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Abstract

The last century has seen a growing interest in complexity in economics and social sciences. The need
to model the complex and emergent dynamics of a system has spurred many researchers towards the
exploration of estimation techniques that could be used for increasingly complex models, fostering
the rise of simulation-based econometric methods. This dissertation aims at contributing to the
blossoming literature concerning estimation, calibration and inference for simulated models.

Chapter 1, jointly written with Raffaello Seri and Davide Secchi, gives a historical review of
the different simulation methods, from the first experiments with early computers to sophisticated
agent-based models (ABM). In this chapter we focus on three fundamental aspect governing the
dynamics of the system: randomness, causation and emergence.

Chapter 2 critically review the different approaches developed for the estimation, calibration and
validation of simulation models. We begin clarifying the concept of identification and estimation
and we expose the problems related to the dependence of the simulated data on the parameters to
be estimated. Then, we formalize the meaning of calibration, estimation and validation of simulated
models. Subsequently, considering the classical simulation-based econometric frameworks, we detail
the characteristics of the most popular techniques (e.g., indirect inference, method of simulated
moments, simulated minimum-distance, simulated maximum likelihood, and approximate Bayesian
computation). We then make a comparison of the different methods, explaining their main advan-
tages and weaknesses. In the last section of the chapter, we shift our attention on the estimation,
calibration and validation of ABM.

Chapter 3, co-authored with Raffaello Seri, Davide Secchi and Samuele Centorrino, considers the
issues of calibrating and validating a theoretical model. We aim at selecting the parameters that
better approximate the data when the researcher has to choose among a finite number of alternatives.
Given a pre-specified loss function, we propose to build a Model Confidence Sets (MCS, see [223]) to
restrict the number of plausible alternatives, and measure the uncertainty associated to the preferred
model. We further suggest an asymptotically exact logarithmic approximation of the probability
of choosing a certain configuration of parameters. A numerical procedure for the computation of
the latter is provided and its results are shown to be consistent with Model Confidence Sets. The
implementation of our framework is showcased using a model of inquisitiveness in ad hoc teams (see
[30]).

The similarity between simulated and real-world observations is generally computed minimizing
their statistical distance (see Chapter 2 of this thesis). Therefore, a natural implication of estimation
and calibration concerns the study of the asymptotic properties of divergence measures. Chapter 4,
that is jointly written with Raffaello Seri, is devoted to the estimation of the entropy of a discretely
supported time series through a plug-in estimator. We demonstrate the almost-sure convergence of
the observed entropy HN to a limit H∞. We show that the widely used bias correction proposed
by [418] is incorrect and we fix it in order to remove the O

(
N−1

)
part of the bias. We provide

the asymptotic distributional results under α-mixing for the general case and under degeneracy (i.e.
when the values taken by the marginal distribution of the process are equiprobable). We introduce



the estimators of bias, variance and distribution under degeneracy, and we provide results on the
errors in the estimation. At last, we propose an application of the entropy to a goodness-of-fit test
for the marginal distribution of the process. Some simulation experiments and numerical examples
are provided to support the theoretical results.

We conclude the thesis presenting two new estimation methods that can be used to overcome
some drawbacks peculiar to classic simulation-based estimators.

In Chapter 5, co-authored with Raffaello Seri, we exploit a nonparametric sieve regression (see
[208, 354, 88]), estimated through ordinary least squares (OLS), to find the parameters of a sim-
ulation model producing moments that are similar to real-world statistics. We run a simulation
model for several parameter values, we compute the statistics on each run, and we estimate non-
parametrically the function linking the generated statistics and the associated parameters. Using
the real-world statistics as explanatory variables in the previous nonparametric regression, we esti-
mate the parameters of the model. Differently from simulated minimum-distance techniques (e.g.,
indirect inference and simulated method of moments), our setup does not involve any objective func-
tion and no optimization algorithm is required. This leads to several advantages when compared to
classic simulation-based econometric methods. In the end, we explicitly and rigorously characterize
the asymptotic theory of the estimator, including the order of the bias, confidence intervals and
hypotheses tests. Ultimately, we evaluate the approach through a small simulation study.

Finally, Chapter 6, also jointly written with Raffaello Seri, is similar in spirit to the work by [86].
The statistical framework is close to the one exposed in Chapter 5 but, instead of OLS, we estimate
the parameters of a simulated models via a nonparametric least absolute shrinkage and selection
operator (Lasso) regression. The nonparametric element is introduced to capture the nonlinear
relations between the statistics and the parameters. This implies some advantages, when comparing
the method to the previous chapter, that will be clarified in the following. First of all, the Lasso
allows the joint estimation and automatic selection of a subset of the basis functions used to model
the nonparametric function linking the statistics and the parameters to be estimated. Second,
in Lasso regression the number of basis function in the dictionary is not upper bounded by the
number of points chosen out of the parameter space, while in OLS it is. Third, the oracle property
of the Lasso suggests that the researcher may run this algorithm, identify the nonnull coefficients
of the regression, and run a nonparametric sieve regression estimated by OLS containing only the
retained coefficients, thus making the inferential tools of Chapter 5 available in the present situation.
Furthermore, we explicitly and rigorously characterize the asymptotic behavior of the estimator. We
end the chapter with a small simulation study showing the correct behavior of the method.
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Chapter 1

Randomness, Emergence and
Causation: A Historical Perspective
of Simulation in the Social Sciences1

This chapter is a review of some simulation models, with special reference to social sciences. Three
critical aspects are identified, i.e. randomness, emergence and causation, that may help understand
the evolution and the main characteristics of these simulation models. Several examples illustrate
the concepts of the paper.

1.1 Introduction

The following pages present a selection of computational models and techniques that have been used
in the last 70 years and provides an overview of how the field has evolved. In an era of cheap and
fast computation, it is particularly important to look back at the history to understand the specific
reasons that make current advanced techniques so remarkably relevant to social scientists.

We do not pretend to present a comprehensive overview of simulation modeling techniques and
systems, but have selected those that we believe have contributed the most to build current simula-
tion approaches. In so doing, we identify a thread, concerning randomness, emergence and causation,
that specifies some of the most relevant characteristics of current techniques. In an attempt to make
these comments as much visible as possible, they are found under the header “Intermezzo”, as it
interrupts the flow of the presentation and weaves together the different methods.

Before moving forward, a few words needs to be spent on these three aspects and why they are
so important as to appear as the ‘fil rouge’ of the chapter. Let us start from randomness. Any
simulation of a social system has to be able to reproduce elements that appear unpredictably and

1This chapter is included in ”Seri, R., Secchi, D., and Martinoli, M. (2020). Randomness, emergence and causation:
A historical perspective of simulation in the social sciences. In Complexity and Emergence. Springer Science+Business
Media.“
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without any apparent connection to the phenomenon under analysis (or to an outcome variable).
The reason is connected to Laplace’s demon (see [286, p. 2]): an omniscient intellect having complete
knowledge of all the forces and positions of the items composing the natural world as well as unlimited
computing possibilities would be able to predict without error all future events. Randomness is a way
of accounting for our ignorance of these initial conditions and for our computational limits. That is
why a model not taking into account the possibility of unpredictable and/or external events would
fall short of capturing the inherent complexity of most phenomena. The second aspect, emergence,
is tied to the assumption that social systems are complex ([116, 161]). When this assumption
holds for the computational simulation that models a social system, then uncertainty, ambiguity,
and unpredictability are key features of that research effort. Some have argued that a successful
simulation is one that presents the modeler with counter-intuitive and surprising results (see, e.g.,
[170]). We do not subscribe to this view, because it is too radical and only fits certain types of
simulations. However, we can certainly support the idea that simulating a social system means to
allow for a true intellectual enquiry, where results are not entirely discernible by simply looking at the
code. On this respect, “a model is not a model” (opposite to what some argue in a recent editorial,
see [267]). The third aspect is that of causation. One of the defining aspects of a computational
simulation are the mechanisms that specify how its component parts behave. The interactions of
these parts are reflected in the values taken by the aggregate variables describing the system that,
on their turn, impact the single components. The components and the aggregates are thus linked by
up- and down-ward relations. In a social system, both causal directions need to be present to explain
most phenomena. The history of computational simulation in the social sciences has always bounced
back and forth between these two levels, and settled on recent techniques that could account for
both.

The methods we are going to present are very heterogeneous. Some of them are specified at
the level of the individual, others are aggregate. Some of them require interactions between agents,
others don’t. Some of them are deterministic, others contain random elements. However, all of
them share the same two characteristics: (a) objects (individuals or quantities) are reduced to a
finite number of idealized types (that may vary in quality); (b) objects are specified by relations
partially or fully connecting them together. The historical review that we are going to present will
show how the two mechanisms that have governed the evolution of these methods are indeed the
identification of basic units of analysis, at whatever level they are defined, and the determination of
the mechanisms that connect them. The solutions that have been proposed to these two questions
have led to the development of several simulation methods.

Now we come to the structure of the chapter. In Section 1.2, we review some computational
experiments involving early computers. In Sections 1.3 and 1.4 we respectively review System
Dynamics and Discrete-Event Simulation, two methods of inquiry considering the aggregate behavior
of a system. Then, we review some Microsimulation techniques, in Economics and Political Science,
in Section 1.5. Section 1.6 covers Cellular Automata, while Section 1.7 introduces Agent-Based
Models. Section 8 wraps up the main conclusions.
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1.2 Experiments with Early Computers

1.2.1 ENIAC

One of the first electronic computers—the ENIAC, Electronic Numerical Integrator and Computer—
was built at the beginning of 1945 at the University of Pennsylvania in Philadelphia ([337, p. 125]).
In the spring of 1946 at Los Alamos, Stan Ulam suggested that ENIAC could be used to resuscitate
some statistical sampling techniques that “had fallen into desuetude because of the length and
tediousness of the calculations” ([337, p. 126]). He discussed the idea with John von Neumann,
who sent, on March 11, 1947, a letter to the leader of the Theoretical Division of the Los Alamos
National Laboratory, Robert Richtmyer, with “a detailed outline of a possible statistical approach
to solving the problem of neutron diffusion in fissionable material” ([337, p. 127]):

The idea then was to trace out the history of a given neutron, using random digits
to select the outcomes of the various interactions along the way. [...] von Neumann
suggested that [...] “each neutron is represented by [an 80-entry punched computer]
card ... which carries its characteristics,” that is, such things as the zone of material the
neutron was in, its radial position, whether it was moving inward or outward, its velocity,
and the time. The card also carried “the necessary random values” that were used to
determine at the next step in the history such things as path length and direction, type
of collision, velocity after scattering—up to seven variables in all. A “new” neutron was
started (by assigning values to a new card) whenever the neutron under consideration
was scattered or whenever it passed into another shell; cards were started for several
neutrons if the original neutron initiated a fission. ([141, p. 133])

This led Nicholas Constantine Metropolis and Stanislaw Ulam to introduce, in 1949, the name of
Monte Carlo method ([338]) for a statistical sampling method:

I [Metropolis] suggested an obvious name for the statistical method—a suggestion
not unrelated to the fact that Stan had an uncle who would borrow money from relatives
because he “just had to go to Monte Carlo.” ([337, p. 127])

The name of Monte Carlo method is nowadays generally used to denote a rather heterogeneous array
of techniques for solving mathematical problems by:

• reducing their solution to the computation of an expectation with respect to a random variable
and

• approximating this expectation with the empirical average based on a sample of realizations
of the random variable.

The simplest example is the integration of a function on a bounded domain.

Example 1.1. [Monte Carlo integration] The aim is to compute the integral of a function f defined
on a bounded domain that we identify, without loss of generality, with the unit interval [0, 1]. The
integral is

∫ 1

0
f (x) dx. A solution is to remark that a random variable X uniformly distributed over

8



the interval [0, 1] has probability density function 1, so that
∫ 1

0
f (x) dx = Ef (X). This means that,

if we have a sample {x1, . . . , xn} of realizations from X, we can approximate
∫ 1

0
f (x) dx = Ef (X)

through 1
n

∑n
i=1 f (xi).

Modern statistical sampling methods largely predate the Monte Carlo method.

Example 1.2. [Buffon’s needle] An often-misquoted antecedent is Buffon’s needle, a mathematical
problem requiring to compute the probability that a needle of length l, randomly cast on a floor
with equally-spaced parallel lines at a distance d, lands on a line. The problem was presented by
Buffon in 1733 at the Académie Royale des Sciences of Paris (see [77]) and solved in [78, pp. 100-
105] (see also[285, pp. 359-360]). The original aim of Buffon was to look for an explicit solution.
The probability itself is 2l/πd (when l ≤ d) and this explains why several authors have performed
the experiment repeatedly to provide, through an empirical approximation to the probability, an
approximation to π. Despite the problem lends itself to a sampling solution, there is no evidence
that Buffon ever tried to do that. Notwithstanding this, many authors (among which, e.g., [322, p.
120]) have written that Buffon proposed a sampling solution: what probably has misled them is the
fact that [121] and [122, pp. 170-171] presented the needle problem together with another problem
that Buffon studied with 2048 trials (this is confirmed by the fact that [322, p. 120] states that
Buffon tried 2048 tosses in the needle problem). Other authors (see [461, p. 117]) have attributed
the sampling solution to [285, p. 360]: despite Laplace is indeed talking about the limit for a large
number of draws, he is probably making a reference to a frequentist argument rather than to a real
sampling solution to the problem. However, the references in [121] (reprinted in [122, pp. 170-171]
and [288]) suggest that the sampling approximation of π through Buffon’s needle was in use as early
as 1855.

1.2.2 Intermezzo

As no computer-based method for building random numbers was (and still is) known, John von
Neumann went on to study algorithms to generate pseudo-random numbers, i.e. numbers with
characteristics similar to those of random numbers. A famous but somewhat trite quotation is:

Any one who considers arithmetical methods of producing random digits is, of course,
in a state of sin. For, as has been pointed out several times, there is no such thing as
a random number—there are only methods to produce random numbers, and a strict
arithmetic procedure of course is not such a method. ([488, p. 36])

The interpretation that is generally given to this sentence is inaccurate. Von Neumann was not being
skeptical, as often interpreted, of the usefulness of pseudo-random numbers. He was just suggesting
that “ ‘cooking recipes’ for making digits [...] probably [...] can not be justified, but should merely
be judged by their results.” ([488, p. 36]). This is the main way in which random-number generators
(RNG, though a better name would be pseudo-random-number generators, PRNG) are evaluated
today, through batteries of statistical tests in which their behavior is compared with the theoretical
behavior of true random numbers (e.g., [330, 74]). As computer simulation was, at that time, very
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difficult, random digits were collected in publications among which the famous A Million Random
Digits with 100,000 Normal Deviates ([106]), published in 1955.

However, even before and around the construction of ENIAC several computational experiments
were being performed using analog computers, and they often used random numbers too.

1.2.3 FERMIAC

In the 1930s, when he was still in Rome, Enrico Fermi was studying neutron transport: when a
neutron (a sub-atomic particle) passes through matter, it can interact with other particles, or it can
not. However, the aggregate behavior of neutrons seemed out of reach. Fermi assumed that each
neutron was like an agent whose behavior was dictated by the sampling of a random number. He
then computed the aggregate results for a large numbers of neutrons on a mechanical calculator:

Fermi had invented, but of course not named, the present Monte Carlo method when
he was studying the moderation of neutrons in Rome. ([438, p. 221])

According to his student Emilio Segrè (see [337, p. 128]), Fermi kept the technique secret and used it
to solve several problems. His colleagues were often astonished by the precision of his computations.
These back-of-the-envelope calculations contributed to create the myth of so-called Fermi estimates.

In the late 1947 the ENIAC (see Section 1.2.1) was moved at the Ballistics Research Laboratory
in Maryland. Fermi built an analog simulator of neutron transport, called the FERMIAC (a pun
on ENIAC; an image can be found in [337, p. 129]). In the FERMIAC, neutrons were modelled as
agents in a planar region, whose behavior was affected when a material boundary was crossed.

1.2.4 MONIAC

In 1949, at the London School of Economics (LSE), Bill Phillips (Alban William Housego “A. W.”
“Bill” Phillips, who later introduced the Phillips curve) built an hydraulic machine called Monetary
National Income Analog Computer or MONIAC (see [361]). The name was a pun on “money” and
“ENIAC”. It was a system of tanks and valves through which water flowed, in a simulation of money
circulation in the UK economy. The example of the MONIAC looks very distant from the ones we
will see below, but it contains the features outlined above: here the tanks are the objects; the valves
are the relations connecting the objects.

Both the FERMIAC and the MONIAC were example of analog or analogue computers, i.e.
machines using physical (electrical, mechanical, or hydraulic) phenomena expressed in terms of
variables measured on a continuous scale to model a phenomenon. Analog computers were very
common when no other computing method was available. The difference with respect to digital
computers is that the latter use information stored in discrete form: the earliest digital computers
were program-controlled, i.e. they were programmed by modifying the physical structure (plugs,
wires, etc.) of the machine; modern computers are stored-program, as the program is stored in
memory, without hardware modifications.
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1.3 System Dynamics

System dynamics (SD) is an approach to the dynamical study of systems composed of objects in
interaction. The idea of SD is to model the change over time of some quantities through feedback
loops, accumulation of flows into stocks, and identification of inflows and outflows. The system
is generally represented first graphically as a diagram and then mathematically as a system of
differential (or difference) equations, that are then solved numerically by a computer program. Its
central insight is the fact that the structure connecting the components is sometimes more important
than the components themselves in determining the behavior of the system. It was founded, as a
branch of systems theory ([50]), by Jay Wright Forrester in the 1950s (see, e.g., [169] or the historical
accounts in [171] and [284]). At the beginning, SD was developed to analyze complex business
problems, in connection to the author’s position at the MIT Sloan School of Management. It has
been applied to several problems ever since. SD goes through a series of steps to transform a verbal
description of the phenomenon under scrutiny into a mathematical model (see, for example, [464]
for a worked-out example on new product adoption).

Example 1.3. [Lotka-Volterra Model] An early example of a system of differential equation in
which the elements appearing in the system can be interpreted as feedback loops is the Lotka-
Volterra Model (LVM), developed by Lotka ([308, 309, pp. 92-94]) and Volterra ([485, 486]) in
some seminal works. The LVM is a predator-prey model describing the dynamics of two species,
i.e. predators and preys, interacting in an ecological environment. The presence of feedback loops is
made clear both by Lotka (see the graphical representation in [308, pp. 411-412]) and by Volterra:2

“conviene [...] di schematizzare il fenomeno isolando le azioni che si vogliono esaminare e supponen-
dole funzionare da sole, trascurando le altre.” ([486, p. 31]). A SD approach is in [127], while the
final behavior of the system is illustrated in Figure 1.3.1.

Example 1.4. [The Limits to Growth] The Club of Rome is a think tank founded in 1968 in Rome
as “an informal association of independent leading personalities from politics, business and science,
men and women who are long-term thinkers interested in contributing in a systemic interdisciplinary
and holistic manner to a better world.” Their 1972 book The Limits to Growth ([336]) used system
dynamics to study the world economy and population and raised considerable interest and concern
about its sustainability.

Example 1.5. [The Lorenz system] In 1963, Edward Norton Lorenz studied atmospheric convection
through differential equations (see [306]). He realized that a small change in the initial conditions
could have long-term effects on the behavior of the system. The idea is to take two starting points
on two nearby trajectories: moving along them, they will eventually diverge. Similar insights had
already been advanced by Henri Poincaré in 1890 while studying the three-body problem and by
Jacques Hadamard while studying motion on surfaces of negative curvature, but had little impact
on the literature. Lorenz’s discovery, instead, sparked a small revolution. It led to the identification
of so-called deterministic chaos, chaos theory or, simply, chaos, i.e. sensitivity to initial conditions

2In English, “it is more effective [...] to schematize the phenomenon by isolating the actions that one wants to
examine and, assuming they behave independently, irrespectively of the others” (our translation).
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Figure 1.3.1: Population densities of the two species in the Lotka-Volterra model (predator in grey, prey in
black).
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in deterministic systems (often called dynamical systems). Lorenz coined the term butterfly effect
for this phenomenon. An oft-quoted sentence is taken from the title of Lorenz’s talk at the 139th
meeting of the American Association for the Advancement of Science in 1972: “Does the flap of a
butterfly’s wings in Brazil set off a tornado in Texas?”

Instances of chaos in models from several domains, and SD among them, were described. As an
example, in 1986, Erik Mosekilde and Javier Aracil received the Jay W. Forrester Award for their
work on chaos in SD.

Example 1.6. [A Sound of Thunder] In the June 28, 1952, issue of Collier’s magazine, a science
fiction short story by Ray Bradbury was published under the title A Sound of Thunder ([68]). It
described a time travel into the past whose impact on the future goes awry because of a butterfly
(no spoilers). This story is sometimes miscredited with the origin of the name butterfly effect but,
despite being a wonderful example of the very concept, it had no bearing on its development.

1.3.1 Intermezzo

While chaos is extremely important from a theoretical point of view, its relevance in real examples
is difficult to work out:

An essential point made by Poincaré is that chance and determinism are reconciled
by long-term unpredictability. Here it is, in one crisp sentence: A very small cause,
which escapes us, determines a considerable effect which we cannot ignore, and we then
say that this effect is due to chance. ([419, p. 48])

The problem with chaos is that the dependence on the initial conditions makes difficult to forecast
the future of the system, as initial conditions are always observed with a small error. This is why
chaotic dynamical systems may be modeled as stochastic processes:3

En dernière analyse, le hasard réside donc [...] dans l’œil de l’observateur. ([144, p.
14])

For us, what matters most is that chaos is a property of the system that is not shared by its
components when considered in isolation. Properties like this are called emergent :

The ability to reduce everything to simple fundamental laws does not imply the ability
to start from those laws and reconstruct the universe. [...] The constructionist hypothesis
breaks down when confronted with the twin difficulties of scale and complexity. [... A]t
each level of complexity entirely new properties appear. [...] Psychology is not applied
biology, nor is biology applied chemistry. [... T]he whole becomes not only more than
but very different from the sum of its parts. ([11, pp. 393-395])

Emergent properties arise when the system as a whole displays a behavior that is not explicit in its
single components. As put forth in [11], a system of interacting quantities/agents is not only more

3In English: “So, in the end chance lies [...] in the eye of the observer” ([145, p. 4]).
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than the sum of its components, it is different from their sum. We will see below some examples of
emergence (some authors use supervenience for a related concept).

