used for completing the proofs of the results presented in Chapters II�III.

De�nition I.4.4. [62, De�nition 5.1](approximating class of sequences)
Let {An}n be a matrix-sequence and let {{Bn,m}n}m be a sequence of matrix-sequences. We

say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for {An}n if the following

condition is met: for every m there exist nm, c(m), ω(m) such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m,

rank Rn,m ≤ c(m)n and ‖Nn,m‖2 ≤ ω(m),

where the quantities nm, c(m), and ω(m) depend only on m and

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

We use {Bn,m}n a.c.s. wrt m−−−−−−−→ {An}n to denote that {{Bn,m}n}m is an a.c.s. for {An}n.

Lemma I.4.2. [62, Corollary 5.1] Let {An}n, {Bn,m}n be matrix-sequences and let f, fm : D ⊂
Rk → C be measurable functions de�ned on a set D with 0 < µk(D) <∞. Suppose that

1. {Bn,m}n ∼σ fm for every m,

2. {Bn,m}n a.c.s. wrt m−−−−−−−→ {An}n,

3. fm → f in measure.

Then

{An}n ∼σ f.

Furthermore, if the �rst assumption is replaced by {Bn,m}n ∼λ fm for every m, given that

the other two assumptions are left unchanged, and all the involved matrices are Hermitian, then

we conclude that {An}n ∼λ f .

I.5 Toeplitz Structures

The current section is devoted to Toeplitz matrices, a topic that is recurrent throughout the
whole thesis and that has been the subject of several books [22, 24, 25, 67]. A matrix is said to
have a Toeplitz structure if it has constant diagonals, either element by element or in a block
sense. As we rigorously state in the following subsections, in some cases the components can be
seen as the Fourier coe�cients of a function that �generates� the Toeplitz matrix. The type of
domain (either [−π, π] or [−π, π]k) and codomain (either the complex �eld or the space of s× s

complex matrices) of the generating function gives rise to di�erent kinds of Toeplitz matrices,
see Table I.1 for a complete overview.
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I.5. Toeplitz Structures

Type of generating function Associated Toeplitz matrix

univariate scalar f(ϑ) : [−π, π] → C unilevel scalar Tn[f ] ∈ Cn×n

k-variate scalar f(ϑ) : [−π, π]k → C multilevel scalar Tn[f ] ∈ CN (n)×N (n)

univariate matrix-valued f(ϑ) : [−π, π] → Cs×s unilevel block Tn[f ] ∈ Csn×sn

k-variate matrix-valued f(ϑ) : [−π, π]k → Cs×s multilevel block Tn[f ] ∈ CsN (n)×sN (n)

Table I.1: Various types of generating function and the associated Toeplitz matrices.

I.5.1 Unilevel Scalar Toeplitz Matrices

A matrix of the form

A = [ai−j ]
n
i,j=1 =




a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2

...
. . .

. . .
. . . a−1

an−1 · · · · · · a2 a1 a0




, (I.10)

is called a Toeplitz matrix. Notice that the (i, j)-th entry of A depends only on the di�erence
i− j, which means that the components are constant along each diagonal.

It is straightforward to see that the Toeplitz matrix [ai−j ]
n
i,j=1 can be written as the sum

[ai−j ]
n
i,j=1 =

n−1∑

k=−(n−1)

akJ
(k)
n , (I.11)

where, for k ∈ Z,
[
J (k)
n

]
ij
=




1, if i− j = k,

0, otherwise
. (I.12)

Throughout this subsection, we assume that f ∈ L1([−π, π]) and is periodically extended to
the real line. The Fourier coe�cients of f are denoted by

f̂k =
1

2π

∫ π

−π
f(ϑ)e−ı̂ kϑ dϑ, k ∈ Z. (I.13)

The n-th Toeplitz matrix associated with f is de�ned as

Tn[f ] =
[
f̂i−j

]n
i,j=1

=
n−1∑

k=−(n−1)

f̂k J
(k)
n . (I.14)

We call {Tn[f ]}n the sequence of Toeplitz matrices associated with f (or generated by f), which
in turn is referred to as the generating function of {Tn[f ]}n.

In the following list, we describe how some properties of the generating function re�ect to
the associated Toeplitz matrix, see [62, 99] for more details.

1. If f is real-valued, then Tn[f ] is Hermitian for all n.

9



Chapter I. Preliminary De�nitions and Results

2. If f is even, then Tn[f ] is symmetric for all n.

3. If f is real-valued and even, then Tn[f ] is real and symmetric for all n.

4. If f is a trigonometric polynomial, that is,

f(ϑ) =
r∑

k=−r

f̂k e
ı̂ kϑ,

then, for n su�ciently large, Tn[f ] is a banded matrix, with bandwidth bounded by 2r+1.

We conclude this subsection by reporting two theorems that are useful to extract information
from the generating function on the eigenvalues and singular values of the associated Toeplitz
matrix, for the proof see [62].

Theorem I.5.1. Assume that f ∈ L1([−π, π]) is real a.e. and let

mf = ess inf
ϑ∈[−π,π]

f(ϑ), Mf = ess sup
ϑ∈[−π,π]

f(ϑ).

Then

Λ(Tn[f ]) ⊆ [mf ,Mf ], n ∈ N.

If we also assume that mf < Mf , then

Λ(Tn[f ]) ⊂ (mf ,Mf ), n ∈ N.

Theorem I.5.2. Let f ∈ Lp([−π, π]), n ∈ N and 1 ≤ p ≤ ∞. Then

|||Tn[f ]|||p ≤
n1/p

(2π)1/p
‖f‖Lp .

In particular, for p = ∞ we have

‖Tn[f ]‖2 = |||Tn[f ]|||∞ ≤ ‖f‖L∞ .

I.5.2 Block and Multilevel Block Toeplitz Matrices

The current subsection is dedicated to the generalization of the concept of unilevel scalar Toeplitz
matrix. We start with the de�nition of block-Toeplitz matrix, which has been conceptualized
from the idea that the entries ak of the matrix An = [ai−j ]

n
i,j=1 could be matrices themselves.

Given A−(n−1), . . . , An−1 ∈ Cs×s, the sn× sn block matrix A de�ned by

A = [Ai−j ]
n
i,j=1 =




A0 A−1 A−2 · · · · · · A−(n−1)

A1
. . .

. . .
. . .

...

A2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . A−2

...
. . .

. . .
. . . A−1

An−1 · · · · · · A2 A1 A0




,

10
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is said to be a block-Toeplitz matrix.

Analogously to the scalar case, a block-Toeplitz matrix of the form Tn(f) is associated to
a matrix-valued function f ∈ L1([−π, π], s). We formalize the latter statement in the following
de�nition.

De�nition I.5.1. Let the Fourier coe�cients of a given function f ∈ L1([−π, π], s) be

f̂j :=
1

2π

∫

[−π,π]
f(ϑ)e−ı̂jϑdϑ ∈ Cs×s, j ∈ Z.

Then, the block-Toeplitz matrix associated with f is the matrix of order sn given by

Tn[f ] =
∑

|j|<n

J (j)
n ⊗ f̂j ,

where the term J
(j)
n is de�ned in (I.12). The matrix-sequence {Tn[f ]}n is called the block-Toeplitz

sequence generated by f , that in turn is referred to as the generating function of {Tn[f ]}n.

If the blocks are Toeplitz matrices themselves, the matrix is said to be a block-Toeplitz
matrix with Toeplitz blocks, or BTTB matrix. However, in the case of a block-Toeplitz sequence
{Tn[f ]}n generated by f ∈ L1([−π, π], s), the blocks have a �xed dimension, that is, the block-
size does not depend on n. BTTB matrices suggest instead an additional generalization of the
concept of Toeplitz matrix-sequences, that is, the extension to sequences of BTTB matrices in
which both the block-size and the number of blocks depend on n. Such matrices are said to be
2-level Toeplitz matrix-sequences, and, in general, are substantially di�erent from block-Toeplitz
matrix-sequences if we consider the type of generating function, which in this setting is bivariate
and scalar-valued.

The following de�nition formalizes all the previous considerations and extends the de�ni-
tion of Toeplitz matrix to the most general setting that we consider, that is, the case of mul-
tilevel block-Toeplitz matrix-sequences associated with multivariate matrix-valued generating
functions.

De�nition I.5.2. Let the Fourier coe�cients of a given function f ∈ L1([−π, π]k, s) be de�ned

as

f̂j :=
1

(2π)k

∫

[−π,π]k
f(ϑ)e−ı̂〈j,ϑ〉 dϑ ∈ Cs×s, j = (j1, . . . , jk) ∈ Zk,

where 〈j,ϑ〉 =∑k
t=1 jtϑt.

Given a k-index n = (n1, n2, . . . , nk), the n-th k-level s× s Toeplitz matrix associated with f

is the matrix of order sn1n2 . . . nk given by

Tn[f ] =
n−1∑

j=−(n−1)

J (j1)
n1

⊗ · · · ⊗ J (jk)
nk

⊗ f̂j,

where j = (j1, . . . , jk) ∈ Nk and the matrices of the form J
(h)
m are de�ned in (I.12).

11
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I.5.3 Asymptotic Distribution of Toeplitz Sequences

The singular value and spectral distribution of Toeplitz matrix-sequences have been well studied
in the past few decades. Ever since Szeg® in [67] showed that the eigenvalues of the Toeplitz
matrix Tn[f ] generated by real-valued f ∈ L∞([−π, π]) are asymptotically distributed as f ,
such result has undergone many generalizations and extensions. Under the same assumption
on f , Avram and Parter [6, 103] proved that the singular values of Tn[f ] are distributed as
|f | and Tyrtyshnikov [134, 135, 140] later extended the latter result for Tn[f ] generated by
complex-valued f ∈ L1([−π, π]).

The generalized Szeg® theorem that describes the singular value and spectral distribution of
Toeplitz sequences generated by f ∈ L1([−π, π]) is given as follows. We refer to [140] for the
original results and [62, Theorem 6.5] for a proof that is based on the notion of approximating
class of sequences given in De�nition I.4.4.

Theorem I.5.3. Suppose f ∈ L1([−π, π]). Let Tn[f ] be the Toeplitz matrix generated by f .

Then

{Tn[f ]}n ∼σ f.

Moreover, if f is real-valued, then

{Tn[f ]}n ∼λ f.

Furthermore, Tilli [133] generalized the proof to the block-Toeplitz setting and, in particular,
we report the following theorem, which is the extension of the eigenvalue result to the case of
multivariate Hermitian matrix-valued generating functions.

Theorem I.5.4. Let f ∈ L1([−π, π]k, s) be a Hermitian matrix-valued function with k ≥ 1, s ≥ 2.

Then,

{Tn[f ]}n∈Nk ∼λ f .

I.6 Circulant Matrices

Circulant matrices are special Toeplitz matrices which possess the additional property that each
column vector is a circular shift of the preceding column vector. On one hand, all the theory
presented in Section I.5 for Toeplitz matrices remains valid for circulant matrices. On the other
hand, circulant matrices of a �xed size n form an algebra of matrices unitarily diagonalized by
the Fourier matrix Fn. In what follows we focus on the latter aspect.

We begin with the de�nition of n-th Fourier sum of a matrix-valued function f ∈
L1([−π, π]k, s), which is given by

(Sn[f ]) (ϑ) =

n1−1∑

j1=1−n1

· · ·
nk−1∑

jk=1−nk

f̂je
ı̂〈j,ϑ〉, 〈j,ϑ〉 =

k∑

t=1

jtϑt. (I.15)

A particular uniform sampling of the function in (I.15) is crucial in the construction of the
circulant matrix associated with f , as we see in the following de�nition.

12
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De�nition I.6.1. Let f ∈ L1([−π, π]k, s) be a matrix-valued function and let n = (n1, . . . , nk)

be a k-index. Then, the n-th circulant matrix generated by f is the matrix of order sN (n) de�ned

by:

Cn[f ] = (Fn ⊗ Is)Dn[f ](Fn ⊗ Is)
H , (I.16)

where

Dn[f ] = diag
0≤r≤n−1

(Sn[f ])
(
ϑ
(n)
r

)
(I.17)

is a block-diagonal matrix and

ϑ
(n)
r = 2π

r

n
, Fn =

1√
N (n)

(
e
−ı̂

〈

j,ϑ
(n)
r

〉)n−1

j,r=0

. (I.18)

Notice that in the case where f is a univariate scalar trigonometric polynomial, the n-th
Fourier sum coincides with f if n is large enough, and hence we can write the circulant matrix
generated by f as

Cn[f ] = Fn diag
i∈In

(
f(ϑ

(n)
i )
)
FH
n , (I.19)

where the grid points ϑ(n)i are 2πi
n and i belongs to the index range In = {0, . . . , n− 1}. From

(I.19) it is clear that, for n large enough, the eigenvalues of Cn[f ] are given by the evaluations
of f at the grid points.

Example 1. Consider the trigonometric polynomial p(ϑ) = 2 − 3e−ı̂ϑ. According to equation

I.19, the circulant matrix generated by p of order 4 is

C4[p] =F4




2− 3e−ı̂ϑ
(4)
0 0 0 0

0 2− 3e−ı̂ϑ
(4)
1 0 0

0 0 2− 3e−ı̂ϑ
(4)
2 0

0 0 0 2− 3e−ı̂ϑ
(4)
3



FH
4 =

1

4




1 1 1 1

1 −ı̂ −1 ı̂

1 −1 1 −1

1 ı̂ −1 −ı̂







−1 0 0 0

0 2 + 3ı̂ 0 0

0 0 5 0

0 0 0 2− 3ı̂







1 1 1 1

1 −ı̂ −1 ı̂

1 −1 1 −1

1 ı̂ −1 −ı̂




H

=




2 −3 0 0

0 2 −3 0

0 0 2 −3

−3 0 0 2


 .

Hence, the eigenvalues −1, 2± 3ı̂, 5 of C4[p] are obtained by evaluating the generating function p

on the grid points ϑ
(4)
j , j = 0, . . . ,.

Analogously, if f is a univariate s × s matrix-valued trigonometric polynomial the block-
circulant matrix generated by f can be written as

Cn[f ] = (Fn ⊗ Is) diag
i∈In

(
f(ϑ

(n)
i )
)
(FH

n ⊗ Is), (I.20)

13



Chapter I. Preliminary De�nitions and Results

where diag
i∈In

(
f(ϑ

(n)
i )
)
is the block-diagonal matrix with the block-diagonal elements being the

evaluation of f on the grid points ϑ(n)i for i ∈ In. Given the block structure of the decomposition

in (I.20), it is clear that the eigenvalues of Cn[f ] are given by λt
(
f
(
ϑ
(n)
i )
))

, varying t = 1, . . . , s

and i ∈ In.
We conclude the current subsection by recalling that, when circulant matrix-sequences with

elements of increasing size dn are involved, operations such as the matrix-vector product,
the solution of a linear system and the computation of eigenvalues have computational cost
O(dn log dn). Indeed, the essence of calculations with circulants is the exploitation of the Fast
Fourier Transform (FFT) algorithm for multiplying a vector by the Fourier matrix [32, 138].

I.7 Generalized Locally Toeplitz Sequences

In the sequel, we brie�y present the class of Generalized Locally Toeplitz (GLT) sequences
[12, 121, 122] in their multilevel block form. GLT sequences constitute a ∗-algebra of matrix-
sequences to which multilevel block-Toeplitz matrix-sequences with Lebesgue integrable gener-
ating functions belong. The formal de�nition of the GLT class requires rather technical tools,
hence here we only list some properties, which are su�cient for studying the asymptotic distri-
butions of the matrix-sequences that we deal with in Chapter III. See [12, 62, 63] for complete
discussions on the topic.

GLT1 Each GLT sequence {An}n has a singular value symbol f̃ : [0, 1]k × [−π, π]k → Cs×s.
If all the matrices of the sequence are Hermitian, then the distribution also holds in the
eigenvalue sense. We call f̃(x,ϑ) the (GLT) symbol of {An}n and we write {An}n ∼glt f̃ .

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations,
products, inversion (whenever the symbol is singular, at most, in a set of zero Lebesgue
measure), conjugation. Hence, the sequence obtained via algebraic operations on a �nite
set of given GLT sequences is still a GLT sequence and its symbol is obtained by per-
forming the same algebraic manipulations on the corresponding symbols of the input GLT
sequences.

GLT3 Every Toeplitz sequence generated by a function f ∈ L1([−π, π]k, s) is a GLT sequence
and its symbol is f̃(x,ϑ) = f(ϑ), with the speci�cations reported in Item GLT1.

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is a
GLT sequence with symbol f̃ ≡ 0.

GLT5 {An}n ∼glt f̃ if and only if there exist GLT sequences {Bn,m}n ∼glt f̃m such that f̃m

converges to f̃ in measure and {{Bn,m}n}m is an a.c.s. for {An}n.

The advantage of dealing with Hermitian matrix-sequences is clear from GLT1. Indeed, in
this setting, we can use these GLT properties to study also the asymptotic spectral features of
the involved matrix-sequences. However, useful relaxations of such hypothesis are introduced
and discussed in [62].
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I.8 Functions of Matrices

Let h be a real analytic function centred at z0 = 0 with radius of convergence r. If |z| < r, we
can represent h(z) through its Taylor series expansion in z0 = 0, that is h(z) =

∑∞
k=0 bkz

k. We
exploit this representation to de�ne the corresponding matrix function h(A), with A being an
n-by-n matrix. Notice that, given a real analytic function h through its explicit Taylor series
expansion in 0, we denote both the function de�ned on a subset of C and the function de�ned
on a subset of Cn×n by h.

Assume that Λ(A) ⊂ {z ∈ C : |z| < r}, then Theorem 4.7 in [74] assures that the series∑∞
k=0 bkA

k converges. Hence, h(A) is well-de�ned by

h(A) =

∞∑

k=0

bkA
k.

Now, we want to investigate the latter de�nition in the Toeplitz case. Let us consider
the Toeplitz matrix Tn[f ] ∈ Rn×n generated by a function f ∈ L∞([−π, π]) with real Fourier
coe�cients. Recalling Theorem I.5.2 and the relation ρ(Tn[f ]) ≤ ‖Tn[f ]‖2, we see that ρ(Tn[f ]) <
‖f‖∞. Hence, if we take a real analytic function h(z) with radius of convergence r such that
‖f‖∞ < r, then h(Tn[f ]) is well-de�ned.

In Chapter II we consider a symmetrization strategy for the Toeplitz matrix Tn[f ] with
real components that consists in pre-multiplying it by the anti-identity matrix and obtain the
real symmetric matrix YnTn[f ]. Looking more closely at the latter procedure, we see that the
symmetry of YnTn[f ] is a consequence of the persymmetry of Tn[f ], which exactly means that
YnTn[f ] = Tn[f ]

TYn. In order to extend the applicability of the symmetrization procedure to
h(Tn[f ]), as we do in Chapter III, one needs to prove that h(Tn[f ]) is persymmetric, and in
fact this is done in [78]. We report the result for completeness.

Lemma I.8.1. [78, Lemma 6] Assume that h(z) is analytic on |z| < r. If An ∈ Rn×n with

ρ(An) < r is (real) persymmetric, i.e. YnAn = AT
nYn, then h(An) is also (real) persymmetric.

Since the coe�cients bk, with integer k, are all real, we deal with real symmetric matrices
Ynh(Tn[f ]).

I.9 Iterative Methods

The current section is dedicated to iterative methods, which represent a convenient tool for the
solution of large linear systems in the case where the coe�cient matrix is sparse or possesses an
exploitable structure.

Let us �x an invertible matrix A ∈ Cn×n and a vector b ∈ Cn. The linear system

Ax = b

has exactly one solution x = A−1b.
A convergent iterative method theoretically consists in the construction of a sequence of

iterates {x(k)}k such that the quantity ‖x(k) − x‖2 tends to 0 as k tends to ∞. However, for
an actual implementation of the iterative method, one needs to choose an index k̃ such that the
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procedure stops at iteration k̃ and returns x(k̃) as the solution of the linear system, approximated
up to a desired precision. In other words, the iterates x(k) constitute successive approximations
of the solution x, and one needs to choose when the approximation is good enough for stopping
the iteration. For this purpose, let us de�ne the k-th error by

e(k) = x(k) − x

and the k-th residual by
r(k) = b−Ax(k).

Ideally, a stopping criterion would be based on the quantity e(k), because it measures how close
to the true solution the k-th iterate is. In practice, this is not possible since x is unknown and
in many cases the stopping criterion involves the residual.

If a problem is ill-conditioned, we need to pay particular attention to the e�ciency of the
chosen iterative method. To this end, Axelsson and Neytcheva [8] have proposed two criteria
to judge the performance of a method in the case of linear systems stemming from di�erential
problems: the optimal rate of convergence � independent of the level number � and the optimal
order of computational complexity � proportional to the degrees of freedom of the problem.
In a subsequent work, Serra [111] has generalized such criteria to the case of general iterative
methods for nested linear systems Anxn = bn, where {An} is an asymptotically ill-conditioned
class, as follows:

`Opt1': An iterative method is said optimal in the sense of the convergence rate if the conver-
gence speed is independent of the dimension of the matrix An.

`Opt2': An iterative method is said optimal with respect to the arithmetic cost if the cost of
a single iteration, as a function of n, has the same asymptotic order than the cost of a
generic product between the matrix An and a given vector y.

We say that a method is optimal if it possesses both property `Opt1' and `Opt2'. In order
to develop an e�cient iterative method for the solution of our linear system, from property
`Opt2' we see that one iteration of the method should have a reasonable computational cost,
possibly proportional to the cost of the matrix-vector product with matrix An. Property `Opt1'
suggests that the aforementioned index k̃ such that x(k̃) approximates the true solution up to
the desired precision should not depend on the matrix-size.

In the following subsections we recall the key features of some well-known classes of iterative
methods. Firstly, in Subsection I.9.1 we de�ne stationary iterative solvers, focusing in particular
on the Jacobi and Gauss�Seidel methods. In Subsection I.9.2 we present Krylov subspace meth-
ods and see how the study of the spectral properties of the involved matrices can be crucial in
the a priori estimates of the error and the residual behaviours. Moreover, we provide the basics
of preconditioning and report some known strategies in the Toeplitz case. Finally, Subsection
I.9.4 is dedicated to algebraic multigrid methods.

I.9.1 Stationary Methods

Given an invertible matrix A ∈ Cn×n and a vector b ∈ Cn, a stationary iterative method for
the solution of the linear system Ax = b consists in choosing an initial guess x(0) ∈ Cn and
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computing the successive iterates with the formula

x(k+1) = Sx(k) + q, (I.21)

where S ∈ Cn×n is referred to as the iteration matrix and q ∈ Cn is a �xed vector. The
peculiarity of stationary iterative methods is that the matrix S is �xed, that is, it does not
depend on the step k.

The iteration matrix plays a crucial role for the convergence analysis of the associated
method. Indeed, the following result provides a su�cient and necessary condition that links
the spectral radius ρ(S) to the convergence of the stationary iterative procedure.

Proposition I.9.1. [108, Theorem 4.1] Let S be a square matrix such that ρ(S) < 1. Then

I − S is non-singular and the iteration (I.21) converges for any b and x(0). Conversely, if the

iteration (I.21) converges for any b and x(0), then ρ(S) < 1.

A general strategy to develop a stationary iterative method is to consider the decomposition

A =M − (M −A),

where M is an invertible matrix in Cn×n. It is straightforward to see that x is the solution of
the linear system Ax = b if and only if the equality

x = (I −M−1A)x+M−1b,

is veri�ed and, exploiting this observation, given x(0) ∈ Cn we can de�ne the method

x(k+1) = (I −M−1A)x(k) +M−1b, (I.22)

for which the iteration matrix S is equal to (I −M−1A).
In the following, we present the iteration structure of the Richardson, Jacobi and Gauss-

Seidel methods. For this purpose, let us de�ne the matrices B = [bij ]
n
i,j=1 and D = [dij ]

n
i,j=1

from A = [aij ]
n
i,j=1 by the formulae

bij =




−aij , if i > j,

0, if i ≤ j
; dij =




aij , if i = j,

0, if i 6= j
.

Given ω ∈ C\{0}, the relaxed Richardson, Jacobi and Gauss-Seidel methods are de�ned by
iterations of the form (I.22), where

� if we choose M = 1
ω I, we obtain the relaxed Richardson method;

� if we choose M = 1
ωD, we obtain the relaxed Jacobi method;

� if we choose M = 1
ωD −B, we obtain the relaxed Gauss-Seidel method.

For a detailed convergence analysis of these methods we remand to [108].
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I.9.2 Krylov Methods

Krylov subspace methods are a successful class of iterative solvers for a system of linear equations
of the form

Ax = b

that consists in selecting the k-th iterate x(k) from the a�ne space

x(0) + span
{
r(0), Ar(0), A2r(0), . . . , Ak−1r(0)

}

such that the residual r(k) is orthogonal to a given subspace Lk. The feature that characterizes
one Krylov solver from the others is the choice of the subspace Lk.

One of the most celebrated Krylov subspace methods is the Conjugate Gradient (CG)
method, developed by Hestenes and Stiefel [71]. However, this method requires for conver-
gence that the matrix of coe�cients is a HPD matrix, which is quite a strong restriction. In
1975 Paige and Saunders [102] developed the Minimal Residual (MINRES) method for Her-
mitian � but in general inde�nite � matrices, which is the case of the matrix-sequences that we
study in Chapters II�III. A method that can successfully be applied to an even larger class of
linear systems is the Generalized Minimal Residual (GMRES) method, developed by Saad and
Schultz [109] in 1986, which is suitable also for non-Hermitian matrices.

On the other hand, the CG and MINRES methods possess a signi�cant advantage with
respect to the GMRES method: the convergence rates can be estimated using only the eigen-
values of the system matrix. For instance, for the CG method the Axelsson�Lindskog estimates
hold [7], while for the MINRES method analogous results can be deduced from the following
inequality [66], which provides a sharp bound for the residual at iteration k:

‖r(k)‖2/‖r(0)‖2 ≤ min
pk∈Rk[λ]
pk(0)=1

max
i=1,...,n

|pk(λi)|, (I.23)

where Rk[λ] is the space of polynomials with coe�cients in R of degree less than or equal to k. If
the eigenvalues of the Hermitian system matrix are known, the convergence rate of MINRES can
be studied a priori choosing an appropriate polynomial pk in the expression maxi=1,...,n |pk(λi)|.

From Equation (I.23), it is immediate to see that the knowledge of the spectral features of
the system matrix is crucial in the development of some Krylov solvers. Moreover, the estimate
provides a �rst intuitive reason why some eigenvalue distributions are more desirable than others
for the convergence of the MINRES method. Namely, if the eigenvalues are clustered around a
single non-zero point α, the convergence rate is satisfactory: for instance, we can consider the
polynomial pk(λ) = (1− λ/α)k, for which the quantity |pk(λ)| is small at all the points near α.

I.9.3 Preconditioning

In the case of sequences of structured linear systems of the form

{Anxn = bn}n, An ∈ Cdn×dn , bn ∈ Cdn (I.24)

stemming from the discretization of linear PDEs, it often happens that the condition number
of the system matrix An diverges to in�nity as n increases. In many cases, this property is in
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contrast with the desired cluster of the spectrum of An around a single point that we cited in
the previous subsection. In order to accelerate the convergence, we can use the technique of
preconditioning.

The theoretical idea behind preconditioning consists in the substitution of the systems (I.24)
with the preconditioned ones

{P−1
n Anxn = P−1

n bn}n, (I.25)

where Pn ∈ Cdn×dn is a HPD matrix. Since the goal of preconditioning is to accelerate the
convergence of the iterative method, it is evident that the operation of solving a system with
matrix Pn should not be as computationally expensive as the solution of the initial system.

Summarizing the considerations that we made in the previous paragraphs, we can say that,
ideally, the preconditioner Pn should satisfy the following two requirements:

a) for all cn ∈ Cdn the solution of the system Pnyn = cn has computational cost proportional
to that of the matrix-vector product with matrix An;

b) either κ(P−1
n An) is bounded from above by a constant independent of n or {P−1

n An−In}n
is strongly clustered at 0.

Trivially, the option Pn = An satis�es condition b), but in general it de�nitely fails to satisfy
the �rst requirement and of course it is not a sensible choice. The development of an e�cient
preconditioner should well-balance the two conditions with the construction of a matrix Pn

�close� to An, but not as computationally costly to invert.
In the Toeplitz setting, many satisfactory solutions have been studied (see [28, 99, 114] and

references therein). One possibility is to look for a preconditioner with a circulant structure.
This choice automatically satis�es requirement a), since the computational cost of the solution
of a linear system with a (multilevel block) circulant coe�cient matrix is proportional the cost
of the matrix-vector product with a (multilevel block) Toeplitz matrix. Indeed, both operations
can be performed by using only few FFTs, as we recalled in Section I.6.

In what follows, we report two di�erent strategies for circulant preconditioning in the scalar
Toeplitz setting that are e�cient under speci�c assumptions on the generating function:

� the Strang preconditioner for Tn[f ] is the circulant matrix Sn ∈ Cn×n having the vector
[s0, s−1, . . . , s−n+1] as the �rst row and the vector [s0, s1, . . . , sn−1]

T as the �rst column,
which are de�ned by the formula

si =





f̂i, 0 ≤ i ≤ bn2 c;
f̂i−n, bn2 c < i < n;

sn+i, −n < i < 0.

See [49, 116] for optimality results in the case where f belongs to the Dini�Lipschitz class.

� The Frobenius optimal preconditioner for Tn[f ] is the circulant matrix C̃n ∈ Cn×n that
minimizes the Frobenius norm of Tn[f ] − Cn, where Cn ranges over the set of circulant
matrices, that is,

C̃n = argmin
Cn circulant

|||Tn[f ]− Cn|||2.
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If f is a positive continuous function, then the Frobenius optimal preconditioner is a
suitable choice, see [30, 114, 116].

I.9.4 Multigrid Methods

Multigrid methods (MGM) are iterative procedures that aim at solving e�ciently a linear system
of large size by creating a proper sequence of linear systems of decreasing dimensions obtained
by consecutive projections. In the current subsection, we present the Two-Grid Method (TGM)
and the V-cycle method.

Let An ∈ Cn×n, and xn, bn ∈ Cn. Let Pn,m ∈ Cn×m, m < n, be a full-rank matrix and let
us consider two stationary iterative methods: the method Vn,pre, with iteration matrix Vn,pre,
and Vn,post, with iteration matrix Vn,post.

