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Introduction and Motivation

Introduction and Motivation

The principles behind the definition of circulant and Toeplitz structures constitute a significant
example on how a fascinating and elegant mathematical theory can be useful for the solution
of real problems resulting in science and engineering. According to this, the aim of the current
thesis is of dual nature: it seeks to expand the well-known theoretical knowledge on such matrix
structures and to apply the results to real-life problems.

The importance of circulant and Toeplitz operators is indeed a consequence of the connection
with a variety of problems in Physics, Probability Theory, Cryptology, Engineering and Applied
Sciences. In general, the intrinsic nature of these problems is continuous. In fact, a great deal
of applications requires the solution of a Partial Differential Equation (PDE). However, this
kind of continuous equation often does not admit an analytical solution, which needs to be
approximated by means of a numerical method.

Several numerical methods that perform these kinds of approximations consist in creating
a sequence of discrete problems and computing the corresponding numerical solutions, which
converge to a quantity that permits to reconstruct the solution of the original PDE. If the PDE
and the numerical method are both linear, the computation of the numerical solution reduces
to solving a sequence of linear systems with increasing dimensions [5, 33, 64].

It often happens that the sequence of the coefficient matrices of these systems is a sequence
of structured matrices with a certain type of either time or space invariance. This is the reason
why the studies on circulant and Toeplitz matrices and of all the structures constructed with
them have maintained high popularity over the years [23, 35, 114, 133, 140].

From a theoretical point of view, dealing with circulant matrices does not require significant
computational efforts, since they constitute a class for which most matrix-theoretic questions
may be resolved in closed form [35, 64, 100]. Indeed, the circulant matrices form an algebra
and in particular they are simultaneously diagonalized by the discrete Fourier matrix. The
latter theoretical aspect has two consequences in Numerical Analysis. On one hand, linear
equations with circulant coefficient matrices do not present computational difficulties, since
they may be quickly — with respect to the matrix-size — solved using only few fast Fourier
transforms [32, 138]. On the other hand, this computational advantage causes them to be
frequently chosen in several contexts, for instance when it is needed to approximate the inverse
of a Toeplitz matrix, and in addition their built-in periodicity makes them suitable for many
applications [29-31, 52, 123]. Moreover, circulant matrices are a subclass of Toeplitz operators
and hence they are part of an additional fascinating context. Indeed, the study of the properties
of Toeplitz matrices by means of their generating functions represents an exceptional example
of interplay between matrix theory and function theory. In fact, there exists a correspondence



between the analytic properties of the generating functions and the algebraic properties of the
associated Toeplitz matrices [113, 115, 140]. However what is even more significant is that,
under certain hypotheses, the generating function can be an elegant and efficient tool that
provides an asymptotic approximation of the singular values and eigenvalues of Toeplitz matrices
[36, 41, 42, 115, 140], which is effective also for moderate dimensions. Typically, in the unilevel
setting, the approximation error is proportional to the inverse of the matrix-size.

In order to better explain the meaning of the aforementioned approximation features, we
have to deal with the concept of asymptotic distributions. The informal meaning of eigenvalue
and singular value distribution of a given matrix-sequence { Ay },, which is rigorously presented
in Chapter 1, is that, for n sufficiently large, a uniform sampling of a given function f —
which is called the spectral symbol — provides an approximation of the eigenvalues of A,, and,
analogously, a uniform sampling of | f| — which in this case is called the singular value symbol —

over its domain gives an approximation of the singular values of A,.

As we already suggested, for Toeplitz matrix-sequences the candidate asymptotic symbol
is the generating function, however this conjecture is verified only under specific hypotheses.
The broad studies that have been carried out in the past few decades provide us with a clear
outline on the topic. Indeed, Szeg6 in [67] showed that the eigenvalues of the Toeplitz matrix
T, [f] generated by real-valued f € L*°([—m,n]) are asymptotically distributed as f. Moreover,
Avram and Parter [6, 103] proved that the singular values of T,,[f] are distributed as |f| for a
complex-valued f € L*°([—m,n]). Tyrtyshnikov [134, 135, 140] later extended the spectral and
singular value theorems to Toeplitz matrices T),[f] generated by functions f € L!([—n,7]).

In this well-structured framework, there is one feature missing: if a Toeplitz matrix is not
Hermitian, in general we cannot discover its spectral properties by studying the generating
function. Since the knowledge of the spectral information is crucial in the design and in the
convergence analysis of fast solution methods for Toeplitz systems, as we will explain in more
detail later, it might be convenient to develop a strategy that permits us to transform non-

Hermitian linear systems into a form for which a spectral analysis is easier.

Indeed, under the hypothesis that the Toeplitz matrix T,,[f] possesses real entries, a smart
symmetrization procedure can be applied. Namely, as suggested in [104], we can premultiply
T, [f] by the anti-identity matrix Y;, € R™"*" in order to study the symmetrized matrix Y;,T,,[f].

One of the main contributions of this thesis is to give a spectral distribution result for
sequences of the form {Y,,T5,[f]}» [53]. In particular, in Chapter II we show that the generating
function f of T,[f] plays a fundamental role: we prove a result which informally means that
roughly half of the eigenvalues of Y;,T,,[f] are positive and they are approximated by a uniform
sampling of |f| and roughly half of the eigenvalues are negative and they are approximated by
a uniform sampling of —|f|. Moreover, the proof is based on a new tool, which analyses the
eigenvalue distribution of special 2-by-2 block matrix-sequences and has a general character,
and, therefore, can be potentially used in different contexts.

A second goal of this thesis is to extend the latter setting, providing asymptotic distribution
results for the analogous symmetrization of the sequence {h(T,[f])}n, where h is an analytic
function [52]. In particular, we consider a function f in L°°([—m,x]) with real Fourier coeffi-
cients and an analytic function h with convergence radius r such that || f|lcc < r. Under these
hypotheses, we prove that the matrix-sequence {h(T,,[f])} is distributed in the singular value
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Introduction and Motivation

sense as h o f, which is a result with intrinsic significance. We exploit this property further to
investigate the spectral distribution of the symmetrized sequence {Y,,h(T,[f])}» and show that
its spectral symbol is given by

_ [ho f(D)|, ¥ €[0,27],
Pinof| (V) _{ —|ho f(—9)|, ¥ € [-2r,0),

which informally means that, for a sufficiently large n, roughly half of the eigenvalues of
Y, h(T,[f]) are approximated by a uniform sampling of |ho f| and roughly half of the eigenvalues
are approximated by a uniform sampling of —|h o f|. The proof of this result is based on the
properties of the Generalized Locally Toeplitz (GLT) sequences, which form a particular class
of matrix-sequences to which Toeplitz matrix-sequences with Lebesgue integrable generating
functions belong [12, 13, 62, 63].

As we already mentioned, the study on Toeplitz-related sequences is crucial in many applic-
ations, when it is required to solve particular linear systems with structured coefficient matrices
[16, 58]. In some cases, direct solution methods represent the best choice for their robustness and
predictable behaviour. However, it often happens that the size of the linear systems increases
as we seek more accuracy in the approximation of the solution of the problem. Thus, the com-
putational complexity of the algorithm is a fundamental aspect in the development of feasible
solution methods. If the bandwidth of the matrix is sufficiently small, Gaussian elimination is a
reasonable choice [73]. However, if the Toeplitz matrices are not sparse or possess a multilevel
structure, which often happens if the initial problem is a multidimensional PDE, many direct
solvers — such as the standard Gaussian elimination — do not exploit the structure of the matrices
and the computational cost could be not affordable even with high-performance computers. To
overcome this, in the past decades many solution algorithms of iterative nature have been em-
ployed for the solution of linear systems with Toeplitz coefficient matrices [66, 70, 99, 108].

Some of the most successful iterative procedures that have been developed involve two key
ingredients: Krylov subspace methods and preconditioning. Krylov subspace methods are a
class of iterative solvers for a system of linear equations. Among them, it is worth citing the
Conjugate Gradient (CG) method, developed by Hestenes and Stiefel [71] in 1952, the Minimal
Residual (MINRES) method, designed by Paige and Saunders [102] in 1975, and the Generalized
Minimal Residual (GMRES) method, conceived by Saad and Schultz [109] in 1986. On the other
hand, preconditioning involves the alteration of the original linear system in order to accelerate
the computation of the approximated solution.

From a theoretical point of view, in order to develop an efficient preconditioner for a linear
system Ax = b, one strategy is to look for a matrix P such that the chosen Krylov subspace
method converges faster for a linear system with coefficient matrix P~'A. In practice, in this
first case, in order to find the solution of the original system it is necessary to solve a linear
system with coefficient matrix P. A second approach is to construct an approximate inverse P
of A as a preconditioner, which requires to perform matrix-vector multiplications with matrix
P. Advanced preconditioning strategies do not involve the construction of a matrix, they consist
in the development of a procedure whose on a vector has the same role as the matrix-vector
multiplication with matrix P. Since the goal of preconditioning is to speed up the convergence
of the chosen method, it is evident that the operations of solving a linear system with mat-
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rix P, multiplying a vector by P or applying the preconditioning procedure should not be as
computationally expensive as the solution of the initial system.

As far as Toeplitz linear systems are concerned, a suitable preconditioner P might be sought
in the class of circulant matrices. Indeed, many results on how circulant matrices approximate
well Toeplitz matrices have been obtained [29-31]. Moreover, as we already pointed out, a linear
system with a coefficient matrix in the circulant algebra can be quickly solved making use of a
fast Fourier transform algorithm.

A significant feature of some Krylov methods such as the Conjugate Gradient and the Min-
imal Residual methods is that the convergence rate of the algorithm can be estimated using only
the eigenvalues of the system matrix. Therefore, it is evident that the knowledge of the spectral
distributions of the coefficient matrix-sequences for linear systems of increasing dimension is of
critical importance in the design of a good preconditioner.

Combining the literature on circulant preconditioning and the aforementioned spectral results
on symmetrized Toeplitz sequences, in this thesis we prove the effectiveness of preconditioning
strategies for the matrix-sequences {Y,,T,,[f]}n and {Y,,h(T,[f])}n- Indeed, the final goal of our
findings is to exploit the derived spectral clustering information on the preconditioned matrix-
sequences in order to estimate the convergence rate of MINRES for the related preconditioned
linear systems [52, 53].

Following the preconditioning strategy suggested by Pestana and Wathen in [104], given a
circulant matrix C,, such that {C;1T,[f]}n is distributed in the singular value sense as the
function 1, we propose as preconditioner for the symmetrized matrix Y, (7),[f]) the absolute
value circulant matrix |Cy|. The latter is defined by

|(:31‘ = lwn‘1\7lLE§£{7

where F), is the n x n Fourier matrix, and |A,| is the diagonal matrix in the eigendecomposition
of C}, with all entries replaced by their magnitude.

Finally, we prove that the derived preconditioned matrix-sequence is distributed in the ei-

[ 1, velo,2q,
(bl(ﬁ)_{ —1, 9 €[-2m,0),

genvalue sense as

under the mild assumption that f is sparsely vanishing. The latter implies that roughly half of
the eigenvalues are clustered at 1 and roughly half of the eigenvalues are clustered at —1, which
is a desirable property for the fast convergence of the preconditioned Minimal Residual method.

Along with the low — with respect to the matrix size — computational cost of performing
one iteration, a crucial property of a preconditioned iterative method is its optimality, that is,
the algorithm should have a convergence rate independent of the matrix size. While circulant
preconditioning for Toeplitz linear systems often leads to optimal Krylov subspace iterations
[30, 40, 114, 116], in the multilevel and multilevel block Toeplitz settings the performances
of (multilevel block) circulant preconditioners deteriorate (see [101, 120, 124] and references
therein). This is a reason why also the class of multigrid methods is of great interest in this con-
text. In fact, multigrid methods achieve a fast convergence rate by constructing via consecutive
projections a proper sequence of linear systems of decreasing dimensions.
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Introduction and Motivation

In the case of circulant and Toeplitz matrix-sequences generated by a scalar-valued function,
the convergence and optimality analysis of multigrid methods has been obtained in a compact
and elegant form. This has been done firstly in the unilevel case in [27, 56, 82] and then in the
multilevel case [57, 119, 127]. The cited works provide the convergence analysis of the two-grid
method with proper choices of grid transfer operators, while the V-cycle analysis is present in
more recent works [3, 4]. Following this approach, the importance of asymptotic distributions
becomes evident once again: the grid transfer operators are defined exploiting the analytical
properties of the symbols associated to the matrix-sequences for which the multigrid method is
designed.

In the block-circulant and block-Toeplitz setting, that is, in the case where the matrix entries
are small generic matrices instead of scalars, some algorithms have already been proposed re-
garding specific applications, but the attention to theoretical results is still marginal. Namely,
when the generating function is matrix-valued and non-trivial, there is still a substantial lack
of an effective projection proposal and of a rigorous convergence analysis. A further aim of this
thesis is to fill this theoretical gap.

According to the classical Ruge and Stiiben convergence analysis in [107], the two-grid con-
vergence can be proven validating both a smoothing property and an approximation property.
The first is easily generalizable in the block setting and we show how it mainly regards the
choice of the specific relaxation parameter for the selected smoother [39]. Conversely, mimicking
the proof for the approximation condition from the scalar structures is non-trivial, owing to the
non-commutativity of the involved matrix-valued symbols.

In our analysis, we mainly focus on the crucial choice of conditions on the trigonometric
polynomial used to construct the projector in order to ensure the optimal convergence rate
of the two-grid method [39], since the generalization of the conditions present in the scalar
setting is not sufficient for this purpose. Firstly, we assume the trigonometric polynomial that
generates the block-circulant matrix used in the construction of the grid transfer operator to
be unitarily diagonalizable at all points and to satisfy a specific commutativity condition. This
approach provides us with the tools to define a class of grid transfer operators suitable for the
achievement of the two-grid convergence. Then, we prove the approximation property in a more
general case, observing that many multigrid methods, known in the literature, usually do not
fit in the previous setting, having, for instance, a non-diagonalizable matrix-valued symbol. In
both cases, we prove that the two-grid convergence rate is optimal, independent from the matrix
size, in the case of positive definite block matrices with generic blocks [20, 39].

Furthermore, taking inspiration from the approach in [21], we propose a measure of the ill-
conditioning of the symbol at the coarser levels in order to choose a robust grid transfer operator
that yields to fast multigrid convergence for more than two grids.

To show the numerical validity of our theoretical results, we consider the case of large positive
definite block linear systems stemming from quadrilateral Lagrangian Finite Element Methods
(FEM) — denoted in the sequel as Qs — applied to the Poisson problem [64]. An important step
for the numerical approximation involves the solution of linear systems which possess a natural
block (and multilevel block) Toeplitz structure, up to a low rank correction.

Firstly, we propose a classical multigrid strategy that follows a functional approach, that
is, we define the prolongation operator as the inclusion operator between the coarser and finer
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functional spaces [55]. We analyse the prolongation matrix as a cut block-Toeplitz matrix and
we prove that its symbol satisfies the hypotheses for the optimality of the two-grid and V-cycle
convergence rate. We perform an analogous analysis also to a second multigrid strategy, where
we choose a linear interpolation prolongation operator.

The last projecting strategy that we present for the Qg stiffness matrices has a more general
interest, namely, it can be applied to every positive definite Toeplitz matrix-sequence with
generating function f that is singular at exactly one point ¥y in its domain. Indeed, for the
Qs stiffness matrices, the construction of the grid transfer operators depends on a suitable
trigonometric polynomial, which is chosen based only on an algebraic analysis of the symbol
f associated with the linear systems matrix-sequence. In particular, the class of grid transfer
operators is generated by the following matrix-valued trigonometric polynomial p.:

2(1 + cosv)
1+ cos?
p.(¥) = F, ' FH

S
1+ cos?

where s is the block-size. As we will explain, the choice of a function such as 1 + cos? on
the diagonal is connected to the behaviour of the eigenvalues of f(1}) varying ¢. Moreover, the
circulant structure of p,(1J) is a consequence of the study of the eigenvector associated to the
null eigenvalue of f(Jg). In order to have an optimal two-grid convergence rate, the choice z = 1
is feasible and has a general character. On the other hand, for the extension of the optimal
convergence rate to more than two grids, we numerically study a better choice of the parameter
z such that the aforementioned conditioning of the symbol at the coarser levels does not worsen.

The last chapter of this thesis is dedicated to the design of a fast solution method for
systems of linear equations with a more complicated structure. To this end, we consider the
space-time discretization of the linear anisotropic diffusion equation [15], using an isogeometric
analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation in
time [16]. The solution method for the resulting space-time linear system includes a newly
proposed preconditioner for the Preconditioned GMRES (PGMRES) algorithm, which involves
a few iterations of an appropriate multigrid method. Both the preconditioning and the multigrid
strategy are designed following the leading concepts on the development of iterative solvers for
structured matrices that constitute the basis of the whole thesis, that is, exploiting the spectral
information on the derived matrices, which is known from the eigenvalue distribution results
provided in [16]. Moreover, we pay particular attention to the development of an algorithm that
can be parallelized and performs well on parallel computers, since this is an aspect that has
been of great interest in recent years, due to the physical constraints for the clock frequency
of processors. The numerical experiments confirm that our preconditioned solution method
possesses good parallel scaling properties and is competitive in terms of robustness and run-
time.

We conclude this general introductory part briefly describing the contents of the thesis
chapter by chapter.

In Chapter I we set the notation used throughout the thesis and we provide the fundamental
definitions and results that are preliminary to the subsequent chapters. In particular, we give the



Introduction and Motivation

definition of circulant and Toeplitz matrices — and their generalizations to the block and block
multilevel cases — and we present their main structural and spectral features. Then, we formally
introduce the concepts of asymptotic distributions and of approximating classes of sequences
and provide the minimal notions for understanding the basics of the GLT theory, which is an
essential tool in Chapter ITI. We also give an overview of iterative methods and report in more
detail results for the preconditioned MINRES method and for multigrid methods.

In Chapter II, we consider the sequence of matrices {Y,,T,,[f]}n, where T,[f] is the n-by-n
Toeplitz matrix generated by a function f in L!'([—m,7]) and Y, is the anti-identity matrix.
Because of the unitary nature of Y,,, the singular values of T},[f] and Y,,T,,[f] coincide. However,
the eigenvalues are affected substantially by the action of Y,,. Under the assumption that the
Fourier coefficients of f are real, we prove that {Y,,T,,[f]} is distributed in the eigenvalue sense

- g(9), 9 e0,2n],
bg(V) = { —g(=19), 9 e [-2m,0),

with g(9) = [f(9¥)]. A generalization of this result to the block Toeplitz case is also shown.
Next, we consider the circulant preconditioning introduced by J. Pestana and A. Wathen [104]
and prove that the preconditioned matrix-sequence is distributed in the eigenvalue sense as ¢
under mild assumptions on f. A number of numerical experiments is provided and critically
discussed.

In Chapter III, we extend the results proven in Chapter IT to matrix-sequences of the form
{h(T,[f]) }n, where h is an analytic function. In particular, we provide the singular value distri-
bution of the sequence {h(T,[f])}n, the eigenvalue distribution of the sequence {Y,,h(T},[f]) }n,
and the conditions on f and h for these distributions to hold. The final goal of the chapter is to
exploit our theoretical findings for the fast solution of linear systems stemming from some ap-
plications of interest. In particular, we provide efficient circulant preconditioning strategies for
the matrix-sequence {Y,,h(T,[f]) }» in several settings. Starting from the case where the function
h is simply a polynomial, we finally study the case of the exponential of a real nonsymmetric
Toeplitz matrix stemming from computational finance, in particular, from the option pricing
framework in jump-diffusion models, where a partial integro-differential equation (PIDE) needs
to be solved.

In Chapter IV, we propose a general two-grid convergence analysis, proving an optimal
convergence rate independent of the matrix size, in the case of positive definite block-circulant
matrices with generic blocks. The proof of the approximation property is not a straightforward
generalization of the scalar case, we have to require additional conditions on the block symbol
of the grid-transfer operator. In particular, we analyse a first case when the trigonometric
polynomial that generates the block-circulant matrix used in the construction of the grid transfer
operator is unitarily diagonalizable at all points and satisfies a specific commutativity condition.
However, most of the known multigrid methods do not fit in this particular setting, which
suggests that the hypotheses for the optimal two-grid convergence rate can be relaxed, namely,
we prove the approximation property for a grid transfer operator with a block symbol that might
be non-diagonalizable. In this case, it becomes clear that not only the eigenvalue functions of
the symbol are crucial for the convergence of the method, but also the eigenvectors should be

carefully analysed. Then, we provide a generalization of the convergence results to multilevel

xi



block-circulant matrices, where the multilevel grid transfer operator possesses a tensor structure.

In Chapter V, we exploit the theoretical findings of Chapter IV to develop and analyse
multigrid strategies for the solution of linear systems stemming from the Qs Finite Elements
approximation of elliptic partial differential equations with Dirichlet boundary conditions and
where the operator is div (—a(x)V-), with a continuous and positive over [0,1]*. Firstly, we
propose a classical multigrid strategy that follows a functional approach, that is, we define
the prolongation operator as the inclusion operator between the coarser and finer functional
spaces. We analyse the prolongation matrix as a cut block-Toeplitz matrix and we prove that
its symbol satisfies the hypotheses for the two-grid and V-cycle convergence and optimality.
We perform an analogous analysis also for a second multigrid strategy, where we choose a
linear interpolation prolongation operator. Finally, we present a third class of grid transfer
operators, which has a different genesis. According to the analysis, we show how to exploit the
properties of the eigenvalue functions to define a class of grid transfer operators that satisfy the
theoretical conditions of Chapter IV. In this way, we explain how to choose the trigonometric
polynomial that generates the block-Toeplitz matrix used in the construction of the grid transfer
operator focusing only on algebraic considerations on the symbol of the linear system matrix-
sequence. Even though we focus on the Qs stiffness matrices, the presented procedure has a
wider interest, since it might be applied to every matrix-sequence that falls into the theoretical
setting. Results of numerical experiments that test all the considered methods are presented,
both in one dimension and in higher dimension, showing an optimal behaviour in terms of the
dependency on the matrix size and a robustness with respect to the dimensionality.

In Chapter VI we consider the space-time discretization of the (linear) anisotropic diffusion
equation, using an isogeometric analysis (IgA) approximation in space and a discontinuous
Galerkin (DG) approximation in time. Drawing inspiration from a former spectral analysis,
we propose for the resulting space-time linear system a new preconditioner for the PGMRES
algorithm, which involves a few iterations of an appropriate multigrid method. The performance
of our preconditioned solution method is illustrated through numerical experiments, which show
its competitiveness in terms of robustness, run-time and parallel scaling.

A conclusion chapter ends the present thesis including a list of open questions, perspectives,
and future issues to be addressed in further researches.

xii



Chapter 1

Preliminary Definitions and Results

The present chapter introduces the notation used throughout the thesis and provides the fun-
damental definitions and results that are preliminary to the subsequent chapters.

First, we illustrate how to work with matrix-valued functions and their associated eigenvalue
functions. Moreover, we formally introduce the concepts of approximating classes of sequences
and of asymptotic distributions.

Then, we give the definition of circulant and Toeplitz matrices, we present their main struc-
tural and spectral features and their generalizations to the block and block multilevel cases. We
also provide the minimal tools for understanding the basics of the Generalized Locally Toeplitz
theory. Furthermore, we write a suitable definition of function of matrices and we study its
meaning in the Toeplitz case.

In the final sections of the chapter we recall the fundamentals on iterative methods, paying
particular attention to preconditioned Krylov solvers, especially the preconditioned MINRES
method, and on multigrid methods, for which we follow an algebraic Ruge-Stiiben approach.

I.1 General Notation

The following list describes the notation that is used throughout the thesis.

e K"*™ is the space of m x n matrices with coefficients in K € {R, C}, R, C being real and

complex numbers, respectively.
o If z = [x]7_, is a vector, then

— 27 denotes the transpose of z;

— 2 denotes the conjugate transpose of z;
o If A =aj]};—; € C"™", we denote by

— AT the transpose of A;

A the conjugate transpose of A;
— rank(A) the rank of A;
tr(A) the trace of A;
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— det(A) the determinant of A;
- Xj(A), 7 =1,...,n, the eigenvalues of A4;
— 0j(A), j =1,...,n the singular values of A;

— A(A) the spectrum of A.
e If A, B € C™" we write

— A > Bif A and B are Hermitian and A — B is Hermitian Positive Semi-Definite
(HPSD);

— A> Bif A and B are Hermitian and A — B is Hermitian Positive Definite (HPD);

e O, is the n xm zero matrix. When the dimension is clear from the context, the subscript

is omitted.

e [, is the m x m identity matrix. When the dimension is clear from the context, the
subscript is omitted.

e Y, is the m x m anti-identity matrix.

e [, is the m x m Fourier matrix, that is

e 0, denotes the vector [0,0,...,0]" € R".
e e, denotes the vector [1,1,...,1]7 € R™.

e 1, denotes the Lebesgue measure in R¥. If not specified otherwise, “measure” always refers
to the Lebesgue measure.

e i is the imaginary unit, that is i = —1.

o If A e C"*™2 agnd B € C™*™2, the Kronecker product of A and B is the nym; X nams
matrix defined by

auB e a1n23

ang e CLQHQB
A® B = [a;jBli=1,..n1 ,j=1,..ns =

an1B ... apn,B

e Let D be a measurable subset of R* and let f,,, f : D — C be measurable functions for
all m € N. We say that the sequence f,, converges to f in measure and we write

fm — f In measure

if, for every ¢ > 0,
lim g {|fm — f| > €} = 0.
m—o0



I.2. Matrix Norms

e Given D a measurable subset of RF, we denote by

— LP(D) the space of measurable functions f : D — C such that
/ |fIP dpr < 00, 1< p<oo;
D

— L*(D) the space of measurable functions f : D — C such that

esssupp|f| < 0.

e If D is a measurable subset of R¥, given f € LP(D), the quantity | f||, is the LP-norm of
f, that is

1
(Jp | fIPdur)?, if 1<p<oo,

esssupp|fl, if p=oc.

”f”p =

e Given two sequences {an}, and {b,},, with a,, > 0 and b, > 0 for all n, the notation
a, = O(b,) means that there exists a constant C, independent of n, such that a,, < Cb,
for all n and the notation a, = o(b,) means that a,/b, — 0 as n — 0.

e A vector i= (i1,42,...,0) € ZF is called a k-index or simply a multi-index.
e For all n = (ny,na,...,n;) € Z* we define the multi-index length by N(n) = nins ... ny.
e 0,1, 2,... respectively indicate (0,0,...,0), (1,1,...,1), (2,2,...,2), ....
e Foralln, me Z* n < m means n; <m;, Vi=1,...,k.
e If n, m € Z* are such that n < m, the multi-index range n, ..., m is the set
{jez* :n<j<m}.
e Given n,m € ZF, with n < m, the notations Zjn;n, Hjn;n and ®J";n respectively indicate
the summation, product, and Kronecker product over all multi-indices j =n,...,m.

e If m € N* then

T = [xi];zl

is a vector of size N'(m) whose components zj, i = 1,..., m are sorted in accordance with

the lexicographic ordering. Similarly
A = [a55]{5-1
is the A'(m) x N(m) matrix whose components are indexed by two multi-indices, both

varying in 1,..., m according the lexicographic ordering.

1.2 Matrix Norms

In the following subsections we include the definitions and the properties of two fundamental

clagses of matrix norms, namely p-norms and Schatten p-norms.
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[.2.1 p-norms

Given 1 < p < oo and z € C", we denote by ||z||, the p-norm of z, i.e.,

n [|p\1/P ; <
ux\p:{ (i lal?) ™, i 15 p <o, )

max;—1,..n |, if p=cc.
The p-norm of a matrix A € C"*™ is the matrix norm induced by the vector norm || - ||,
[Allp = max —[[Azl]p.

zeCn, [lzflp=1

The 2-norm is also known as the spectral norm. Being an operator norm on C™*"  the matrix

p-norm satisfies the inequality p(A) < ||A||, and has the sub-multiplicative property, that is
IABlp < [[AllpBllp, VA, B € C*™™". (I.2)

In for some special values of p, a formula for the computation of ||A||, is available [65]:

1Al :jg%n; i, (1.3)

JAll2 = \/p(AHA) =/ Aax( A A), (1.4)

[ Alloe = i:HllaXnZ |aijl; (L.5)
..... -

From Formula (I.4) it is straightforward to see that the 2-norm is unitarily invariant, that is,
[All2 = [[UAV | (L.6)

for all A € C™*™ and all unitary matrices U,V € C"*".
Moreover, we report the inequality

[Allz < VIIAL[[Alloo, A€ C, (L.7)

which is useful in combination with equations (1.3)-(1.5) to estimate the spectral norm of a
matrix using its elements. For a proof, see [65, Corollary 2.3.2].
By means of the 2-norm, we define the condition number k(A) of an invertible matrix A as

the quantity
K(A) = | Al |47,

Notice that if A is normal the condition number can be written as

Omax A mnax; )\ A
r(A) = Al |[AH], = amin((A)) B minﬂj' ||AJJ'((A))|‘

Finally, if A € C"*™ is HPD, then we define the Euclidean norm weighted by A of a vector
x e C" as
lalla = |42

and, consequently, we define the weighted Euclidean norm of a matrix B € C"*"™ as

1 [,
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I[.2.2 Schatten p-norms

Given 1 < p < oo and a matrix A € C"*", we denote by [|A[|, the Schatten p-norm of A, which
is defined by

1Al = [l (A=,

that is, the Schatten p-norm of A is the p-norm of the vector having as elements the singular
values of A. Since the singular values possess a unitary invariance property, this implies that all
Schatten p-norms are unitarily invariant.

In what follows we list and describe three significant examples of Schatten p-norms.

e The Schatten oo-norm coincides with the spectral norm. In fact, the quantity [|Al],, is
equal to omax(A) by definition, which implies that [|Al|,, = [|A]l2.

e The Schatten 2-norm ||| Al||, is also known as the Frobenius norm. It coincides with the
2-norm of the vector containing all the elements of A, that is

n 1/2
l1All, = (Z w)  Aecmn (L8

1,j=1

e The Schatten 1-norm |[|A[|; is also known as trace norm.

1.3 Matrix-valued Functions and Eigenvalue Functions

In the following subsection we deal with the concepts of matrix-valued function and its eigenvalue
functions which are broadly used throughout the whole thesis. Given D a measurable subset of
R* a matrix-valued function brings values 9 € D into the space of square matrices C**.

In general, we state that a matrix-valued function f possesses a property such as measurab-
ility, continuity, and boundedness, if all its components f;; : D — C, 4,5 =1,...,s, possess the
same property. We denote by LP(D, s) the space of the functions such that all their components
lay in LP(D).

Given a function f € LP(D, s), we define

g, = 4 U I£@)[Ld)"”, it 1<p< oo,
’ esssupgepllf(P)|loo, if p=o0.
For a Hermitian matrix-valued function f we write £ > 0 (resp. £ > 0) if, for almost all ¥ € D,
f(¥9¥) is a non-negative (resp. positive) definite matrix.

In the case where all the eigenvalues of the matrix f(19) are real for almost every ¥ € D, we
can sort the eigenvalues of the matrix f(#) in increasing order for almost every 9 € D. Hence,
the eigenvalue function \;(f) is well defined as the function taking the value of the i-th largest
eigenvalue of f(99).

Further, adding the hypothesis that f is a continuous matrix-valued function defined on an
interval, the existence and continuity of the eigenvalue functions of f is proven in [19, Section

VI.1] and we summarize the result in the following lemma.

Lemma 1.3.1. Let f be a continuous map from an interval Q into the space of s X s matrices

such that the eigenvalues of £(1) are real for all ¥ € Q. Then there exist continuous functions

A(£(9)), A2 (£(D)), ..., As(£(0)) such that, for each ¥ € Q, are the eigenvalues of £(19).
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1.4 Asymptotic Distribution of Matrix-Sequences

In the present section we provide definitions and results for the analysis of the spectral and singu-
lar value properties of a generic matrix-sequence { A, },, where the matrices A,, have dimension
that increases with n. We also introduce the concepts of clustering, asymptotic distributions,
and approximating classes of sequences.