For the moment we review some of the history of the concept. As remarked in [279, p. 49], one
of the first disciplines to embrace emergence as its central phenomenon was Economics, through the
work of Adam Smith:4

[E]very individual [...] neither intends to promote the publick interest, nor knows
how much he is promoting it. [... H]e intends only his own gain, and he is in this, as in
many other cases, led by an invisible hand to promote an end which was no part of his
intention. [...] By pursuing his own interest he frequently promotes that of the society
more effectually than when he really intends to promote it. ([459, p. 35])

The philosopher John Stuart Mill wrote, when dealing with failures of the principle of the Compo-
sition of Forces:

The chemical combination of two substances produces, as is well known, a third
substance with properties entirely different from those of either of the two substances
separately, or of both of them taken together. Not a trace of the properties of hydrogen
or of oxygen is observable in those of their compound, water. [... W]e are not, at least in
the present state of our knowledge, able to foresee what result will follow from any new
combination, until we have tried it by specific experiment. ([341, pp. 426-427])

The metaphor of water was a recurrent one in the work of early emergentists ([60, p. 37]). In
Biology, Thomas Henry Huxley, in the book [243, pp. 16-17], introduced the idea that “there is no
sort of parity between the properties of the components and the properties of the resultant”: he
used the “aquosity” of the oxide of hydrogen (i.e. water) as a comparison for the “vitality” of living
systems, and he admonished that those who say that “the properties of water may be properly said
to result from the nature and disposition of its component molecules” are “placing [their] feet on
the first rung of a ladder which, in most people’s estimation, is the reverse of Jacob’s, and leads
to the antipodes of heaven.” Another often-quoted antecedent involving a different discipline is the
recognition by the French sociologist Émile Durkheim that social facts cannot be reduced to the
agents that are involved in them:5

La dureté du bronze n’est ni dans le cuivre ni dans l’étain ni dans le plomb qui ont
servi à le former et qui sont des corps mous ou flexibles ; elle est dans leur mélange. La

4The sentence is often misquoted replacing the obsolete “publick” with the more modern “public.”
5The article containing this quotation became the Préface of the second edition of Les Règles de la méthode

sociologique ([139]), and is generally quoted as such (despite the article is antecedent); the sentence is not in the first,
1895, edition. In English:

The solidity of bronze lies neither in the copper, nor in the tin, nor in the lead which have been used
to form it, which are all soft or malleable bodies. The solidity arises from the mixing of the two. The
liquidity of water, its nutritive and other properties, are not in the two gases of which it is composed,
but in the complex substance they form by coming together. [... Social facts] reside in the society itself
that produces them and not in its parts, namely, its members. ([140, pp. 39-40])

It is difficult to say whether Durkheim was aware of Huxley’s example, but he was surely well acquainted with the
work of Huxley’s friend, Herbert Spencer (see [146]), on social organisms. By the way, the metaphor of water is used
in [146, p. 96] to describe the shorthand system developed by William George Spencer, Herbert Spencer’s father.
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fluidité de l’eau, ses propriétés alimentaires et autres ne sont pas dans les deux gaz dont
elle est composée, mais dans la substance complexe qu’ils forment par leur association.
[... Les faits sociaux] résident dans la société même qui les produit, et non dans ses
parties, c’est-à-dire dans ses membres. ([138, p. 9])

Several other historical examples are in [333, pp. 63-64, 863]; outside Biology, the economist Elinor
Ostrom quoted this book ([369, p. 44]) as one of her major sources of inspiration.6

1.4 Discrete-Event Simulation

Discrete-Event Simulation (DES) is a kind of simulation developed in the 1950s that:

utilizes a mathematical/logical model of a physical system that portrays state changes
at precise points in simulated time. Both the nature of the state change and the time at
which the change occurs mandate precise description. Customers waiting for service, the
management of parts inventories, or military combat are typical application domains for
discrete event simulation. ([351, p. 370] or [350, p. 149])

Strictly speaking, the name DES denotes (almost) any simulation taking place in discrete time, but
this has several consequences on how it is performed. The system has finitely many components,
with finitely many states. These components interact through events having no duration. In general,
the state of the system is described by a state variable.

Example 1.7. [Queueing Systems] The most classical example of a DES is a queue. As an example,
individuals from a calling population arrive at random times in front of one or more servers, servicing
them in FIFO (first in first out) order with random serving times; if all servers are busy, a waiting
line creates and its length is the state variable. Several queueing systems are easily solvable, others
are not, and require simulation to be solved. An example may be found in [24, Section 2.1]. The
two tables provide some random values for the arrival times and for the service times. Through the
rules, one can get the number of customers in the system.

1.5 Microsimulation

1.5.1 Microsimulation in Economics

Microsimulation was introduced in 1957 by Guy Henderson Orcutt in [367]. Here is a definition
adapted from the one provided by the International Microsimulation Association:

Microsimulation refers to a wide variety of modeling techniques that operate at the
level of individual units (such as persons, firms, or vehicles), with rules applied to simulate

6These pages by Mayr contain some mistakes. First, the book of Lloyd Morgan cited by Mayr is probably the one
from 1923 ([347]), not from 1894, as emergence starts appearing in his work from 1912 (see [60, p. 59]). Second, the
quotation just after that is not by Morgan but is taken from the book [380, p. 72] where it is used to illustrate the
reasoning in [348, p. 59].
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Figure 1.5.1: Coleman’s boat as represented in [99, pp. 8 or 10]

changes in state or behavior. These rules may be deterministic or stochastic, with the
result being an estimate of the outcomes of applying these rules, possibly over many steps
involving many interactions. These estimates are also at the micro level, allowing analysis
of the distribution of the outcomes and changes to them, as well as the calculation of
any relevant aggregate. ([159, p. 2142])

Microsimulation bears resemblances with agent-based modeling (see Section 1.7) but they “have
remained very distinct fields in the literature with microsimulation methods drawing heavily on
micro-data” ([159, p. 2142]). The reliance on micro-data for the construction of rules of behavior—
that is generally considered a positive, when not the defining feature, of this method—has somewhat
limited the scope of application of microsimulation to situations in which these data are available.

1.5.2 Intermezzo

What is missing from Microsimulation can be illustrated using the so-called Coleman’s boat repro-
duced in Figure 1.5.1 and 1.5.2.

The simplest form of this diagram (see [99, pp. 8] or [52]) is shown in Figure 1.5.1. It illustrates
the causal paths between micro- and macro-level phenomena: a macro- level cause influences agents
at a micro-level and this in turn influences the macro-level. Here, “the macro level is an abstraction,
nevertheless an important one” ([99, p. 12]). A slightly different representation, from [227, p. 59],
is in Figure 1.5.2. The grey area represents the macro-level, while the white one represents the
micro-level. Applications to simulation methods are in [476, p. 35], [227, p. 59] and [228].

Before turning to the explanation of these graphs, we remark that some authors (see [79, p. 454]
and [327, p. 42]) prefer to refer to this representation as a Boudon-Coleman diagram (see [399] for a
study of the antecedents of Coleman’s boat) while others present modifications of the boat without
an upper macro-macro path ([98, p. 1322]).
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Figure 1.5.2: Coleman’s boat as represented in [227, p. 59]

The mechanisms “by which social structures constrain individuals’ action and cultural environ-
ments shape their desires and beliefs” ([227, p. 59]) represented by path 1 are called situational. They
represent downward causation. Action-formation mechanisms (path 2) “[link] individuals’ desires,
beliefs, etc., to their actions” ([227, p. 59]). The mechanisms “by which individuals, through their
actions and interactions, generate various intended and unintended social outcomes” ([227, p. 59])
are called transformational (path 3). They represent upward causation. Path 4 does not represent
causality as “explanations that simply relate macro properties to each other [...] are unsatisfactory”
([227, p. 59]). One can iterate the “boat” over time: at each step of the simulation, there is an
upward causation path from the agents towards the macro-level, and a downward causation path
from the macro-level to the behavior of the agents.

The link of emergence with Coleman’s boat is that emergent phenomena can generally be iden-
tified with macro behaviors induced by the mechanisms taking place in the bilges of the boat.
Transformational mechanisms are especially relevant as they are the final step through which up-
ward causation generates emergent phenomena. It is no surprise, therefore, that simulation methods
built from the characteristics of the single agents may be better at modeling emergence (see [445, p.
230]).

Now, returning to Microsimulation, Economics has at least two mechanisms of individual market
coordination that are coherent with both upward and downward causation: general equilibrium
and partial equilibrium. The former takes place when equilibrium between demand and supply is
achieved on all markets inside an economy at the same time, and changes in one market affect all
other markets. The latter happens when one market is considered in isolation and is supposed not
to affect the other markets. Both mechanisms predict that individuals, without coordination but
only through tâtonnement, select prices achieving a macro-level equilibrium characterized by market
clearing, i.e. full allocation of goods in any market of the economy. As individuals face these prices,
this constitutes a source of downward causation, from the macro level to the micro one. But the
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application of partial and general equilibria in simulated models has two problems. First, it is not
credible that these concepts of equilibrium hold exactly true, as perfect market clearing seems to be
the exception rather than the norm. Second, in models representing a proper subset of the economy,
it is difficult to imagine quantitative mechanisms of downward causation.

Coleman’s boat can also be useful to classify simulation models. Indeed, some authors ([188, 317])
identify three categories of models:

• Macrosimulations (e.g., System Dynamics, see Section 1.3, Discrete-Event Simulation, see
Section 1.4) focus on an aggregate level and operate at the level of the deck of Coleman’s boat;

• Microsimulations (e.g., Microsimulation, see Section 1.5.1, Simulation of Voting Behavior, see
Section 1.5.3) focus at the individual level and take place in the bilges of Coleman’s boat;

• the third category is composed of models in which there is an iteration between the two levels.
These are identified with so-called Agent-Based Models (see Section 1.7).

1.5.3 Early Simulation of Voting Behavior

Some models similar to economic Microsimulations can be found in the early literature on simulation
of voting behavior. We include these models in this review because of their accent on agents’
heterogeneity.

[392] presented a model they had developed for the Democratic Party in the 1960 US presidential
campaign, the so-called Simulmatics project. The original model used the positions of 480 types
of voters (that were consolidated to 15 in the published paper) on 52 issues. The data for the
model were based on over 100,000 interviews in polls collected over 10 years by polling firms. The
researchers advised Kennedy that he would benefit from taking a strong stance in favor of civil
rights and from openly dealing with his Catholic religion. The paper was so influential that in 1964
Eugene Leonard Burdick, a political scientist and novelist, wrote a novel, called The 480 (see [80]),
criticizing the fact that the use of computer models made easy to choose strategies to maximize
votes and manipulate electors.

In 1965, Ithiel de Sola Pool, Robert P. Abelson and Samuel L. Popkin published Candidates,
Issues, and Strategies: A computer simulation of the 1960 and 1964 presidential elections, a book
describing in detail their model (see [393]). [1] considered a simulation model of voting in the
fluoridation referendum (i.e. whether tap water should be compulsorily fluoridated or not). The
model had 500 agents behaving according to 51 rules (22 about information processing, 27 on
information exchange, 2 for voting behavior).

1.6 Cellular Automata

Cellular automata (CA, sing. automaton) are systems composed of individuals taking on one of
a discrete number of states, arranged in fixed cells (hence the name cellular) on a grid, interact-
ing according to deterministic rules depending on the neighboring agents’ state (hence the name
automata). A more formal definition is the one in the Stanford Encyclopedia of Philosophy:
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Figure 1.6.1: Game of Life: evolution of a glider on a 8 × 8 checkerboard.

CA are (typically) spatially and temporally discrete: they are composed of a finite
or denumerable set of homogeneous, simple units, the atoms or cells. At each time unit,
the cells instantiate one of a finite set of states. They evolve in parallel at discrete time
steps, following state update functions or dynamical transition rules: the update of a cell
state obtains by taking into account the states of cells in its local neighborhood (there
are, therefore, no actions at a distance). ([52])

They have been used both as specific examples of real-world phenomena and as abstract examples
of how complex behavior can arise from simple rules. Note that the rules of behavior of cellular
automata are deterministic and fixed. They were first formalized by Stanislaw Ulam and John von
Neumann in the 40s, while the former was working on the growth of crystals and the latter on
self-replicating systems. The work of von Neumann culminated in the classic [487] (note that the
symposium for which the paper was written was held in 1948), while the work of Ulam dates [478].
However, it was only in the 1970s that CA rose to prominence with the following example.

Example 1.8. [Game of Life]
In 1970, in [181], Martin Gardner popularized “a fantastic solitaire pastime” invented by John

Horton Conway. This is indeed a cellular automaton with very simple rules:

• each cell can be either occupied by a living creature or empty;

• the creature in the cell dies if it has 1 or 4+ neighbors (resp. of loneliness and overcrowding);

• an empty cell comes to life if it has 3 living neighbors.

The neighbors of a cell are the ones in the Moore neighborhood, i.e. the set of 8 cells in contact
through a side or a corner with the cell (a von Neumann neighborhood, instead, is the set of 4 cells
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 3

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

equilibrium

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

iteration 10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

equilibrium

Figure 1.6.2: Schelling Segregation Model for different values of x: the row above shows the case x = 0.5,
the row below the case x = 0.9; the left column displays a random initial configuration that is equal for both
values of x; the second column shows the model after 3 (above) and 10 (below) iterations; the last column
shows what happens after an arbitrarily large number of iterations.

in contact through a side with the cell). The game is generally applied starting from a configuration
of activated cells. At the beginning, Conway thought that such a system could not create a universe
in constant expansion, but he was soon proved to be wrong (see the glider in [45, p. 131] or Figure
1.6.1 and the glider gun in [45, p. 935]). The number of configurations that have been explored is
incredibly large (see [45, Chapter 25]).

Around the same years, Thomas Crombie Schelling introduced a model dealing with segregation,
i.e. the enforced separation of different ethnic groups in a community. By taking inspiration from
James Sakoda, who created a set of so-called checkboard models (see [229] for the detailed story),
Schelling’s Segregation Model ([427, 428]) showed that a personal slight preference towards a less
diverse neighborhood could create in the long run a segregated community.

Example 1.9. [Schelling Segregation Model]
Schelling ([427, 428]) proposed a model in which two types of individuals, say, A and B, are located

on a one-dimensional or two-dimensional grid. Some of the cells may be empty. At each step, each
individual counts how many in their Moore neighborhood are like them: if the proportion is smaller
than a threshold value x, they move to a new position. This position is chosen deterministically: it
is the nearest empty position satisfying their threshold. Schelling did not quote explicitly cellular
automata in his paper, but to keep the paper inside the framework was compelled to introduce
awkward deterministic rules (as an example, individuals choose to move according to a certain order
in the grid). However, this is not the version of Schelling’s model that is generally used: in the
latter, some randomness is generally introduced in the relocation of moving individuals. This small
step gets this cellular automaton near to agent-based models (see Section 1.7). This instance of the
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model is displayed in Figure 1.6.2. The evolution of the system for different values of x has been
characterized:

Initially the system quickly develops small clusters, but then a slow evolution toward
larger clusters follows. [... T]he system evolves toward one big cluster or very few clusters.
In the case of x = 1/2 the cluster surface tends to form flat surfaces [...] In x 6= 1/2 cases
the surface is bumpy and irregular ([484, p. 19263])

1.6.1 Intermezzo

In this model, segregation is an example of emergence. We discuss in the following the implications
of emergence and its importance for the model and for the development of simulation in the social
sciences.

Example 1.10. [Schelling Segregation Model] In Schelling’s model, segregation is an emergent
property, as nobody necessarily wants it to take place. Schelling stated this opposition in the
famous title of one of his books, Micromotives and Macrobehavior ([429]), whose blurb summarizes
the idea as follows: “small and seemingly meaningless decisions and actions by individuals often lead
to significant unintended consequences for a large group.” The description in the blurb replicates
the definition of the upward causation path in Coleman’s boat.

Note the striking difference with respect to two economic frameworks that gained traction in the
last decades.

On the one hand, in modern Macroeconomics, several models are based on a representative
agent, i.e. an agent that represents the whole economy (see, e.g., [219]). This became a central
element of Real Business Cycle (RBC ) theory, first, and, after that, of Dynamic Stochastic General
Equilibrium Models (DSGE ) introduced in the two seminal papers [280] and [304]. DSGE are, in
general, macroeconomic models featuring an economy in general equilibrium; moreover, the models
are microfounded, i.e. they are not formulated in terms of aggregate quantities but they derive their
behavior by aggregating microeconomic individual models. In the case of DSGE, their behavior
can be reduced to that of a representative agent maximizing expected utility. In [215], the authors
provide an interesting point of view focused on the causal structure of these dynamic models:

These types of models are nowadays the most widely used to draw and to evaluate
policy claims because they bear the advantage of simultaneously addressing two critical
issues about causal structures. On the one hand, under the acceptance of the rational
expectation hypothesis, the structure modeled by the RBC/DSGE approach remains
invariant under policy intervention because it takes into account the forward-looking
behavior of the economic agents. On the other hand, the theoretical structure has an
empirical counterpart in which the distinction between endogenous and exogenous vari-
ables is eschewed. ([215, p. 126])

The emphasis on the representative agent implies that any characteristic of the economy is a char-
acteristic of the agent, and no emergence seems possible (see [279, p. 51]).
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On the other hand, in Microeconomics, as well as in other Natural and Social Sciences, some
market and non-market interactions, in which tactical and strategic factors are preeminent, are
studied through the lens of game theory, a branch of economics/mathematics introduced by Oskar
Morgenstern and John von Neumann ([489]) in which agents interact taking into account other
agents’ reactions. Here emergence is possible as a consequence of strategic interaction between the
agents.

These two situations describe a whole spectrum of models, from one in which no emergence is
possible to one in which emergence is a consequence of strategic interaction. But Schelling’s model is
different as emergence is a consequence of the myopic behavior of individuals in a dynamic context.
There is no planning at all. (One could even show that, if x is very high, no stable equilibrium is
possible: if individuals have strong preferences against diversity, they do not get what they want!)

1.7 Agent-Based Models

An Agent-Based Model (henceforth ABM ) is a computational model whose unit is the agent, an
autonomous individual behaving in a given environment according to established rules ([432]). The
agent is the unit of analysis and it can be anything the modeler is interested in, from a neutron to
a country. Its general features can be characterized by:

• autonomy : each agent is modeled independently from the others and it can develop in ways
that are not predictable solely by looking at the initial conditions set;

• interaction: interactions with other agents may modify the characteristics of the agent and
the way in which it perceives the environment and the self;

• complexity : some characteristics “emerge” during the interactions.7

Agents interact in a limited space that is usually referred to as environment, such that the position
of agents can represent either their physical location (see Schelling’s Segregation Model in Section
1.6) or their psychological state of mind (see the Garbage Can Model below).

The rules are the norms that regulate what happens in the model and are sometimes identified
as mechanisms. They can be:

• behavioral : they define what each agent should be doing in general and/or as a function of
their characteristics;

• interactional : they define what happens to an agent and/or to the environment when they
interact;

• time-dependent : rules may modify agents’ characteristics, other rules, or the shape of the
environment as time—however defined in the simulation—goes by;

7It is a bit odd to attach this aspect to agents, but we want to highlight that agents can be characterized as
complex; see below and [142].
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• developmental : rules set the conditions for agents (and/or the environment) to change, evolve
or die.

The next step we deem appropriate at this point in the chapter is to try and explain the difference
between ABM and other simulation frameworks, especially because ABM is the latest and most
advanced of all known techniques so far. A classification of simulation models can be based on the
following dichotomies:

• The backings of the model can be based on equations or on properties of the objects.

• The approach can be either at the macro- or at the micro-level.

• Agents can be homogeneous or heterogeneous.

• Rules can be homogeneous or heterogeneous.

• The environment can be either static or dynamic.

While the other concepts have already been explained, it can be interesting to spend a word on
backings. Most simulation models involve behaviors that are dictated by equations that connect the
different elements of the model. This is clearly true for simulation models working at the aggregate
level, but also some microsimulation models are based on actions described through the application
of equations on individual-level variables. Some models, however, start from the specification of the
characteristics of the objects, be they agents and/or rules, and let them interact more or less freely.
A first consideration is that this further increases the distance between the observed behavior of the
components of the model and the elements governing it. Indeed, while the result of an equation
is often rather predictable, it is not the case for the interactions of objects possessing their own
characteristics and behaving on their basis. For this reason, models whose backings are based on
objects often offer more opportunities for the development of those features that are not possessed
by their own components but that are born out of the interactions, i.e. exactly emergent properties.
This is not to say that equation-backed models cannot exhibit emergence—as the examples above
show, they can and they often do—but only that emergence is often more unpredictable in object-
backed models. A second, related, point is that object-backed models are often built using a bottom-
up approach, i.e. starting from the properties of the objects, and they recover aggregate features
only as a result of the interactions. From this point of view, they start from the bilges of Coleman’s
boat (see Figures 1.5.1 and 1.5.2) but they also involve its deck.8

From Table 1.7.1 it is probably more apparent to understand why ABM is considered the most
advanced computational simulation approach as of yet. In fact, by comparing core components of
the simulation approaches reviewed so far, it becomes clear how ABM stands at odds with most
of them. Of course, the agent-based approach has taken from past simulation techniques, but its

8It is worth noting that ABM can also be based by equations, better, by a mix of equations and object-based
modeling. Actually, we are not aware of ABM that do not have any equation embedded in their coding. The
difference of this approach is in the ability to mix and mash both object and equation-based techniques.
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Table 1.7.1: A comparison of computational simulation models.
Backings Approach Agents Rules Environment
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Early Comp. X X X X X X
SD X X X X X
DES X X X X X

Microsim. X X X X X
Voting Models X X X X X

CA X X X X X X
ABM X X X X X X

comprehensive reach makes it stand as a jump ahead. Omitted from the table and not explicitly
mentioned (only cursorily in the introduction) in this chapter so far are the surrounding conditions
that make ABM a viable option. We are referring to the surge of computational power and to the
possibility that even home computers are capable of performing complicated operations, unthinkable
twenty years ago. This means that, for example, having heterogeneous agents in a simulation came
at very high costs before the middle of the 1990s, while it is relatively (computationally) cheap to
allow them today. This technical hardware and software innovation opened up for the possibility of
a different approach to simulation modeling.

In the following pages, we introduce an example concerning the ABM version of the celebrated
Garbage Can Model.

Example 1.11. [Garbage Can Model] The Garbage Can Model (GCM) of [96] is a model of deci-
sion making in an organized anarchy, i.e. an organization characterized by the three properties of
problematic preferences, unclear technology, and fluid participation.

[A]n organization is a collection of choices looking for problems, issues and feelings
looking for decision situations in which they might be aired, solutions looking for issues
to which they might be the answer, and decision makers looking for work. ([96, p. 2])

The GCM has been extremely influential in organizational behavior. The model was implemented
using one of the earliest computer languages developed by IBM, FORTRAN, and it was not an ABM.
Yet, by using an ABM jargon, four types of agents can be identified: (a) problems, (b) opportunities,
(c) solutions, and (d) decision makers. The overall goal of the model is to determine whether a formal
(hierarchic) organizational structure provides the institutional backbone for problem solving that is
better than an informal (anarchic) organizational structure, or not. In the first case, the four types
of agent interact following a specified sequence while in the other they interact at random. There are
two ways in which participants make decisions in the organization. One is by resolution: it happens
when problems are solved once participants match opportunities to the right solutions, i.e. when
the right combination of the four agents are on the same patch at the same time. The other is by
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oversight : it is when solutions and opportunities are available to participants but no problems are
actually solved.