Given an initial guess x(0)n ∈ Cn, an iteration of a TGM is given by the following steps:

x
(k+1)
n = T GM(An, x

(k)
n , bn)

0. xpren = Vνpre
n,pre(An, bn, x

(k)
n ) Pre-smoothing iterations

1. rn = bn −Anx
pre
n

2. rm = PH
n,mrn

3. Am = PH
n,mAnPn,m

4. Solve Amym = rm

5. x̂n = xpren + Pn,mym

Coarse Grid Correction (CGC)

6. x(k+1)
n = Vνpost

n,post(An, bn, x̂n) Post-smoothing iterations

Steps 1. → 5. de�ne the Coarse Grid Correction (CGC) that depends on the grid transfer
operator Pn,m, while step 0. and step 6. consist, respectively, in applying νpre times a pre-
smoother and νpost times a post-smoother of the given iterative methods. Step 3. de�nes the
coarser matrix Am according to the Galerkin approach, which ensures that the CGC is an
algebraic projector, that is, the matrix

CGC(An, Pn,m) =
[
In − Pn,m

(
PH
n,mAnPn,m

)−1
PH
n,mAn

]

is such that CGC(An, Pn,m)2 = CGC(An, Pn,m). An algebraic projector has eigenvalues 0 and 1,
which means that a stationary method with iteration matrix CGC(An, Pn,m) does not converge
(see Theorem I.9.1) and this consideration highlights the crucial role played by the smoothers.
Combining smoothing steps and CGC, the TGM is a stationary method de�ned by the following
matrix

TGM(An, V
νpre
n,pre, V

νpost
n,post, Pn,m) = V

νpost
n,post

[
In − Pn,m

(
PH
n,mAnPn,m

)−1
PH
n,mAn

]
V

νpre
n,pre.

For the convergence analysis of structured matrices, the results are based on the Ruge-Stüben
theory [107] for TGM. In particular, we report a fundamental theorem on the TGM convergence,
whose proof and details are contained in [107, Theorem 5.2] and [4, Remark 2.2].
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Theorem I.9.2. Assume that the pre-smoothing step 0. is not present. Let An be a positive

de�nite matrix of size n and let Vn,post be de�ned as in the TGM algorithm. Assume

(a) ∃αpost > 0 : ‖Vn,postxn‖2An
≤ ‖xn‖2An

− αpost‖xn‖2A2
n
, ∀xn ∈ Cn,

(b) ∃γ > 0 : miny∈Cm ‖xn − Pn,my‖22 ≤ γ‖xn‖2An
, ∀xn ∈ Cn.

Then γ ≥ αpost and

‖TGM(An, I, V
νpost
n,post, Pn,m)‖An ≤

√
1− αpost/γ.

Conditions (a) and (b) are usually called �smoothing property� and �approximation property�,
respectively.

Since αpost and γ are independent of n, if the assumptions of Theorem I.9.2 are satis�ed,
then the resulting TGM also has an optimal rate of convergence. In other words, the number
of iterations in order to reach a given accuracy ε can be bounded from above by a constant
independent of n (possibly depending on the parameter ε).

The computational �aw of the TGM algorithm is the exact solution of the error equation
required by step 4., an operation that can be extremely expensive if the system matrix is of large
size. The V-cycle method remedies this fault by consecutively restricting the problem until it is
so small that the error equation can be easily solved.

Indeed, the standard V-cycle method is obtained replacing the direct solution at step 4.
with a recursive call of the TGM applied to the coarser linear system Am`

ym`
= rm`

, where `
represents the level. The recursion is usually stopped at level ` when m` becomes small enough
for solving cheaply step 4. with a direct solver.
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Chapter II

Asymptotic Spectral Distributions of

Symmetrized Toeplitz Sequences

In the present chapter we analyse the spectral features of the symmetrization of Toeplitz matrices
of the form Tn[f ], generated by a function f ∈ L1([−π, π]) de�ned on [−π, π] and periodically
extended to the whole real line. In particular, we consider the case where the Fourier coe�cients
of f are real, hence, from the de�nition in I.5, the corresponding Tn[f ] is real. The object of
our investigation is the real matrix YnTn[f ] obtained pre-multiplying Tn[f ] by the anti-identity
matrix Yn ∈ Rn×n de�ned as

Yn =




1

. .
.

1


 .

Note that YnTn[f ] is a Hankel matrix, that is, it is a matrix with constant elements along the
skew-diagonals, and hence it is symmetric.

The matrix Yn is a unitary matrix and, by the de�nition and properties of the singular
value decomposition [80], this implies that Tn[f ] and YnTn[f ] possess the same singular values.
Conversely, the presented one-sided symmetrization strategy produces signi�cant changes in the
eigenvalues. Think for instance of the Toeplitz matrix

Tn

[
e−ı̂ϑ

]
=




0 1
. . .

. . .

0 1

0



,

which is real non-symmetric and has all the eigenvalues equal to 0. The symmetrized version

YnTn

[
e−ı̂ϑ

]
=




0

0 1

. .
.
. .
.

0 1



,

is instead a diagonalizable matrix with rank n− 1 and hence its null eigenvalue has multiplicity
only 1. It is straightforward to see that all the other eigenvalues are equal to 1 and -1 with
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roughly the same multiplicity. Notice that the generating function e−ı̂ϑ is in no way related to the
spectrum of the non-symmetric Toeplitz matrix Tn

[
e−ı̂ϑ

]
, while the eigenvalues of YnTn

[
e−ı̂ϑ

]

are approximatively half described by the modulus of e−ı̂ϑ, which is identically equal to 1, and
approximatively half described by the opposite of the modulus of e−ı̂ϑ.

In this chapter, we formalize the latter considerations providing the spectral distribution of
a matrix-sequence of the form {YnTn[f ]}n in the case where f ∈ L1([−π, π]) has real Fourier
coe�cients [53]. The basic structure of the spectral symbol of {YnTn[f ]}n is intuitively clear
both from the example above and from the results shown in [77], where the authors prove that
roughly half of the eigenvalues of YnTn[f ] are negative and roughly half of the eigenvalues of
YnTn[f ] are positive, when the dimension n of the matrix is su�ciently large and f is sparsely
vanishing. In the main results of the chapter, Theorem II.1.2 and Corollary II.1.2.1, we prove
that {YnTn[f ]}n is distributed as φ|f | in the eigenvalue sense, where we de�ne

φ|f |(ϑ) =

{
|f(ϑ)|, ϑ ∈ [0, 2π],

−|f(−ϑ)|, ϑ ∈ [−2π, 0)
,

and this informally means that roughly half of the eigenvalues of YnTn[f ] are positive and they
are approximated by a uniform sampling of |f | and roughly half of the eigenvalues are negative
and they are approximated by a uniform sampling of −|f |.

As we saw in Subsection I.9.2, symmetry is a particularly desirable property for a matrix
when we want to solve an associated linear system with an iterative method. Indeed, if the
matrix is symmetric a method such as the MINRES can be employed and it is possible to study
a priori the convergence rates of the algorithm if the eigenvalues are known. The symmetrization
procedure that we analyse in this chapter was introduced by Pestana and Wathen [104] for the
very purpose of developing a competitive method for the solution of real non-symmetric Toeplitz
systems. Namely, they introduced an absolute value circulant preconditioner |Cn| and showed,
under certain assumptions, that the preconditioned matrix |Cn|−1YnTn[f ] can be decomposed
into the sum of an involutory matrix, a low rank matrix, and a small norm matrix. Due to the
observed clustered spectra around ±1 of |Cn|−1YnTn[f ], rapid convergence of Krylov subspace
methods such as MINRES can be expected. Exploiting the spectral distribution results on
{YnTn[f ]}n, in Theorem II.2.1 we prove, under analogous assumptions, that the preconditioned
matrix-sequence {|Cn|−1YnTn[f ]}n has spectral symbol φ1, and this result permits us to analyse
in detail the e�ciency of classes of circulant preconditioners |Cn| obtained from the relevant
literature, such as the Strang preconditioner and the Frobenius optimal preconditioner.

The �ndings presented in the following sections are published in [53]. In the following we
highlight the main results section by section. In Section II.1 we �rst give a distribution result
regarding the eigenvalues of special 2-by-2 block matrix-sequences, whose generality goes beyond
the speci�c case under consideration. Moreover, we report the main results on the asymptotic
distributions of {YnTn[f ]}n, both in the scalar and in the block-Toeplitz case, see Theorems
II.1.2�II.1.3. In Section II.2, we provide the eigenvalue distribution of the preconditioned matrix-
sequences {|Cn|−1YnTn[f ]}n under speci�c assumptions on the circulant preconditioner |Cn|.
Finally, in Sections II.3�II.4 we provide and critically discuss a selection of numerical experiments
concerning di�erent Toeplitz matrices Tn[f ] and the corresponding circulant preconditioners.

It is worth noting that analogous results have been obtained independently in [93], making
use of the powerful *-algebra structure of the GLT sequences that we introduced in Section
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I.7. Conversely, our analysis is based on the notion of approximating class of sequences that we
de�ned in Subsection I.4.2 and that constitutes one of the prerequisites for the GLT theory, as
can be seen in [62].

II.1 Spectral Results on {YnTn[f ]}n
We open the present section �xing the notation for a class of functions with a particular structure,
which are used throughout the current and the next chapters.

Given D ⊂ Rk with 0 < µk(D) <∞, we de�ne D̃ as D
⋃
Dp, where p ∈ Rk and Dp = p+D,

with the constraint that D and Dp have non-intersecting interior part, that is D◦⋂D◦
p = ∅. In

this way µk(D̃) = 2µk(D). Given any function g : D → Cs×s, we de�ne ψg,p ≡ ψg over D̃ in the
following manner

ψg,p ≡ ψg(x) =

{
g(x), x ∈ D,

−g(x− p), x ∈ Dp, x /∈ D.
(II.1)

The following theorem is of wide interest when dealing with special 2 × 2 block matrix-
sequences. Even though the result is quite intuitive if we consider the relation between the
eigenvalues of the block matrix [

O A

AH O

]

and the singular values of the matrix A ∈ Cm×m, for clarity we provide a highly detailed proof
and, moreover, we treat a general case where the blocks are rectangular matrices.

Theorem II.1.1. Suppose kn = o(n) with kn ∈ Z and A(n) ∈ C(dn/2e+kn)×(bn/2c−kn). Let

Bn, En ∈ Cn×n be Hermitian matrices such that

Bn =

[
Odn/2e+kn,dn/2e+kn A(n)

A(n)H Obn/2c−kn,bn/2c−kn

]
+ En.

If {A(n)}n ∼σ g, where g : D → C is a non-negative function de�ned over a measurable set

D with positive, �nite Lebesgue measure, and {En}n ∼σ 0, then

{Bn}n ∼λ ψg

over the domain D̃, with ψg as in (II.1).

Proof. For the sake of notational simplicity, we set A = A(n) and we de�ne the auxiliary matrix
Gn as follows

Gn =

[
Odn/2e+kn,dn/2e+kn A

AH Obn/2c−kn,bn/2c−kn

]
.

Fixing n and supposing kn ≥ 0, we de�ne m = bn/2c − kn and M = dn/2e + kn. Then,
we consider the (full) singular value decomposition of A = UMΣV H

m , where UM , Vm are unitary
matrices of size M and m, respectively, and Σ is the rectangular diagonal matrix containing the
singular values σ1, . . . , σm. We have

Gn =

[
UM OM,m

Om,M Vm

][
OM,M Σ

ΣT Om,m

][
UH
M OM,m

Om,M V H
m

]
(II.2)
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which is similar to

Sn =

[
OM,M Σ

ΣT Om,m

]
.

Notice that the matrix Σ can be written as

Σ =

[
Σ̃m

Ok,m

]
, Σ̃m =




σ1
. . .

σm


 , k =M −m, (II.3)

where Σ = Σ̃m if k = 0. Under the hypothesis that kn ≥ 0, if the �xed n is even, the index k is
equal to 2kn. Otherwise, it is equal to 2kn + 1.

Using (II.3), the matrix Sn can be written as

Sn =

[
OM,M Σ

ΣT Om,m

]
=



Om,m Om,k Σ̃m

Ok,m Ok,k Ok,m

Σ̃m Om,k Om,m


 ,

where, if k = 0, the central row and column are not present and which, up to similarity by an
obvious permutation, can be written as the direct sum of Ok,k and

[
Om,m Σ̃m

Σ̃m Om,m

]
.

The latter matrix is 2 × 2 block circulant and hence can be diagonalized by the 2 × 2 block
Fourier matrix so that

[
Om,m Σ̃m

Σ̃m Om,m

]
=

√
2

2

[
Im Im

Im −Im

][
Σ̃m Om,m

Om,m −Σ̃m

] √
2

2

[
Im Im

Im −Im

]
.

Therefore, putting together the above information, we can write the factorization

Sn =



Om,m Om,k Σ̃m

Ok,m Ok,k Ok,m

Σ̃m Om,k Om,m


 = Qn




Σ̃m Om,k Om,m

Ok,m Ok,k Ok,m

Om,m Om,k −Σ̃m


Qn,

where Qn is the orthogonal matrix

Qn =

√
2

2




Im Om,k Im

Ok,m

√
2Ik Ok,m

Im Om,k −Im




given by the direct sum of the identity of size k and of the previous 2× 2 block Fourier matrix.
Thus, we know that Gn is similar to the block diagonal matrix




Σ̃m Om,k Om,m

Ok,m Ok,k Ok,m

Om,m Om,k −Σ̃m


 . (II.4)

Hence (II.4) implies that we can write the eigenvalues of the matrix Gn for the case kn ≥ 0. A
similar factorization can be obtained for kn < 0, by de�ningm = dn/2e+kn andM = bn/2c−kn.
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In particular, the eigenvalues of Gn are given by the set of the singular values of An, the set
of the negation of the singular values of An and, in addition to these, at most k = o(n) zero
eigenvalues. From the latter, it is transparent that

{Gn}n ∼λ ψg.

Finally, since all the involved matrices are Hermitian and the perturbation matrix-sequence is
zero distributed, i.e, {En}n ∼λ,σ 0, the desired result follows directly from the second part of
Lemma I.4.2, taking into account that {{Gn}n}m is a constant class of sequences (that is not
depending on the variable m) and it is nevertheless an a.c.s for {Bn}n.

Employing Theorem II.1.1, we now prove the following central result on the spectral distri-
bution of symmetrized Toeplitz sequences.

Theorem II.1.2. Suppose f ∈ L1([−π, π]) with real Fourier coe�cients and let Yn ∈ Rn×n be

the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f . Then

{YnTn[f ]}n ∼λ ψ|f |

with ψ|f | de�ned as in (II.1) over the domain D̃ with D = [0, 2π] and p = −2π.

Proof. We let Hν [f,−] be the ν-by-ν Hankel matrix generated by f containing the Fourier
coe�cients from f̂−1 in position (1, 1) to f̂−2ν+1 in position (ν, ν). Analogously, we let Hν [f,+]

be the ν-by-ν Hankel matrix generated by f containing the Fourier coe�cients from f̂1 in position
(1, 1) to f̂2ν−1 in position (ν, ν).

We start by considering the case of even n and writing YnTn[f ] as a 2-by-2 block matrix of
size n = 2ν, i.e.

YnTn[f ] =

[
YνHν [f,+]Yν YνTν [f ]

YνTν [f ] Hν [f,−]

]
.

Note that for Lebesgue integrable f , Hν [f,+] is exactly the Hankel matrix generated by f

according to the de�nition given in [51]: in that paper it was proved that {Hν [f,+]}n ∼σ 0.
Since in our setting Hν [f,+] is symmetric for every ν, it follows that {Hν [f,+]}n ∼λ 0. Hence,
with Yν being both symmetric and orthogonal, we deduce that the matrix is symmetric with the
same singular values as Hν [f,+]. Therefore

{YνHν [f,+]Yν}n ∼λ,σ 0.

Similarly, we have
{Hν [f,−]}n ∼λ,σ 0

since Hν [f,−] = Hν [f̄ ,+] and f̄ (being the conjugate of f) is Lebesgue integrable if and only if
f is Lebesgue integrable.

Therefore, the matrix-sequence {YnTn[f ]}n can be written as the sum of the matrix-sequence
whose eigenvalues are clustered at zero

{En}n =

{[
YνHν [f,+]Yν Oν,ν

Oν,ν Hν [f,−]

]}

n
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and the matrix-sequence {[
Oν,ν YνTν [f ]

YνTν [f ] Oν,ν

]}

n

whose eigenvalues are ±σj(YνTν [f ]) = ±σj(Tν [f ]), j = 1, . . . , ν.
Hence, the claimed thesis follows from Theorem II.1.1 with g = |f |, A = AH = AT = YνTν [f ],

and kn = 0.
In the case where n is odd, the analysis is of the same type as before with a few slight

technical changes.

By setting ν = bn/2c, µ = dn/2e, v =
[
f̂ν , . . . , f̂1

]T
, and w =

[
f̂−1, . . . , f̂−ν

]T
we have

YnTn[f ] =



YνHν [f · e−ı̂ϑ,+]Yν v YνTν [f ]

vT f̂0 wT

YνTν [f ] w Hν [f · eı̂ϑ,−]


 , (II.5)

provided that we exclude the trivial case n = 1. Let us consider the matrices

E′
n =

[
YµHµ[f · eı̂ϑ,+]Yµ Oµ,ν

Oν,µ Hν [f · eı̂ϑ,−]

]
,

YµHµ[f · eı̂ϑ,+]Yµ =

[
YνHν [f · e−ı̂ϑ,+]Yν v

vT f̂0

]
,

E′′
n =



Oν,ν oν Oν,ν

oν
T 0 wT

Oν,ν w Oν,ν


 ,

and de�ne En = E′
n + E′′

n. From (II.5), it is evident that the matrix-sequence {YnTn[f ]}n can
be written as the sum of the matrix-sequence {En}n, whose eigenvalues are clustered at zero,
and the matrix-sequence 







Oν,ν oν YνTν [f ]

oν
T 0 oν

T

YνTν [f ] oν Oν,ν








n

whose eigenvalues are 0 with multiplicity 1 and ±σj(YνTν [f ]), j = 1, . . . , ν. Note that the
unitary nature of Yν implies again that σj(YνTν [f ]) = σj(Tν [f ]), j = 1, . . . , ν.

Consequently, the claimed thesis follows from Theorem II.1.1 with g = |f |,

A = A(n) =

[
YνTν [f ]

oTν

]
, AH = A(n)H = A(n)T =

[
YνTν [f ] oν

]
,

and kn = 0.

The following corollary provides a di�erent spectral symbol for the matrix-sequence
{YnTn[f ]}n, obtained by �rearranging� the function ψ|f |. Indeed, the concept of rearrange-
ment has a precise technical meaning and a discussion on the topic can be found in [62, Section
3.2].
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Corollary II.1.2.1. Suppose f ∈ L1([−π, π]) with real Fourier coe�cients and Yn ∈ Rn×n is

the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f . Then,

{YnTn[f ]}n ∼λ φ|f |

over the domain [−2π, 2π] with φg de�ned in the following way

φg(ϑ) =

{
g(ϑ), ϑ ∈ [0, 2π],

−g(−ϑ), ϑ ∈ [−2π, 0).

Proof. We observe that φ|f | is a rearrangement of ψ|f |, that is, for all F continuous with bounded
support we have ∫ 2π

−2π
F
(
φ|f |(ϑ)

)
dϑ =

∫ 2π

−2π
F
(
ψ|f |(ϑ)

)
dϑ.

Hence, by the very de�nition of spectral distribution, we have {YnTn[f ]}n ∼λ φ|f | if and only
if {YnTn[f ]}n ∼λ ψ|f |. Therefore, the desired result is an immediate consequence of Theorem
II.1.2.

Considering a real-valued generating function f , we remark that the spectral distribution of
{YnTn[f ]}n is in stark contrast to that of {Tn[f ]}n provided by the generalized Szeg® theorem
(Theorem I.5.3), even though their singular value distributions are equivalent.

Finally, the techniques given in this section can be adapted verbatim to the case of Toeplitz
structures generated by s× s matrix-valued functions, namely, the following theorem holds.

Theorem II.1.3. Suppose that f ∈ L1([−π, π], s) is an s× s matrix-valued function de�ned on

[−π, π]. Let Tn[f ] ∈ Csn×sn be the block-Toeplitz matrix generated by f . Then

{(Yn ⊗ Is)Tn[f ]}n ∼λ ψ|f |, |f | = (f fH)1/2,

over the domain D̃ with D = [0, 2π] and p = −2π, where ψ|f | is de�ned in (II.1).

II.2 Spectral Results on Preconditioned Matrix-Sequences

In the following theorems we use the results of the previous subsection in order to deal with the
eigenvalue distribution of certain preconditioned matrix-sequences. In particular, we investigate
the assumptions on the matrix Cn = FnΛnF

H
n , where Λn is a diagonal matrix, such that its

absolute value |Cn| de�ned by

|Cn| = (CH
n Cn)

1/2

= (CnC
H
n )1/2 (II.6)

= Fn|Λn|FH
n ,

provides a weak cluster to ±1 of the eigenvalues of the preconditioned matrix-sequence
{|Cn|−1YnTn[f ]}n.
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Theorem II.2.1. Suppose f ∈ L1([−π, π]) with real Fourier coe�cients and let Yn ∈ Rn×n be

the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f . Then

{|Cn|−1YnTn[f ]}n ∼λ ψ1 = φ1

over the domain D̃ with D = [0, 2π] and p = −2π under the assumption that {Cn}n is a circulant

matrix-sequence of invertible matrices such that

{C−1
n Tn[f ]}n ∼σ 1.

Proof. For Cn being non-singular, the matrix |Cn| is symmetric positive de�nite and, hence, the
matrices

|Cn|−1YnTn[f ] and |Cn|−1/2YnTn[f ]|Cn|−1/2

are well de�ned and similar. They share the same eigenvalues clustered around {−1, 1} by [104],
under the assumption that {C−1

n Tn[f ]}n is clustered around 1 in the singular value sense. Also,
by the Sylvester inertia law, the matrices

|Cn|−1/2YnTn[f ]|Cn|−1/2 and YnTn[f ]

have exactly the same inertia, namely the same number of positive, negative, and zero eigen-
values. Also, by [77, Theorem 4.1], we know that the matrix YnTn[f ] has n/2 + o(n) positive
eigenvalues, n/2+o(n) negative eigenvalues, and o(n) zero eigenvalues for large enough n. There-
fore, by combining the above statements, we deduce that the matrix |Cn|−1YnTn[f ] possesses
n/2 + o(n) eigenvalues clustered around 1 and n/2 + o(n) eigenvalues clustered around −1.

A simple check shows that the latter statement is equivalent to writing

{|Cn|−1YnTn[f ]}n ∼λ ψ1 = φ1

over the domain D̃ with D = [0, 2π] and p = −2π.

We now complement the previous theorem with a short discussion regarding the hypothesis
{C−1

n Tn[f ]}n ∼σ 1. Note that we can extend the result to the case where Cn is not necessarily
invertible. For this purpose, we denote by C†

n the pseudo-inverse of a circulant matrix Cn,
which is obtained by taking the singular value decomposition of Cn and replacing every non-
zero singular value by its reciprocal. If we consider C†

n instead of C−1
n , the assumption that f is

sparsely vanishing implies the presence of at most o(n) zero eigenvalues in both the matrix Cn

and the preconditioned matrix C†
nTn[f ]. Recalling the de�nitions in Subsection I.9.3 and the

analysis in [49, 117], we have the following picture.

A) When Cn is the Strang preconditioner for Tn[f ], the key assumption {C†
nTn[f ]}n ∼σ 1 holds

if f is sparsely vanishing and belongs to the Dini-Lipschitz class (see for example [49, Item
2, Proposition 2.1]) which is a proper subset of the continuous 2π-periodic functions.

B) When Cn is the Frobenius optimal preconditioner for Tn[f ], the key assumption
{C†

nTn[f ]}n ∼σ 1 holds if f is sparsely vanishing and simply Lebesgue integrable (such
a general result was proved quite elegantly by combining the Korovkin theory [117] and
the GLT analysis in [62]).
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We summarize the interplay among Theorem II.2.1 and Items A and B in the following
general result.

Theorem II.2.2. Suppose f ∈ L1([−π, π]) with real Fourier coe�cients and let Yn ∈ Rn×n be

the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f and assume

that f is sparsely vanishing. Then

{|Cn,∗|−1YnTn[f ]}n ∼λ ψ1 = φ1

over the domain D̃ with D = [0, 2π] and p = −2π, under the assumption that either

α) f belongs to the Dini-Lipschitz class, Cn is the Strang preconditioner, and Cn,∗ is the stabil-

ized Strang preconditioner where all the zero eigenvalues are replaced by 1 (or by any other

suitable constant di�erent from zero) or

β) Cn is the Frobenius optimal preconditioner and Cn,∗ is the stabilized Frobenius optimal precon-

ditioner where all the zero eigenvalues are replaced by 1 (or by any other suitable constant

di�erent from zero).

Proof. By combining Theorem II.2.1 and the aforementioned Item A, we deduce that
{C†

nTn[f ]}n ∼σ 1 and {|Cn|†YnTn[f ]}n ∼λ ψ1 = φ1. Since f is sparsely vanishing, the number
of zero eigenvalues of {Cn}n is at most o(n), and both {Cn−Cn,∗}n and {|Cn|†− |Cn,∗|−1}n are
clustered around zero. Hence, the assertion under the assumption α) follows. Using the exactly
same arguments with Item B, the assertion under assumption β) can be shown.

The above theorem covers the range of applicability of the preconditioned MINRES technique
described in [104]. Regarding the analysis wherein, it is worth observing that the circulant matrix
C̃n = FnΛ̃nF

H
n , where Λ̃n is the diagonal matrix in the eigendecomposition of Cn with all entries

divided by their module, is not involutory as claimed in [104, Eq. (3.4), P. 276]. In fact, it is
simply unitary: indeed its eigenvalues have unit modulus, but in general they are not real.
Hence, it is orthogonal when Cn is real.

Finally, we point out that the quality of clustering of the preconditioners in Theorems II.2.1
and II.2.2 depends on that of the standard circulant based preconditioning whose analysis is
available in the relevant literature (see [99] and the references therein).

II.3 Numerical Tests on the Spectral Distribution of {YnTn[f ]}n
In the current section we numerically show that the results obtained in Section II.1 are true in
the cases of both trigonometric polynomials and more generic functions in L1([−π, π]).

In order to numerically support Theorem II.1.2, we show that for large enough n the eigen-
values of YnTn[f ] are approximately equal to the samples of ψ|f | over a uniform grid in [−2π, 2π],
with the possible exception of a small number of outliers. We also remark that the function φ|f |
in Corollary II.1.2.1 has the same property, being a rearrangement of ψ|f |.

Surprisingly, we observe that the forecasts provided by our theorems concerning the symbols
are highly accurate and go beyond the scope of our developed theory, so the corresponding
investigation will be a subject for future research.
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We highlight the fact that the matrix YnTn[f ] is symmetric for any n, so the quantities
λj(YnTn[f ]) are real for j = 1, . . . , n. In particular we order the eigenvalues of YnTn[f ] according
to the evaluation of ψ|f | (respectively φ|f |) on the following uniform grid in [−2π, 2π]:

ϑj,n = −2π + j
4π

n
, j = 1, . . . , n. (II.7)

Thus, in our experiments, we �rst compute the quantities ψ|f |(ϑj,n) and φ|f |(ϑj,n) for a �xed
n and then compare them with the properly sorted eigenvalues λj(YnTn[f ]), j = 1, . . . , n. The
quantities λj(YnTn[f ]) are computed with MATLAB's eig function.

In Example 2, we give numerical evidence of the fact that λj(YnTn[f ]) and ψ|f |(ϑj,n) are
approximately equal for a real-valued, even trigonometric polynomial. In Example 3, considering
a trigonometric polynomial, we compare the quantities λj(YnTn[f ]) with both ψ|f |(ϑj,n) and
φ|f |(ϑj,n), and observe that they are approximately equal with the exception of three outliers. In
Example 4 we give numerical evidence of Theorem II.1.2 for a continuous function in L1([−π, π])
and in Example 5 we do the same for a discontinuous piecewise constant function in L1([−π, π]).

Example 2. We consider the real-valued, even trigonometric polynomial f : [−π, π] → R de�ned

by

f(ϑ) = 2− 12 cos(ϑ).

The n-by-n Toeplitz matrix generated by f is

Tn[f ] =




2 −6

−6
. . .

. . .

. . .
. . . −6

−6 2



.

Notice that Tn[f ] is banded and symmetric. The multiplication by Yn produces the following

matrix:

YnTn[f ] =




−6 2

. .
.

. .
. −6

−6 . .
.

. .
.

2 −6



.

Figure II.1 shows that the properly sorted eigenvalues of YnTn[f ] are approximately equal to the

samples of ψ|f | over ϑj,n for all j = 1, . . . , n. The plot is made for n = 300. This result is

expected from the statement of Theorem II.1.2 and there are no outliers in this case.

Example 3. In this example we deal with a trigonometric polynomial f : [−π, π] → C, de�ned

as

f(ϑ) = 4 + 2e−ı̂ϑ + 2e−2ı̂ϑ + 9e−3ı̂ϑ + eı̂ϑ.

Hence, the function f generates a real, banded Toeplitz matrix Tn[f ]. Di�erently from Example 2,

the matrix Tn[f ] in this case is not symmetric. Nevertheless, the premultiplication by Yn produces

the symmetric matrix YnTn[f ] with real eigenvalues λj(YnTn[f ]), j = 1, . . . , n.

For this example, we compare the eigenvalues of YnTn[f ] with the samples of ψ|f | in Figure

II.2 and those with φ|f | in Figure II.3. In both �gures, we observe that the spectrum of YnTn[f ]
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j
(Y

300
T

300
[f])

|f|
(

j,300
)

Figure II.1: Example 2, a comparison between the eigenvalues λj(YnTn[f ]) and the samples ψ|f |(ϑj,n), for

f(ϑ) = 2− 12 cos(ϑ) and n = 300.

is well approximated by both the evaluations of ψ|f | and φ|f |, except for the presence of three

outliers.

The presence of such eigenvalues, which are not captured by the sampling of ψ|f | and φ|f |, is
in line with the behaviour predicted by Theorem II.1.2 and Corollary II.1.2.1. In fact, this agrees

well with the concept of spectral distribution formalized in De�nition I.4.3.

Example 4. Let us consider the function f : [−π, π] → R given by

f(ϑ) = ϑ2,

periodically extended to the real line.

The function f is not a trigonometric polynomial, and consequently the matrices Tn[f ] are

dense for all n. In fact, the Fourier coe�cients of f are explicitly given by the formulae
{
f̂0 =

π2

3 ,

f̂k = (−1)k 2
k2
, k = ±1,±2, . . . .

.

This expression can be derived by a direct computation of the quantities

f̂k =
1

π

∫ π

0
ϑ2 cos(−kϑ) dϑ.

In this example, we set n = 200 and evaluate ψ|f | on the points of the grid ϑj,n. Recalling

that f is de�ned on [−π, π] and periodically extended to the real line, we can write the following

explicit formulae for f in [0, 2π]:

f(ϑ) =

{
ϑ2, ϑ ∈ [0, π],

(ϑ− 2π)2, ϑ ∈ (π, 2π]
.
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|f|
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Figure II.2: Example 3, a comparison between the eigenvalues λj(YnTn[f ]), j = 1, . . . , n, and the samples

ψ|f |(ϑj,n), for f(ϑ) = 4 + 2e−ı̂ϑ + 2e−2ı̂ϑ + 9e−3ı̂ϑ + eı̂ϑ for n = 300.

j
(Y

300
T

300
[f])

|f|
(

j,300
)

Figure II.3: Example 3, a comparison between the eigenvalues λj(YnTn[f ]), j = 1, . . . , n, and the samples

φ|f |(ϑj,n), for f(ϑ) = 4 + 2e−ı̂ϑ + 2e−2ı̂ϑ + 9e−3ı̂ϑ + eı̂ϑ for n = 300.
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j
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T
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[f])

|f|
(
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)

Figure II.4: Example 4, a comparison between the eigenvalues λj(YnTn[f ]) and the samples ψ|f |(ϑj,n), for

f(ϑ) = ϑ2 and n = 200.