I.4.1 Eigenvalue and Singular Value Distributions of Matrix-Sequences

Before detailing the concepts on asymptotic distributions, we give the definition of cluster of
the eigenvalues of a matrix-sequence, which is fundamental in the analysis of preconditioning
strategies for Krylov solvers, as we see in Section 1.9.3.

Definition 1.4.1. Let S C C be a non-empty subset of C and let {A,}n, be a matriz-sequence,
with Ay, of increasing size d,. We say that { A}y, is strongly clustered at S (in the sense of the
eigenvalues), or equivalently that the eigenvalues of {An}n are strongly clustered at S, if, for
every € > 0, we have

#{je{l,....dn}: Nj(An) € D(S,e)} =0O(1), as n — oo, (1.9)

where D(S,e) = J,cqiw € C : |w — 2| < e}

Furthermore, we say that {Ap}n is (weakly) clustered at S (in the sense of the eigenvalues),
or equivalently that the eigenvalues of { Ay}, are (weakly) clustered at S, if O(1) is replaced with
o(dy) in the previous relationships.

When the eigenvalues of a matrix-sequence are clustered at 0 with a weaker meaning, the
sequence is said to be sparsely vanishing in the eigenvalue sense. We formally introduce the
latter concept in the following definition, specifying the meaning of sparsely vanishing in both

the singular value and in the eigenvalue sense.

Definition 1.4.2. Let {A,}, be a matriz-sequence, with A, of increasing size dy,. We say that
{A,}n is sparsely vanishing (s.v.) if
lim lim sup #{ie{l,..,d,}:0i(Ap) <1/M} _

M—o00 n—00 dy,

0.

Moreover, we say that { Ay}, is sparsely vanishing (s.v.) in the eigenvalue sense if

lim lim sup #{i €{L, .. dn} 2 |Xi(An)|) <1/M} _

M—o0 n—oo dn

0.

Throughout the current subsection, we follow all standard notation and terminology intro-
duced in [62]: let K be either R or C, then we denote with C.(K) the space of complex-valued
continuous functions defined on K with bounded support. The following properties hold.

If g: D C R¥ — C*** is a measurable function defined on a set D with measure ju(D) such
that 0 < ug(D) < oo, then the expressions ngj) and ng‘) denote the functionals described by the
following relations

(@) . @)y _ L Yo F(oi(g)) (9)

ng ' :Ce(R) - C and ng ' (F)= D) o L . dd,
oF and oV () = L iz 1 (Ni(g)) (9)

ng  :Ce(C) = C d ng/(F)= D Jo . dd,
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Definition I.4.3. [62, Definition 3.1|(Singular value and eigenvalue distribution of a matrix-
X dn

sequence) Let {A,}, be a matriz-sequence with A, € Cn

1. We say that {A,}n has an asymptotic singular value distribution described by a functional
n: C.(R) = C, and we write {An}n ~o n, if

Ifn= 77&7) for some measurable f : D C RF — C*** defined on a set D with 0 < pg(D) <
oo, we say that { Ay}, has an asymptotic singular value distribution described by £ and we
write {An}n ~o £. In this case, the function f is referred to as the singular value symbol

of the matriz-sequence { Ay }n.

2. We say that {Ayn}n has an asymptotic eigenvalue (or spectral) distribution described by a
functional n : C.(C) — C, and we write {An}n ~a 1, if

n—oo

dn
lim dln ;F(/\j(An)) _n(F), VF e CyC).

Ifn= né)‘) for some measurable f : D C RF — C*** defined on a set D with 0 < pg(D) <
oo, we say that { Ay} has an asymptotic eigenvalue (or spectral) distribution described by
f and we write {Ap}n ~x f. In this case, the function f is referred to as the eigenvalue (or

spectral) symbol of the matriz-sequence {Ap},.

Recalling that a function f is sparsely vanishing if and only if its set of zeros is of Lebesgue
measure zero, we report the following result, which is proven in [62, Chapter 9, pp. 165-166]).

Theorem 1.4.1. The following statements are true.

1. Assume {An}n ~o f. Then {An}y is sparsely vanishing if and only if f is sparsely van-

ishing.

2. Assume {Ap}y ~x f. Then {A,}n is sparsely vanishing in the eigenvalue sense if and only

if f is sparsely vanishing.

3. Assume {An}n is given and assume that every matriz A, is normal. Then {Ap}, is

sparsely vanishing if and only if {An}n is sparsely vanishing in the eigenvalue sense.

Finally, we recall that the essential range ER(f) of a function f : D C R — C is defined
as the set of points z € C such that, for every ¢ > 0, the measure of the set {f(¥) € {w €
C : |w — z| < €} is positive. The previous notion has a direct relation with the concept of
spectral distribution. Indeed, if {A,}, ~\ f, then {A,}, is weakly clustered at the essential
range ER(f). See [62] for more details.
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[.4.2 Approximating Classes of Sequences

Next, we introduce the definition and a key lemma on approximating classes of sequences [118],
which is used for completing the proofs of the results presented in Chapters IT-TII.

Definition I.4.4. [62, Definition 5.1](approximating class of sequences)
Let {A,}n, be a matriz-sequence and let {{ B m}n}m be a sequence of matriz-sequences. We
say that {{Bpnm tn}tm is an approzimating class of sequences (a.c.s.) for {Ap}y if the following

condition is met: for every m there exist n,,, c(m), w(m) such that, for n > ny,,
An = Bn,m + Rn,m + Nn,ma

rank Ry m < c(m)n and ||Nym|2 < w(m),

where the quantities ny,, c(m), and w(m) depend only on m and

We use {Bpm In s wrt m, {A;}n to denote that {{Bym}n}m is an a.c.s. for {Ay},.

Lemma I.4.2. [62, Corollary 5.1] Let {Ay,}n, {Bnm}n be matriz-sequences and let f, fr, : D C
R* — C be measurable functions defined on a set D with 0 < ux(D) < co. Suppose that

1. {Bnm}n ~o fm for every m,

2. {Bum}n 2E50T (ALY,

3. fm — [ in measure.

Then
{An}n ~o f

Furthermore, if the first assumption is replaced by {Bpm}n ~x fm for every m, given that
the other two assumptions are left unchanged, and all the involved matrices are Hermitian, then
we conclude that {An}n ~x f-

1.5 Toeplitz Structures

The current section is devoted to Toeplitz matrices, a topic that is recurrent throughout the
whole thesis and that has been the subject of several books |22, 24, 25, 67]. A matrix is said to
have a Toeplitz structure if it has constant diagonals, either element by element or in a block
sense. As we rigorously state in the following subsections, in some cases the components can be
seen as the Fourier coefficients of a function that “generates” the Toeplitz matrix. The type of
domain (either [—, 7] or [—,7]*) and codomain (either the complex field or the space of s x s
complex matrices) of the generating function gives rise to different kinds of Toeplitz matrices,

see Table 1.1 for a complete overview.
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Type of generating function Associated Toeplitz matrix
univariate scalar f(@): [-m,7m] = C unilevel scalar T,[f] € Cr>m
k-variate scalar f9):[-m,7k = C multilevel scalar [f] € CN)xN(n)
univariate matrix-valued f(9) : [-m, 7] = C**° | unilevel block T, [f] € Conxsm
k-variate matrix-valued ~ £(9) : [, 7]* — C*** | multilevel block  T,[f] € C3Nm)xsN(n)

Table I.1: Various types of generating function and the associated Toeplitz matrices.

[.5.1 TUnilevel Scalar Toeplitz Matrices

A matrix of the form

agp a_1 a_o e ‘e a_(n_l)
ai
a2
A=la ), = , (1.10)
a—s
a—1
_an_l e B as aq ag ]

is called a Toeplitz matrix. Notice that the (i, j)-th entry of A depends only on the difference
i — 7, which means that the components are constant along each diagonal.
It is straightforward to see that the Toeplitz matrix [ai,j]?jzl can be written as the sum

n—1
i)l = Y. P, (L11)
k=—(n—1)
where, for k € Z,
1, ifi—j=k,
[7P] = RIEE (L12)
j 0, otherwise

Throughout this subsection, we assume that f € L!([—n,7]) and is periodically extended to
the real line. The Fourier coefficients of f are denoted by

. 1 [7 .
fr= 27r/ f@)e ™y, ke (1.13)

The n-th Toeplitz matrix associated with f is defined as

n—1
Tlf] = [fi—ij,l - ¥ AW (1.14)
T ke

We call {T,,[f]}n the sequence of Toeplitz matrices associated with f (or generated by f), which
in turn is referred to as the generating function of {T,,[f]}n.

In the following list, we describe how some properties of the generating function reflect to
the associated Toeplitz matrix, see |62, 99] for more details.

1. If f is real-valued, then T),[f] is Hermitian for all n.
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2. If f is even, then T),[f] is symmetric for all n.
3. If f is real-valued and even, then T),[f] is real and symmetric for all n.
4. If f is a trigonometric polynomial, that is,
,
F@0) =" fuel*,
k=—r

then, for n sufficiently large, T,,[f] is a banded matrix, with bandwidth bounded by 2r+ 1.

We conclude this subsection by reporting two theorems that are useful to extract information
from the generating function on the eigenvalues and singular values of the associated Toeplitz
matrix, for the proof see [62].

Theorem 1.5.1. Assume that f € L' ([—,«]) is real a.e. and let

my = essinf f(¥9), My = esssup f(¥).
Y€[—m,7] d€[—m,7]

Then
AT,[f]) € [my, My], mneN.

If we also assume that my < My, then
A(TL[f]) C (my, My), neN.

Theorem 1.5.2. Let f € LP([-m,7]), n € N and 1 < p < co. Then

nl/p

TN, < W\Ifllm.

In particular, for p = oo we have
1Tn[AUll2 = I Tnlf]lloe < [[f1zoe-

1.5.2 Block and Multilevel Block Toeplitz Matrices

The current subsection is dedicated to the generalization of the concept of unilevel scalar Toeplitz

matrix. We start with the definition of block-Toeplitz matrix, which has been conceptualized

from the idea that the entries ay of the matrix A, = [ai_j]Zj:I could be matrices themselves.
Given A_(,_1y,..., Ap—1 € C°*%, the sn x sn block matrix A defined by

i Ap A1 Ao oo - A—(n—l)
Ay . .
n A
A= [Ai_j]l.7j:1 = '2 ' . ' ‘ ,
. . . . A_2
(Apqg o e Ay Ay Ao |

10
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is said to be a block-Toeplitz matrix.

Analogously to the scalar case, a block-Toeplitz matrix of the form 7, (f) is associated to
a matrix-valued function f € L!([~7,7],s). We formalize the latter statement in the following
definition.

Definition 1.5.1. Let the Fourier coefficients of a given function f € L*([—m, 7], s) be

1

fi = o £(9)e V0dY e C°*, jez.

[—7T,7T]

Then, the block-Toeplitz matriz associated with £ is the matriz of order sn given by

T,[f] = Z J’r(Lj) ®fj7

lil<n

where the term J3) is defined in (1.12). The matriz-sequence {T,,[f]},, is called the block-Toeplitz

sequence generated by f, that in turn is referred to as the generating function of {T,[f]}n.

If the blocks are Toeplitz matrices themselves, the matrix is said to be a block-Toeplitz
matrix with Toeplitz blocks, or BT'TB matrix. However, in the case of a block-Toeplitz sequence
{T,[f]}n generated by f € L!([—7, 7], s), the blocks have a fixed dimension, that is, the block-
size does not depend on n. BTTB matrices suggest instead an additional generalization of the
concept of Toeplitz matrix-sequences, that is, the extension to sequences of BTTB matrices in
which both the block-size and the number of blocks depend on n. Such matrices are said to be
2-level Toeplitz matrix-sequences, and, in general, are substantially different from block-Toeplitz
matrix-sequences if we consider the type of generating function, which in this setting is bivariate
and scalar-valued.

The following definition formalizes all the previous considerations and extends the defini-
tion of Toeplitz matrix to the most general setting that we consider, that is, the case of mul-
tilevel block-Toeplitz matrix-sequences associated with multivariate matrix-valued generating

functions.

Definition 1.5.2. Let the Fourier coefficients of a given function f € L' ([—m,7]*,s) be defined
as

A 1 .
ii= —— £(9)e 10 49 sX8 S (i 7k
fJ (27)k /[—Wﬂr}’“ ( )e dd € C7, J (]1’ a]k) € )

where (j,9) = Zle FeUs.
Given a k-index n = (ny,ng, ..., ng), the n-th k-level s x s Toeplitz matriz associated with £

1§ the matriz of order snins...ng given by

n—1
Llf)= Y JiVe-eJie f,
j=(n-1)

where j = (j1,...,jx) € N¥ and the matrices of the form Jﬁf) are defined in (1.12).

11
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I.5.3 Asymptotic Distribution of Toeplitz Sequences

The singular value and spectral distribution of Toeplitz matrix-sequences have been well studied
in the past few decades. Ever since Szegé in [67] showed that the eigenvalues of the Toeplitz
matrix T, [f] generated by real-valued f € L°°([—m,7]) are asymptotically distributed as f,
such result has undergone many generalizations and extensions. Under the same assumption
on f, Avram and Parter [6, 103] proved that the singular values of T,,[f] are distributed as
|f| and Tyrtyshnikov [134, 135, 140] later extended the latter result for T, [f] generated by
complex-valued f € L!([-x,7]).

The generalized Szeg6 theorem that describes the singular value and spectral distribution of
Toeplitz sequences generated by f € L!([—n,7]) is given as follows. We refer to [140] for the
original results and [62, Theorem 6.5] for a proof that is based on the notion of approximating

class of sequences given in Definition 1.4.4.

Theorem 1.5.3. Suppose f € L'([—m,7|). Let T,[f] be the Toeplitz matriz generated by f.
Then

{Talf1in ~o f-

Moreover, if f is real-valued, then

{Tn[f]}n ~A f

Furthermore, Tilli [133] generalized the proof to the block-Toeplitz setting and, in particular,
we report the following theorem, which is the extension of the eigenvalue result to the case of

multivariate Hermitian matrix-valued generating functions.

Theorem 1.5.4. Let f € L'([—n,7|*, s) be a Hermitian matriz-valued function with k > 1,5 > 2.
Then,

{Tn[ﬂ}neNk ~x f.

1.6 Circulant Matrices

Circulant matrices are special Toeplitz matrices which possess the additional property that each
column vector is a circular shift of the preceding column vector. On one hand, all the theory
presented in Section 1.5 for Toeplitz matrices remains valid for circulant matrices. On the other
hand, circulant matrices of a fixed size n form an algebra of matrices unitarily diagonalized by
the Fourier matrix F,. In what follows we focus on the latter aspect.
We begin with the definition of n-th Fourier sum of a matrix-valued function f €
LY([—m,n]¥, s), which is given by
ni—1 np—1 k
Salf) @)= D> - Y e Gy = i (L15)
t=1

J1=1-n1 Jk=1—ny

A particular uniform sampling of the function in (I.15) is crucial in the construction of the
circulant matrix associated with f, as we see in the following definition.
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1.6. Circulant Matrices

Definition 1.6.1. Let f € L'([—n,7]*,s) be a matriz-valued function and let n = (ny,...,n)
be a k-index. Then, the n-th circulant matriz generated by £ is the matriz of order sN (n) defined

by:

Cn[f] = (FH®IS)DH[f](FH®IS)H7 (1'16)
where
Dulf] = diag (Salf]) (9") (1.17)
0<r<n-—1

15 a block-diagonal matriz and

/. g\ \ n—1
o™ —orl = _t <e_z<mr >) (1.18)
n N (n)

jr=0

Notice that in the case where f is a univariate scalar trigonometric polynomial, the n-th
Fourier sum coincides with f if n is large enough, and hence we can write the circulant matrix

generated by f as

Calf] = Fuding (1)) F1, (L.19)

where the grid points 192@) are % and 7 belongs to the index range Z,, = {0,...,n — 1}. From
(I.19) it is clear that, for n large enough, the eigenvalues of C,[f] are given by the evaluations

of f at the grid points.

Example 1. Consider the trigonometric polynomial p(v) = 2 — 3e ™. According to equation
1.19, the circulant matriz generated by p of order 4 is

2 — 35" 0 0
0 9 — 303" 0 0
Calp] =Fi i@ Ff' =
0 0 2 — 3¢~z
0 0 0 9 — 305"
1 1 1 1] -1 0 0 0 11 1 11"
1 1 = -1 2 0 2+3 0 0 1 - -1 il
41 1 -1 1 -1 0 0 5 0 1 -1 1 -1
1 i -1 —i] 0 0 0 2-3i 1 7 -1 =
2 -3 0 0]
2 -3 0
0 0 2 -3
-3 0 2 |

Hence, the eigenvalues —1,2 £ 34,5 of Cy4[p| are obtained by evaluating the generating function p
on the grid points 19§4), j=0,...,.

Analogously, if f is a univariate s x s matrix-valued trigonometric polynomial the block-
circulant matrix generated by f can be written as

Calf) = (P @ 1) ding (£0™)) (F & 1,), (1.20)

13



Chapter I. Preliminary Definitions and Results

where ?el%g (f (ﬂgn))> is the block-diagonal matrix with the block-diagonal elements being the
i )

for i € Z,,. Given the block structure of the decomposition
in (1.20), it is clear that the eigenvalues of C,[f] are given by X\ (f (195”)))), varyingt=1,...,s
and 1 € Z,,.

evaluation of f on the grid points 195”

We conclude the current subsection by recalling that, when circulant matrix-sequences with
elements of increasing size d, are involved, operations such as the matrix-vector product,
the solution of a linear system and the computation of eigenvalues have computational cost
O(d,logd,). Indeed, the essence of calculations with circulants is the exploitation of the Fast
Fourier Transform (FFT) algorithm for multiplying a vector by the Fourier matrix [32, 138].

1.7 Generalized Locally Toeplitz Sequences

In the sequel, we briefly present the class of Generalized Locally Toeplitz (GLT) sequences
[12, 121, 122] in their multilevel block form. GLT sequences constitute a *-algebra of matrix-
sequences to which multilevel block-Toeplitz matrix-sequences with Lebesgue integrable gener-
ating functions belong. The formal definition of the GLT class requires rather technical tools,
hence here we only list some properties, which are sufficient for studying the asymptotic distri-
butions of the matrix-sequences that we deal with in Chapter IIL. See |12, 62, 63] for complete
discussions on the topic.

GLT1 Each GLT sequence {Ap}n has a singular value symbol f : [0,1)F x [—7, 7] — C5**.
If all the matrices of the sequence are Hermitian, then the distribution also holds in the
eigenvalue sense. We call f(x,9) the (GLT) symbol of {Ay,}n and we write {Ap}n ~eur .

GLT2 The set of GLT sequences form a x-algebra, i.e., it is closed under linear combinations,
products, inversion (whenever the symbol is singular, at most, in a set of zero Lebesgue
measure), conjugation. Hence, the sequence obtained via algebraic operations on a finite
set of given GLT sequences is still a GLT sequence and its symbol is obtained by per-
forming the same algebraic manipulations on the corresponding symbols of the input GLT

sequences.

GLT3 Every Toeplitz sequence generated by a function f € L'([—m,7]¥, s) is a GLT sequence

and its symbol is f(x,9) = £(19), with the specifications reported in Item GLT1.

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is a
GLT sequence with symbol f=o.

GLT5 {An}tn ~cur f if and only if there exist GLT sequences {Bpnm}n ~aur f,, such that f,,
converges to f in measure and {{Bam}n}tm is an a.c.s. for {An}n.

The advantage of dealing with Hermitian matrix-sequences is clear from GLT1. Indeed, in
this setting, we can use these GLT properties to study also the asymptotic spectral features of
the involved matrix-sequences. However, useful relaxations of such hypothesis are introduced
and discussed in [62].
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[.8. Functions of Matrices

1.8 Functions of Matrices

Let h be a real analytic function centred at zp = 0 with radius of convergence r. If |z| < r, we
can represent h(z) through its Taylor series expansion in zo = 0, that is h(z) = > 7, brzk. We
exploit this representation to define the corresponding matrix function h(A), with A being an
n-by-n matrix. Notice that, given a real analytic function h through its explicit Taylor series
expansion in 0, we denote both the function defined on a subset of C and the function defined
on a subset of C"*™ by h.

Assume that A(A) C {z € C : |z| < r}, then Theorem 4.7 in [74] assures that the series

> o b AR converges. Hence, h(A) is well-defined by

h(A) = bpAF.
k=0

Now, we want to investigate the latter definition in the Toeplitz case. Let us consider
the Toeplitz matrix T,[f] € R™™ generated by a function f € L°([—m,n|) with real Fourier
coefficients. Recalling Theorem 1.5.2 and the relation p(T,,[f]) < ||T,.[f]l|2, we see that p(T,[f]) <
Il fllco. Hence, if we take a real analytic function h(z) with radius of convergence r such that
| fllco < 7, then h(T,[f]) is well-defined.

In Chapter II we consider a symmetrization strategy for the Toeplitz matrix T,[f] with
real components that consists in pre-multiplying it by the anti-identity matrix and obtain the
real symmetric matrix Y;,7,,[f]. Looking more closely at the latter procedure, we see that the
symmetry of Y, T,[f] is a consequence of the persymmetry of T,,[f], which exactly means that
Y, Tulf] = T0[f]"Ys. In order to extend the applicability of the symmetrization procedure to
h(T,[f]), as we do in Chapter III, one needs to prove that h(7T,[f]) is persymmetric, and in
fact this is done in [78|. We report the result for completeness.

Lemma I.8.1. [78, Lemma 6| Assume that h(z) is analytic on |z| < r. If A, € R™"™ with
p(A,) < ris (real) persymmetric, i.e. Yo A, = ALY, then h(A,) is also (real) persymmetric.

Since the coefficients by, with integer k, are all real, we deal with real symmetric matrices
Yuh(Tolf])-

1.9 Iterative Methods

The current section is dedicated to iterative methods, which represent a convenient tool for the
solution of large linear systems in the case where the coefficient matrix is sparse or possesses an
exploitable structure.

Let us fix an invertible matrix A € C"*™ and a vector b € C™. The linear system

Ax =b

has exactly one solution x = A~1b.

A convergent iterative method theoretically consists in the construction of a sequence of
iterates {z(®}, such that the quantity ||2(*) — z||2 tends to 0 as k tends to co. However, for
an actual implementation of the iterative method, one needs to choose an index k such that the
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procedure stops at iteration i and returns (®) as the solution of the linear system, approximated
up to a desired precision. In other words, the iterates z(¥) constitute successive approximations
of the solution z, and one needs to choose when the approximation is good enough for stopping
the iteration. For this purpose, let us define the k-th error by

oB) — (k) _ o

and the k-th residual by
rF) = p— Az,

Ideally, a stopping criterion would be based on the quantity e®), because it measures how close
to the true solution the k-th iterate is. In practice, this is not possible since x is unknown and
in many cases the stopping criterion involves the residual.

If a problem is ill-conditioned, we need to pay particular attention to the efficiency of the
chosen iterative method. To this end, Axelsson and Neytcheva [8] have proposed two criteria
to judge the performance of a method in the case of linear systems stemming from differential
problems: the optimal rate of convergence — independent, of the level number — and the optimal
order of computational complexity — proportional to the degrees of freedom of the problem.
In a subsequent work, Serra [111] has generalized such criteria to the case of general iterative
methods for nested linear systems A,z, = b,, where {A,} is an asymptotically ill-conditioned
class, as follows:

‘Optl’: An iterative method is said optimal in the sense of the convergence rate if the conver-
gence speed is independent of the dimension of the matrix A,,.

‘Opt2’: An iterative method is said optimal with respect to the arithmetic cost if the cost of
a single iteration, as a function of n, has the same asymptotic order than the cost of a
generic product between the matrix A,, and a given vector y.

We say that a method is optimal if it possesses both property ‘Optl’ and ‘Opt2’. In order
to develop an efficient iterative method for the solution of our linear system, from property
‘Opt2’ we see that one iteration of the method should have a reasonable computational cost,
possibly proportional to the cost of the matrix-vector product with matrix A,,. Property ‘Opt1’
suggests that the aforementioned index k such that z(® approximates the true solution up to
the desired precision should not depend on the matrix-size.

In the following subsections we recall the key features of some well-known classes of iterative
methods. Firstly, in Subsection 1.9.1 we define stationary iterative solvers, focusing in particular
on the Jacobi and Gauss—Seidel methods. In Subsection 1.9.2 we present Krylov subspace meth-
ods and see how the study of the spectral properties of the involved matrices can be crucial in
the a priori estimates of the error and the residual behaviours. Moreover, we provide the basics
of preconditioning and report some known strategies in the Toeplitz case. Finally, Subsection
[.9.4 is dedicated to algebraic multigrid methods.

[.9.1 Stationary Methods

Given an invertible matrix A € C™*" and a vector b € C™, a stationary iterative method for
the solution of the linear system Az = b consists in choosing an initial guess z(¥) € C" and
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1.9. Iterative Methods

computing the successive iterates with the formula
kD) = g2k 4 g (I.21)

where S € C"*" is referred to as the iteration matrix and ¢ € C™ is a fixed vector. The
peculiarity of stationary iterative methods is that the matrix S is fixed, that is, it does not
depend on the step k.

The iteration matrix plays a crucial role for the convergence analysis of the associated
method. Indeed, the following result provides a sufficient and necessary condition that links
the spectral radius p(S) to the convergence of the stationary iterative procedure.

Proposition 1.9.1. [108, Theorem 4.1] Let S be a square matriz such that p(S) < 1. Then
I — S is non-singular and the iteration (1.21) converges for any b and x©). Conversely, if the
iteration (1.21) converges for any b and (%), then p(S) < 1.

A general strategy to develop a stationary iterative method is to consider the decomposition
A=M—- (M- A),

where M is an invertible matrix in C™*™. Tt is straightforward to see that z is the solution of
the linear system Az = b if and only if the equality

x=I—M"'A)z+ M,
is verified and, exploiting this observation, given z(?) € C™ we can define the method
B = (1 — M~ A)z® + M1y, (1.22)

for which the iteration matrix S is equal to (I — M~1A).

In the following, we present the iteration structure of the Richardson, Jacobi and Gauss-

Seidel methods. For this purpose, let us define the matrices B = [b;]7;_; and D = [d;]}';_;

n
4,j=
from A = [a;;]7;_; by the formulae

_ —ayj, if i > j7 ) _ Qjj, ifi= j,
bij = . dij = e,
0, ifi <y 0, ifi#j

Given w € C\{0}, the relaxed Richardson, Jacobi and Gauss-Seidel methods are defined by
iterations of the form (1.22), where

e if we choose M = %I , we obtain the relaxed Richardson method;

e if we choose M = %D, we obtain the relaxed Jacobi method;

e if we choose M = %D — B, we obtain the relaxed Gauss-Seidel method.
For a detailed convergence analysis of these methods we remand to [108].
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1.9.2 Krylov Methods

Krylov subspace methods are a successful class of iterative solvers for a system of linear equations
of the form
Axr=1b>

that consists in selecting the k-th iterate z(*) from the affine space
2 4 span {r(o), Ar® A2 00 ,AkilT(O)}

such that the residual r(*) is orthogonal to a given subspace Lj. The feature that characterizes
one Krylov solver from the others is the choice of the subspace L.

One of the most celebrated Krylov subspace methods is the Conjugate Gradient (CG)
method, developed by Hestenes and Stiefel [71]. However, this method requires for conver-
gence that the matrix of coefficients is a HPD matrix, which is quite a strong restriction. In
1975 Paige and Saunders [102] developed the Minimal Residual (MINRES) method for Her-
mitian — but in general indefinite — matrices, which is the case of the matrix-sequences that we
study in Chapters II-I11. A method that can successfully be applied to an even larger class of
linear systems is the Generalized Minimal Residual (GMRES) method, developed by Saad and
Schultz [109] in 1986, which is suitable also for non-Hermitian matrices.

On the other hand, the CG and MINRES methods possess a significant advantage with
respect to the GMRES method: the convergence rates can be estimated using only the eigen-
values of the system matrix. For instance, for the CG method the Axelsson—Lindskog estimates
hold [7], while for the MINRES method analogous results can be deduced from the following
inequality [66], which provides a sharp bound for the residual at iteration k:

1P/ 1r@llz < min - max [pe(A)], (1.23)

PrERY i=1,...,n

pr(0)=1

where Ry [)\] is the space of polynomials with coefficients in R of degree less than or equal to k. If
the eigenvalues of the Hermitian system matrix are known, the convergence rate of MINRES can
be studied a priori choosing an appropriate polynomial p in the expression max;—1,._n |pr(Ai)].
From Equation (1.23), it is immediate to see that the knowledge of the spectral features of
the system matrix is crucial in the development of some Krylov solvers. Moreover, the estimate
provides a first intuitive reason why some eigenvalue distributions are more desirable than others
for the convergence of the MINRES method. Namely, if the eigenvalues are clustered around a
single non-zero point «, the convergence rate is satisfactory: for instance, we can consider the

polynomial pi()\) = (1 — A\/a)¥, for which the quantity |ps()\)| is small at all the points near a.

1.9.3 Preconditioning

In the case of sequences of structured linear systems of the form
{Apzy =by}n, A, €CW¥dn e C (1.24)

stemming from the discretization of linear PDEs, it often happens that the condition number
of the system matrix A, diverges to infinity as n increases. In many cases, this property is in
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contrast with the desired cluster of the spectrum of A, around a single point that we cited in
the previous subsection. In order to accelerate the convergence, we can use the technique of
preconditioning.

The theoretical idea behind preconditioning consists in the substitution of the systems (1.24)
with the preconditioned ones

{PglAnxn = Prjlbn}m (1.25)

where P, € C%*dn is a HPD matrix. Since the goal of preconditioning is to accelerate the
convergence of the iterative method, it is evident that the operation of solving a system with
matrix P, should not be as computationally expensive as the solution of the initial system.

Summarizing the considerations that we made in the previous paragraphs, we can say that,
ideally, the preconditioner P, should satisfy the following two requirements:

a) for all ¢, € C4 the solution of the system P,y, = ¢, has computational cost proportional
to that of the matrix-vector product with matrix A,;

b) either x(P, A,) is bounded from above by a constant independent of n or {P, 1A, — I},
is strongly clustered at 0.

Trivially, the option P, = A, satisfies condition b), but in general it definitely fails to satisfy
the first requirement and of course it is not a sensible choice. The development of an efficient
preconditioner should well-balance the two conditions with the construction of a matrix P,
“close” to A,, but not as computationally costly to invert.

In the Toeplitz setting, many satisfactory solutions have been studied (see [28, 99, 114] and
references therein). One possibility is to look for a preconditioner with a circulant structure.
This choice automatically satisfies requirement a), since the computational cost of the solution
of a linear system with a (multilevel block) circulant coefficient matrix is proportional the cost
of the matrix-vector product with a (multilevel block) Toeplitz matrix. Indeed, both operations
can be performed by using only few FFTs, as we recalled in Section L.6.

In what follows, we report two different strategies for circulant preconditioning in the scalar
Toeplitz setting that are efficient under specific assumptions on the generating function:

e the Strang preconditioner for T,,[f] is the circulant matrix S,, € C™*™ having the vector
[50,5_1,-..,5_nt1] as the first row and the vector [sg,s1,...,5,_1]7 as the first column,
which are defined by the formula

fis 0<i<|[5];
§; = fi—n, L%J <1< n
Sn+is —n<1<0.

See [49, 116] for optimality results in the case where f belongs to the Dini-Lipschitz class.

e The Frobenius optimal preconditioner for T}, [f] is the circulant matrix C,, € C"*"™ that
minimizes the Frobenius norm of T,[f] — C,, where C,, ranges over the set of circulant
matrices, that is,

Cp = argmin [|T5[f] = Call,.

C'y, circulant
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If f is a positive continuous function, then the Frobenius optimal preconditioner is a
suitable choice, see [30, 114, 116].

1.9.4 Multigrid Methods

Multigrid methods (MGM) are iterative procedures that aim at solving efficiently a linear system
of large size by creating a proper sequence of linear systems of decreasing dimensions obtained
by consecutive projections. In the current subsection, we present the Two-Grid Method (TGM)
and the V-cycle method.