Not all problems are solved automatically, just by having opportunities, decision makers, and
solutions available. In fact, all problems have difficulty levels, participants have abilities, and solu-
tions have a certain degree of efficiency. The problem is solved if the match of the participant with
an opportunity and a solution is greater than its difficulty.

The findings of the original model are the following: resolution is not the most common style
of decision making; hierarchies reduce the number of unresolved problems but increase problem
latency; important and early problems are more likely to be solved.

The model has later been implemented by [162, 163] in ABM form. In the agent-based version
of the model, there are three types of structures:

1. Anarchy. There is no hierarchy so that abilities, efficiencies, and difficulties are randomly
distributed among agents.

2. Hierarchy-competence. Abilities, efficiencies, and difficulties increase as one moves up the
hierarchical ladder.

3. Hierarchy-incompetence. Abilities, efficiencies, and difficulties decrease as one moves up the
hierarchical ladder.

Finally, the model implements two modes of (not) dealing with problems (i.e. flights):

1. buck passing : when one participant has the alternative of passing the decision on a problem
to another participant;

2. postpone: when problems are kept on hold by participants and eventually solved at an unspec-
ified future time.

The results of the model are summarized as follows by the authors:

The [...] properties point to very interesting features of organizational decision-
making. [...]

1. Decisions by oversight are very common, much more common than decisions made
in order to solve problems. This result suggests that the rational mode of decision-
making is a very rare case. Most decisions are socially induced acts, made with the
purpose of obtaining legitimacy by conforming to required rituals.

2. If there is a hierarchy, then top executives are busy with gaining legitimacy for their
organization by means of decisions by oversight, whereas the bottom line cares about
solving problems.

3. Organizations make themselves busy with a few problems that present themselves
again and again. So participants have the impression of always facing the same
problems. ([163, p. 123])
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1.7.1 A Menagerie of Names

ABM have been used in several disciplines: Biology/Ecology ([210, 209, 397]), Computer Sci-
ence ([128, 362]), Sociology ([20, 317, 477, 462]), Management ([3, 347]) and Organizational Be-
havior/Organization Science ([30, 160, 436]), Political Science ([119]), Psychology ([102, 103]) and
Cognitive Sciences ([318]), Population Studies ([212]), Economics ([470, 21]) and Finance ([493]),
Transportation Research ([319]).

As expected, their very general nature implies that ABM can be adjusted in several ways ac-
cording to the discipline. The different definitions of ABM are exposed in the following parts of
the chapter. Since Social Sciences include many different disciplines, we decided to restrict our
attention only to a part of these and to compare them with a selection of other disciplines, from the
area of Natural Sciences and Techniques (e.g., Physics, Engineering, and Biology). In particular, we
dedicate special attention to Economics and Management, highlighting the peculiarities of agents as
heterogeneous individuals, with bounded rationality, interacting among themselves.

Biology/Ecology

In Biology, an ABM is sometimes called an Individual-Based Model (IBM ), but there is considerable
confusion as to the definition. Some authors consider individual-based and agent-based as synonyms
(see, e.g., [397, p. 3]). Others reserve the term individual-based when individuals are simpler and
rules are formulated probabilistically at the individual level (see, e.g., [59, p. 338]).

Example 1.12. [Conservation Biology] In this branch of biology, and especially in population via-
bility analysis (PVA), i.e. the quantitative assessment of risk of extinction concerning a population
or a species, most classical models fail to take into account the spatial nature of habitats: spa-
tially dispersed animals, like the giraffe (see [107, 246]), may be at higher risk than commonly
thought. Metapopulation models were the first to con- sider several populations interacting in sep-
arated locations, but they generally constrain the locations to be discrete. ABM offer a continuous
improvement.

Computer Science

In Computer Science, one finds the concept of Multi-Agent System (MAS, see [128] for a survey
and [362] for the relation between MAS and ABM), used to denote a computer system of intelligent
agents in interaction inside an environment.

The aim is not to study the behavior of agents, but to solve a problem or compute a quantity.
An agent is seen here only as a computing entity (and this is why, at odds with most ABM, it must
be intelligent). As agents share knowledge or computing power, they approach the solution of the
problem. From this point of view, MAS can be seen as a subfield of Distributed Artificial Intelligence
(DAI ):

DAI is the study, construction and application of multiagent systems, that is, systems
in which several interacting intelligent agents pursue some set of goals or perform some
set of tasks. ([496, p. 1])
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Another related, but slightly more general concept, is that of Artificial Adaptive Agents (AAA).
This name is often connected with so-called Complex Adaptive Systems (CAS, e.g., [343]):

Such a system is complex in a special sense: (i) It consists of a network of interacting
agents (processes, elements); (ii) it exhibits a dynamic, aggregate behavior that emerges
from the individual activities of the agents; and (iii) its aggregate behavior can be de-
scribed without a detailed knowledge of the behavior of the individual agents. An agent
in such a system is adaptive if it satisfies an additional pair of criteria: the actions of the
agent in its environment can be assigned a value (performance, utility, payoff, fitness,
or the like); and the agent behaves so as to increase this value over time. A complex
adaptive system, then, is a complex system containing adaptive agents, networked so
that the environment of each adaptive agent includes other agents in the system. ([236,
p. 365])

What differentiates CAS from ABM is the emphasis, that is generally lacking in the latter, on
adaptivity, but the two approaches are not mutually exclusive (see [364] for an example).

Physics

Physics does not generally require the introduction of agents as sentient and autonomous entities.
Optimization provides an example of the difference between social sciences and physics:

In physics and the natural sciences, maximization typically occurs without a delib-
erate “maximizer.” [... M]aximizing behavior differs from nonvolitional maximization
because of the fundamental relevance of the choice act. Fermat’s “principle of least time”
in optics was a fine minimization exercise (and correspondingly, one of maximization).
It was not, however, a case of maximizing behavior, since no volitional choice is involved
(we presume) in the use of the minimal-time path by light. ([439, p. 745])

A notable exception is the area of complex systems, that is at the border of Physics. Outside this
area, the generic name of Monte Carlo is used for models that would elsewhere give rise to ABM.

Example 1.13. [Why the Brazil Nuts are on Top] According to physical intuition, when we shake
a box of nuts, the largest nuts should go on the bottom while the smallest should float; the evidence
suggests that the contrary is true. In [415, 416] the authors build a Monte Carlo model to show how
and when this happens.

Economics

In Economics, the most appreciated features of ABM are that they allow for heterogeneity of the
agents, both in their types and their characteristics, for interactions taking place in non-trivial, often
dynamic, networks ([186]), and for a wide range of individual behaviors, from perfect foresight to
bounded rationality ([394]).

The name Agent-based Computational Economics (ACE ) is sometimes used to denote the compu-
tational study of economic processes modeled as dynamic systems of interacting agents. According
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to [290, p. 246], an agent refers, in general, to “an encapsulated collection of data and methods
representing an entity residing in a computationally constructed world.”

ACE may overcome some critiques moved to DSGE models in macroeconomics (see [262, 263,
82]):9

The advantage of the ACE approach for macroeconomics in particular is that it re-
moves the tractability limitations that so limit analytic macroeconomics. ACE modeling
allows researchers to choose a form of microeconomics appropriate for the issues at hand,
including breadth of agent types, number of agents of each type, and nested hierarchical
arrangements of agents. It also allows researchers to consider the interactions among
agents simultaneously with agent decisions, and to study the dynamic macro interplay
among agents. Researchers can relatively easily develop ACE models with large numbers
of heterogeneous agents, and no equilibrium conditions have to be imposed. Multiple
equilibria can be considered, since equilibrium is a potential outcome rather than an
imposed requirement. Stability and robustness analysis can be done simultaneously with
analysis of solutions. ([97])

A second difference between ACE and DSGE concerns the agent’s expectations, that in DSGE are
generally rational. This is a mechanism of expectation formation introduced in [349], according to
which ex-ante expectations concerning the future value of a variable differ from its real value by a
zero-mean random term. This can be justified supposing that agents know the model representing
the economy, from which the alternative name of model-consistent expectations, i.e. individuals and
researchers share the same model of the economy: “Muth’s notion was that the professors, even if
correct in their model of man, could do no better in predicting than could the hog farmer or steel-
maker or insurance company. [...] The professors declare themselves willing to attribute to economic
actors at least as much common sense as is embodied in professional theories.” ([334, p. 53]) Now,
this kind of model-consistent rationality, according to which agents are able to analyze the economy
as economists, cannot be generally assumed in ACE (and more generally in ABM) because of the
very way in which models are built.

ACE are widely used in Finance, although, as pointed out by [238, 289, 239, 126], in Financial
Economics several features of ABM are not used (interactions taking place over networks, coexistence
of several kinds of agents, etc.) and the attention is more focused on the heterogeneity and bounded
rationality of consumers.

Another class of models is formed by history-friendly models (HFM, see [323, 324]):

“[H]istory-friendly” models (HFMs) of industrial evolution [...] are variants of ABMs
which aim at capturing in stylized form qualitative theories about mechanisms and factors
affecting industrial evolution, technological advances and institutional changes. HFMs
consist of three steps: appreciative theories of the history of a specific industry, history-
replicating simulations, and history- divergent simulations. In HFMs, model building
and calibration are conducted with the guidance of the history. ([504, p. 45])

9We refer to [154, 295, 264, 153, 216] for a detailed discussion on the differences between ACE and DSGE.
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As explained above, an important step in HFM is calibration, namely the search for values of the
parameters of the model producing an output that is approximately similar to a set of real data.

Management and organization research

The status of ABM among the management disciplines is still controversial. In fact, and in spite of
the few attempts made so far ([160, 344, 432, 437]), there is still no clear definition of what ABM
are for scholars in the area of Management and Organizational Research (MOR). If one excludes the
more engineering-related area of MOR, that is Operations and Supply Chain Management, there
are very few examples of ABM.

In a review of the literature, Wall ([492]) divides the contributions in two groups, those related to
exploration/exploitation and those dealing with differentiation and integration. Models pertaining
to the former originate from James G. March’s famous categorization of possible opposite decisions
an organization usually faces ([328]) between—to make a very long story short—putting existing
resources to work (exploitation) or seek additional resources (exploration). The latter dichotomy is
engrained into very old discourses within the MOR literature, and relates to the basic decision to
“make or buy” ([287]). One of the most interesting findings of the review—although not discussed
openly—is that almost all models are of a special kind: they are NK models (see below). According
to another recent study ([35]), it seems there is a trend in MOR where scholars engage in one of the
simplest kinds of ABM while (a) not calling them as such, and (b) de facto establishing a parallel
literature. Using NK models to address MOR topics is probably a sign that the field is struggling
with concepts such as complexity, emergence, and randomness.

But, outside of this quite remarkable trend, there still are areas of MOR where ABM have
appeared. This is the case, for example, of those ABM dealing with routines (e.g., [346, 71]), work
team dynamics (e.g., [331, 30]), and, more broadly, with organizational behavior ([436]).

Example 1.14. [Adaptation on a Rugged Landscape] Given their prominence in MOR, it makes
sense to introduce NK models in an example. Before shortly describing the example, it is worth
dedicating a few words on this typology of models. They were introduced by evolutionary biologist
Stuart A. Kauffman in the late 1980s ([256, 257]) to study fitness and adaptation. Using Kauffman
and Weinberger’s words:

The distribution of the fitness values over the space of genotypes constitutes the
fitness landscape. [...] The space consists of all 20 N proteins, length N , arranged such
that each protein is a vertex next to all 19 N single mutant variants obtained by replacing
one amino acid at one position by one of the 19 remaining possible coded amino acids.
Each protein in the space is assigned some “fitness” with respect to a specific property,
such as binding a specific ligand, where “fitness” can be defined as the affinity of binding.
An adaptive walk can be conceived as a process which begins at a single protein in the
space and passes via ever fitter 1-mutant variants. [...] N is the number of “sites” in
the model genotype or protein, while K is the number of sites whose alternative states,
“alleles” or amino acids, bear on the fitness contribution of each site. Thus K measures
the richness of epistatic interactions among sites. ([257, pp. 211-212])
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Outside of Biology, a modeler could attribute a diversity of characteristics to the two main parameters
N and K, preserving their relations, and adapting to the study of different types of “fitness”. This
was the intuition of Daniel A. Levinthal ([297]) who was probably the first to introduce the MOR
community to NK models. He studied how organizations adapt to different forms (organizational
design). In the model, there are N organizational attributes and K other attributes that affect an
organization’s fitness, i.e. the extent to which interaction affects adaptation. Dependence on initial
conditions was one of the main findings of this simulation model.

1.8 Conclusions

The aim of the chapter was to show the central role played by randomness, emergence and causation
for the development of different groups of simulation models. According to the state of the art of the
literature, we have outlined a short and necessarily partial history of simulation models, with special
attention to Social Sciences. The models that we have covered are some early works with analog
and digital computers, System Dynamics, Discrete-Event Simulation, Microsimulation in Economics
and Political Science, Cellular Automata and Agent-Based Models.

To conclude, ABM can be considered the most advanced computational simulation approach so
far. Indeed, although this approach has taken from past simulation techniques, its comprehensive
reach makes ABM stand as a jump ahead.
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Chapter 2

Estimation, calibration and validation
of simulated models: a literature
review

The aim of this chapter is to provide a comprehensive literature review on the estimation, calibration
and validation methods for simulation models. We start exposing the definition of estimation and
we examine the dependence of the simulated data on the parameters to be estimated. Then, we
give an interpretation of the meanings of calibration, estimation and validation of simulated models.
Subsequently, we consider the classical approach for simulation-based econometric models, and we
detail the characteristics of indirect inference, method of simulated moments, simulated minimum-
distance, simulated maximum likelihood and approximate Bayesian computation. We compare the
different methods and we explain the main advantages and weaknesses of these techniques. Finally,
in the last section, we focus on the estimation, calibration and validation of agent-based models.

2.1 Introduction

The choice of the parameters of an economic model is generally carried out via a set of techniques
that go under the name estimation. The preliminary step of the estimation process is identification,
that is the search of conditions under which the distribution of the data at the true parameter is
different from that at any other possible parameter (see [355, p. 2124]). This definition is the classic
one and is called point or global identification (see [270, 417]).1 This assumption represents the
cornerstone of the whole estimation process, and must hold true in order to prove the consistency
of the estimator, e.g., the convergence in probability of the estimator to the true value.

According to [355, pp. 2114-2115], many estimators belong to the general class of extremum
estimators (see [164, 165, 491, 242, 247, 325]), and rely on the optimization of an objective function

1Many other definitions are given in the literature (i.e., set identification, causal identification, local identification,
generic identification, weak identification, etc.); a detailed discussion can be found in [298].
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depending on the data. In this class, we include maximum likelihood (see [164, 165, 491]), the gener-
alized method of moments (see [221]), the minimum-distance method (see [389, 326]) and nonlinear
least squares (see [247, 325]).

When the objective function cannot be evaluated analytically or numerically (see [465]), as
an example because the model is characterized by an intractable likelihood function (i.e., lack of
closed-form solution), the above-listed estimators are useless, and the researcher has to invoke their
simulated counterparts. In these methods, additional data are simulated by the researcher and used
to compute a surrogate objective function for each one of a series of values of θ.

A problem concerning the estimation of simulated models is whether or not the dependence of
the surrogate objective function on θ is smooth enough. The condition that is generally used to
achieve this is called stochastic equicontinuity (see, e.g., [335], [372] and [355, pp. 2136-2137]) and
it boils down to the requirement that the (pseudo-)random numbers involved in the approximation
of the surrogate objective function are the same for different values of θ. This implies that the
surrogate objective function depends continuously on θ, while its violation implies that the function
is “rough” or “rugged”. This phenomenon, called chattering, was outlined, e.g., by [335, p. 999].
In his contribution, the author specifies that “a simulator must avoid ’chatter’ as θ varies; this will
generally require that the Monte Carlo random numbers used to construct f (θ) not be redrawn
when θ is changed”. This concept was then addressed by [195, p. 16]. The authors pointed out
that “[w]hen θ changes it is possible to keep the same drawing [of the random numbers ... I]t is
necessary to keep these basic drawings fixed when θ changes, in order to have good numerical and
statistical properties of the estimators based on these simulations” (emphasis of the authors). This
was also stressed by [272, p. 78] and [143, p. 346] in two more recent contributions. However, the
recommendations given by [335] and [195] do not hold for some specific simulation-based models
such as agent-based models (ABM).

There are two different aspects related to chattering. The first is a theoretical aspect, linked
to the limit of the objective function in an optimization problem; the second is a computational
problem linked to the type of optimization routine that is used, whether it is derivative-free or
derivative-based. Let us start from the second problem. Consider a derivative-based algorithm. As,
based on the theoretical problem, the function is rugged and nowhere differentiable, the derivatives
do not exist. However, as most optimization algorithms generally calculate numerical derivatives
using the representation of the derivative as a limit of the incremental ratio, the algorithms end up
using finite derivatives whose value is random and determined by the roughness of the function at the
point. It is not clear whether and how an optimization algorithm using numerical derivatives in this
situation converges. Now, suppose we use derivative-free algorithms. In this case, we can imagine
that the algorithm converges to the global minimum of the objective function seen in the previous
theoretical point. But there is no proof that the asymptotic distribution of this theoretical limit does
not depend on chattering. This theoretical problem persists even in the absence of computational
issues.2

2In Chapter 5 and Chapter 6 of the thesis we provide two estimation frameworks that do not involve any opti-
mization function, in order to deal with the violation of the stochastic equicontinuity hypothesis, and we discuss their
asymptotic properties.
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Due to the problems related with the estimation of nonlinear, highly parametrized and complex
models, some researchers shifted their attention from estimation to a rather heterogeneous groups of
techniques collected under the header of calibration. Therefore, the latter has become a very useful
tool to determine the parameter of simulated models.

During the last four decades, many efforts have been devoted to clarify the meanings of estima-
tion, calibration and validation in simulation models and the relations linking these approaches. One
of the first definitions of calibration is given by [280]. In this seminal paper, the authors argue that
calibration proceeds by setting model parameters to certain values chosen according to prevailing
theoretical and/or empirical evidence. A comparison between calibration and estimation can be
attributed to [222] who point out that the difference between calibration and estimation is “artificial
at best”, stating that calibration is a way of doing estimation without consider the sampling error
in the sample mean (see also [406, 444]). From our viewpoint, the researcher doing calibration aims
at attributing values to the parameters of the model producing an output that is approximately
similar to a set of real data. An interesting perspective is given by [63] who define verification as
the process of making sure that the implementation is coherent with the structure of a model (see
[365, 112]), calibration as the moment in which the parameters are adjusted to reproduce the data
(see [368]) and validation for the comparison of the output of a calibrated model with an external
source of data (see [315, 151]).

In the following we will first outline the techniques used to estimate “classical” simulated models
(e.g., models characterized by recursive equations), and then we will shift our focus to the estimation,
calibration and validation of agent-based models.

2.2 Estimation methods for simulated models

The common practice in the estimation of simulated models is to apply econometric techniques to
select appropriate parameter values (see [444, p. 3]). The five main approaches that we will see
are: indirect inference ([196, 460, 195]), method of simulated moments ([335, 372, 133]), simulated
minimum-distance ([217, 463, 191, 48]), approximated likelihood ([292, 293, 157, 2]) and nonparamet-
ric simulated maximum likelihood ([156, 272]), approximate Bayesian computation ([148, 25, 131,
175, 168, 458]).

In order to better explain the different methods, let us introduce the vector of real data y and the
vector of simulated data z (θ), where the parameters θ ∈ Θ ⊂ RP and Θ represents the parameter
space.

Indirect inference (II) was first introduced by [196], [460] and [195]. This method identifies
estimates of model parameters using an auxiliary model as an intermediate step. The parameters
θ of the auxiliary model are estimated both on the real dataset y and on data simulated from the
original model z (θ), and the distance between the estimated parameters in the two cases, i.e. the
(empirical) real dataset and the simulated data, is minimized. The method is particularly suitable for
all those cases in which the likelihood function of the original model is difficult to obtain, but getting
simulated data is simple. The technique relies on the fact that, when the number of observations
increases, the estimated values under the auxiliary model approach a pseudo-true value. The method
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allows to obtain consistent and asymptotically normal but generally inefficient estimators. Among
the recent literature, we quote a paper by [130] who calibrate DSGE via II, and a contribution by [75]
who develop Generalized Indirect Inference (GII). The idea of GII is to apply two different descriptive
statistical models to the simulated and the observed datasets. As long as the two descriptive models
share the same vector of pseudo-true values, the GII estimator is consistent and asymptotically
equivalent to the II estimator (see [75] for further details). Since GII smooths the objective function
exploiting a smoothed function of the latent utilities as the dependent variable in the auxiliary model,
this method can be used to overcome some drawbacks met in the estimation of discrete choice models
(DCM). Indeed, as pointed out by [75, p. 178], in DCM the researcher tackles the computational
issue of optimizing a multidimensional step function using slower derivative-free methods. This is
very time-consuming and puts severe constraints on the size of the structural models that can be
feasibly estimated.

The method of simulated moments (MSM), developed by [335] and [372] in two seminal works,
can be considered as an extension of the Generalized Method of Moments (GMM).3 In GMM,
the objective function to be minimized is a quadratic distance between the empirical moments
based on the real data and the theoretical moments depending on the parameters θ. In MSM,
the theoretical moments are replaced by the empirical moments based on the simulated data z (θ).
Recently, two interesting contributions were provided by [420], who exploits MSM for the estimation
of nonlinear DSGE models, and by [143], who compare the performance of maximum likelihood and
MSM for dynamic DCM. Although MSM is less computational intensive than II, it can be difficult
to identify which moment to match (see [179] for a discussion of these issues in GMM, and [499]
for an illustration of the effort that is required to identify moments that characterize the process
under scrutiny). As argued by [195, Sec. 2.1], the researcher must choose an adequate calibration
criterion to obtain consistency of the MSM estimator. Two kinds of criteria can be considered: (i)
path calibration, which measures the difference between the trajectories of y and z (θ), and (ii)
moment calibration which is based on the difference between the empirical moments computed on
y and z (θ). While the second technique generally leads to a consistent estimator, path calibration
does not yield consistency. This is made clear by the following example, borrowed from [195, p. 20].
Let:

µ̃n = arg min
µ

n∑
i=1

(zi (µ)− yi)2

be the path calibrated estimator of µ and let

µ̃∞ = arg min
µ

lim
n→∞

1

n

n∑
i=1

(zi (µ)− yi)2

= arg min
µ

{
V (z (µ)) + V (y) + [E (z (µ))− E (y)]

2
}

be the asymptotic solution of µ̃n satisfying the first order conditions, where the variance V (·) is a
generic function of µ. It is well-known that µ̃n is consistent if and only if µ̃∞ = µ0, however this

3We refer to [221] and [355] for a detailed treatment of GMM.
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condition is not always satisfied. Indeed, if we consider E (y) = µ0 and V (y) = µ2
0, we get:

µ̃∞ = arg min
µ

[
µ2 + µ2

0 + (µ− µ0)
2
]

and µ̃∞ = µ0

2 6= µ0.
The simulated minimum-distance method is a simulated version of the minimum-distance method

(MDM). While MDM aims at minimizing the distance between the empirical cumulative distribution
function (cdf) of the real data P̂y and a theoretical cdf depending on parameters θ (see, e.g.,
[389, 326, 42, 73]), its simulated counterpart replaces the theoretical cdf with the empirical cdf
based on the simulated data P̂z(θ). The simulated minimum-distance method is well suited when
the researcher can simulate data from the model distribution but not evaluate its density (see, e.g.,
[48, p. 3]).