As a consequence of the de�nition of f , we have that the associated function ψ|f | is piecewisely
de�ned in the following 4 subintervals

ψ|f |(ϑj,n) =





−(ϑj,n + 2π)2, ∀j = 1, . . . , n4 ,

−(ϑj,n)
2, ∀j = n

4 + 1, . . . , n2 ,

(ϑj,n)
2, ∀j = n

2 + 1, . . . , 3n4 ,

(ϑj,n − 2π)2, ∀j = 3n
4 + 1, . . . , n

.

In Figure II.4, we numerically show that the quantities ψ|f |(ϑj,n) approximate the eigenval-

ues λj(YnTn[f ]) for all j = 1, . . . , n, computed with MATLAB's eig function. This result is

expected from Theorem II.1.2, which holds for generic functions in L1([−π, π]) with real Fourier

coe�cients.

Example 5. In the current example, we give numerical evidence of the distribution result of The-

orem II.1.2 under the hypothesis that f is a discontinuous function f : [−π, π] → R, piecewisely

de�ned by the formulae

f(ϑ) =





5, ϑ ∈ [−π,−π/2),
2, ϑ ∈ [−π/2, π/2),
5, ϑ ∈ [π/2, π],

and periodically extended to the real line.

We �x n = 80 and compute ψ|f | on the whole grid ϑj,n with a procedure similar to that in

Example 4. In Figure II.5, we show that the sampling ψ|f |(ϑj,n) is an approximation of the

eigenvalues of the matrix YnTn[f ] up to a constant number of outliers.
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j
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Figure II.5: Example 5, comparison between the eigenvalues λj(YnTn[f ]), j = 1, . . . , n, and the samples ψ|f |(ϑj,n),

for the piecewise constant f for n = 80.

Example 6. In the last example of this subsection we focus on the spectral distribution of the

symmetrized Toeplitz sequence associated with a matrix-valued function f : [−π, π] → R2×2 given

by

f(ϑ) =
1√
2

[
1 1

1 −1

][
10 + 2 cosϑ 0

0 2− cosϑ

]
1√
2

[
1 1

1 −1

]
.

To numerically verify the distribution result of Theorem II.1.3 in this matrix-valued setting

we need to compare the eigenvalues of the matrix (Yn ⊗ Is)Tn[f ] and the evaluation of the ei-

genvalue functions of ψ|f | on the uniform grid ϑj,n, that is, the quantities λ1
(
ψ|f |
)
(ϑj,n) and

λ2
(
ψ|f |
)
(ϑj,n). We choose n = 100, in this setting we can evaluate ψ|f | on the uniform grid

ϑj,n and then compute the quantities λ1
(
ψ|f |(ϑj,n)

)
and λ2

(
ψ|f |(ϑj,n)

)
for j = 1, . . . , n. Fig-

ure II.6 shows that the considered sampling of the eigenvalue functions approximates the eigen-

values of the matrix (Yn ⊗ Is)Tn[f ] well. Moreover, we observe the four branches of eigenvalues

[−12,−8] ∪ [−3,−1] ∪ [1, 3] ∪ [8, 12] as described by Theorem II.1.3.

II.4 Numerical Tests on Preconditioned Matrix-Sequences

In the current section we illustrate the predicted behaviour of the eigenvalues of the precon-
ditioned matrix-sequences in Theorem II.2.1 for di�erent choices of generating functions and
circulant preconditioners.

In particular, in Example 7 we focus on f being a trigonometric polynomial. In Example 8
we �x f to be a quadratic function and in Example 9 we consider a discontinuous piecewise
constant generating function.
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Figure II.6: Example 6, comparison between the eigenvalues λj((Yn ⊗ I2)Tn[f ]) and the eigenvalue functions of

ψ|f | evaluated on the grid ϑj,n, for the matrix-valued function f and n = 100.

In the following examples, we �rst verify that the condition {C†
nTn[f ]}n ∼σ 1 holds for the

speci�c choices of generating function f and circulant preconditioner Cn. We prove this either
using the discussion after Theorem II.2.1 (for Examples 7 and 8) or numerically (for Example 9).

Once such a hypothesis is veri�ed, we graphically show that the eigenvalues of
{|Cn|−1YnTn[f ]}n are distributed as the function ψ1 over [−2π, 2π].

Example 7. We consider the trigonometric polynomial

f(ϑ) = 2− 2e−ı̂ϑ − 3eı̂ϑ.

Since f is a nonzero polynomial, it is obviously sparsely vanishing and belongs to the Dini-

Lipschitz class. Thus, we can use either Item A or B after Theorem II.2.1 to realize that

{C†
nTn[f ]}n ∼σ 1. We follow Item A (Item B is analogous), choosing Cn as the Strang precon-

ditioner for Tn[f ].

In Figure II.7, we plot the eigenvalues of |Cn|−1YnTn[f ] for di�erent values of n. For both

n = 500 and n = 1000, we observe that the values λj(|Cn|−1YnTn[f ]) are distributed as the

function ψ1, as predicted by Theorem II.2.1. In fact, except for a constant number of outliers,

half of the eigenvalues are equal to -1 and the other half are equal to 1.

Example 8. We consider the generating function

f(ϑ) = ϑ2.

The discussion following Theorem II.2.1 assures us that, in this case, we can use both the Strang

preconditioner and the Frobenius optimal preconditioner. For the current example, we show the

results obtained from the two types of preconditioners for di�erent n.
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Figure II.7: Example 7, the eigenvalues of |Cn|
−1YnTn[f ], where f(ϑ) = 2 − 2e−ı̂ϑ − 3eı̂ϑ, Cn is the Strang

preconditioner, and n = 500 or 1000.

In Figure II.8, we plot the eigenvalues λj(|Cn|−1YnTn[f ]), where Cn is the Strang precondi-

tioner for n = 157, 200, 589, or 1000. For all tested n, the largest eigenvalue λn(|Cn|−1YnTn[f ])

is an outlier and becomes large quickly as n increases. Consequently, this large outlier is not

plotted for a better visualization of the values λj(|Cn|−1YnTn[f ]) for j = 1, . . . , n− 1.

Notice that the spectrum of |Cn|−1YnTn[f ] is divided into two sets with almost the same

cardinality: the �rst contains the eigenvalues equal to -1 and the second contains those equal to

1. Finally, the outliers that do not belong to the previous group are in�nitesimal in the dimension

n of the matrix.

In Figure II.9, an analogous clustering of eigenvalues is shown using the Frobenius precon-

ditioner for n = 157, 200, 589, or 1000. In this second experiment, the Frobenius preconditioner

gives us a worse result in terms of outliers. In fact, the number of outliers is signi�cantly larger

than that in the Strang preconditioner case. However, it is still in�nitesimal with respect to n as

expected from Theorem II.2.1.

Example 9. In this last example, we consider the discontinuous function

f(ϑ) =





5, ϑ ∈ [−π,−π/2),
2, ϑ ∈ [−π/2, π/2),
5, ϑ ∈ [π/2, π].

In this case, instead of using Item B, we show in Figure II.10 graphically that the property

{C†
nTn[f ]}n ∼σ 1,

is true for the Strang preconditioner.

In Figure II.11, we plot the eigenvalues λj(|Cn|−1YnTn[f ]), j = 1, . . . , n − 1, for n = 500

or 1000. In both cases, the eigenvalue λn(|Cn|−1YnTn[f ]) is an outlier of large magnitude and

therefore we do not plot it as before.

The clustering of the spectrum around ±1 numerically con�rms the distribution result on

the preconditioned matrix-sequence {|Cn|−1YnTn[f ]}n in a more general hypothesis of Theorem

II.2.1.

In this Chapter we focused the eigenvalue distribution of sequences of the form {YnTn[f ]}n.
In the next Chapter we extend the analysis to the case of symmetrization of matrix-sequences of
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Figure II.8: Example 8, the eigenvalues of |Cn|
−1YnTn[f ], where f(ϑ) = ϑ2, Cn is the Strang preconditioner,

and n = 157, 200, 589 or 1000. The largest eigenvalue λn(|Cn|
−1YnTn[f ]) is an outlier � approximately 104 for

all values of n � and it is not plotted.
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Figure II.9: Example 8, the eigenvalues of |Cn|
−1YnTn[f ], where f(ϑ) = ϑ2, Cn is the Frobenius optimal precon-

ditioner, and n = 157, 200, 589, or 1000. The largest eigenvalue λn(|Cn|
−1YnTn[f ]) is an outlier � approximately

102 for all values of n � and it is not plotted.
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Figure II.10: Example 9, the singular values of C†
nTn[f ], where f is piecewise constant, Cn is the Strang precon-

ditioner, and n = 500 or 1000.
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Figure II.11: Example 9, the eigenvalues of |Cn|
−1YnTn[f ], where f is piecewise constant, Cn is the Strang

preconditioner, and n = 500 or 1000.
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the form {h(Tn[f ])}n, where h is an analytic function. In particular we investigate the singular
value distribution of sequences of the form {h(Tn[f ])}n and we provide a result on the spectral
distribution of the symmetrizated sequence {Ynh(Tn[f ])}n.
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Chapter III

Asymptotic Spectral Distributions of

Symmetrized Toeplitz Structure

Functions

Following the numerical evidences in [79] and the algorithmic proposals in [78], the purpose of
this chapter is to extend the results concerning the eigenvalue distribution of {YnTn[f ]}n that
we obtained in Chapter II to the symmetrization of matrix-sequences of the form {h(Tn[f ])}n,
where h is an analytic function.

Our work is motivated also by the fact that functions of Toeplitz matrices have crucial rel-
evance in several applications. For instance, exponential functions of Toeplitz matrix-sequences
arise from the discretization of integro-di�erential equations with a shift-invariant kernel [46].
Furthermore, trigonometric functions are involved in the case of the approximation by local
methods of di�erential equations [75].

In particular, we consider a function f in L∞([−π, π]) with real Fourier coe�cients and an
analytic function h with convergence radius r such that ‖f‖∞ < r. Under these hypotheses, we
prove that the matrix-sequence {h(Tn[f ])}n is distributed in the singular value sense as h ◦ f .
We exploit this property to investigate the spectral distribution of the symmetrized sequence
{Ynh(Tn[f ])}n and we prove that its spectral symbol is given by

φ|h◦f |(ϑ) =

{
|h ◦ f(ϑ)|, ϑ ∈ [0, 2π],

−|h ◦ f(−ϑ)|, ϑ ∈ [−2π, 0),

which has the same structure of the eigenvalue symbol of {YnTn[f ]}n that we derived in the
previous chapter. The proof of the distribution result concerning the sequence {Ynh(Tn[f ])}n
is based both on Theorem II.1.2 and on the features of the GLT theory that we introduced in
Section I.7.

As we detailed in the introductory chapter, spectral distribution results represent key in-
gredients in the design and in the convergence analysis of multigrid methods and preconditioned
Krylov solvers. Following this direction, in Section III.3 we numerically study the spectral prop-
erties of ad-hoc preconditioners for the previously analyzed symmetrized sequences. Thanks to
the symmetry of the considered matrices, these preconditioners may also be used to fasten the
convergence of Krylov solvers such as MINRES.
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Functions

The results presented in the following sections are published in [52] and the chapter is
outlined as follows. Firstly, in Section III.1, we give our main theorem on the asymptotic
distributions of {h(Tn[f ])}n and {Ynh(Tn[f ])}n. Then, in Section III.2 we numerically support
the derived distribution results for several choices of generating functions f and analytic functions
h, including a signi�cant example stemming from computational �nance. Finally, in Section III.3
we analyse the examples of the previous section to de�ne and compare di�erent preconditioning
strategies for the matrices {h(Tn[f ])}n.

III.1 Asymptotic Distributions of {h(Tn[f ])}n and {Ynh(Tn[f ])}n
In this section, we provide the main asymptotic distribution results on the sequences {h(Tn[f ])}n
and {Ynh(Tn[f ])}n in the case where f ∈ L∞([−π, π]) has real Fourier coe�cients and h is a
real analytic function in 0 with radius of convergence r such that ‖f‖∞ < r. Following the
discussion in Section I.8, we notice that under these hypotheses the matrix Ynh(Tn[f ]) is real
symmetric.

Furthermore, we stress that the function h ◦ f(ϑ) = h(f(ϑ)) de�ned on [−π, π] plays a very
important role in the expression of the underlying symbols.

Lemma III.1.1. Suppose f ∈ L∞([−π, π]) with real Fourier coe�cients and let Yn ∈ Rn×n be

the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f . Let p(z) be a

polynomial. Then

{p(Tn[f ])}n ∼σ p ◦ f.

Proof. The thesis is an immediate consequence of Items GLT1, GLT2, GLT3, and of the fact
that p is a polynomial, since {p(Tn[f ])}n ∼glt f̃ = p ◦ f .

Theorem III.1.2. Suppose f ∈ L∞([−π, π]) with real Fourier coe�cients and let Yn ∈ Rn×n

be the anti-identity matrix. Let Tn[f ] ∈ Rn×n be the Toeplitz matrix generated by f . Let h(z) be

a real analytic function in 0 with radius of convergence r such that ‖f‖∞ < r. Then we have

the following asymptotic distributions:

{h(Tn[f ])}n ∼σ h ◦ f (III.1)

and

{Ynh(Tn[f ])}n ∼λ ψ|h◦f |. (III.2)

where ψ|h◦f | is de�ned as in (II.1) over the domain D̃ with D = [0, 2π] and p = −2π.

Proof. Notice that the assumption ‖f‖∞ < r implies ‖Tn[f ]‖2 < r and hence ρ(Tn[f ]) < r (see
I.5.2). Consequently, as we detailed in Section I.8, Theorem 4.7 in [74] guarantees that h(Tn[f ])
is well-de�ned.

If |z| < r, we can represent h(z) through its Taylor series expansion in 0, that is h(z) =∑∞
k=0 bkz

k. For m ∈ N, we de�ne the polynomial

pm(z) =
m∑

k=0

bkz
k.

We have the following properties:
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1. {pm(Tn[f ])}n ∼σ pm ◦ f for all m ∈ N;

2. {{pm(Tn[f ])}n}m is an a.c.s. for {h(Tn[f ])}n;

3. pm ◦ f → h ◦ f in measure.

The �rst property is a consequence of Lemma III.1.1. The second property can be proven from
the decomposition

h(Tn[f ]) = pm(Tn[f ]) + (h(Tn[f ])− pm(Tn[f ])),

by observing that ‖h(Tn[f ])− pm(Tn[f ])‖ < εm with

lim
m→∞

εm = 0,

taking into account De�nition I.4.4.
For proving the third property, notice that the assumption ‖f‖∞ < r guarantees that h is

analytic in f(ϑ) almost everywhere on ϑ ∈ [−π, π]. It follows that pm ◦ f converges almost
everywhere to h ◦ f and the convergence in measure is a consequence of the boundedness of the
domain.

Hence, the objects {{pm(Tn[f ])}n}m, {h(Tn[f ])}n, pm and h satisfy the assumptions of
Lemma I.4.2, from which we can infer the �rst part of the thesis:

{h(Tn[f ])}n ∼σ h ◦ f.

Moreover, Property GLT5 implies that the matrix-sequence {h(Tn[f ])}n is GLT with symbol
h ◦ f .

For proving (III.2), let us de�ne the quantity

∆n(h, f) = h(Tn[f ])− Tn[h ◦ f ].

Since h ◦ f ∈ L1([−π, π]), by Theorem I.5.3 the Toeplitz matrix-sequence {Tn[h ◦ f ]}n is dis-
tributed in the singular value sense as h ◦ f and it is a GLT matrix-sequence. By (III.1), also
{h(Tn[f ])}n is distributed in the singular value sense as h ◦ f and it is a GLT matrix-sequence.
Hence, Properties GLT1-GLT2 imply that the GLT sequence {∆n(h, f)}n is distributed as 0
in the singular value sense.

Since Yn is a unitary matrix, also the matrix-sequence {Yn∆n(h, f)}n is zero-distributed in
the singular value sense. From [62, Chapter 9] we know that Yn∆n(h, f) ∼σ 0 if and only if
Yn∆n(h, f) = Rn +Nn with

lim
n→∞

rank(Rn)

n
= lim

n→∞
‖Nn‖ = 0. (III.3)

Note that, by Lemma I.8.1, the matrix Yn∆n(h, f) is Hermitian for all n; from PropertiesGLT1
and GLT4 we see that the spectral distribution of the corresponding matrix-sequence is given
by

{Yn∆n(h, f)}n ∼λ 0.

Thanks to the de�nition of ∆n(h, f), we can write

{Ynh(Tn[f ])}n = {YnTn[h ◦ f ]}n + {Yn∆n(h, f)}n. (III.4)
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Then, the constant (not depending on m) class of sequences {{Bn}n}m = {YnTn[h ◦ f ]}n
is an a.c.s for {Ynh(Tn[f ])}n. In fact, we can write Ynh(Tn[f ]) as in formula (III.4) and, from
(III.3), we have that the matrix-sequence {Yn∆n(h, f)}n veri�es the low- rank plus small-norm
requirement of the De�nition I.4.4.

As already stated, the function h ◦ f belongs to L1([−π, π]), then, from Theorem II.1.2 it
follows that

{YnTn[h ◦ f ]}n ∼λ ψ|h◦f |. (III.5)

Hence, the desired result

{Ynh(Tn[f ])}n ∼λ ψ|h◦f |

follows directly from the second part of Lemma I.4.2.

III.2 Numerical Experiments on the Asymptotic Distributions of

{Ynh(Tn[f ])}n
In the present section we provide di�erent examples in order to show that the statements of
Theorem III.1.2 are numerically evident already in the case of really moderate matrix sizes.
Indeed, we consider a function f in L∞([−π, π]) with real Fourier coe�cients and an analytic
function h with convergence radius r such that ‖f‖∞ < r and we show that the singular values
of the matrix h(Tn[f ]) are well approximated by a uniform sampling of |h ◦ f | over its domain
and that the eigenvalues of Ynh(Tn[f ]) are well approximated by a uniform sampling of ψ|h◦f |.

In particular, we consider the case where f is a trigonometric polynomial and h is an analytic
function with convergent Taylor series in a neighbourhood of the origin (Examples 10�11) or a
polynomial (Example 12). Furthermore, in Example 13 we study the spectral properties of the
symmetrization of the exponential of a Toeplitz matrix generated by a high-degree trigonometric
polynomial stemming from computational �nance.

Example 10. We take into consideration the analytic function h(z) = sin(z), whose Taylor

series at 0 converges in the whole complex plane, and we consider the trigonometric polyno-

mial f(ϑ) = eı̂ϑ. Figure III.1 shows that for n = 100 the eigenvalues of Ynh(Tn[f ]) are well

approximated by a uniform sampling of ψ|h◦f | over [−2π, 2π], except for the presence of one

outlier.

This behaviour numerically con�rms the spectral distribution predicted by Theorem III.1.2.

In fact, De�nition I.4.3 contemplates the presence of eigenvalues not captured by the sampling

of ψ|h◦f |.

Example 11. We now consider the analytic function h(z) = log(1 + z), whose Taylor series

at 0 converges with the radius of convergence equals 1. Moreover, we take the trigonometric

polynomial f(ϑ) = 0.5eı̂ϑ, with ‖f‖∞ < 1 as Theorem III.1.2 demands. In Figure III.2 we can

observe that, except again for one outlier, the eigenvalues of Ynh(Tn[f ]), for n = 100, are well

approximated by a uniform sampling of ψ|h◦f | over [−2π, 2π].
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Figure III.1: Comparison between the eigenvalues of the symmetrized matrix Y100h(T100[f ]) and the uniform

sampling of ψ|h◦f |, over [−2π, 2π], for h(z) = sin(z) and f(ϑ) = eı̂ϑ.
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Figure III.2: Comparison between the eigenvalues of the symmetrized matrix Y100h(T100[f ]) and the uniform

sampling of ψ|h◦f |, over [−2π, 2π], for h(z) = log(1 + z) and f(ϑ) = 0.5eı̂ϑ.

Example 12. The example is taken from [78]. Following the same procedure of Examples 1-2,

we plot in Figure III.3 the spectrum of Ynh(Tn[f ]), for n = 200, for the function h(z) = 1+z+z2,

whose Taylor series in 0 converges in the whole complex plane, and the trigonometric polynomial

f(ϑ) = −eı̂ϑ +1+ e−ı̂ϑ +e−ı̂2ϑ +e−ı̂3ϑ. In the present example we can observe that there are no

outliers and the eigenvalues of Ynh(Tn[f ]) are approximated by the uniform sampling of ψ|h◦f |
over [−2π, 2π]. Moreover, in order to numerically con�rm relation (III.1) of Theorem III.1.2, we

verify that the singular values of the matrix h(Tn[f ]) can be approximated by a uniform sampling

of |h ◦ f | over [0, 2π]. Indeed, Figure III.4 shows that the expected approximation holds true

already for a moderate size such as n = 200.

Example 13. The last example is a practical case taken from [90, 91]. Here we consider the

47



Chapter III. Asymptotic Spectral Distributions of Symmetrized Toeplitz Structure

Functions

j
(Y

200
h(T

200
[f]))

|h ° f|
(

j,200
)

Figure III.3: Comparison between the eigenvalues of the symmetrized matrix Y200h(T200[f ]) and the uniform

sampling of ψ|h◦f |, over [−2π, 2π], for h(z) = 1 + z + z2 and f(ϑ) = −eı̂ϑ + 1 + e−ı̂ϑ + e−ı̂2ϑ + e−ı̂3ϑ.
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Figure III.4: Comparison between the singular values of the matrix h(T200[f ]) and the uniform sampling of |h ◦ f |,

over [0, 2π], for h(z) = 1 + z + z2 and f(ϑ) = −eı̂ϑ + 1 + e−ı̂ϑ + e−ı̂2ϑ + e−ı̂3ϑ.

case of the exponential of a real nonsymmetric Toeplitz matrix stemming from computational

�nance, in particular from the option pricing framework in jump-di�usion models, where a partial

integro-di�erential equation (PIDE) needs to be solved. Indeed, the discretization of a PIDE can

be transformed into a matrix exponential problem. In our notation, it is equivalent to consider

the analytic function h(z) = ez, whose Taylor series centred at 0 converges in the whole complex

plane, and a trigonometric polynomial f(ϑ) =
∑n−1

j=−n+1 f̂je
ı̂jϑ de�ned by the following Fourier

coe�cients:
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f̂0 = −ν2 −∆x2(r + λ− λw(0)∆x); (III.6)

f̂1 =
ν2

2
−∆x

(2r − 2λk − ν2)

4
+ λw(−∆x)∆x3; (III.7)

f̂−1 =
ν2

2
+ ∆x

(2r − 2λk − ν2)

4
+ λw(∆x)∆x3; (III.8)

f̂j = λ∆x3w(−j∆x), j ∈ {−n+ 1, . . . ,−2, } ∪ {2, . . . , n− 1}. (III.9)

where w(s) = e
−

(s−µ)2

2σ2√
2πσ

, is a normal distribution function with mean µ and standard deviation

σ, the parameter k = eµ+
σ2

2 − 1 is the expectation of the impulse function, ∆x is the spatial

step-size, ν is the stock return volatility, r is the risk-free interest rate, and λ is the arrival

intensity of a Poisson process.

Following the same procedure of Examples 1-3, we plot in Figure III.5 the spectrum of

Ynh(Tn[f ]), for n = 100. In the present example we can observe that there are no outliers

and the eigenvalues of Ynh(Tn[f ]) are well approximated by the uniform sampling of ψ|h◦f | over
[−2π, 2π].

In addition, in order to numerically validate relation (III.1), in Figure III.6, for n = 100,

we compare the singular values of h(Tn[f ]) and a uniform sampling of |h ◦ f | over [0, 2π].
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Figure III.5: Comparison between the eigenvalues of the symmetrized matrix Y100h(T100[f ]) and the uniform

sampling of ψ|h◦f |, over [−2π, 2π], for h(z) = ez and f(ϑ) =
∑99

j=−99 f̂je
ı̂jϑ, with λ = 0.1, µ = −0.9, ν = 0.25,

σ = 0.45, r = 0.05, and ∆x = 4
101

.

III.3 Numerical Study of a Circulant Preconditioner

In the current section we exploit the derived spectral information on the matrix-sequences of the
form {Ynh(Tn[f ])}n in order to speed up the convergence of the MINRES method for the related
linear systems. For the latter purpose, we suggest a preconditioner Pn for the symmetrized
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Figure III.6: Comparison between the singular values of the matrix h(T100[f ]) and the uniform sampling of |h◦f |,

over [0, 2π], for h(z) = ez and f(ϑ) =
∑99

j=−99 f̂je
ı̂jϑ, with λ = 0.1, µ = −0.9, ν = 0.25, σ = 0.45, r = 0.05, and

∆x = 4
101

.

matrix Ynh(Tn[f ]) and we numerically investigate the behaviour of the asymptotic spectrum of
the preconditioned matrix-sequence {P−1

n Ynh(Tn[f ])}n.
For the development of a �rst preconditioning strategy we follow the approach introduced

in [78] and we report the numerical evidence of the preconditioner e�ciency in terms of eigenvalue
clusters in Examples 14-16. Moreover, we also consider a further class of preconditioners whose
e�ciency is motivated by the theoretical results in Section II.2 and by the relation between the
spectral distributions of {Ynh(Tn[f ])}n and {Yn(Tn[h ◦ f ])}n. The application of both strategies
to the cases considered in Examples 11-13 shows that the two approaches are both valid and
have a comparable performance.

In all the examples the construction of the preconditioner involves the concepts of absolute
value of a circulant matrix that we de�ned in Section II.2 and of Frobenius optimal precondi-
tioner that we introduced in Subsection I.9.3. For simplicity, in the present section the optimal
Frobenius preconditioner for a Toeplitz matrix Tn[f ] is denoted by c(Tn[f ]).

Example 14. In this example we test the e�ciency as preconditioner of the absolute value

circulant matrix |c(Tn[h ◦ f ])|, for the symmetrized matrix Ynh(Tn[f ]), where c(Tn[h ◦ f ]) is the
Frobenius optimal circulant preconditioner associated with the matrix Tn[h ◦ f ]. We consider the

functions h(z) = log(1 + z) and f(ϑ) = 0.5eı̂ϑ. This choice is motivated by the fact that the

sequences {Ynh(Tn[f ])}n and {Yn(Tn[h ◦ f ])}n share the same asymptotic spectral distribution

described by ψ|h◦f |. Indeed in the following setting we have h ◦ f ∈ L1([−π, π]), then the results

in Section II.2 suggest that Pn = |c(Tn[h ◦ f ])| is a good preconditioner for the matrix-sequence

{Yn(Tn[h ◦ f ])}n and consequently for {Ynh(Tn[f ])}n as well. Moreover, the e�ciency of the

preconditioning strategy is highlighted if we compare the latter cluster result with the plot of

the eigenvalues, sorted in the increasing order, of the non preconditioned matrix Ynh(Tn[f ]),

shown in the top panel of Figure III.7. We highlight that the choice of the preconditioner is

not unique. Indeed, we can precondition the sequence {Ynh(Tn[f ])}n following the approach
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introduced in [78], that is, we consider Pn = |h(c(Tn[f ]))|, where c(Tn[f ]) is the Frobenius

optimal circulant preconditioner associated with the matrix Tn[f ]. We can see the e�ciency of

both strategies looking at Figure III.7 where we numerically con�rm that the eigenvalues of the

preconditioned matrix P−1
n Ynh(Tn[f ]), for n = 512 are clustered around -1 and 1, up to o(n)

outliers. In particular, in the bottom left we use the preconditioner Pn = |c(Tn[h ◦ f ])|, and in

the bottom right the preconditioner is Pn = |h(c(Tn[f ]))|.
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Figure III.7: The spectrum of the symmetrized matrix Y512h(T512[f ]), for h(z) = log(1 + z) and f(ϑ) = 0.5eı̂ϑ.

Top: without preconditioner, bottom left: preconditioner Pn = |c(Tn[h ◦ f ])|, bottom right: preconditioner

Pn = |h(c(Tn[f ]))|.

Example 15. In the present example we consider the functions as in Example 12, that is

h(z) = 1+z+z2 and f(ϑ) = −eı̂ϑ+1+e−ı̂ϑ+e−ı̂2ϑ+e−ı̂3ϑ. In Figure III.8, we show the behaviour

of the eigenvalues of the matrix Y512h(T512[f ]) with and without the use of a preconditioning

strategy. In particular, on the top we plot the eigenvalues of the matrix Y512h(T512[f ]), sorted in

increasing order. In the bottom left and bottom right panels of Figure III.8 we test the e�ciency

of both preconditioning strategies described in the previous example. In both cases, we can observe

that the eigenvalues of the preconditioned matrix are clustered at -1 and 1, up to o(n) outliers.

Example 16. The last preconditioning test is performed on the case stemming from computa-

tional �nance that we studied in Example 13. That is, we consider the case where h(z) = ez and

f(ϑ) =
∑99

j=−99 f̂je
ı̂jϑ, with aj de�ned as in (III.7)-(III.9). First, we apply the preconditioning
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Figure III.8: The spectrum of the symmetrized matrix Y512h(T512[f ]), for h(z) = 1 + z + z2 and f(ϑ) = −eı̂ϑ +

1 + e−ı̂ϑ + e−ı̂2ϑ + e−ı̂3ϑ. Top: without preconditioner, bottom left: preconditioner Pn = |c(Tn[h ◦ f ])|, bottom

right: preconditioner Pn = |h(c(Tn[f ]))|.

strategy approach introduced in [78], that is, Pn = |h(c(Tn[f ]))|. We can see the e�ciency of the

proposed strategy in the right panel of Figure III.9, where we observe that the eigenvalues of the

preconditioned matrix P−1
n Ynh(Tn[f ]), for n = 100 are clustered around -1 and 1, up to 2 outliers.

Analogously, we can study the eigenvalues of the preconditioned matrix P−1
100Y100T100[f ], where

P100 = |c(T100[h ◦ f ])|. Indeed, we have h ◦ f ∈ L1([−π, π]), then, applying the results in Sec-

tion II.2, we have that P100 is a valid preconditioner for the matrix Y100h(T100[f ]). The left panel

of Figure III.9 con�rms that the eigenvalues of the preconditioned matrix P−1
100Y100h(T100[f ]) are

clustered around -1 and 1 up to 2 outliers.