Let A, € C™*", and z,, b, € C". Let P,,, € C" m < n, be a full-rank matrix and let
us consider two stationary iterative methods: the method V), pre, with iteration matrix Vi, pre,
and Vy, post, With iteration matrix Vi, post-

Given an initial guess :1:510) € C", an iteration of a TGM is given by the following steps:

25— ToM(An, 2P by)

0. 2P = l’f’I;(;e( Ay, by, x;’“)) Pre-smoothing iterations
1. rp =0b, — Apzb™®
2. 1y = 75"17““
3. Ay = meAnPn,m Coarse Grid Correction (CGC)
4. Solve Apym = Tm
5. &n =20 + PomYm
(k+1) Vpost A . . .
6. x =V, ost (Any b, &) Post-smoothing iterations

Steps 1. — 5. define the Coarse Grid Correction (CGC) that depends on the grid transfer
operator P, ,,, while step 0. and step 6. consist, respectively, in applying v} times a pre-
smoother and 14,0t times a post-smoother of the given iterative methods. Step 3. defines the
coarser matrix A,, according to the Galerkin approach, which ensures that the CGC is an
algebraic projector, that is, the matrix

CGC(An7 Pn,m) - {In - Pn,m (meAnPn,m)_l meAn}

is such that CGC(Ay, Prm)? = CGC(An, Pum). An algebraic projector has eigenvalues 0 and 1,
which means that a stationary method with iteration matrix CGC(A,,, Py, ) does not converge
(see Theorem 1.9.1) and this consideration highlights the crucial role played by the smoothers.
Combining smoothing steps and CGC, the TGM is a stationary method defined by the following

matrix

n,post? n,post

re oS oS -1 re
TGM(Ay, V2, V22t Py ) = Ve [In—Pn,m (P AnPo) meAn} Vore

For the convergence analysis of structured matrices, the results are based on the Ruge-Stiiben
theory [107] for TGM. In particular, we report a fundamental theorem on the TGM convergence,
whose proof and details are contained in [107, Theorem 5.2] and [4, Remark 2.2].
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Theorem 1.9.2. Assume that the pre-smoothing step 0. is not present. Let A, be a positive
definite matriz of size n and let Vi, post be defined as in the TGM algorithm. Assume

(a) opost >0 : ||Vn,post$n||,24n < ||517n||,24n - apost‘|$nH,24%a Vz, € C",
(b) Iy >0: minye(C"” ||xn - Pn,myHg < 'YHzn”,%l") Vo, € C".

Then v > aposy and

ITGM(An, I, V, 3ot Prm)lla, < /1 — @post/7-

Conditions (a) and (b) are usually called “smoothing property” and “approximation property”,
respectively.

Since apest and 7y are independent of n, if the assumptions of Theorem 1.9.2 are satisfied,
then the resulting TGM also has an optimal rate of convergence. In other words, the number
of iterations in order to reach a given accuracy € can be bounded from above by a constant
independent of n (possibly depending on the parameter ¢).

The computational flaw of the TGM algorithm is the exact solution of the error equation
required by step 4., an operation that can be extremely expensive if the system matrix is of large
size. The V-cycle method remedies this fault by consecutively restricting the problem until it is
so small that the error equation can be easily solved.

Indeed, the standard V-cycle method is obtained replacing the direct solution at step 4.
with a recursive call of the TGM applied to the coarser linear system A, ,Ym, = 7m,, where £
represents the level. The recursion is usually stopped at level £ when myg becomes small enough
for solving cheaply step 4. with a direct solver.
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Chapter 11

Asymptotic Spectral Distributions of
Symmetrized Toeplitz Sequences

In the present chapter we analyse the spectral features of the symmetrization of Toeplitz matrices
of the form T,,[f], generated by a function f € L'([—m,]) defined on [—m, 7] and periodically
extended to the whole real line. In particular, we consider the case where the Fourier coefficients
of f are real, hence, from the definition in .5, the corresponding T,,[f] is real. The object of
our investigation is the real matrix Y,,T,[f] obtained pre-multiplying T,,[f] by the anti-identity
matrix Y,, € R™*" defined as

Y'n, =
1

Note that Y, 7,,[f] is a Hankel matrix, that is, it is a matrix with constant elements along the
skew-diagonals, and hence it is symmetric.

The matrix Y, is a unitary matrix and, by the definition and properties of the singular
value decomposition [80], this implies that T, [f] and Y, T,,[f] possess the same singular values.
Conversely, the presented one-sided symmetrization strategy produces significant changes in the
eigenvalues. Think for instance of the Toeplitz matrix

0 1

Tn |:e_i19i| = " s ,
which is real non-symmetric and has all the eigenvalues equal to 0. The symmetrized version

YnTn [e—iﬂ} = A A ;
0 1

is instead a diagonalizable matrix with rank n — 1 and hence its null eigenvalue has multiplicity
only 1. It is straightforward to see that all the other eigenvalues are equal to 1 and -1 with
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roughly the same multiplicity. Notice that the generating function e=* is in no way related to the

spectrum of the non-symmetric Toeplitz matrix T}, [e*w], while the eigenvalues of Y, T, [e*w]

are approximatively half described by the modulus of e, which is identically equal to 1, and

approximatively half described by the opposite of the modulus of e=%,

In this chapter, we formalize the latter considerations providing the spectral distribution of
a matrix-sequence of the form {Y,T,,[f]}» in the case where f € L'([—7,7]) has real Fourier
coefficients [53]. The basic structure of the spectral symbol of {Y;,T,,[f]}» is intuitively clear
both from the example above and from the results shown in [77], where the authors prove that
roughly half of the eigenvalues of Y,,T),[f] are negative and roughly half of the eigenvalues of
Y, T, [f] are positive, when the dimension n of the matrix is sufficiently large and f is sparsely
vanishing. In the main results of the chapter, Theorem II.1.2 and Corollary I1.1.2.1, we prove

that {Y,T,,[f]}n is distributed as ¢| in the eigenvalue sense, where we define

_ £, v € [0, 27],
17 (9) —{ _IF=)], D€ —2m0)

and this informally means that roughly half of the eigenvalues of Y,,T,,[f] are positive and they
are approximated by a uniform sampling of |f| and roughly half of the eigenvalues are negative
and they are approximated by a uniform sampling of —|f|.

As we saw in Subsection 1.9.2, symmetry is a particularly desirable property for a matrix
when we want to solve an associated linear system with an iterative method. Indeed, if the
matrix is symmetric a method such as the MINRES can be employed and it is possible to study
a priori the convergence rates of the algorithm if the eigenvalues are known. The symmetrization
procedure that we analyse in this chapter was introduced by Pestana and Wathen [104] for the
very purpose of developing a competitive method for the solution of real non-symmetric Toeplitz
systems. Namely, they introduced an absolute value circulant preconditioner |C),| and showed,
under certain assumptions, that the preconditioned matrix |C,|~'Y,,T},[f] can be decomposed
into the sum of an involutory matrix, a low rank matrix, and a small norm matrix. Due to the
observed clustered spectra around 41 of |C,,|~1Y,,T,,[f], rapid convergence of Krylov subspace
methods such as MINRES can be expected. Exploiting the spectral distribution results on
{Y,, T,,[f]}n, in Theorem I1.2.1 we prove, under analogous assumptions, that the preconditioned
matrix-sequence {|Cy,| 1Y, T}, [f]}n has spectral symbol ¢1, and this result permits us to analyse
in detail the efficiency of classes of circulant preconditioners |C,,| obtained from the relevant
literature, such as the Strang preconditioner and the Frobenius optimal preconditioner.

The findings presented in the following sections are published in [53]. In the following we
highlight the main results section by section. In Section II.1 we first give a distribution result
regarding the eigenvalues of special 2-by-2 block matrix-sequences, whose generality goes beyond
the specific case under consideration. Moreover, we report the main results on the asymptotic
distributions of {Y,,T,,[f]}n, both in the scalar and in the block-Toeplitz case, see Theorems
11.1.2-11.1.3. In Section I1.2, we provide the eigenvalue distribution of the preconditioned matrix-
sequences {|Cp|~1Y, T,,[f]}n under specific assumptions on the circulant preconditioner |Cp,|.
Finally, in Sections I1.3-11.4 we provide and critically discuss a selection of numerical experiments
concerning different Toeplitz matrices T,,[f] and the corresponding circulant preconditioners.

It is worth noting that analogous results have been obtained independently in [93], making
use of the powerful *-algebra structure of the GLT sequences that we introduced in Section
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II.1. Spectral Results on {Y,,T5,[f]}n

1.7. Conversely, our analysis is based on the notion of approximating class of sequences that we
defined in Subsection 1.4.2 and that constitutes one of the prerequisites for the GLT theory, as
can be seen in [62].

I1.1 Spectral Results on {Y,T,[f]}.

We open the present section fixing the notation for a class of functions with a particular structure,
which are used throughout the current and the next chapters.

Given D C R¥ with 0 < pg(D) < oo, we define D as D D,, where p € R* and D, = p+ D,
with the constraint that D and D, have non-intersecting interior part, that is D°( Dy = 0. In
this way (D) = 2ui (D). Given any function g : D — C***, we define 14, = 1, over D in the
following manner

_ _ g(x), zeD,
Vgp = ty(x) = { g(o—p). weDy 1¢D. (1L.1)

The following theorem is of wide interest when dealing with special 2 x 2 block matrix-
sequences. Even though the result is quite intuitive if we consider the relation between the

eigenvalues of the block matrix
O A
A O

and the singular values of the matrix A € C™*™ for clarity we provide a highly detailed proof

and, moreover, we treat a general case where the blocks are rectangular matrices.

Theorem IL1.1. Suppose k, = o(n) with k, € Z and A(n) € CUn/21+kn)x(n/2]=kn) et

B, E, € C"*" be Hermitian matrices such that

Ol /2] 4k, [n)2] +hn A(n)

B, =
A(n)H O\n/2]—kn,[n/2]—kn

+ By,

If {A(n)}n ~o g, where g : D — C is a non-negative function defined over a measurable set
D with positive, finite Lebesque measure, and {Ep}, ~q 0, then

{Bn}n ~X wg
over the domain D, with 1, as in (II.1).

Proof. For the sake of notational simplicity, we set A = A(n) and we define the auxiliary matrix
G, as follows

G, =

Ol /21 4+kn, /2] +kn 4 ]
Al Olnj2)—knln/2)n |
Fixing n and supposing k, > 0, we define m = [n/2| — k, and M = [n/2]| + k,,. Then,
we consider the (full) singular value decomposition of A = UpSV,H | where Uy, Vi, are unitary
matrices of size M and m, respectively, and X is the rectangular diagonal matrix containing the

singular values o1, ...,0,,. We have
a Uv  Owmm Ouyv X2 UL Onm I
n= T i (I1.2)
Om,M Vm by Om,m Om,M Vm
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Chapter II. Asymptotic Spectral Distributions of Symmetrized Toeplitz Sequences

which is similar to
Oum X

S, =
ST Omm

Notice that the matrix X can be written as

01

) z:m - T y k=M — m, (113)

Om

where ¥ = %, if £ = 0. Under the hypothesis that &, > 0, if the fixed n is even, the index k is
equal to 2k,. Otherwise, it is equal to 2k, + 1.
Using (I1.3), the matrix S,, can be written as

Om,m Om,k im
= ka Orir  Okm |
Z:m Om,k Om,m

Oum X

-
" ET Om,m

where, if kK = 0, the central row and column are not present and which, up to similarity by an
obvious permutation, can be written as the direct sum of Oy and

2m Om,m

Om,m i:m ]

The latter matrix is 2 x 2 block circulant and hence can be diagonalized by the 2 x 2 block
Fourier matrix so that

Om,m 2~]m
Z:m Om,m

im Om,m

2 Im _Im Om,m _im 2 Im _Im

:ﬁ[Im I,

n

Therefore, putting together the above information, we can write the factorization

Om,m Om,k Em i:m Om,k Om,m
Sy = ka Ork Okm | =Qn| Orm Okk Oli,m Qn,
Zm Om,k Om,m Om,m Om,k: _Em

where @), is the orthogonal matrix

\@ Im Om,k Im

QnZT Ok V2I; Ogm
Im Om,k: _Im

given by the direct sum of the identity of size k and of the previous 2 x 2 block Fourier matrix.
Thus, we know that G, is similar to the block diagonal matrix

zNJm Om,k Om,m
Okm Ok Ok | - (IL.4)
Om,m Om,k _Sm

Hence (II.4) implies that we can write the eigenvalues of the matrix Gy, for the case k, > 0. A
similar factorization can be obtained for k,, < 0, by defining m = [n/2]+k, and M = |n/2]—k,.
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II.1. Spectral Results on {Y,,T5,[f]}n

In particular, the eigenvalues of GG, are given by the set of the singular values of A,,, the set
of the negation of the singular values of A,, and, in addition to these, at most k = o(n) zero
eigenvalues. From the latter, it is transparent that

{Gn}n ~A 1/’9‘

Finally, since all the involved matrices are Hermitian and the perturbation matrix-sequence is
zero distributed, i.e, {Ep}n ~ o 0, the desired result follows directly from the second part of
Lemma 1.4.2, taking into account that {{G,},}m is a constant class of sequences (that is not
depending on the variable m) and it is nevertheless an a.c.s for {By,},. O

Employing Theorem II.1.1, we now prove the following central result on the spectral distri-
bution of symmetrized Toeplitz sequences.

Theorem I1.1.2. Suppose f € L'([—x,7]) with real Fourier coefficients and let Y, € R™ ™ be
the anti-identity matriz. Let T, [f] € R™*™ be the Toeplitz matriz generated by f. Then

with 1|y defined as in (II.1) over the domain D with D = [0,27] and p = —27.

Proof. We let H,[f,—] be the v-by-v Hankel matrix generated by f containing the Fourier
coefficients from f_; in position (1,1) to f_g,41 in position (v,v). Analogously, we let H,[f,+]
be the v-by-v Hankel matrix generated by f containing the Fourier coefficients from fl in position
(1,1) to fay_1 in position (v, ).

We start by considering the case of even n and writing Y,,T,,[f] as a 2-by-2 block matrix of
size n = 2v, i.e.
Y, Tolf] = Y H,[f,+]Y, Y.T,[f]

Y., T, [f] Hu[fv _]

Note that for Lebesgue integrable f, H,[f,+] is exactly the Hankel matrix generated by f
according to the definition given in [51]: in that paper it was proved that {H,[f,+]}n ~& 0.
Since in our setting H,[f,+] is symmetric for every v, it follows that {H,[f,+]}n ~x 0. Hence,
with Y, being both symmetric and orthogonal, we deduce that the matrix is symmetric with the
same singular values as H,[f, +]. Therefore

{YVHV[fv +]Yl/}n ~N\o 0.
Similarly, we have

{Ho[f, =1}n ~20 0

since H,[f,—] = H,[f,+] and f (being the conjugate of f) is Lebesgue integrable if and only if
f is Lebesgue integrable.

Therefore, the matrix-sequence {Y,,T,,[f]}» can be written as the sum of the matrix-sequence
whose eigenvalues are clustered at zero

YyHy[f7 +]Yu Ou,y
0141/ HV[fv _] n
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Chapter II. Asymptotic Spectral Distributions of Symmetrized Toeplitz Sequences

{ j

whose eigenvalues are +0;(Y,T,(f]) = £o;(T,[f]), j=1,...,v.

Hence, the claimed thesis follows from Theorem I1.1.1 with g = |f|, A = A" = AT =Y, T, [f],
and k, = 0.

In the case where n is odd, the analysis is of the same type as before with a few slight

and the matrix-sequence
Ol/,u YVTV [f]
YVTV Lﬂ Ol/,u

technical changes.

A

~ ~1T R T
By setting v = [n/2], p = [n/2], v = [fy,...,fl} ,and w = {f_l,...,f_y} we have

Y, H,[f e +]Y, wv Y, T,[f]
Y Tolf] = o fo w? : (IL5)
Y, 1, [f] w Hy[f e, —]

provided that we exclude the trivial case n = 1. Let us consider the matrices

E;L — YNHP«[

f : eiﬁv +]Y# OIMV
OVHU‘ HV [f : ei,l?’ _] ’

Y Hylf - e, +Y, =

Y, H,[f e ¥ +]Y, wv ]

T
v fo
OV,V Oy OV,V
1"
E, = o7 0 wl ,
Ou,zx w Ozz,u

and define E, = E] + E/!. From (IL.5), it is evident that the matrix-sequence {Y;,T,,[f]}n can
be written as the sum of the matrix-sequence {E,},, whose eigenvalues are clustered at zero,

and the matrix-sequence

Ol/,l/ o, Y, 1, [f]
o, T 0 o, T

Yusz[f] oy Ou,y

whose eigenvalues are 0 with multiplicity 1 and +0;(Y, T, [f]), 7 = 1,...,v. Note that the
unitary nature of Y, implies again that o;(Y,T,[f]) = 0;(TL[f]), j=1,...,v.
Consequently, the claimed thesis follows from Theorem I1.1.1 with g = |f],

YTy [f]
T

14

A= A(n) = , A = A(H)H = A(n)T = Yl/Tl/[f] Oy ] >

o

and k, = 0. ]

The following corollary provides a different spectral symbol for the matrix-sequence
{YoT,[f]}n, obtained by “rearranging” the function 1);. Indeed, the concept of rearrange-
ment has a precise technical meaning and a discussion on the topic can be found in [62, Section
3.2].
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I1.2. Spectral Results on Preconditioned Matrix-Sequences

Corollary I1.1.2.1. Suppose f € L'([—m,7]) with real Fourier coefficients and Y, € R™*" is
the anti-identity matriz. Let T, [f] € R™*™ be the Toeplitz matriz generated by f. Then,

YR Tnlfhn ~x 9y

over the domain [—2m,2m| with ¢4 defined in the following way

B g9(9), 9 €]0,2n],
99(V) = { —g(—v), 9 €[-270).

Proof. We observe that ¢,y is a rearrangement of 1|7, that is, for all F' continuous with bounded

support we have

2m 2m
| Fn)do= [ Fyw) a.

Hence, by the very definition of spectral distribution, we have {Y,, T,,[f]}n ~x @)y if and only
if {Y,To[f]}n ~x ¢jf- Therefore, the desired result is an immediate consequence of Theorem
IT.1.2. O

Considering a real-valued generating function f, we remark that the spectral distribution of
{Y.T,.[f]}n is in stark contrast to that of {T},[f]}, provided by the generalized Szegs theorem
(Theorem 1.5.3), even though their singular value distributions are equivalent.

Finally, the techniques given in this section can be adapted verbatim to the case of Toeplitz
structures generated by s x s matrix-valued functions, namely, the following theorem holds.

Theorem I1.1.3. Suppose that £ € L' ([—7, 7], s) is an s x s matriz-valued function defined on
[—7,7|. Let T, [f] € C*™ be the block- Toeplitz matriz generated by f. Then

{(Yn @ L) T [f] }n ~x QZ)Ifla £ = (ffH)1/27

over the domain D with D = [0,2x] and p = —2m, where Vg is defined in (11.1).

I1.2 Spectral Results on Preconditioned Matrix-Sequences

In the following theorems we use the results of the previous subsection in order to deal with the
eigenvalue distribution of certain preconditioned matrix-sequences. In particular, we investigate
the assumptions on the matrix C,, = FnAan , where A, is a diagonal matrix, such that its
absolute value |C,| defined by

|Cnl = (CHCp)Y?
= (C,CI1/2 (11.6)
= Fn|An|Frfla

provides a weak cluster to +1 of the eigenvalues of the preconditioned matrix-sequence
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Chapter II. Asymptotic Spectral Distributions of Symmetrized Toeplitz Sequences

Theorem I1.2.1. Suppose f € L'([—=,7]) with real Fourier coefficients and let Y, € R™ ™ be
the anti-identity matriz. Let T, [f] € R™*™ be the Toeplitz matriz generated by f. Then

{‘CnrlYnTn[ﬂ}n ~A wl = ¢1

over the domain D with D = [0,27] and p = —271 under the assumption that {Cy}, is a circulant

matriz-sequence of invertible matrices such that

{C Tl 1} ~o 1.

Proof. For C,, being non-singular, the matrix |C,,| is symmetric positive definite and, hence, the
matrices

|Cn|_1YnTn[f] and ’Cn|_1/2YnTn[f”Cn|_l/2

are well defined and similar. They share the same eigenvalues clustered around {—1, 1} by [104],
under the assumption that {C, 1T, [f]}n is clustered around 1 in the singular value sense. Also,
by the Sylvester inertia law, the matrices

|G| Y2V T f]1Cn| =% and Y, Tu[f]

have exactly the same inertia, namely the same number of positive, negative, and zero eigen-
values. Also, by |77, Theorem 4.1|, we know that the matrix ¥,,7,,[f] has n/2 + o(n) positive
eigenvalues, n/2+4o0(n) negative eigenvalues, and o(n) zero eigenvalues for large enough n. There-
fore, by combining the above statements, we deduce that the matrix |C,| 1Y, T} [f] possesses
n/2 + o(n) eigenvalues clustered around 1 and n/2 + o(n) eigenvalues clustered around —1.

A simple check shows that the latter statement is equivalent to writing

{‘CnrlYnTn[ﬂ}n ~a 1= ¢
over the domain D with D = [0,27] and p = —27. O

We now complement the previous theorem with a short discussion regarding the hypothesis
{C 7 T0[f]}n ~o 1. Note that we can extend the result to the case where C), is not necessarily
invertible. For this purpose, we denote by C} the pseudo-inverse of a circulant matrix C,,
which is obtained by taking the singular value decomposition of C,, and replacing every non-
zero singular value by its reciprocal. If we consider C} instead of C', the assumption that f is
sparsely vanishing implies the presence of at most o(n) zero eigenvalues in both the matrix C,
and the preconditioned matrix CJT,[f]. Recalling the definitions in Subsection 1.9.3 and the
analysis in [49, 117], we have the following picture.

A) When C,, is the Strang preconditioner for T,,[f], the key assumption {C} T}, [f]}n ~o 1 holds
if f is sparsely vanishing and belongs to the Dini-Lipschitz class (see for example [49, Item
2, Proposition 2.1|) which is a proper subset of the continuous 27-periodic functions.

B) When C, is the Frobenius optimal preconditioner for T,[f], the key assumption
{C,TLT,L [f]}n ~o 1 holds if f is sparsely vanishing and simply Lebesgue integrable (such
a general result was proved quite elegantly by combining the Korovkin theory [117] and
the GLT analysis in [62]).
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We summarize the interplay among Theorem I1.2.1 and Items A and B in the following
general result.

Theorem I1.2.2. Suppose f € L([—n,7]) with real Fourier coefficients and let Y,, € R™*" be
the anti-identity matriz. Let T,,[f] € R™ ™ be the Toeplitz matriz generated by f and assume
that f is sparsely vanishing. Then

{’Cn,*yilynTn[f]}n ~A 1/}1 = ¢1
over the domain D with D = [0,27] and p = —2m, under the assumption that either

a) f belongs to the Dini-Lipschitz class, C, is the Strang preconditioner, and Cy, . is the stabil-
ized Strang preconditioner where all the zero eigenvalues are replaced by 1 (or by any other

suitable constant different from zero) or

B) Cy is the Frobenius optimal preconditioner and C,, . is the stabilized Frobenius optimal precon-
ditioner where all the zero eigenvalues are replaced by 1 (or by any other suitable constant
different from zero).

Proof. By combining Theorem I1.2.1 and the aforementioned Item A, we deduce that
{CJLTn[f]}n ~g 1 and {|Cn|TYnTn[f]}n ~x 1 = ¢1. Since f is sparsely vanishing, the number
of zero eigenvalues of {Cy, },, is at most o(n), and both {C), — Cy, 4 }n and {|Cp|T — [Cr s 71}y, are
clustered around zero. Hence, the assertion under the assumption «) follows. Using the exactly
same arguments with Item B, the assertion under assumption ) can be shown.

O

The above theorem covers the range of applicability of the preconditioned MINRES technique
described in [104]. Regarding the analysis wherein, it is worth observing that the circulant matrix
C’n = Fn[\an , where An is the diagonal matrix in the eigendecomposition of C,, with all entries
divided by their module, is not involutory as claimed in [104, Eq. (3.4), P. 276]. In fact, it is
simply unitary: indeed its eigenvalues have unit modulus, but in general they are not real.
Hence, it is orthogonal when C, is real.

Finally, we point out that the quality of clustering of the preconditioners in Theorems I1.2.1
and I1.2.2 depends on that of the standard circulant based preconditioning whose analysis is
available in the relevant literature (see [99] and the references therein).

I1.3 Numerical Tests on the Spectral Distribution of {Y,7,[f]}.

In the current section we numerically show that the results obtained in Section II.1 are true in
the cases of both trigonometric polynomials and more generic functions in L' ([—7,7]).

In order to numerically support Theorem II.1.2, we show that for large enough n the eigen-
values of Y,,T,,[f] are approximately equal to the samples of |y over a uniform grid in [—27, 27],
with the possible exception of a small number of outliers. We also remark that the function ¢y
in Corollary II.1.2.1 has the same property, being a rearrangement of ty|.

Surprisingly, we observe that the forecasts provided by our theorems concerning the symbols
are highly accurate and go beyond the scope of our developed theory, so the corresponding
investigation will be a subject for future research.
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We highlight the fact that the matrix Y, T,[f] is symmetric for any n, so the quantities
(Y, T,[f]) are real for j = 1,...,n. In particular we order the eigenvalues of ¥,,T},[f] according
to the evaluation of ¢; (respectively ¢s) on the following uniform grid in [—27, 27]:

4
Ojn=—21+j—,  j=1,...n (IL7)
n

Thus, in our experiments, we first compute the quantities 17 (J;,) and | (9;,) for a fixed
n and then compare them with the properly sorted eigenvalues \;(Y,,T,[f]), 7 = 1,...,n. The
quantities \;(Y,T,[f]) are computed with MATLAB’s eig function.

In Example 2, we give numerical evidence of the fact that \;(Y,T,[f]) and 9 (9;n) are
approximately equal for a real-valued, even trigonometric polynomial. In Example 3, considering
a trigonometric polynomial, we compare the quantities \;(Y,,T,,[f]) with both v(¥;,) and
@) 7/(¥jn), and observe that they are approximately equal with the exception of three outliers. In
Example 4 we give numerical evidence of Theorem I1.1.2 for a continuous function in L!([—n, 7))
and in Example 5 we do the same for a discontinuous piecewise constant function in L!([—7, 7]).

Example 2. We consider the real-valued, even trigonometric polynomial f : [—m, 7] — R defined
by
f(¥) =2—12cos(9).

The n-by-n Toeplitz matrix generated by f is

2 —6
Ti=| "
—6 2

Notice that T,[f] is banded and symmetric. The multiplication by Y, produces the following
matriz:

Yo T, [f] =

Figure I1.1 shows that the properly sorted eigenvalues of Y, T, [f] are approximately equal to the
samples of Y|y over O;, for all j = 1,...,n. The plot is made for n = 300. This resull is

expected from the statement of Theorem 11.1.2 and there are no outliers in this case.

Example 3. In this example we deal with a trigonometric polynomial f : [—m,n] — C, defined
as
f(,&) — 4+ 2e—i79 + 2e—2i19 _|_ 9e—3’2’l9 _’_eiﬁ.

Hence, the function f generates a real, banded Toeplitz matriz T,[f]. Differently from Example 2,
the matriz T,,[f] in this case is not symmetric. Nevertheless, the premultiplication by Y,, produces
the symmetric matriz Y, T,[f] with real eigenvalues \;j(Y,T,[f]), 7 =1,...,n.

For this example, we compare the eigenvalues of Y, T, [f] with the samples of 1y in Figure
I1.2 and those with ¢\ in Figure I1.3. In both figures, we observe that the spectrum of Y, Ty[f]

32



I1.3. Numerical Tests on the Spectral Distribution of {Y,,T,,[f]}n

L (Y300 T 300l
© w\f|(0j,300)
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2

Figure II.1: Example 2, a comparison between the eigenvalues \;(Y,T.[f]) and the samples 1 (¥; ), for
f(¥) =2 —12cos(¥) and n = 300.

is well approzimated by both the evaluations of |y and ¢y, except for the presence of three
outliers.

The presence of such eigenvalues, which are not captured by the sampling of Y|y and ¢y, is
in line with the behaviour predicted by Theorem I1.1.2 and Corollary 11.1.2.1. In fact, this agrees
well with the concept of spectral distribution formalized in Definition 1.4.3.

Example 4. Let us consider the function f : [—m, 7] = R given by

periodically extended to the real line.
The function f is not a trigonometric polynomial, and consequently the matrices T, [f] are
dense for all n. In fact, the Fourier coefficients of f are explicitly given by the formulae

P 2
fo=T%,
fo=(-1F3, k=+1,£2,....
This expression can be derived by a direct computation of the quantities
. 1 [
fo=—= [ 19°cos(—kv)dv.
T Jo

In this example, we set n = 200 and evaluate ;| on the points of the grid ¥;,. Recalling
that f is defined on [—m, w| and periodically extended to the real line, we can write the following
explicit formulae for f in [0,27]:

92, 9 e|0,n],
f(,ﬁ) = 2 [ ]
(¥ —2m)*, 9 € (m2n]

33



Chapter II. Asymptotic Spectral Distributions of Symmetrized Toeplitz Sequences
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Figure II.2: Example 3, a comparison between the eigenvalues \;(Y,T,.[f]), j = 1,...,n, and the samples
Y51 (Djn), for f(9) =4+ 2e7 +2e727 4+ 9673 e for n = 300.

20 T T T T T

¢ (Y00 300l
15rl o 9119, 300)

215 -

-20

Figure IL.3: Example 3, a comparison between the eigenvalues X\;(Y,T.[f]), 7 = 1,...,n, and the samples
b151(Dj,n), for f(9) =4 +2e7 + 20727 4+ 9e3 4 ' for n = 300.
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Figure II.4: Example 4, a comparison between the eigenvalues \;(Y,T.[f]) and the samples 1 (¥; ), for
f(®) = 9% and n = 200.

As a consequence of the definition of f, we have thal the associated function 1|y is piecewisely
defined in the following 4 subintervals

'n+27r)27 ijl,...,%,
)27 VJ:%‘Fl,,%,
(ﬁj,n)Q, v‘]:%%—l,,%,
)2, Vj:%”—&—l,...,n

Y171 (Fjn) =

In Figure I1.4, we numerically show that the quantities ¢|f|(79j,n) approximate the eigenval-
ues Nj(Y, Ty, [f]) for all j = 1,...,n, computed with MATLAB’s eig function. This result is
expected from Theorem II.1.2, which holds for generic functions in L'([—m,]) with real Fourier
coefficients.

Example 5. In the current example, we give numerical evidence of the distribution result of The-
orem I1.1.2 under the hypothesis that f is a discontinuous function f : [—m, 7] — R, piecewisely
defined by the formulae
5 Ve€[-m—n/2),
fW0) =4 2, Ve[-n/2,7/2),
5, V€ [r/2,7],
and pertodically extended to the real line.
We fiz n = 80 and compute s on the whole grid 9;, with a procedure similar to that in

Ezxample 4. In Figure I1.5, we show that the sampling ¢|f\(19j,n) s an approximation of the

eigenvalues of the matriz Y, T,[f] up to a constant number of outliers.
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0
Figure IL.5: Example 5, comparison between the eigenvalues A\; (Y, T»[f]), 7 = 1,..., n, and the samples 9| | (9;,n),

for the piecewise constant f for n = 80.

Example 6. In the last example of this subsection we focus on the spectral distribution of the

symmetrized Toeplitz sequence associated with a matriz-valued function f : [, 7] — R?*2 given
10 4+ 2 cos ¥ 0 111
0 2 —cos? 1 -1 |

by
11 1
=4[t 1] '

To numerically verify the distribution result of Theorem 11.1.3 in this matriz-valued setting

we need to compare the eigenvalues of the matriz (Y, ® Is)T,[f] and the evaluation of the ei-
genvalue functions of g on the uniform grid J;,, that is, the quantities A\ (¢|f|) (Vjn) and
A2 (1/}|f|) (Ujn). We choose n = 100, in this setting we can evaluate g on the uniform grid
¥jn and then compute the quantities \q (wlfl('lgj7n)) and Ao (¢\f|(?9j,n)) for 3 =1,...,n. Fig-
ure I1.6 shows that the considered sampling of the eigenvalue functions approzimates the eigen-
values of the matriz (Y, ® I;)T,[f] well. Moreover, we observe the four branches of eigenvalues
[—12,-8] U [-3,—1] U[1,3] U[8,12] as described by Theorem II.1.5.