The agreement between P̂y and P̂z(θ) must be assessed with respect to some norm or metric

d
(
P̂y, P̂z(θ)

)
. We recall that a distance or metric between two arguments is a symmetric function

that respects the triangle inequality and is zero if and only if its two arguments are equal. In this
context, a norm is a function of the difference of the two probabilities, P̂y − P̂z(θ), that respects the

above properties and satisfies absolute homogeneity, i.e. d
(
a ·
(
P̂y − P̂z(θ)

))
= |a| · d

(
P̂y − P̂z(θ)

)
.

Most of the norms used for estimation are Lp norms. According to [178, p. 2], “[t]he sup [i.e. L∞]
norm is not a good choice because simulation methods often introduce granularities that destroy
its effectiveness. [... T]he two natural candidates that provide some smoothing are the L1 and L2

norms. Of them, the L2 is analytically more tractable and is also more traditional.”
Distances are more commonly used than norms. Several distances can be considered in order to

calibrate the marginal distribution of the process, its profile over time or its complete distribution.
The most promising metrics concern the distributions of the processes involved (see [184, 402, 32,
34, 66, 426]). A key role is played by f -divergences between probability measures introduced by
[114, 115] and [9] independently. A formal definition of f -divergences can be given following [301,
p. 4398]. Let F be the class of convex functions f : (0,∞) → R. For every f ∈ F , we define
the f -divergence as df

(
Py,Pz(θ)

)
=
∫
f
(

dPy

dPz(θ)

)
dPz(θ), if Py � Pz(θ) and 0f (0/0) = 0. Examples

of f -divergences in statistics and information theory are the information divergence, the Pearson
divergence, the Hellinger distance and the total variation. An interesting contribution in this field
is due to [426] (see also [402] for a survey of these divergences). The work of [426] is devoted to
proving bounds among f -divergences, which are particularly useful for the derivation of the rate of
convergence of probability measures. These discrepancies can be also used to make estimation and
inference (see, e.g., [301, Sec. VIII] and [421] who consider the distributional distance between a
pair of processes developed by [203]).

Another important branch of application of the minimum-distance approach, closely related to
estimation and calibration, is sensitivity analysis (SA). This stream of literature aims at studying
the structure and the uncertainty associated to the model output when a change occurs in the model
input (see [395] for a broad application of SA to different fields of research). Many approaches are
possible, the most recent advances being summarized in [424, 34, 66, 472, 65, 469]. In the next
section we will clarify the main aspects of sensitivity analysis for simulated models, with special
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attention to ABM.
In methods based on simulated/approximated likelihood functions, in order to overcome the lack

of a closed-form solution, the objective function of the model is replaced with an approximation.
The approximated likelihood is then evaluated instead of the exact likelihood (see [292, 293, 157,
2, 156, 272] among others). The development of the theory of simulated maximum likelihood is
due to [292, 293], who provide a generalization of [371]. In [292, 293], the author characterizes
the asymptotic theory for simulated maximum likelihood estimators of discrete response models,
exploiting the theory of generalized U -statistics. The estimators are shown to be consistent and
asymptotically normal (see [292]) and the bias introduced by the nonlinearity of the derivatives of
the log likelihood function and the simulation errors is identified and a correction is proposed (see
[293]). More recently, the literature has focused on the estimation of computed dynamic economic
models via simulated maximum likelihood. [157, 2] study the effects on statistical inference of using
an approximated likelihood instead of the exact likelihood function. In particular, the authors show:
(i) the convergence of the approximated likelihood to the exact likelihood, (ii) that the errors in
the approximated likelihood function accumulate as the sample size grows and (iii) the need to
reduce the size of the error in the approximated policy function, as the sample size increase, in order
to guarantee the convergence of the estimates.4 A nonparametric approach to the estimation of
dynamic models is finally provided by [156, 272]. The two works are similar in spirit but, while [156]
start from a fully parametric model, whose reduced form can be simulated, and then approximate
the unknown likelihood function with a kernel-based nonparametric estimator based on simulations
of the endogenous variables of the model, [272] use simulated observations to nonparametrically
estimate the unknown density by kernel methods and then construct a likelihood function to be
maximized. Both [156] and [272] provide the asymptotic properties of the estimators. The strength
of these nonparametric approaches relies on the fact that they can be applied to a very general class
of models.

Beside the frequentist approach, some techniques based on Bayesian statistics have been de-
veloped. The philosophical principle fostering the development of Bayesian methods for simulation
models relies on its axiomatic approach. The axiomatic view of Bayesian statistics is well highlighted
by [457, p. 108], who assumes that any decision-maker is characterized by a specific probability dis-
tribution according to their choices made under uncertainty, and the probability distribution is up-
dated following a Bayes’ rule as new evidence emerges. In simulated models, approximate Bayesian
computation (ABC) aims at providing draws from an approximation to the exact posterior density
π (θ |y ) ∝ p (y |θ )π (θ), when parameters and pseudo-data can be simulated from the simulated
posterior density p (z (θ) |θ )π (θ), but the simulated conditional density p (z (θ) |θ ) is intractable.
The ABC algorithm is composed by three steps: (i) simulate θ from π (θ), (ii) simulate z (θ) from
the likelihood p (· |θ ) and (iii) select θ such that the distance function d (η (y) , η (z (θ))) ≤ ε, where
η (·) is a statistic and ε > 0 is the tolerance level (see [113, 490, 175, Sec. 5.1] for a complete
description of the ABC algorithm). One of the first contribution in this field is due to [148], who
develop a Bayesian Markov-chain Monte Carlo (MCMC) framework for the estimation of parame-

4The framework proposed by [157, 2] can be seen as a generalization of [425]. The policy function of [157, 2]
concerns an objective function used to conduct policy analysis.
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ters of stochastic volatility models characterized by discrete observations. However, [148] does not
provide a full asymptotic theory. The large-sample properties for ABC were first developed by [25],
who proved the rate of convergence of ABC under some mild conditions, and subsequently refined
by [175] and [168] for models with auxiliary statistics. A link between ABC and II is provided by
[131], in which the authors compare a collection of parametric Bayesian indirect inference (pBII)
methods. The first class combines ABC and II computing the summary statistic on the basis of
the auxiliary model, using ideas from II. The second approach, called parametric Bayesian indirect
likelihood (pBIL), uses the auxiliary likelihood as a replacement to the intractable likelihood. The
authors show that pBIL is a fundamentally different approach to ABC II and devise theoretical
results for pBIL to give extra insights into its behavior and its differences with ABC II. Moreover,
they investigate the assumptions required to use each pBII method. [131, p. 94] conclude that pBIL
based on full data avoids the choice of the ABC discrepancy function and the ABC tolerance. On the
other hand, ABC II is able to incorporate additional summary statistics outside the set formed by
the auxiliary model and to provide better approximations when the auxiliary model is a simplified
version of the generative model.5

We end this section with a comparison of the different estimation methods. As pointed out by
[465, p. 2032] and [339, pp. 264-265], the researcher has to consider several criteria when choosing
among different estimation methods; the most important are: (i) statistical performance and (ii)
ease of use and computational speed. In this respect, according to [339, p. 264], the MSM tends to
have larger biases and variances but is easier to implement than II, while II is more robust but can
be computationally more costly than MSM when the auxiliary model is difficult to estimate. GMM
(and hence MSM and II) can be included in the broad class of minimum-distance estimators as it
involves the minimization of the distance of the empirical moments from the theoretical ones (see
[355, p. 2118]). However, minimum-distance estimation allows to bypass the drawback related to
the choice of moments to match. The simulated maximum likelihood method is a good candidate
for the estimation of models requiring the simulation of the choice probability corresponding to the
observed alternative, as for the case of multinomial logit (see [465, p. 2032]). However, as argued
by [475, p. 239], among others, the main weakness of the simulated maximum likelihood is that
if the number of draws used in the simulation, say R, is fixed, the estimator does not converge to
the true parameters. In particular, the simulation bias disappears as the sample size N (and hence
R) goes to infinity. Furthermore, the simulated maximum likelihood estimator is asymptotically
equivalent to the maximum likelihood estimator only if R grows faster than

√
N . Finally, as well as

MSM, ABC methods overcome the intractability of the likelihood function comparing simulated and
observed summary statistics. The main issues of ABC methods concern the necessity to find a vector
of low-dimensional summary statistics from the observed data with minimal loss of information and
the computational challenge of achieving stringent matching between the observed and simulated
summary statistics (see [131, p. 72]). Many reduction techniques are possible, the most important
are summarized in [61].

5An exhaustive treatment of the different techniques used in ABC can be found in [458].
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2.3 A review of estimation, calibration and validation tech-

niques for agent-based models

Since agent-based models are able to describe the general dynamics of a system starting from the
interactions between individuals, in the last years these models have become a very useful tool in
different fields of research. Due to the expansion in ABM applications, estimation, calibration and
validation have also broadly developed. The majority of the contributions apply simulation-based
econometric methods to find the parameters that best accommodate the model (see [444, p. 3]).

A wide part of literature exploits indirect inference for the estimation of agent-based models.
Starting from the early 2000s, different authors have brought interesting contributions in this di-
rection. The first attempt at estimating the parameters of an agent-based model by considering
indirect-based inference can be found in [189]. In their paper, the authors use the characteristic
moments of the USD/DM exchange rate to evaluate the similarity of simulation outcomes. ABM
parameters are then estimated optimizing that similarity. In order to overcome some inefficiencies
due to the Monte Carlo variance in the objective function (e.g., local minima), the authors apply
the threshold-accepting optimization heuristic ([132, 10]) instead of standard numerical optimization
tools. This specific solution is explained by [190] in a subsequent study. Here, the same authors
propose a continuous global optimization heuristic for a stochastic approximation of the objective
function, using simulation-based indirect estimation of the parameters. The two authors describe
an algorithm which combines the Nelder-Mead simplex with a local search heuristic (the threshold
accepting named above). That procedure allows to obtain global minima also for non-globally con-
vex objective functions. An extension of this model is then presented in [55] and in [150]. The first
exploits the algorithm by [190] in order to provide an ex-post validation of the simulated parameters
of the complex adaptive trivial system (CATS) model, in relation to actual data. In the second
article, Fabretti compares the algorithm of [189] and [190] with a genetic algorithm implemented to
calibrate the model presented in [155].

Despite II produces accurate estimation results, there is evidence that this method may suffer in
terms of simulation times (see, e.g., [465, p. 2032] and [339, pp. 264-265]). This has spurred some
research in different, less time-intensive methods of estimation.

Another technique broadly diffused in the ABM estimation and calibration literature is the
method of simulated moments. A first example is provided in [499]. In this case, the authors compute
an objective function based on some robust, i.e. not sensitive to outliers, statistics of the time series.
The objective function can identify the presence of autoregressive conditional heteroskedasticity
(i.e. changes of the variance of the series over time), and long memory (i.e. long-range dependence
between values of the series). Subsequently, they obtain an estimate of the variance-covariance
matrix of the different moments included in the objective function using a bootstrap procedure.
The properties of the objective function are then analyzed with a GARCH-model and a stochastic
volatility model using the USD/DM exchange rate as a benchmark. The results show that the
objective function is able to discriminate between different parameter settings and models, and the
optimal values are obtained for parameter values close to those resulting from a direct estimation
approach.
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A second example of the use of the method of simulated moments has been introduced for ABM
in [206] in order to estimate ergodic and stationary models. Stationarity and ergodicity ensure that
simulated moments converge to the theoretical ones.6 While in GMM one compares the statistics
estimated on real data with the theoretical statistics expressed as functions of the parameters, when
no analytical expression is available for the latter, they are replaced by their simulated counterparts.
The final estimate is the value of the parameters such that the simulated moments are closer to the
ones based on the observed values.

During the last decade, different estimation techniques based on simulated-minimum distance7

have been developed in order to overcome analytical difficulties in ABM estimation and to solve
the issues related to computational costs. As stated before, the method of moments is also a
minimum-distance technique (see [355]), in which the distance to be minimized is the one between
the moments. However, minimum-distance estimators are often based on more refined definitions
of distance between time series. This establishes a link with the stream of the literature concerning
time series validation (see [498, 151]).

In a study by [329], three types of similarity measures between simulated and historical time
series are identified. The first one is the classic Kullback-Leibler information criterion of [278], a
statistical discrepancy based on the concept of relative entropy developed by Shannon in [447] which
measures the loss of information deriving by using a model to approximate reality. As argued in
[152], the problem of the Kullback-Leiber divergence is that this criterion weights too much the
events for which the two models under comparison differ the most in terms of predictions, even if
these differences concern aspects of data behavior that are not interesting for the analysis. The
second one is the state similarity measure (SSM), which is the sum of the absolute difference in the
frequency of every possible state in each of the time series. In particular, each time series/vectors
belonging to the set of vectors P (Q) is partitioned and the lags of the series are computed. Then,
the number of occurrence of each state in a given period are computed, grouped in a n-dimensional
vector p (q), and the number of observations in Q are subtracted from P. Finally, the third one, is
the Generalized Hartley Metric (GHM). This distance represents a weighted average of the Hartley
Metric (see [226]) and measures the amount of uncertainty associated with a finite set of possible
alternatives deriving from the lack of specificity. The larger is the set of possible alternatives, the
less specific is the identification of any desired alternative of the set. The possibility is estimated in
terms of frequency.

The comparison between SSM and GHM shows the closeness in measuring similarity between the
two metrics, but SSM could be preferred to GHM for its simplicity and transparency. Nevertheless,
these two metrics can be used only when the simulated and the historical time series have the same
length.

[401] have examined a distance given by the sum of the squares of the difference between the
observed and simulated market price at a given date/time. The authors minimize this function

6For general results on ergodic processes see [233], while for an analysis of stationarity and ergodicity conditions
through nonparametric Wald-Wolfowitz tests see [205].

7For a thorough review of metrics for statistical data process see [32]. In this paper, the author identifies six different
classes of divergence measures: f -divergences, Bregman divergences, α-divergence, divergences between more than
two distributions, inference based on entropy and divergence criteria and spectral divergence measures.
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through gradient-based calibration and illustrate the procedure using the simple [72] model.
An interesting contribution is provided by [282]. The author proposes the use of an information

theoretic criterion called “Generalized Subtracted L-divergence (GSL-div)” based on the work of
[302], who developed a symmetric measure for relative entropy (L-div). [282] first exploits the metric
developed by Lin to recursively estimate patterns with different lengths. Then, he combines all the
L-divergences into a unique information criterion, the GSL-div. The advantage is that this method
makes possible to measure how simulated time series replicate the properties of observable outputs
without imposing stationarity requirements or defining any likelihood function. In a subsequent
paper, [281] proves the discrimination ability of the GSL-div using the model proposed by [72].
Findings show that the calibrated model tracks well the evolution of two real stock indexes.

As anticipated in Section 2.2, an important field of study linked to the minimum-distance ap-
proach is SA (see [424, 34, 66, 472, 65, 469]). This branch of research has been successfully applied in
the ABM literature. Here we quote two contributions, [472] and [469]. In [469], the authors compare
three different methodologies used in SA: sensitivities based on one-factor-at-a-time (OFAT), sensi-
tivities based on model-free output variance decomposition and sensitivities based on model-based
output variance decomposition. When analyzing an ABM, instead of the Sobol method suggested
by [423], they recommend to use OFAT as a starting point. Indeed, OFAT appears to be able
to explore the patterns and to capture the nonlinear interactions and the emergent properties of
the model better than other methodologies. [472], instead, provides a practical guide to link the
simulation with the calibration of an ABM.

Some techniques based on nonparametric likelihood functions are investigated, among others, in
the works of [277] and [314]. In order to approximate the conditional density of the data-generating
process from the simulated observations, [277] exploit a nonparametric simulated maximum likeli-
hood based on kernel methods (see also [272]). The unknown likelihood function is then substituted
by the simulated likelihood in the estimation. Instead, [314] exploits Sequential Monte Carlo (SMC)
estimation based on a particle filter to numerically approximate the conditional densities that enter
into the likelihood function. This approximation is then used to simultaneously obtain parameter
estimates and filtered state probabilities for the unobservable variables that drive the dynamics of
the observable time series.

Something different is proposed by [207]. The authors develop an ABCmethodology for likelihood-
free estimation. They first provide a kernel density estimation of the likelihood together with Markov
chain Monte Carlo sampling schemes. Then, they switch to parametric approximations of the likeli-
hood by assuming a specific form for the distribution of external deviations in the data and, at the
end, they introduce Approximate Bayesian Computation.

Despite nonparametric simulated likelihood is widely applied, the kernel smoothing step often
leads to the so-called “curse of dimensionality” of the summary statistics (i.e., the summary statistics
grow exponentially as the dimension of the parameter space increase, see, e.g., [261] for a general
definition). Different “dimension reduction” techniques are possible, the most promising are exposed
by [61].

Sometimes the performance of these estimation methods can be improved using surrogate meta-
models ([424, 265, 65]), often in the form of kriging. As the ABM generating the data is generally
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very slow, the researcher can supplement the simulations from the ABM using a different, generally
much faster, data-generating mechanism. The researcher identifies several parameters, simulates
the output for each one of these values and estimates the relation between the parameters and the
output. This new statistical model is called a surrogate meta-model and can be used to approximate
the output of the ABM, especially for new parameter values. This implies that at the end of the
procedure, the researcher will have some simulations from the ABM and a set of other simulations
from the meta-model. The latter are generally noisier, as they contain some uncertainty arising
from model estimation and some bias from model choice, but they are available in a much larger
number than the former. This leads to a sensitive reduction of simulation time. The difference
between kriging and surrogate meta-models relies on the fact that kriging considers Gaussian process
interpolation, while surrogate meta-models are more general (see, e.g., [387]). Among the most
recent research on this topic, we quote a paper by [422], who first apply kriging meta-models to
computational economics, and a work by [283], in which the authors investigate the estimation
of ABM meta-models through machine learning. In their contribution, [283] develop a two-steps
procedure. In the first round, an initial pool of parameter combinations is drawn (e.g., training set)
using a standard sampling routine. Subsequently, a random subset of combinations (e.g., test set)
is drawn without replacement from the pool to initialize the learning procedure and the ABM is
evaluated for each of these combinations receiving a specific label (“positive”/“negative”) according
to a pre-specified calibration criterion. Finally, a surrogate is learned over the combinations of the
parameters. Then, the probabilities that the unlabeled combinations in the pool belong to the
“positive” category are forecast.. In the second round, given the predicted positive probability, the
algorithm draws a small sample from the pool. These drawings are then evaluated in the ABM and
aggregated to the set of combinations sampled in the first step. The procedure is repeated until the
algorithm reaches a pre-specified level of accomplishment.

Another promising method is the mean-field approximation (MFA). This technique was devel-
oped by [167] and [17] who exploited a method used in statistical mechanics (see also [123] for an
application to financial markets). As explained by [125], the MFA focuses on the fraction of agents
occupying a certain state of a state-space at a certain time. To this end, the agents are divided into
sub-groups according to a particular feature. These clusters determine the evolution of the whole
system. The result of the functional-inferential method identifies the most probable path of the
system dynamics. This method is interesting because leads to an analytical solution of the ABM.
In particular, the direct interactions among agents are replaced by indirect mean-field interaction
between sub-groups expressed in terms of the transition rates of the master equations. From these
equations, it is then possible to compute the statistical stationary equilibrium of the system.

The literature on ABM estimation is characterized by a trade-off between the availability of a
complete statistical theory and computational feasibility. On the one end of the spectrum, when
estimating a model through indirect inference, one can use most statistical tools that are available in
other applications (tests, confidence intervals, etc.) but this comes at the cost of extremely lengthy
estimation procedures. On the other end of the spectrum, surrogate meta-models can significantly
speed up computations but no specific theory is available for the construction of otherwise simple
inferential tools (tests, confidence intervals, etc.).
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We can identify at least three problems related with the previous estimation methods. In the
following we outline the main weaknesses.

First of all, they involve the minimization of an objective function. As explained in Section 2.1,
ABM do not allow to use the same set of random numbers for different values of θ. This leads to
a rugged objective function. The roughness of the objective function requires the use of specific
optimization algorithms that are often computational expensive (see, e.g., the routine developed by
[189, 190]). Other problems are related to the presence of multiple local minima and identification
issues leading to large standard deviations. These phenomena are outlined by [277], who examine
the graph of the objective function (see [277, pp. 23, 36, 39]).

Second, these estimation methods rely on the stochastic equicontinuity hypothesis (see [335, 372,
355, pp. 2136-2137]). This drawback is related to the first one. Again, as new random numbers
are drawn for different values of θ, the objective function is not only rugged, but also discontinuous
and no differentiable at all. This implies that the asymptotic properties of the estimator, whose
derivation relies on the differentiability of the objective function, may not hold and the associated
inferential tools may not be available.

Finally, they assume stationarity and ergodicity of the statistical process. However, as pointed
out by [213, p. 49], if we consider long periods, the micro-rules governing the behavior of an ABM
are often unstable and can change over time. Hence, it is sometimes useless to study the stationary
state of the model. Moreover, the process could be non-ergodic (i.e., the dynamic of the model could
exhibit transients, see also the conclusion of [153]).

To overcome some of these issues, recently, different frameworks based on regression have been
developed (see [403, 266]). Most of them are based on nonparametric econometrics and machine
learning techniques ([449, 110, 400, 396]). [449] exploit deep learning to develop a likelihood-free
inference framework. In particular, they use multilayer neural networks to learn a feature-based
function from the input (many correlated summary statistics of data) to the output (parameters of
interest). [110] proposes to use neural networks with simulated data to learn the limited information
posterior mean or a good approximation to it. The inputs to the net are the simulated statistics
and the net is trained to fit the parameter values as well as possible according to a pre-specified
criterion. [396] provide a method based on convolutional neural networks for ABC allowing to derive
simultaneously the mean and the variance of multidimensional posterior distributions directly from
simulated data. Once trained on simulated data, the convolutional neural network maps real data
samples of variable size to the first two posterior moments of the relevant parameters distributions. A
different approach for ABC is presented by [400], who conduct likelihood-free Bayesian inferences on
the model parameters with no prior selection of the relevant components of the summary statistics.
The parameters are selected applying a random forest to a nonparametric regression setting.