For each example, we showed the validity of two di�erent preconditioning strategies. How-
ever, we have seen that, for large enough matrix-sizes, the spectral results are remarkably similar.
Other valid choices of preconditioning that give a slightly di�erent e�ect on the spectrum of the
preconditioned matrix can be considered. Moreover, we highlight that the strategy based on
Theorem II.2.1 provides an entire class of preconditioners suitable for symmetrized Toeplitz
structure functions. Indeed, a preconditioner in this class is the absolute value of any circulant
matrix Cn such that the following singular value distribution is veri�ed

{C−1
n Tn[h ◦ f ]}n ∼σ 1. (III.10)

Concerning the choice of the preconditioning strategy based on this requirement, we used the
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Figure III.9: The spectrum of the symmetrized matrix Y100h(T100[f ]), for h(z) = ez and f(ϑ) =
∑99

j=−99 f̂je
ı̂jϑ,

with λ = 0.1, µ = −0.9, ν = 0.25, σ = 0.45, r = 0.05, and ∆x = 4
101

. Top: without preconditioner, bottom left:

preconditioner Pn = |c(Tn[h ◦ f ])|, bottom right: preconditioner Pn = |h(c(Tn[f ]))|.

Frobenius optimal circulant preconditioner, since, from the properties of the considered f and
h, relation (III.10) is satis�ed.

Finally, we highlight that the choice of the best preconditioning strategy among the two ap-
proaches that we analysed in the examples depends on the computational aspects in constructing
the matrix Pn, which depend in turn on the information known about the speci�c example. For
instance, the computational cost of the construction of the preconditioner Pn = |c(Tn[h ◦ f ])|
decreases if the Fourier coe�cients of h ◦ f are known.
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Chapter IV

Multigrid Methods for Block-Toeplitz

Linear Systems

In the present chapter, we are mainly interested in solving large positive de�nite linear systems
that possess a block-Toeplitz structure up to a low rank correction. Such systems are of great
interest in many applications, such as numerical approximations of constant coe�cient PDEs
and coupled systems of integro-di�erential equations [36, 94].

After the seminal papers on multigrid methods for Toeplitz structures [27, 56, 57], the results
have been extended to multidimensional problems and a V-cycle convergence analysis has been
provided, see [4] and references therein. A multigrid method for block-Toeplitz matrices has
been proposed in [83] and studied in the case of diagonal block generating functions. This was
then adapted and further analysed for speci�c applications, like those considered in [38, 43],
but the results are strictly related to the (multilevel) block-Toeplitz matrices in question. In
practice, when the block symbol is not diagonal, there is still a substantial lack of an e�ective
projection proposal and of a rigorous convergence analysis.

In this chapter we aim to �ll this gap generalizing the existing convergence results in the
scalar settings for linear systems with coe�cient matrix in the circulant algebra associated with
a matrix-valued symbol. According to the classical Ruge and Stüben convergence analysis in
[107], we split the two-grid convergence analysis into the validation of a smoothing property
and an approximation property. The smoothing property is proved for damped Jacobi with
the relaxation parameter appropriately chosen in an interval depending on the symbol. For the
proof of the approximation property, we provide a general theorem concerning the boundedness
of a speci�c matrix-valued function R(ϑ) that depends both on the problem and on the grid
transfer operator. However, the latter result is not straightforward to exploit for practical
applications. A closer look at the derived condition on R(ϑ) highlights that the matrix-valued
trigonometric polynomial that generates the block-circulant matrix used in the construction of
the grid transfer operator needs to ful�l stricter conditions than the ones present in the scalar
case. More speci�cally, we analyse a �rst case where the trigonometric polynomial in question is
unitarily diagonalizable at all points and satis�es a speci�c commutativity condition. Moreover,
we prove the approximation property for a grid transfer operator with a block symbol that might
be non-diagonalizable.

We highlight that the theoretical analysis is performed for block-circulant matrices, in order
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to exploit their intrinsic algebra structure, but the results can be forwarded to Toeplitz matrices.
Indeed, this extension is possible thanks to the proof that the symbol analysis for Toeplitz
matrices is an algebraic generalization of the local Fourier analysis of multigrid methods, see
[37]. Moreover, if the block-Toeplitz matrices are banded, that is, they are generated by a matrix-
valued trigonometric polynomial, they represent a low rank correction of block-circulant matrices
with the same generating function. The latter consideration implies that the deterioration of
the convergence rate is computationally acceptable, as we see through numerical examples in
the next chapter.

The contents of the present chapter are in the process of being published in [20, 39] and the
chapter is organized as follows. In Section IV.1 we give an overview on algebraic multigrid meth-
ods for circulant and Toeplitz matrices. In Section IV.2 we sketch the basic ideas for de�ning
projecting operators for block-circulant matrices and we report two suitable sets of conditions on
the matrix-valued trigonometric polynomial associated to the grid transfer operator. A conver-
gence and optimality proof of the two-grid technique for both cases is reported in Section IV.3.
Finally, in Section IV.4 we provide the generalization of the convergence results to multilevel
block-circulant matrices, where the multilevel grid transfer operator possesses a tensor structure.

IV.1 Multigrid Methods for Toeplitz Matrices

As we already stated in Subsection I.9.4, the convergence analysis of the two-grid method splits
into the validation of two separate conditions: the smoothing property and the approximation
property. Regarding the latter, with reference to scalar structured matrices [4, 56], the optimality
of two-grid methods is given in terms of choosing the proper conditions that the symbol p of
a family of projection operators has to ful�l. Indeed, consider the Toeplitz matrix Tn[f ] with
n = (2t − 1) generated by a non-negative trigonometric polynomial f . Suppose that f vanishes
at exactly one point, which implies that the Toeplitz matrix Tn[f ] becomes ill�conditioned as n
increases. Let ϑ0 be the unique zero of f . Then, the optimality of the two-grid method applied
to Tn[f ] is guaranteed if we choose a family of projection operators associated with a symbol p
such that

lim sup
ϑ→ϑ0

|p(η)|2
f(ϑ)

<∞, η ∈ M(ϑ),

∑

η∈Ω(ϑ)

p2(η) > 0,
(IV.1)

where the sets Ω(ϑ) and M(ϑ) are the following corner and mirror points

Ω(ϑ) = {ϑ, (ϑ+ π) mod 2π}, M(ϑ) = Ω(ϑ) \ {ϑ},

respectively.

Informally, the latter conditions mean that the optimality of the two-grid method is obtained
by choosing the family of grid transfer operators associated to a symbol p such that |p|2(ϑ) +
|p|2(ϑ + π) does not have zeros and |p|2(ϑ + π)/f(ϑ) is bounded. For achieving the optimality
of the V-cycle method, the second condition needs to be strengthened, see [4] for details.
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As far as the smoothing property is concerned, a lot of results are present in the relevant
literature for di�erent stationary methods. See, for instance, [56] for an analysis of the best
choice of the relaxation parameter for the relaxed Richardson method.

IV.2 Projecting Operators for Block-Circulant Matrices

The current section is dedicated to the construction of grid transfer operators suitable for block-
circulant matrices. Indeed, as we outlined in the previous section, the choice of prolongation
and restriction operators ful�lling the approximation property that we introduced in Subsec-
tion I.9.4 is crucial for multigrid convergence and optimality. In particular, the projector Pn,m

should be chosen in order that it projects the problem onto a coarser space by �cutting� the
coe�cient matrix and the resulting projected matrix should maintain the same block structure
and properties of original matrix.

Let Kn,m be the n×m down-sampling matrix, that is,

� when n is even: m = n
2 and Kn,m = KOdd

n,m ,

� when n is odd: m = n−1
2 and Kn,m = KEven

n,m ,

with KOdd
n,m and KEven

n,m de�ned as

KOdd
n,m =




1

0
... 1

0
...

...

1

0




n×m

, KEven
n,m =




0

1

0 0
... 1

0
...

...

1

0



n×m

.

In particular, KOdd
n,m is the n×m matrix obtained by removing the even rows from the identity

matrix of size n, that is it keeps the odd rows. On the other hand, KEven
n,m keeps the even rows.

When n is even, KOdd
n,m performs the following manipulation of the Fourier frequencies:

(KOdd
n,m )TFn =

1√
2
[Fm |Fm]. (IV.2)

This property of the Fourier matrix is the key to de�ne a grid transfer operator P s
n,m that

preserves the block-circulant structure at the coarser levels, where the superscript s indicates
that the block-structured matrices have square blocks of size s.

Therefore, we de�ne the structure of the grid transfer operators P s
n,m for the block-circulant

matrix Cn[f ] generated by a matrix-valued trigonometric polynomial f : [−π, π] → Cs×s as
follows. Let n be even and of the form 2t, t ∈ N, such that the size of the coarser problem is
m = n

2 = 2t−1. The projector P s
n,m is then constructed as the product between a matrix Cn[p]
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in the circulant algebra, with p being a proper trigonometric polynomial that are discussed in
the following subsections, and a cutting matrix KOdd

n,m ⊗ Is. That is,

P s
n,m = Cn[p](KOdd

n,m ⊗ Is). (IV.3)

The result of multiplying a s × s block matrix of dimension sn × sn by KOdd
n,m ⊗ Is is a s × s

block matrix where just the even �block-columns� are maintained.
We are left to determine the conditions to be satis�ed by Cn[p] (or better by its generating

function p), in order to obtain a projector which is e�ective in terms of convergence. The used
tool is an algebraic generalization of the Local Fourier Analysis of multigrid methods [37].

The same strategy can be applied when we deal with block-Toeplitz matrices generated
by a matrix-valued trigonometric polynomial, instead of block-circulant matrices. Indeed, the
only thing that should be adapted is the structure of the projector which slightly changes for
block-Toeplitz matrices, in order to preserve the structure at coarser levels.

Hence, for a matrix-valued trigonometric polynomial p, the projector matrix is

P s
n,m = Tn[p]

(
KEven

n,m ⊗ Is
)
. (IV.4)

Note that in the Toeplitz case n should be chosen odd and of the form 2t − 1, t ∈ N, such that
the size of the coarser problem is m = n−1

2 = 2t−1 − 1.
Finally, we mention that it is possible to consider the case where the size n of the coe�cient

matrix is divisible by a factor g  2 such that at the lower level the system is reduced to one
of size n/g. Indeed, in this situation we can exploit a g-circulant based projectors [44, 100]. In
particular, we can analogously repeat the TGM convergence result adopting a cutting matrix
(Kn,n/g)⊗ Is, where Kn,n/g ∈ Rn×n/g, of the form

Kn,n/g = [δi−gj ]i,j , i = 0, . . . , n− 1; j = 0, . . . , n/g − 1, δ` =




1 if ` ≡ 0 (modn),

0 otherwise
.

IV.2.1 TGM Conditions: the Diagonalizable Case

Let Cn[f ] be the block-circulant matrix generated by a matrix-valued trigonometric polynomial
f ≥ 0 and let us consider the grid transfer operator P s

n,m = Cn[p](KOdd
n,m ⊗ Is), with p being

a matrix-valued trigonometric polynomial. In the following, we provide and discuss a set of
conditions on p.

De�ne Θ0 as the set of points ϑ such that λj(f(ϑ)) = 0 for some j. Assume that, for ϑ ∈ Θ0,
λj(f(ϑ + π)) 6= 0 for all j = 1, . . . , s, which also implies that the set Θ0 is a �nite set. Choose
p(·) diagonalizable by a unitary matrix such that the following relations

∃δ s.t.
∥∥∥f(ϑ)−

1
2p(ϑ+ π)H

∥∥∥
1
< δ ∀ϑ ∈ [0, 2π)\Θ0, (IV.5)

p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π) > 0 ∀ϑ ∈ [0, 2π), (IV.6)

p(ϑ)p(ϑ+ π) = p(ϑ+ π)p(ϑ) ∀ϑ ∈ [0, 2π) (IV.7)

are ful�lled. Note that conditions (IV.5)�(IV.6) are the generalization of the scalar conditions
(IV.1), while condition (IV.7) is new and it permits to simplify some expressions, as we explain
in the following remark.
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IV.2. Projecting Operators for Block-Circulant Matrices

Remark 1. By hypothesis we have that there exist a unitary transform U(·) and a diagonal

matrix-valued function Dp(·) such that

p(ϑ) = U(ϑ)Dp(ϑ)U(ϑ)H and p(ϑ+ π) = U(ϑ+ π)Dp(ϑ+ π)U(ϑ+ π)H .

Note that condition (IV.7) on the commutativity of p(ϑ) and p(ϑ + π) implies that they are

simultaneously diagonalizable. Then,

p(ϑ+ π) = U(ϑ)Dp(ϑ+ π)U(ϑ)H

and in particular, we have

(p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π))−1 = U(ϑ)(|Dp(ϑ)|2 + |Dp(ϑ+ π)|2)−1U(ϑ)H ,

which ensures that (p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π))−1 commutes with p(ϑ), p(ϑ)H , p(ϑ+ π)

and p(ϑ+ π)H .

IV.2.2 TGM Conditions: the General Case

Let Cn[f ] be the block-circulant matrix generated by a matrix-valued trigonometric polynomial
f ≥ 0 and let us consider the grid transfer operator P s

n,m = Cn[p](KOdd
n,m ⊗ Is), with p being

a matrix-valued trigonometric polynomial. Suppose that there exist unique ϑ0 ∈ [0, 2π) and
̄ ∈ {1, . . . , s} such that

{
λj(f(ϑ)) = 0, for ϑ = ϑ0 and j = ̄,

λj(f(ϑ)) > 0, otherwise.
(IV.8)

The latter assumption means that the matrix f(ϑ) has exactly one zero eigenvalue in ϑ0 and
it is positive de�nite in [0, 2π)\{ϑ0}.

As a consequence, the matrices Cn[f ] could be singular. On the other hand, the block-
Toeplitz matrices Tn[f ] are positive de�nite, they become ill-conditioned as n increases, and the
ill-conditioned subspace is the eigenspace associated with λ̄(f(ϑ0)).

Since f(ϑ) is Hermitian, it can be diagonalized by an orthogonal matrix Q(ϑ). Hence,

f(ϑ) = Q(ϑ)D(ϑ)Q(ϑ)H =

[
q1(ϑ) . . . q̄(ϑ) . . . qs(ϑ)

]




λ1(f(ϑ))
. . .

λ̄(f(ϑ))
. . .

λs(f(ϑ))







q1
H(ϑ)
...

qH̄ (ϑ)
...

qs
H(ϑ)




(IV.9)

where q̄(ϑ) is the eigenvector that generates the ill-conditioned subspace since q̄(ϑ0) is the
eigenvector of f(ϑ0) associated with λ̄(f(ϑ0)) = 0.

Under the following assumptions, we show that there are su�cient conditions to ensure the
linear convergence of the two-grid method. Indeed, it is su�cient to choose p such that
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(i) condition (IV.6) is ful�lled, that is,

p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π) > 0 ∀ϑ ∈ [0, 2π),

which implies that the trigonometric function

r(ϑ) = p(ϑ)
(
p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π)

)−1
p(ϑ)H (IV.10)

is well-de�ned for all ϑ ∈ [0, 2π);

(ii) the vector q̄(ϑ0) de�ned in (IV.9) is an eigenvector for r(ϑ0) with eigenvalue 1, that is,

r(ϑ0)q̄(ϑ0) = q̄(ϑ0);

(iii) it holds that

lim sup
ϑ→ϑ0

λ̄(f(ϑ))
−1(1− λ̄(r(ϑ))) = c,

where c ∈ R is a constant.

IV.3 Proofs of Convergence

The current section is outlined as follows. Firstly, we give a result on the validation of the
smoothing property in a speci�c setting. Then, we focus on preliminary results concerning the
grid transfer operators and the validation of the approximation property. Further, in Subsections
IV.3.1�IV.3.2 we prove the convergence and optimality of the two-grid method in the setting of
Subsections IV.2.1 and IV.2.2 respectively.

The smoothing property has been proven in [38] for the simple Richardson iteration consid-
ering both pre-smoothing and post-smoothing.

Lemma IV.3.1 ([38]). Let Cn[f ] with f = [f`,g]
s
`,g=1 ∈ Cs×s trigonometric polynomial, f ≥ 0,

with fj,j, j = 1, . . . , s, not identically zero, and let Vn := Isn − ωCn[f ]. If we choose ω ∈
(0, 2/‖f‖∞), then relation (a) in Theorem I.9.2 holds true.

The iteration matrix of the relaxed Jacobi method is Vn := Isn−ωD−1
n Cn[f ], whereDn is a di-

agonal matrix with the same diagonal as Cn[f ]. We de�ne the matrix D̃n := minj=1,...,s

[
f̂0

]
(j,j)

Isn

and we notice that D̃−1
n ≥ D−1

n . Applying to the matrix Isn − ωD̃−1
n Cn[f ] the same idea of the

proof used for the Richardson method in [38, Proposition 4], we obtain that relation (a) in
Theorem I.9.2 is satis�ed if ω veri�es the following inequality:

0 ≤ ω ≤
minj=1,...,s

[
f̂0

]
(j,j)

‖f‖∞
. (IV.11)

Before discussing the details on the approximation property, we consider a crucial result both
from a theoretical and a practical point of view.
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Proposition IV.3.2. Let f be a non-negative de�nite s × s matrix-valued function. Let P s
n,m

and KOdd
n,m be de�ned as in Section IV.2, that is, P s

n,m = Cn[p](KOdd
n,m ⊗ Is) ∈ Csn×sm, where p is

a trigonometric polynomial. Then the matrix (P s
n,m)HCn[f ]P s

n,m ∈ Csm×sm coincides with Cm(f̂)

where f̂ is non-negative de�nite and

f̂(ϑ) =
1

2

(
p

(
ϑ

2

)H

f

(
ϑ

2

)
p

(
ϑ

2

)
+ p

(
ϑ

2
+ π

)H

f

(
ϑ

2
+ π

)
p

(
ϑ

2
+ π

))
. (IV.12)

Proof. Using the de�nition of P s
n,m, we have that

(P s
n,m)HCn[f ]P s

n,m = ((KOdd
n,m )T ⊗ Is)Cn[pH ]Cn[f ]Cn[p](KOdd

n,m ⊗ Is)

= ((KOdd
n,m )T ⊗ Is)Cn[pHfp](KOdd

n,m ⊗ Is)

= ((KOdd
n,m )T ⊗ Is)(Fn ⊗ Is) diag

i∈In
(pHfp(ϑ

(n)
i )(FH

n ⊗ Is)(K
Odd
n,m ⊗ Is)

=
1

2
(Fm ⊗ Is) diag

i∈Im

(
pHfp(ϑ

(n)
i

)
+ pHfp(ϑ

(n)

ĩ
))(FH

m ⊗ Is)

=
1

2
(Fm ⊗ Is) diag

i∈Im

(
pHfp

(
ϑ
(m)
i

2

)
+ pHfp

(
ϑ
(m)
i

2
+ π

))
(FH

m ⊗ Is)

= Cm
[
f̂
]
,

where ĩ = i+m; this is again a block-circulant matrix of size sm. From the structure of f̂ it is
clear that if f is non-negative de�nite also f̂ is non-negative de�nite.

In the following theorem we give the main result on the validation of the approximation
property, which involves the boundedness of a matrix-valued function R(ϑ) that depends both
on the problem and on the grid transfer operator.

Theorem IV.3.3. Let Cn[f ], with f(ϑ) ∈ Cs×s trigonometric polynomial, f ≥ 0, and de�ne Θ0

as the set of points ϑ such that λj(f(ϑ)) = 0 for some j and de�ne H = {η|η ∈ {ϑ, (ϑ + π)

mod 2π}, ϑ ∈ Θ0}. Assume that, for ϑ ∈ Θ0, λj(f(ϑ+ π)) 6= 0 for all j = 1, . . . , s. Let P s
n,m =

Cn[p](KOdd
n ⊗ Is) be a projecting operator. Suppose that p is a matrix-valued trigonometric

polynomial that ful�ls condition (IV.6) and there exists c > 0 such that for all ϑ ∈ [0, 2π)\H

R(ϑ) ≤ cI2s (IV.13)

with

R(ϑ) =

[
f(ϑ)

f(ϑ+ π)

]− 1
2
(
I2s −

[
p(ϑ)

p(ϑ+ π)

]
q(ϑ)

[
p(ϑ)Hp(ϑ+ π)H

])[f(ϑ)
f(ϑ+ π)

]− 1
2

and

q(ϑ) =
(
p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π)

)−1
. (IV.14)

Then, there exists a positive value γ independent of n such that inequality (b) in Theorem I.9.2

is satis�ed.

Proof. In order to prove that there exists γ > 0 independent of n such that for any xn ∈ Csn

min
y∈Csm

‖xn − P s
n,my‖22 ≤ γ‖xn‖2Cn[f ], (IV.15)
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we choose a special instance of y in such a way that the previous inequality is reduced to a
matrix inequality in the sense of the partial ordering of the real space of the Hermitian matrices.
For any xn ∈ Csn, let y ≡ y(xn) ∈ Csm be de�ned as

y = [(P s
n,m)HP s

n,m]−1(P s
n,m)Hxn.

We observe that (P s
n,m)HP s

n,m is invertible, indeed, using the same arguments of Proposition
IV.3.2 with f = Is, we have that (P s

n,m)HP s
n,m = Cm[p̂] with

p̂(ϑ) =
1

2

(
p

(
ϑ

2

)H

p

(
ϑ

2

)
+ p

(
ϑ

2
+ π

)H

p

(
ϑ

2
+ π

))

and condition (IV.6) ensure that p̂ > 0, that is Cm[p̂] is positive de�nite.
Therefore, (IV.15) is implied by

‖xn − P s
n,my‖22 ≤ γ‖xn‖2Cn[f ],

where the latter is equivalent to the matrix inequality

Wn(p)
HWn(p) ≤ γCn[f ].

withWn(p) = Isn−P s
n,m[(P s

n,m)HP s
n,m]−1(P s

n,m)H . Since, by construction,Wn(p) is a Hermitian
unitary projector, it holds that Wn(p)

HWn(p) = Wn(p)
2 = Wn(p). As a consequence, the

preceding matrix inequality can be rewritten as

Wn(p) ≤ γCn[f ]. (IV.16)

Now, using the expression of the matrix P s
n,m = Cn[p](KOdd

n ⊗ Is) and the relation (IV.2),
we write (P s

n,m)H as

(P s
n,m)H =

1√
2
(Fm ⊗ Is)(In,2 ⊗ Is) diag

i∈In
(p(ϑ

(n)
i )H)(FH

n ⊗ Is)

=
1√
2
(Fm ⊗ Is)

[
diag
i∈Im

(p(ϑ
(n)
i )H) | diag

i∈Im
(p(ϑ

(n)
i+m)H)

]
(FH

n ⊗ Is),

where In,2 = [Im|Im]m×n . Then,

(P s
n,m)HP s

n,m =
1

2
(Fm ⊗ Ir)

[
diag
i∈Im

(
p(ϑ

(n)
i )Hp(ϑ

(n)
i )
)
+ diag

i∈Im

(
p(ϑ

(n)
i+m)Hp(ϑ

(n)
i+m)

)]
(FH

m ⊗ Ir).

Hence, the matrix (FH
n ⊗ Is)Wn(p)(Fn ⊗ Is) becomes

(FH
n ⊗ Is)Wn(p)(Fn ⊗ Is)

= Isn − diag
i∈In

(
p(ϑ

(n)
i )
)
(ITn,2 ⊗ Is)

[
diag
i∈Im

(
p(ϑ

(n)
i )Hp(ϑ

(n)
i ) + p(ϑ

(n)

ĩ
)Hp(ϑ

(n)

ĩ
)
)]−1

· (In,2 ⊗ Is) diag
i∈In

(
p(ϑ

(n)
i )H

)
(IV.17)

where ĩ = i+m. Now, it is clear that there exists a suitable permutation by rows and columns
of (FH

n ⊗Is)Wn(p)(Fn⊗Is) such that we can obtain a 2s×2s block-diagonal matrix of the form
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Isn − diag
i∈Im

[
p(ϑ

(n)
i )

p(ϑ
(n)

ĩ
)

] [
(p(ϑ

(n)
i )Hp(ϑ

(n)
i ) + p(ϑ

(n)

ĩ
)Hp(ϑ

(n)

ĩ
))−1

] [
p(ϑ

(n)
i )H p(ϑ

(n)

ĩ
)H

]
.

Therefore, by considering the same permutation by rows and columns of (FH
n ⊗Is)Cn[f ].(Fn⊗

Is) = diag
i∈In

(f(ϑ
(n)
i ), condition (IV.16) is equivalent to requiring that there exists c > 0 independ-

ent of n such that, ∀j = 0, . . . ,m− 1

I2s −
[

p(ϑ
(n)
i )

p(ϑ
(n)

ĩ
)

] [
(p(ϑ

(n)
i )Hp(ϑ

(n)
i ) + p(ϑ

(n)

ĩ
)Hp(ϑ

(n)

ĩ
))−1

] [
p(ϑ

(n)
i )H p(ϑ

(n)

ĩ
)H

]

≤ c

[
f(ϑ

(n)
i )

f(ϑ
(n)

ĩ
)

]
.

Due of the continuity of p and f it is clear that the preceding set of inequalities can be reduced
to requiring that a unique inequality of the form

I2s −
[

p(ϑ)

p(ϑ+ π)

] [
(p(ϑ)Hp(ϑ) + p(ϑ+ π)Hp(ϑ+ π))−1

]

[
p(ϑ)H p(ϑ+ π)H

]
≤ c

[
f(ϑ)

f(ϑ+ π)

]

holds for all ϑ ∈ [0, 2π)\H. By the Sylvester inertia law [65], the latter relation is satis�ed if

R(ϑ) ≤ cI2s (IV.18)

for all ϑ ∈ [0, 2π)\H and the proof is complete.

IV.3.1 TGM Convergence and Optimality: the Diagonalizable Case

The current subsection is devoted to show that the setting in Subsection IV.2.1 is appropriate
to obtain the TGM convergence and optimality. In particular, the following result shows that
conditions (IV.5), (IV.6), and (IV.7) are su�cient in order to satisfy the approximation property.

Theorem IV.3.4. Let Cn[f ], with f(ϑ) ∈ Cs×s trigonometric polynomial, f ≥ 0, and De�ne Θ0

as the set of points ϑ such that λj(f(ϑ)) = 0 for some j and de�ne H = {η|η ∈ {ϑ, (ϑ + π)

mod 2π}, ϑ ∈ Θ0}. Assume that, for ϑ ∈ Θ0, λj(f(ϑ + π)) 6= 0 for all j = 1, . . . , s. Let

P s
n,m = Cn[p](KOdd

n ⊗ Is) be a projecting operator, where p(ϑ) is a unitarily diagonalizable

matrix-valued trigonometric polynomial satisfying conditions (IV.5), (IV.6) and (IV.7). Then,

there exists a positive value γ independent of n such that inequality (b) in Theorem I.9.2 is

satis�ed.

Proof. By Theorem IV.3.3, it is clear that it is su�cient to prove that there exists a constant
c > 0 such that for all ϑ ∈ [0, 2π)\H

R(ϑ) ≤ cI2s. (IV.19)
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By simple computations, using condition (IV.7) and Remark 1 the matrix-valued function R(ϑ)
can be written as

R(ϑ) =

[
f(ϑ)

f(ϑ+ π)

]− 1
2

q(ϑ)

[
p(ϑ+ π)Hp(ϑ+ π) −p(ϑ)p(ϑ+ π)H

−p(ϑ+ π)p(ϑ)H p(ϑ)Hp(ϑ)

][
f(ϑ)

f(ϑ+ π)

]− 1
2

.

(IV.20)
The relation (IV.19) is satis�ed if the matrix-valued function R(ϑ) is uniformly bounded in the
spectral norm, which can be obtained proving that all the components of R(ϑ) are uniformly
bounded in the 1−norm. Using again the commutativity hypothesis (IV.7), we can write R(ϑ)
as

R(ϑ) =

[
f−

1
2 (ϑ)p(ϑ+ π)Hq(ϑ)p(ϑ+ π)f−

1
2 (ϑ) −f−

1
2 (ϑ)p(ϑ+ π)Hq(ϑ)p(ϑ)f−

1
2 (ϑ+ π)

−f−
1
2 (ϑ+ π)p(ϑ)Hq(ϑ)p(ϑ+ π)f−

1
2 (ϑ) f−

1
2 (ϑ+ π)p(ϑ)Hq(ϑ)p(ϑ)f−

1
2 (ϑ+ π)

]
.

For all ϑ ∈ [0, 2π)\H, we can write

‖R1,1(ϑ)‖1 =
∥∥∥f−

1
2 (ϑ)p(ϑ+ π)Hq(ϑ)p(ϑ+ π)f−

1
2 (ϑ)

∥∥∥
1

≤
∥∥∥f−

1
2 (ϑ)p(ϑ+ π)H

∥∥∥
1
‖q(ϑ)‖1

∥∥∥p(ϑ+ π)f−
1
2 (ϑ)

∥∥∥
1
.

Noticing that ∥∥∥p(ϑ+ π)f−
1
2 (ϑ)

∥∥∥
1
=
∥∥∥f−

1
2 (ϑ)p(ϑ+ π)H

∥∥∥
1

and using conditions (IV.5) and (IV.6), we can �nd δ such that ‖R1,1(ϑ)‖1 < δ for all ϑ ∈
[0, 2π)\H.

The uniform boundedness of the other components of R(ϑ) can be proven in an analogous
way, recalling that if ϑ belongs to Θ0, then f is non-singular in ϑ + π. This implies that the
matrix-valued function R(ϑ) is uniformly bounded in the 1-norm. Since the matrix dimension
of R(ϑ) is �xed for all ϑ and equal to 2s, the equivalence between the 1-norm and the spectral
norm lets us to conclude the proof.

We highlight that studying the conditions for which R(ϑ) is bounded can be useful to develop
projection strategies for several applications, as we explain in the following chapter. In addition,
since (IV.5-IV.7) are su�cient but not necessary conditions, they can be weakened in order to
extend the choice of the trigonometric polynomial used to construct the projector.

IV.3.2 TGM Convergence and Optimality: the General Case

In the present subsection we prove the approximation property for a grid transfer operator with
a matrix-valued symbol that might be non-diagonalizable. In particular, we focus on the setting
of subsection IV.2.2.

Theorem IV.3.5. Let Cn[f ], with f a matrix-valued trigonometric polynomial, f ≥ 0 such that

condition (IV.8) is satis�ed. Let P s
n,m = Cn[p](KOdd

n ⊗ Is) be a projecting operator, where p is

a matrix-valued trigonometric polynomial satisfying conditions (i)-(iii) of Section IV.2.2. Then,

there exists a positive value γ independent of n such that inequality (b) in Theorem I.9.2 is

satis�ed.
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Proof. Analogously to Theorem IV.3.4, we note that using the result of Theorem IV.3.3, it is
su�cient to prove that there exists a constant c > 0 such that for all ϑ ∈ [0, 2π)\Ω(ϑ0)

R(ϑ) ≤ cI2s, (IV.21)

where
Ω(ϑ0) = {ϑ0, (ϑ0 + π) mod 2π}.