II.4 Numerical Tests on Preconditioned Matrix-Sequences

In the current section we illustrate the predicted behaviour of the eigenvalues of the precon-
ditioned matrix-sequences in Theorem I1.2.1 for different choices of generating functions and
circulant preconditioners.

In particular, in Example 7 we focus on f being a trigonometric polynomial. In Example 8
we fix f to be a quadratic function and in Example 9 we consider a discontinuous piecewise

constant generating function.
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Figure I1.6: Example 6, comparison between the eigenvalues A;((Y, ® I2)T,[f]) and the eigenvalue functions of
¢ evaluated on the grid 19, ., for the matrix-valued function f and n = 100.

In the following examples, we first verify that the condition {CZET wlf1}n ~o 1 holds for the
specific choices of generating function f and circulant preconditioner C,,. We prove this either
using the discussion after Theorem I1.2.1 (for Examples 7 and 8) or numerically (for Example 9).

Once such a hypothesis is verified, we graphically show that the eigenvalues of
{|Ch| 7YY, T [f1}n are distributed as the function 1 over [—27, 27].

Example 7. We consider the trigonometric polynomaial
f(9) =2 —2e"" — 3¢,

Since f is a nonzero polynomial, it is obviously sparsely vanishing and belongs to the Dini-
Lipschitz class. Thus, we can use either Item A or B after Theorem I1.2.1 to realize that
{C;Tn[f]}n ~g 1. We follow Item A (Item B is analogous), choosing C,, as the Strang precon-
ditioner for T,[f].

In Figure I1.7, we plot the eigenvalues of |Cp| 'Y, T [f] for different values of n. For both
n = 500 and n = 1000, we observe that the values \;(|Cpn| 1Y, T,,[f]) are distributed as the
function 11, as predicted by Theorem I11.2.1. In fact, except for a constant number of outliers,

half of the eigenvalues are equal to -1 and the other half are equal to 1.
Example 8. We consider the generating function
f(0) =02

The discussion following Theorem I1.2.1 assures us that, in this case, we can use both the Strang
preconditioner and the Frobenius optimal preconditioner. For the current example, we show the

results obtained from the two types of preconditioners for different n.
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Figure I1.7: Example 7, the eigenvalues of |Cy| 'Y, Ty[f], where f(9) = 2 — 2" — 3¢, C,, is the Strang
preconditioner, and n = 500 or 1000.

In Figure I1.8, we plot the eigenvalues \;(|Cy| 'Y, T, [f]), where C,, is the Strang precondi-
tioner for n = 157,200,589, or 1000. For all tested n, the largest eigenvalue A, (|Cy| ™Y, Th[f])
s an outlier and becomes large quickly as n increases. Consequently, this large outlier is not
plotted for a better visualization of the values \;(|Cy| 'Y, T [f]) for j=1,...,n— 1.

Notice that the spectrum of |Cyn| " Y, T,[f] is divided into two sets with almost the same
cardinality: the first contains the eigenvalues equal to -1 and the second contains those equal to
1. Finally, the outliers that do not belong to the previous group are infinitesimal in the dimension
n of the matriz.

In Figure 11.9, an analogous clustering of eigenvalues is shown using the Frobenius precon-
ditioner for n = 157,200,589, or 1000. In this second experiment, the Frobenius preconditioner
gives us a worse result in terms of outliers. In fact, the number of outliers is significantly larger
than that in the Strang preconditioner case. Howewver, it is still infinitesimal with respect to n as

expected from Theorem I1.2.1.
Example 9. In this last example, we consider the discontinuous function

5 U€[-m—m/2),
fW) =1 2, 9e[-7/2,7/2),
5, V€ [rn/2,7].

In this case, instead of using Item B, we show in Figure I11.10 graphically that the property
{Cq-—rLTn[f]}n ~o 17

is true for the Strang preconditioner.

In Figure I1.11, we plot the eigenvalues \;j(|Cy| 1Y, To[f]), 5 = 1,...,n — 1, for n. = 500
or 1000. In both cases, the eigenvalue \,(|Cr| 1Y, To[f]) is an outlier of large magnitude and
therefore we do not plot it as before.

The clustering of the spectrum around +1 numerically confirms the distribution result on
the preconditioned matriz-sequence {|Cy| 1Y, Ty [f]}n in a more general hypothesis of Theorem
11.2.1.

In this Chapter we focused the eigenvalue distribution of sequences of the form {Y,,T,,[f]}n.
In the next Chapter we extend the analysis to the case of symmetrization of matrix-sequences of
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Figure 11.8: Example 8, the eigenvalues of |Cy| 'Y, T [f], where f(9) = 92, C,, is the Strang preconditioner,
and n = 157,200,589 or 1000. The largest eigenvalue A, (|Cy| ™ YnTn[f]) is an outlier — approximately 10* for
all values of n — and it is not plotted.
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Figure I11.9: Example 8, the eigenvalues of |Cy,|~'Y;, T [f], where f(¥) = 92, C,, is the Frobenius optimal precon-
ditioner, and n = 157,200, 589, or 1000. The largest eigenvalue A, (|Cy|™ Y, T [f]) is an outlier — approximately
102 for all values of n — and it is not plotted.
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Figure 11.10: Example 9, the singular values of C}T},[f], where f is piecewise constant, C,, is the Strang precon-

ditioner, and n = 500 or 1000.
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Figure I1.11: Example 9, the eigenvalues
preconditioner, and n = 500 or 1000.
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the form {h(T,[f])}n, where h is an analytic function. In particular we investigate the singular
value distribution of sequences of the form {h(T,[f])}» and we provide a result on the spectral
distribution of the symmetrizated sequence {Y,h(T,[f])}n.
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Chapter 111

Asymptotic Spectral Distributions of
Symmetrized Toeplitz Structure
Functions

Following the numerical evidences in [79] and the algorithmic proposals in [78], the purpose of
this chapter is to extend the results concerning the eigenvalue distribution of {Y,,T,[f]}, that
we obtained in Chapter II to the symmetrization of matrix-sequences of the form {h(T,[f])}n,
where h is an analytic function.

Our work is motivated also by the fact that functions of Toeplitz matrices have crucial rel-
evance in several applications. For instance, exponential functions of Toeplitz matrix-sequences
arise from the discretization of integro-differential equations with a shift-invariant kernel [46].
Furthermore, trigonometric functions are involved in the case of the approximation by local
methods of differential equations [75].

In particular, we consider a function f in L ([—m,n]) with real Fourier coefficients and an
analytic function h with convergence radius r such that || f||e < 7. Under these hypotheses, we
prove that the matrix-sequence {h(T,[f])}n is distributed in the singular value sense as ho f.
We exploit this property to investigate the spectral distribution of the symmetrized sequence
{Y,h(T,[f])}n and we prove that its spectral symbol is given by

_ \ho f(9)], 9 €l0,2n],
Plhor| (V) —{ o f(—B)|, O [-2m0)

which has the same structure of the eigenvalue symbol of {Y,,T,,[f]}, that we derived in the
previous chapter. The proof of the distribution result concerning the sequence {Y,,h(T,[f])}n
is based both on Theorem 1I.1.2 and on the features of the GLT theory that we introduced in
Section 1.7.

As we detailed in the introductory chapter, spectral distribution results represent key in-
gredients in the design and in the convergence analysis of multigrid methods and preconditioned
Krylov solvers. Following this direction, in Section II1.3 we numerically study the spectral prop-
erties of ad-hoc preconditioners for the previously analyzed symmetrized sequences. Thanks to
the symmetry of the considered matrices, these preconditioners may also be used to fasten the
convergence of Krylov solvers such as MINRES.
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The results presented in the following sections are published in [52] and the chapter is
outlined as follows. Firstly, in Section III.1, we give our main theorem on the asymptotic
distributions of {h(T},[f])}n and {Ynh(T5[f])}n. Then, in Section II1.2 we numerically support
the derived distribution results for several choices of generating functions f and analytic functions
h, including a significant example stemming from computational finance. Finally, in Section I11.3
we analyse the examples of the previous section to define and compare different preconditioning
strategies for the matrices {h(T,[f])}n-

III.1 Asymptotic Distributions of {L(7,[f])}, and {Y,h(T,[f])}~

In this section, we provide the main asymptotic distribution results on the sequences {h(T},[f]) }n
and {Y,h(T,[f])}n in the case where f € L*([—m,x]) has real Fourier coefficients and h is a
real analytic function in 0 with radius of convergence r such that || f|l« < 7. Following the
discussion in Section I.8, we notice that under these hypotheses the matrix Y,h(T,[f]) is real
symmetric.

Furthermore, we stress that the function h o f(¥) = h(f(1})) defined on [—m, 7] plays a very
important role in the expression of the underlying symbols.

Lemma III.1.1. Suppose f € L*°([—n,x|) with real Fourier coefficients and let Y, € R™*" be
the anti-identity matriz. Let T, [f] € R™™™ be the Toeplitz matriz generated by f. Let p(z) be a
polynomaial. Then

{p(TulfD)}n ~opo f.
Proof. The thesis is an immediate consequence of Items GLT1, GLT2, GLT3, and of the fact
that p is a polynomial, since {p(T[f])}n ~eur f=pof. O

Theorem II1.1.2. Suppose f € L>®([—m,w|) with real Fourier coefficients and let Y,, € R™*"
be the anti-identity matriz. Let T, [f] € R™*™ be the Toeplitz matriz generated by f. Let h(z) be
a real analytic function in 0 with radius of convergence r such that || f|lcc < r. Then we have

the following asymptotic distributions:

{M(TulfD}n ~o ho f (I1.1)

and
{Yah(To[f]) In ~x Yjhogy- (IIL.2)
where Yoy is defined as in (I1.1) over the domain D with D = [0,27] and p = —2m.

Proof. Notice that the assumption ||f||cc < r implies || T,[f]|l2 < 7 and hence p(T,,[f]) < r (see
[.5.2). Consequently, as we detailed in Section 1.8, Theorem 4.7 in |74| guarantees that h(T5,[f])
is well-defined.

If |z| < r, we can represent h(z) through its Taylor series expansion in 0, that is h(z) =
S22 o biz®. For m € N, we define the polynomial

m
Pm(2) = Z bz~
k=0
We have the following properties:
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L. Apm(Tof]) In ~o Pm o f for all m € N;

2. {om(TonlfD)}n}tm is an a.c.s. for {h(T,[f]) }n;
3. pmof — ho fin measure.

The first property is a consequence of Lemma II1.1.1. The second property can be proven from
the decomposition

h(Tn[f]) = pm(Tn[f]) + (h(Tn[f]) - pm(Tn[f]))>
by observing that ||h(T,[f]) — pm(Tu[f])|| < &m with

lim &, =0,
m—r0o0

taking into account Definition [.4.4.

For proving the third property, notice that the assumption ||f||cc < r guarantees that h is
analytic in f(¢) almost everywhere on ¢ € [—m,7]. It follows that p,, o f converges almost
everywhere to h o f and the convergence in measure is a consequence of the boundedness of the
domain.

Hence, the objects {{pm(Tn[f])}n}m, {R(Tulf])}n, Pm and h satisfy the assumptions of
Lemma I.4.2, from which we can infer the first part of the thesis:

{R(TalfD)}n ~o ho f.

Moreover, Property GLT5 implies that the matrix-sequence {h(T},[f])}» is GLT with symbol
hof.
For proving (I11.2), let us define the quantity

Since ho f € L'([-m,7]), by Theorem 1.5.3 the Toeplitz matrix-sequence {T},[h o f]}, is dis-
tributed in the singular value sense as h o f and it is a GLT matrix-sequence. By (II.1), also
{h(T,[f])}n is distributed in the singular value sense as h o f and it is a GLT matrix-sequence.
Hence, Properties GLT1-GLT2 imply that the GLT sequence {A,(h, f)}, is distributed as 0
in the singular value sense.

Since Y, is a unitary matrix, also the matrix-sequence {Y, A, (h, )} is zero-distributed in
the singular value sense. From [62, Chapter 9] we know that Y, A, (h, f) ~, 0 if and only if
Yo Ap(h, f) = R, + N, with

lim rank(R,,)

n—00 n

= lim ||N,| = 0. (11.3)
n— o0

Note that, by Lemma 1.8.1, the matrix Y;;A, (h, f) is Hermitian for all n; from Properties GLT1
and GLT4 we see that the spectral distribution of the corresponding matrix-sequence is given
by

{YnAn(ha f)}n ~ 0.

Thanks to the definition of A, (h, f), we can write
{Yah(To [ )1 = {YaTnlh o fI}n + {YnlAn(h, f)}n. (I11.4)
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Then, the constant (not depending on m) class of sequences {{Bp}n}m = {YnThlh o f]}n
is an a.c.s for {Y,h(T,,[f])}n. In fact, we can write Y,h(T,[f]) as in formula (II11.4) and, from
(I11.3), we have that the matrix-sequence {Y,A,(h, )}, verifies the low- rank plus small-norm
requirement of the Definition 1.4.4.

As already stated, the function h o f belongs to L'([—m,n]), then, from Theorem T1.1.2 it
follows that

{(YaTulh o f1}n ~x Yjhoy)- (T11L.5)

Hence, the desired result
{Yoh (Tl f])}In ~x ¢|hof|

follows directly from the second part of Lemma [.4.2. O

II1.2 Numerical Experiments on the Asymptotic Distributions of

{Yah(TL[f]) n

In the present section we provide different examples in order to show that the statements of
Theorem II1.1.2 are numerically evident already in the case of really moderate matrix sizes.
Indeed, we consider a function f in L°°([—m,7]) with real Fourier coefficients and an analytic
function h with convergence radius r such that || f||c < 7 and we show that the singular values
of the matrix h(T),[f]) are well approximated by a uniform sampling of |h o f| over its domain
and that the eigenvalues of Y,,h(T,[f]) are well approximated by a uniform sampling of 9. -
In particular, we consider the case where f is a trigonometric polynomial and h is an analytic
function with convergent Taylor series in a neighbourhood of the origin (Examples 10-11) or a
polynomial (Example 12). Furthermore, in Example 13 we study the spectral properties of the
symmetrization of the exponential of a Toeplitz matrix generated by a high-degree trigonometric

polynomial stemming from computational finance.

Example 10. We take into consideration the analytic function h(z) = sin(z), whose Taylor
series at 0 converges in the whole complex plane, and we consider the trigonometric polyno-
mial f(9) = ¢, Figure IIL.1 shows that for n = 100 the eigenvalues of Y,h(Ty[f]) are well
approzimated by a uniform sampling of Y|nop over [=2m, 27, except for the presence of one
outlier.

This behaviour numerically confirms the spectral distribution predicted by Theorem II1.1.2.
In fact, Definition 1.4.3 contemplates the presence of eigenvalues not captured by the sampling

of ¢\hof|-

Example 11. We now consider the analytic function h(z) = log(1l + z), whose Taylor series
at 0 converges with the radius of convergence equals 1. Moreover, we take the trigonometric
polynomial f(¥) = 0.5¢, with || f|lec < 1 as Theorem II1.1.2 demands. In Figure IT1.2 we can
observe that, except again for one outlier, the eigenvalues of Yn,h(T,[f]), for n = 100, are well

approzimated by a uniform sampling of Yo over |2, 27].
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Figure III.1: Comparison between the eigenvalues of the symmetrized matrix Yiooh(Ti00[f]) and the uniform

sampling of 07|, over [—2m, 2], for h(z) = sin(z) and f(9) = ™.
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Figure I11.2: Comparison between the eigenvalues of the symmetrized matrix Yi00h(T100[f]) and the uniform
sampling of 90|, over [—2m, 2], for h(z) = log(1 + z) and f(¥9) = 0.5¢™.

Example 12. The example is taken from [78]. Following the same procedure of Examples 1-2,
we plot in Figure IT1.3 the spectrum of Y, h(T,[f]), for n = 200, for the function h(z) = 1+2+22,
whose Taylor series in 0 converges in the whole complex plane, and the trigonometric polynomial
f(9) = —e¥ +14e " 472V 4 7BV In the present exzample we can observe that there are no
outliers and the eigenvalues of Y h(T,[f]) are approzimated by the uniform sampling of Yoy
over [—2m, 2m|. Moreover, in order to numerically confirm relation (I111.1) of Theorem 111.1.2, we
verify that the singular values of the matriz h(T,[f]) can be approzimated by a uniform sampling
of |ho f| over [0,2n]. Indeed, Figure III.} shows thatl the expected approximation holds true

already for a moderate size such as n = 200.

Example 13. The last example is a practical case taken from [90, 91]. Here we consider the
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Figure II1.3: Comparison between the eigenvalues of the symmetrized matrix Ya00h(T200[f]) and the uniform
sampling of 90|, over [—27, 2], for h(z) = 1+ z + 2 and f(¥) = -’ + 1+ e + 727 4 o757,
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Figure II1.4: Comparison between the singular values of the matrix h(7200[f]) and the uniform sampling of |h o f|,
over [0,27], for h(z) =14+ z+ 2% and f(9) = =" + 14+ e 7 4772 4737,

case of the exponential of a real nonsymmetric Toeplitz matrix stemming from computational
finance, in particular from the option pricing framework in jump-diffusion models, where a partial
integro-differential equation (PIDE) needs to be solved. Indeed, the discretization of a PIDE can
be transformed into a matriz exponential problem. In our notation, it is equivalent to consider
the analytic function h(z) = e*, whose Taylor series centred at 0 converges in the whole complex
plane, and a trigonometric polynomial () = Z?;in_ﬂ fjeijﬁ defined by the following Fourier
coefficients:
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fo= % - Ax2(r + A = Aw(0)Ax); (IIL.6)
f = 1/22 PN QZk —v?) +w(—Az)Az®: (I11.7)
o= ”22 M Gl 2Zk —v) Aw(Az)Az; (I1L.8)
fi = zdw(—jAz), je{-n+1,...,-2,}U{2,...,n—1}. (T11.9)
_(s=w)?
where w(s) = %, 15 a normal distribution function with mean p and standard deviation

o, the parameter k = e“+§ — 1 is the expectation of the impulse function, Ax is the spatial
step-size, v 1is the stock return wvolatility, r is the risk-free interest rate, and X\ is the arrival
intensity of a Poisson process.

Following the same procedure of Eramples 1-3, we plot in Figure II1.5 the spectrum of
Yoh(T,[f]), for n = 100. In the present example we can observe that there are no outliers
and the eigenvalues of Yoh(T,[f]) are well approzimated by the uniform sampling of Yoz over
[—2m, 2m].

In addition, in order to numerically validate relation (II1.1), in Figure IIL.6, for n = 100,

we compare the singular values of h(T,[f]) and a uniform sampling of |h o f| over [0, 27].
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Figure II1.5: Comparison between the eigenvalues of the symmetrized matrix Yiooh(Ti00[f]) and the uniform
sampling of ©|xof|, over [—2m,27], for h(z) = e and f(¥) = Z?i_gg fie? with A = 0.1, p = —0.9, v = 0.25,
0 =0.45r=0.05 and Az = 157

III.3 Numerical Study of a Circulant Preconditioner

In the current section we exploit the derived spectral information on the matrix-sequences of the
form {Y,h(T,[f]) }n in order to speed up the convergence of the MINRES method for the related
linear systems. For the latter purpose, we suggest a preconditioner P, for the symmetrized

49



Chapter III. Asymptotic Spectral Distributions of Symmetrized Toeplitz Structure
Functions

1.1

¢ o (T gl)

1.05 - o Ihfl(6, 10 4
1k i
0.95 - 4
09F J
0.85 | 4

08 | | | | | | | | |
-1 0 1 2 3 4 5 6 7 8

Figure II1.6: Comparison between the singular values of the matrix h(T100[f]) and the uniform sampling of |ho f|,
over [0,27], for h(z) = ¢* and f(9) = 329, fi€¥?, with A = 0.1, u = —0.9, v = 0.25, 0 = 0.45, = 0.05, and

Jj=-—99
_ 4
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matrix Y,h(T,[f]) and we numerically investigate the behaviour of the asymptotic spectrum of
the preconditioned matrix-sequence { P, 1Y, h(T,[f]) }n-

For the development of a first preconditioning strategy we follow the approach introduced
in [78] and we report the numerical evidence of the preconditioner efficiency in terms of eigenvalue
clusters in Examples 14-16. Moreover, we also consider a further class of preconditioners whose
efficiency is motivated by the theoretical results in Section I1.2 and by the relation between the
spectral distributions of {Y,,h(T,[f]) }n and {Y, (T [ho f])}n. The application of both strategies
to the cases considered in Examples 11-13 shows that the two approaches are both valid and
have a comparable performance.

In all the examples the construction of the preconditioner involves the concepts of absolute
value of a circulant matrix that we defined in Section I1.2 and of Frobenius optimal precondi-
tioner that we introduced in Subsection 1.9.3. For simplicity, in the present section the optimal
Frobenius preconditioner for a Toeplitz matrix T,,[f] is denoted by ¢(T},[f]).

Example 14. In this example we test the efficiency as preconditioner of the absolute value
circulant matriz |c(Tylh o f])|, for the symmetrized matriz Y, h(T,[f]), where c(Ty[h o f]) is the
Frobenius optimal circulant preconditioner associated with the matriz Ty,[ho f]. We consider the
functions h(z) = log(1 + z) and f(¥) = 0.5¢". This choice is motivated by the fact that the
sequences {Yoh(T,[f])}n and {Yn(Th[h o f])}n share the same asymptotic spectral distribution
described by ypog. Indeed in the following setting we have ho f € LY([~7, 7)), then the results
in Section I1.2 suggest that P, = |c(T,[h o f])| is a good preconditioner for the matriz-sequence
{Yo(Thlh o f])}n and consequently for {Y,h(T,[f])}n as well. Moreover, the efficiency of the
preconditioning strategy is highlighted if we compare the latter cluster result with the plot of
the eigenvalues, sorted in the increasing order, of the non preconditioned matriz Y,h(T,[f]),
shown in the top panel of Figure I11.7. We highlight that the choice of the preconditioner is
not unique. Indeed, we can precondition the sequence {Y,h(T,[f])}n following the approach
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introduced in [78], that is, we consider P, = |h(c(Tn[f]))|, where c(T,[f]) is the Frobenius
optimal circulant preconditioner associated with the matriz T, [f]. We can see the efficiency of
both strategies looking at Figure I11.7 where we numerically confirm that the eigenvalues of the
preconditioned matriz P, Y, h(T,[f]), for n = 512 are clustered around -1 and 1, up to o(n)
outliers. In particular, in the bottom left we use the preconditioner P, = |c(T,[h o f])|, and in
the bottom right the preconditioner is P, = |h(c(T,[f]))|.

o Non preconditioned

05t /
04

02

of o
-0.2 -
04
el /
0.8 s ; s ; ; s ;
8 6 4 2 0 2 4 6 8

With preconditioner |c(T512[hof])| With preconditioner |h(c(T512[f]))|

1.5 1.5

1 esEsseseswesssssEs> - 1f fassccacassasacassast
05 0.5

0 3 0 o
0.5 -0.5

1 (EESSSEESESERSESERSD 1 ESSEESESESERESRERET
15 -1.5

8 6 4 2 0 2 4 6 8 -8 6 4 2 0 2 4 6 8

Figure II1.7: The spectrum of the symmetrized matrix Ysi2h(T512[f]), for h(z) = log(1 + 2) and f(9) = 0.5¢™.
Top: without preconditioner, bottom left: preconditioner P, = |c(Tn[h o f])|, bottom right: preconditioner
Po = [R(c(Tu[f]))]-

Example 15. In the present example we consider the functions as in Erample 12, that is
h(z) = 1+2+2% and f(9) = —eV+14+e W 4e 20 1oV In Pigure I11.8, we show the behaviour
of the eigenvalues of the matriz Ysioh(Ts12[f]) with and without the use of a preconditioning
strategy. In particular, on the top we plot the eigenvalues of the matriz Ys12h(T512[f]), sorted in
increasing order. In the bottom left and bottom right panels of Figure I11.8 we test the efficiency
of both preconditioning strategies described in the previous example. In both cases, we can observe
that the eigenvalues of the preconditioned matriz are clustered at -1 and 1, up to o(n) outliers.

Example 16. The last preconditioning test is performed on the case stemming from computa-
tional finance that we studied in Example 15. That is, we consider the case where h(z) = €* and
f) = 2?9:_99 fjeiﬂ’l, with a; defined as in (II1.7)-(1I1.9). First, we apply the preconditioning
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Non preconditioned
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Figure IT1.8: The spectrum of the symmetrized matrix Ysi2h(Ts12[f]), for h(z) = 14 z + 2% and f(9) = —e®’ +
1+e ™ 4 e 4 e Y, Top: without preconditioner, bottom left: preconditioner P, = |c¢(T,[h o f])|, bottom
right: preconditioner P, = |h(c(Tn[f]))]-

strategy approach introduced in [78], that is, P, = |h(c(T,[f]))|- We can see the efficiency of the
proposed strategy in the right panel of Figure I11.9, where we observe that the eigenvalues of the
preconditioned matriz P, Y, h(T,[f]), for n = 100 are clustered around -1 and 1, up to 2 outliers.
Analogously, we can study the eigenvalues of the preconditioned matrix Pl_oéYmoTloo[f], where
Pioo = |e(Thgolh o f])|. Indeed, we have ho f € L([—7,7]), then, applying the results in Sec-
tion I1.2, we have that Piog is a valid preconditioner for the matriz Yiooh(T100[f]). The left panel
of Figure II1.9 confirms that the eigenvalues of the preconditioned matriz Pl_OéYlooh(Tmo[f]) are

clustered around -1 and 1 up to 2 outliers.

For each example, we showed the validity of two different preconditioning strategies. How-
ever, we have seen that, for large enough matrix-sizes, the spectral results are remarkably similar.
Other valid choices of preconditioning that give a slightly different effect on the spectrum of the
preconditioned matrix can be considered. Moreover, we highlight that the strategy based on
Theorem I1.2.1 provides an entire class of preconditioners suitable for symmetrized Toeplitz
structure functions. Indeed, a preconditioner in this class is the absolute value of any circulant
matrix C), such that the following singular value distribution is verified

{C' Tulho f}n ~o 1. (I11.10)

Concerning the choice of the preconditioning strategy based on this requirement, we used the
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Non preconditioned

05

-0.5

-8 -6 -4 -2 0 2 4 6 8

With preconditioner |c(T100[hof])| With preconditioner |h(c(T100[f]))|
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Figure II1.9: The spectrum of the symmetrized matrix Yiooh(Ti00[f]), for h(z) = e* and f(¥) = 2?9:799 fie¥?,

with A = 0.1, p = —0.9, v = 0.25, 0 = 0.45, r = 0.05, and Az = ﬁ. Top: without preconditioner, bottom left:

preconditioner P, = |¢(Ty[h o f])|, bottom right: preconditioner P, = |h(c(T[f]))]-

Frobenius optimal circulant preconditioner, since, from the properties of the considered f and
h, relation (III.10) is satisfied.

Finally, we highlight that the choice of the best preconditioning strategy among the two ap-
proaches that we analysed in the examples depends on the computational aspects in constructing
the matrix P,, which depend in turn on the information known about the specific example. For
instance, the computational cost of the construction of the preconditioner P, = |¢(T,,[h o f])]
decreases if the Fourier coefficients of h o f are known.
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Chapter IV

Multigrid Methods for Block-Toeplitz
Linear Systems

In the present chapter, we are mainly interested in solving large positive definite linear systems
that possess a block-Toeplitz structure up to a low rank correction. Such systems are of great
interest in many applications, such as numerical approximations of constant coefficient PDEs
and coupled systems of integro-differential equations [36, 94].

After the seminal papers on multigrid methods for Toeplitz structures [27, 56, 57|, the results
have been extended to multidimensional problems and a V-cycle convergence analysis has been
provided, see [4] and references therein. A multigrid method for block-Toeplitz matrices has
been proposed in [83] and studied in the case of diagonal block generating functions. This was
then adapted and further analysed for specific applications, like those considered in [38, 43|,
but the results are strictly related to the (multilevel) block-Toeplitz matrices in question. In
practice, when the block symbol is not diagonal, there is still a substantial lack of an effective
projection proposal and of a rigorous convergence analysis.

In this chapter we aim to fill this gap generalizing the existing convergence results in the
scalar settings for linear systems with coefficient matrix in the circulant algebra associated with
a matrix-valued symbol. According to the classical Ruge and Stiiben convergence analysis in
[107], we split the two-grid convergence analysis into the validation of a smoothing property
and an approximation property. The smoothing property is proved for damped Jacobi with
the relaxation parameter appropriately chosen in an interval depending on the symbol. For the
proof of the approximation property, we provide a general theorem concerning the boundedness
of a specific matrix-valued function R(¥) that depends both on the problem and on the grid
transfer operator. However, the latter result is not straightforward to exploit for practical
applications. A closer look at the derived condition on R(¥) highlights that the matrix-valued
trigonometric polynomial that generates the block-circulant matrix used in the construction of
the grid transfer operator needs to fulfil stricter conditions than the ones present in the scalar
case. More specifically, we analyse a first case where the trigonometric polynomial in question is
unitarily diagonalizable at all points and satisfies a specific commutativity condition. Moreover,
we prove the approximation property for a grid transfer operator with a block symbol that might
be non-diagonalizable.

We highlight that the theoretical analysis is performed for block-circulant matrices, in order
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to exploit their intrinsic algebra structure, but the results can be forwarded to Toeplitz matrices.
Indeed, this extension is possible thanks to the proof that the symbol analysis for Toeplitz
matrices is an algebraic generalization of the local Fourier analysis of multigrid methods, see
[37]. Moreover, if the block-Toeplitz matrices are banded, that is, they are generated by a matrix-
valued trigonometric polynomial, they represent a low rank correction of block-circulant matrices
with the same generating function. The latter consideration implies that the deterioration of
the convergence rate is computationally acceptable, as we see through numerical examples in
the next chapter.

The contents of the present chapter are in the process of being published in [20, 39] and the
chapter is organized as follows. In Section IV.1 we give an overview on algebraic multigrid meth-
ods for circulant and Toeplitz matrices. In Section IV.2 we sketch the basic ideas for defining
projecting operators for block-circulant matrices and we report two suitable sets of conditions on
the matrix-valued trigonometric polynomial associated to the grid transfer operator. A conver-
gence and optimality proof of the two-grid technique for both cases is reported in Section 1V.3.
Finally, in Section IV.4 we provide the generalization of the convergence results to multilevel
block-circulant matrices, where the multilevel grid transfer operator possesses a tensor structure.

IV.1 Multigrid Methods for Toeplitz Matrices

As we already stated in Subsection 1.9.4, the convergence analysis of the two-grid method splits
into the validation of two separate conditions: the smoothing property and the approximation
property. Regarding the latter, with reference to scalar structured matrices [4, 56|, the optimality
of two-grid methods is given in terms of choosing the proper conditions that the symbol p of
a family of projection operators has to fulfil. Indeed, consider the Toeplitz matrix T),[f] with
n = (2! — 1) generated by a non-negative trigonometric polynomial f. Suppose that f vanishes
at exactly one point, which implies that the Toeplitz matrix T},[f] becomes ill-conditioned as n
increases. Let g be the unique zero of f. Then, the optimality of the two-grid method applied
to T,[f] is guaranteed if we choose a family of projection operators associated with a symbol p
such that

)P
T SD 2 )

> ) >0,

neQ(Y)

< oo, 1€ MV,
(IV.1)

where the sets () and M(?) are the following corner and mirror points
QW) = {0, +m) mod2r}, M) =)\ {9},

respectively.

Informally, the latter conditions mean that the optimality of the two-grid method is obtained
by choosing the family of grid transfer operators associated to a symbol p such that |p|?(9) +
Ip|2(¥ + 7) does not have zeros and |p|?(¥ + 7)/f(¥) is bounded. For achieving the optimality
of the V-cycle method, the second condition needs to be strengthened, see [4] for details.
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As far as the smoothing property is concerned, a lot of results are present in the relevant
literature for different stationary methods. See, for instance, [56] for an analysis of the best
choice of the relaxation parameter for the relaxed Richardson method.