However, the techniques outlined above seem to focus on prediction rather than estimation.
In a related work, instead, [86] consider a simpler method. The authors estimate the parameters
of an ABM using regularized linear regression. The approach of [86] consists of four main steps.
First of all, they identify a set of parameter values in the parameter space. Second, they run the
simulation model “many” times computing a vector of statistics for each parameter value. Then,
they estimate a regression where the parameters are the dependent variable and the corresponding
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simulated summary statistics are the independent ones. Finally, the real-data summary statistics
are used as input in the regression to obtain the estimates of the parameters. As pointed out by
the authors, this approach allows to overcome some issues related to the selection of the summary
statistics (see [179], [499], [111] and [75]), the definition of the distance function and the numerical
minimization of the objective function, typically met in standard calibration approach. However,
the method of [86] presents some disadvantages. Indeed, they assume a linear relation between the
statistics and the parameters to estimate, and they do not provide any asymptotic theory for the
estimator. A solution to these drawbacks is offered in Chapter 6 of this thesis, in which we develop
an estimation technique exploiting nonparametric least absolute shrinkage and selection operator
(Lasso) regression and we rigorously characterize its asymptotic properties.

Finally, one of the most recent contribution in the field of calibration can be attributed to [444].
Given a statistical distance, the authors build Model Confidence Sets (MCS) to rank simulated
models based on their closeness to the benchmark, and to construct a plausible set of alternative
specifications of parameters that cannot be distinguished from the chosen one from a statistical
point of view. Therefore, this procedure is twofold: (i) it can be used in a first calibration step,
to select the vectors of parameters that are closer to the benchmark data, and, (ii) it can also be
used for validation to compare the output of a calibrated model with an external source of data in
a second step (see, e.g., [151]). MCS has been developed by [223] and consists of a subset of the set
of models containing the best model with a given level of confidence. A first attempt in calibrating
ABM via MCS can be found in [26]. In his paper, the author exploits the technique developed in
[27] to select among different models, scoring each one of them at the level of individual empirical
observations (see also [28] for a multivariate extension of the Markov Information Criterion, MIC,
of [27]). Differently from [27], [444] rigorously study the construction of a MCS and provide the
statistical properties of the rate function, that is a measure of improbability of the configuration of
parameters minimizing the distance between simulated and benchmark data.

The last phase of calibration and estimation process concerns validation (see [63, 152, 498] for
a discussion on the issues of calibration and [315, 151] for complete surveys of validation methods).
An innovative work in this field is due to [215]. In their paper, the authors propose a method to
empirically validate simulation models comparing structures of vector autoregression models (VAR),
estimated from both artificial and real-world data, via causal search algorithms. Differently from the
information criteria of [26, 27] and [282], [215] focus on the similarity of the dynamic causal structures
of the variables of interest and consider a multivariate time-series comparison. The authors identify
five steps in their validation procedure:

1. Dataset uniformity: a monotonic transformation is performed in order to allow the matching
between the real-world and simulated time series;

2. Analysis of ABM properties: the authors verify that the time series is time-independent and
ergodic (see [233] and [205]);

3. VAR estimation: the lag of the model is selected according to some information criteria and
the VAR is estimated via ordinary least squares (OLS) and maximum likelihood estimation
(MLE);
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4. SVAR identification: the vector of residuals are extracted from the estimated VAR and their
statistical properties are tested. The researchers choose among two algorithms, according to
the results of the tests (“PC” for the Gaussian case and “VAR-LiNGAM” for the non-Gaussian
case);

5. Validation assessment: the estimated causal structures are compared according to three dis-
tance measures (Ωsign, Ωsize and Ωconj). Ωsign considers the directions of the causal relations
entailed by the SVAR; Ωsize compares only the size of the causal effects; Ωconj accounts for
both the directions and the size.

Another interesting contribution in terms of validation can be found in [29], in which the authors
develop a three-phase validation protocol. They first generate a set of 513 parameter combinations
using Nearly-Orthogonal Latin Hypercube sampling. Then, they score simulated data against real-
world observations via the Markov Information Criterion of [27]. Finally, they build a surrogate
model of the MIC response surface exploiting stochastic kriging. The local minima of the inter-
polated MIC response surface are the parameters combinations that best fit to the data. MCS is
then performed to restrict the set of model calibrations to those models that are statistically in-
distinguishable. At the end, the surrogate model is validated repeating step two of the validation
protocol on the restricted set and verifying that the new scores are equal to the scores forecast by
the surrogate model.
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Chapter 3

Model Calibration and Validation via
Confidence Sets1

In this chapter, we consider the issues of calibrating and validating a theoretical model, when
researchers wish to select the parameters that better approximate the data among a finite number
of alternatives. Based on a user-defined loss function, we propose to construct Model Confidence
Sets to restrict the number of plausible alternatives, and measure the uncertainty associated to
the preferred model. We further suggest an asymptotically exact logarithmic approximation of the
probability of choosing a model via a multivariate rate function. We outline a simple numerical
procedure for the computation of the latter and we show that it yields results consistent with
Model Confidence Sets. We finally showcase the implementation of our approach in a model of
inquisitiveness in ad hoc teams, relevant for bounded rationality and organizational research.

3.1 Introduction

In the social sciences, there are usually two methods for determining the parameters of a specific
model: calibration and estimation. While the latter is more appealing in a number of cases, it
usually requires making additional, and sometimes arbitrary, assumptions about the way data were
generated. Exogenous shocks may be added to the model in an ad hoc fashion, and point identifi-
cation and estimation of the model’s parameters are often an issue for complicated, nonlinear and
non-separable structural equations. Examples of the latter instances are applied general equilibrium
analysis, in which hypotheses for identification and estimation of parameters are often difficult (see
[84] for a discussion on the issues of identification in dynamic general equilibrium models), and
agent-based models, that are often very hard to describe within a unified statistical framework (see,
e.g., [187, 152, 185, 498, 125, 215, 151]).

Therefore, calibration has evolved to be a very popular method for parameter determination. Cal-
ibration allows one to set model parameters to certain values that are chosen according to prevailing

1This chapter is jointly written with Raffaello Seri, Davide Secchi and Samuele Centorrino, and is in press on
Econometrics and Statistics (see [444]).
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theoretical and/or empirical evidence (see [70, 112]). This definition of calibration is consistent with
most of the economic literature and goes back at least to the seminal business cycle paper of [280]
(see also [104] and [414, Sec. 5.8, p. 217]). Calibration is followed by a step that is referred to
as model validation (or verification, see [368], and [63]), in which moments of random sequences
generated by the model are compared (or eye-balled) with sample moments to show that, given the
parameters’ value, the economic model provides outcomes consistent with observable data.

From a statistical perspective, drawbacks of this particular definition of calibration and validation
are that it does not usually provide a quantitative measure of distance of the chosen model to the
data; and that it does not take into account the uncertainty related to the choice of a specific vector
of parameters.

This definition has been challenged by [222]. The authors have noticed that the distinction be-
tween calibration and estimation is “artificial at best” (see also [406]). They argue that “[calibration]
looks remarkably like a way of doing estimation without accounting for sampling errors in the sample
mean”. They further claim that the validation step used by [280] is tantamount to testing. They
argue that both steps are coming from the minimization of an implicit loss function which, if made
explicit, would make the principle by which a particular model is chosen easier to understand.

While there is little agreement as to what “calibration” is, there is even more confusion about
what are “verification” and “validation”. Some authors ([368, pp. 642-643] or [222, pp. 91-92]) use
“verification” for the comparison of the output of a calibrated model with the real world. Other
authors ([365, pp. 30-31], or [112, p. 419]) use “verification” as the process of making sure that the
implementation is coherent with the structure of a model and “validation” as the process of making
sure that the implementation is coherent with the real world, thus leading to an overlap between
“validation” and “calibration” [112, p. 419]. In [406], “validation” is used as a check of the adequacy
of the simulated model with another model it is intended to portray. At last, [63, Sec. 2.1-2.4] use
“verification” as in [365, 112], “calibration” as in [368, 222] and “validation” for the comparison of
the output of a calibrated model with an external source of data (see also [151]).

In this paper, we follow the approach suggested in [222] and consider the issue of calibrating and
validating an economic model by minimization of a user-specified loss function, when researchers
need to choose among several (albeit finite; see also [63, Sec. 2]) combinations of the parameters. The
underlying economic model does not have to admit a closed-form solution, or to be point identified
in a statistical sense. It should, however, be possible to generate series of simulated data from the
model itself, for specific configurations of parameters. While the restriction to a finite number of
configurations of the parameters may appear to be a limitation in some cases, it is, in our opinion, a
minor one. First, the number of configurations may be increased at a relatively low computational
burden. Second, most optimization algorithms are based on a finite number of evaluations and on
stopping rules that are not guaranteed to reach the true optimum. Possible extensions to the infinite
case are deferred to future work.

We thus consider the issue of this theoretical model matching some benchmark data. It is
important to note that the benchmark is not necessarily composed of real-world observations: it
could also be a function, or results from another simulation, for example. In some cases, one looks
for values of parameters that provide simulations that replicate a deterministic target or achieve
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a fixed goal (see, e.g., [112]). What is more relevant instead is that the real data should contain
patterns, i.e. “observations of any kind showing nonrandom structure and therefore containing
information on the mechanisms from which they emerge” (see [210, p. 991]). The match between
the benchmark and the simulated samples is assessed through a distance. In the following it will be
clear that our developments do not rely on any specific property of a distance. However, we prefer to
use this name as most applications will deal with this case. Given a distance, we propose to construct
Model Confidence Sets in the spirit of [223]. This technique not only allows us to rank models based
on their closeness to the benchmark, but also to construct a plausible set of alternative specifications
of parameters that cannot be distinguished from the chosen one, at least not in a statistical sense. In
this respect our procedure can be used in a first calibration step, to select the vectors of parameters
that are closer to the benchmark data; and, being related to a testing procedure through the duality
between confidence sets and tests (see, e.g., [56, Sec. 4.5, p. 241]), it can also be used for validation
in a second step. Notice that we do not see the requirement that parameters have discrete support
as a drawback. As a matter of fact, most simulation-based estimators are obtained by sampling from
conveniently selected points in the sample space (as sampling from the entire space is often impossible
in practice). Moreover, when used for calibration, our procedure can help identify multiple local
optima of the objective function, when direct minimization would only identify one of those local
optima. This feature is especially useful for highly parametrized models where point identification
is often impossible to show (see [112, p. 419]). Along the lines of [223], we show that MCS are valid
confidence sets when the number of simulated samples, n, diverges.

We complement this analysis by characterizing the model’s choice as an estimation problem in
which the parameters have discrete support (see [93]). We show that, despite the computation of the
probability of choosing a combination of parameters over the others is probably out of reach, one can
still provide, using large deviation theory, a measure of the rate of decrease of this probability with n
through a multivariate rate function, which depends on the vector of observables. The finite sample
approximation of this rate function is interesting for at least two reasons. On the one hand, it can be
used empirically as an alternative metric to establish the plausibility of our set of models. However,
its computation is not straightforward. On the other hand, its theoretical properties have not been
explored thus far, to the best of our knowledge, as published papers only consider rate functions in
the univariate context (see, e.g., [134, 135, 136, 413, 137]). In the univariate case, the rate function
needs to be calculated at one point only and this does not involve particular computational issues.
In our case, however, the measure of the decrease rate of the probability arises from the optimization
of a function over a multivariate domain and this requires high accuracy in the computation of the
whole function to be minimized.

First, we propose a method based on the linear-time Legendre Transform (LLT) to numerically
compute the rate function. As the name suggests, the numerical complexity of this method only
grows linearly with the number of data points, and it thus provides a computationally efficient
method, even when the number of observations is large. Second, we show that this rate function ap-
proximation is consistent, and we obtain its rate of convergence. We then perform a short simulation
study to demonstrate the validity of this theoretical result in finite samples.

We conclude the paper with an application of this methodology to an ABM of inquisitiveness
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(henceforth, inquisitiveness ABM ) (see [30]). Inquisitiveness is a development of “docility”, as a
strategy that decision makers use to cope with their bounded rationality [454, 455] and applied
to agent-based simulations recently for its cognitive links to behavior [433, 435, 345]. A docile
individual is someone who leans on other people’s advice to make decisions. In particular, when
docile individuals operate inside a team (or any community of reference) to solve a problem, trust
is placed on the advice of team members, while data coming from outside the team are mistrusted.
An inquisitive individual, instead, does not operate on a team basis but s/he is rather a problem
solver, who may look for help outside the team. We show that both Model Confidence Sets and the
approach based on a rate function approximation yield similar results. This ABM has been selected
for three reasons: (a) theoretical relevance, (b) applicability to other economic domains, and (c)
computational simulation robustness. The first criterion entails selecting a model that is anchored
to a solid theoretical background while, at the same time, it should not be a mere replication of
other models. The inquisitiveness ABM is based on Simon’s bounded rationality [452, 453, 456].
A theory with high relevance, given the value that its theoretical and empirical applications have
had in economics in the recent decades (e.g., [252, 471, 83]). Inquisitiveness exemplifies the tension
toward finding more suitable theoretical conceptualizations of bounded rationality. At the same
time, it has wide applicability to organizations of various sizes as well as wider economic systems.
Finally, to make sure that we selected a code that had been openly peer reviewed in a certifiable and
documentable way, we looked onto those ABM uploaded into OpenABM. This platform is supported
by the Network for Computational Modeling in Social and Ecological Sciences (CoMSES) and these
scholars offer peer review specifically on the code, when modelers ask for it. Among the (very few)
models that had been peer reviewed, the one on inquisitiveness ticked also all of our other criteria
for selection.

The inquisitiveness model shows high parametrization and nonlinearities in both variables and
parameters, and calls for a rigorous calibration procedure, as it is widely done in ABM research.
Alternative procedures have also been extensively explored (see [190, 498, 499, 150, 206, 401, 207,
215, 277, 283, 151]). The most recent trend in calibration of ABM is to apply sound econometric
techniques to select appropriate parameter values (see [87]). Methods such as Indirect Inference
[189, 190], Simulated Method of Moments [499], Simulated Maximum Likelihood [277], Simulated
Minimum-Distance [206, 401, 282, 281], and Approximate Bayesian Computation [207] have emerged
as calibration techniques in ABM. We believe there are three main drawbacks of performing calibra-
tion in this way. First, its results may vary widely depending on sample selection, as models are not
necessarily identified, and therefore uniqueness of the optimum is not guaranteed (not even asymp-
totically). Similarly, there has been little effort to formally characterize the uncertainty associated to
a specific choice of parameters [445]. Finally, given the high parametrization of ABM, computational
costs can be extremely high (e.g., [472, 307]). Our technique is instead computationally fast; and
effectively uses the sample to validate one or more choices of parameters.

Our procedure bears a resemblance with other ones introduced in the literature. For instance,
[283] use Surrogate Meta Models and Machine Learning to search the parameter space. Their
iterative technique is based on a surrogate model which learns from an initial random subset of
parameter combinations. We perceive that our method is similar in spirit, although one learns from
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a finite number of combinations of parameters that are directly specified by users, instead of being
determined iteratively from a (finite-dimensional) subset of the parameters’ space. Similarly, [26]
applies the methodology developed by [27] to select among different models, scoring each one of
them at the level of individual empirical observations. Differently from [26], we study rigorously the
construction of a Model Confidence Set and we provide the statistical properties of the rate function.

Our approach can complement existing ones, and be used in a validation step to compare esti-
mates obtained by any of the aforementioned estimation methods. By appropriately splitting the
data into a fitting sample and a training sample, one can obtain several plausible parameter values
from an initial estimation step, and then compare them in a testing (or validation) step using MCS.

The paper is structured as follows. The mathematical notation that is needed for the discussion of
the model is introduced in Section 3.2. Section 3.3 introduces the statistical framework and provides
the asymptotic relations between the probabilities of choosing a model and the rate functions. Section
3.4 discusses the construction of Model Confidence Sets for a problem of calibration. Section 3.5
outlines the numerical approximation of the rate function and provides its statistical properties.
Readers more interested in the application of our procedure can directly move to Section 3.6. We
provide an outline of our findings in Section 3.7. All technical proofs are relegated to the Appendix.

3.2 Notation

This section introduces the notation that will be used throughout the paper. Capital bold letters,
such as A, denote matrices while lowercase bold letters, such as a, usually denote vectors. The
i−th element of vector a is generally denoted ai. un is a n-vector composed of ones. In is the
(n× n)-identity matrix. Un is a (n× n)-matrix composed of ones. ei,n is a n-vector of zeros with
a one in the i-th position; when the length is clear from the context we simply use ei. 0m×n is a
(m× n)-matrix composed of zeros. We do not indicate the dimensions when they are clear from
the context. diag (a) is a diagonal matrix with a on its diagonal. A′ and A−1 are respectively the
transpose and the classical inverse of the matrix A, provided they exist.

For a set A, the notations intA, A, ∂A, coA and coA respectively denote the interior, the
closure, the boundary, the convex hull and the closed convex hull of A. The positive half-line is
R+ := {x ∈ R : x ≥ 0}. The positive orthant is Rd+ := (R+)

d. Hyperplanes are indicated with the
point-normal notation, i.e. as

{
x ∈ Rd : x′α = v′α

}
where α is a normal vector and v is a point of

the hyperplane. The same notation is used for a half-space as H+ (α,v) :=
{
x ∈ Rd : x′α ≥ v′α

}
.

For a scalar β, βA := {βx : x ∈ A}.
We introduce the definition of the effective domain of a function f : Rd → R as D (f) :={

x ∈ Rd : f (x) <∞
}

(see [124, p. 4]). The Legendre or Legendre-Fenchel transform of f is the
function f? : Rd → R defined by the variational formula f? (y) := supx∈Rd {y′x− f (x)}. f? is also
said to be the convex conjugate of f . χA is the (convex analysis) characteristic function taking the
value 0 in A and +∞ outside.

Expectations are denoted as E. When the integration variable is not clear from the context,
we indicate it explicitly as a subscript as in Ex. We will do the same for the variance Vx. For a
random vector X taking values in Rd, we define the moment generating function (MGF ) of X as

49



M (u) := E exp {u′X} and the cumulant generating function (CGF ) as Λ (u) := lnM (u).

3.3 Framework and Preliminary Results

Let y be a vector of benchmark observations, that can contain individual level data, a time series, etc.
It can be determined by a deterministic or a stochastic mechanism, but in any case it is supposed to
be fixed in the subsequent analysis. Fixing the outputs y may come from the difficulty in modeling
the real-world phenomenon leading to the data, or from an interest in the real-world data rather
than in the data generating process (DGP) leading to them.

Example 3.1. [Multiple outputs] Suppose that the simulation model describes a situation char-
acterized by several outputs y = (y1, . . . , yp) measured at the same time. The researcher may be
interested in looking for the parameters of the simulation model yielding outputs that are as similar
as possible to these observations, without the need to model the DGP leading to these data.

Example 3.2. [Time trend] Consider a simulation model describing the evolution of a system over
time. In this case y = (y1, . . . , yt) may be a time series.

Example 3.3. [Spatial patterns] In some cases, the aim of the simulation is to simulate the spatial
patterns arising from a complex system. This situation takes place in the study of animal diffusions,
geographical plant distributions, etc. In this case y is a curve in a space or a spatial distribution of
points.

We suppose to have m0 configurations of parameters, say θi for i = 1, . . . ,m0. We will not need
any special structure on the set of possible parameters. The set of all parameters is denoted by
M0 := {1, . . . ,m0}. For each one of them, we simulate n realizations zj (θi), for j = 1, . . . , n. We
compute the distances d (y, zj (θi)) for i ∈ M0 and j = 1, . . . , n. Here and in the following we will
use the term distance loosely; as an example, we will never use any specific property of a distance,
such as non-negativity or the triangle inequality.

Example 3.4. [Multiple outputs - Example 3.1 continued] A reasonable choice of a distance is:

d (y, zj (θi)) =

p∑
h=1

ah |yh − zjh (θi)| ,

where the ah’s, for h = 1, . . . , p, are constants keeping into account the different contributions of the
observations to the overall distance.

Example 3.5. [Time trend - Example 3.2 continued] The time series case admits several distances,
with different interpretations. In the ergodic case, when a single instance of a time series is sufficient
to estimate probabilities of events, one can consider distances between the probability measures that
generated the data. In this case it is quite natural to keep into account the DGP of y when drawing
inferences. For a review of metrics or similarity measures for statistical data processes see [32] and
[329]. Two further interesting contributions are provided by [27] and [282]. Other distances cannot
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be cast as metrics between the probability measures that generated the data, but only as distances
between the trajectories over time. These distances are probably more interesting for the following
as they apply to trending non-ergodic time series (e.g., [300, 176, 495]).

Example 3.6. [Spatial patterns - Example 3.3 continued] If one considers an animal roaming in
a certain area, several distances can be considered, such as the Fréchet distance, used for dynamic
time warping (see [273, 47, 214]).

We introduce the following notations. The expected distance relative to the i-th combination of
parameters is Di := Ezd (y, z (θi)). We denote as D :=

(
D1, . . . , Dm0

)′
the vector containing the

average distances. The distance corresponding to the j-th realization and the i-th combination of
parameters is Dj,i := d (y, zj (θi)), and the sample average distance is Dn,i := 1

n

∑n
j=1Dj,i. Let us

define the m0-vector:
Dn :=

(
Dn,1, . . . , Dn,m0

)′
.

If we denote:
Dk := (Dk,1, . . . , Dk,m0

)
′

for k = 1, . . . , n, we can write Dn = 1
n

∑n
k=1 Dk.

We want to identify the values i corresponding to the smallest expected distance Di. Other
criterion choices may be more relevant in some situations but in this case, we consider only the
expected distance. The set of parameters achieving the minimal distance is denoted as M? :={
j ∈M0 : Dj = mini∈M0 Di

}
. It is clear that a choice would be to take the value în minimizing

Dn,i for i ∈M0. We suppose that în is always single valued whileM? may not be a singleton.
The choice of a value from a finite set can be characterized as a discrete-parameter estimation

problem (see [93]) or as a classification problem. In the following we characterize the behavior of în
as in [93]. We can write:

P
{̂
in = j

}
= P

{
θ̂n = θj

}
= P

{
Dn,j ≤ Dn,i, 1 ≤ i ≤ m0, i 6= j

}
= P

{
Dn ∈ Pj

}
where Pj is the (unbounded) polytope characterized by the inequalities:

Pj :=

{
x ∈ Rm0 : xj ≤ min

1≤`≤m0, 6̀=j
x`

}
.

Figure 3.3.1 provides a graphical representation of P3 =
{
x ∈ R3 : x3 ≤ min {x1, x2}

}
in R3.