Note that we can write the matrix-valued function R(ϑ) as

R(ϑ) =
[
f(ϑ)

f(ϑ+ π)

]− 1

2

[
Is − p(ϑ)q(ϑ)p(ϑ)H −p(ϑ)q(ϑ)p(ϑ+ π)H

−p(ϑ+ π)q(ϑ)p(ϑ)H Is − p(ϑ+ π)q(ϑ)p(ϑ+ π)H

][
f(ϑ)

f(ϑ+ π)

]− 1

2

.

Hence, if we prove that for every ϑ ∈ [0, 2π)\Ω(ϑ0) the matrix R(ϑ) is uniformly bounded in the spectral

norm, then we have that there exists c > 0 which bounds the spectral radius of R(ϑ) and then the latter

implies inequality (IV.21). To show that the matrix R(ϑ) is uniformly bounded in the spectral norm, we

can rewrite R(ϑ) in components as

R(ϑ) =

[
R1,1(ϑ) R1,2(ϑ)

R2,1(ϑ) R2,2(ϑ)

]
=

[
f−

1

2 (ϑ)(Is − p(ϑ)q(ϑ)p(ϑ)H)f−
1

2 (ϑ) −f−
1

2 (ϑ)p(ϑ)q(ϑ)p(ϑ+ π)Hf−
1

2 (ϑ+ π)

−f−
1

2 (ϑ+ π)p(ϑ+ π)q(ϑ)p(ϑ)Hf−
1

2 (ϑ) f−
1

2 (ϑ+ π)(Is − p(ϑ+ π)q(ϑ)p(ϑ+ π)H)f−
1

2 (ϑ+ π)

]
.

The function ‖R(ϑ)‖2 : [0, 2π)\Ω(ϑ0) → R is continuous and, in order to show that R(ϑ) is uniformly

bounded in the spectral norm, Weierstrass Theorem implies that it is su�cient to prove that the following

limits exist and are �nite:

lim
ϑ→ϑ0

‖R(ϑ)‖2, lim
ϑ→ϑ0+π

‖R(ϑ)‖2.

By de�nition, R(ϑ) is a Hermitian matrix for ϑ ∈ [0, 2π)\Ω(ϑ0). Moreover, by direct computation,

one can verify that the matrix

[
Is − p(ϑ)q(ϑ)p(ϑ)H −p(ϑ)q(ϑ)p(ϑ+ π)H

−p(ϑ+ π)q(ϑ)p(ϑ)H Is − p(ϑ+ π)q(ϑ)p(ϑ+ π)H

]

is a projector, then it has eigenvalues 0 and 1. Consequently, from the Sylvester inertia law, it follows

that R(ϑ) is a non-negative de�nite matrix.

We remark that in order to bound the spectral norm of a non-negative de�nite matrix-valued function,

it is su�cient to bound its trace. Hence, we check that the spectral norms of the elements on the block

diagonal of R(ϑ) are bounded. The latter is equivalent to verify that the following limits

lim
ϑ→ϑ0

‖R1,1(ϑ)‖2, (IV.22)

lim
ϑ→ϑ0

‖R2,2(ϑ)‖2, (IV.23)

lim
ϑ→ϑ0+π

‖R1,1(ϑ)‖2, (IV.24)

lim
ϑ→ϑ0+π

‖R2,2(ϑ)‖2 (IV.25)
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exist and they are �nite, which in practice requires only the proof of (IV.22). Indeed, the �niteness of

(IV.23) and (IV.24) is implied by the hypotheses on f , which is non-singular in ϑ0 + π. The �niteness of

(IV.25) can be proven as (IV.22) taking into account that R(ϑ) is 2π-periodic.

To prove (IV.22) we note that for all ϑ ∈ [0, 2π)\Ω(ϑ0), we can write

‖R1,1(ϑ)‖2 =
∥∥∥f− 1

2 (ϑ)(Is − p(ϑ)q(ϑ)p(ϑ)H)f−
1

2 (ϑ)
∥∥∥
2
=

∥∥∥f−1(ϑ)− f−
1

2 (ϑ)r(ϑ)f−
1

2 (ϑ)
∥∥∥
2
,

with r(ϑ) de�ned as in (IV.10).

Without loss of generality, we can assume that ̄ = 1, that is q1(ϑ0) is the eigenvector of f(ϑ0)

associated with the eigenvalue 0. Indeed, if ̄ 6= 1, it is su�cient to permute rows and columns of D(ϑ0)

in the factorization in (IV.9) via a permutation matrix Π which brings the diagonalization of f(ϑ0) into

the desired form. Moreover, we can assume that ‖q1(ϑ0)‖2 = 1.

From condition (i) we have that the matrix-valued function r(ϑ) is Hermitian for all ϑ ∈ [0, 2π). In

addition, from condition (ii) and from the latter assumption on ̄, the matrix r(ϑ) can be decomposed

as r(ϑ) =Wr(ϑ)Dr(ϑ)W
H
r
(ϑ) and

r(ϑ0) =Wr(ϑ0)Dr(ϑ0)W
H
r
(ϑ0) =

[
q1(ϑ0) w2(ϑ0) . . . ws(ϑ0)

]




1

λ2(r(ϑ0))
. . .

λs(r(ϑ0))







q1
H(ϑ0)

w2
H(ϑ0)
...

ws
H(ϑ0)



.

Then, we can rewrite the quantity to bound as follows:

lim
ϑ→ϑ0

‖q(ϑ)D−1(ϑ)QH(ϑ)− q(ϑ)D− 1

2 (ϑ)QH(ϑ)Wr(ϑ)Dr(ϑ)W
H
r
(ϑ)QH(ϑ)D− 1

2 (ϑ)QH(ϑ)‖2 =

lim
ϑ→ϑ0

‖D−1(ϑ)−D− 1

2 (ϑ)QH(ϑ)Wr(ϑ)Dr(ϑ)W
H
r
(ϑ)QH(ϑ)D− 1

2 (ϑ)‖2.
(IV.26)

By de�nition of Q(ϑ0) and Wr(ϑ0), the vector q0(ϑ0) is orthogonal with respect to both qj(ϑ0), wj(ϑ0),

j = 2, . . . , s. Denoting by os−1 the null column vector of size s− 1, we have

lim
ϑ→ϑ0

QH(ϑ)Wr(ϑ) =

[
q1(ϑ0)

Hq1(ϑ0) oT
s−1

os−1 M(ϑ0)

]
, (IV.27)

where M(ϑ) is a matrix-valued function which is well-de�ned and continuous on [0, 2π]. Then, since the

eigenvalue functions λi(f(ϑ))
−1, for i = 2, . . . , s, are well-de�ned and continuous on [0, 2π], see Lemma

I.3.1, the quantity to bound

∥∥∥∥∥∥∥∥∥∥




lim
ϑ→ϑ0

λ1(f(ϑ)))
−1(1− λ1(r(ϑ)))) oT

s−1

os−1



λ2(f(ϑ0))

−1

. . .

λs(f(ϑ0))
−1


 (Is−1 −M(ϑ0)M

T (ϑ0))




∥∥∥∥∥∥∥∥∥∥
2

.

Consequently, the thesis follows from condition (iii) of Subsection IV.2.2.

In practical applications choosing a trigonometric polynomial p such that condition (ii) is
veri�ed could not be trivial. Hence, in the following, assuming that p satis�es condition (i) so
that the matrix-valued function r is well-de�ned, we provide a useful result that can be applied
to construct p that ful�ls condition (ii).
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Lemma IV.3.6. Let f be a matrix-valued trigonometric polynomial, f ≥ 0 that satis�es con-

dition (IV.8). Assume p is a matrix-valued trigonometric polynomial such that condition (i) is

ful�lled, so that the matrix-valued function r de�ned as in (IV.10) is well-de�ned. Assume that

the eigenvector q̄(ϑ0) associated with the ill-conditioned subspace of f(ϑ0), i.e., f(ϑ0)q̄(ϑ0) =

0q̄(ϑ0), is such that:

1. q̄(ϑ0) is an eigenvector of p(ϑ0), associated to λ
(1)
̄ 6= 0 that is

p(ϑ0)q̄(ϑ0) = λ
(1)
̄ q̄(ϑ0);

2. q̄(ϑ0) is an eigenvector of p(ϑ0 + π) associated with the zero eigenvalue, that is

p(ϑ0 + π)q̄(ϑ0) = 0q̄(ϑ0);

3. q̄(ϑ0) is an eigenvector of p(ϑ0)
H , associated to λ

(2)
̄ 6= 0, that is

p(ϑ0)
Hq̄(ϑ0) = λ

(2)
̄ q̄(ϑ0).

Then condition (ii) is satis�ed.

Proof. From all the hypotheses on q̄(ϑ0) and by direct computation, we have

(
p(ϑ0)

Hp(ϑ0) + p(ϑ0 + π)Hp(ϑ0 + π)
)
q̄(ϑ0) = λ

(1)
̄ λ

(2)
̄ q̄(ϑ0).

Then, by de�nition of r(ϑ) in (IV.10), it holds that

r(ϑ0)q̄(ϑ0) = p(ϑ0)
(
p(ϑ0)

Hp(ϑ0) + p(ϑ0 + π)Hp(ϑ0 + π)
)−1

p(ϑ0)
Hq̄(ϑ0)

= λ
(2)
̄ p(ϑ0)

(
p(ϑ0)

Hp(ϑ0) + p(ϑ0 + π)Hp(ϑ0 + π)
)−1

q̄(ϑ0)

= λ
(2)
̄

1

λ
(1)
̄ λ

(2)
̄

p(ϑ0)q̄(ϑ0) = q̄(ϑ0).

IV.4 Extension to the Multidimensional Case

In the present section we give a possible extension of the convergence results in the multidimen-
sional setting.

First, we de�ne the objects of our analysis in more dimensions. Let n := (n1, . . . , nk) be
a multi-index in Nk. We need to provide a generalized de�nition of the projector P s

n,m for the
k−level block-circulant matrix Cn[f ] of dimension sN (n) generated by a multivariate matrix-
valued trigonometric polynomial f .

Analogously to the scalar case, we want to construct the projectors from an arbitrary multi-
level block-circulant matrix Cn[p], with p multivariate matrix-valued trigonometric polynomial.
For the construction of the projector we can use a tensor product approach:

Pn,m = Cn[p]
(
KOdd

n,m ⊗ Is

)
, (IV.28)
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where KOdd
n,m is the N (n)× N (n)

2k
matrix de�ned by KOdd

n,m = KOdd
n1,m1

⊗KOdd
n2,m2

⊗ · · · ⊗KOdd
nk,mk

and
Cn[p] is a multilevel block-circulant matrix generated by p. The main goal is to combine the
proof of Theorem IV.3.5 with the multilevel techniques in [119], in order to generalize conditions
(i)-(iii) to the multilevel case.

In the k−level setting, we are assuming that ϑ0 ∈ [0, 2π)k and ̄ ∈ {1, . . . , s} such that
{
λj(f(ϑ)) = 0 for ϑ = ϑ0 and j = ̄,

λj(f(ϑ)) > 0 otherwise.
(IV.29)

The latter assumption means that the matrix f(ϑ) has exactly one zero eigenvalue in ϑ0 and
it is positive de�nite in [0, 2π)k\{ϑ0}. Let us assume that, q̄(ϑ0) is the eigenvector of f(ϑ0)

associated with λ̄(f(ϑ0)) = 0. Moreover, de�ne Ω(ϑ) =
{
ϑ+ πη, η ∈ {0, 1}k

}
. Under these

hypotheses, the multilevel extension of conditions (i)-(iii) of Section IV.2.2, which are su�cient
to ensure the optimal convergence of the TGM in the multilevel case, is the following. Choose
p(·) such that

� ∑

ξ∈Ω(ϑ)

p(ξ)Hp(ξ) > 0, ∀ϑ ∈ [0, 2π)k, (IV.30)

which implies that the trigonometric function

r(ϑ) = p(ϑ)


 ∑

ξ∈Ω(ϑ)

p(ξ)Hp(ξ)




−1

p(ϑ)H

is well-de�ned for all ϑ ∈ [0, 2π)k.

�

r(ϑ0)q̄(ϑ0) = q̄(ϑ0). (IV.31)

�

lim
ϑ→ϑ0

λ̄(f(ϑ))
−1(1− λ̄(r(ϑ))) = c, (IV.32)

where c ∈ R is a constant.

In the following we want to construct a multilevel projector Pn,m such that the conditions
(IV.30)-(IV.32) are satis�ed and, then, the optimal convergence of the TGM is ensured in our
multidimensional setting.

In particular, starting from s`×s` matrix-valued trigonometric polynomials p`, ` = 1, . . . , k,
we aim at de�ning a multivariate polynomial p(k) associated to the multilevel projector Pn,m

such that the conditions (IV.30)-(IV.32) are satis�ed.
In the following lemmas, we show that the aforementioned goal is achieved if we choose the

multivariate matrix-valued trigonometric polynomial

p(k)(ϑ1, ϑ2, . . . , ϑk) =

k⊗

`=1

p`(ϑ`), (IV.33)

where p`(ϑ`) ∈ Cs`×s` are polynomials that satisfy conditions (i)-(iii) of Subsection IV.2.2.
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Lemma IV.4.1. Let p(k)(ϑ1, ϑ2, . . . , ϑk) be de�ned as in (IV.33). Then,

∑

ξ∈Ω(ϑ)

p(k)(ξ)Hp(k)(ξ) =

k⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
.

Proof. By de�nition, p(k)(ϑ) =
⊗k

`=1 p`(ϑ`), then

∑

ξ∈Ω(ϑ)

p(k)(ξ)Hp(k)(ξ) =
∑

ξ∈Ω(ϑ)

(
k⊗

`=1

p`(ξ`)
H

)(
k⊗

`=1

p`(ξ`)

)

=
∑

ξ∈Ω(ϑ)

(
k⊗

`=1

(
p`(ξ`)

Hpr`(ξ`)
)
)
.

The proof is then concluded once we prove by induction on k the following equality

∑

ξ∈Ω(ϑ)

(
k⊗

`=1

(
p`(ξ`)

Hpr`(ξ`)
)
)

=
k⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
. (IV.34)

The equation above is clearly veri�ed for k = 1, indeed, by de�nition

∑

ξ∈Ω(ϑ)

(
1⊗

`=1

(
p`(ξ`)

Hpr`(ξ`)
)
)

=
∑

ξ∈{ϑ1,ϑ1+π}

(
p1(ξ1)

Hp1(ξ1)
)
=

ps1(ϑ1)
Hp1(ϑ1) + p1(ϑ1 + π)Hp1(ϑ1 + π) =

1⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
.

Let us assume that equality (IV.34) is true for k − 1. We have that

k⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
=

[
k−1⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
]
⊗

(
pk(ϑk)

Hpk(ϑk) + pk(ϑk + π)Hpk(ϑk + π)
)

The left-hand side of the latter term is a function of k − 1 variables (ϑ1, ϑ2, . . . , ϑk−1). Then,
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by the inductive hypothesis and from the properties of the tensor product we have
[
k−1⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
]
⊗

(
pk(ϑk)

Hpk(ϑk) + pk(ϑk + π)Hpk(ϑk + π)
)
=




∑

(ξ1,ξ2,...,ξk−1)
∈

Ω(ϑ1,ϑ2,...,ϑk−1)

k−1⊗

`=1

p`(ξ`)
Hp`(ξ`)




⊗

(
pk(ϑk)

Hpk(ϑk) + pk(ϑk + π)Hpk(ϑk + π)
)
=

∑

(ξ1,ξ2,...,ξk−1)
∈

Ω(ϑ1,ϑ2,...,ϑk−1)

[(
k−1⊗

`=1

p`(ξ`)
Hp`(ξ`)

)
⊗
(
pk(ϑk)

Hpk(ϑk) + pk(ϑk + π)Hpk(ϑk + π)
)
]
=

∑

ξ∈{(ϑ1+l1π,...,ϑk−1+lk−1π},
l∈{0,1}k−1

[(
k−1⊗

`=1

p`(ξ`)
Hp`(ξ`)

)
⊗ pk(ϑk)

Hpk(ϑk)+

+

(
k−1⊗

`=1

p`(ξ`)
Hp`(ξ`)

)
⊗ pk(ϑk + π)Hpk(ϑk + π)

]
=

∑

ξ∈{(ϑ1+l1π,...,ϑk−1+lk−1π,ϑk)},
l∈{0,1}k−1

k⊗

`=1

p`(ξ`)
Hp`(ξ`)+

∑

ξ∈{(ϑ1+l1π,...,ϑk−1+lk−1π,ϑk+π)},
l∈{0,1}k−1

k⊗

`=1

p`(ξ`)
Hp`(ξ`) =

∑

ξ∈Ω(ϑ)

k⊗

`=1

p`(ξ`)
Hp`(ξ`).

Then, relation (IV.34) is veri�ed for k, and this concludes the proof.

Lemma IV.4.2. Let p(k)(ϑ1, ϑ2, . . . , ϑk) de�ned as in (IV.33) where p`, for every ` = 1, . . . , k,

is a polynomial which veri�es the positivity condition (i). Then, p(k) is such that the positivity

condition in the multilevel setting (IV.30) is satis�ed.

Proof. The thesis is a consequence of Lemma IV.4.1 and the matrix tensor product properties.
Indeed, the eigenvalues of a tensor product of matrices are the product of the eigenvalues of the
matrices. Then, condition (IV.30) is trivially implied from the fact that

∑

ξ∈Ω(ϑ)

p(k)(ξ)Hp(k)(ξ) =

k⊗

`=1

(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)
,

and from the positivity condition in the unilevel case.
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Lemma IV.4.3. Let p(k)(ϑ1, ϑ2, . . . , ϑk) be de�ned as in (IV.33) and it veri�es (IV.30). Then,

the trigonometric function

r(ϑ) = p(k)(ϑ)


 ∑

ξ∈Ω(ϑ)

p(k)(ξ)Hp(k)(ξ)




−1

p(k)(ϑ)H

is well-de�ned for all ϑ ∈ [0, 2π)k. Moreover, it holds that

r(ϑ) =
k⊗

`=1

r`(ϑ`), (IV.35)

where, for ` = 1, . . . , k, r`(ϑ`) = p`(ϑ`)
(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)−1

p`(ϑ`)
H .

Proof. From Lemma IV.4.2, we have that r(ϑ) is well-de�ned for all ϑ ∈ [0, 2π)k. From Lemma
IV.4.1 and the properties of the tensor product, we have

r(ϑ) = p(k)(ϑ)


 ∑

ξ∈Ω(ϑ)

p(k)(ξ)Hp(k)(ξ)




−1

p(k)(ϑ)H =

k⊗

`=1

p`(ϑ`)

(
k⊗

`=1

[
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
]−1

)
k⊗

`=1

p`(ϑ`)
H =

k⊗

`=1

(
p`(ϑ`)

[
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
]−1

p`(ϑ`)
H
)
=

k⊗

`=1

r`(ϑ`).

(IV.36)

Lemma IV.4.4. Let p(k)(ϑ1, ϑ2, . . . , ϑk) be de�ned as in (IV.33), such that, for all ` = 1, . . . , k,

p`(ϑ`) ∈ Cs`×s` is a polynomial that satis�es conditions (i)-(iii) of Subsection IV.2.2. Let q(k) =⊗
`=1,...,k q`, where q` is the column vector of length s` such that r`(ϑ

(`)
0 )q` = q`, ` = 1, . . . , k.

Then,

r(ϑ0)q
(k) = q(k),

where ϑ0 =
(
ϑ
(1)
0 , . . . , ϑ

(k)
0

)
.

Proof. From Lemma IV.4.3, we have that r(ϑ0) =
⊗k

`=1 r`

(
ϑ
(`)
0

)
, then, by de�nition and from

the properties of the tensor product, it holds

r(ϑ0)q
(k) =

(
k⊗

`=1

r`

(
ϑ
(`)
0

))( k⊗

`=1

q`

)
=

k⊗

`=1

(
r`

(
ϑ
(`)
0

)
q`

)
=

k⊗

`=1

q` = q(k). (IV.37)

Lemma IV.4.5. Let p(k)(ϑ1, ϑ2, . . . , ϑk) be de�ned as in (IV.33) such that veri�es (IV.30).

Consider

r(ϑ) =

k⊗

`=1

r`(ϑ`),

where, for ` = 1, . . . , k, r`(ϑ`) = p`(ϑ`)
(
p`(ϑ`)

Hp`(ϑ`) + p`(ϑ` + π)Hp`(ϑ` + π)
)−1

p`(ϑ`)
H

and they verify condition (iii) of Subsection IV.2.2. Then, r(ϑ) satis�es condition (IV.32).
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Proof. Without loss of generality, suppose that the order of the zero of λ̄ (f(ϑ`)) in ϑ
(`)
0 is ς ≥ 2

for ` = 1, . . . , k, then the functions 1− λ̄ (r`(ϑ`)) have a zero in ϑ(`)0 of order at least ς ∈ N for
all ` = 1, . . . , k by condition (iii). Hence, the (ς − 1)-th derivative of 1 − λ̄ (r`(ϑ`)) in ϑ(`)0 is
equal to zero. Then we have, for ` = 1, . . . , k,

λ̄ (r`(ϑ`))
(ς−1)

∣∣∣
ϑ
(`)
0

= 0.

The thesis follows by direct computation of the partial derivatives of 1−λ̄(r(ϑ)) in ϑ0, exploiting
the fact that

r(ϑ) =
k⊗

`=1

r`(ϑ`),

and

λ̄ (r(ϑ)) =
k∏

`=1

λ̄ (r`(ϑ`)) .
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Chapter V

Multigrid for Qs Finite Element

Matrices Using Block-Toeplitz Symbol

Approaches

In the current chapter we consider multigrid methods for the solution of large linear systems
whose coe�cient matrices arise from the Qs approximation of the elliptic problem

{
div (−a(x)∇u(x)) = ψ(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω
, (V.1)

with Ω being a bounded subset of Rk having smooth boundaries and with a being continuous
and positive on Ω.

The multigrid techniques that we present are based both on the theoretical results of Chapter
IV and on the spectral analysis of the involved matrix-sequences by means of the study of the
associated spectral symbol provided in [64].

Indeed, in the systematic work in [64], tensor rectangular Finite Element approximations
Qs of any degree s and of any dimensionality k are considered and the spectral analysis of the
sti�ness matrix-sequences {An}n is provided in the sense of asymptotic distributions, spectral
clustering, spectral localization, extremal eigenvalues, and conditioning.

We observe that the information obtained in [64] is strongly based on the notion of spectral
symbol and it is studied from the perspective of multilevel block�Toeplitz operators and GLT
sequences, which are all concepts that we introduced in Chapter I.

The �rst procedure that we propose is a classical multigrid strategy that follows a functional
approach, that is, we de�ne the prolongation operator as the inclusion operator between the
coarser and �ner involved functional spaces. Our aim is to analyse the prolongation matrix
as a cut block-Toeplitz matrix so that the grid transfer operator �ts in the setting of Section
IV.2. Indeed, we provide a two-grid convergence and optimality analysis exploiting the results
in Section IV.3.

We perform an analogous analysis also to a second multigrid strategy, where we choose the
standard bisection prolongation operator. In this case, we employ the results in Subsection
IV.3.2 to prove that the chosen grid transfer operator ful�ls the approximation property for the
linear systems associated to the Qs discretization of the model problem (V.1).
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Finally, we de�ne a new class of grid transfer operators that satisfy the theoretical condi-
tions of Chapter IV. In particular, we explain how to choose the trigonometric polynomial
that generates the block-Toeplitz matrix used in the construction of the grid transfer operator
focusing only on algebraic considerations on the symbol of the linear system matrix-sequence.
We highlight that the presented procedure has a wide interest, since it might be applied to every
matrix-sequence that falls into the theoretical setting.

The contents of this chapter are partly published in [55] and partly in the process of being
published in [20, 39]. The chapter is outlined as follows. In Section V.1, we present the problem,
the speci�c Qs approximation, and the analysis of the structure and of the spectral features of
the related matrices. Section V.2 is devoted to the multigrid strategy de�nition and analysis
for the geometric projection operators. Moreover, we con�rm the derived optimality results
through numerical tests for di�erent values of the function a, both in one dimension and in
higher dimension. In Section V.3, we provide the analysis of the approximation property for the
standard bisection grid transfer operator. Finally, Section V.4 is dedicated to the development
of a class of grid transfer operators that are suitable for both the two-grid and the V-cycle
convergence. A selection of numerical experiments con�rms the e�ectiveness of the presented
projection strategy for the two-grid method and indicates a heuristic technique for V-cycle
optimality.

V.1 Qs Lagrangian FEM Sti�ness Matrices

In what follows, we present the details of the Qs approximation of a simpli�ed version of the
problem in (V.1) as follows. We set the dimensionality k equal to 1, the function a(x) identically
equal to 1, and Ω = (0, 1). In this context, the problem becomes:

�nd u such that 



−u′′(x) = ψ(x) on (0, 1)

u(0) = u(1) = 0,
(V.2)

where ψ(x) ∈ L2 ((0, 1)).
We write the weak formulation of the problem as follows:
�nd u ∈ H1

0 (0, 1) such that

α(u, v) =< ψ, v > ∀v ∈ H1
0 (0, 1), (V.3)

where α(u, v) :=
∫
(0,1) u

′(x)v′(x) dx and < ψ, v >:=
∫
(0,1) ψ(x)v(x) dx. For s, n ≥ 1, we de�ne

the space

V(s)
n :=

{
σ ∈ C ([0, 1]) : σ|[ i

n ,
i+1
n ]

∈ Ps, ∀i = 0, . . . , n− 1

}
, (V.4)

where we denote by Ps the space of polynomials of degree less than or equal to s. Then, the
space V(s)

n represents the space of continuous piecewise polynomial functions. Starting from V(s)
n ,

we consider its subspace of functions that vanish on the boundary, de�ned by

W(s)
n :=

{
σ ∈ V(s)

n : σ(0) = σ(1) = 0
}
. (V.5)

Note that W(s)
n is a �nite ns − 1 dimensional subspace of H1

0 (0, 1) and, following a Galerkin
approach, we approximate the solution u of the variational problem by solving the problem:
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�nd us,n ∈ W(s)
n such that

α(us,n, v) =< ψ, v > ∀v ∈ W(s)
n . (V.6)

We de�ne the uniform knot sequence

ξi =
i

ns
, i = 0, . . . , ns, (V.7)

and the Lagrangian basis functions by

ϕn,s
j (ξi) = δi,j , i, j = 0, . . . , ns. (V.8)

with δi,j being the Kronecker delta. It can be shown that the latter de�nition is well-posed and
that {ϕn,s

1 , . . . , ϕn,s
ns−1} is a basis for W(s)

n . Then us,n can be written as linear combination as

us,n =
ns−1∑

j=1

ujϕ
n,s
j ,

and solving the problem (V.6) reduces to the solution of the linear system

A(s)
n u = b,

with

A(s)
n = [α(ϕn,s

j , ϕn,s
i )]ns−1

i,j=1, b = [< ψ,ϕn,s
i >]

ns−1
i=1 , u = [ui]

ns−1
i=1 .

The spectral properties of the Sti�ness matrix-sequence
{
A

(s)
n

}
n
were studied in [64] and, in the

following, we report the essential features. Let us consider the Lagrange polynomials L0, . . . , Ls

associated with the reference knots tj = j/s, j = 0, . . . , s:

Li(t) =

s∏

j=0
j 6=i

t− tj
ti − tj

=
s∏

j=0
j 6=i

st− j

i− j
, i = 0, . . . , s,

Li(tj) = δij , i, j = 0, . . . , s.

(V.9)

Then, the Qs sti�ness matrix for equation (V.2) equals the matrix A(s)
n in the next theorem.

Theorem V.1.1. ([64]) Let s, n ≥ 1. Then,

A(s)
n =




K0 KT
1

K1
. . .

. . .

. . .
. . . KT

1

K1 K0



−

, (V.10)

where the subscripts �−� mean that the last row and column of the of the whole matrices in

square brackets are deleted, while K0,K1 are s× s blocks given by
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K0 =




〈L′
1, L

′
1〉 · · · 〈L′

s−1, L
′
1〉 〈L′

s, L
′
1〉

...
...

...

〈L′
1, L

′
s−1〉 · · · 〈L′

s−1, L
′
s−1〉 〈L′

s, L
′
s−1〉

〈L′
1, L

′
s〉 · · · 〈L′

s−1, L
′
s〉 〈L′

s, L
′
s〉+ 〈L′

0, L
′
0〉



,

K1 =




0 0 · · · 0 〈L′
0, L

′
1〉

0 0 · · · 0 〈L′
0, L

′
2〉

...
...

...
...

0 0 · · · 0 〈L′
0, L

′
s〉



,

(V.11)

with L0, . . . , Ls being the Lagrange polynomials in (V.9). In particular, A
(s)
n is the (ns−1)×(ns−

1) leading principal submatrix of the block-Toeplitz matrices Tn[fQs
] and f

Qs
: [−π, π] → Cs×s is

the Hermitian matrix-valued trigonometric polynomial given by

f
Qs
(ϑ) := K0 +K1e

ı̂ϑ +KT
1 e

−ı̂ϑ. (V.12)

An interesting property of the Hermitian matrix-valued functions f
Qs
(ϑ) de�ned in equation

(V.12) is reported in the theorem below: in fact, from the point of view of asymptotic spectral
distributions, the message is that, independently of the parameter s, the spectral symbol pos-
sesses the same character as 2−2 cos(ϑ), which is the symbol of the basic linear Finite Elements
and the most standard Finite Di�erences.

Theorem V.1.2. ([64]) Let s ≥ 1. Then,

det(f
Qs
(ϑ)) = ds(2− 2 cos(ϑ)), (V.13)

where ds = det([〈L′
j , L

′
i〉]si,j=1) = det([〈L′

j , L
′
i〉]s−1

i,j=1) > 0 (with d1 = 1, being the determinant

of the empty matrix equal to 1 by convention) and L0, . . . , Ls are the Lagrange polynomials in

Equation (V.9).

Furthermore, a generalization of the previous result in higher dimension is given in [106] and
is reported in the subsequent theorem.

Theorem V.1.3. ([106]) Given the symbols f
Qs

in dimension k ≥ 1, the following statements

hold true:

1. f
Qs
(0)es = 0es, s ≥ 1;

2. there exist constants C2 ≥ C1 > 0 (dependent on f
Qs
) such that

C1

s∑

j=1

(2− 2 cos(ϑj)) ≤ λ1(fQs
(ϑ)) ≤ C2

s∑

j=1

(2− 2 cos(ϑj)); (V.14)

3. there exist constants M ≥ m > 0 (dependent on f
Qs
) such that

0 < m ≤ λj(fQs
(ϑ)) ≤M, j = 2, . . . , sk. (V.15)
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V.2 A Geometric Multigrid Strategy: De�nition, Symbol Ana-

lysis, and Numerics

Let us consider the following family of Finite Element functional spaces of the form (V.5):
{
W(s)

2t

}
t=0,...,t

.

From the de�nition of V(s)
n and W(s)

n , it is clear that the following inclusion property holds

W(s)
1 ⊆ W(s)

2 ⊆ . . . ⊆ W(s)

2t−1
⊆ W(s)

2t
.