IV.2 Projecting Operators for Block-Circulant Matrices

The current section is dedicated to the construction of grid transfer operators suitable for block-
circulant matrices. Indeed, as we outlined in the previous section, the choice of prolongation
and restriction operators fulfilling the approximation property that we introduced in Subsec-
tion 1.9.4 is crucial for multigrid convergence and optimality. In particular, the projector P, ,,
should be chosen in order that it projects the problem onto a coarser space by “cutting” the
coefficient matrix and the resulting projected matrix should maintain the same block structure
and properties of original matrix.
Let K, be the n x m down-sampling matrix, that is,

n

e when n is even: m = 5 and Ky, = KOdd

n,m?

e when n is odd: m = "T_l and K, = Kf};f”,

with Kg dd anq Kf“men defined as

0
= _ )
0 00
1 ol
K — 0 R 0
1 :
0 1
L - nxXm
L 0 d nxXm

In particular, K,?dd

“m 18 the n x m matrix obtained by removing the even rows from the identity

matrix of size n, that is it keeps the odd rows. On the other hand, Kf"‘,’,f” keeps the even rows.

When n is even, Kg dd 1 erforms the following manipulation of the Fourier frequencies:

(K0T, = %[Fm | Fyl. (IV.2)

This property of the Fourier matrix is the key to define a grid transfer operator P, , that
preserves the block-circulant structure at the coarser levels, where the superscript s indicates
that the block-structured matrices have square blocks of size s.

Therefore, we define the structure of the grid transfer operators Py ,, for the block-circulant
matrix C,[f] generated by a matrix-valued trigonometric polynomial f : [—m, 7] — C°*5 as
follows. Let n be even and of the form 2!, ¢+ € N, such that the size of the coarser problem is
m=g = 2t=1 The projector Py, is then constructed as the product between a matrix Cy[p]
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in the circulant algebra, with p being a proper trigonometric polynomial that are discussed in
the following subsections, and a cutting matrix Kgf,ff ® Is. That is,

P =Calpl(K9%M & I). (IV.3)

The result of multiplying a s x s block matrix of dimension sn x sn by K,?jff ®I;isasxs
block matrix where just the even “block-columns” are maintained.

We are left to determine the conditions to be satisfied by C,[p] (or better by its generating
function p), in order to obtain a projector which is effective in terms of convergence. The used
tool is an algebraic generalization of the Local Fourier Analysis of multigrid methods [37].

The same strategy can be applied when we deal with block-Toeplitz matrices generated
by a matrix-valued trigonometric polynomial, instead of block-circulant matrices. Indeed, the
only thing that should be adapted is the structure of the projector which slightly changes for
block-Toeplitz matrices, in order to preserve the structure at coarser levels.

Hence, for a matrix-valued trigonometric polynomial p, the projector matrix is

Py =Tolp] (K" @ 1) - (IV 4)

Note that in the Toeplitz case n should be chosen odd and of the form 2 — 1, ¢t € N, such that
the size of the coarser problem is m = ”T_l =2t-1 1.

Finally, we mention that it is possible to consider the case where the size n of the coefficient
matrix is divisible by a factor g > 2 such that at the lower level the system is reduced to one
of size n/g. Indeed, in this situation we can exploit a g-circulant based projectors [44, 100]. In
particular, we can analogously repeat the TGM convergence result adopting a cutting matrix

(Knny/g) @ Is, where K, , /g € R™ /9 of the form

, , 1 if¢=0(modn),
Kmn/g:[(si,gj]i’j, i=0,...,n—1;5=0,...,n/g—1, O¢ = ' .
0 otherwise

IV.2.1 TGM Conditions: the Diagonalizable Case

Let Cy,[f] be the block-circulant matrix generated by a matrix-valued trigonometric polynomial
f > 0 and let us consider the grid transfer operator P, . = C,[p] (Kgfg ® I,), with p being
a matrix-valued trigonometric polynomial. In the following, we provide and discuss a set of
conditions on p.

Define ©g as the set of points 1 such that A\;(f(¢)) = 0 for some j. Assume that, for ¥ € Oy,
Nj(f(0+m)) # 0 for all j =1,...,s, which also implies that the set Oy is a finite set. Choose
p(-) diagonalizable by a unitary matrix such that the following relations

36 s.t. Hf(ﬁ)—%pw + W)Hul <& W9 e0,2r)\Oo, (IV.5)
p()Hp®) +p(W+m)p®W+7m) >0 VI €|0,2n), (IV.6)
p()p(P+7) =p(¥+7)p(¥) VI e€0,2m) (IV.7)

are fulfilled. Note that conditions (IV.5)—(IV.6) are the generalization of the scalar conditions
(IV.1), while condition (IV.7) is new and it permits to simplify some expressions, as we explain
in the following remark.
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1V.2. Projecting Operators for Block-Circulant Matrices

Remark 1. By hypothesis we have that there exist a unitary transform U(-) and a diagonal

matriz-valued function Dy(-) such that
p(¥) = U(W) Dp(0)U (9)" and p(0 4 ) = U + 7)Dp (9 + m)U (I + ).

Note that condition (IV.7) on the commutativity of p(¥) and p(Y + ) implies that they are

simultaneously diagonalizable. Then,
p(9 +7) = U(W)Dp () + m)U(9)"
and in particular, we have
(P() () + (@ +m) (0 + 7)) = UW)(IDp(0)* + [Dp(d + 7)) U ()",

which ensures that (p(9)p(9) + p(¥ + m)p(9 + 7)) =L commutes with p(9), p(9)*, p(¥ + )
and p(9 + m)H.

IV.2.2 TGM Conditions: the General Case

Let Cy,[f] be the block-circulant matrix generated by a matrix-valued trigonometric polynomial

f > 0 and let us consider the grid transfer operator P, . = C,[p] (Kgfg ® Is), with p being

a matrix-valued trigonometric polynomial. Suppose that there exist unique ¥y € [0,27) and

7€{1,...,s} such that

{ A (£(9)) =0, for 9 =g and j =7, vs)
Aj(f(9)) > 0, otherwise.

The latter assumption means that the matrix f(¢) has exactly one zero eigenvalue in ¥y and
it is positive definite in [0, 27)\{Jo}.

As a consequence, the matrices C,[f] could be singular. On the other hand, the block-
Toeplitz matrices T,,[f] are positive definite, they become ill-conditioned as n increases, and the
ill-conditioned subspace is the eigenspace associated with \;(f(?)).

Since f(19) is Hermitian, it can be diagonalized by an orthogonal matrix Q(1}). Hence,

M\ (£(9)) 1T e (9)

)‘s(f(ﬁ))_ L qu(’ﬂ) i
(IV.9)

where g;(¥) is the eigenvector that generates the ill-conditioned subspace since gz(¥g) is the
eigenvector of f(vy) associated with A;(f(dp)) = 0.

Under the following assumptions, we show that there are sufficient conditions to ensure the
linear convergence of the two-grid method. Indeed, it is sufficient to choose p such that
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(7) condition (IV.6) is fulfilled, that is,
p()p() +p(+ m)p(W +7) >0 VI [0,2n),

which implies that the trigonometric function

1

r(9) = p() (P()"p(¥) + (¥ +m)"p(0 + 7)) pW)" (IV.10)

is well-defined for all ¥ € [0, 27);

(1) the vector g;(Ug) defined in (IV.9) is an eigenvector for r(g) with eigenvalue 1, that is,
r(90)q;(Y0) = ¢5(o);

(7i7) it holds that
lim sup )\]—(f(’ﬁ))_l(l — A(r(¥))) = ¢,
19%190

where ¢ € R is a constant.

IV.3 Proofs of Convergence

The current section is outlined as follows. Firstly, we give a result on the validation of the
smoothing property in a specific setting. Then, we focus on preliminary results concerning the
grid transfer operators and the validation of the approximation property. Further, in Subsections
IV.3.1-1V.3.2 we prove the convergence and optimality of the two-grid method in the setting of
Subsections IV.2.1 and IV.2.2 respectively.

The smoothing property has been proven in [38] for the simple Richardson iteration consid-
ering both pre-smoothing and post-smoothing.

Lemma IV.3.1 ([38]). Let Cpn[f] with £ = [fi4]7 ,_; € C°° trigonometric polynomial, £ > 0,
with f;;, j = 1,...,s, not identically zero, and let V,, = Iy, — wCy[f]. If we choose w €
(0,2/||f]lo0), then relation (a) in Theorem 1.9.2 holds true.

The iteration matrix of the relaxed Jacobi method is V;, := Iy, —wD, 1C,[f], where D, is a di-

agonal matrix with the same diagonal as C,,[f]. We define the matrix D,, = minj—y s f'o] ; .)Isn
3,

and we notice that D;;! > D', Applying to the matrix I, — wD; 'C,[f] the same idea of the
proof used for the Richardson method in |38, Proposition 4|, we obtain that relation (a) in
Theorem 1.9.2 is satisfied if w verifies the following inequality:

minj—q . s [fOL

1o

0<w< 2d) (IV.11)

Before discussing the details on the approximation property, we consider a crucial result both
from a theoretical and a practical point of view.
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Proposition IV.3.2. Let f be a non-negative definite s x s matriz-valued function. Let Py,
and Kggﬁl be defined as in Section IV.2, that is, Py ,,, = Cy[p] (Kgfg ® I) € C™*5™  where p is
a trigonometric polynomial. Then the matriz (P;f’m)HCn[f]P,im € Cm™*sm coincides with Cp, (F)
where f is non-negative definite and

() = (p (i)Hf @) p <;9) p <Z+W)Hf <§+w> p (;9”)) v

Proof. Using the definition of P, we have that

,m>o

(P ) Calf) P,

(KQMT @ 1,)Calp"Calf1Ca[P) (Ko @ 1)

(Komh™ @ L)Calp" fp] (K5 @ L)

((KQT @ 1) (Fy @ L) diag (p™ (0" (F! @ L)(KOa @ 1,)

1 . n n

5 (B 1) dize (pep(0" ) + p"fp(0") (£ @ 1)

1 . 9™ H™

5 (Fn @ 1) dizg | pfp | =~ | +p"fp | =L+ 7 | | (F © 1)

—Cp M

where ¢ = i 4+ m; this is again a block-circulant matrix of size sm. From the structure of fitis
clear that if f is non-negative definite also fis non-negative definite. O

In the following theorem we give the main result on the validation of the approximation
property, which involves the boundedness of a matrix-valued function R(¢}) that depends both
on the problem and on the grid transfer operator.

Theorem IV.3.3. Let C,[f], with £(¥) € C**° trigonometric polynomial, £ > 0, and define O
as the set of points ¥ such that \j(f(9)) = 0 for some j and define H = {njn € {J, (¥ + )
mod 27},9 € Op}. Assume that, for ¥ € Og, \;j(f(V+ 7)) #0 forallj=1,...,s. Let P, ,, =
Cn[p](Kgdd ® Is) be a projecting operator. Suppose that p is a matriz-valued trigonometric
polynomial that fulfils condition (IV.6) and there exists ¢ > 0 such that for all ¥ € [0,2m)\H

R(Y) < clos (IV.13)
with
[ew) . p(0) £(0) =
R(#) = [ - (m o R EOI O w)HD [ (6
and

a®) = (p()p(®) + p(d + ) p(W +m)) . (IV.14)

Then, there exists a positive value 7 independent of n such that inequality (b) in Theorem 1.9.2
is satisfied.

Proof. In order to prove that there exists v > 0 independent of n such that for any z,, € C*"

Jin, lzn = P myll3 < vllznlig, g, (IV.15)
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we choose a special instance of y in such a way that the previous inequality is reduced to a
matrix inequality in the sense of the partial ordering of the real space of the Hermitian matrices.
For any x,, € C*", let § = y(x,,) € C™ be defined as

7= (B ) B ) 1 (B ) .

We observe that (ngm)H Py, is invertible, indeed, using the same arguments of Proposition

IV.3.2 with f = I, we have that (P5, )7 P35 = Cp[p] with

(1) = 1 <p (;?)Hp () +» (2+W>HP (;Hﬂ))

and condition (IV.6) ensure that p > 0, that is C,,[p] is positive definite.
Therefore, (IV.15) is implied by

|l2n = P nll3 < AllzallZ, g,
where the latter is equivalent to the matrix inequality
W (p) W, (p) <ACalf).

with W, (p) = Isn—Pi’m[(Pj,m)HPjym]*l(ijm)H. Since, by construction, W, (p) is a Hermitian
unitary projector, it holds that W, (p)?W,(p) = W,(p)? = W,(p). As a consequence, the

preceding matrix inequality can be rewritten as
Wo(p) < ACalf]. (IV.16)

Now, using the expression of the matrix P, = Cn[p](K9% @ I,) and the relation (TV.2),
we write (P35 ,,)" as

(By) = = (Fn @ L) (In2 L) diag (p(0") ") (FT @ 1)

Hg\H
[\

= —=(Fn® L) | dizg (")) | dige (p(0\,)™)] (F © 1),

N

where I, 9 = [Ip,| 1] Then,

mxn *

s s 1 . n n : n n
(P2 ) P = 5(Fn 1) | dizg (p0™) p(0™)) + digg (p(05,) p(0D,)) | (Fif 1),

Hence, the matrix (FT @ I,)W,(p)(F, ® I;) becomes

(Fé{ ®@ L)Wy (p)(Fr, ® 1)
. n . n n n n —1
= Ln — diag (p(0")) (17, @ 1,) | dize (p™) (") + p(0) p(0") ) |

Loz @ L) diag (p)T)  (1v.17)

where i = i + m. Now, it is clear that there exists a suitable permutation by rows and columns
of (FH @ I,)W,,(p)(F, ® I) such that we can obtain a 2s x 2s block-diagonal matrix of the form
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(n)

g | P ) (m)yH 1 (") () H gy ("))~ () (n)
_d i (N)\H o (19 (R)VH  (9( 1 (n)\H (n)\H
o [ p(o") ] [ (™) e + p0)p@™) 1 | [ B p(o)

Therefore, by considering the same permutation by rows and columns of (FX ®I,,)C,[f].(F,®
I) = ?El%g (f(ﬁgn)), condition (IV.16) is equivalent to requiring that there exists ¢ > 0 independ-

ent of n such that, Vj =0,...,m —1
(n)
p 191 n n n n _ n n
Iy - [ o ] | e p(™) + p) R ) | [ M) pe) |
(n)
. [ £(w;")

Due of the continuity of p and f it is clear that the preceding set of inequalities can be reduced
to requiring that a unique inequality of the form

p(?V)
b= [ p(Y+ )

PO pmT | <e

f(9+ m)
holds for all ¥ € [0,27)\H. By the Sylvester inertia law [65], the latter relation is satisfied if
R(0) < clas (IV.18)

for all ¢ € [0,27)\H and the proof is complete. O

IV.3.1 TGM Convergence and Optimality: the Diagonalizable Case

The current subsection is devoted to show that the setting in Subsection IV.2.1 is appropriate
to obtain the TGM convergence and optimality. In particular, the following result shows that
conditions (IV.5), (IV.6), and (IV.7) are sufficient in order to satisfy the approximation property.

Theorem IV.3.4. Let C,[f], with £(9) € C**5 trigonometric polynomial, £ > 0, and Define O
as the set of points ¥ such that X;(£(9)) = 0 for some j and define H = {n|n € {¥, (¥ + )
mod 27},9 € O¢}. Assume that, for 0 € Oy, N\j(f(V+ 7)) # 0 for all j = 1,...,s. Let
Py = Co[p)(KQ¥ © I,) be a projecting operator, where p(¥) is a unitarily diagonalizable
matriz-valued trigonometric polynomial satisfying conditions (IV.5), (IV.6) and (IV.7). Then,
there exists a positive value 7 independent of n such that inequality (b) in Theorem 1.9.2 is
satisfied.

Proof. By Theorem 1V.3.3, it is clear that it is sufficient to prove that there exists a constant
¢ > 0 such that for all ¢ € [0,27)\H

R(9) < cly,. (IV.19)
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By simple computations, using condition (IV.7) and Remark 1 the matrix-valued function R(?)

can be written as

[N

p(V+m)p@+7) —p@)p(¥+m)

W) o+ mp@ p)p()

[f(ﬁ)
f(9 4 ) f(9+ )
(TV.20)
The relation (IV.19) is satisfied if the matrix-valued function R(9) is uniformly bounded in the
spectral norm, which can be obtained proving that all the components of R(¢}) are uniformly
bounded in the 1—norm. Using again the commutativity hypothesis (IV.7), we can write R(¢)

as

£ (0)p( +m) " aW)p( + 1) 2(0) £ 2 @)p(0 +m)Ta(@)p()E (0 +7)
20+ mp() AR+ ME (W) 20+ m)p() )R (D +7)

R(Y) = [

For all 9 € [0,27)\H, we can write

()P + M@ +mEEW)|

< e E@p@+ " | law)l, |jp@ +meF W) -

Noticing that

o+, = -t

and using conditions (IV.5) and (IV.6), we can find 6 such that ||Ry1(9)|1 < ¢ for all ¥ €
[0,2m)\H.

The uniform boundedness of the other components of R(1}) can be proven in an analogous
way, recalling that if ¥ belongs to ©q, then f is non-singular in 9 + 7. This implies that the
matrix-valued function R(?) is uniformly bounded in the 1-norm. Since the matrix dimension
of R(19) is fixed for all ¥ and equal to 2s, the equivalence between the 1-norm and the spectral
norm lets us to conclude the proof. O

We highlight that studying the conditions for which R(#) is bounded can be useful to develop
projection strategies for several applications, as we explain in the following chapter. In addition,
since (IV.5-IV.7) are sufficient but not necessary conditions, they can be weakened in order to
extend the choice of the trigonometric polynomial used to construct the projector.

IV.3.2 TGM Convergence and Optimality: the General Case

In the present subsection we prove the approximation property for a grid transfer operator with
a matrix-valued symbol that might be non-diagonalizable. In particular, we focus on the setting
of subsection 1V.2.2.

Theorem IV.3.5. Let C,[f], with £ a matriz-valued trigonometric polynomial, £ > 0 such that
condition (IV.8) is satisfied. Let P3,, = Co[p](K9% ® I,) be a projecting operator, where p is
a matriz-valued trigonometric polynomial satisfying conditions (i)-(iii) of Section IV.2.2. Then,
there exists a positive value 7y independent of n such that inequality (b) in Theorem 1.9.2 is
satisfied.
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Proof. Analogously to Theorem IV.3.4, we note that using the result of Theorem IV.3.3, it is
sufficient to prove that there exists a constant ¢ > 0 such that for all ¥ € [0, 27)\Q(¢)

R(ﬂ) < clyg, (TV.21)
where
9(190) = {190, (’190 + 7T) mod 271'}.

Note that we can write the matrix-valued function R(¢}) as

1
2

o I, — p(9)q(?)p(9)" —p(9)q(W)p(¥ + m)7 £(9)
—p(@ +m)a(@)p()? I, —p+m)a@)p® +m)H f(0+7)

f(0+7)

Hence, if we prove that for every 9 € [0, 27)\Q(Jg) the matrix R(¢J) is uniformly bounded in the spectral
norm, then we have that there exists ¢ > 0 which bounds the spectral radius of R(¢}) and then the latter
implies inequality (IV.21). To show that the matrix R(#) is uniformly bounded in the spectral norm, we
can rewrite R(¢¥) in components as

_ [ Ba(0) Rip(9)|
RO =\ g, o) R;;m] B
EEO)L - p@aP@ME )~ O)p)a(@)p(d +m) (9 -+ )
50+ m)p(9 + m)a(d)p(D) - (0) £73(0 4 7) (I, — p(0 + ma(9)p(d + 7)) (9 + )

The function ||R(9)]2 : [0,27)\Q(¥) — R is continuous and, in order to show that R(:}) is uniformly
bounded in the spectral norm, Weierstrass Theorem implies that it is sufficient to prove that the following
limits exist and are finite:

Jim [R@)a | tim R

By definition, R(¥) is a Hermitian matrix for ¥ € [0, 27)\Q(Jy). Moreover, by direct computation,
one can verify that the matrix

I, — p(9)q(9)p ()7 —p()q(W)p(9 + )"
—p(¥ +ma@)p@W) I, — p(+m)a(@)p + )

is a projector, then it has eigenvalues 0 and 1. Consequently, from the Sylvester inertia law, it follows
that R(1) is a non-negative definite matrix.

We remark that in order to bound the spectral norm of a non-negative definite matrix-valued function,
it is sufficient to bound its trace. Hence, we check that the spectral norms of the elements on the block
diagonal of R(¢) are bounded. The latter is equivalent to verify that the following limits

lim [| Ry 1(9)]|2, (IV.22)
V=99
lim || R2,2(9)]|2, (IV.23)
v—I9¢g
g [ Ra (D)2, (IV.24)
p i [R22(9)][ (IV.25)
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exist and they are finite, which in practice requires only the proof of (IV.22). Indeed, the finiteness of
(IV.23) and (IV.24) is implied by the hypotheses on f, which is non-singular in ¥y + 7. The finiteness of
(IV.25) can be proven as (IV.22) taking into account that R(4) is 2m-periodic.

To prove (IV.22) we note that for all ¥ € [0, 27)\Q(g), we can write

=
o
!
=
N
~
|
=
=X
=
he!
=
T
L r)
o
=
I

with r(9) defined as in (IV.10).

Without loss of generality, we can assume that 7 = 1, that is ¢1(J9) is the eigenvector of f(¥)
associated with the eigenvalue 0. Indeed, if 7 # 1, it is sufficient to permute rows and columns of D ()
in the factorization in (IV.9) via a permutation matrix IT which brings the diagonalization of f(Jy) into
the desired form. Moreover, we can assume that ||q1(d0)|l2 = 1.

From condition (i) we have that the matrix-valued function r(¢) is Hermitian for all ¢ € [0,27). In
addition, from condition (i) and from the latter assumption on 7, the matrix r(¢) can be decomposed
as r(9) = Wy (9) Dp(9)WH (9) and

r(do) =Wr (o) D (90) W, (0) =

)\21"[9 ’LU2H19
[Q1 (Vo) | wa (o) | ... |ws ?90)} (r(vo) , A

/\s (I‘(’ﬂo)) wsH(ﬁo)
Then, we can rewrite the quantity to bound as follows:
Jim @)D (9)Q" (9) ~ a)DH Q" WD) D (W Q™ (9D~ Q" ()2 =

. : (IV.26)
Jim [D71) — D @)QT Wi (0) De(D) W (2)Q" (D ().

By definition of Q(¥) and W, (), the vector go(¥) is orthogonal with respect to both g; (%), w; (o),
j=2,...,s. Denoting by os_1 the null column vector of size s — 1, we have

lim QF@Wo(o) = | D00 @) oy

s , V.27
JI—=do Os_1 M(ﬁo) ( )

where M (9) is a matrix-valued function which is well-defined and continuous on [0, 27]. Then, since the
eigenvalue functions \;(f(9))~1, for i = 2,...,s, are well-defined and continuous on [0, 27], see Lemma
1.3.1, the quantity to bound

1915%0)‘1 (£(9)) (1 = M (x(9)))) ol
Ao (£(90))
0,1 (Ism1 — M(00) M™ (9))
As(£(90))

Consequently, the thesis follows from condition (¢i¢) of Subsection IV.2.2. O
In practical applications choosing a trigonometric polynomial p such that condition (%) is
verified could not be trivial. Hence, in the following, assuming that p satisfies condition (¢) so

that the matrix-valued function r is well-defined, we provide a useful result that can be applied
to construct p that fulfils condition (i7).
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IV.4. Extension to the Multidimensional Case

Lemma 1V.3.6. Let £ be a matriz-valued trigonometric polynomial, £ > 0 that satisfies con-
dition (IV.8). Assume p is a matriz-valued trigonometric polynomial such that condition (i) is
fulfilled, so that the matriz-valued function r defined as in (IV.10) is well-defined. Assume that
the eigenvector q;(o) associated with the ill-conditioned subspace of f(Vy), i.e., £(¥0)g;(P0) =
0q5(V0), is such that:

1. q3(00) is an eigenvector of p(¥o), associated to )\gl) £ 0 that is
P(W0)a5(90) = A5 a5(90):

2. q3(Vo) is an eigenvector of p(Yo + ) associated with the zero eigenvalue, that is
P(Jo + m)q5(P0) = 0gz(o);

3. q;(00) is an eigenvector of p(9), associated to )\;2) # 0, that is
p(00)4;(90) = AV g5(90).

Then condition (i1) is satisfied.

Proof. From all the hypotheses on ¢;(¢y) and by direct computation, we have

(p(90)"P(W0) + P(P + ™) T p(Wo + 7)) g5(¥) = AN g5(9p).

Then, by definition of r(¢) in (IV.10), it holds that

r(90)g;(90) = (o) (p(90) P (D) + P(do + )T p(do + 7)) ™ P(¥0)" g5(0)

= \Pp() (p(W0)Tp(¥0) + p(Do + m) (o + 7)) " g5(v0)
N

1
Y 5P (W0)a5(90) = g5(vo).

IV.4 Extension to the Multidimensional Case

In the present section we give a possible extension of the convergence results in the multidimen-
sional setting.

First, we define the objects of our analysis in more dimensions. Let n := (nj,...,nx) be
a multi-index in N¥. We need to provide a generalized definition of the projector Py, for the
k—level block-circulant matrix Cp[f] of dimension sN(n) generated by a multivariate matrix-
valued trigonometric polynomial f.

Analogously to the scalar case, we want to construct the projectors from an arbitrary multi-
level block-circulant matrix Cy[p], with p multivariate matrix-valued trigonometric polynomial.
For the construction of the projector we can use a tensor product approach:

Pam = Calp] (Kﬁ?ﬁf ® 1'3) : (TV.28)

)
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where Kr?ffg is the A'(n) x /\/2(:1) matrix defined by Kgﬁﬁl = Kg‘%l ® K%f,‘fw ® - ® ngcfdmk and
Cun[p] is a multilevel block-circulant matrix generated by p. The main goal is to combine the
proof of Theorem IV.3.5 with the multilevel techniques in [119], in order to generalize conditions
(i)-(iii) to the multilevel case.

In the k—level setting, we are assuming that 9 € [0,27)* and 7€ {1,..., s} such that

{ Aj(E(9) =0 for 9 =9 and j =7, (1v.29)

Aj(f(9¥)) >0 otherwise.

The latter assumption means that the matrix f(«9) has exactly one zero eigenvalue in 9y and
it is positive definite in [0,27)*\{9¢}. Let us assume that, ¢;(9¢) is the eigenvector of f(d)
associated with A;(f(d9)) = 0. Moreover, define Q(9) = {9 +mn, n € {0,1}*}. Under these
hypotheses, the multilevel extension of conditions (7)- (1) of Section IV.2.2, which are sufficient
to ensure the optimal convergence of the TGM in the multilevel case, is the following. Choose
p(-) such that

> p©"p) >0, voelo2m)F (IV.30)
£€Q(v)

which implies that the trigonometric function

£e2(9)
is well-defined for all ¥ € [0, 27)*.
r(0)qz(Po) = ¢5(do). (Iv.31)
lim A;(F(9)) 711 — M\(x(9))) = ¢, (TV.32)

19*)190

where ¢ € R is a constant.

In the following we want to construct a multilevel projector Py m such that the conditions
(IV.30)-(IV.32) are satisfied and, then, the optimal convergence of the TGM is ensured in our
multidimensional setting.

In particular, starting from sy X sy matrix-valued trigonometric polynomials py, £ =1,...,k,
we aim at defining a multivariate polynomial p*) associated to the multilevel projector Pnm
such that the conditions (IV.30)-(IV.32) are satisfied.

In the following lemmas, we show that the aforementioned goal is achieved if we choose the

multivariate matrix-valued trigonometric polynomial

S

p™ (91, 92,...,91) = X pe(y), (IV.33)

(=1

where py(¥y) € C%*5¢ are polynomials that satisfy conditions (4)-(%ii) of Subsection TV.2.2.
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Lemma IV.4.1. Let p®) (91, 9,,...,9;) be defined as in (IV.33). Then,

k
> pYE =) (pe(e) " Pe(Ve) + pe(We + ) pe(Wy + 7)) .
£€Q(v) (=1

Proof. By definition, p*)(89) = ®§:1 pe(Yy), then

k
> pME© M) = Y (@Pe &) ) <®pz(§ﬁ)>
) =1

£eQ(v) £c(
k
= ) <® (Pe(&)HPw(&))>-
£€Q(9) \L=1

The proof is then concluded once we prove by induction on k the following equality

k k
> <® (Pe(&0) P, (&0) ) Q) (Pe(90) " pe(We) + pe(We + m)pe(Wy + 1)) . (TV.34)
= /=1

£eQ(v)

The equation above is clearly verified for £ = 1, indeed, by definition

Z <® Py 5@ Pr, @))) = z (P1(§1)Hp1(fl)) _

Q) \e=1 ee{¥1, 0147}

Py (01)7p1(91) + p1(91 + 1) p1 (9 +7) =
1

(Pe(@0) T pe(Ve) + Pe(9e + m) pe(Ve + 7)) .

~
Il
i

Let us assume that equality (IV.34) is true for £ — 1. We have that

k
X (pe (W) pe(90) + pe(Ve + 7) T pe(s + 7)) =
k-1

(Pe(9e) " pe(e) + pe(Vg + m) T pe(Vp + 7)) | ®
—

1
(Pr (k)" pe(9k) + Pr(y + m) " pe(9k + 7))

The left-hand side of the latter term is a function of & — 1 variables (1,39, ...,9t_1). Then,
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by the inductive hypothesis and from the properties of the tensor product we have

k—1

® (Pe(W0) " pe(V0) + Pe(Ve + m) T pe(9e + 7)) | ®
=1

Pr(V) " Pe(9%) + Pr(k + ) pr(V), + 7)) =

k—1
Y Q&) | @
(51,62%,&1@71) =1
Q(ﬁl,ﬂ2,...,’l9k71)

(Pr (%) Pk (V1) + P (V) + ™) T pr(Vp + 7)) =

k1
> K@ Pe(fe)sz(&z)> ® (Pr(Wk) " Pe(k) + Pr(Wk + ) pr(9p + 7))
(€182, ,€k—1) =1

9(191,1925-71%—1)

k-1
Z [(@ pf(@)HPZ(@)> ® pr(9%) T pr(9k)+

ce{(h+hm,...,96_1+lk_17}, l=1
1e{0,1}+-1

k-1
+ <® Pé(fe)sz(&)> ® pr(9% + 7)Fpr(0y + )

(=1

k

> ) pe(&) T pe(&e)+

gc{(+hm,... . Op_1+lk_1m9%)}, {=1
1€{0,1}+—1

K
> Q) pe(&)Tpe(&r) =

ge{(+hm,... . Op_1+lk_1m+m)}, £=1
1e{0,1}*-1

k
> Q) peér) " pel)-

geQ(v) (=1
Then, relation (IV.34) is verified for k, and this concludes the proof. O
Lemma IV.4.2. Let p®*) (01,95, ...,9;) defined as in (IV.33) where py, for every £ =1,... k,

is a polynomial which verifies the positivity condition (i). Then, p*) is such that the positivity
condition in the multilevel setting (IV.30) is satisfied.