Note that, in the previous definition, there is no special reason to use strict inequalities instead of
non-strict ones. As the polytopes are a partition of the whole space, D can belong to one and only one
of the polytopes. But in some cases, D may be on the face between two or more polytopes and, as the
attribution of the faces to one polytope or another is arbitrary, we prefer to explicitly allowM? not
to be a singleton. For any j /∈ M?, our assumptions guarantee that the probability P

{
Dn ∈ ∂Pj

}
is asymptotically negligible, i.e. that P

{
Dn ∈ intPj

}
and P

{
Dn ∈ Pj

}
behave similarly for any

j /∈ M?. This makes immaterial whether the faces of each Pj are attributed to a polytope or the
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Figure 3.3.1: Polytope P3 in R3: the dark grey surfaces delimit P3 from above; the light grey
rectangles represent the three planes x1 = 0, x2 = 0 and x3 = 0; the dashed lines are the intersections
of the planes x1 = 0, x2 = 0 and x3 = 0; the solid thin lines are the intersections of the previous
planes with the surfaces delimiting P3.
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other.
Once the attribution of the faces is solved, the polytopes

{
Pj , j ∈M0

}
form a partition of Rm0 .

Under appropriate assumptions (see A1 below), Khintchin’s WLLN shows that Dn converges in
probability to D. This implies that:

P
{̂
in ∈M

}
= P

Dn ∈
⋃
j∈M

Pj

→ P

D ∈
⋃
j∈M

Pj


for anyM⊂M0. It is clear that:

P
{̂
in ∈M?

}
= P

Dn ∈
⋃

j∈M?

Pj

→ 1

while P
{̂
in = j

}
= P

{
Dn ∈ Pj

}
→ 0 for any j /∈ M?. In the following we show that the probabil-

ities like P
{̂
in = j

}
for any j /∈ M? converge to 0 exponentially fast and characterize the rate of

exponential convergence of these probabilities.
This shows that our estimator (̂in) is consistent, i.e. it takes a value in the set of minimizers of the

average distance (M?) with probability converging to 1 as the number of replications (n) diverges.
Moreover, the probability of the estimator (̂in) taking any value outside the set of minimizers of the
average distance (M?) converges to 0 exponentially. As in [93], the estimator has an exponential
convergence rate. In the following, we try to characterize, and then estimate, the rate of convergence
to 0 of this probability. This is done through large deviations principles (LDP).

As they do not belong to the toolbox of the average econometrician, it is useful to provide a brief
explanation of LDP in the case that is most relevant for our purposes (Corollary 6.1.6 in [124, p.
253]). Let {X1, . . . } be a sequence of independent and identically distributed random vectors. If EX

exists, Xn := 1
n

∑n
k=1 Xk converges almost surely to EX. For a given set A ⊂ Rd, EX ∈ A implies

that P
{
Xn ∈ A

}
→ 1. Instead, if EX /∈ A, P

{
Xn ∈ A

}
→ 0 exponentially fast. In particular,

1
n lnP

{
Xn ∈ A

}
is asymptotically bracketed between two bounds depending on the distribution of

X1 and on the set A. These bounds can respectively be expressed as the infimum over intA and A of
a so-called rate function Λ? that is the Legendre-Fenchel transform of the CGF Λ of X1. When the
set A and the random vector X1 are sufficiently well behaved, the infima over intA and A coincide
and one can identify a limit of 1

n lnP
{
Xn ∈ A

}
. This limit can be expressed as the infimum of the

rate function over the set A, where the infimum is generally located on the boundary of A. The
point in which the infimum is reached is called a dominating point (see [358, 359]) and it can be
used to express the large deviations, result in an alternative way.

The role played by the CGF and by its Cramér transform in these bounds can be justified
considering the upper bound. The lower bound is too complicated to be explained here. We consider
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the scalar case with A = [x,∞). For every λ ≥ 0, the Chernoff bound yields:

P
{
Xn ∈ [x,∞)

}
=E1

{
Xn − x ≥ 0

}
≤ E exp

{
λ
(
Xn − x

)}
= exp {−λx}

n∏
k=1

E exp

{
λ

n
Xk

}
= exp {−λx}

[
M

(
λ

n

)]n
= exp

{
−λx+ nΛ

(
λ

n

)}
where we have used the inequality 1 {x ≥ 0} ≤ exp {λx} for λ ≥ 0. As λ ≥ 0 is arbitrary, we have:

P
{
Xn ∈ [x,∞)

}
≤ exp

{
inf
λ≥0

[
−λx+ nΛ

(
λ

n

)]}
= exp

{
− sup
λ≥0

[
λx− nΛ

(
λ

n

)]}
= exp

{
−n sup

η≥0
[ηx− Λ (η)]

}
= exp {−nΛ? (x)}

or 1
n lnP

{
Xn ∈ [x,∞)

}
≤ −Λ? (x). If η? is the dominating point, i.e. the point η? at which

η?x− Λ (η?) = supη≥0 [ηx− Λ (η)], we have:

P
{
Xn ∈ [x,∞)

}
≤ exp {−n [η?x− Λ (η?)]} .

This justifies the logarithmic asymptotics of the probabilities and explains the rationale behind the
assumptions we are going to put forward. Indeed, they guarantee that a dominating point exists or,
equivalently, that Λ (·) is sufficiently well behaved that supη≥0 [ηx− Λ (η)] takes a finite value.

Now we turn to the assumptions. The following one contains the basic properties of the distances.
It may be useful to explain its rationale. Each simulation run zj (θi) is independent of all the other
runs for each j ∈ {1, . . . , n} and i ∈ M0. For fixed i ∈ M0, the simulation runs zj (θi) are
also identically distributed across j ∈ {1, . . . , n}. As a result, the distances Dj,i share the same
independence properties. This is sufficient to yield consistency and measurability of the estimator
în (see [93, Proposition 1, p. 280] for a slightly different result).

A1 For k = 1, . . . , n the vectors Dk are independent and identically distributed. For each j ∈M0,
the distances Dk,j are independent. The mean EDk,j exists and is finite for each j ∈M0.

As briefly explained above, in order to obtain a LDP we need some functions related to the vector
Dk. We define the MGF and CGF of Dk:

M (u) = E exp {u′Dk} = E exp

{
m0∑
`=1

u`Dk,`

}

=

m0∏
`=1

E exp {u`Dk,`} =

m0∏
`=1

M` (u`)

and:

Λ (u) =

m0∑
`=1

lnM` (u`) =

m0∑
`=1

Λ` (u`) .
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We introduce the Legendre-Fenchel or Cramér transform of Λ as:

Λ? (y) := sup
u∈Rm0

{y′u− Λ (u)} = sup
u∈Rm0

m0∑
`=1

{y`u` − Λ` (u`)}

=

m0∑
`=1

sup
u`∈R

{y`u` − Λ` (u`)} =

m0∑
`=1

Λ?` (y`) .

We now state three technical assumptions. The first one (A2) guarantees that the level sets of Λ?,
i.e. the sets

{
u ∈ Rd : Λ? (u) ≤ α

}
, are compact, a property that is useful in order to compute the

infimum of the rate function over a set (see Theorem 3.1). The second one (A3) forces the upper and
the lower bounds to be equal. The third one (A4) guarantees that, for any two parameter values θj
and θi, the supports of the distances Dk,j and Dk,i intersect, otherwise the probabilities involving
them may end up to be identically equal to 0 or 1. More complete discussions of these assumptions
are contained in the remarks following them.

A2 There exists δ > 0 such that, for any η ∈ (−δ,+δ), Λ` (η) <∞ for any ` ∈M0.

It may be interesting to discuss this assumption in greater detail. It is well known that the CGF at
the origin is 0, as the MGF is equal to 1. This assumption requires something more, i.e. that the
MGF exists in a neighborhood of the origin, and can be shown (see, e.g., [93, Lemma 1, p. 281])
to be equivalent to the requirement that the so-called Cramér condition 0 ∈ intD (Λ) holds true.
This ensures that the level sets of Λ?, i.e. the sets

{
u ∈ Rd : Λ? (u) ≤ α

}
, are compact. See [360]

for large deviations principles without this assumption.

A3 Let D` := int {u ∈ R : Λ` (u) <∞}. For any ` ∈ M0, the function Λ` is steep, i.e. for any
sequence {um} in intD` converging to a boundary point of D`:

lim
m
|Λ′` (um)| =∞.

If the aim of the analysis is to bracket asymptotically the quantity 1
n lnP

{
θ̂ = θj

}
between two

constants, one can dispense with the previous assumption. Otherwise, if the aim is to obtain a more
precise limit, this assumption is not necessary but very comfortable, as the results that do not use it
are generally quite complex (see, e.g., [100]). This can be linked to another problem arising in large
deviations. Consider the scalar case and suppose that Λ is not steep, i.e. limm |Λ′ (um)| = λ <∞ for
um → u∞ with u∞ ∈ ∂D (Λ). Convex conjugacy implies that Λ′ (u) = y is equivalent to u = Λ?,′ (y).
This implies Λ? is linear with slope u∞ for y > λ, if u∞ is the right endpoint of D (Λ), or for y < −λ,
if u∞ is the left endpoint of D (Λ). Therefore, the rate function Λ? is not strictly convex. In this
case, large deviations principles are not guaranteed to hold (see, e.g., [120]).

A4 Let [Lh, Uh] be the closure of the convex hull of the support of the law of Dk,h for h ∈ M0.
Let j be the index of the parameter under scrutiny, i.e. P

{
θ̂ = θj

}
. Then U` > Lj for any

` ∈M0.

In order to see what can go wrong when this assumption is not verified, consider the case when
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M0 = {1, 2}. Suppose that L2 > U1 or, equivalently, that [U2, L2] ∩ [U1, L1] = ∅. Then, for any n:

P
{̂
in = 1

}
= P

{
θ̂n = θ1

}
= P

{
Dn,1 ≤ Dn,2

}
= 1

and P
{̂
in = 2

}
= 0. This implies that 1

n lnP
{̂
in = 2

}
= −∞ and the LDP does not apply. This

also suggests that combinations of parameters for which the hypothesis is not verified can be safely
removed fromM0 as they dominate or are dominated by the other ones.

Theorem 3.1. Suppose that j /∈M?. Then, under A1:

lim inf
1

n
lnP

{
θ̂ = θj

}
≥ − inf

y∈intPj
Λ? (y) .

Under A1-A2:
lim sup

1

n
lnP

{
θ̂ = θj

}
≤ − inf

y∈Pj
Λ? (y) .

Under A1-A4:

lim
1

n
lnP

{
θ̂ = θj

}
= − inf

y∈intPj
Λ? (y) = − inf

y∈Pj
Λ? (y) .

Under A1-A4:
inf

y∈Pj
Λ? (y) = ũ′ỹ − Λ (ũ)

where:

• ỹ ∈ ∂Pj;

• the equation (Λ′)
−1

(ỹ) = ũ has a unique solution ũ;

• Pj ⊂ H+ (ũ, ỹ).

Remark 3.1. (i) The requirement that j /∈M? is quite natural. Indeed, if j ∈M?, Dj = mini∈M0 Di

and D ∈ Pj . Now, Λ?
(
D
)

= 0 and Λ? (y) > 0 for any y 6= D. Therefore, if j ∈M?:

lim
1

n
lnP

{
θ̂ = θj

}
= − inf

y∈Pj
Λ? (y) = −Λ?

(
D
)

= 0.

(ii) It is easy to see why infy∈intPj Λ? (y) = infy∈Pj Λ? (y) provides a measure of improbability. Each

probability P
{
θ̂ = θj

}
is associated with the infimum of the same function Λ? (·) over a different set

Pj . Now, the function Λ? (·) is strictly convex, positive and has a single zero in D. When j is such
that Pj is far away from D, infy∈Pj Λ? (y) will be larger than 0. The farther away from D is Pj ,
the larger is infy∈Pj Λ? (y), and the faster is the convergence of P

{
θ̂ = θj

}
to 0. This establishes

a relation connecting the distance between Pj and D, on the one hand, and the rate of decrease of
P
{
θ̂ = θj

}
.

(iii) This kind of large deviations result provides a formula for the logarithm of the probability. In
a similar context, it was shown by [93] that exact or sharp large deviations results and saddlepoint
approximations were able to provide valid approximations for the probabilities (and not only for
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their logarithms). However, in this paper we do not investigate exact large deviations or saddlepoint
approximations. The reason is that we aim at using them for the computation of some measures of
precision, and exact large deviations are not suitable for this purpose (see the end of Section 3.5).

Example 3.7. In order to illustrate the principle behind the formulas, we consider the following
example. We suppose that Dk,1 is a sample of n exponential random variables with parameter 2

(and mean 1/2) and Dk,2 is a sample (independent of the previous one) of n exponential random
variables with parameter 1 (and mean 1). We want to study:

P
{
Dn,1 ≥ Dn,2

}
= P

{
n∑
k=1

Dk,1 ≥
n∑
k=1

Dk,2

}
= P

{
n∑
k=1

Dk ∈ P2

}
,

where Dk := (Dk,1, Dk,2)
′. We have:

M (u) =
2

2− u1
· 1

1− u2
,

Λ (u) = ln 2− ln (2− u1)− ln (1− u2)

and
Λ? (y) = 2y1 − ln y1 + y2 − ln y2 − ln 2e2.

The equation ỹ = Λ′ (ũ) is: ỹ1 = 1
2−ũ1

,

ỹ2 = 1
1−ũ2

.

As ỹ ∈ ∂P2, ỹ1 ≡ ỹ2 and ũ2 = ũ1 − 1. As P2 ⊂ H+ (ũ, ỹ), the vector ũ must be normal to the line
ỹ1 ≡ ỹ2, or ũ1 = −ũ2. The final solution is ũ1 = 1/2, ũ2 = −1/2, and ỹ1 = ỹ2 = 2

3 . As a result:

inf
y∈P2

Λ? (y) = Λ? (ỹ) = ũ′ỹ − Λ (ũ) = ln (9/8)
.
= 0.1177830357.

This means that:
lim

1

n
lnP

{
Dn,1 ≥ Dn,2

}
= − ln (9/8) .

Figure 3.3.2 provides a graphical representation of the function Λ?.

3.4 The Model Confidence Set

In this section we investigate the construction of a Model Confidence Set, i.e. a subset of M0

containing the models minimizing the average distance with prescribed probability. We will inves-
tigate the properties of the procedure under the assumption that n, the number of runs per each
configuration of parameters, diverges.
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Figure 3.3.2: Example 3.7: level curves of the function Λ? (in thin solid lines), level curve corre-
sponding to Λ? (·) = ln (9/8) (in thick solid line), points ỹ = (3/2, 3/2)

′ and D = (1/2, 1)
′, half-plane

P2 (in shaded grey area).
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3.4.1 The General Procedure

The method starts from a setM0 := {1, . . . ,m0}. In the following,M⊂M0 denotes a generic set
of discrete parameters. The iterative procedure is based on an equivalence test δM and a selection
rule eM, that are associated to the setM.

The test δM is used to test the null hypothesis:

H0,M : Di = Dj ,∀i, j ∈M.

We defined above M? :=
{
j ∈M0 : Dj = mini∈M0 Di

}
. Note that H0,M? is true while H0,M is

false wheneverM 6=M?. We also introduce the alternative hypothesis:

HA,M : ∃i, j ∈M such that Di 6= Dj .

We say that δM = 1 when the test rejects the null hypothesis and δM = 0 when it does not reject
it.

The elimination rule eM is used to delete an element fromM when δM = 1. We suppose that
eM takes its values inM, so that the result of the elimination rule is to pass fromM toM\eM.

One starts from the setM =M0 and performs the test δM = δM0 . If the test is rejected, then
an elimination step eM = eM0 is performed to get a new setM1. The process is repeated until the
test δM does not reject the null hypothesis. The final set of models is called M̂?. If all the tests are
performed at the same significance level α, one can explicitly write M̂? = M̂?

1−α.

3.4.2 The Implementation

In order to build a MCS, we have to choose a test procedure δM and an elimination procedure eM.
As a test procedure δM, we suppose to estimate the mean Di := Ezd (y, z (θi)) and the variance

σ2
i := Vz [d (y, z (θi))] corresponding to each value of θi, through Gaussian quasi-likelihood. We will

need the following assumptions.

A5 The variances σ2
i are finite for any i ∈M0.

Consider the estimatorsDn,i := 1
n

∑n
j=1 d (y, zj (θi)) and σ̂2

i := 1
n

∑n
j=1 d

2 (y, zj (θi))−D
2

n,i. Suppose
that we want to test that all Di’s are equal. We write D =

(
D1, . . . , Dm

)′
and

Σ :=


σ2

1 · · · 0
...

. . .
...

0 · · · σ2
m

 .
Let Σ−1 be the (m− 1,m− 1)-matrix obtained from Σ removing the first line and column. In the
following, an estimator is indicated adding a hat to the same symbol used for the corresponding
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parameter. Consider the matrix A defined by:

A =


1 −1 · · · 0
...

...
. . .

...
1 0 · · · −1

 =
[

um−1 −Im−1

]
.

The null hypothesis H0,M is that AD = 01,m−1. The test statistic is:

WM = n
(
ADn

)′ [
σ̂2

1Um−1 + Σ̂−1

]−1 (
ADn

)
.

As an elimination procedure eM, we choose the index j ∈ M with the largest value Dn,j , i.e. we
identify eM := arg maxj∈MDn,j .

Theorem 3.2. Let the test procedure δM be based on the test WM, with asymptotic distribution
WM

D→ χ2
m−1, and let the elimination procedure eM be based on the elimination from M of the

index j ∈M with the largest value Dn,j. Then, under A1 and A5, we have:

• limn→∞ P
{
M? ⊂ M̂?

1−α

}
≥ 1− α,

• limn→∞ P
{
i ∈ M̂?

1−α

}
= 0 i /∈M?.

Remark 3.2. The confidence interval obtained in this way will likely be conservative. Indeed, in
Corollary 1 in [223, p. 460] it is shown that, whenM? is a singleton, limn→∞ P

{
M? = M̂?

1−α

}
= 1.

There is an alternative way to see the procedure. We set M1 := M0. Then, let us define a
sequence of subsets ofM0 through the elimination rule as:

Mi+1 =Mi\eMi
i = 1, . . . ,m0 − 1

or:
Mi =

{
eMi , eMi+1 , . . . , eMm0

}
.

In our case, this amounts to ordering the elements M0 according to the value of Dn,j , from the
largest to the smallest.

To each element eMi
, we can associate the p-value of the test procedure δMi

to test the null
hypothesis H0,Mi

. We call this p-value pH0,Mi
, with the convention that pH0,Mm0

≡ 1. These p-values
are not necessarily decreasing in i. However, it is possible to define an MCS p-value as:

p̂eMj
:= max

i≤j
pH0,Mi

.

The interest of the MCS p-values p̂eMj
, for j = 1, . . . ,m0, is that i ∈ M̂?

1−α if and only if p̂i ≥ α.
This allows us to compute the MCS over a range of values α. In this case, the MCS can be used to
assess the stability of the optimal solution.
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3.5 Estimation of Rate Functions

The asymptotic behavior of the probability is dictated by the infimum of the rate function Λ? (·)
over the polytope Pj . This infimum can be approximated as in [134, 135, 136]: in the following we
will provide a method of approximation.

3.5.1 Approximating the Rate Function

Consider the empirical moment generating function defined by M̂ (u) :=
∏m0

`=1 M̂` (u`), where
M̂` (u`) := 1

n

∑n
k=1 exp {u`Dk,`}. Let Λ̂` (u`) := ln M̂` (u`) and Λ̂ (u) :=

∑m0

`=1 Λ̂` (u`). We de-
fine:

Λ̂? (y) := sup
u∈Rm0

[
u′y − Λ̂ (u)

]
=

m0∑
`=1

Λ̂?` (y`)

where Λ̂?` (y`) := supu`∈R

{
y`u` − Λ̂` (u`)

}
.

We will need the following assumption.

A6 Both Li and Ui are finite for i ∈M0.

The assumption that the support of the law of Dk,i is bounded can be replaced by an assumption
of equi-coercivity on Λ̂?i (see [117, Chapter 7]). As equi-coercivity is rather specialized and difficult
to check, we prefer to use the simpler and more manageable assumption of boundedness, that is
customary in this literature [135, 136].

Theorem 3.3. Suppose that j /∈M?. Under A1-A4 and A6:

lim
n→∞

inf
y∈Pj

Λ̂? (y) = inf
y∈Pj

Λ? (y)

and, for n large enough:
inf

y∈Pj
Λ̂? (y) = û′ŷ − Λ̂ (û)

where:

• ŷ ∈ ∂Pj;

• the equation
(

Λ̂′
)−1

(ŷ) = û has a unique solution û;

• Pj ⊂ H+ (û, ŷ).

This approximation can be studied from two further points of view. First of all, computational
issues arise in the identification of the rate function and of the dominating point. Second, one may be
interested in its statistical properties and, in particular, its rate of convergence. We will investigate
these points in the following sections.
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3.5.2 Computation of the Rate Function

In this paper, we will estimate Λ̂?` through one of the algorithms in [312] and [313], in particular
the LLT algorithm of [312]. The name indicates that the algorithmic complexity of the algorithm,
as measured by the number of operations, is a linear function of that number. In particular, if a
grid of q points is used to approximate Λ̂` and if one needs the values of Λ̂?` on a grid of p points,
the worst-case time complexity of the LLT algorithm is O (q + p). A graphical representation of the
algorithm is in Figure 3.5.1 (see below for details). The figure represents the case in which Λ? is
estimated using n = 10 observations extracted from an exponential distribution with parameter 1.
Note that, when referring to the figure, we remove the index ` from functions and scalars.

Let us start with Λ̂` (u) = ln M̂` (u) = ln 1
n

∑n
k=1 exp {uDk,`} (here and in the following we drop

the index ` from the arguments u` and y`). It is clear that:

ln
1

n
exp

{
umax

k
Dk,`

}
≤ Λ̂` (u) ≤ ln

1

n

n∑
k=1

exp

{
umax

k
Dk,`

}

and
− lnn+ umax

k
Dk,` ≤ Λ̂` (u) ≤ umax

k
Dk,`,

so that, for u→ +∞:
Λ̂` (u) ∼ umax

k
Dk,`.

In the same way, for u→ −∞:
Λ̂` (u) ∼ umin

k
Dk,`.

It can also be shown that:
lim

u→+∞
Λ̂′` (u) = max

k
Dk,`

and
lim

u→−∞
Λ̂′` (u) = min

k
Dk,`.

Indeed, Λ̂′` (u) =
∑n
k=1Dk,` exp{uDk,`}∑n
k=1 exp{uDk,`} and:

min
k
Dk,` ≤ Λ̂′` (u) =

∑n
k=1Dk,` exp {uDk,`}∑n
k=1 exp {uDk,`}

≤ max
k

Dk,`. (3.5.1)

We will use this fact later. The upper-left quadrant of Figure 3.5.1 represents, in black, the cumulant
generating function in the exponential case Λ (u) = − ln (1− u) , and, in grey, the estimated CGF
Λ̂ (u) and the two asymptotes with slope maxkDk and minkDk.