Therefore, to formulate a multigrid strategy, it is quite natural to follow a functional approach
and to impose the prolongation operator Pt,t+1 : W(s)

2t → W(s)
2t+1 to be de�ned as the identity

operator, that is
Pt,t+1vt = vt , for all vt ∈ W(s)

2t .

Thus, the matrix representing the prolongation operator is formed, column by column, by
representing each function of the basis of the coarse space W(s)

2t as linear combination of the

basis of the �ne space W(s)
2t+1 , the coe�cients being the values of the functions ϕ(2t),s

i on the �ne
mesh grid points, that is,

ϕ
(2t),s
i (x) =

s2t+1∑

j=0

ϕ
(2t),s
i

(
j

2t+1s

)
ϕ
(2t+1),s
j (x). (V.16)

In the following subsections, we consider in detail the case of Qs Finite Element approx-
imation with s = 2 and s = 3, the case s = 1 being reported in short just for the sake of
completeness.

V.2.1 Q1 Case

Firstly, let us consider the case of Q1 Finite Elements, where, as it is well known, the sti�ness
matrix is the scalar Toeplitz matrix generated by f

Q1
(ϑ) = 2 − 2 cos(ϑ), and, for the sake of

simplicity, let us consider the spaces W(1)
4 and W(1)

8 with respective dimension 3 and 7. In the
standard geometric multigrid, the prolongation operator matrix is de�ned as

P s
n,m = P 1

7,3 =




1

2
1
1

2

1

2
1
1

2

1

2
1
1

2




. (V.17)

Indeed, for polynomial degree equal to 1, the basis functions with respect to the reference interval
[0, 1] are ϕ̂1(x̂) = 1− x̂, ϕ̂2(x̂) = x̂, and, according to Equation (V.16), the ϕ4,1

i coe�cients are

ϕ̂2(1/2) = 1/2, ϕ̂2(1) = 1, ϕ̂1(1/2) = 1/2,
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Table V.1: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1, 2, 3

in one dimension with a(x) ≡ 1 and ε = 1× 10−6.

s = 1 s = 2 s = 3

# Subintervals TGM V-Cycle TGM V-Cycle TGM V-Cycle
16 6 7 7 7 9 9
32 7 7 7 7 9 9
64 7 7 7 7 9 9
128 6 7 7 7 9 9
256 6 7 7 7 9 9
512 6 7 7 7 9 9

giving the columns of the matrix in Equation (V.17).
However, our aim is to write P s

n,m in the form of equation (IV.4). For the latter purpose, we
think of the prolongation matrix above as the product of the Toeplitz matrix generated by the
polynomial p

G1
(ϑ) = 1 + cos(ϑ), where the subscript G1 stands for �Geometric for polynomial

degree 1�, and the cutting matrix KEven
n,m , that is, P 1

n,m = Tn

[
p
G1

]
KEven

n,m .
The two-grid and multigrid convergence with the above de�ned restriction/prolongation

operators and a simple smoother (for instance, a Gauss�Seidel iteration) is a classical result,
both from the point of view of the literature of approximated di�erential operators [69] and
from the point of view of the literature of structured matrices [4, 56].

In the �rst panel of Table V.1, we report the number of iterations needed for achieving the
prede�ned tolerance ε = 10−6, when increasing the matrix size in the setting of the current
subsection. Indeed, for the two-grid method we use P 1

n,m = Tn

[
p
G1

]
KEven

n,m and its transpose
as prolongation and restriction operators and Gauss�Seidel as a smoother. We highlight that
only one iteration of pre-smoothing and only one iteration of post-smoothing are employed in
the current numerics. In this scalar setting, it is straightforward to see that the conditions in
(IV.1) are ful�lled, and hence there is no surprise in observing that the number of iterations
needed for the two-grid remains almost constant when we increase the matrix size, numerically
con�rming the predicted optimality of the methods. Moreover, we obtain an analogous optimal
behaviour also for the V-cycle method implemented with the same prolongation, restriction, and
smoothing strategies at each level and this is expected from the analysis in [4].

We remark that we consider the one-dimensional case for the theoretical development of the
method, which can be extended to more dimensions through a tensor argument, as we detail in
Subsection V.4.3.

V.2.2 Q2 Case

Let us consider the case of Q2 Finite Elements, where we have that the basis functions with
respect to the reference interval [0, 1] are

ϕ̂1(x̂) = 2x̂2 − 3x̂+ 1,

ϕ̂2(x̂) = −4x̂2 + 4x̂,

ϕ̂3(x̂) = 2x̂2 − x̂.
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For the sake of simplicity, let us consider the spacesW(2)
2 andW(2)

4 with respective dimension
3 and 7. Thus, with respect to Equation (V.16), the ϕ2,2

1 coe�cients are

ϕ̂2(1/4) = 3/4, ϕ̂2(1/2) = 1, ϕ̂2(3/4) = 3/4, ϕ̂2(1) = 0,

while the ϕ2,2
2 coe�cients are

ϕ̂3(1/4) = −1/8, ϕ̂3(1/2) = 0, ϕ̂3(3/4) = 3/8, ϕ̂3(1) = 1,

ϕ̂1(1/4) = 3/8, ϕ̂1(1/2) = 0, ϕ̂1(3/4) = −1/8, ϕ̂1(1) = 0,

and so on again as for that �rst couple of basis functions. Notice also that, to evaluate the
coe�cients, for the sake of simplicity, we are referring to the basis functions on the reference
interval, as depicted in Figure V.1. Summarizing, the obtained prolongation matrix is as follows

P s
n,m = P 2

7,3 =




3

4
−1

8
1 0
3

4

3

8
0 1

3

8

3

4
0 1

−1

8

3

4




. (V.18)

Hereafter, we are interested in setting such a geometrical multigrid strategy, proposed in [26,
69, 70], in the framework of the more general algebraic multigrid theory and in particular in the
one driven by the matrix symbol analysis. To this end, we represent the prolongation operator
quoted above as the product of a Toeplitz matrix generated by a polynomial p

G2
and a suitable

cutting matrix, following the theory in Chapter IV. We recall that the Finite Element sti�ness
matrix could be thought as a principal submatrix of a Toeplitz matrix generated by the matrix-
valued symbol that, from Equation (V.12), has the compact form

f
Q2
(ϑ) =




16
3 −8

3(1 + eı̂ϑ)

−8
3(1 + e−ı̂ϑ) 14

3 + 1
3(e

ı̂ϑ + eı̂ϑ)


 . (V.19)

Then, it is quite natural to look for a matrix-valued symbol for the polynomial p
G2

as well. In
addition, the cutting matrix is also formed through the Kronecker product of the scalar cutting
matrix KEven

n,m and the identity matrix of order 2, so that

P 2
n,m = Tn

[
p

G2

] (
KEven

n,m ⊗ I2
)
.

Taking into account the action of the cutting matrix KEven
n,m ⊗ I2, we can easily identify from

Equation (V.18) the generating polynomial as

p
G2
(ϑ) = K0 +K1e

ı̂ϑ +K−1e
−ı̂ϑ +K2e

2ı̂ϑ +K−2e
−2ı̂ϑ. (V.20)
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Figure V.1: Construction of the Q2 prolongation operator: basis functions on the reference element.

where

K0 =

[
3
4

3
8

0 1

]
, K1 =

[
0 3

8

0 0

]
, K−1 =

[
3
4 −1

8

1 0

]
, K2 =

[
0 −1

8

0 0

]
, K−2 = O2,2,

that is

p
G2
(ϑ) =




3
4(1 + e−ı̂ϑ) 3

8(1 + eı̂ϑ)− 1
8(e

−ı̂ϑ + e2ı̂ϑ)

e−ı̂ϑ 1


 .

A very preliminary analysis, just by computing the determinant of p
G2
(ϑ) shows there is a zero

of third order in the mirror point ϑ = π, being

det(p
G2
(ϑ)) =

1

8
e−2ı̂ϑ(eı̂ϑ + 1)3.

Moreover, we can provide a more rigorous convergence analysis if we recall Theorem IV.3.3. To
this end, we have explicitly formed the matrices involved in equations (IV.6) and (IV.13) and
computed their eigenvalues for ϑ ∈ [0, 2π]. The results are reported in Figure V.2 and are in
perfect agreement with the theoretical requirements. Indeed, by Theorem IV.3.3, our projection
strategy for the Q2 FEM linear systems is such that the approximation property is ful�lled.

In the second panel of Table V.1, we report the number of iterations needed for achieving
the prede�ned tolerance ε = 10−6, when increasing the matrix size in the setting of the cur-
rent subsection. Indeed, we use Tn

[
p

G2

] (
KEven

n,m ⊗ I2
)
and its transpose as prolongation and

restriction operators and Gauss�Seidel as a smoother. Again, we remind that only one iteration
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Figure V.2: Check of conditions for Q2 geometric prolongation: (left) the plot of the eigenvalues of

p
G2

(ϑ)Hp
G2

(ϑ) + p
G2

(ϑ + π)Hp
G2

(ϑ + π) for ϑ ∈ [0, 2π]; and (right) the plot of the eigenvalues of R(ϑ)

for ϑ ∈ [0, 2π].

of pre-smoothing and only one iteration of post-smoothing are employed in our numerical set-
ting. As expected, we observe that the number of iterations needed for the two-grid convergence
remains constant when we increase the matrix size, numerically con�rming the optimality of
the method.

Moreover, we notice that also the V-cycle method possesses optimal convergence properties.
Although this behaviour is expected from the point of view of di�erential approximated operat-
ors, it is of particular interest in the setting of algebraic multigrid methods. Indeed, constructing
an optimal V-cycle method for matrices in this block setting requires a further analysis of the
spectral properties of the restricted operators, as we see in Section V.4.

Furthermore, we highlight that the presented analysis for a ≡ 1 can be easily extended
to the case of non-constant coe�cients a(x) 6= 1, since, following a geometric approach, the
prolongation operators for the general variable coe�cients remain unchanged. In Table V.2, we
show the number of iterations needed for the convergence of the two-grid and V-cycle methods
for k = 2 for di�erent values of a 6≡ 1.

We remark that we consider the one-dimensional case for the theoretical development of the
method, which can be extended to more dimensions through a tensor argument.

V.2.3 Q3 Case

Hereafter, we brie�y summarize the case of Q3 Finite Elements, following the very same path
we already considered in the previous section for Q2 Finite Elements. The basis functions with
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Table V.2: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in

one dimension with a(x) = ex, a(x) = 10x+ 1, a(x) = |x− 1/2|+ 1, and ε = 1× 10−6.

a(x) = ex a(x) = 10x+ 1 a(x) = |x− 1/2|+ 1

# Subintervals TGM V-Cycle TGM V-Cycle TGM V-Cycle
16 7 7 9 12 7 7
32 7 8 7 14 7 7
64 7 8 7 14 7 7
128 7 8 7 15 7 7
256 7 8 7 15 7 7
512 7 8 7 14 7 7

respect to the reference interval [0, 1] are

ϕ̂1(x̂) = −9

2
x̂3 + 9x̂2 − 11

2
x̂+ 1,

ϕ̂2(x̂) =
27

2
x̂3 − 45

2
x̂2 + 9x̂, (V.21)

ϕ̂3(x̂) = −27

2
x̂3 + 18x̂2 − 9

2
x̂,

ϕ̂4(x̂) =
9

2
x̂3 − 9

2
x̂2 + x̂.

For the sake of simplicity, we consider the functional spaces W(3)
2 and W(3)

4 with respective
dimension 5 and 11. Thus, with respect to equation (V.16) (see also Figure V.3), the ϕ2,3

1

coe�cients are

ϕ̂2(1/6) = 15/16, ϕ̂2(1/3) = 1, ϕ̂2(1/2) = 9/16,

ϕ̂2(2/3) = 0, ϕ̂2(5/6) = −5/16, ϕ̂2(1) = 0,

while, the ϕ2,3
2 coe�cients are

ϕ̂3(1/6) = −5/16, ϕ̂3(1/3) = 0, ϕ̂3(1/2) = 9/16,

ϕ̂3(2/3) = 1, ϕ̂3(5/6) = 15/16, ϕ̂3(1) = 0,

and the ϕ2,3
3 coe�cients are

ϕ̂4(1/6) = 1/16, ϕ̂4(1/3) = 0, ϕ̂4(1/2) = −1/16,

ϕ̂4(2/3) = 0, ϕ̂4(5/6) = 5/16, ϕ̂4(1) = 1,

ϕ̂1(1/6) = 5/16, ϕ̂1(1/3) = 0, ϕ̂1(1/2) = −1/16,

ϕ̂1(2/3) = 0, ϕ̂1(5/6) = 1/16, ϕ̂1(1) = 0.
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Consequently, the obtained prolongation matrix is as follows:

P s
n,m = P 3

11,5 =




15

16
− 5

16

1

16
1 0 0
9

16

9

16
− 1

16
0 1 0

− 5

16

15

16

5

16
0 0 1

5

16

15

16
− 5

16
0 1 0

− 1

16

9

16

9

16
0 0 1
1

16
− 5

16

15

16




. (V.22)

Thus, taking into consideration that the sti�ness matrix is a principal submatrix of the Toeplitz
matrix generated by the matrix-valued function

f
Q3
(ϑ) =




54
5 −297

40
27
20 − 189

40 e
ı̂ϑ

−297
40

54
5 −189

40 + 27
20e

ı̂ϑ

27
20 − 189

40 e
−ı̂ϑ −189

40 + 27
20e

−ı̂ϑ 37
5 − 13

40(e
ı̂ϑ + e−ı̂ϑ)


 , (V.23)

we are looking for the matrix-valued trigonometric polynomial p
G3

as well. By de�ning

P 3
n,m = Tn

[
p

G3

] (
KEven

n,m ⊗ I3
)
,

it is straightforward to identify the generating polynomial as

p
G3
(ϑ) = K0 +K1e

ı̂ϑ +K−1e
−ı̂ϑ +K2e

2ı̂ϑ +K−2e
−2ı̂ϑ, (V.24)

where

K0 =




0 1 0

− 5
16

15
16

5
16

0 0 1


, K1 =




0 0 5
16

0 0 0

0 0 − 1
16


, K−1 =




15
16 − 5

16
1
16

1 0 0
9
16

9
16 − 1

16


,

K2 =




0 0 0

0 0 1
16

0 0 0


, K−2 = O3,3,

that is

p
G3
(ϑ) =




15
16e

−ı̂ϑ 1− 5
16e

−ı̂ϑ 1
16e

−ı̂ϑ + 5
16e

ı̂ϑ

e−ı̂ϑ − 5
16

15
16

5
16 + 1

16e
2ı̂ϑ

9
16e

−ı̂ϑ 9
16e

−ı̂ϑ 1− 1
16(e

ı̂ϑ + e−ı̂ϑ)


 . (V.25)
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Table V.3: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in

one dimension with a(x) ≡ 1 and ε = 1× 10−2, 1× 10−4, and 1× 10−8.

ε = 1× 10−2 ε = 1× 10−4 ε = 1× 10−8

# Subintervals TGM V-Cycle TGM V-Cycle TGM V-Cycle
16 3 3 5 5 9 9
32 3 3 5 5 9 10
64 3 3 5 5 9 10
128 3 3 5 5 9 10
256 3 3 5 5 9 10
512 3 3 5 5 9 10

A trivial computation shows that the determinant of p
G3
(ϑ) has a zero of fourth order in

the mirror point ϑ = π, being

det(p
G3
(ϑ)) =

1

64
e−3ı̂ϑ(eı̂ϑ + 1)4.

However, the main goal is to verify the conditions in equations (IV.6) and (IV.13): we have
explicitly formed the matrices involved and computed their eigenvalues for ϑ ∈ [0, 2π]. The
results are in perfect agreement with the theoretical requirements (see Figure V.4). We remark
again that the purpose of this analysis is to link the geometric approach proposed in [26, 69, 70]
to the novel algebraic multigrid methods for block-Toeplitz matrices.

In the third panel of Table V.1, we report the number of iterations needed for achieving the
prede�ned tolerance ε = 10−6, when increasing the matrix size in the setting of the current sub-
section. Indeed, we use Tn

[
p

G3

] (
KEven

n,m ⊗ I3
)
and its transpose as prolongation and restriction

operators and Gauss�Seidel as a smoother (one iteration of pre-smoothing and one iteration of
post-smoothing).

As expected, we observe that the number of iterations needed for the two-grid convergence
remains constant when we increase the matrix size, numerically con�rming the optimality of the
method. As in the Q2 case, we also notice that the V-cycle method possesses the same optimal
convergence properties.

Comparing the three panels in Table V.1, we also notice a mild dependency of the number
of iterations on the polynomial degree s. In addition, we can see in Tables V.3 and V.4 that
the optimal behaviour of the two-grid and V-cycle methods for s = 2, 3 remains unchanged if
we test di�erent tolerance values.

It is worth stressing that the results also hold in dimension k = 2, as well shown in Table
V.5. The same optimal behaviour in the sense of the convergence rate is present also in the case
of non-constant coe�cients a(x, y) 6= 1. Indeed, in Table V.6, we show the number of iterations
needed for the convergence of the two-grid and V-cycle for di�erent values of a 6≡ 1.

We �nally remind that the tensor structure of the resulting matrices highly facilitates the
generalization and extension to the case of k ≥ 2. Indeed, from a theoretical point of view,
the tensor structure permits to exploit the results of Section IV.4. Moreover, from the practical
point of view, the prolongation operators in the multilevel case are constructed by a proper
tensorization of those in 1D, as we detail in Subsection V.4.3.
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Table V.4: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 3 in

one dimension with a(x) ≡ 1 and ε = 1× 10−2, 1× 10−4, and 1× 10−8.

ε = 1× 10−2 ε = 1× 10−4 ε = 1× 10−8

# Subintervals TGM V-Cycle TGM V-Cycle TGM V-Cycle
16 3 3 6 6 12 12
32 3 3 6 6 12 12
64 3 3 6 6 12 12
128 3 3 6 6 12 12
256 3 3 6 6 12 12
512 3 3 6 6 12 12
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Figure V.3: Construction of the Q3 geometric prolongation operator: basis functions on the reference element.
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Figure V.4: Check of conditions for Q3 geometric prolongation: (left) the plot of the eigenvalues of

p
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(ϑ + π) for ϑ ∈ [0, 2π]; and (right) the plot of the eigenvalues of R(ϑ)

for ϑ ∈ [0, 2π].
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Table V.5: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1, 2, 3

in dimension k = 2 with a(x) ≡ 1.

s = 1 s = 2 s = 3

# Nodes TGM V-Cycle # Nodes TGM V-Cycle # TGM V-Cycle

72 5 5 152 6 6 232 7 7

152 5 6 312 6 6 472 7 7

312 5 6 632 6 6 952 7 7

632 5 6 1272 6 6 1912 7 7

1272 5 6 2552 6 6 3832 7 7

Table V.6: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in

two dimensions with a(x, y) = e(x+y), a(x, y) = 10(x + y) + 1, a(x, y) = |x − 1/2| + |y − 1/2| + 1, a(x, y) = 1 if

x ≤ 1/2 and y ≤ 1/2, 5000 otherwise, and ε = 1× 10−6.

a(x, y) = e(x+y) 10(x+ y) + 1 |x− 1/2|+ |y − 1/2|+ 1

{
1 x, y ≤ 1/2

5000 otherwise

# Nodes TGM V-Cycle TGM V-Cycle TGM V-Cycle TGM V-Cycle

72 6 6 6 6 6 6 6 6

152 6 6 6 6 6 6 6 6

312 6 6 6 6 6 6 6 6

632 6 6 6 6 6 6 6 6

1272 6 6 6 6 6 6 6 6

V.3 Symbol Analysis of the Standard Bisection Grid Transfer

Operator

In the present section we consider a standard grid transfer operator, that is, the bisection
operator, which coincides with the interpolation operator of Subsection V.2.1. Indeed, for the
Q1 sti�ness matrices the approaches of the current and of the previous sections coincide. The
new element here is that we use the same bisection operator for every polynomial degree, only
paying attention to the choice of the correct matrix-sizes.

For our purposes, we can write the bisection operator in the following form

P s
n,m = Tsn[2 + 2 cos(ϑ)]KEven

sn,
s(n−1)

2

. (V.26)

We want to show that the latter operator �ts into the block setting of the previous chapter.
Hence, �rst we have to rewrite P s

n,m in the desired block form

P s
n,m = Tn

[
p

Ls

]
(KEven

n,m ⊗ Is),

which means that we want to �nd a matrix-valued trigonometric polynomial p
Ls

such that the
latter equation is true, with P s

n,m de�ned as in (V.26).
Recalling the action of the cutting matrices (Kn,m⊗Is) seen in Section IV.2, we can see that

P s
n,m can be rewritten in the desired block form with associated matrix-valued trigonometric

polynomial p
Ls

of the form

p
Ls
(ϑ) = p̂0 + p̂−1e

−ı̂ϑ + p̂1e
ı̂ϑ, (V.27)
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where the expressions of the Fourier coe�cients p̂0, p̂−1, p̂1 depend on whether the degree is even
or odd. Indeed, we have the following two cases.

1. In the case of even degree s, we de�ne

A1 = Ts[2 + 2 cos(ϑ)]KEven
s, s

2
=




1

2

1 1

2

1 1

2




s× s
2

.

and we have

p̂0 =




oTs
2
−1 1

A1

O s
2
−1, s

2
−1 o s

2
−1


 , p̂−1 =

[
A1 | Os, s

2

]
(V.28)

p̂1 =




oTs−1 1

Os−1,s−1 os−1


 . (V.29)

Note that
s
2∑

j=1

[A1]1,j = 1, (V.30)

and for i = 2, . . . , s
s
2∑

j=1

[A1]i,j = 2. (V.31)

2. In the case of odd degree s, we de�ne

A2 = Ts[2 + 2 cos(ϑ)]KOdd
s, s+1

2

=




2

1 1

2

1 1

2



s× s+1

2

,

A3 = Ts[2 + 2 cos(ϑ)]KEven
s, s+1

2

=




1

2

1 1

2

2

1 1




s× s+1
2

.
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and we have
p̂0 =

[
Os, s−1

2
| A2

]
,

p̂−1 =
[
A3 | Os, s−1

2

]
,

p̂1 =




oTs−1 1

Os−1,s−1 os−1


 .

Note that
s+1
2∑

j=1

[A3]1,j = 1,

s+1
2∑

j=1

[A2]1,j = 2, (V.32)

and for i = 2, . . . , s
s+1
2∑

j=1

[A2]i,j =

s+1
2∑

j=1

[A3]i,j = 2. (V.33)

In what follows we prove that p
Ls

ful�ls conditions (i)�(iii) of Subsection IV.2.2 and, in par-
ticular, in the following lemma we show that p

Lr
satis�es the hypotheses of Lemma IV.3.6

for f = f
Qs
.

Lemma V.3.1. Let p
Ls

be the s × s trigonometric polynomial de�ned in (V.27), and es =

[1, . . . , 1]T . Then

1. p
Ls
(0) es = 4 es.

2. p
Ls
(π) es = 0 es.

3. p
Ls
(0)H es = 4 es.

Proof. The �rst two items are equivalent to require that the sum of the elements in each row of
the matrices p

Ls
(0) and p

Ls
(π) is 4 and 0, respectively.

Hence, to prove 1. it is su�cient to show that for every i = 1, . . . , s it holds

s∑

j=1

[p
Ls
(0)]i,j = 4.

From the expression of p
Ls
(ϑ) in (V.27) we have

s∑

j=1

[p
Ls
(0)]i,j =

s∑

j=1

[p̂0 + p̂1 + p̂−1]i,j .

Then, we can exploit the structure of the Fourier coe�cients p̂−1, p̂0, and p̂1 for even and odd
degree. In particular, looking at the structure of the matrices A1, A2, A3, and at relations
(V.30)-(V.33), we have, for even degree s and for i = 1, . . . , s,

s
2∑

j=1

[p
Ls
(0)]i,j =

s
2∑

j=1

[p̂0 + p̂1 + p̂−1]i,j =





1 +
(
2
∑ s

2
j=1[A1]1,j

)
+ 1 = 4, for i = 1(

2
∑ s

2
j=1[A1]i,j

)
= 4, for i = 2, . . . , s

,
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and, for odd degree s and for i = 1, . . . , s,

s+1
2∑

j=1

[p
Ls
(0)]i,j =

s+1
2∑

j=1

[p̂0 + p̂1 + p̂−1]i,j =





(∑ s+1
2

j=1 [A3]1,j + [A2]1,j

)
+ 1 = 4, for i = 1

(∑ s
2
j=1[A3]i,j + [A2]i,j

)
= 4, for i = 2, . . . , s

.

The proof of 2. can be repeated following the idea in 1. and noting that

p
Ls
(π) = p̂0 − p̂1 − p̂−1.

Analogously, the third item can be proven following the same idea of 1., showing that the
sum of the elements in each column of the matrices p

Ls
(0) is 4. Since it is a straightforward

computation, we omit the details.

The latter result, together with Lemma IV.3.6 permits to conclude that p
Ls

satis�es condition
(ii), once that we prove that it satis�es condition (i), so that the matrix-valued function r is
well-de�ned. By direct computation of the quantity p

Ls
(ϑ)Hp

Ls
(ϑ) + p

Ls
(ϑ+ π)Hp

Ls
(ϑ+ π),

we �nd that for both even and odd s we have

p
Ls
(ϑ)Hp

Ls
(ϑ) + p

Ls
(ϑ+ π)Hp

Ls
(ϑ+ π) =




12 2 0 . . . 2e2ı̂ϑ

2 12 2 . . . 0
. . .

0 12 2

2e−2ı̂ϑ 0 . . . 2 12



,

which is clearly a de�nite positive matrix for all ϑ ∈ [0, 2π), so p
Ls

satis�es condition (i). Then(
p

Ls
(ϑ)Hp

Ls
(ϑ) + p

Ls
(ϑ+ π)Hp

Ls
(ϑ+ π)

)−1 is well-de�ned, for all ϑ ∈ [0, 2π) and the function
r(ϑ) de�ned in (IV.10) is well-de�ned as well.

We have to verify the limit condition (iii), in order to ensure that the bisection operator ful�ls
the approximation property for the Qs linear system by Theorem IV.3.5. For this purpose, it
is su�cient to show that the function 1 − λ̄(r(ϑ)) has a zero at least of the same order of
λ̄(fQs

(ϑ)).
For even polynomial degree s, we have that r(ϑ) is a projector, since it can be easily veri�ed

by direct computation that

r2(ϑ)− r(ϑ) = Os,s, for all ϑ ∈ [0, 2π).

Hence, from condition (ii), we have λ̄(r(0)) = 1, and, from the continuity of the eigenvalue
functions (Lemma I.3.1), we have that λ̄(r(ϑ)) ≡ 1. Hence, it is straightforward to see that
condition (iii) is veri�ed.

The proof of condition (iii) for odd polynomial degree s is under investigation in [20].
As a numerical con�rmation of the validity of the projection strategy that we presented in

the current section, we report the results of the two-grid procedure applied to the Qs linear
systems in Table V.7. In particular, we report the number of iterations needed for achieving the
prede�ned tolerance 10−6 when increasing the matrix�size, using Gauss�Seidel as a smoother,
with only one iteration of pre-smoothing and only one iteration of post-smoothing. Even though
we do not present the theoretical convergence analysis of the V-cycle method, we report also the
V-cycle tests. The results are comparable to those of Table V.1.
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Table V.7: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1, 2, 3

in one dimension with a(x) ≡ 1 and ε = 1× 10−6, using the standard bisection grid transfer operator.

s = 1 s = 2 s = 3

# Subintervals TGM V-Cycle TGM V-Cycle TGM V-Cycle
8 5 5 8 8 9 10
16 6 7 8 9 9 10
32 7 7 8 9 9 10
64 7 7 8 9 9 10
128 6 7 8 9 9 10
256 6 7 8 9 9 10
512 6 7 8 9 9 10

V.4 A New Multigrid Strategy: Construction, Analysis, and Nu-

merics

The scope of the current section is twofold. On one hand, we intend to give further numerical
evidence of the results proven in Section IV.3. On the other hand, we present a new multigrid
strategy for the Qs Finite Element matrices. Our �nal goal is not to improve the convergence
results of the geometric and standard bisection projection strategies, but to provide a general
method to construct suitable grid transfer operators on the base of algebraic considerations
related to Chapter IV.

Contrary to the theoretical analysis that we performed in the last chapter, here we deal
with block-Toeplitz matrices generated by a matrix-valued trigonometric polynomial, instead of
block-circulant matrices. As in Sections V.2 and V.3, we expect that the theoretical results of
Section IV.3 still hold since block Toeplitz matrices with polynomial generating functions are
a low rank correction of block circulant matrices with the same generating function. The only
di�erence could be a slight deterioration of the convergence in the case of block Toeplitz matrices
with respect to block circulant matrices.

As far as the choice of the right-hand side is concerned, we impose that the solution x of the
linear system Tn[f ]x = b is a uniform sampling of the sine function on [0, π] and we compute
the right-hand side b as b = Tn[f ]x. Moreover, in all the considered examples the used stopping
criterion is a standard one, that is ‖r(k)‖2

‖b‖2 < ε, where r(k) = b− Tn[f ]x
(k). As we mentioned in

Section IV.2, the structure of the projector slightly changes for block-Toeplitz matrices, in order
to preserve the structure at coarser levels. The dimension of the problem at level t becomes ns,
with n of the form 2t − 1. The cutting matrix KEven

n,m is de�ned as in Section IV.2 and, for a
matrix-valued trigonometric polynomial p, the projector P s

n,m is of the form in (IV.4).
The section is outlined as follows. In Subsection V.4.1, we give a general methodology to

construct a grid transfer operator for problems of Laplacian type. In Subsection V.4.2 we present
strategies for an implementation of both the two-grid and V-cycle methods for Qs sti�ness
matrices for the considered second order elliptic di�erential problem on [0, 1]. In Subsection
V.4.3 we consider the two-dimensional problem, that is, we study multigrid methods for the Qs

sti�ness matrices for the second order elliptic di�erential problem on the unit square.
Apart from the �rst example, we use the Gauss-Seidel method as a smoother. The method
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damps the high frequencies, which makes it a suitable smoother for our problems.

V.4.1 A Strategy to Achieve Optimality of the V-Cycle

In the current section we consider a problem of Laplacian type, that is, we deal with matrices
Tn[f ] ≥ 0 generated by a trigonometric polynomial f : [−π, π] → Cs×s, f ≥ 0, that has a
non-negative minimal eigenvalue function λmin(f) with a unique zero in the origin of order two.
Moreover, it holds f(0)es = 0es, where es is the vector of all ones of length s.