Proof. The thesis is a consequence of Lemma IV.4.1 and the matrix tensor product properties.
Indeed, the eigenvalues of a tensor product of matrices are the product of the eigenvalues of the
matrices. Then, condition (IV.30) is trivially implied from the fact that

K
> p*P©"pM () = Q) (pe(W0) " Pe(We) + pe(We + 7)pe(Ve + 7))
£€eQ(d) =1

and from the positivity condition in the unilevel case.
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Lemma IV.4.3. Let p) (01,09, ...,0%) be defined as in (IV.33) and it verifies (IV.30). Then,
the trigonometric function

-1
r(ﬂ)p““w)( > p<k><£>Hp<k><s>) p®(9)H
£eQ(9)

is well-defined for all 9 € [0,2m)*. Moreover, it holds that

:
9) = Q) re(ve), (IV.35)
(=

where, for € =1,...,k, ro(0¢) = pe(Ve) (Pe(9e) T pe(9e) + Pe(9e + 7)Hpe(9r + 7r))_1 pe(9)H

Proof. From Lemma IV.4.2, we have that r(19) is well-defined for all 9 € [0,27)*. From Lemma
IV.4.1 and the properties of the tensor product, we have

£eQ(v)

-1
rw)p(’f)w)( > p<k><s>Hp<k><s>) pM(9)" =

k
((X) [pe(90) " pe(V0) + pe(Ve + )T pe(de + )] )(X)p,Z 9)H = (IV.36)
/=1

o~
= | x>
—_

(pz(ﬁz) [pe(90) " pe(V0) + pe(Ve + ) pe(de + w)]_ pe(9y) ) ®r4 (9y).
1

4

O

Lemma IV.4.4. Let p®) (91,9, ...,9;) be defined as in (IV.33), such that, for all £ =1,. ..k,
pe(9¢) € C**5¢ is a polynomial that satisfies conditions (i)-(iii) of Subsection IV.2.2. Let ¢'¥) =
®£:1 k9 where qp is the column vector of length sp such that I'g(19( ))qg =q,l=1,...,k.
Then,

r(90)q™ = ¢*),
where Yo = (19(()1), . 19[()14;)).

Proof. From Lemma IV.4.3, we have that r(d¢) = ®€ ny. ( ) then, by definition and from
the properties of the tensor product, it holds

k

r(9o)q®) = (é ry (WU) (é qe) = é (xe (v) ar) = R ae = a®. (IV.37)

=1 =1 =1 =1
O

Lemma IV.4.5. Let p*)(91,9,...,9%) be defined as in (IV.33) such that verifies (IV.30).

Consider i
= Q) re(d0),
/=1

-1
where, for £ = 1,...,k, v¢(9r) = pe(90) (Pe(90) " pe(90) + Pe(Ve + ™) pe(Ve + 7)) pe(9r)?
and they verify condition (iii) of Subsection IV.2.2. Then, r(9¥) satisfies condition (IV.52).
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Proof. Without loss of generality, suppose that the order of the zero of \; (f(1)) in 19(()5) is¢>2
for £ =1,...,k, then the functions 1 — A; (r,(9¢)) have a zero in 1988) of order at least ¢ € N for
all ¢ =1,...,k by condition (4). Hence, the (¢ — 1)-th derivative of 1 — A\;(re(d)) in 1986) is
equal to zero. Then we have, for £ =1,...,k,

A (re(9) V| =o0.

90

The thesis follows by direct computation of the partial derivatives of 1—X;(r(19)) in 9, exploiting
the fact that

k
r(9) = Q) re(d0),

and
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Chapter V

Multigrid for Qs Finite Element
Matrices Using Block-Toeplitz Symbol
Approaches

In the current chapter we consider multigrid methods for the solution of large linear systems
whose coefficient matrices arise from the Qs approximation of the elliptic problem
{ div (—a(x)Vu(x)) = ¢(x), x€Q, (V1)
u(x) =0, x € 09
with © being a bounded subset of RF having smooth boundaries and with a being continuous
and positive on Q.

The multigrid techniques that we present are based both on the theoretical results of Chapter
IV and on the spectral analysis of the involved matrix-sequences by means of the study of the
associated spectral symbol provided in [64].

Indeed, in the systematic work in [64], tensor rectangular Finite Element approximations
Qs of any degree s and of any dimensionality k are considered and the spectral analysis of the
stiffness matrix-sequences {Ay}, is provided in the sense of asymptotic distributions, spectral
clustering, spectral localization, extremal eigenvalues, and conditioning.

We observe that the information obtained in [64] is strongly based on the notion of spectral
symbol and it is studied from the perspective of multilevel block—Toeplitz operators and GLT
sequences, which are all concepts that we introduced in Chapter 1.

The first procedure that we propose is a classical multigrid strategy that follows a functional
approach, that is, we define the prolongation operator as the inclusion operator between the
coarser and finer involved functional spaces. Our aim is to analyse the prolongation matrix
as a cut block-Toeplitz matrix so that the grid transfer operator fits in the setting of Section
IV.2. Indeed, we provide a two-grid convergence and optimality analysis exploiting the results
in Section IV.3.

We perform an analogous analysis also to a second multigrid strategy, where we choose the
standard bisection prolongation operator. In this case, we employ the results in Subsection
IV.3.2 to prove that the chosen grid transfer operator fulfils the approximation property for the
linear systems associated to the Q discretization of the model problem (V.1).
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Finally, we define a new class of grid transfer operators that satisfy the theoretical condi-
tions of Chapter IV. In particular, we explain how to choose the trigonometric polynomial
that generates the block-Toeplitz matrix used in the construction of the grid transfer operator
focusing only on algebraic considerations on the symbol of the linear system matrix-sequence.
We highlight that the presented procedure has a wide interest, since it might be applied to every
matrix-sequence that falls into the theoretical setting.

The contents of this chapter are partly published in [55] and partly in the process of being
published in [20, 39]. The chapter is outlined as follows. In Section V.1, we present the problem,
the specific Q4 approximation, and the analysis of the structure and of the spectral features of
the related matrices. Section V.2 is devoted to the multigrid strategy definition and analysis
for the geometric projection operators. Moreover, we confirm the derived optimality results
through numerical tests for different values of the function a, both in one dimension and in
higher dimension. In Section V.3, we provide the analysis of the approximation property for the
standard bisection grid transfer operator. Finally, Section V.4 is dedicated to the development
of a class of grid transfer operators that are suitable for both the two-grid and the V-cycle
convergence. A selection of numerical experiments confirms the effectiveness of the presented
projection strategy for the two-grid method and indicates a heuristic technique for V-cycle
optimality.

V.1 Q, Lagrangian FEM Stiffness Matrices

In what follows, we present the details of the Qs approximation of a simplified version of the
problem in (V.1) as follows. We set the dimensionality k equal to 1, the function a(x) identically
equal to 1, and 2 = (0,1). In this context, the problem becomes:

find u such that

—u"(z) =(x) on (0,1)

(V.2)
u(0) = u(1) =0,
where ¥(x) € L2 ((0,1)).
We write the weak formulation of the problem as follows:
find u € H}(0,1) such that
alu,v) =< p,v > Yo e H}(0,1), (V.3)

where a(u,v) = f(o 1 o (x)v(x) dr and < i, v >:= f(o 1)¢(x)v(x) dx. For s,n > 1, we define
the space

Vi) = {JEC([O,l]): o] EPS,W:O,...,n—l}, (V.4)

[ 5]
where we denote by Py the space of polynomials of degree less than or equal to s. Then, the

space Vf{s) represents the space of continuous piecewise polynomial functions. Starting from VT(LS),

we consider its subspace of functions that vanish on the boundary, defined by

W) = {a eV : 0(0) = o(1) = 0} . (V.5)

Note that WS is a finite ns — 1 dimensional subspace of H}(0,1) and, following a Galerkin
approach, we approximate the solution u of the variational problem by solving the problem:
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find usp, € Wq(f) such that
(s, v) =< 0> Yoe W, (V.6)
We define the uniform knot sequence
&=—,1=0,...,ns, (V.7)

and the Lagrangian basis functions by

(p?’s(fi) = (51‘7]', i,j = 0, ..., MS. (V8)
with 9; ; being the Kronecker delta. It can be shown that the latter definition is well-posed and
that {©]"°, ..., 1} is a basis for WS, Then Us .y can be written as linear combination as

ns—1

o n,s
Us,n = UiPs;
7=1

and solving the problem (V.6) reduces to the solution of the linear system

Ay = b,

n

with
A(s) _ n,s n,s\1ns—1 b= n,s ns—1 o ns—1
- [Oé(gO QOZ )] - [< ¢7<P >]i:1 I u = [uz}izl .

n 7 4,j=17 )

The spectral properties of the Stiffness matrix-sequence {Agf)} were studied in [64] and, in the

following, we report the essential features. Let us consider the ﬂagrange polynomials L, ..., L
associated with the reference knots t; = j/s, j=0,...,s:
S S .
B t—t; st—7 .
Li(t)_Hti_tj —H i 1=0,...,8s,
i=0 i=0 (V.9)
JF JFi

Li(tj)Z&‘j, 1,7 =0,...,s.
Then, the Qs stiffness matrix for equation (V.2) equals the matrix Aff) in the next theorem.

Theorem V.1.1. ([64]) Let s,n > 1. Then,

[ Ko KT
Al = | : (V.10)
i K1 Ko |_
where the subscripts “—” mean that the last row and column of the of the whole matrices in

square brackets are deleted, while Ky, K1 are s X s blocks given by
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Symbol Approaches

(Ly, L) - (L, L) (L, L)
Ko = / ./ / : / / :/ ’
<L1? Ls—1> T <Ls—1’ Ls—1> <Ls’ Ls—1>
L (L4 LY) e (L L) (LG L) + (L L) 1)
0 0 - 0[(Lh L)
oo ol
1= .. . . )
[0 0 - 0] (Lp, L)

with Lo, . .., Ls being the Lagrange polynomials in (V.9). In particular, Agf) is the (ns—1)x (ns—
1) leading principal submatriz of the block-Toeplitz matrices T, [f, | and £, : [-m, 7] — C**° is
the Hermitian matriz-valued trigonometric polynomial given by

£, (0) == Ko+ K’ + K{e ™. (V.12)

An interesting property of the Hermitian matrix-valued functions f, (9) defined in equation
(V.12) is reported in the theorem below: in fact, from the point of view of asymptotic spectral
distributions, the message is that, independently of the parameter s, the spectral symbol pos-
sesses the same character as 2 — 2 cos(#), which is the symbol of the basic linear Finite Elements
and the most standard Finite Differences.

Theorem V.1.2. ([6}]) Let s > 1. Then,
det(fy, (9)) = ds(2 — 2cos(0)), (V.13)

where ds = det([(L}, Ly)]; ;=) = det([(L&,Lé}]i}il) > 0 (with di = 1, being the determinant

of the empty matriz equal to 1 by convention) and Lo, ..., Ls are the Lagrange polynomials in
Equation (V.9).

Furthermore, a generalization of the previous result in higher dimension is given in [106] and
is reported in the subsequent theorem:.

Theorem V.1.3. ([106]) Given the symbols £, in dimension k > 1, the following statements
hold true:
1. £, (0)es =0Oes, s > 1;

2. there exist constants Cy > C1 > 0 (dependent on f,_) such that

C1> (2= 2cos(¥;)) < M(f, (9) < Co > (2= 2cos(¥;)); (V.14)
j=1 j=1
3. there exist constants M > m >0 (dependent on £, ) such that
0<m<N(E, () <M, j=2,..,5" (V.15)
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V.2 A Geometric Multigrid Strategy: Definition, Symbol Ana-
lysis, and Numerics

Let us consider the following family of Finite Element functional spaces of the form (V.5):

{Wéf) }t:07...,i'

From the definition of VT(«LS) and Wfls), it is clear that the following inclusion property holds
( )
Wi cwi c.ocw® cwl.

Therefore, to formulate a multigrid strategy, it is quite natural to follow a functional approach
and to impose the prolongation operator P, , : WQ(f) — Wéfll to be defined as the identity
operator, that is

Piav,=v, forallv, € WQ(f)

Thus, the matrix representing the prolongation operator is formed, column by column, by

representing each function of the basis of the coarse space WQ(,S) as linear combination of the
(29,

basis of the fine space Wéfll, the coefficients being the values of the functions ¢, * on the fine
mesh grid points, that is,
52t+1

2t).s 2t),s ] 9t+1y
A0 = X o (5 ) o @) (v.16)

J=0

In the following subsections, we consider in detail the case of Qs Finite Element approx-
imation with s = 2 and s = 3, the case s = 1 being reported in short just for the sake of
completeness.

V.2.1 @, Case

Firstly, let us consider the case of Q1 Finite Elements, where, as it is well known, the stiffness
matrix is the scalar Toeplitz matrix generated by f; (J) = 2 — 2cos(?), and, for the sake of
simplicity, let us consider the spaces Wil) and Wél) with respective dimension 3 and 7. In the

standard geometric multigrid, the prolongation operator matrix is defined as

- -
2
1
1 1
2 2
A 1 (V.17)
1 1
2 2
1
1
L 2

Indeed, for polynomial degree equal to 1, the basis functions with respect to the reference interval
[0,1] are ¢1(2) = 1 — &, ¢2(2) = &, and, according to Equation (V.16), the cp?’l coefficients are

2(1/2) =1/2, o2(1) =1, ¢1(1/2) =1/2,
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Table V.1: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1,2,3
in one dimension with a(z) =1 and e =1 x 107°.

s=1 s=2 s=3

# Subintervals | TGM  V-Cycle | TGM  V-Cycle | TGM  V-Cycle
16 6 7 9
32
64
128
256
512

o e NI IR IR
~1 =1~~~
ENIIEN BN B
N I B A N RN |
© © o O ©
© © O O © ©

giving the columns of the matrix in Equation (V.17).

However, our aim is to write Py, in the form of equation (IV.4). For the latter purpose, we
think of the prolongation matrix above as the product of the Toeplitz matrix generated by the
polynomial p,, () = 1 + cos(1¥), where the subscript G stands for “Geometric for polynomial

KFven that is, PL,, =T, [pgl} Kven,

degree 17, and the cutting matrix K" =",

The two-grid and multigrid convergence with the above defined restriction/prolongation
operators and a simple smoother (for instance, a Gauss-Seidel iteration) is a classical result,
both from the point of view of the literature of approximated differential operators |69] and
from the point of view of the literature of structured matrices [4, 56].

In the first panel of Table V.1, we report the number of iterations needed for achieving the
predefined tolerance ¢ = 1075, when increasing the matrix size in the setting of the current
subsection. Indeed, for the two-grid method we use Prim =T, [pcl} Kf,ﬁ,f” and its transpose
as prolongation and restriction operators and Gauss—Seidel as a smoother. We highlight that
only one iteration of pre-smoothing and only one iteration of post-smoothing are employed in
the current numerics. In this scalar setting, it is straightforward to see that the conditions in
(IV.1) are fulfilled, and hence there is no surprise in observing that the number of iterations
needed for the two-grid remains almost constant when we increase the matrix size, numerically
confirming the predicted optimality of the methods. Moreover, we obtain an analogous optimal
behaviour also for the V-cycle method implemented with the same prolongation, restriction, and
smoothing strategies at each level and this is expected from the analysis in [4].

We remark that we consider the one-dimensional case for the theoretical development of the
method, which can be extended to more dimensions through a tensor argument, as we detail in
Subsection V.4.3.

V.2.2 (@Q, Case

Let us consider the case of Qo Finite Elements, where we have that the basis functions with
respect to the reference interval [0, 1] are

o1(2) = 232 —3&+1,
Pa(d) = —4d® +44,
¢3(2) = 22°— 4.
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For the sake of simplicity, let us consider the spaces Wf) and Wf) with respective dimension

3 and 7. Thus, with respect to Equation (V.16), the 4,0%’2 coefficients are

Pa(1/4) = 3/4, ¢2(1/2) =1, ¢2(3/4) =3/4, ¢2(1) =0,
while the gog’z coeflicients are

@3(1/4) = —1/8, @3(1/2) =0, $3(3/4) =3/8,  ¢3(1) =1
¢1(1/4) =3/8,  &1(1/2) =0, &1(3/4) = =1/8, ¢1(1) =0,

and so on again as for that first couple of basis functions. Notice also that, to evaluate the
coefficients, for the sake of simplicity, we are referring to the basis functions on the reference
interval, as depicted in Figure V.1. Summarizing, the obtained prolongation matrix is as follows

s -
4 8
1 0
3 3
4 8
Pia.=Ps=1]0 1 (V.18)
3 3
8 4
0 1
1 3
L 8 4

Hereafter, we are interested in setting such a geometrical multigrid strategy, proposed in [26,
69, 70|, in the framework of the more general algebraic multigrid theory and in particular in the
one driven by the matrix symbol analysis. To this end, we represent the prolongation operator
quoted above as the product of a Toeplitz matrix generated by a polynomial P, and a suitable
cutting matrix, following the theory in Chapter I'V. We recall that the Finite Element stiffness
matrix could be thought as a principal submatrix of a Toeplitz matrix generated by the matrix-
valued symbol that, from Equation (V.12), has the compact form

S (R
£, (¥) = . (V.19)
—%(1 + e ) %4 + %(ew +e')

Then, it is quite natural to look for a matrix-valued symbol for the polynomial P, as well. In
addition, the cutting matrix is also formed through the Kronecker product of the scalar cutting
matrix Kf};f” and the identity matrix of order 2, so that

P2, =T, [po,| (KEw" @ 1)

Taking into account the action of the cutting matrix Kf”;ne” ® I5, we can easily identify from

Equation (V.18) the generating polynomial as
Pe, (V) = Ko + K1 + K_1e7" + Kye® + K _ge . (V.20)
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T T T T
—1
—2
3
* mesh h
o mesh 2h
3
¥ *
5 7
0.2 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure V.1: Construction of the Q2 prolongation operator: basis functions on the reference element.

where
i 4 0 1 j -1 =
Ko = Ky = VK = Ky = . K_ 9= 090,
0 0 1 ! 0 0 ! 1 0 2 0 0 2= V22
that is

Pg, () =

A very preliminary analysis, just by computing the determinant of p, () shows there is a zero
of third order in the mirror point ¥ = m, being

L o, i
det(pg, (V) = 3¢ 201 4 1)3,

Moreover, we can provide a more rigorous convergence analysis if we recall Theorem 1V.3.3. To
this end, we have explicitly formed the matrices involved in equations (IV.6) and (IV.13) and
computed their eigenvalues for ¢ € [0, 2x]. The results are reported in Figure V.2 and are in
perfect agreement with the theoretical requirements. Indeed, by Theorem IV.3.3, our projection
strategy for the Qo FEM linear systems is such that the approximation property is fulfilled.

In the second panel of Table V.1, we report the number of iterations needed for achieving
the predefined tolerance ¢ = 1079, when increasing the matrix size in the setting of the cur-
rent subsection. Indeed, we use T, [pGQ} (Kf};f” ® Ig) and its transpose as prolongation and
restriction operators and Gauss—Seidel as a smoother. Again, we remind that only one iteration
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10 0.2
M~ — ~_ ]

| 0.15|
1 0.1
6l

51 0.05
4

5 0

0 2 4 6 0 2 4 6

Figure V.2: Check of conditions for Q2 geometric prolongation: (left) the plot of the eigenvalues of
Pc, (19)HpG2 () + Pe, (¥ + 7r)HpG2 (0 + ) for ¥ € [0,27]; and (right) the plot of the eigenvalues of R(¥)
for 9 € [0, 27].

of pre-smoothing and only one iteration of post-smoothing are employed in our numerical set-
ting. As expected, we observe that the number of iterations needed for the two-grid convergence
remains constant when we increase the matrix size, numerically confirming the optimality of
the method.

Moreover, we notice that also the V-cycle method possesses optimal convergence properties.
Although this behaviour is expected from the point of view of differential approximated operat-
ors, it is of particular interest in the setting of algebraic multigrid methods. Indeed, constructing
an optimal V-cycle method for matrices in this block setting requires a further analysis of the
spectral properties of the restricted operators, as we see in Section V.4.

Furthermore, we highlight that the presented analysis for ¢ = 1 can be easily extended
to the case of non-constant coefficients a(z) # 1, since, following a geometric approach, the
prolongation operators for the general variable coefficients remain unchanged. In Table V.2, we
show the number of iterations needed for the convergence of the two-grid and V-cycle methods
for k = 2 for different values of a # 1.

We remark that we consider the one-dimensional case for the theoretical development of the
method, which can be extended to more dimensions through a tensor argument.

V.2.3 Q3 Case

Hereafter, we briefly summarize the case of Q3 Finite Elements, following the very same path
we already considered in the previous section for Q2 Finite Elements. The basis functions with
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Table V.2: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in
one dimension with a(x) = e”, a(z) = 10z + 1, a(z) = |z — 1/2| + 1, and e = 1 x 1075.

a(r) = €* a(x) =10z +1 |a(z)=|z—1/2[+1
# Subintervals | TGM  V-Cycle | TGM V-Cycle | TGM V-Cycle
16 7 7 9 12 7 7
32 7 8 7 14 7 7
64 7 8 7 14 7 7
128 7 8 7 15 7 7
256 7 8 7 15 7 7
512 7 8 7 14 7 7

respect to the reference interval [0, 1] are

9 11
o1(2) = —5@3 + 972 — S+
27 45
o) = ?g:ﬁ?’ — 3@2 + 9, (V.21)
27 9
P3(d) = —5@3 + 182% — o
I 9.3 9.5 .
Ga(z) = 5373 — 5372 +z.

For the sake of simplicity, we consider the functional spaces WQ(S) and Wf) with respective
dimension 5 and 11. Thus, with respect to equation (V.16) (see also Figure V.3), the @?’3

coefficients are

$2(1/6) = 15/16, $2(1/3) =1, $2(1/2) = 9/16,
$2(2/3) = 0, $2(5/6) = =5/16, @2(1) =0,

while, the gog’?’ coefficients are

$3(1/6) = =5/16, 3(1/3) =0, ¢3(1/2) = 9/16,
»3(2/3) =1, »3(5/6) = 15/16, @3(1) =0,

and the gpg’?’ coefficients are

P4(1/6) = 1/16, ¢4(1/3) =0, Pa(1/2) = —1/16,
$4(2/3) = 0, ¢4(5/6) = 5/16, ¢a(1) =1,
$1(1/6) =5/16, ¢1(1/3) =0, ¢1(1/2) = —1/16,
$1(2/3) =0, ¢1(5/6) = 1/16, ¢1(1) =0
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Consequently, the obtained prolongation matrix is as follows:

5 1
16 16
0 0
9 1
16 16
1 0
5 5
16 16
0 1

5 15

6 16

0 1

1 9

16 16

0 0

1 5

16 16

16
1
15

16

(V.22)

Thus, taking into consideration that the stiffness matrix is a principal submatrix of the Toeplitz

matrix generated by the matrix-valued function

54
5
_ 297
fo, (0) = —%0
27 _ 189 0

20 40

_ 189
40

_l’_

297
40

54
5

27 —i
Toe

20

27 _ 189 v

40

189 27 .
—70 T 0€

37 13

5 40

40

(ew 4 efw)

we are looking for the matrix-valued trigonometric polynomial p_ as well. By defining

Pg,m =Ty |:pG'3:| (

n,m

KEven ® IS

),

it is straightforward to identify the generating polynomial as

P, (V) = Ko+ K€ + K_je + Kye? 4+ K_ye 27

where
0O 1 0
0O 0 1
0
Ko=10
0
that is )
A%e—zﬁ
pcg(ﬁ): e 1%
ge—w
16

5 15 5
16 16 16
0|, Kq1= 1 0
_ 1 9 9
16 16 16
) K—2 - 03,37
3 1 9, 50
€ 16¢ 1T 16¢
15 5 4 1.2
16 6 T 16©
3 100 | —id
e 1— g5 +e™™)

: (V.23)
(V.24)
1
16
01,
1
16
(V.25)

83



Chapter V. Multigrid for Q; Finite Element Matrices Using Block-Toeplitz
Symbol Approaches

Table V.3: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in
one dimension with a(z) =1 and e =1 x 107%,1 x 107*, and 1 x 1075.

e=1x10"2 e=1x10"* e=1x10"8
# Subintervals | TGM  V-Cycle | TGM V-Cycle | TGM V-Cycle
16 3 3 5 5 9 9
32 3 3 5 5 9 10
64 3 3 5 5 9 10
128 3 3 5 5 9 10
256 3 3 5 5 9 10
512 3 3 5 5 9 10

A trivial computation shows that the determinant of p () has a zero of fourth order in
the mirror point ¥ = 7, being

det(pg, (9) = e (e + 1)1

However, the main goal is to verify the conditions in equations (IV.6) and (IV.13): we have
explicitly formed the matrices involved and computed their eigenvalues for ¥ € [0,2x]. The
results are in perfect agreement with the theoretical requirements (see Figure V.4). We remark
again that the purpose of this analysis is to link the geometric approach proposed in [26, 69, 70]
to the novel algebraic multigrid methods for block-Toeplitz matrices.

In the third panel of Table V.1, we report the number of iterations needed for achieving the
predefined tolerance ¢ = 107%, when increasing the matrix size in the setting of the current sub-
section. Indeed, we use T, [PGJ (Kf};f" ® I 3) and its transpose as prolongation and restriction
operators and Gauss—Seidel as a smoother (one iteration of pre-smoothing and one iteration of
post-smoothing).

As expected, we observe that the number of iterations needed for the two-grid convergence
remains constant when we increase the matrix size, numerically confirming the optimality of the
method. As in the Q2 case, we also notice that the V-cycle method possesses the same optimal
convergence properties.

Comparing the three panels in Table V.1, we also notice a mild dependency of the number
of iterations on the polynomial degree s. In addition, we can see in Tables V.3 and V.4 that
the optimal behaviour of the two-grid and V-cycle methods for s = 2,3 remains unchanged if
we test different tolerance values.

It is worth stressing that the results also hold in dimension k = 2, as well shown in Table
V.5. The same optimal behaviour in the sense of the convergence rate is present also in the case
of non-constant coefficients a(z,y) # 1. Indeed, in Table V.6, we show the number of iterations
needed for the convergence of the two-grid and V-cycle for different values of a # 1.

We finally remind that the tensor structure of the resulting matrices highly facilitates the
generalization and extension to the case of k > 2. Indeed, from a theoretical point of view,
the tensor structure permits to exploit the results of Section IV.4. Moreover, from the practical
point of view, the prolongation operators in the multilevel case are constructed by a proper
tensorization of those in 1D, as we detail in Subsection V.4.3.
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Table V.4: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 3 in
one dimension with a(z) =1 ande=1x 10721 x 107*, and 1 x 1078,

e=1x1072 e=1x10"* e=1x10"8
# Subintervals | TGM  V-Cycle | TGM V-Cycle | TGM V-Cycle
16 3 3 6 6 12 12
32 3 3 6 6 12 12
64 3 3 6 6 12 12
128 3 3 6 6 12 12
256 3 3 6 6 12 12
512 3 3 6 6 12 12

1
0.8
1
2
0.6 3
4
5
0.4 % meshh

O  mesh 2h

0.2

-0.2

Reference element Reference element

)
m

-0.41

Figure V.3: Construction of the Q3 geometric prolongation operator: basis functions on the reference element.
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Figure V.4: Check of conditions for Q3 geometric prolongation: (left) the plot of the eigenvalues of
Pa, (19)HpG3 (9) + Pg, (9 + 7r)HpG3 (9 + 7) for ¥ € [0,2n]; and (right) the plot of the eigenvalues of R(¥})
for 9 € [0, 27].
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Table V.5: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1,2,3
in dimension k = 2 with a(x) = 1.

s=1 §s=2 s=3
# Nodes TGM V-Cycle | # Nodes TGM V-Cycle # TGM V-Cycle
72 5 5 152 6 6 232 7 7
152 5 6 312 6 6 472 7 7
312 5 6 632 6 6 952 7 7
632 5 6 1272 6 6 1912 7 7
1272 5 6 2552 6 6 3832 7 7

Table V.6: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 2 in
two dimensions with a(z,y) = "™, a(z,y) = 10(x +y) + 1, a(z,y) = [¢ — 1/2| + [y — 1/2| + 1, a(z,y) = 1 if
x < 1/2 and y < 1/2, 5000 otherwise, and ¢ = 1 x 107°.

alw,y) = ) | 10z +y)+1 | fe—1/2+ly—1/2/+1 { Ly DUl
# Nodes | TGM  V-Cycle | TGM V-Cycle | TGM V-Cycle TGM V-Cycle
72 6 6 6 6 6 6 6 6
152 6 6 6 6 6 6 6 6
312 6 6 6 6 6 6 6 6
632 6 6 6 6 6 6 6 6
1272 6 6 6 6 6 6 6 6

V.3 Symbol Analysis of the Standard Bisection Grid Transfer
Operator

In the present section we consider a standard grid transfer operator, that is, the bisection
operator, which coincides with the interpolation operator of Subsection V.2.1. Indeed, for the
Qq stiffness matrices the approaches of the current and of the previous sections coincide. The
new element here is that we use the same bisection operator for every polynomial degree, only
paying attention to the choice of the correct matrix-sizes.
For our purposes, we can write the bisection operator in the following form
Py = Ton[2 + 2cos(0) K20, . (V.26)
?T

We want to show that the latter operator fits into the block setting of the previous chapter.
Hence, first we have to rewrite P}, in the desired block form

Ps,m =Ty [pLS] (Kr];:,%n ® [S)7

which means that we want to find a matrix-valued trigonometric polynomial p, such that the
latter equation is true, with P, defined as in (V.26).

Recalling the action of the cutting matrices (K, ® Is) seen in Section IV.2, we can see that
P; ,, can be rewritten in the desired block form with associated matrix-valued trigonometric

polynomial p, of the form

p,, () =po+p-1e" + pre”, (V.27)
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where the expressions of the Fourier coefficients pg, p—1, p1 depend on whether the degree is even

or odd. Indeed, we have the following two cases.

1. In the case of even degree s, we define

—_ N

[N

Ay =Ts[2+2 cos(z?)}Kf%’e" =

and we have

T
) of, | 1] A
Po = A s p—lZ[ Ay
0571,371 O0z_1
ol | ‘ 1
1=
Os—1,5-1 | 051
Note that .
2
Z[AI]I,J =1,
j=1
and fori=2,...,s
2
> Ay =2
j=1
2. In the case of odd degree s, we define
[ 2
11
Odd 2
Az = Ts[2 + 2 cos(V)| K 551 =
T2
1
1
2
11
Az = Tg[2 + 2 cos(9)] fﬁ = 2
72
2
i 1

- sX35
O,z (V.28)
(V.29)
(V.30)
(V.31)
sx b
sx &£l

87



Chapter V. Multigrid for Q; Finite Element Matrices Using Block-Toeplitz
Symbol Approaches

and we have

of_l ‘ 1
P =
Osfl,sfl Os—1
Note that
s+1 s+1
2 2
Z[Aii]l,j =1, Z[AQ]l,j =2, (V.32)
Jj=1 Jj=1
and fori =2,...,s
s+1 s+1
2 2
Z[Aﬂi,j = Z[A:s]z',j =2. (V.33)
j=1 j=1

In what follows we prove that p,_ fulfils conditions (i)-(i1i) of Subsection 1V.2.2 and, in par-
ticular, in the following lemma we show that p, satisfies the hypotheses of Lemma IV.3.6
forf =1, .

Qs

Lemma V.3.1. Let p,_ be the s X s trigonometric polynomial defined in (V.27), and e; =
[1,...,1]T. Then

1. p, (0)es=4e;.
2. p,, (m)es=0es.
3. Py, (0 e, = 4e,.

Proof. The first two items are equivalent to require that the sum of the elements in each row of

the matrices p,_(0) and p,_(7) is 4 and 0, respectively.

Hence, to prove 1. it is sufficient to show that for every ¢ = 1,..., s it holds
S
Z[pLs (0)]i; = 4.
j=1

From the expression of p, (9) in (V.27) we have

S

S
D o, (0)]ig =Y [Po+ 1+ piliy-
j=1 J=1

Then, we can exploit the structure of the Fourier coefficients p_1, pg, and p; for even and odd
degree. In particular, looking at the structure of the matrices A;, A, Az, and at relations
(V.30)-(V.33), we have, for even degree s and fori =1,...,s,

s

2

D P (0] =Y [po+ b1+ Paliy =
=1

J=1

1+ (2 Zle[Al]l,j) t1=4, fori=1
(2o i) =4 fori=2,....s

)
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and, for odd degree s and for i =1,...,s,
s+1 s+1 s+1
: 2o (S2ih + el ) 41 =4, fori =1
Z[PLS (0)]ij = > [bo+p1+p-1]ij= B
j=1 j=1 ( ]?:1{143]1"3‘ + [AQ]Z‘J) =4, fori =2,...,s

The proof of 2. can be repeated following the idea in 1. and noting that
pLs (ﬂ—) - ]50 - ﬁl - ﬁ—1~
Analogously, the third item can be proven following the same idea of 1., showing that the

sum of the elements in each column of the matrices p, (0) is 4. Since it is a straightforward

computation, we omit the details. O

The latter result, together with Lemma IV.3.6 permits to conclude that p, satisfies condition
(7i), once that we prove that it satisfies condition (i), so that the matrix-valued function r is
well-defined. By direct computation of the quantity p, (9)7p, (9) +p, (9 +m)p, (9 +7),
we find that for both even and odd s we have

12 2 0 ... 229
2 12 2 ... 0
P ()P, (0) +p,, (0 +m)"p,, (9 +7) = - ,
0 12 2
272 0 ... 2 12 |

which is clearly a definite positive matrix for all ¥ € [0,27), so p, _ satisfies condition (i). Then
(p,, ) p, () +p, (I+m)p, (V+ ﬂ))_l is well-defined, for all ¥ € [0, 27) and the function
r(v) defined in (IV.10) is well-defined as well.