Then we discuss the approximation of Λ̂?` (y). We recall that:

Λ̂?` (y) = sup
u∈R

{
yu− Λ̂` (u)

}
. (3.5.2)

The main problem is that the functions Λ̂?` involve an optimization step that can turn out to be
computationally intensive, especially when it has to be repeated for several values of y.
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Figure 3.5.1: Illustration of the LLT algorithm with q = 9 for n = 10 observations extracted from
an exponential distribution with parameter 1.
Upper-left quadrant: CGF Λ (u) = − ln (1− u) (in black), estimated cgf Λ̂ (u) (in grey), two asymp-
totes with slope maxkDk and minkDk.
Upper-right quadrant: points

{(
ui, Λ̂ (ui)

)
, i = 1, . . . , 9

}
, piecewise linear approximation ˜̂Λ to the

empirical cgf Λ̂, four values c1, u1, c8 and u9.

Lower-left quadrant: points
{(

ci,
˜̂
Λ
?

(ci)

)
, i = 1, . . . , 9

}
, piecewise linear approximation ˜̂Λ? (in

black), empirical Legendre transform Λ̂? (in grey), four values y1 := c1, u1 =
˜̂
Λ
?,′

(c1), y8 := c8 and

u9 =
˜̂
Λ
?,′

(c8).

Lower-right quadrant: modified version of ˜̂Λ? with effective domain equal to [minkDk,maxkDk] (in
black), true rate function Λ? (y) = y − 1− ln y for the exponential case (in grey).
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Most algorithms use therefore a property of the functions to avoid the optimization step. Indeed,
convex conjugacy implies that Λ̂′` (u) = y is equivalent to u = Λ̂?,′` (y). This means that, if for a
fixed u we are able to find y := Λ̂′` (u), we can identify:

Λ̂?` (y) = uΛ̂′` (u)− Λ̂` (u) .

The LLT belongs to a whole class of methods based on the discrete Legendre transform (DLT), i.e.
the replacement in (3.5.2) of the maximum over R with the maximum over a finite set {u1, . . . , uq}
(see Step 0 in [312, p. 176]):

Λ̂?` (y) ' sup
u∈{u1,...,uq}

{
yu− Λ̂` (u)

}
.

In the following, we suppose that ui < ui+1 for all i.
Step 1 in [312, p. 176], i.e. the convexification of the function Λ̂` through the construction

of the convex hull of the point-set
{(
ui, Λ̂` (ui)

)
, i = 1, . . . , q

}
, can be skipped as the function Λ̂`

is already convex. Therefore, the function Λ̂` can be approximated on the interval [u1, uq] by a

piecewise linear function ˜̂Λ` passing through the points
{(
ui, Λ̂` (ui)

)
, i = 1, . . . , q

}
. As our aim is

to identify y := Λ̂′` (u), we introduce the slopes of the approximated function ˜̂Λ` between ui and
ui+1:

ci :=
Λ̂` (ui+1)− Λ̂` (ui)

ui+1 − ui
, i = 1, . . . , q − 1.

At the points ui, for i = 1, . . . , q, the function ˜̂Λ` is not differentiable. The upper-right quadrant of
Figure 3.5.1 represents the points

{(
ui, Λ̂ (ui)

)
, i = 1, . . . , 9

}
, the piecewise linear approximation ˜̂Λ

to the empirical CGF Λ̂, and the four values c1, u1, c8 and u9.
Now (see Step 2 in [312, p. 176]), for any ci−1 < y < ci:

˜̂
Λ
?

` (y) = yui − Λ̂` (ui)

so that the function Λ̂?` (y) is approximated by a piecewise linear function with intercept −Λ̂` (ui)

and slope ui over (ci−1, ci). When y = ci, using the definition of ci:

˜̂
Λ
?

` (y) = yui − Λ̂` (ui) = yui+1 − Λ̂` (ui+1)

so that it is immaterial whether we use ui or ui+1 when computing the function. The lower-left

quadrant of Figure 3.5.1 represents the points
{(

ci,
˜̂
Λ
?

(ci)

)
, i = 1, . . . , 9

}
, the piecewise linear

approximation ˜̂Λ? (in black), the true empirical Legendre transform Λ̂? (in grey) and the four values

y1 := c1, u1 =
˜̂
Λ
?,′

` (c1), y8 := c8 and u9 =
˜̂
Λ
?,′

` (c8).

Now we see what happens at the boundary of the function ˜̂Λ?` (this topic does not seem to be
covered in detail in [312]).
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The original algorithm does not directly approximate the function Λ̂` but rather the function
Λ̂` +χ[u1,uq ]. Thus, Λ̂` +χ[u1,uq ] is a version of Λ̂` taking the value +∞ outside the interval [u1, uq].
The slopes of Λ̂` at u1 and uq are respectively Λ̂′` (u1) and Λ̂′` (uq), but are approximated by the
values c1 and cq−1. As the function Λ̂` is convex, Λ̂′` (uq) ≥ cq−1 and Λ̂′` (u1) ≤ c1. The property
of convex conjugacy implies that the function approximating Λ̂?` (y) on the basis of Λ̂` +χ[u1,uq ] has
slope u1 over (−∞, c1) and slope uq over (cq−1,+∞). As u1 → −∞ and uq → +∞, the slopes diverge

but this can take place quite slowly. This means that the effective domain of ˜̂Λ?` will be R. However,
we know (see [22, Proposition 9.7]) that the effective domain of Λ̂?` is co {Dk,`, k = 1, . . . , n} =

[minkDk,`,maxkDk,`], the convex hull of the points {Dk,`, k = 1, . . . , n}.
A solution is to suppose that, outside [u1, uq], the function

˜̂
Λ` has slopes minkDk,`, over (−∞, u1),

and maxkDk,`, over (uq,+∞). Note that, from (3.5.1), this does not alter the convexity of ˜̂Λ`, as
it will remain true that minkDk,` ≤ c1 ≤ · · · ≤ cq−1 ≤ maxkDk,`. This corresponds to setting the

effective domain of ˜̂Λ?` to [minkDk,`,maxkDk,`], so that both ˜̂Λ?` and Λ̂?` will have the same effective

domain. The lower-right quadrant of Figure 3.5.1 represents, in black, the modified version of ˜̂Λ? as
well as, in grey, the true rate function Λ? (y) = y − 1− ln y for the exponential case.

This can also be used as a check for the choice of u1 and uq. Indeed, if u1 and uq are large
enough, c1 − minkDk,` and maxkDk,` − cq−1 should be small. If this is not the case, one should
move u1 and uq to achieve smaller values of these two quantities.

3.5.3 Computation of the Constrained Minimum

Once each Λ̂?` has been computed, we need to obtain infy∈Pj Λ̂? (y), i.e. to optimize it under a
constraint.

In order to avoid the inequality constraints, we use the technique of [67, pp. 72-73]. The
replacements: yj 7→ xj

y` 7→ xj + x2
`

transform the computation of infy∈Pj Λ̂? (y) into an unconstrained optimization problem:

inf
x∈Rm0

∑
1≤`≤m0, 6̀=j

Λ̂?`
(
xj + x2

`

)
+ Λ̂?j (xj) .

Note that the objective of this technique is not to identify on which face of Pj the infimum is achieved,
but to get a reasonably accurate value of infy∈Pj Λ̂? (y) without using inequality-constrained algo-
rithms.

Example 3.8. We continue Example 3.7. The replacement above provides:

Λ̂?

([
x2 + x2

1

x2

])
= 2

(
x2 + x2

1

)
− ln

(
x2 + x2

1

)
+ x2 − lnx2 − ln 2e2.

Note that the non-negativity constraint x2 > 0 does not pose any problem, as the function is not
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Figure 3.5.2: Example 3.8: level curves of the function Λ? in the new coordinate system (in thin
solid lines), point x̃ = (0, 3/2)

′.

defined for x2 ≤ 0. The level curves of the function are represented in Figure 3.5.2. The point
x̃ = (0, 3/2)

′ corresponds to ỹ = (3/2, 3/2)
′ in the new coordinates.

3.5.4 Asymptotic Error of the Rate Function

In this paper we do not provide a full statistical analysis of this method. However, it is not difficult
to obtain some hints about the behavior of the solution. The minimum infy∈Pj Λ̂? (y) is reached in
a point ŷ converging to the point ỹ at which infy∈Pj Λ? (y) is reached. Therefore:∣∣∣∣ inf

y∈Pj
Λ̂? (y)− inf

y∈Pj
Λ? (y)

∣∣∣∣ ≤ sup
y∈N (ỹ)

∣∣∣Λ̂? (y)− Λ? (y)
∣∣∣

where N (ỹ) is a neighborhood of ỹ contained in the interior of the effective domain of Λ?. Using
the reasoning in [398, Section 4.3], supy∈N (ỹ)

∣∣∣Λ̂? (y)− Λ? (y)
∣∣∣ is of the same order as:

sup
u∈N (ũ)

∣∣∣Λ̂ (u)− Λ (u)
∣∣∣ = sup

u∈N (ũ)

∣∣∣∣∣
m0∑
`=1

Λ̂` (u`)−
m0∑
`=1

Λ` (u`)

∣∣∣∣∣ ≤ sup
u∈N (ũ)

m0∑
`=1

∣∣∣Λ̂` (u`)− Λ` (u`)
∣∣∣ .
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The behavior of Λ̂`−Λ` has been considered by [158] (see also [41]). We first note that, provided
M̂` is a consistent estimator of M`, the behavior of Λ̂` − Λ` is similar to M̂` −M`:

Λ̂` − Λ` = ln

(
1 +

M̂` −M`

M`

)
=
M̂` −M`

M`
+O

((
M̂` −M`

)2
)
.

Then, we note that V
(
M̂` (u`)

)
= M` (2u`) −M2

` (u`) so that, if M` (2u`) is infinite, V
(
M̂` (u`)

)
will be infinite too. This justifies what we say below.

Let I` be the effective domain of M`. Theorem 2.3 in [158] shows that, for any u` ∈ 1
2 · I`,√

n ·
(
M̂` −M`

)
converges weakly to a Gaussian process. This means that M̂` −M` = OP

(
n−

1
2

)
.

The convergence is uniform over compact subsets of 1
2 · I` and a similar result applies to derivatives.

Theorem 2.4 in [158] extends the result to Λ̂` − Λ`, that is Λ̂` − Λ` = OP

(
n−

1
2

)
. In [158, p. 460],

the interval 1
2 · I` is called zone of normal convergence.

Consider now any u` ∈ I`\
(

1
2 · I`

)
. Let α := C`/u` and C` is the extreme of I` having the same

sign as u`, i.e. the (left or right) abscissa of convergence of the Laplace-Stieltjes transform. Now,
under mild assumptions (see Theorem 1 in [430]), eu`Dk,` has a tail that is regularly varying with
index −α. This means that eu`Dk,` is the domain of attraction of a stable law with exponent α
and nδ

(
M̂` −M`

)
→ 0 and nδ

(
Λ̂` − Λ`

)
→ 0 almost surely for any δ < δ0 = α−1 − 1 = −C`−u`C`

,
while the same quantities almost surely diverge for δ > δ0 (see [158, Theorem 2.5]). The result
extends to derivatives and holds uniformly over intervals in I`. Therefore, M̂` −M` = o

(
n−δ

)
and

Λ̂`−Λ` = o
(
n−δ

)
for any δ < δ0, where δ0 is interpreted as the minimum value of max

{
−C`−u`C`

,− 1
2

}
over the interval.

Now, A6 above implies that the effective domain of the CGF (and of the MGF) is the whole real
line. Therefore, also the zone of normal convergence is R, and Λ̂` − Λ` = OP

(
n−

1
2

)
uniformly over

compact subsets of R. This means that the mean squared error of infy∈Pj Λ̂? (y), i.e. the quantity:

MSE

(
inf

y∈Pj
Λ̂? (y)

)
= E

(
inf

y∈Pj
Λ̂? (y)− inf

y∈Pj
Λ? (y)

)2

is expected to decrease as O
(
n−1

)
. The following example shows that this may take place also

when A6 does not hold but the value y corresponds to a value of u that is in the zone of normal
convergence.

Example 3.9. In order to prove that this is the case, we have run a small simulation study. Consider
the behavior of the mean of n exponential random variables Xi, i = 1, . . . , n, with parameter 1. We
want to study the behavior of the probability P

{
1
n

∑n
i=1Xi ≤ 1

2

}
for large n. In this case an exact

characterization is possible. Indeed,
∑n
i=1Xi is Gamma distributed with shape n and scale 1.

Therefore, the CDF of
∑n
i=1Xi is γ (n, x) /Γ (n) and:

P

{
1

n

n∑
i=1

Xi ≤
1

2

}
=
γ
(
n, n2

)
Γ (n)

.

From 8.11(iii) in [366, p. 180], γ
(
n, n2

)
∼
(
n
2

)n−1
e−

n
2 and, from 5.11.3 in [366, p. 140], Γ (n) ∼

67



Table 3.5.1: Example 3.9: bias, variance and MSE of the estimator Λ̂?
(

1
2

)
of Λ?

(
1
2

)
= ln 2 − 1

2

.
=

0.1931471806, i.e the rate function associated with exponential random variables evaluated at 1
2 , on

the basis of 10, 000 replications.
n bias variance MSE
10 0.08326409 0.09852722 0.1054601
20 0.03118596 0.02266419 0.02363675
40 0.0135553 0.009384405 0.009568151
80 0.007289302 0.004495908 0.004549042
160 0.003312765 0.002183584 0.002194558
320 0.001757503 0.001064703 0.001067792
640 0.0008518621 0.0005252574 0.000525983

e−nnn
(

2π
n

) 1
2 . At last:

P

{
1

n

n∑
i=1

Xi ≤
1

2

}
∼
(

2

πn

) 1
2

e−n(ln 2− 1
2 )

where ln 2− 1
2

.
= 0.1931471806. Large deviations principles give the same solution, but in logarithmic

form. Indeed:

lim
1

n
lnP

{
1

n

n∑
i=1

Xi ≤
1

2

}
= inf
y∈(−∞, 12 ]

Λ? (y) = Λ?
(

1

2

)
where Λ? (y) = y − 1 − ln y. Now, Λ?

(
1
2

)
= ln 2 − 1

2

.
= 0.1931471806. In Table 3.5.1, on the basis

of 10, 000 replications, we compute the bias, variance and MSE of Λ̂?
(

1
2

)
when Λ̂? is based on a

sample of n exponential random variables. Apart from an initial transient, each doubling of the
sample size leads roughly to a halving of the MSE (and of the variance), thus suggesting that the
rate of convergence is indeed OP

(
n−

1
2

)
. Indeed, the value y = 1

2 corresponds to Λ?,′
(

1
2

)
= −1 and

this means that u = −1 too, that is in the zone of normal convergence
(
−∞, 1

2

)
.

This explains why it is hopeless to use infy∈Pj Λ̂? (y) to reconstruct the probability P
{̂
in = j

}
=

P
{
θ̂ = θj

}
. Indeed, Theorem 3.1 can be restated as:

1

n
lnP

{
θ̂ = θj

}
= − inf

y∈Pj
Λ? (y) + o (1)

but more precise estimates can be obtained (see [358, 359, 245, 93]) as:

c

n
m0
2

e−n infy∈Pj Λ?(y) ≤ P
{
θ̂ = θj

}
≤ C

n
1
2

e−n infy∈Pj Λ?(y).

Note that this is compatible with:

1

n
lnP

{
θ̂ = θj

}
= − inf

y∈Pj
Λ? (y) +O

(
lnn

n

)
.
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Replacing infy∈Pj Λ? (y) with infy∈Pj Λ̂? (y) +OP

(
n−

1
2

)
yields:

c

n
m0
2

e
−n infy∈Pj Λ̂?(y)+OP

(
n

1
2

)
≤ P

{
θ̂ = θj

}
≤ C

n
1
2

e
−n infy∈Pj Λ̂?(y)+OP

(
n

1
2

)

that is not accurate enough. Nevertheless, the formulas can be used to approximate some useful
quantities, such as ratios of logarithms of probabilities that measure their relative rates of decrease.
For i, j /∈M?:

lnP
{
θ̂ = θj

}
lnP

{
θ̂ = θi

} =
infy∈Pj Λ? (y)

infy∈Pi Λ? (y)

(
1 +O

(
lnn

n

))
=

infy∈Pj Λ̂? (y)

infy∈Pi Λ̂? (y)

(
1 +OP

(
n−

1
2

))
.

3.6 Application

In this section, we consider a published model (see [30]) available on the online repository OpenABM
at https://www.comses.net/codebases/4749/releases/1.0.0/. This is a model of “inquisitive-
ness in ad hoc teams” and, as already mentioned in the introduction, it has been selected because of
(a) theoretical relevance, (b) applicability to economics at large, and (c) computational simulation
robustness.

3.6.1 Short theoretical background

According to the authors of the model, inquisitiveness is a development of “docility”, a concept
introduced by Herbert A. [454, 455] to indicate individuals that lean on information, advice, recom-
mendations, and suggestions from others to make decisions. As [434] and [433] show, this attitude
requires some conditions in place before it is activated. One such conditions is the presence of a
community of reference—i.e. the idea that individuals must feel like they belong to a group of like-
minded others. This could be, for example, the community of mathematical sociologists, or that of a
small organisation. Or, again, among the many examples, this “community” could also be the work
team one belongs to. “Docile” individuals would fit in the team in a way such that there is exchange
of information and cognition is very much distributed in an ecological, enacted, embedded sense
(see [108]). The idea of inquisitiveness comes up when [30] attempt to break free from the limits of
docility. While it can be a good proxy in explaining the dynamics of effective teams, docility could
also point at the potentially closed loops in which some may find themselves trapped. This is due
to the lack of trust in data coming from outside of the team. When a team member connects and
establishes a dialogue with people in other teams then he/she is starting an enquiry. The idea is
that such individuals focus on the problem at hand rather than on what can be achieved within the
team per se; hence they are driven by a quest for competences, skills, and help that may not be
available in just one team. As stated in [30, p. 68], “[w]e use the word ‘inquisitiveness’ to refer to an
agent who mostly relies on learning by inquiry and open explorations of his or her own environment,
including social channels” (italics in the original text).
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3.6.2 ABM characteristics

The model is based on the theory of docility and attempts to expand it by considering docile (i.e.
team-bound), non-docile (i.e. lone wolves), and inquisitive (i.e. docile sans frontières) individuals.
The aim of the simulation is to understand under which circumstances the inquisitive team member
adds something useful to the team. To study this aspect, the model presents problems to individuals
and teams and calculates the efficiency with which they are solved. A full description of the model
can be found in the paper by [30] and in the supplementary materials file, available online at the
link indicated above. The inquisitiveness ABM can be classified as a highly stochastic simulation
and the version run for this exercise maintains many of them. In the following, we have decided
to succinctly recall only those features that are relevant to our calculations. The purpose of this
exercise is to demonstrate how the Model Confidence Sets technique works, not to fully introduce
and discuss assumptions and results of a computational simulation model.

Table 3.6.1 presents key parameters and describes them shortly. The organisational space—i.e.
the simulation environment—features problems P that can take any number, but that have been set
at [100, 300] for this simulation. Each problem is attributed with a difficulty level d, distributed
normally at random as indicated in Table 3.6.1. Very difficult problems (with d larger than 95%
the maximum level of d) could, based on a random algorithm, spin-off up to 4 other (smaller)
problems at each simulation step. Also, a random number of up to 3 very difficult problems increase
their difficulty level over time at a 2% rate.

The model also features agents, called decision makers dm; they take two values, [100, 300].
Each dm has a level of competence—distributed normally at random (see Table 3.6.1)—that uses
to solve the problems that it is set to deal with. When a problem is solved, there is an increase of
competence of up to 0.30, when the problem is abandoned (not solved), then there is a decrease in
competence of 0.05. In addition to this, decision makers are attributed a level of docility sodm
that determines their propensity towards working with others, and a level of enquiry that is used
to cooperate with coworkers outside of one’s team (i.e. an extension of docility, as described above).
This latter characteristic is enabled by a binomial parameter inquisitiveness, when set to ‘on’
(or ‘true’).

3.6.3 Rules of interaction

The simulation works with agents moving around in the environment as they attempt to reach the
target problem (selected at random). Once agents connect to a problem, they also start a number
of interactions with neighbouring agents, forming ad hoc teams. All agents appear in random
positions on the environment every time the simulation is ready to start. This allows to generate a
random allocation of decision makers on a so-called organizational “problem solving space” where
problems also appear and are found at random—i.e. not as a function of agent’s competence.
When the simulation is performed the appropriate number of times (see below), this stochasticity
guarantees a variety of combinations of d, on the one hand, and sodm and c on the other.

While problems do not move from their position, decision makers do so in a way that sets
them to look for problems and move towards them. If they find other problems in their way—i.e.
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Table 3.6.1: Parameter Notations and Values
Parameter Values Description
problems, NP,0 100, 300 The number of problems P at time t = 0, at the start

of the simulation.
problem spin-off, pso 4 The maximum rate at which problems can

multiply—i.e. spin-off simpler problems.
difficulty, d ∼ N (3, 1) The level of difficulty each problem is associated

with.
decision makers, Ndm,0 100, 300 Number of agents dm at time t = 0 in the

organisation
competence, c ∼ N (1, 1.5) The level of knowledge that each dm carries and that

can be applied to any P in order to solve it.
docility, sodm ∼ N (0, 1) Socially-oriented decision making (or, simply,

docility) that is associated to each dm.
enquiry, e ∼ N (0, 1) Another characteristic of the dm agent, that

indicates the extent to which curiosity lead it to
explore knowledge of team members other than those
of its own team.

inquisitiveness true/false A binomial parameter that enables or disables the
use of enquiry in dm.

range 6, 9 The extent to which dm explore the environment
around them to seek problems P and/or other dm to
cooperate with.

problems that are not their main “goal”—they stop and attempt to solve them as well. They will
resume the movement after a solution or abandonment, if that problem is still there. If not, they
will look for another to deal with.

As a decision maker deals with a problem, it establishes a link to it. While this happens, it can
also establish cooperation links with other decision makers in the radius indicated in Table 3.6.1
under parameter range. The amount of competence that these agents share is proportional to
their level of docility, such that this latter parameter gives an indication of how much knowledge
is actually shared. It is fair to assume that one team member does not transfer its knowledge
completely to the rest of the team. Some is transferred while some is kept, for various reasons, tacit
and inaccessible to others. Only agents with sodm > µsodm + 0.75 · σsodm, where µsodm is the mean
docility in the system, and σsodm is its standard deviation, are sharing significant amounts of their
competence c. Contrary to the average docile, the way in which competence is used by highly docile
agents is incremental and not simply additive. That is, there is an upgrade of the knowledge gained
thanks to one’s own competence. Agents can make full use of this incremental add-on when the
switch inquisitiveness is set to true, and for agents mating docility with high levels of enquiry
(see Table 3.6.1).

A problem is solved and disappears from the space, when the combination of competencies in
the team is more than the problem’s difficulty. When a problem is too difficult for a team, then
each team member evaluates its own contribution and may leave the problem after the efforts have
been infused for 20 steps of the simulation.
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3.6.4 Running the simulation model

In Table 3.6.2 we describe each one of the 16 configurations of parameters.