We recall that the V-cycle method involves a set of coarser linear operators Tm`
[f`], where `

represents the level. In order to de�ne a robust projector Pn,m that ensures a linear convergence
rate also for the V-cycle applied to Tn[f ], we study the quantity

κ(f`) =
‖λmax(f`)‖∞
λ′′min(f`)

∣∣
0

,

which gives an estimate of the ill-conditioning of the coarse problem at level `, see [21]. Indeed
the conditioning of the matrix Tm`

[f`] depends on ‖λmax(f`)‖∞ and λ′′min(f`)|0, which measure the
magnitude of the maximum eigenvalue function λmax(f`) and how �at the minimal eigenvalue
function is around the origin, respectively. Note that the �atness of the minimal eigenvalue
function is crucial to identify how large is the ill-conditioned subspace where the smoother
cannot be e�ective. Therefore, the projector should be de�ned in order to keep κ(f`) as small as
possible. Note that the V-cycle convergence analysis is not straightforward, even using recent
results based on the two-grid analysis like in [97], and it is under investigation in [20].

We select a class of projectors Pm`,m`+1
(z) = Tm`

[pz](K
Even
m`,m`+1

⊗ Is) according to the the-
oretical analysis of Section IV.2 with pz(·) of form

pz(ϑ) = (1 + cosϑ)

(
Is +

z − 1

s
ese

T
s

)
, z > 0. (V.34)

Note that eseTs is the s× s matrix of all ones. Then, we have

pz(ϑ) =




1 + cosϑ
. . .

1 + cosϑ


+ (1 + cos(ϑ))(z − 1)




1
s . . . . . . 1

s
...

. . .
...

...
. . .

...
1
s . . . . . . 1

s



=

= Fs







1 + cosϑ
. . .

1 + cosϑ


+ (1 + cos(ϑ))(z − 1)




1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0






FH
s =

= Fs




z + z cosϑ

1 + cosϑ
. . .

1 + cosϑ



FH
s . (V.35)
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Hence the eigenvalue functions of pz(·) have a zero at π of order two for all z > 0 and it is
straightforward to prove that the matrix-valued function r de�ned in Subsection IV.2.2 ful�ls
conditions (i)-(iii).

In the next section we study the conditioning κ(fz,`), where fz,` is the generating function at
level ` obtained using pz(·), proving as it in�uences the V-cycle convergence. In particular, we
look for a z > 0 such that

lim
`→∞

λ′′min(fz,`)
∣∣
0
> 0 (V.36)

that guarantees that the behaviour of the minimal eigenvalue function around the origin remains
unchanged at the coarser levels.

V.4.2 The One-Dimensional Case

Consider the Qs approximation of the second order elliptic di�erential problem (V.2). As we
outlined in Section V.1, the resulting sti�ness matrix of size (s · n − 1) × (s · n − 1) is nA(s)

n ,
where A(s)

n is the block matrix

A(s)
n = Tn[f ]−,

with the subscript − denoting that the last row and column of Tn[f ] are removed. This is
because of the homogeneous boundary conditions. Moreover, we recall that the s × s matrix-
valued generating function of Tn[f ] has the form

f(ϑ) = f̂0 + f̂1e
ı̂ϑ + f̂T1 e

−ı̂ϑ.

TGM in the s = 2 setting

In the case of polynomial degree s = 2, the explicit expression of the generating function f

can be seen in equation (V.19). In particular, the Fourier coe�cients f̂0, f̂1 are given by

f̂0 =
1

3

[
16 −8

−8 14

]
, f̂1 =

1

3

[
0 −8

0 1

]
. (V.37)

Moreover, it is possible to diagonalize f as

f(ϑ) = U(ϑ)

[
λ1(f(ϑ))

λ2(f(ϑ))

]
UH(ϑ),

where the eigenvalue functions λ1(f(ϑ)), λ2(f(ϑ)) of f are given explicitly by

λ1(f(ϑ)) = 5 +
1

3
cos(ϑ)− 1

3

√
129 + 126 cos(ϑ) + cos2(ϑ),

λ2(f(ϑ)) = 5 +
1

3
cos(ϑ) +

1

3

√
129 + 126 cos(ϑ) + cos2(ϑ)

and U : [0, 2π) → Csn×sn is the matrix-valued function containing the eigenvectors of f .
It is straightforward to verify that hypotheses requested in Section IV.2.1 that ensure the

convergence and optimality of the TGM for Tn[f ] are satis�ed using the trigonometric polynomial
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Table V.8: Number of iterations for the TGM using the pz projection strategy for the Q2, using as pre- and

post-smoother one iteration of Jacobi method with ωpre = 7/8, ωpost = 7/12 and tolerance ε = 10−7.

t n = 2t − 1 2n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 254 33 33 33 33 33
8 255 510 33 33 33 33 33
9 511 1022 33 33 33 33 33
10 1023 2046 33 33 33 33 33
11 2047 4094 33 33 33 33 33

pz de�ned in (V.34) in the construction of the projector. Moreover, f(0)pz(0) = pz(0)f(0) for
every choice of z > 0 and hence f(0) and pz(0) are simultaneously diagonalized by the same
unitary transform. Therefore, we can control the ill-conditioning of the coarser problems in the
subspace associated to ϑ = 0 by taking di�erent values of z, which is useful for the study of the
V-cycle method as shown in Section V.4.1.

Now we implement a TGM for Tn[f ] and we study the number of iterations that the method
requires to reach the desired tolerance varying n and for di�erent choices of z. In order to
�nd the relaxation parameters for the Jacobi method we should compute the quantities in
inequality (IV.11). We see from formula (V.19) that minj=1,...,s

(
[f̂0](j,j)

)
is equal to 14/3. For

the computation of the quantity ‖f‖∞ = maxϑ∈[0,2π) ‖f(ϑ)‖2 we can write

‖f‖∞ = max
ϑ∈[0,2π)

λ2(f(ϑ)) = 5 +
1

3
cos(0) +

1

3

√
129 + 126 cos(0) + cos2(0) =

32

3
.

So, according to inequality (IV.11), our Jacobi relaxation parameter ω should be smaller than
or equal to 7/8. In order to damp the error both in the middle and in the high frequencies, we
take a di�erent parameter for the pre-smoother and the post-smoother. For the pre-smoother,
we take the greatest admissible value, ωpre = 7/8, and for the post-smoother we take ωpost =

2ωpre/3 = 7/12.
In Tables V.8-V.9 we report for z = 1, . . . , 5 the number of iterations needed for achieving

the tolerance ε = 10−7 when increasing the matrix size and using pz in the construction of
the projector and with two di�erent smoothers. Table V.8 shows the results using as pre- and
post-smoother one iteration of the Jacobi method with relaxation parameters ωpre = 7/8 and
ωpost = 7/12. Table V.9 shows the results using as pre- and post-smoother one iteration of the
Gauss-Seidel method with ωpre,post = 1.

As expected, in both cases we can observe that for all z = 1, . . . , 5 the number of iterations
needed for the TGM convergence remains almost constant, when increasing the size sn, con-
�rming the optimality of the method for every choice of z. Moreover, the number of iterations
is essentially halved when using Gauss-Seidel instead of Jacobi.

V-cycle in the s = 2 setting

In order to maintain the optimality of the iterations also for the V-cycle we look for the
best choice of the parameter z such that the behaviour of λmin(fz,`) around the origin remains
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Table V.9: Number of iterations for the TGM using the pz projection strategy for the Q2 sti�ness matrix, using

as pre- and post-smoother one iteration of Gauss-Seidel method with ωpre,post = 1 and tolerance ε = 10−7.

t n = 2t − 1 2n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 254 15 15 15 15 15
8 255 510 15 15 15 15 15
9 511 1022 15 15 15 15 15
10 1023 2046 15 15 15 15 15
11 2047 4094 15 15 15 15 15

Table V.10: Condition numbers of fz,` for z = 1, 2, 3, 4 and ` = 1, 2, 3, 4.

j κ(f1,`) κ(f2,`) κ(f3,`) κ(f4,`)

1 43 11 4.7 4.7
2 171 11 4.7 4.7
3 683 11 4.7 4.7
4 2731 11 4.7 4.7

unchanged at the coarser levels, that is, for di�erent choices of z, we check if λmin(fz,`) satis�es
condition (V.36).

By direct computation, we derive the formula

λ′′min(fz,`)
∣∣
0
=

(
z2

2

)j

.

The latter implies that for values of z smaller than
√
2, the quantity λ′′min(fz,`)|0 tends to zero

as ` tends to ∞. This suggests that for z <
√
2 the conditioning becomes worse as the levels

get coarser. This is numerically con�rmed in Table V.10 where the condition numbers κ(fz,`)
are listed for z = 1, 2, 3, 4 and ` = 1, 2, 3, 4. Therefore we should avoid the choice P s

n,m(p1) as
projector.

Indeed, Tables V.11-V.12 highlight that the number of iterations needed for the V-cycle
convergence, with the desired tolerance, depends on the matrix size with z = 1, whereas it
remains almost constant for z >

√
2 as n increases.

TGM and V-cycle in the s > 2 setting

We implemented the analogous TGM for polynomial degrees 3 and 4. From Tables V.13-
V.14 we see that the number of iterations to achieve the desired tolerance still remains constant
as the matrix size increases. However, we notice that this constant depends on the polynomial
degree s. Achieving optimality from this point of view will be object of future research.

The analysis on the condition number that we exploited for s = 2 can be repeated assuming
that Conjecture V.4.1 (numerically veri�ed for s = 3, 4) holds.
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Table V.11: Number of iterations for the V-cycle method using the pz projection strategy for the Q2 sti�ness

matrix, pre- and post-smoother 1 iteration of Jacobi with ωpre = 7/8 and ωpost = 7/12, tolerance ε = 10−7.

t n = 2t − 1 2n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 254 1144 42 34 35 38
8 255 510 3365 45 35 35 37
9 511 1022 4000+ 48 35 35 37
10 1023 2046 4000+ 50 35 35 37
11 2047 4094 4000+ 52 35 35 38
12 4095 8190 4000+ 54 35 36 38
13 8191 16382 4000+ 55 35 36 38

Table V.12: Number of iterations for the V-cycle method using the pz projection strategy for the Q2 sti�ness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1, tolerance ε = 10−7.

t n = 2t − 1 2n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 254 467 26 22 23 26
8 255 510 1343 29 23 26 28
9 511 1022 3992 31 24 28 30
10 1023 2046 4000+ 33 27 29 32
11 2047 4094 4000+ 35 28 30 33
12 4095 8190 4000+ 36 29 31 34
13 8191 16382 4000+ 38 29 32 34
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Table V.13: Number of iterations for the TGM using the pz projection strategy for the Q3 sti�ness matrix, pre-

and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1, tolerance ε = 10−7.

t n = 2t − 1 3n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 381 38 38 38 38 38
8 255 765 38 38 38 38 38
9 511 1533 38 38 38 38 38
10 1023 3069 38 38 38 38 38
11 2047 6141 38 38 38 38 38

Table V.14: Number of iterations for the TGM using the pz projection strategy for the Q4 sti�ness matrix, pre-

and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1, tolerance ε = 10−7.

t n = 2t − 1 4n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 508 87 87 87 87 87
8 255 1020 87 87 87 87 87
9 511 2044 87 87 87 87 87
10 1023 4092 87 87 87 87 87
11 2047 8188 87 87 87 87 87

Conjecture V.4.1. For every s > 0 and z > 0 there exists a constant cz,s > 0 independent

from j such that the following equality holds for all j > 0:

λ′′min(fz,`)
∣∣
0
= cz,s

(
z2

2

)j

.

The numerical experiments con�rm the theoretical analysis associated with the previous
conjecture, as we can see from the number of iterations obtained for s = 3, 4 in Tables V.15-
V.16. Indeed, analogously to the case s = 2, we observe that we should avoid to take z = 1, for
which λ′′min(fz,`)|0 tends to 0 as ` tends to ∞.

Finally, we highlight that the slightly change of iterations, increasing t, is expected from
the theory, since the exact constant which bounds the number of iterations can be reached for
larger matrix-size values or studying the best choice of the smoother method and the relaxation
parameters ωpre,post in order to decrease such constant.

V.4.3 The Two-Dimensional Case

Consider the uniform Qs approximation of the following particular case of problem (V.1):



−∆u = ψ, in Ω := (0, 1)2,

u = 0, on ∂Ω,
(V.38)

where ψ ∈ L2(Ω). Taking n elements in each direction, the resulting sti�ness matrix of size
(s · n− 1)2 × (s · n− 1)2 is

A(s)
n = A(s)

n ⊗M (s)
n +M (s)

n ⊗A(s)
n , N = (s · n− 1)2,
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Table V.15: Number of iterations for the V-cycle method using the pz projection strategy for the Q3 sti�ness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1, tolerance ε = 10−7.

t n = 2t − 1 3n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 381 1180 51 43 44 46
8 255 765 3375 55 44 47 50
9 511 1533 4000+ 59 45 51 52
10 1023 3069 4000+ 63 47 52 54
11 2047 6141 4000+ 66 50 54 56
12 4095 12285 4000+ 69 53 55 57
13 8191 24573 4000+ 72 53 57 59

Table V.16: Number of iterations for the V-cycle method using the pz projection strategy for the Q4 sti�ness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1, tolerance ε = 10−7.

t n = 2t − 1 4n z = 1 z = 2 z = 3 z = 4 z = 5

7 127 508 2693 103 92 94 96
8 255 1020 4000+ 108 94 96 97
9 511 2044 4000+ 114 95 97 99
10 1023 4092 4000+ 120 96 99 100
11 2047 8188 4000+ 125 98 100 100
12 4095 16380 4000+ 129 99 101 101
13 8191 32764 4000+ 133 101 101 101
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where A(s)
n and M (s)

n are the block-Toeplitz matrices

A(s)
n = Tn[f ]−, M (s)

n = Tn[h]−,

with the subscript − denoting again that the last row and column of Tn[f ] are removed. Explicit
formulae for the matrix-valued trigonometric polynomials f and h and the spectral distribution
of the matrices are given in [64].

In the following we want to apply V-cycle strategy to the matrix A(s)
n which has a multilevel

block structure, for di�erent choices of s. In the one dimensional case, we took the block-
Toeplitz matrix with block size s. In the two dimensional case, we take the actual matrices
arising from the considered FEM approximation of problem (V.38), which are not pure block-
Toeplitz matrices with block size s2. However, we can still apply our multigrid procedure due
to its spectral properties given in [64].

Since the matrices are cut and are the permutation of multilevel block-Toeplitz matrices, the
projector slightly changes accordingly. In fact, we use the projectors

P s
n,m = [Tn[pz](Kn,m ⊗ Is)]− ⊗ [Tn[pz](Kn,m ⊗ Is)]−,

where pz is the univariate matrix-valued trigonometric polynomial de�ned in (V.34).
Extending the considerations that we made for the univariate case, we numerically look for

the best choices of z to obtain the optimality of the V-cycle method.
In Tables V.17-V.18 we report for z = 1, . . . , 5 the number of iterations needed for achieving

the tolerance ε = 10−7 when increasing the matrix size and using pz in the construction of
the projector. Table V.17 shows the results for the Q2 sti�ness matrix and Table V.18 for the
Q3 sti�ness matrix. In both cases, we used as pre-smoother and post-smoother one iteration
of Gauss-Seidel with ωpre,post = 1. Moreover, we can see that the choice z = 1 does not yield
optimality. For the other choices of z, conversely, the number of iterations needed for the V-cycle
convergence remains almost constant, when increasing the size N . We numerically see that the
best choice of z is around 3 for both s = 2 and s = 3.

As a concluding note, we stress the fact that a crucial role for the optimality of a multigrid
method is also played by the choice of the smoothing strategy and in particular of the relaxation
parameters ωpre,post. One could set di�erent parameters for pre- and post-smoother, and study
numerically the best values in order to make the constant which bounds from above the number
of iterations smaller. Moreover, it is also possible to compute the optimal smoother methods
and the associated relaxation parameters ω` at each level ` in order to reduce the number of
iterations for the convergence of the V-cycle procedure. All these aspects will be object of future
research.
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Table V.17: Number of iterations for the V-cycle method using the pz projection strategy for the Q2 sti�ness

matrix for the two-dimensional problem, pre- and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1,

tolerance ε = 10−7.

t n = 2t − 1 (2n− 1)2 z = 1 z = 2 z = 3 z = 4 z = 5

7 127 64009 2724 63 26 25 25
8 255 259081 4000+ 73 27 23 22
9 511 1042441 4000+ 80 27 23 24
10 1023 4182025 4000+ 84 27 24 25

Table V.18: Number of iterations for the V-cycle method using the pz projection strategy for the Q3 sti�ness

matrix for the two-dimensional problem, pre- and post-smoother 1 iteration of Gauss-Seidel with ωpre,post = 1,

tolerance ε = 10−7.

t n = 2t − 1 (2n− 1)2 z = 1 z = 2 z = 3 z = 4 z = 5

6 63 35344 2719 69 57 59 60
7 127 144400 4000+ 83 71 73 74
8 255 583696 4000+ 90 60 60 60
9 511 2347024 4000+ 94 59 60 61
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Chapter VI

Fast Parallel Solver for the Space-Time

IgA-DG Discretization of the

Anisotropic Di�usion Equation

In the present chapter, we focus on the numerical solution of the time-dependent linear aniso-
tropic di�usion equation





∂tu(t,x)−∇ · K(x)∇u(t,x) = ψ(t,x), (t,x) ∈ (0,T)× (0, 1)k,

u(t,x) = 0, (t,x) ∈ (0,T)× ∂((0, 1)k),

u(t,x) = 0, (t,x) ∈ {0} × (0, 1)k,

(VI.1)

where K(x) ∈ Rk×k is the matrix of di�usion coe�cients and ψ(t,x) is a source term. We
impose homogeneous Dirichlet initial and boundary conditions both for simplicity and because
the inhomogeneous case reduces to the homogeneous case by considering a lifting of the boundary
data [105]. As far as the discretization techniques are concerned, we consider for (VI.1) the same
space-time approximation as in [16], involving a p-degree Cr �nite element (FE) discretization in
space and a q-degree discontinuous Galerkin (DG) discretization in time. Here, p = (p1, . . . , pk)

and r = (r1, . . . , rk) are multi-indices such that 0 ≤ r ≤ p − 1 and the parameters pi and ri
represent, respectively, the polynomial degree and the smoothness of the FE basis functions in
direction xi.

We highlight that space-time approximations of dynamic problems, in contrast to standard
time-stepping techniques, enable full space-time parallelism on modern massively parallel archi-
tectures [59]. Moreover, they can naturally deal with moving domains [86, 126, 128, 129, 137]
and allow for space-time adaptivity [1, 48, 60, 87, 95, 98, 131]. The main idea of space-time
formulations is to consider the temporal dimension as an additional spatial one and assemble
a large space-time system to be solved in parallel as in [50]. Space-time methods have been
used in combination with various numerical techniques, including �nite di�erences [2, 17, 81],
�nite elements [9, 85, 88], isogeometric analysis [76, 89], and discontinuous Galerkin methods
[1, 68, 85, 86, 96, 126, 137, 139]. Moreover, they have been considered for a variety of applica-
tions, such as mechanics [18], �uid dynamics [17, 86, 125], �uid-structure interaction [130], and
many others. When dealing with space-time �nite elements, the time direction needs special
care. To ensure that the information �ows in the positive time direction, a particular choice of
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the basis in time is often used. The discontinuous Galerkin formulation with an �upwind� �ow
is a common choice in this context; see, for example, [86, 110, 126, 132].

In many cases, the overall discretization process leads to solving a large space-time linear
system, for the solution of which a selection of specialized parallel solvers has been recently
developed. We mention in particular the space-time parallel multigrid proposed by Gander and
Neumüller [61] and the parallel preconditioners for space-time isogeometric analysis proposed
by Hofer et al. [76].

In this chapter, we propose a fast solver for the system resulting from the discretization
of (VI.1) through the space-time method mentioned above in the case of maximal smoothness
r = p− 1, which is a standard approach [5, 14, 33, 84]. The solver is a preconditioned GMRES
(PGMRES) method [108] whose preconditioner P̃ is obtained as an approximation of another
preconditioner P inspired by the spectral analysis carried out in [16]. Informally speaking, the
preconditioner P̃ is a standard multigrid, which is applied only in space and not in time, and
which involves, at all levels, a single Gauss-Seidel post-smoothing step and standard bisection
for the interpolation and restriction operators (following the Galerkin assembly). The proposed
solver is then a multigrid preconditioned GMRES (MG-GMRES).

The solver's performance is illustrated through numerical experiments and turns out to be
highly satisfactory in terms of iteration count and computational times. In addition, the solver
is suited for parallel computation as it shows remarkable scaling properties with respect to the
number of cores. Comparisons with other benchmark solvers are also presented and reveal the
actual competitiveness of our proposal.

The current chapter reports the results in [15] and is organized as follows. In Section VI.1, we
brie�y recall the space-time FE-DG discretization of (VI.1) and we report the main result of [16]
concerning the spectral distribution of the associated discretization matrix C. In Section VI.2,
we present a fast PGMRES method for the matrix C, which is the root from which the proposed
solver originated. In Section VI.4, we describe the proposed solver, in Section VI.5 we describe
its parallel version, and in Section VI.6 we illustrate its performance in terms of iteration count,
run-times and scaling.

VI.1 Space-Time FE-DG Discretization of Anisotropic Di�usion

Let N ∈ N and n = (n1, . . . , nk) ∈ Nk, and de�ne the following uniform partitions in time and
space:

ti = i∆t, i = 0, . . . , N, ∆t = T/N,

xi = i∆x = (i1∆x1, . . . , ik∆xk), i = 0, . . . ,n, ∆x = (∆x1, . . . ,∆xk) = (1/n1, . . . , 1/nk).

We consider for the di�erential problem (VI.1) the same space-time discretization as in [16],
that is, we use a p-degree Cr FE approximation in space based on the uniform mesh {xi, i =

0, . . . ,n} and a q-degree DG approximation in time based on the uniform mesh {ti, i =

0, . . . , N}. Here, p = (p1, . . . , pk) and r = (r1, . . . , rk) are multi-indices, with pi and 0 ≤
ri ≤ pi−1 representing, respectively, the polynomial degree and the smoothness of the FE basis
functions in direction xi. As carefully explained in [16, Section 3], the overall discretization
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process leads to the following, normally large, linear system:

C
[q,p,r]
N,n (K)u = b, (VI.2)

where:

� C
[q,p,r]
N,n (K) is the N ×N block matrix given by

C
[q,p,r]
N,n (K) =




A
[q,p,r]
n (K)

B
[q,p,r]
n A

[q,p,r]
n (K)

. . .
. . .

B
[q,p,r]
n A

[q,p,r]
n (K)



;

� the blocks A[q,p,r]
n (K) and B[q,p,r]

n are (q + 1)n̄× (q + 1)n̄ matrices given by

A
[q,p,r]
n (K) = K[q] ⊗Mn,[p,r] +

∆t

2
M[q] ⊗Kn,[p,r](K), (VI.3)

B
[q,p,r]
n = −J[q] ⊗Mn,[p,r], (VI.4)

where n̄ =
∏k

i=1(ni(pi− ri)+ ri− 1) is the number of degrees of freedom (DoFs) in space (the
total number of DoFs is equal to the size N(q + 1)n̄ of the matrix C [q,p,r]

N,n (K));

� Mn,[p,r] and Kn,[p,r](K) are the n̄ × n̄ mass and sti�ness matrices in space, which are given
by

Mn,[p,r] =

[∫

[0,1]k
Bj+1,[p,r](x)Bi+1,[p,r](x)dx

]n(p−r)+r−1

i,j=1

, (VI.5)

Kn,[p,r](K) =

[∫

[0,1]k

[
K(x)∇Bj+1,[p,r](x)

]
· ∇Bi+1,[p,r](x)dx

]n(p−r)+r−1

i,j=1

, (VI.6)

where B1,[p,r], . . . , Bn(p−r)+r+1,[p,r] are the tensor-product B-splines de�ned by

Bi,[p,r](x) =
k∏

j=1

Bij ,[pj ,rj ](xj), i = 1, . . . ,n(p− r) + r + 1,

with B1,[pj ,kj ], . . . , Bnj(pj−rj)+rj+1,[pj ,rj ] being the B-splines of degree pj and smoothness Crj

de�ned on the knot sequence
{
0, . . . , 0︸ ︷︷ ︸

pj+1

,
1

nj
, . . . ,

1

nj︸ ︷︷ ︸
pj−rj

,
2

nj
, . . . ,

2

nj︸ ︷︷ ︸
pj−rj

, . . . ,
nj − 1

nj
, . . . ,

nj − 1

nj︸ ︷︷ ︸
pj−rj

, 1, . . . , 1︸ ︷︷ ︸
pj+1

}
.

� M[q], K[q], J[q] are the (q + 1)× (q + 1) blocks given by

M[q] =

[∫ 1

−1
`j,[q](τ)`i,[q](τ)dτ

]q+1

i,j=1

, (VI.7)

K[q] =

[
`j,[q](1)`i,[q](1)−

∫ 1

−1
`j,[q](τ)`

′
i,[q](τ)dτ

]q+1

i,j=1

, (VI.8)

J[q] =
[
`j,[q](1)`i,[q](−1)

]q+1

i,j=1
, (VI.9)
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where {`1,[q], . . . , `q+1,[q]} is a �xed basis for the space Pq of polynomials of degree ≤ q. In
the context of (nodal) DG methods [72], `1,[q], . . . , `q+1,[q] are often chosen as the Lagrange
polynomials associated with q + 1 �xed points {τ1, . . . , τq+1} ⊆ [−1, 1], such as, for example,
the Gauss�Lobatto or the right Gauss�Radau nodes in [−1, 1].

The solution of system (VI.2) yields the approximate solution of problem (VI.1); see [16] for
details. The main result of [16] is reported in the following theorem.

Theorem VI.1.1. Let q ≥ 0 be an integer, let p ∈ Nk and 0 ≤ r ≤ p − 1. Suppose that

K : (0, 1)k → Rk×k is a symmetric matrix-valued function in L∞((0, 1)k, k) and that the following

two conditions are met:

� n = αn, where α = (α1, . . . , αk) is a vector with positive components in Qk and n varies in

some in�nite subset of N such that n = αn ∈ Nk;

� N = N(n) is such that N → ∞ and N/n2 → 0 as n→ ∞.

Then, for the sequence of normalized space-time matrices {2Nnk−2C
[q,p,r]
N,n (K)}n we have the

spectral distribution relation

{2Nnk−2C
[q,p,r]
N,n (K)}n ∼λ f

[α,K]
[q,p,r],

where:

� the spectral symbol f
[α,K]
[q,p,r] : [0, 1]

k × [−π, π]k → C(q+1)
∏k

i=1(pi−ri)×(q+1)
∏k

i=1(pi−ri) is de�ned as

f
[α,K]
[q,p,r](x,ϑ) = f

[α,K]
[p,r] (x,ϑ)⊗ TM[q]; (VI.10)

� f
[α,K]
[p,r] : [0, 1]k × [−π, π]k → C

∏k
i=1(pi−ri)×

∏k
i=1(pi−ri) is de�ned as

f
[α,K]
[p,r] (x,ϑ) =

1
∏k

i=1 αi

k∑

i,j=1

αiαjKij(x)(H[p,r])ij(ϑ); (VI.11)

� H[p,r] is a k×k block matrix whose (i, j) entry is a
∏k

i=1(pi− ri)×
∏k

i=1(pi− ri) block de�ned

as in [16, Eq. (5.12)];

� T is the �nal time in (VI.1) and M[q] is given in (VI.7).

With the same argument used in [16] to prove Theorem VI.1.1, it is not di�cult to prove
the following result.

Theorem VI.1.2. Suppose the hypotheses of Theorem VI.1.1 are valid, and let

X
[q,p,r]
N,n (K) = 2Nnk−2

(
IN ⊗ ∆t

2
M[q] ⊗Kn,[p,r](K)

)
= Tnk−2IN ⊗M[q] ⊗Kn,[p,r](K).

Then,

{2Nnk−2(IN ⊗A
[q,p,r]
n (K))}n ∼λ f

[α,K]
[q,p,r],

{X [q,p,r]
N,n (K)}n ∼λ f

[α,K]
[q,p,r].
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VI.2 Fast PGMRES for the Space-Time FE-DGMatrix C
[q,p,r]
N,n (K)

Suppose the hypotheses of Theorem VI.1.1 are valid. Then, on the basis of Theorem VI.1.2 and
the theory of block GLT sequences (see Section I.7 and references therein), we expect that the
sequence of preconditioned matrices

(IN ⊗A
[q,p,r]
N,n (K))−1C

[q,p,r]
N,n (K), (VI.12)

as well as the sequence of preconditioned matrices

(X
[q,p,r]
N,n (K))−1(2Nnk−2C

[q,p,r]
N,n (K)) =

2

∆t
(IN ⊗M[q] ⊗Kn,[p,r](K))−1C

[q,p,r]
N,n (K), (VI.13)

has an asymptotic spectral distribution described by the preconditioned symbol

(
f
[α,K]
[q,p,r]

)−1
f
[α,K]
[q,p,r] = I(q+1)

∏k
i=1(pi−ri)

.

This means that the eigenvalues of the two sequences of matrices (VI.12) and (VI.13) are (weakly)
clustered at 1; see [13, Section 2.4.2]. Therefore, in view of the convergence properties of the
GMRES method [108], we may expect that the PGMRES with preconditioner

IN ⊗A
[q,p,r]
N,n (K) (VI.14)

or

P
[q,p,r]
N,n (K) =

∆t

2
IN ⊗M[q] ⊗Kn,[p,r](K) (VI.15)

for solving a linear system with coe�cient matrix C [q,p,r]
N,n (K) has an optimal convergence rate,

i.e., the number of iterations for reaching a preassigned accuracy ε is independent of (or only
weakly dependent on) the matrix size.

To show that this expectation is realized, we solve the system (VI.2) in two space dimen-
sions (k = 2), up to a precision ε = 10−8, by means of the GMRES and the PGMRES with
preconditioner P [q,p,r]

N,n (K), using ψ(t,x) = 1, T = 1, α = (1, 1), n = αn = (n, n), p = (p, p),
r = (r, r), and varying K(x), N , n, q, p, r. The resulting number of iterations are collected
in Tables VI.1�VI.3. We see from the tables that the unpreconditioned GMRES solver rapidly
deteriorates with increasing n, and it is not robust with respect to p, r. On the other hand, the
convergence rate of the proposed PGMRES is robust with respect to all the spatial parameters
n, p, r. However, as it is known, each PGMRES iteration requires solving a linear system with
coe�cient matrix given by the preconditioner P [q,p,r]

N,n (K), and this is not required in a GMRES
iteration. Thus, in order to prove that the proposed PGMRES is fast, in Section VI.4 we show
that we are able to solve e�ciently a linear system associated with P [q,p,r]

N,n (K).