We have to verify the limit condition (744), in order to ensure that the bisection operator fulfils
the approximation property for the Qg linear system by Theorem IV.3.5. For this purpose, it
is sufficient to show that the function 1 — Aj(r(¥)) has a zero at least of the same order of
A(E,, (),

For even polynomial degree s, we have that r(¢) is a projector, since it can be easily verified

by direct computation that
r?(9) —r(¥) = Os5, forall ¥ € [0,27).

Hence, from condition (%), we have A\;(r(0)) = 1, and, from the continuity of the eigenvalue
functions (Lemma I1.3.1), we have that A\j(r(¢)) = 1. Hence, it is straightforward to see that
condition (744) is verified.

The proof of condition (%) for odd polynomial degree s is under investigation in [20].

As a numerical confirmation of the validity of the projection strategy that we presented in
the current section, we report the results of the two-grid procedure applied to the Qg linear
systems in Table V.7. In particular, we report the number of iterations needed for achieving the
predefined tolerance 1076 when increasing the matrix-size, using Gauss-Seidel as a smoother,
with only one iteration of pre-smoothing and only one iteration of post-smoothing. Even though
we do not present the theoretical convergence analysis of the V-cycle method, we report also the

V-cycle tests. The results are comparable to those of Table V.1.
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Table V.7: Number of iterations needed for the convergence of the two-grid and V-cycle methods for s = 1,2,3
in one dimension with a(z) = 1 and € = 1 x 1075, using the standard bisection grid transfer operator.

s=1 s=2 s=3
# Subintervals | TGM  V-Cycle | TGM  V-Cycle | TGM  V-Cycle

8 ) ) 8 8 9 10

16 6 7 8 9 9 10
32 7 7 8 9 9 10
64 7 7 8 9 9 10
128 6 7 8 9 9 10
256 6 7 8 9 9 10
512 6 7 8 9 9 10

V.4 A New Multigrid Strategy: Construction, Analysis, and Nu-

merics

The scope of the current section is twofold. On one hand, we intend to give further numerical
evidence of the results proven in Section IV.3. On the other hand, we present a new multigrid
strategy for the Qs Finite Element matrices. Our final goal is not to improve the convergence
results of the geometric and standard bisection projection strategies, but to provide a general
method to construct suitable grid transfer operators on the base of algebraic considerations
related to Chapter IV.

Contrary to the theoretical analysis that we performed in the last chapter, here we deal
with block-Toeplitz matrices generated by a matrix-valued trigonometric polynomial, instead of
block-circulant matrices. As in Sections V.2 and V.3, we expect that the theoretical results of
Section IV.3 still hold since block Toeplitz matrices with polynomial generating functions are
a low rank correction of block circulant matrices with the same generating function. The only
difference could be a slight deterioration of the convergence in the case of block Toeplitz matrices
with respect to block circulant matrices.

As far as the choice of the right-hand side is concerned, we impose that the solution x of the
linear system T),[f]z = b is a uniform sampling of the sine function on [0, 7] and we compute
the right-hand side b as b = T,,[f]z. Moreover, in all the considered examples the used stopping

[l 2
[[b]l2
Section V.2, the structure of the projector slightly changes for block-Toeplitz matrices, in order

< e, where 7®) = b — T, [f]z*).  As we mentioned in

criterion is a standard one, that is

to preserve the structure at coarser levels. The dimension of the problem at level ¢t becomes ns,
with n of the form 2¢ — 1. The cutting matrix Kf”me" is defined as in Section IV.2 and, for a
matrix-valued trigonometric polynomial p, the projector P, , is of the form in (TV.4).

The section is outlined as follows. In Subsection V.4.1, we give a general methodology to
construct a grid transfer operator for problems of Laplacian type. In Subsection V.4.2 we present
strategies for an implementation of both the two-grid and V-cycle methods for Qs stiffness
matrices for the considered second order elliptic differential problem on [0,1]. In Subsection
V.4.3 we consider the two-dimensional problem, that is, we study multigrid methods for the Q,
stiffness matrices for the second order elliptic differential problem on the unit square.

Apart from the first example, we use the Gauss-Seidel method as a smoother. The method
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damps the high frequencies, which makes it a suitable smoother for our problems.

V.4.1 A Strategy to Achieve Optimality of the V-Cycle

In the current section we consider a problem of Laplacian type, that is, we deal with matrices
T,[f] > 0 generated by a trigonometric polynomial f : [-m, 7] — C**5 f > 0, that has a
non-negative minimal eigenvalue function Apin(f) with a unique zero in the origin of order two.
Moreover, it holds f(0)es; = Oes, where e, is the vector of all ones of length s.

We recall that the V-cycle method involves a set of coarser linear operators T),, [f¢], where ¢
represents the level. In order to define a robust projector P, ,, that ensures a linear convergence
rate also for the V-cycle applied to T),[f], we study the quantity

_ Pmax(fo)[ o
H(fw_ Aﬁlin(ff)}(] 7

which gives an estimate of the ill-conditioning of the coarse problem at level ¢, see [21]. Indeed

the conditioning of the matrix T}y, [f;] depends on || Amax (fr)||oo and AL: (£¢)[,, which measure the
magnitude of the maximum eigenvalue function Apmax(fz) and how flat the minimal eigenvalue
function is around the origin, respectively. Note that the flatness of the minimal eigenvalue
function is crucial to identify how large is the ill-conditioned subspace where the smoother
cannot be effective. Therefore, the projector should be defined in order to keep x(fy) as small as
possible. Note that the V-cycle convergence analysis is not straightforward, even using recent
results based on the two-grid analysis like in [97], and it is under investigation in [20].

We select a class of projectors P, (2) = T, [P:](KEY" @ I) according to the the-

me,Myey1 mye,Myy1
oretical analysis of Section IV.2 with p,(-) of form
z—1 7
p:(¥) = (1 4+ cos?) | I+ el |, 2> 0. (V.34)

Note that ese! is the s x s matrix of all ones. Then, we have

1 1
1+ cos s ) S
p. (1) = U tes@)E-1 | | =
1+ cos® l l
LS s
1 0 ... 0
1+ cos® 0 0
= F, +(1+cos(¥))(z—1) . . . FSHZ
) 9 Do .o
+eos 00 ... 0
[2 + 2z cos®d
14 cos?d
=F, ' FH, (V.35)
i 1+ cosdd
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Hence the eigenvalue functions of p,(-) have a zero at 7 of order two for all z > 0 and it is
straightforward to prove that the matrix-valued function r defined in Subsection 1V.2.2 fulfils
conditions (%)-(%ii).

In the next section we study the conditioning x(f, ), where f, ; is the generating function at
level ¢ obtained using p.(-), proving as it influences the V-cycle convergence. In particular, we
look for a z > 0 such that

Zliglo )‘glin(fZ,Z)‘o >0 (V36)
that guarantees that the behaviour of the minimal eigenvalue function around the origin remains
unchanged at the coarser levels.

V.4.2 The One-Dimensional Case

Consider the Qs approximation of the second order elliptic differential problem (V.2). As we
outlined in Section V.1, the resulting stiffness matrix of size (s-n —1) x (s-n —1) is nAgf),
where Aff) is the block matrix

A =T, [f]_,

n

with the subscript — denoting that the last row and column of T,,[f] are removed. This is
because of the homogeneous boundary conditions. Moreover, we recall that the s x s matrix-
valued generating function of T;,[f] has the form

£(9) = fo+ fre” + flle .
TGM in the s =2 setting

In the case of polynomial degree s = 2, the explicit expression of the generating function f
can be seen in equation (V.19). In particular, the Fourier coefficients fo, f1 are given by

;1|16 -8 , 1]0 -8
f0:3[_8 14], f1:3[0 1]. (V.37)

Moreover, it is possible to diagonalize f as

A (f(9))

f9)=U0) Ao (E(9)

u'(),

where the eigenvalue functions A\ (£(1)), A\2(£(9)) of £ are given explicitly by

M(E@)) = 5+ %cos(ﬁ‘) _ %\/129 126 cos(9) + cos2(0),
(@) = 5 + écos(z?) + é\/129 126 cos() + cos2(d)

and U : [0,27) — C*"**" is the matrix-valued function containing the eigenvectors of f.
It is straightforward to verify that hypotheses requested in Section 1V.2.1 that ensure the
convergence and optimality of the TGM for T,,[f] are satisfied using the trigonometric polynomial
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Table V.8: Number of iterations for the TGM using the p. projection strategy for the Q2, using as pre- and
post-smoother one iteration of Jacobi method with wpre = 7/8, wpost = 7/12 and tolerance & = 1077,

t n=2t—-1 2n z=1 2z=2 z2z=3 z=4 2z=05
7 127 254 33 33 33 33 33
8 255 510 33 33 33 33 33
9

ol1 1022 33 33 33 33 33
10 1023 2046 33 33 33 33 33
11 2047 4094 | 33 33 33 33 33

p: defined in (V.34) in the construction of the projector. Moreover, f(0)p.(0) = p.(0)f(0) for
every choice of z > 0 and hence f(0) and p.(0) are simultaneously diagonalized by the same
unitary transform. Therefore, we can control the ill-conditioning of the coarser problems in the
subspace associated to ¥ = 0 by taking different values of z, which is useful for the study of the
V-cycle method as shown in Section V.4.1.

Now we implement a TGM for T},[f] and we study the number of iterations that the method
requires to reach the desired tolerance varying n and for different choices of z. In order to
find the relaxation parameters for the Jacobi method we should compute the quantities in
inequality (IV.11). We see from formula (V.19) that min;—; [fo](m-)) is equal to 14/3. For
the computation of the quantity [|f|lec = maxye(gor) [[f(9)[l, We can write

If]lcc = max A2(f(9)) =5+ 1cos.(O) + 1\/129 + 126 cos(0) + cos?(0) = 2

¥€[0,27) 3 3 3
So, according to inequality (IV.11), our Jacobi relaxation parameter w should be smaller than
or equal to 7/8. In order to damp the error both in the middle and in the high frequencies, we
take a different parameter for the pre-smoother and the post-smoother. For the pre-smoother,
we take the greatest admissible value, wpre = 7/8, and for the post-smoother we take wpost =
2wpre /3 = T7/12.

In Tables V.8-V.9 we report for z = 1,...,5 the number of iterations needed for achieving
the tolerance ¢ = 1077 when increasing the matrix size and using p. in the construction of
the projector and with two different smoothers. Table V.8 shows the results using as pre- and
post-smoother one iteration of the Jacobi method with relaxation parameters wpe = 7/8 and
Wpost = 7/12. Table V.9 shows the results using as pre- and post-smoother one iteration of the
Gauss-Seidel method with wpre post = 1.

As expected, in both cases we can observe that for all z =1,...,5 the number of iterations
needed for the TGM convergence remains almost constant, when increasing the size sn, con-
firming the optimality of the method for every choice of z. Moreover, the number of iterations

is essentially halved when using Gauss-Seidel instead of Jacobi.
V-cycle in the s = 2 setting

In order to maintain the optimality of the iterations also for the V-cycle we look for the
best choice of the parameter z such that the behaviour of Amin(f. ) around the origin remains
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Table V.9: Number of iterations for the TGM using the p. projection strategy for the Q2 stiffness matrix, using
as pre- and post-smoother one iteration of Gauss-Seidel method with wpre,post = 1 and tolerance € = 1077,

t n=2t—-1 2n z=1 2z=2 z2z=3 z=4 2z=05
7 127 254 15 15 15 15 15
8 255 510 15 15 15 15 15
9

ol1 1022 15 15 15 15 15
10 1023 2046 15 15 15 15 15
11 2047 4094 15 15 15 15 15

Table V.10: Condition numbers of f, ;, for z =1,2,3,4 and ¢ = 1,2, 3, 4.

Ii(fl’g) fi(fz’g) R(fgj) Ii(f47[)
43 11 4.7 4.7
171 11 4.7 4.7
683 11 4.7 4.7

2731 11 4.7 4.7

I N T

unchanged at the coarser levels, that is, for different choices of z, we check if Amin (£, ) satisfies
condition (V.36).

By direct computation, we derive the formula

2\ J
" z
min(fz,f)‘() = <2> :

The latter implies that for values of z smaller than /2, the quantity A

v in(f20)|, tends to zero
as £ tends to co. This suggests that for z < /2 the conditioning becomes worse as the levels
get coarser. This is numerically confirmed in Table V.10 where the condition numbers (£, /)
are listed for z = 1,2,3,4 and ¢ = 1,2,3,4. Therefore we should avoid the choice Py, (p1) as
projector.

Indeed, Tables V.11-V.12 highlight that the number of iterations needed for the V-cycle
convergence, with the desired tolerance, depends on the matrix size with z = 1, whereas it

remains almost constant for z > \@ as n increases.
TGM and V-cycle in the s > 2 setting

We implemented the analogous TGM for polynomial degrees 3 and 4. From Tables V.13-
V.14 we see that the number of iterations to achieve the desired tolerance still remains constant
as the matrix size increases. However, we notice that this constant depends on the polynomial
degree s. Achieving optimality from this point of view will be object of future research.

The analysis on the condition number that we exploited for s = 2 can be repeated assuming
that Conjecture V.4.1 (numerically verified for s = 3,4) holds.
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Table V.11: Number of iterations for the V-cycle method using the p. projection strategy for the Q2 stiffness

matrix, pre- and post-smoother 1 iteration of Jacobi with wpre = 7/8 and wpost = 7/12, tolerance e = 1077,

t n=2-1 2n z=1 2=2 z=3 z=4 z=5
7 127 254 1144 42 34 35 38
8 255 510 3365 45 35 35 37
9 511 1022 | 4000+ 48 35 35 37
10 1023 2046 | 4000+ 50 35 35 37
11 2047 4094 | 4000+ 52 35 35 38
12 4095 8190 | 4000+ 54 35 36 38
13 8191 16382 | 4000+ 55 35 36 38

Table V.12: Number of iterations for the V-cycle method using the p. projection strategy for the Q2 stiffness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with wpre post = 1, tolerance € = 1077,

t n=20-1 2n z=1 2=2 2z=3 z=4 z=5
7 127 254 467 26 22 23 26
8 255 510 1343 29 23 26 28
9 511 1022 3992 31 24 28 30
10 1023 2046 | 4000+ 33 27 29 32
11 2047 4094 | 4000+ 35 28 30 33
12 4095 8190 | 4000+ 36 29 31 34
13 8191 16382 | 4000+ 38 29 32 34
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Table V.13: Number of iterations for the TGM using the p. projection strategy for the Qs stiffness matrix, pre-
and post-smoother 1 iteration of Gauss-Seidel with wpre,post = 1, tolerance € = 1077,

t n=2t—-1 3n z=1 z2z=2 z2z=3 z=4 2z=5
7 127 381 38 38 38 38 38
8 255 765 38 38 38 38 38
9

oll 1533 | 38 38 38 38 38
10 1023 3069 | 38 38 38 38 38
11 2047 6141 | 38 38 38 38 38

Table V.14: Number of iterations for the TGM using the p. projection strategy for the Q4 stiffness matrix, pre-
and post-smoother 1 iteration of Gauss-Seidel with wpre,post = 1, tolerance € = 1077,

n=2—-1 4n |2z=1 2=2 2=3 z2z=4 z=5
127 508 87 87 87 87 87
255 1020 87 87 87 87 87
511 2044 87 87 87 87 87

10 1023 4092 87 87 87 87 87

11 2047 8188 87 87 87 87 87

© OO0 ~J| <+

Conjecture V.4.1. For every s > 0 and z > 0 there exists a constant c, s > 0 independent
from j such that the following equality holds for all j > 0:

. 22\ 7
min(fZ,Z)‘o =Czs (2> :

The numerical experiments confirm the theoretical analysis associated with the previous
conjecture, as we can see from the number of iterations obtained for s = 3,4 in Tables V.15-
V.16. Indeed, analogously to the case s = 2, we observe that we should avoid to take z = 1, for
which A5 (f.0)|, tends to 0 as £ tends to ooc.

Finally, we highlight that the slightly change of iterations, increasing t, is expected from
the theory, since the exact constant which bounds the number of iterations can be reached for
larger matrix-size values or studying the best choice of the smoother method and the relaxation

parameters wWpre post i order to decrease such constant.

V.4.3 The Two-Dimensional Case

Consider the uniform Qg approximation of the following particular case of problem (V.1):

—Au =1, in Q:=(0,1)2
u=20, on 0f,

(V.38)

where 1 € L?(Q). Taking n elements in each direction, the resulting stiffness matrix of size
(s-n—1)2x(s-n—1)2is

AY = AP o MP) + MP 9 AP, N=(s-n-1),
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Table V.15: Number of iterations for the V-cycle method using the p. projection strategy for the Qs stiffness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with wpre post = 1, tolerance € = 1077,

t n=2-1 3n z=1 2=2 2z2z=3 z=4 z=5
7 127 381 1180 51 43 44 46
8 255 765 3375 55 44 47 50
9 511 1533 | 4000+ 59 45 51 52
10 1023 3069 | 4000+ 63 47 52 54
11 2047 6141 | 4000+ 66 50 54 56
12 4095 12285 | 4000+ 69 23 ab 57
13 8191 24573 | 4000+ 72 53 57 59

Table V.16: Number of iterations for the V-cycle method using the p. projection strategy for the Q4 stiffness

matrix, pre- and post-smoother 1 iteration of Gauss-Seidel with wpre post = 1, tolerance € = 1077,

t n=20-1 In z=1 2=2 2z=3 z=4 z=5
7 127 508 2693 103 92 94 96
8 255 1020 | 4000+ 108 94 96 97
9 511 2044 | 4000+ 114 95 97 99
10 1023 4092 | 4000+ 120 96 99 100
11 2047 8188 | 4000+ 125 98 100 100
12 4095 16380 | 4000+ 129 99 101 101
13 8191 32764 | 4000+ 133 101 101 101
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where Agf) and M,(LS) are the block-Toeplitz matrices
AW =T,f]_, M® =T,[h]_,

with the subscript — denoting again that the last row and column of T}, [f] are removed. Explicit
formulae for the matrix-valued trigonometric polynomials f and h and the spectral distribution
of the matrices are given in [64].

In the following we want to apply V-cycle strategy to the matrix .Agf ) swhich has a multilevel
block structure, for different choices of s. In the one dimensional case, we took the block-
Toeplitz matrix with block size s. In the two dimensional case, we take the actual matrices
arising from the considered FEM approximation of problem (V.38), which are not pure block-
Toeplitz matrices with block size s?. However, we can still apply our multigrid procedure due
to its spectral properties given in [64].

Since the matrices are cut and are the permutation of multilevel block-Toeplitz matrices, the
projector slightly changes accordingly. In fact, we use the projectors

sz,m = [Tn[pZ](Kn,m ®Is)]- ® [Tn[pZ](Kn,m ® Is)] -,

where p, is the univariate matrix-valued trigonometric polynomial defined in (V.34).

Extending the considerations that we made for the univariate case, we numerically look for
the best choices of z to obtain the optimality of the V-cycle method.

In Tables V.17-V.18 we report for z = 1,...,5 the number of iterations needed for achieving
the tolerance ¢ = 10~7 when increasing the matrix size and using p, in the construction of
the projector. Table V.17 shows the results for the Q2 stiffness matrix and Table V.18 for the
Qg stiffness matrix. In both cases, we used as pre-smoother and post-smoother one iteration
of Gauss-Seidel with wpre post = 1. Moreover, we can see that the choice z = 1 does not yield
optimality. For the other choices of z, conversely, the number of iterations needed for the V-cycle
convergence remains almost constant, when increasing the size N. We numerically see that the
best choice of z is around 3 for both s = 2 and s = 3.

As a concluding note, we stress the fact that a crucial role for the optimality of a multigrid
method is also played by the choice of the smoothing strategy and in particular of the relaxation
parameters Wpre post- One could set different parameters for pre- and post-smoother, and study
numerically the best values in order to make the constant which bounds from above the number
of iterations smaller. Moreover, it is also possible to compute the optimal smoother methods
and the associated relaxation parameters wy at each level ¢ in order to reduce the number of
iterations for the convergence of the V-cycle procedure. All these aspects will be object of future
research.
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Table V.17: Number of iterations for the V-cycle method using the p. projection strategy for the Q2 stiffness
matrix for the two-dimensional problem, pre- and post-smoother 1 iteration of Gauss-Seidel with wpre post = 1,
tolerance ¢ = 1077

t n=2—-1 2n—-12%| 2=1 2=2 2=3 z=4 z=5
7 127 64009 2724 63 26 25 25
8 255 259081 | 4000+ 73 27 23 22
9 511 1042441 | 4000+ 80 27 23 24

10 1023 4182025 | 4000+ 84 27 24 25

Table V.18: Number of iterations for the V-cycle method using the p. projection strategy for the Qs stiffness
matrix for the two-dimensional problem, pre- and post-smoother 1 iteration of Gauss-Seidel with wpre,post = 1,

tolerance e = 107 ".

t n=2l—-1 2n—-12] 2=1 2=2 z=3 z2=4 z=5
6 63 35344 2719 69 57 59 60
7 127 144400 | 4000+ 83 71 73 74
8 255 583696 | 4000+ 90 60 60 60
9 511 2347024 | 4000+ 94 59 60 61
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Chapter VI

Fast Parallel Solver for the Space-Time
IgA-DG Discretization of the
Anisotropic Diffusion Equation

In the present chapter, we focus on the numerical solution of the time-dependent linear aniso-
tropic diffusion equation

Ouu(t,x) — V- K(x)Vu(t,x) = ¢(t,x), (t,x) € (0,T) x (0,1),
u(t,x) =0, (t,x) € (0,T) x 9((0,1)), (V1.1)
u(t,x) =0, (t,x) € {0} x (0,1)F,

where K(x) € RF*F is the matrix of diffusion coefficients and (¢, x) is a source term. We
impose homogeneous Dirichlet initial and boundary conditions both for simplicity and because
the inhomogeneous case reduces to the homogeneous case by considering a lifting of the boundary
data [105]. As far as the discretization techniques are concerned, we consider for (VI.1) the same
space-time approximation as in [16], involving a p-degree C" finite element (FE) discretization in
space and a g-degree discontinuous Galerkin (DG) discretization in time. Here, p = (p1,...,pk)
and r = (r1,...,7) are multi-indices such that 0 < » < p — 1 and the parameters p; and r;
represent, respectively, the polynomial degree and the smoothness of the FE basis functions in
direction x;.

We highlight that space-time approximations of dynamic problems, in contrast to standard
time-stepping techniques, enable full space-time parallelism on modern massively parallel archi-
tectures [59]. Moreover, they can naturally deal with moving domains [86, 126, 128, 129, 137]
and allow for space-time adaptivity [1, 48, 60, 87, 95, 98, 131]. The main idea of space-time
formulations is to consider the temporal dimension as an additional spatial one and assemble
a large space-time system to be solved in parallel as in [50]. Space-time methods have been
used in combination with various numerical techniques, including finite differences [2, 17, 81],
finite elements [9, 85, 88|, isogeometric analysis [76, 89], and discontinuous Galerkin methods
[1, 68, 85, 86, 96, 126, 137, 139]. Moreover, they have been considered for a variety of applica-
tions, such as mechanics [18], fluid dynamics [17, 86, 125], fluid-structure interaction [130], and
many others. When dealing with space-time finite elements, the time direction needs special
care. To ensure that the information flows in the positive time direction, a particular choice of

101



Chapter VI. Fast Parallel Solver for the Space-Time IgA-DG Discretization of the
Anisotropic Diffusion Equation

the basis in time is often used. The discontinuous Galerkin formulation with an “upwind” flow
is a common choice in this context; see, for example, [86, 110, 126, 132].

In many cases, the overall discretization process leads to solving a large space-time linear
system, for the solution of which a selection of specialized parallel solvers has been recently
developed. We mention in particular the space-time parallel multigrid proposed by Gander and
Neumiiller [61] and the parallel preconditioners for space-time isogeometric analysis proposed
by Hofer et al. [76].

In this chapter, we propose a fast solver for the system resulting from the discretization
of (VI.1) through the space-time method mentioned above in the case of maximal smoothness
r = p — 1, which is a standard approach [5, 14, 33, 84]. The solver is a preconditioned GMRES
(PGMRES) method [108] whose preconditioner P is obtained as an approximation of another
preconditioner P inspired by the spectral analysis carried out in [16]. Informally speaking, the
preconditioner P is a standard multigrid, which is applied only in space and not in time, and
which involves, at all levels, a single Gauss-Seidel post-smoothing step and standard bisection
for the interpolation and restriction operators (following the Galerkin assembly). The proposed
solver is then a multigrid preconditioned GMRES (MG-GMRES).

The solver’s performance is illustrated through numerical experiments and turns out to be
highly satisfactory in terms of iteration count and computational times. In addition, the solver
is suited for parallel computation as it shows remarkable scaling properties with respect to the
number of cores. Comparisons with other benchmark solvers are also presented and reveal the
actual competitiveness of our proposal.

The current chapter reports the results in [15] and is organized as follows. In Section VI.1, we
briefly recall the space-time FE-DG discretization of (VI.1) and we report the main result of [16]
concerning the spectral distribution of the associated discretization matrix C. In Section VI.2,
we present a fast PGMRES method for the matrix C', which is the root from which the proposed
solver originated. In Section VI.4, we describe the proposed solver, in Section VI.5 we describe
its parallel version, and in Section VI.6 we illustrate its performance in terms of iteration count,

run-times and scaling.

VI.1 Space-Time FE-DG Discretization of Anisotropic Diffusion

Let N € Nand n = (ng,...,n;) € N¥, and define the following uniform partitions in time and
space:
t; = iAt, 1=0,..., N, At =T/N,

x; = 1Ax = (i1Azq, ..., ipAxg), 1=0,....,n, Ax=(Azxy,...,Azg)=1/n1,...,1/ng).

We consider for the differential problem (VI.1) the same space-time discretization as in [16],
that is, we use a p-degree C” FE approximation in space based on the uniform mesh {x;, i =
0,...,n} and a g-degree DG approximation in time based on the uniform mesh {¢;, i =
0,...,N}. Here, p = (p1,...,px) and 7 = (r1,...,7) are multi-indices, with p; and 0 <
r; < p; — 1 representing, respectively, the polynomial degree and the smoothness of the FE basis
functions in direction x;. As carefully explained in [16, Section 3|, the overall discretization
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process leads to the following, normally large, linear system:
CRPT (Kyu = b, (VL.2)
where:

o C’][(I,ﬁ’ﬂ (K) is the N x N block matrix given by

Al (k)
B”[gvpvr} A,Lgvpvr} (IC)
CRET(K) = . . ;

B,'[g7p7r] A,Egvpvr] (lC)

e the blocks A[f{’p’r] (K) and Bkl’p’r] are (¢ + 1)n x (¢ + 1)1 matrices given by
r At
ARPTHI) = K1y © My + 5 Mig) @ K 1 (K, (VL3)
B = —Jig) © Mo o, (VL4)

where n = Hle(ni (pi —73i) +r; — 1) is the number of degrees of freedom (DoFs) in space (the
total number of DoFs is equal to the size N(q + 1)n of the matrix Cj[g,’fl’r} (K));

¢ My, pr and Ky, ,(K) are the n x 7 mass and stiffness matrices in space, which are given
by
- n(p—r)+r—1
My pr) = /[0 . Bji1,pr] (%) Biy1,pr] (X)dX] o ) (VL5)
_ ! n(p—r)+r—1
Ky pr](K) = / [K(X)VBji1,pr(X)] - VBit1,pr] (X)dx] : (V1.6)
[/ [0,1]* ij=1
where By [p ;- - s Bu(p—r)+r+1,[p,r] are the tensor-product B-splines defined by
k
Bifpa)(X) = [[ Biypywi(@i), i=1,...,n(p—7)+r+1,
j=1

with By [ k] - - - )+rj+1,[p;,r;] eing the B-splines of degree p; and smoothness C"7

» Brjpj—r;
defined on the knot sequence

{0,...,0, Lotz ooz ozl ool 1,...,1}.
" ;" g n; N

pj+1 P+l
Pi=Tj Pi=Tj Pi=Tj

o My, Ky, Jig are the (¢ + 1) x (g + 1) blocks given by

1 q+1
Mg = [ / il (T)@',[qJ(T)dT] : (VLT)
- i,j=1
1 q+1
K = [ﬁj,[qﬂl)@,[q}(l) - / 1@,[q1(7)€2,[q}(7>d7] : (VL8)
- ij=1
g = [l g (D] (VL9)
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where {{1 (g, .., lq41,q} is a fixed basis for the space Py of polynomials of degree < ¢. In
the context of (nodal) DG methods [72], £y g, ..., l441,]q are often chosen as the Lagrange
polynomials associated with ¢ + 1 fixed points {7,..., 7441} C [—1,1], such as, for example,
the Gauss—Lobatto or the right Gauss—Radau nodes in [—1, 1].

The solution of system (VI.2) yields the approximate solution of problem (VI.1); see [16] for
details. The main result of [16] is reported in the following theorem.

Theorem VI.1.1. Let ¢ > 0 be an integer, let p € N¥ and 0 < r» < p — 1. Suppose that
K :(0,1)F — R¥*F s o symmetric matriz-valued function in L>((0,1)%, k) and that the following

two conditions are met:

e n = an, where a = (v, ..., ay) is a vector with positive components in QF and n varies in

some infinite subset of N such that n = an € N¥;
e N = N(n) is such that N — 0o and N/n? — 0 as n — 0o.

Then, for the sequence of normalized space-time matrices {2Nnk_201[3’2’r](lc)}n we have the
spectral distribution relation

— ,D,T a,K
{2Nnk 20][37,1; ](}C)}n ~X f[[(17p77}=]7

where:

e the spectral symbol gl [0,1]% x [—m, 7]F — Cla+D Ty (i) X (a+ D T (i) g defined as

la.p,7]
K K
f[[gpﬂ]] (x,9) = f[[;))fr]}(x7 9) @ TMy; (V1.10)
o f[a’lc] : [0 1]k X [—71’ W}k — (CH?:l(pi—ri)XH?:l(pi—n) is deﬁned as
[p,r] ~ )
K 1 K
f[[;;“}]<x"‘9) = Tk D i Kij (%) (Hip )i (9); (VL11)

[Timy ci ij=1
o Hy,, is a k x k block matriz whose (i, j) entry is a Hle(pz- —7i) X Hle(pi —1;) block defined
as in |16, Eq. (5.12)];
e T is the final time in (VI.1) and My is given in (VLT).

With the same argument used in [16] to prove Theorem VI.1.1, it is not difficult to prove
the following result.

Theorem VI1.1.2. Suppose the hypotheses of Theorem VI.1.1 are valid, and let

. At .
XPPT(K) = 2N 2 (Iy © 5-Mig © K 1 (K)) = Tnb 2Ly @ Mig © Ky gy (KC):
Then,

{(2N0*2(Iy @ APTI(IC)) b~ f[[gﬁ]’
(XTI b~ 0]

q,p;r]°
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VL2 Fast PGMRES for the Space-Time FE-DG Matrix Cy%"(K)

Suppose the hypotheses of Theorem VI.1.1 are valid. Then, on the basis of Theorem VI.1.2 and
the theory of block GLT sequences (see Section 1.7 and references therein), we expect that the
sequence of preconditioned matrices

(Iy @ ARET () " opn (1), (VL.12)
as well as the sequence of preconditioned matrices

r — — r 2 _ r
(XNPT(0) T 2Nk 2O (k) = 7~ v © Mg @ K g (K) lewPriK), (V113

has an asymptotic spectral distribution described by the preconditioned symbol

(f[[a,lC] )—1f[aJC] -7

q7p77'} [qapﬂ‘] B (q+1) H?:l (p’b_71) ’

This means that the eigenvalues of the two sequences of matrices (VI.12) and (VI.13) are (weakly)
clustered at 1; see [13, Section 2.4.2]. Therefore, in view of the convergence properties of the
GMRES method [108], we may expect that the PGMRES with preconditioner

Iv ® ARPT(K) (VL.14)

or

. At
PURTI(K) = 5 I @ Mig ® Ko .y (K) (V1.15)

for solving a linear system with coefficient matrix C’J[g,”ﬁ’ﬂ(lC) has an optimal convergence rate,
i.e., the number of iterations for reaching a preassigned accuracy ¢ is independent of (or only
weakly dependent on) the matrix size.