VI.3 Fast Tensor Solver for the PGMRES Preconditioner P
[q,p,r]
N,n (K)

The main observation of this section is that, thanks to the tensor structure of P [q,p,r]
N,n (K) (see

(VI.15)), the solution of a linear system with coe�cient matrix P [q,p,r]
N,n (K) reduces to the solution
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Table VI.1: Number of iterations GM[p] and PGM[p] needed by, respectively, the GMRES and the PGMRES

with preconditioner P
[q,p,r]
N,n (K), for solving the linear system (VI.2), up to a precision ε = 10−8, in the case where

k = 2, K(x) = I2, ψ(t,x) = 1, T = 1, q = 0, n = (n, n), p = (p, p), r = (p − 1, p − 1), N = n. The total size of

the space-time system (number of DoFs) is given by nn̄ = n(n+ p− 2)2.

n = N GM[3] PGM[3] GM[4] PGM[4] GM[5] PGM[5] GM[6] PGM[6] GM[7] PGM[7]

20 66 21 85 21 170 21 269 21 532 21

40 168 40 178 40 235 40 380 40 572 40

60 295 59 314 59 360 59 477 59 611 59

80 443 77 473 77 506 77 621 77 720 77

100 609 94 652 94 699 94 780 94 879 94

120 790 111 847 111 909 111 971 111 1025 111

Table VI.2: Number of iterations GM[p, r] and PGM[p, r] needed by, respectively, the GMRES and the PGMRES

with preconditioner P
[q,p,r]
N,n (K), for solving the linear system (VI.2), up to a precision ε = 10−8, in the case where

k = 2, K(x1, x2) =

[

cos(x1) + x2 0

0 x1 + sin(x2)

]

, ψ(t,x) = 1, T = 1, q = 1, n = (n, n), p = (p, p), r = (r, r),

N = 20. The number of DoFs is given by 40n̄ = 40(n(p− r) + r − 1)2.

n GM[1, 0] PGM[1, 0] GM[2, 0] PGM[2, 0] GM[2, 1] PGM[2, 1] GM[3, 1] PGM[3, 1]

20 244 42 383 42 156 42 276 42

40 502 42 778 42 314 42 560 42

60 763 42 1174 42 474 42 842 42

80 1026 42 1570 42 635 42 1146 42

100 1275 42 1966 42 796 42 1894 42

120 1608 42 2374 42 954 42 1898 42

n GM[4, 1] PGM[4, 1] GM[4, 2] PGM[4, 2] GM[5, 2] PGM[5, 2] GM[5, 3] PGM[5, 3]

20 444 42 390 42 522 42 514 42

40 759 42 565 42 721 42 643 42

60 1148 42 771 42 953 42 831 42

80 1536 42 1035 42 1337 42 1026 42

100 1909 42 1299 42 2232 42 1226 42

120 2329 42 1564 42 2390 42 1831 42
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Table VI.3: Number of iterations GM[p, r] and PGM[p, r] needed by, respectively, the GMRES and the PGMRES

with preconditioner P
[q,p,r]
N,n (K), for solving the linear system (VI.2), up to a precision ε = 10−8, in the case where

k = 2, K(x1, x2) =

[

(2 + cosx1)(1 + x2) cos(x1 + x2) sin(x1 + x2)

cos(x1 + x2) sin(x1 + x2) (2 + sinx2)(1 + x1)

]

, ψ(t,x) = 1, T = 1, q = 2, n = (n, n),

p = (p, p), r = (r, r), N = 20. The number of DoFs is given by 60n̄ = 60(n(p− r) + r − 1)2.

n GM[2, 0] PGM[2, 0] GM[2, 1] PGM[2, 1] GM[3, 0] PGM[3, 0] GM[3, 2] PGM[3, 2]

20 286 40 112 40 400 40 123 40

40 579 40 228 40 809 40 224 40

60 874 40 345 40 1218 40 339 40

80 1170 40 463 40 1716 40 456 40

100 1466 40 580 40 2204 40 573 40

120 1757 40 697 40 2487 40 690 40

n GM[4, 0] PGM[4, 0] GM[4, 3] PGM[4, 3] GM[5, 0] PGM[5, 0] GM[5, 4] PGM[5, 4]

20 779 40 208 40 1460 40 396 40

40 1070 40 270 40 1982 40 419 40

60 1580 40 361 40 2376 40 466 40

80 2176 40 487 40 2733 40 531 40

100 2668 40 613 40 3559 40 657 40

120 3284 40 738 40 4565 40 791 40

of three linear systems with coe�cient matrices IN ,M[q],Kn,[p,r](K). Indeed, using the canonical

algorithm for tensor-product matrices to solve the system P
[q,p,r]
N,n (K)x = y, we obtain

x = (P
[q,p,r]
N,n (K))−1y

=
( 2

∆t
IN ⊗M−1

[q] ⊗Kn,[p,r](K)−1
)
y

= (M̃N,[q] ⊗Kn,[p,r](K)−1)y

= (M̃N,[q] ⊗ In̄)(IN(q+1) ⊗Kn,[p,r](K)−1)y

= (M̃N,[q] ⊗ In̄)




Kn,[p,r](K)−1

Kn,[p,r](K)−1

. . .

Kn,[p,r](K)−1



y (VI.16)

= vec(Kn,[p,r](K)−1Y M̃N,[q]), (VI.17)

where:

� M̃N,[q] =
2
∆tIN ⊗M−1

[q] can be pre-computed with a negligible cost, because M[q] is a small

(q+1)×(q+1) matrix (if Gauss�Radau nodes are used,M[q] is also diagonal and hence M̃N,[q]

is diagonal as well);

� vec(X) is the column-wise form of X, that is the vector obtained by stacking the columns of
X;

� Y is the n̄×N(q + 1) matrix such that vec(Y ) = y.
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It is then clear that the computation of the solution x reduces to solving the N(q + 1) linear
systems Kn,[p,r](K)xi = yi, i = 1, . . . , N(q + 1), where yi is the ith column of Y , and multiply
the resulting matrix Kn,[p,r](K)−1Y by M̃N,[q]. Note that the various xi can be computed in
parallel as the computation of xi is independent of the computation of xj whenever i 6= j.
Depending on the implementation and the parallel setting, it can be advantageous to express x
using vec(·) as in (VI.17) or tensor products as in (VI.16).

VI.4 Solver for the Space-Time IgA-DG Matrix C
[q,p]
N,n (K)

The solver suggested in Section VI.2 for a linear system with coe�cient matrix C [q,p,p−1]
N,n (K) =

C
[q,p]
N,n (K) is a PGMRES with preconditioner P [q,p,p−1]

N,n (K) = P
[q,p]
N,n (K); the solution of a linear

system associated with P
[q,p]
N,n (K), which is required at each PGMRES iteration, is performed

via the tensor solver described in Section VI.3 coupled with a suitable multigrid method for the
space sti�ness matrix Kn,[p](K).

Actually, it was discovered experimentally that the PGMRES method converges faster if
the linear system with coe�cient matrix P [q,p]

N,n (K) occurring at each PGMRES iteration is not
solved exactly. More precisely, when applying to Kn,[p](K) a multigrid method involving, at all
levels, a single Gauss-Seidel post-smoothing step and standard bisection for the interpolation
and restriction operators, it is enough to perform only a few multigrid iterations in order to
achieve an excellent PGMRES run-time and, in fact, only one multigrid iteration is su�cient.

In view of these experimental discoveries, we propose to solve a linear system with coe�cient
matrix C [q,p]

N,n (K) in the following way:

� apply to the given system the PGMRES algorithm with preconditioner P [q,p]
N,n (K);

� apply to the linear system with coe�cient matrix P [q,p]
N,n (K) occurring at each PGMRES iter-

ation the tensor solver described in Section VI.3;

� the tensor solver would require solving q(N+1) linear systems with coe�cient matrixKn,[p](K)

as per Eq. (VI.16) or (VI.17); instead of solving exactly these systems, apply to each of them
µ multigrid iterations involving, at all levels, a single Gauss-Seidel post-smoothing step and
standard bisection for the interpolation and restriction operators at all levels (following the
Galerkin approach).

VI.5 Parallel Solver for the Space-Time IgA-DG Matrix C
[q,p]
N,n (K)

In Section VI.4, we have described the sequential version of the proposed solver to be used
when only one processor is available. If ρ > 1 processors are available, we use a modi�cation
of the solver, which is suited for parallel computation. It consists in solving Cu = b (with C =

C
[q,p]
N,n (K)) by a standard block Jacobi iterative method in which the block diagonal preconditioner

D is formed by exactly ρ diagonal blocks C1, . . . , Cρ, explicitly

D =




C1

. . .

Cρ


 .
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It is implicitly assumed that C1, . . . , Cρ are invertible and that the sum of their sizes m1, . . . ,mρ

equals the size N(q + 1)n̄ of C. The resulting block Jacobi method can be written as

u(j+1) = u(j) +D−1r(j),

where r(j) = b− Cu(j) is the jth residual. Considering the block structure of D, it can also be
written as

u
(j+1)
i = u

(j)
i + C−1

i r
(j)
i , i = 1, . . . , ρ, (VI.18)

where for any vector y of length N(q+1)n̄ we write yT = [yT1 , . . . , y
T
ρ ] with yi of length mi. The

ith processor takes care of solving the ith system (with matrix Ci) in (VI.18). It only remains
to clarify how the blocks C1, . . . , Cρ are chosen and how the ρ systems in (VI.18) are solved. We
distinguish two cases.

� ρ ≤ N (see Figure VI.1, left). In this case, each block Ci is chosen so that the block row of C
corresponding to Ci consists of one or more time slabs (i.e., a positive integer number of time
slabs). In this scenario, no time slab is shared between di�erent processors. Moreover, each
block Ci is just a smaller version of the matrix C and the ith processor solves the ith system
in (VI.18) by simply applying the solver proposed in Section VI.4 to the matrix Ci.

� ρ > N (see Figure VI.1, right). In this case, after partitioning C into N block rows (the
N time slabs), we subdivide them into further block rows until exhaustion of the available
processors, and we choose C1, . . . , Cρ as the diagonal blocks corresponding to the resulting
row-wise partition. In this way, every processor owns at most one time slab. Moreover, each
block Ci is a diagonal block of A = A

[q,p]
N,n(K) that may coincide with A itself. The ith processor

solves the ith system in (VI.18) according to the following procedure.
� Apply to the ith system in (VI.18) the PGMRES with preconditioner given by the ith

diagonal block of P = P
[q,p]
N,n (K), that is, the diagonal block Pi occupying in P the same

position as the diagonal block Ci in C. Note that Pi is a diagonal block of Iq+1 ⊗K (with
K = Kn,[p](K)).

� The exact solution of the linear system with matrix Pi occurring at each PGMRES iteration
would require solving η ≤ q+1 linear systems with a matrix given by a principal submatrix
of K. For example, assuming n̄ is even, if Pi is the leading principal submatrix of Iq+1⊗K

of order n̄ + n̄/2, then the solution of a linear system with matrix Pi requires solving 2
linear systems with matrices K and Kn̄/2, respectively, where Kn̄/2 is the leading principal
submatrix of K of order n̄/2.

� Instead of solving exactly these η linear systems, apply to each of them, starting from
the zero vector as initial guess, µ multigrid (V-cycle) iterations involving, at all levels, a
single Gauss-Seidel post-smoothing step and standard bisection for the interpolation and
restriction operators (following the Galerkin approach).

We remark that, when choosing the diagonal blocks C1, . . . , Cρ, a load balancing principle is
applied. This means that, as far as possible, the ρ systems in (VI.18) should have the same
size. For example, as shown in Figure VI.1 (right), the �rst time slab is subdivided into two
block rows of essentially the same thickness (exactly the same thickness if the size of A is even).
Similarly, if we have N = 2 time slabs and ρ = 6 processors, then each time slab is subdivided
into three block rows of essentially the same thickness; if we have N = 30 time slabs and ρ = 4
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Partition of C for ρ = N − 1 Partition of C for ρ = N + 1

A

B A

B A

B A







A

B A

B A

B A







P1 P2 P3 P4 P5

Figure VI.1: Row-wise partitions of the space-time matrix C using ρ = N − 1 processors (left) and ρ = N + 1

processors (right) with N = 4. For each partition, the corresponding diagonal blocks C1, . . . , Cρ of the block

diagonal preconditioner D are delimited by red squares. For simplicity, we write �A� instead of �A
[q,p]
n (K)� and

�B� instead of B
[q,p]
n .

processors, then we assign 7 time slabs to one processor, 7 time slabs to another processor, 8
time slabs to another processor, and 8 time slabs to the last processor, and so on.

VI.6 Numerical Experiments: Iteration Count, Timing and Scal-

ing

In this section, we illustrate through numerical experiments the performance of the proposed
solver and we compare it to the performance of other benchmark solvers, such as the PGMRES
with ILU preconditioner.

VI.6.1 Implementation Details

For the numerics of this section, we used the C++ framework PETSc [10, 11] and the domain
speci�c language Utopia [141] for the parallel linear algebra and solvers, and the Cray-MPICH
compiler. For the assembly of high order �nite elements, we used the PetIGA package [34]. A
parallel tensor-product routine was implemented to assemble space-time matrices. Numerical
experiments have been performed on the Cray XC40 nodes of the Piz Daint supercomputer of the
Swiss national supercomputing centre (CSCS).1 The used partition features 1813 computation
nodes, each of which holds two 18-core Intel Xeon E5-2695v4 (2.10GHz) processors. We stress
that, when ρ > 1 processors are used, a block Jacobi iterative method as in (VI.18) is employed
by default by PETSc before any other method in order to obtain scalable solution strategies.
However, the PETSc default row-wise partition of the space-time matrix follows a load balancing
principle and, except in the trivial case ρ = N , does not correspond to the row-wise partition
described in Section VI.5; see Figure VI.2. Therefore, the partition must be adjusted by the
user.

1https://www.cscs.ch/computers/piz-daint/
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PETSc default partition

A

B A

B A

B A







P1 P2 P3 P4 P5

Figure VI.2: The PETSc default row-wise partition of the space-time matrix does not account for the structure

of the space-time problem; compare with Figure VI.1.

VI.6.2 Experimental Setting

In the numerics of this section, we solve the linear system (VI.2) arising from the choices k = 2,
ψ(t,x) = 1, T = 1, n = (n, n), p = (p, p), r = (p−1, p−1). The basis functions `1,[q], . . . , `q+1,[q]

are chosen as the Lagrange polynomials associated with the right Gauss-Radau nodes in [−1, 1]

(see, for instance, [72]). The values of K(x), N , n, q, p, are speci�ed in each example. For
each solver considered herein, we use ε = 10−8 as a tolerance and the PETSc default stopping
criterion. Whenever we report the run-time of a solver, the time spent in I/O operations and
matrix assembly is ignored; run-times are always expressed in seconds. In all the tables below,
the number of iterations needed by a given solver to converge within the tolerance ε = 10−8 is
reported in square brackets next to the corresponding run-time. Throughout this section, we
use the following abbreviations for the solvers.

� ILU(0)− PGMRES

PGMRES with preconditioner given by an ILU(0) factorization (ILU factorization with no
�ll-in) of the system matrix C [q,p]

N,n .

� MGL
µ,ν − PGMRES

The proposed solver, as described in Section VI.4, with µ multigrid iterations applied to
Kn,[p](K). Each multigrid iterations involves ν Gauss-Seidel smoothing steps at the �nest
level (typically ν = 1) and 1 Gauss-Seidel smoothing step at the coarse levels. The superscript
L denotes the number of multigrid levels.

� TMGL
µ,ν − PGMRES

The same as �MGL
µ,ν-PGMRES�, with the only di�erence that the multigrid iterations are

performed with the telescopic option, thus giving rise to the telescopic multigrid (TMG)
[45, 92]. This technique consists in halving the number of processors used across the grid
hierarchy: if Nf processors are used on the �ne grid (l = 0), then we use Nf/2

l processors
on level l. This strategy can be bene�cial for the parallel multigrid performance, as shown in
Section VI.6.4.
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Table VI.4: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a precision

of 10−8, according to the experimental setting described in Section VI.6.2. We used K(x) = I2, q = 0, N = 32

time steps and n = 259− p. The total size of the space-time system (number of DoFs) is given by 32 · 2572.

p 1 2 3 4 5 6 7 8

ILU(0)-GMRES 3.7 [579] 4.3 [367] 5.2 [269] 6.7 [226] 8.2 [193] 10.1 [174] 11.9 [156] 22.5 [234]

MG5
3,2-GMRES 1.4 [33] 2.9 [33] 4.7 [33] 7.2 [33] 10.5 [35] 14.7 [36] 21.1 [41] 34.6 [53]

MG5
1,2-GMRES 0.8 [33] 1.6 [33] 2.5 [33] 4.0 [35] 6.6 [42] 11.0 [52] 16.0 [60] 26.2 [77]

MG5
3,1-GMRES 1.1 [33] 2.2 [33] 3.3 [33] 5.0 [34] 7.1 [36] 11.4 [43] 17.0 [51] 28.5 [67]

MG5
1,1-GMRES 0.6 [33] 1.2 [33] 1.8 [34] 3.1 [39] 5.3 [50] 9.1 [63] 13.5 [75] 19.8 [87]

Table VI.5: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a

precision of 10−8, according to the experimental setting described in Section VI.6.2. We used K(x1, x2) =
[

cos(x1) + x2 0

0 x1 + sin(x2)

]

, q = 1, N = 20 time steps and n = 131 − p. The total size of the space-time

system (number of DoFs) is given by 40 · 1292.

p 1 2 3 4 5 6 7 8

ILU(0)-GMRES 1.3 [449] 1.7 [283] 2.2 [219] 2.9 [183] 3.6 [158] 4.4 [141] 6.0 [148] 9.5 [186]

MG5
2,3-GMRES 0.6 [55] 1.3 [55] 2.4 [55] 4.1 [58] 7.6 [64] 12.7 [90] 18.5 [101] 32.2 [139]

MG5
1,3-GMRES 0.5 [57] 1.0 [56] 1.8 [56] 3.5 [68] 6.2 [85] 10.4 [103] 15.0 [116] 26.5 [161]

MG5
2,1-GMRES 0.5 [57] 1.0 [57] 1.6 [58] 3.1 [77] 5.2 [91] 8.6 [112] 12.6 [128] 22.0 [179]

MG5
1,1-GMRES 0.5 [67] 0.8 [65] 1.3 [68] 2.8 [90] 4.6 [110] 7.2 [125] 11.0 [150] 19.4 [210]

VI.6.3 Iteration Count and Timing

Tables VI.4�VI.6 illustrate the performance of the proposed solver in terms of number of it-
erations and run-times. It is clear from the table that the solver is superior to the classical
PGMRES with preconditioner given by the ILU factorization of the system matrix C [q,p]

N,n (K).
Moreover, the best performance of the solver is obtained when applying to Kn,[p](K) a single
multigrid iteration (µ = 1) with one smoothing step at the �nest level (ν = 1). It should also be
noted that the solver is considerably robust with respect to the spline degree p as both number
of iterations and run-time do not grow signi�cantly with p.

Table VI.6: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a

precision of 10−8, according to the experimental setting described in Section VI.6.2. We used K(x1, x2) =
[

(2 + cosx1)(1 + x2) cos(x1 + x2) sin(x1 + x2)

cos(x1 + x2) sin(x1 + x2) (2 + sinx2)(1 + x1)

]

, q = 0, N = 20 time steps and n = 259 − p. The total

size of the space-time system (number of DoFs) is given by 20 · 2572.

p 1 2 3 4 5 6 7 8

ILU(0)-GMRES 1.9 [450] 2.2 [284] 2.6 [205] 3.4 [170] 4.4 [154] 5.2 [135] 6.4 [125] 12.6 [195]

MG5
2,2-GMRES 0.2 [11] 0.5 [11] 0.8 [11] 1.5 [13] 2.6 [17] 4.1 [20] 5.9 [23] 8.8 [27]

MG5
1,2-GMRES 0.2 [12] 0.4 [11] 0.6 [12] 1.2 [15] 2.1 [20] 3.3 [23] 4.6 [26] 7.2 [31]

MG5
2,1-GMRES 0.2 [11] 0.4 [11] 0.6 [12] 1.1 [15] 2.0 [20] 3.1 [23] 4.6 [27] 6.2 [31]

MG5
1,1-GMRES 0.2 [12] 0.3 [11] 0.5 [14] 1.0 [19] 1.7 [23] 2.5 [26] 3.6 [30] 5.5 [36]
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Table VI.7: Strong scaling: PGMRES iterations and run-time to solve the linear system (VI.2) up to a precision

of 10−8, according to the experimental setting described in Section VI.6.2. We used K(x) = I2, q = 0, p = 3,

N = 64 time steps and n = 384. The total size of the space-time system (number of DoFs) is given by 64 · 3852.

Cores 1 2 4 8 16 32

ILU(0)-GMRES 1319.0 [414] 671.1 [415] 328.7 [415] 178.9 [415] 105.6 [415] 84.7 [416]

MG7
1,1-GMRES 339.1 [64] 173.7 [64] 87.5 [64] 48.8 [64] 30.1 [64] 26.5 [64]

TMG7
1,1-GMRES 339.1 [64] 173.7 [64] 87.6 [64] 48.8 [64] 30.0 [64] 26.3 [64]

Cores 64 128 256 512 1024 2048

ILU(0)-GMRES 38.1 [417] 22.0 [500] 10.3 [519] 6.7 [550] 4.0 [619] 2.7 [753]

MG7
1,1-GMRES 12.9 [64] 7.0 [64] 3.4 [65] 2.4 [65] 2.3 [65] 5.5 [65]

TMG7
1,1-GMRES 12.8 [64] 6.3 [64] 3.1 [64] 1.8 [63] 1.0 [64] 0.6 [64]

Table VI.8: Space-time weak scaling: PGMRES iterations and run-time to solve the linear system (VI.2) up to a

precision of 10−8, according to the experimental setting described in Section VI.6.2. We used K(x) = I2, q = 0,

p = 2, and (N,n) = (8, 65), (16, 129), (32, 256), (64, 512). The ratio DoFs/Cores is constant in the table.

[Cores, n,N, L] [1, 65, 8, 4] [8, 129, 16, 5] [64, 257, 32, 6] [512, 513, 64, 7]

ILU(0)-GMRES 0.22 [50] 0.69 [121] 4.3 [367] 13.8 [989]

TMGL
1,1-GMRES 0.08 [10] 0.17 [17] 0.89 [33] 2.1 [64]

VI.6.4 Scaling

In the scaling experiments, besides the multigrid already considered above, we also use a TMG
for performance reasons (see Section VI.6.2 for some details/references about the TMG). From
Table VI.7 we see that the proposed solver, especially when using the TMG option, shows a
nearly optimal strong scaling with respect to the number of cores. Table VI.8 illustrates the
weak scaling properties of the proposed solver, which possesses a remarkably superior parallel
e�ciency with respect to the standard ILU approach in terms of iteration count and run-time.
In fact, the e�ciency of the proposed solver can be estimated to be about three times the one
of the standard ILU approach.
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Conclusions

In the present thesis we dealt with the spectral analysis and the development of fast solvers
for matrices with a Toeplitz-related structure by using a symbol approach. In this conclusive
chapter we summarize the presented results and we suggest some possible future lines of research.

In Chapter II we described the singular and spectral distribution of special 2-by-2 block
matrix-sequences. In particular, focusing on the symmetrization of the matrix-sequence {Tn[f ]}n
generated by f , we proved that {YnTn[f ]}n is essentially distributed as ±|f | in the eigenvalue
sense, which informally means that roughly half of the eigenvalues of YnTn[f ] are positive and
they are approximated by a uniform sampling of |f | and roughly half of the eigenvalues are
negative and they are approximated by a uniform sampling of −|f |. As a consequence, with
the choice of a suitable circulant preconditioner Cn, we proved that the preconditioned matrix-
sequence {|Cn|−1YnTn[f ]}n is distributed as ±1 in the eigenvalue sense. Moreover, we showed
that the extension of the results to the block-Toeplitz case is possible with no particular dif-
�culties. Conversely, extending the latter results to the multilevel case would require more
work. On one hand, proving the spectral distribution of the symmetrized multilevel Toeplitz
matrix-sequence {YnTn[f ]}n is not as straightforward2. On the other hand, the performances
of multilevel circulant preconditioners deteriorate as the dimensionality increases, as it has been
proven in [101, 120, 124]. However, in future works we intend to derive and exploit the spectral
features of such symmetrized multilevel matrix-sequences in order to mimic the unilevel construc-
tion of e�cient preconditioners, which in the multilevel setting will possibly be of non-circulant
type.

The encouraging results given inChapter II suggested us to investigate the spectral and sin-
gular value distributions of other matrix-sequences of interest in practical applications. Hence,
in Chapter III we have described the singular value distribution of a sequence of the form
{h(Tn[f ])}n and the eigenvalue distribution of the symmetrized sequence {Ynh(Tn[f ])}n in the
case where f ∈ L∞([−π, π]) and h has convergence radius r such that ‖f‖∞ < r. In particu-
lar, making use of the properties of GLT sequences and under the aforementioned hypotheses
on f and on the convergence radius of h, we proved that the matrix-sequence {h(Tn[f ])}n is
distributed in the singular value sense as h ◦ f . In addition, we exploited this property to study
the spectral distribution of the symmetrized sequence {Ynh(Tn[f ])}n and we discovered that its
spectral symbol is given by

φ|h◦f |(ϑ) =

{
|h ◦ f(ϑ)|, ϑ ∈ [0, 2π],

−|h ◦ f(−ϑ)|, ϑ ∈ [−2π, 0),

2The spectral distribution of the symmetrized multilevel Toeplitz matrix-sequence {YnTn[f ]}n was derived in

[54] during the thesis revision time.
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Finally, we numerically con�rmed the derived distribution results with several experiments in
di�erent settings, also stemming from computational �nance problems.

A desirable future development is the investigation on the possibility of relaxing the condition
f ∈ L∞([−π, π]) taking a generic f ∈ L1([−π, π]). In the latter case, a further step of analysis
is required. Some preliminary considerations suggest that we could use the cut-o� argument as
in [136, 140] and the versatility of the a.c.s. notion. An alternative to the cut-o� idea is the use
of Cesàro sums to obtain sequences of polynomials that converge to f with the techniques and
results derived in [112].

In Chapter IV, we studied multigrid strategies for linear systems having Toeplitz coe�cient
matrices with block entries. Our main aim was to start �lling the existing theoretical gap in
the convergence analysis of such methods. The resulting study indicates that the generaliza-
tion is not trivial, since the commutativity property of multiplication played an essential role
in the scalar case and it cannot be used in the block setting. Indeed, we proposed a general
two-grid convergence analysis for positive de�nite block-circulant matrices, proving an optimal
convergence rate independent of the matrix size under speci�c assumptions on the block symbol
of the grid-transfer operator. In particular, we analysed a �rst case where the trigonometric
polynomial that generates the block-circulant matrix used in the construction of the grid trans-
fer operator is unitarily diagonalizable at all points and ful�ls an appropriate commutativity
condition. Moreover, we proved the approximation property for a grid transfer operator with
a block symbol that might be non-diagonalizable, paying particular attention to the role of ei-
genvectors. Furthermore, we provided the generalization of the convergence results to multilevel
block-circulant matrices, where the multilevel grid transfer operator possesses a tensor struc-
ture, and we explained how all the theory developed for block-circulants can be transferred to
block-Toeplitz matrices.

A full convergence analysis for the V-cycle in our block-Toeplitz setting is still not present, but
it is currently under investigation in [20], following the strategies devised in [97]. However, in the
subsequent chapter we proposed a measuring instrument for the ill-conditioning of the symbol
at the coarser levels that serves as a guideline to empirically choose a suitable prolongation
operator for achieving fast multigrid convergence for more than two grids.

In Chapter V, we developed and analysed multigrid procedures for the solution of linear
systems stemming from the Qs Finite Elements approximation of elliptic partial di�erential
equations with Dirichlet boundary conditions and where the operator is div (−a(x)∇·), with a
continuous and positive over [0, 1]k. Firstly, we proposed a classical multigrid strategy following
a functional approach and we analysed the prolongation matrix as a cut block-Toeplitz matrix.
Indeed, we demonstrated the convergence and optimality of such two-grid method for polynomial
degree s = 1, 2, 3 exploiting the results of Chapter IV. Moreover, we performed an analogous
analysis for a linear interpolation prolongation operator and in this case the convergence was
proven for all even polynomial degrees. The extension of the convergence results to all polynomial
degrees for both prolongation operators is currently under investigation [20]. Finally, we tested a
third class of grid transfer operators, constructed according to the analysis of Chapter IV, that
is, focusing only on algebraic considerations on the symbol of the linear system block-Toeplitz
matrix-sequence. Results of numerical experiments that test all the considered methods were
presented, both in one dimension and in higher dimension, showing an optimal behaviour in
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terms of the dependency on the matrix size and a substantial robustness with respect to the
dimensionality. We highlight that the choice of the optimal smoother from a computational
point of view will be object of a further analysis aimed at devising a more competitive method,
especially in the case where the matrices possess a tensor structure.

Even though we focused on the Qs sti�ness matrices, the presented procedures have a wider
interest. Firstly, our procedure can be applied with slight changes in the case of a variation of
Equation (V.1) obtained imposing di�erent boundary conditions. In fact, the resulting sti�ness
matrices di�er from the ones that we analysed only of a small rank correction matrix. Therefore,
they share the same asymptotic spectral properties, which means that we only have to take care
of possible outliers, a�ecting the choice of the proper smoother. Furthermore, both the geometric
and the algebraic strategies could be mimicked for other discretizations and problems, given that
the system matrix-sequences ful�l the required hypotheses. Among them, we cite the case of
staggered discontinuous Galerkin methods for the incompressible Navier�Stokes equations [47],
for whose linear systems both a two-grid and a V-cycle method have been studied in [39].
Moreover, it is of future interest the development of a multigrid method for the block-Toeplitz
linear systems stemming from an IgA discretization of the Poisson problem with splines of non-
maximal regularity, which would also be useful for an extension of the work that we did in
Chapter VI.

Indeed, in Chapter VI, we have proposed a new solver for the space-time IgA-DG discretiz-
ation of the anisotropic di�usion problem (VI.1), where the spline functions used for the spacial
component have maximum regularity. The method combined a suitable preconditioned GMRES
algorithm with a few iterations of an appropriate multigrid method, both devised taking inspir-
ation from the spectral analysis in [16]. Through numerical experiments, we have illustrated the
competitiveness of our proposal with respect to other benchmark solvers in terms of iteration
count, run-times and scaling. In particular, the solver is suited for parallel computation as it
shows remarkable scalability properties with respect to the number of cores. In addition, we
highlight that the proposed solver is highly �exible as it does not depend on the domain or the
space-time discretization, as long as a tensor-product structure is maintained between space and
time.

However, many signi�cant steps could still be performed. Firstly, a future item of research
is the theoretical convergence analysis of the proposed solver. Moreover, it would be interesting
to investigate the performance of the solver for the anisotropic di�usion problem (VI.1) in the
case of a space domain Ω more complex than the hypersquare (0, 1)k introducing a geometry
parametrization. Finally, a computational improvement could be obtained by considering an
inner/outer multilevel hierarchy in time to improve the overall scalability of the proposed solver,
for example, using it as a smoother in a multigrid-in-time algorithm.

In conclusion, we think that the present thesis inserts some missing pieces in the beautiful
and intricate puzzle of Toeplitz-related structures, which still needs to be completed with the
e�orts of future theoretical and applicative research studies.
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