To show that this expectation is realized, we solve the system (VI.2) in two space dimen-
sions (k = 2), up to a precision ¢ = 1078, by means of the GMRES and the PGMRES with
preconditioner P][\‘,{’Z’r] (K), using ¥(t,x) =1, T=1, a = (1,1), n = an = (n,n), p = (p,p),
r = (r,r), and varying K(x), N, n, ¢, p, r. The resulting number of iterations are collected
in Tables VI.1-VI.3. We see from the tables that the unpreconditioned GMRES solver rapidly
deteriorates with increasing n, and it is not robust with respect to p, . On the other hand, the
convergence rate of the proposed PGMRES is robust with respect to all the spatial parameters
n, p, r. However, as it is known, each PGMRES iteration requires solving a linear system with
coefficient matrix given by the preconditioner P][\%’z’r] (K), and this is not required in a GMRES
iteration. Thus, in order to prove that the proposed PGMRES is fast, in Section VI.4 we show
that we are able to solve efficiently a linear system associated with P][\?,’Z’r] (K).

VI.3 Fast Tensor Solver for the PGMRES Preconditioner P}G{’ﬁ’ﬂ (K)

The main observation of this section is that, thanks to the tensor structure of P][\(,I’z’r] (K) (see

(VI.15)), the solution of a linear system with coefficient matrix P][\?’Z’r] (K) reduces to the solution
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Table VI.1: Number of iterations GM[p] and PGM|[p] needed by, respectively, the GMRES and the PGMRES
with preconditioner P][\?:Z’T] (K), for solving the linear system (VI.2), up to a precision e = 10~ %, in the case where
k=2 K(x)=1I,¢(tx)=1,T=1,¢=0,n=(n,n), p= (p,p), = (p—1,p—1), N = n. The total size of

the space-time system (number of DoFs) is given by nii = n(n + p — 2)°.

n=N | GM[3] PGM[3] | GM[4] PGM[4] | GM[5] PGM[5] | GM[6] PGM[6] | GM[7] PGM][T]
20 66 21 85 21 170 21 269 21 532 21
40 168 40 178 40 235 40 380 40 572 40
60 205 59 314 59 360 59 477 59 611 59
80 443 77 473 77 506 77 621 77 720 77
100 | 609 94 652 94 699 94 780 94 879 94
120 790 111 847 111 909 111 971 111 1025 111

Table VI.2: Number of iterations GM|[p, r] and PGM|[p, r] needed by, respectively, the GMRES and the PGMRES
with preconditioner P][\',{’f:’r] (K), for solving the linear system (VI.2), up to a precision ¢ = 107%, in the case where
cos(z1) + 2 0

0 x1 + sin(z2)
N = 20. The number of DoFs is given by 407 = 40(n(p —r) +r — 1)%.

k= 27 IC(Z’l,it’z) = ) 1/)(757X) =1, T = 17 q= 13 n = (n7n)7 p = (p7p)7 r= (T7T)7

n | GM[1,0] PGM[1,0] | GM[2,0] PGM[2,0] | GM[2,1] PGM[2,1] | GM[3,1] PGM][3,1]
20 244 42 383 42 156 42 276 42

40 502 42 778 42 314 42 560 42

60 763 42 1174 42 474 42 842 42

80 1026 42 1570 42 635 42 1146 42
100 1275 42 1966 42 796 42 1894 42
120 1608 42 2374 42 954 42 1898 42

n | GM[4,1] PGM[4,1] | GM[4,2] PGM[4,2] | GM[5,2] PGMJ5,2] | GM[5,3] PGM][5,3]
20 444 42 390 42 522 42 514 42

40 759 42 565 42 721 42 643 42

60 1148 42 771 42 953 42 831 42

80 1536 42 1035 42 1337 42 1026 42
100 1909 42 1299 42 2232 42 1226 42
120 2329 42 1564 42 2390 42 1831 42
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Table VI.3: Number of iterations GM[p, r] and PGM]|p, r] needed by, respectively, the GMRES and the PGMRES
with preconditioner PN Por] (K), for solving the linear system (VI.2), up to a precision € = 1075, in the case where
(2+cosz1)(1 + z2) cos(z1 + x2) sin(z1 + x2)
cos(z1 + x2) sin(z1 + x2) (2 +sinz2)(1 4+ 21)
p= (p,p), r = (r,7), N = 20. The number of DoFs is given by 60n = 60(n(p — r) +r — 1)

k:27’C(I171‘2): ’w(t’x):17T:17q:27n:(n’n)7

n | GM[2,0] PGM[2,0] | GM[2,1] PGM[2,1] | GM[3,0] PGM][3,0] | GM[3,2] PGM]3,2]
20 286 40 112 40 400 40 123 40

40 579 40 228 40 809 40 224 40

60 874 40 345 40 1218 40 339 40

80 | 1170 40 463 40 1716 40 456 40
100 | 1466 40 580 40 2204 40 573 40
120 | 1757 40 697 40 2487 40 690 40

n | GM[4,0] PGM[4,0] | GM[4,3] PGM[4,3] | GM[5,0] PGM][5,0] | GM[5,4] PGM]5,4]
20 779 40 208 40 1460 40 396 40

40 | 1070 40 270 40 1982 40 419 40

60 | 1580 40 361 40 2376 40 466 40

80 | 2176 40 487 40 2733 40 531 40
100 | 2668 40 613 40 3559 40 657 40
120 | 3284 40 738 40 4565 40 791 40

of three linear systems with coefficient matrices Iy, Mg, Ky, [p(K). Indeed, using the canonical
algorithm for tensor-product matrices to solve the system P][\(,]’Z’T] (K)x =y, we obtain
x = (PYRT00) 1y
-1
= <AtIN®M[q] n,[p,r](’C) )y
(MN lq ® Ky [p,r](’c)_l)y
(MN ] ® I )(IN(q—l-l) ® Kn,[p,r}(lc)_l)y

Kn,[p,r] (’C)_l
Kn [p,r] (’C)_l

= (MN,[q} ® In) ’ . y (VI.16)
Kn,[p,r](lc)il
= VeC(Kn,[p,r}(IC)71YMN,[q])7 (VI.l?)

where:

° MNM = %IN ® M[g]l can be pre-computed with a negligible cost, because M, is a small

(g+1) x (¢+1) matrix (if Gauss—Radau nodes are used, M, is also diagonal and hence M N,[d]
is diagonal as well);

e vec(X) is the column-wise form of X, that is the vector obtained by stacking the columns of
X

e Y is the n x N(g+ 1) matrix such that vec(Y) =y.
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It is then clear that the computation of the solution x reduces to solving the N(q + 1) linear
systems Ky, (p ) (K)X; = yi, i = 1,...,N(¢ + 1), where y; is the ith column of Y, and multiply
the resulting matrix Ky, [p (K)~Y by My q-
parallel as the computation of x; is independent of the computation of x; whenever ¢ # j.

Note that the various x; can be computed in

Depending on the implementation and the parallel setting, it can be advantageous to express x
using vec(-) as in (VL.17) or tensor products as in (VI.16).

VL4 Solver for the Space-Time IgA-DG Matrix Cy* (K)

The solver suggested in Section VI.2 for a linear system with coefficient matrix C][\?fl’p -1 (K) =
C][(V]ﬁ(lC) is a PGMRES with preconditioner P][\(,Iv’g’pfl] (K) = P][\(,Iv’g] (K); the solution of a linear
system associated with P][\?”z}(lC), which is required at each PGMRES iteration, is performed
via the tensor solver described in Section VI.3 coupled with a suitable multigrid method for the

1p ()
Actually, it was discovered experimentally that the PGMRES method converges faster if

space stiffness matrix K,

the linear system with coefficient matrix P][\(,I’Z] (K) occurring at each PGMRES iteration is not

solved exactly. More precisely, when applying to K, 1, (K) a multigrid method involving, at all

[P
levels, a single Gauss-Seidel post-smoothing step anii]sta,ndard bisection for the interpolation
and restriction operators, it is enough to perform only a few multigrid iterations in order to
achieve an excellent PGMRES run-time and, in fact, only one multigrid iteration is sufficient.
In view of these experimental discoveries, we propose to solve a linear system with coefficient

matrix C][\?’Z](IC) in the following way:

e apply to the given system the PGMRES algorithm with preconditioner P][\?:g](IC);

e apply to the linear system with coefficient matrix PJ[\‘,]’;’] (K) occurring at each PGMRES iter-
ation the tensor solver described in Section VI.3;

e the tensor solver would require solving ¢(N +1) linear systems with coefficient matrix Ky, ) (K)
as per Eq. (VI.16) or (VI.17); instead of solving exactly these systems, apply to each of them
p multigrid iterations involving, at all levels, a single Gauss-Seidel post-smoothing step and
standard bisection for the interpolation and restriction operators at all levels (following the
Galerkin approach).

VI.5 Parallel Solver for the Space-Time IgA-DG Matrix C][@:fj (K)

In Section VI.4, we have described the sequential version of the proposed solver to be used
when only one processor is available. If p > 1 processors are available, we use a modification
of the solver, which is suited for parallel computation. It consists in solving Cu = b (with C' =
C][{],”ﬁ] (K)) by a standard block Jacobi iterative method in which the block diagonal preconditioner
D is formed by exactly p diagonal blocks C1,...,C,, explicitly

Cq
D:
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n

It is implicitly assumed that C1,...,C, are invertible and that the sum of their sizes m1,...,m,
equals the size N(q + 1)n of C. The resulting block Jacobi method can be written as

W+ Z ) 4 p=1p)

where ) = b — Cul9) is the jth residual. Considering the block structure of D, it can also be

written as

wI =D o@D =1, (VI.18)

where for any vector y of length N(g+1)n we write y? = [yI,..., y;f] with y; of length m;. The

ith processor takes care of solving the ith system (with matrix C;) in (VI.18). It only remains

to clarify how the blocks C1,. .., C, are chosen and how the p systems in (VI.18) are solved. We
distinguish two cases.

e p < N (see Figure VI.1, left). In this case, each block C; is chosen so that the block row of C
corresponding to C; consists of one or more time slabs (i.e., a positive integer number of time
slabs). In this scenario, no time slab is shared between different processors. Moreover, each
block C; is just a smaller version of the matrix C' and the ith processor solves the ith system
in (VI.18) by simply applying the solver proposed in Section V1.4 to the matrix C;.

e p > N (see Figure VI.1, right). In this case, after partitioning C' into N block rows (the
N time slabs), we subdivide them into further block rows until exhaustion of the available
processors, and we choose C1,...,C, as the diagonal blocks corresponding to the resulting
row-wise partition. In this way, every processor owns at most one time slab. Moreover, each
block Cj is a diagonal block of A = AE%’Z] (K) that may coincide with A itself. The ith processor
solves the ith system in (VI.18) according to the following procedure.

— Apply to the ith system in (VI.18) the PGMRES with preconditioner given by the ith
diagonal block of P = P][\?,’Z] (K), that is, the diagonal block P; occupying in P the same
position as the diagonal block C; in C. Note that P; is a diagonal block of ;41 ® K (with
K = Ky, [ (K)).

— The exact solution of the linear system with matrix P; occurring at each PGMRES iteration
would require solving n < g+ 1 linear systems with a matrix given by a principal submatrix
of K. For example, assuming 7 is even, if P; is the leading principal submatrix of I;11 ® K
of order n + n/2, then the solution of a linear system with matrix P; requires solving 2
linear systems with matrices K and Kj, /o, respectively, where K7/, is the leading principal
submatrix of K of order n/2.

— Instead of solving exactly these n linear systems, apply to each of them, starting from
the zero vector as initial guess, p multigrid (V-cycle) iterations involving, at all levels, a
single Gauss-Seidel post-smoothing step and standard bisection for the interpolation and
restriction operators (following the Galerkin approach).

We remark that, when choosing the diagonal blocks C1,...,C,, a load balancing principle is

applied. This means that, as far as possible, the p systems in (VI.18) should have the same

size. For example, as shown in Figure VI.1 (right), the first time slab is subdivided into two
block rows of essentially the same thickness (exactly the same thickness if the size of A is even).

Similarly, if we have N = 2 time slabs and p = 6 processors, then each time slab is subdivided

into three block rows of essentially the same thickness; if we have N = 30 time slabs and p =4
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Partition of C for p=N — 1

P

Py

Ps

Partition of C for p =N + 1

Py

Ps

Figure VI.1: Row-wise partitions of the space-time matrix C' using p = N — 1 processors (left) and p = N + 1
,C, of the block
diagonal preconditioner D are delimited by red squares. For simplicity, we write “A” instead of “AL‘Z’F](IC)” and
“B” instead of Bﬁ”’].

processors (right) with N = 4. For each partition, the corresponding diagonal blocks Cfi, ...

processors, then we assign 7 time slabs to one processor, 7 time slabs to another processor, 8
time slabs to another processor, and 8 time slabs to the last processor, and so on.

VI.6 Numerical Experiments: Iteration Count, Timing and Scal-

ing

In this section, we illustrate through numerical experiments the performance of the proposed
solver and we compare it to the performance of other benchmark solvers, such as the PGMRES
with ILU preconditioner.

VI.6.1 Implementation Details

For the numerics of this section, we used the C++ framework PETSc [10, 11] and the domain
specific language Utopia [141] for the parallel linear algebra and solvers, and the Cray-MPICH
compiler. For the assembly of high order finite elements, we used the PetIGA package [34]. A
parallel tensor-product routine was implemented to assemble space-time matrices. Numerical
experiments have been performed on the Cray XC40 nodes of the Piz Daint supercomputer of the
Swiss national supercomputing centre (CSCS).! The used partition features 1813 computation
nodes, each of which holds two 18-core Intel Xeon E5-2695v4 (2.10GHz) processors. We stress
that, when p > 1 processors are used, a block Jacobi iterative method as in (VI.18) is employed
by default by PETSc before any other method in order to obtain scalable solution strategies.
However, the PE'TSc default row-wise partition of the space-time matrix follows a load balancing
principle and, except in the trivial case p = N, does not correspond to the row-wise partition
described in Section VL.5; see Figure VI.2. Therefore, the partition must be adjusted by the
user.

"https:/ /www.cscs.ch/computers/piz-daint /
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PETSc default partition

P B P P B

Figure VI.2: The PETSc default row-wise partition of the space-time matrix does not account for the structure
of the space-time problem; compare with Figure VI.1.

VI1.6.2 Experimental Setting

In the numerics of this section, we solve the linear system (VI1.2) arising from the choices k = 2,
Y(t,x)=1,T=1,n=(nn),p=(p,p), r=(p—1,p—1). The basis functions £ [}, ..., lg1q
are chosen as the Lagrange polynomials associated with the right Gauss-Radau nodes in [—1, 1]
(see, for instance, [72]). The values of K(x), N, n, q, p, are specified in each example. For
each solver considered herein, we use ¢ = 10™% as a tolerance and the PETSc default stopping
criterion. Whenever we report the run-time of a solver, the time spent in I/O operations and
matrix assembly is ignored; run-times are always expressed in seconds. In all the tables below,
the number of iterations needed by a given solver to converge within the tolerance ¢ = 1078 is
reported in square brackets next to the corresponding run-time. Throughout this section, we
use the following abbreviations for the solvers.

e |ILU(0) - PGMRES

PGMRES with preconditioner given by an ILU(0) factorization (ILU factorization with no

fill-in) of the system matrix Cl[gf,ﬁ]'

o MG}, — PGMRES

The proposed solver, as described in Section VI.4, with p multigrid iterations applied to
K, p)(K). Each multigrid iterations involves v Gauss-Seidel smoothing steps at the finest
level (typically v = 1) and 1 Gauss-Seidel smoothing step at the coarse levels. The superscript
L denotes the number of multigrid levels.

e | TMG/, — PGMRES

The same as “MGiV—PGMRES”, with the only difference that the multigrid iterations are
performed with the telescopic option, thus giving rise to the telescopic multigrid (TMG)
[45, 92]. This technique consists in halving the number of processors used across the grid
hierarchy: if Ny processors are used on the fine grid (I = 0), then we use Ny/ 2! processors
on level [. This strategy can be beneficial for the parallel multigrid performance, as shown in
Section VI.6.4.
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Table VI.4: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a precision
of 1078, according to the experimental setting described in Section VI.6.2. We used K(x)=1I1,q=0, N =32
time steps and n = 259 — p. The total size of the space-time system (number of DoFs) is given by 32 - 257,

p 1 2 3 4 5 6 7 8
ILU(0)-GMRES | 3.7 [579] | 4.3 [367] | 5.2 [269] | 6.7 [226] | 8.2 [193] | 10.1 [174] | 11.9 [156] | 22.5 [234]
MG ,-GMRES | 1.4[33] | 2.9[33] | 4.7[33] | 7.2(33] | 10.5[35] | 14.7 [36] | 21.1[41] | 34.6 [53]
MG$ ,-GMRES | 0.8[33] | 1.6[33] | 2.5[33] | 4.0[35] | 6.6 [42] | 11.0[52] | 16.0 [60] | 26.2 [77]
MG ,-GMRES | 1.1[33] | 2.2[33] | 3.3[33] 0[34] | 7.1[36] | 11.4[43] | 17.0 [51] | 28.5 [67]
MG -GMRES | 0.6 [33] | 1.2[33] | 1.8([34] 1[39] | 53[50 | 9.1[63] | 13.5[75] | 19.8 [87]

Table VI.5: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a
precision of 1078, according to the experimental setting described in Section VI.6.2. We used K(zi,z2) =
cos(z1) + 2 0
0 z1 + sin(z2)
system (number of DoFs) is given by 40 - 1292

q = 1, N = 20 time steps and n = 131 — p. The total size of the space-time

p 1 2 3 4 5 6 7 8

ILU(0)-GMRES | 1.3 [449] | 1.7 [283] | 2.2 [219] | 2.9 [183] | 3.6 [158] | 4.4 [141] | 6.0 [148] | 9.5 [186]
MG ;-GMRES | 0.6 [55] | 1.3[55] | 2.4[55] | 4.1[58] | 7.6[64] | 12.7[90] | 18.5 [101] | 32.2 [139]
MG ;-GMRES | 0.5 [57] | 1.0[56] | 1.8[56] | 3.5[68] | 6.2[85] | 10.4[103] | 15.0 [116] | 26.5 [161]
MG3 ;-GMRES 5[57] | 1.0 [57] | 1.6 [58] 1[77] | 5.2091] | 8.6[112] | 12.6 [128] | 22.0 [179]
MG} ;-GMRES 51[67] | 0.8[65] | 1.3[68] 8 [90] | 4.6 [110] | 7.2 [125] | 11.0 [150] | 19.4 [210]

VI1.6.3 Iteration Count and Timing

Tables VI.4-VI.6 illustrate the performance of the proposed solver in terms of number of it-
erations and run-times. It is clear from the table that the solver is superior to the classical
PGMRES with preconditioner given by the ILU factorization of the system matrix C[q P m (IC).
Moreover, the best performance of the solver is obtained when applying to Ky, 5)(K) a single
multigrid iteration (u = 1) with one smoothing step at the finest level (v = 1). It should also be
noted that the solver is considerably robust with respect to the spline degree p as both number

of iterations and run-time do not grow significantly with p.

Table VI.6: PGMRES iterations and run-time (using 64 cores) to solve the linear system (VI.2) up to a
precision of 10™%, according to the experimental setting described in Section VI.6.2. We used K(z1,z2) =
(2+ cosz1)(1+ z2) cos(z1 + x2) sin(z1 + x2)
cos(z1 + x2) sin(z1 + 2) (2+sinz2)(1 4 z1)
size of the space-time system (number of DoFs) is given by 20 - 2572,

, ¢ =0, N = 20 time steps and n = 259 — p. The total

p 1 2 3 4 5 6 7 8

ILU(0)-GMRES | 1.9 [450] | 2.2 [284] | 2.6 [205] | 3.4 [170] | 4.4 [154] | 5.2 [135] | 6.4 [125] | 12.6 [195]
MG3 ,-GMRES | 0.2[11] | 0.5[11] | 0.8[11] | 1.5[13] | 2.6 [17] | 4.1[20] | 5.9[23] | 8.827]
MG] ,-GMRES | 0.2[12] | 04[11] | 0.6[12] | 1.2[15] | 2.1[20] | 3.3[23] | 4.6[26] | 7.2[31]
MG3 -GMRES | 0.2 [11] 411 | 06[12] | 1.1[15] 01[20] | 3.1[23] | 4.6[27] | 6.231]
MG -GMRES | 0.2 [12] 3[11] | 0.5[14] | 1.0[19] 7[23] | 2.5][26] | 3.6[30] | 5.5[36]
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Table VI.7: Strong scaling: PGMRES iterations and run-time to solve the linear system (VI.2) up to a precision
of 1078, according to the experimental setting described in Section VI.6.2. We used Kx)=1,q=0,p=3,
N = 64 time steps and n = 384. The total size of the space-time system (number of DoFs) is given by 64 - 3852,

Cores 1 2 4 8 16 32
ILU(0)-GMRES | 1319.0 [414] | 671.1 [415] | 328.7 [415] | 178.9 [415] | 105.6 [415] | 84.7 [416]
MG ;-GMRES 339.1 [64] 173.7 [64] 87.5 [64] 48.8 [64] 30.1 [64] 26.5 [64]
TMG] ;-GMRES | 339.1 [64] 173.7 [64] 87.6 [64] 48.8 [64] 30.0 [64] 26.3 [64]

Cores 64 128 256 512 1024 2048
ILU(0)-GMRES 38.1 [417] 22.0 [500] 10.3 [519] 6.7 [550] 4.0 [619] 2.7 [753]
MG/ ;-GMRES 12.9 [64] 7.0 [64] 3.4 [65] 2.4 [65] 2.3 [65] 5.5 [65]
TMG] ;-GMRES 12.8 [64] 6.3 [64] 3.1 [64] 1.8 [63] 1.0 [64] 0.6 [64]

Table VI.8: Space-time weak scaling: PGMRES iterations and run-time to solve the linear system (VI.2) up to a

precision of 10~%, according to the experimental setting described in Section VI.6.2. We used K(x) =1z, ¢=0,

p =2, and (N,n) = (8,65), (16,129), (32,256), (64,512). The ratio DoFs/Cores is constant in the table.
[Cores, n, N, L] ‘ [1,65,8,4] ‘ 8,129, 16, 5] ‘ [64,257,32, 6] ‘ [512,513,64,7]

0.69 [121] 4.3 [367] 13.8 [989)]

ILU(0)-GMRES

TMGY,-GMRES | 0.08 [10] 0.17 [17] 0.89 [33] 2.1 [64]

0.22 [50]

VI.6.4 Scaling

In the scaling experiments, besides the multigrid already considered above, we also use a TMG
for performance reasons (see Section VI.6.2 for some details/references about the TMG). From
Table VI.7 we see that the proposed solver, especially when using the TMG option, shows a
nearly optimal strong scaling with respect to the number of cores. Table VI.8 illustrates the
weak scaling properties of the proposed solver, which possesses a remarkably superior parallel
efficiency with respect to the standard ILU approach in terms of iteration count and run-time.
In fact, the efficiency of the proposed solver can be estimated to be about three times the one
of the standard ILU approach.
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Conclusions

In the present thesis we dealt with the spectral analysis and the development of fast solvers
for matrices with a Toeplitz-related structure by using a symbol approach. In this conclusive
chapter we suminarize the presented results and we suggest some possible future lines of research.

In Chapter II we described the singular and spectral distribution of special 2-by-2 block
matrix-sequences. In particular, focusing on the symmetrization of the matrix-sequence {T,[f]}n
generated by f, we proved that {Y,T,[f]}n is essentially distributed as +|f| in the eigenvalue
sense, which informally means that roughly half of the eigenvalues of Y,,T,[f] are positive and
they are approximated by a uniform sampling of |f| and roughly half of the eigenvalues are
negative and they are approximated by a uniform sampling of —|f|. As a consequence, with
the choice of a suitable circulant preconditioner C,,, we proved that the preconditioned matrix-
sequence {|C,| 1Y, T, [f]}n is distributed as 41 in the eigenvalue sense. Moreover, we showed
that the extension of the results to the block-Toeplitz case is possible with no particular dif-
ficulties. Conversely, extending the latter results to the multilevel case would require more
work. On one hand, proving the spectral distribution of the symmetrized multilevel Toeplitz
matrix-sequence {YpTn[f]}n is not as straightforward2. On the other hand, the performances
of multilevel circulant preconditioners deteriorate as the dimensionality increases, as it has been
proven in [101, 120, 124]. However, in future works we intend to derive and exploit the spectral
features of such symmetrized multilevel matrix-sequences in order to mimic the unilevel construc-
tion of efficient preconditioners, which in the multilevel setting will possibly be of non-circulant
type.

The encouraging results given in Chapter II suggested us to investigate the spectral and sin-
gular value distributions of other matrix-sequences of interest in practical applications. Hence,
in Chapter III we have described the singular value distribution of a sequence of the form
{M(T,]f])}n and the eigenvalue distribution of the symmetrized sequence {Y,,h(T},[f])}» in the
case where f € L*°([—m,7]) and h has convergence radius r such that ||f||cc < 7. In particu-
lar, making use of the properties of GLT sequences and under the aforementioned hypotheses
on f and on the convergence radius of h, we proved that the matrix-sequence {h(T},[f])}n is
distributed in the singular value sense as ho f. In addition, we exploited this property to study
the spectral distribution of the symmetrized sequence {Y,,h(T,[f])}» and we discovered that its
spectral symbol is given by

_ \ho f(9)], 9 €]0,2n],
Plhof| (V) { lho f—B). € [-2m0)

>The spectral distribution of the symmetrized multilevel Toeplitz matrix-sequence {YnTn[f]}n was derived in
[54] during the thesis revision time.
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Finally, we numerically confirmed the derived distribution results with several experiments in

different settings, also stemming from computational finance problems.

A desirable future development is the investigation on the possibility of relaxing the condition
f € L>®([-n,n]) taking a generic f € L'([—7,7]). In the latter case, a further step of analysis
is required. Some preliminary considerations suggest that we could use the cut-off argument as
in [136, 140] and the versatility of the a.c.s. notion. An alternative to the cut-off idea is the use
of Cesaro sums to obtain sequences of polynomials that converge to f with the techniques and
results derived in [112].

In Chapter IV, we studied multigrid strategies for linear systems having Toeplitz coefficient
matrices with block entries. Our main aim was to start filling the existing theoretical gap in
the convergence analysis of such methods. The resulting study indicates that the generaliza-
tion is not trivial, since the commutativity property of multiplication played an essential role
in the scalar case and it cannot be used in the block setting. Indeed, we proposed a general
two-grid convergence analysis for positive definite block-circulant matrices, proving an optimal
convergence rate independent of the matrix size under specific assumptions on the block symbol
of the grid-transfer operator. In particular, we analysed a first case where the trigonometric
polynomial that generates the block-circulant matrix used in the construction of the grid trans-
fer operator is unitarily diagonalizable at all points and fulfils an appropriate commutativity
condition. Moreover, we proved the approximation property for a grid transfer operator with
a block symbol that might be non-diagonalizable, paying particular attention to the role of ei-
genvectors. Furthermore, we provided the generalization of the convergence results to multilevel
block-circulant matrices, where the multilevel grid transfer operator possesses a tensor struc-
ture, and we explained how all the theory developed for block-circulants can be transferred to
block-Toeplitz matrices.

A full convergence analysis for the V-cycle in our block-Toeplitz setting is still not present, but
it is currently under investigation in [20], following the strategies devised in [97]. However, in the
subsequent chapter we proposed a measuring instrument for the ill-conditioning of the symbol
at the coarser levels that serves as a guideline to empirically choose a suitable prolongation
operator for achieving fast multigrid convergence for more than two grids.

In Chapter V, we developed and analysed multigrid procedures for the solution of linear
systems stemming from the Qs Finite Elements approximation of elliptic partial differential
equations with Dirichlet boundary conditions and where the operator is div (—a(x)V+), with a
continuous and positive over [0, 1]*. Firstly, we proposed a classical multigrid strategy following
a functional approach and we analysed the prolongation matrix as a cut block-Toeplitz matrix.
Indeed, we demonstrated the convergence and optimality of such two-grid method for polynomial
degree s = 1,2, 3 exploiting the results of Chapter I'V. Moreover, we performed an analogous
analysis for a linear interpolation prolongation operator and in this case the convergence was
proven for all even polynomial degrees. The extension of the convergence results to all polynomial
degrees for both prolongation operators is currently under investigation [20]. Finally, we tested a
third class of grid transfer operators, constructed according to the analysis of Chapter IV, that
is, focusing only on algebraic considerations on the symbol of the linear system block-Toeplitz
matrix-sequence. Results of numerical experiments that test all the considered methods were

presented, both in one dimension and in higher dimension, showing an optimal behaviour in
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terms of the dependency on the matrix size and a substantial robustness with respect to the
dimensionality. We highlight that the choice of the optimal smoother from a computational
point of view will be object of a further analysis aimed at devising a more competitive method,
especially in the case where the matrices possess a tensor structure.

Even though we focused on the Q; stiffness matrices, the presented procedures have a wider
interest. Firstly, our procedure can be applied with slight changes in the case of a variation of
Equation (V.1) obtained imposing different boundary conditions. In fact, the resulting stiffness
matrices differ from the ones that we analysed only of a small rank correction matrix. Therefore,
they share the same asymptotic spectral properties, which means that we only have to take care
of possible outliers, affecting the choice of the proper smoother. Furthermore, both the geometric
and the algebraic strategies could be mimicked for other discretizations and problems, given that
the system matrix-sequences fulfil the required hypotheses. Among them, we cite the case of
staggered discontinuous Galerkin methods for the incompressible Navier—Stokes equations [47],
for whose linear systems both a two-grid and a V-cycle method have been studied in [39].
Moreover, it is of future interest the development of a multigrid method for the block-Toeplitz
linear systems stemming from an IgA discretization of the Poisson problem with splines of non-
maximal regularity, which would also be useful for an extension of the work that we did in
Chapter VI

Indeed, in Chapter VI, we have proposed a new solver for the space-time IgA-DG discretiz-
ation of the anisotropic diffusion problem (VI.1), where the spline functions used for the spacial
component have maximum regularity. The method combined a suitable preconditioned GMRES
algorithm with a few iterations of an appropriate multigrid method, both devised taking inspir-
ation from the spectral analysis in [16]. Through numerical experiments, we have illustrated the
competitiveness of our proposal with respect to other benchmark solvers in terms of iteration
count, run-times and scaling. In particular, the solver is suited for parallel computation as it
shows remarkable scalability properties with respect to the number of cores. In addition, we
highlight that the proposed solver is highly flexible as it does not depend on the domain or the
space-time discretization, as long as a tensor-product structure is maintained between space and
time.

However, many significant steps could still be performed. Firstly, a future item of research
is the theoretical convergence analysis of the proposed solver. Moreover, it would be interesting
to investigate the performance of the solver for the anisotropic diffusion problem (VI.1) in the
case of a space domain  more complex than the hypersquare (0,1)* introducing a geometry
parametrization. Finally, a computational improvement could be obtained by considering an
inner/outer multilevel hierarchy in time to improve the overall scalability of the proposed solver,
for example, using it as a smoother in a multigrid-in-time algorithm.

In conclusion, we think that the present thesis inserts some missing pieces in the beautiful
and intricate puzzle of Toeplitz-related structures, which still needs to be completed with the
efforts of future theoretical and applicative research studies.
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