Table 3.6.2: Definition of the different configurations of parameters.
cop inquisitiveness NP,0 Ndm,0 range

1 false 100 100 9
2 false 100 100 6
3 false 100 300 9
4 false 100 300 6
5 false 300 100 9
6 false 300 100 6
7 false 300 300 9
8 false 300 300 6
9 true 100 100 9
10 true 100 100 6
11 true 100 300 9
12 true 100 300 6
13 true 300 100 9
14 true 300 100 6
15 true 300 300 9
16 true 300 300 6

Note. cop: configuration of parameters.

The simulation model runs for 300 steps—a ’step’ could be thought of as an opportunity each
agent has to interact with another agent and/or with a problem—and the configurations of parame-
ters (as per Table 3.6.2) are 2×2×2×2 = 16. This factorial design derives from the results shown by
the proponents of this model, and have been selected to increase variability in the outcome variable
as well as introduce some novelty in the understanding of how this inquisitiveness ABM works. To
determine how many times an ABM with a highly stochastic component should be performed, we
followed [437] and [445], and calculated power analysis for ANOVA for α = 0.01, 1 − β = 0.95 and
effect size of 0.1, consistent with what found in [30]. As a result, the simulation was performed 200

times per each configuration of parameters, for a total of 3200 runs.

3.6.5 Analyzing the data

In the following, we illustrate the technique outlined above. Since our aim is purely expository, we
will consider what happens when the h-th element yh of y is yh = 300 + 4.9 ·h. This is motivated by
the aim to establish an ideal benchmark for the output variable. In so doing, the equation represents
an optimal solution threshold that is set at 90% of all problems solved at time 300. Figure 3.6.1
represents the trajectories zj (θi) for any j = 1, . . . , 200 and i = 1, . . . , 16, as well as the trajectory
y = (y1, . . . , yp). As a distance, we choose the square of the Euclidean distance, normalized dividing
it by 301 · 1, 000, 000, where 301 is the length of the series and 1, 000, 000 is a normalizing factor.
Therefore:

d (y, zj (θi)) =

∑301
h=1 |yh − zjh (θi)|2

301 · 1, 000, 000
.
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Figure 3.6.1: Trajectories zj (θi) for any j = 1, . . . , 200 and i = 1, . . . , 16 (in solid lines) and
trajectory y = (y1, . . . , yp) when yh = 300 + 4.9 · h (in solid grey line).

These choices respect all the assumptions. A preliminary consideration, that will be used in
the following, is that the distances in our example are bounded: indeed, the number of problems
to be solved in a finite horizon is bounded and so is the distance between the benchmark and the
simulated data. This automatically implies that A2, A3, A5 and A6 are verified. A1 is respected by
construction. A4 is verified as shown by an analysis of the data (see also Figure 3.6.3).

In this case we have în = 16. The construction of the MCS is illustrated in Table 3.6.3. The
MCS p-values are represented graphically in Figure 3.6.2. The Model Confidence Sets at 95% and
at 99% are {8, 13, 16}.

Now we consider the large deviations rate functions associated with each one of the configurations
of parameters (apart from în). We have approximated each Λ̂` on a grid of mesh 0.0005 from −200 to
400. This means that q = 200, 001. The largest value taken by c1−minkDk,` and maxkDk,`− cq−1

over ` = 1, . . . , 16 is 0.005270962, that seems to be small enough. The functions Λ̂?` are approximated
each one on a grid of length 10, 000 going from minkDk,` to maxkDk,`. The final results are
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Figure 3.6.2: Graphical representation of the MCS p-values, p̂eMk
, as vertical black lines and of the

thresholds as horizontal grey lines.
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Table 3.6.3: Order of elimination of the different configurations of parameters with means and
p-values for yh = 300 + 4.9 · h.

k eMk
mean of eMk

p-value of δMk
(pH0,Mk

) MCS p-value (p̂eMk
)

1 10 0.87555 0.00000 0.00000
2 2 0.84660 0.00000 0.00000
3 7 0.63282 0.00000 0.00000
4 15 0.62762 0.00000 0.00000
5 11 0.45591 0.00000 0.00000
6 3 0.37997 0.00000 0.00000
7 9 0.31235 0.00000 0.00000
8 1 0.30822 0.00000 0.00000
9 6 0.26487 0.00000 0.00000
10 14 0.25420 0.00000 0.00000
11 12 0.14426 0.00000 0.00000
12 4 0.10884 0.00000 0.00000
13 5 0.05956 0.00099 0.00099
14 8 0.04722 0.05552 0.05552
15 13 0.04353 0.06277 0.06277
16 16 0.02995 1.00000 1.00000

Note. cop: configuration of parameters.

illustrated in Figure 3.6.3. Note that the arg min of each Λ̂?` coincides with Dn,`.
Table 3.6.4 reports the values of infy∈Pj Λ̂? (y), i.e. the estimated rate of decrease of the proba-

bilities. It can be seen that the accordance with the MCS p-values is extremely good.

Table 3.6.4: Value of the rate function infy∈Pj Λ̂? (y) for all j 6= în ordered from largest to smallest.

j infy∈Pj Λ̂? (y)

10 6.93468540
2 6.14584947
15 3.96367376
7 3.70826307
14 1.35071156
6 1.35043742
1 1.10375307
9 0.91656526
11 0.71091121
3 0.54869452
12 0.49722953
4 0.36842910
5 0.03924210
8 0.01211586
13 0.00860211
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Figure 3.6.3: Rate functions (in solid line) Λ̂?` for all j = 1, . . . , 16; boundaries of the effective domain
of Λ̂?` (in dashed vertical lines).
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3.7 Conclusions

The standard approach in calibration is to select a unique vector of parameters based on previously
available estimations or on the basis of the wisdom-of-the-crowd. Assessing the validity of such
calibration exercises is daunting as no robustness or sensitivity checks are performed. In this paper,
we consider one of these possible checks, based on the comparison of several finite combinations
of the model parameters. We propose to use a measure of distance to rank models from the most
plausible to the least plausible. Model Confidence Sets can be employed to further restrict the
number of plausible alternatives and provide a sensitivity check for the preferred specification. We
also discuss a complementary analysis based on rate functions. The estimation of the latter allows
the researcher to assign to all models, except the best one, an estimated rate of decrease of the
probability of being the correct model. This approach has comparable interpretation to the Model
Confidence Sets, and can be equivalently used to capture the distance between the chosen model
and its alternatives, as our empirical application shows.
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3.8 Appendix

Proof of Theorem 3.1. Let S be the closure of the convex hull of the support of the law of Dk.
Cramér’s Theorem in Rd (see Corollary 6.1.6 in [124, p. 253]) allows us to derive the first two

statements. In particular, the lower bound holds with no supplementary assumption. The upper
bound requires the Cramér condition 0 ∈ intD (Λ) that is verified under A2.

For the third statement, we apply part (ii) in Lemma on page 903 of [359]. Let us start from (I).
Under A2, intD (Λ) is non-empty. On intD (Λ) the function Λ is differentiable (see [22, Proposition
9.7, p. 49]). Under A3, Λ is steep (see [124, p. 44] for a definition). Therefore, Λ is essentially
smooth and (I) is verified. According to Corollary 6.1.6 in [124, p. 253], condition (II) is verified
if 0 ∈ intD (Λ), that is verified under A2. As far as (III) is concerned, we first take B ≡ intPj .
From [22, Proposition 9.7, p. 49], intS = intD (Λ?) ⊂ D (Λ?) ⊂ S = S. Therefore, the condition
int (intPj ∩ D (Λ?)) 6= ∅ is equivalent to:

int (intPj ∩ D (Λ?)) = intPj ∩ intD (Λ?)

=intPj ∩ intS = int (Pj ∩ S) 6= ∅.

Under A4, the closure of the convex hull of the support of the law of Dk is
∏

1≤`≤m0
[L`, U`]. There-

fore, intS =
∏

1≤`≤m0
(L`, U`) and A4 implies int (Pj ∩ S) 6= ∅. This implies that infy∈intPj Λ? (y)

is achieved at a unique point belonging to Pj ∩ intD (Λ?) = Pj ∩ intS (see [22, Proposition 9.7, p.
49]). The same is true if we take B ≡ Pj , thus implying that infy∈intPj Λ? (y) = infy∈Pj Λ? (y).

For the fourth statement, we use the theorem in [359, p. 904]. The conditions are easily verified.
Under A2, D (Λ) contains a neighborhood of the origin. The proof that Λ is essentially smooth
is provided above. The set B = Pj is clearly convex. The condition int (Pj ∩ S) 6= ∅ is verified
above. At last, it is also clear that EDk /∈ Pj . Therefore, there is a dominating point respecting the
conditions in the statement (we use here the definition in [358] instead of the one in [359]). QED

Proof of Theorem 3.2. We briefly recall the framework of [223]. For anyM⊂M0, we need the
following assumptions:

B1 lim supn→∞ P {δM = 1 |H0,M } ≤ α.

B2 limn→∞ P {δM = 1 |HA,M } = 1.

B3 limn→∞ P {eM ∈M? |HA,M } = 0.

Under these conditions, the following results hold (see Theorem 1 in [223, p. 459]):

• limn→∞ P
{
M? ⊂ M̂?

1−α

}
≥ 1− α,

• limn→∞ P
{
i ∈ M̂?

1−α

}
= 0 i /∈M?.

Now we turn to the proof in our case. Under A1 and A2 it is trivial to verify that:

√
n
(
Dn −D

) D−→ N (01,m,Σ) .
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Under H0,M : AD = 0m−1, we have:

√
n
(
ADn −AD

)
=
√
nADn

D−→ N (01,m−1,AΣA′)

where:

AΣA′ =
[

um−1 −Im−1

] [ σ2
1 01,m−1

0m−1,1 Σ−1

][
u′m−1

−Im−1

]
= σ2

1Um−1 + Σ−1.

Therefore, under the null hypothesis H0,M, the asymptotic distribution of this test is WM
D→ χ2

m−1.
This does not change if the σ2

i ’s are replaced by estimators. Therefore, Assumption B1 is verified.
Under the alternative HA,M, i.e. when AD 6= 0m−1, the quantityWM/n converges in probability

to
(
AD

)′ [
σ2

1Um−1 + Σ−1

]−1 (
AD

)
> 0 and WM diverges to infinity. Therefore, Assumption B2

is verified.
Under HA,M, M 6= M? and at least an element of M does not belong to M?. It is clear that

this element will have an average distance that is larger than the one observed in M?. Therefore,
selecting the index j ∈ M with the largest value µ̂j will eventually lead to eliminate an element in
M\M?, as requested by Assumption B3. QED

Proof of Theorem 3.3. As seen above, the moment generating function M (u) can be approx-
imated through M̂ (u). We will define M̂` (u`) := 1

n

∑n
k=1 exp {u`Dk,`}. We will introduce the

notation P̂n (·) = 1
n

∑n
k=1 δDk

(·), where δx is the Dirac measure in x, and use Ên for the expectation
under P̂n.

Using [233, Section 3], it is simple to see that M̂` (u`) converges almost surely pointwise to
M` (u`). As M̂` and M` have in general different effective domains, it is clear that the convergence
cannot be uniform. For this reason, we will use epigrahical convergence or, for short, epi-convergence
(see, e.g., [117, 411]) that is especially suitable to analyse the convergence of infima and minimizers
of sequences of functions, especially when they have different effective domains (see, e.g., [385,
443, 234]). Using Theorem 3.1 in [232] (or Theorem 2.3 in [92]), it is trivial to verify that the
approximation is not only pointwise but also epigraphically convergent, i.e. epi − limn M̂` (·) =

M` (·). Now, the very definition of epi-convergence and the strict positivity of M̂` (·) imply that
epi− limn Λ̂` (·) = Λ` (·) where Λ̂` (·) := ln M̂` (·). It is in general false that sums of epi-convergent
functions are epi-convergent, but exploiting Proposition 6.25 in [117, p. 64] it is easy to see that epi−
limn Λ̂ (u) = Λ (u) where Λ (u) :=

∑m0

`=1 Λ` (u`) and Λ̂ (u) :=
∑m0

`=1 Λ̂` (u`). Using the continuity of
the Fenchel transform with respect to epi-convergence (Wijsman’s theorem, see Theorem 11.34 in
[411, p. 500]), this shows that also Λ? (·) has an epigraphically convergent approximation, in the
form:

Λ̂? (y) := sup
u∈Rm0

[
u′y − Λ̂ (u)

]
.

This can at last be written as Λ̂? (y) :=
∑m0

`=1 Λ̂?` (y`) where Λ̂?` (y`) := supu`∈R

{
y`u` − Λ̂` (u`)

}
.

Now, convergence of the minima holds true only under an equi-coercivity condition [117, Chapter
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7]. To avoid messier assumptions, we assume that S =
∏

1≤`≤m0
[L`, U`] is compact (see A5; this

assumption seems to be common in this literature, see [134, 135]). From [22, Proposition 9.7]
we know that D (Λ?) ⊂ S. We also know, applying the same result to the function Λ̂?, that
D
(

Λ̂?
)
⊂ co {Dk, 1 ≤ k ≤ n} ⊂ S. Therefore:

inf
y∈Pj∩S

Λ̂? (y) = inf
y∈Pj

Λ̂? (y) .

Now we characterize infy∈Pj Λ̂? (y) in terms of its dominating point. As Λ̂ is everywhere finite
for finite n, D

(
Λ̂
)

= Rm0 contains a neighborhood of the origin. For the same reason Λ̂ is essentially
smooth. The set B = Pj is convex. The condition int (Pj ∩ co {Dk, 1 ≤ k ≤ n}) 6= ∅ is justified for
large n. At last, it is also clear that ÊnDk /∈ Pj for large enough n. QED
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Chapter 4

Asymptotic Properties of the Plug-in
Estimator of the Discrete Entropy
under Dependence1

This chapter is devoted to the estimation of the entropy of a discretely-supported time series through
a plug-in estimator. We provide a correction of the bias and we study the asymptotic properties
of the estimator. We show that the widely-used correction proposed by [418] is incorrect as it does
not remove the O

(
N−1

)
part of the bias while ours does. We provide the asymptotic distribution

and we show that it differs when the values taken by the marginal distribution of the process are
equiprobable (a situation that we call degeneracy) and when they are not. We introduce estimators
of the bias, the variance and the distribution under degeneracy and we study the estimation error.
Finally, we propose a goodness-of-fit test based on entropy and give two motivations for it. The
theoretical results are supported by specific numerical examples.

4.1 Introduction

Since the seminal works of [447] and [278], the entropy plays a central role in information and
communication theory. The Shannon entropy and the Kullback-Leibler divergence can be observed
from several perspectives but, overall, they can be classified as uncertainty measures.

The Shannon entropy has been applied to many fields of information theory, including the estima-
tion of the entropy rate of information sources (see [378, 254, 379]), the estimation of functionals of
probability distributions (see [15, 249]), the analysis of texts and symbol sequences (see [431, 269, 23])
and machine learning research (see, e.g., [466]). Other important branches of application of Shannon
entropy are psychology (see [310, 311]), physics (see [199, 64, 7, 502]), and economics and finance
(see [509, 332, 282]).

1This chapter is jointly written with Raffaello Seri.
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It is therefore natural that many efforts have focused on its estimation. Many papers have been
devoted to the estimation of the entropy for observations with a continuous distribution function or
with a discrete one, as well as for independent and identically distributed (iid) observations or for
dependent data.

The main contributions related to the case of data with continuous distributions exploit nonpara-
metric estimation methods, such as kernel or nearest-neighbor estimators. Among these, we quote
several papers dealing with iid data (see [4, 218, 303, 49]), some of which investigate the behavior
of the bias, and a few works that tackle the case of time series (see, for instance, [198] and [240]).
The most important results achieved in the literature are reviewed by [39].

However, the case that attracted most attention, and that we will consider in this paper, is
the one of the entropy of data coming from discretely supported distributions, a situation that
applies both to genuinely discrete data and to discretized (also called symbolized) ones. In the iid
case, the most natural estimator is the so-called maximum likelihood or plug-in estimator, obtained
replacing the discrete probability with its maximum likelihood estimator. Two facts about it were
early recognized in a 1954 unpublished report by Miller and Madow. As witnessed by a summary of
this paper in [310, p. 45], the authors showed that the asymptotic behavior of the estimated entropy
depends on whether all values assumed by the discrete process have the same probability or not.
In the second case, the statistic is asymptotically normally distributed, while in the first case it is
asymptotically distributed as a chi-square. The second discovery (see also [342, 412, 85]) is that the
estimator is biased in finite samples.

The case of iid discrete observations has further been explored by several authors (see [224, 381,
16, 15, 201, 378, 508, 507]). This has led to the availability of a large number of alternatives to the
plug-in estimator, like the Grassberger ([199, 201]), the best upper bound ([378]), the unseen ([480])
as well as several polynomial approximation estimators ([248, 500, 249]). Many of these papers
provided methods to overcome the bias. We refer to [248, 249] for a complete review of the most
recent contributions in this field, and to [248, Sec. V] for an extensive simulation study comparing
the performance of several estimators.

The extension of the iid case to the one of dependent data has proceeded along two directions,
both of them associated with different estimation strategies. To clarify what we mean, we consider a
stationary stochastic process {. . . , xt−1, xt, xt+1, . . . } and we use the informal notation p (·) (p (· |· ))
to denote the (conditional) probability mass or density associated with its argument. The symbol
E denotes expectation.

The first direction is associated with the entropy rate appearing in the Shannon–McMillan–
Breiman theorem. This result states that, when N → ∞, minus the normalized logarithm of
the density of the time series {x1, . . . , xN}, i.e. − 1

N ln p (x1, . . . , xN ), converges to the entropy
rate−E ln p (xt |. . . , xt−1 ), defined as minus the expected value of the logarithm of the conditional
probability of xt given its past {. . . , xt−1} (see, e.g., [8]). The relevance of this result to information
theory lies in the asymptotic equipartition property (see [8] for some references). Estimation in
this direction has been thoroughly investigated in the literature, see [200, 268, 269, 253, 180]. In
dynamical systems, a similar quantity to the entropy rate appears in the metric entropy defined by
Kolmogorov and Sinai (see, e.g., [105]), whose estimation has been considered in [202, 451, 431].
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The second direction is connected with quantities appearing in several measures or tests of sta-
tistical dependence, both in time series and dynamical systems, like in [174, 173, 251, 376, 391,
373, 374, 375, 473, 494]. In this case, time series data are used to estimate the same formula of
the iid case, −E ln p (xt), where the probability p is defined by the marginal distribution of the
process (see, e.g. [418]). This second approach can be extended to compute the block entropy
−E ln p (xt−k+1, . . . , xt−1, xt), i.e. the entropy of the block {xt−k, . . . , xt−1, xt}. By using the prop-
erties of conditional probabilities, one can then compute the conditional or differential entropy
−E ln p (xt |xt−k, . . . , xt−1 ), the entropy of xt conditionally on its recent past {xt−k, . . . , xt−1}, as
a difference of block entropies. This fact seems to draw together the two directions as, letting k
diverge, one recovers the entropy rate of the Shannon–McMillan–Breiman theorem. However, the
two directions are generally associated with different estimation strategies and problems. Indeed,
estimating the differential entropy −E ln p (xt |xt−k, . . . , xt−1 ) as an approximation of the entropy
rate −E ln p (xt |. . . , xt−1 ) may introduce a severe bias (see [431, p. 416] and [180, p. 75]), unless
the process is a Markov chain (see [248, pp. 2859-2860]). However, even bounding ourselves to
the block entropy with small k or k = 1, the estimation efforts in this direction have been limited.
Indeed, most articles study the plug-in estimator or variants thereof and apply to the dependent
case formulas derived for iid observations without modification (see [230, p. 102], [431, p. 416] and
[418]). Among these, we highlight the paper of [418], who evaluates the bias and the asymptotic
distribution of the entropy. However, as we will show below, the bias formulas proposed by [418],
and thus his bias correction, are not correct, as are his asymptotic variance formulas.

In this paper we consider the entropy appearing in the second direction outlined above. We
analyze in detail the plug-in entropy estimator HN obtained replacing the probabilities of each value
assumed by the process with their natural estimators based on a sequence of dependent observations
of length N . Our aim is to fill some gaps in the literature, mainly concerning its consistency and
asymptotic distribution, and to correct some incorrect results.

First of all, we show that, under stationarity, the observed entropy HN converges almost surely to
a limit H∞ which is a random variable. Under stationary ergodicity, this limit H∞ becomes a fixed
value. We characterize the bias ofHN showing that it disappears asymptotically and, if the process is
a fortiori α-mixing with

∑∞
n=1 α (n) <∞, HN has bias O

(
N−1

)
. We then propose a bias correction

and we compare it with the one proposed by [418]. The evidence shows that the correction in [418]
does not remove the O

(
N−1

)
part of the bias while ours does. Despite the wrong correction proposed

by [418], during the last twenty years many authors have considered his formulas, fostering the
propagation of the error in information theory (see [211, 382, 275, 383, 377, 384, 503]), neurosciences
(see [81, 260, 299, 404, 237]), physiology (see [506]), engineering (see [250]) and organizational
research (see [58]).

Subsequently, we provide asymptotic distributional results under α-mixing. We show that in
general the statistic, when centered and scaled by

√
N , has a normal asymptotic distribution but,

under a condition that we call degeneracy, it must be scaled by N and it converges in distribution
to a weighted sum of chi square random variables. The name “degeneracy” is due both to the
fact that the variance of the asymptotic normal distribution is null (or degenerate) and to the
fact that the entropy behaves like a degenerate V -statistic (see [441, Chapters 5 and 6]). We
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then propose some estimators of the bias of the entropy. One of them exploits an autocorrelation-
consistent covariance matrix estimator (see [356] and [14]). The second one applies when the process
is a Markov chain and features the fundamental matrix of the chain (see, for instance, [258] and
[440]). Finally, we give a result on the average error induced by the estimation of bias. Our
outcomes demonstrate that the Markov bias correction is more precise than the estimator based on
the autocorrelation-consistent covariance matrix estimator, and bias correction slightly increases the
variance of the estimator, but the mean squared error is generally improved by the corrections. In the
non-degenerate case, we also address estimation of the variance of the entropy. Under degeneracy,
the asymptotic distribution depends on some weights that can be estimated. However, this impacts
directly on the significance level of tests. Indeed, we show that the Kolmogorov distance between
the exact asymptotic distribution and the estimated one is OP

(
N−1/2

)
.

At last, we provide an application of the entropy to a goodness-of-fit test for the marginal
distribution of the process and we report the results of a simulation study showing the finite-sample
properties of the test.

Throughout the paper, we apply our results to two different examples: a dichotomized first-order
autoregressive process and the Gilbert–Shannon–Reeds model (see, e.g., [36]).

The article is organized as follows. Section 4.2 introduces some notations that will be used
throughout the paper. Section 4.3 investigates the limiting behavior of the entropy and proposes
formulas for its bias. Section 4.4 introduces the estimators of bias, variance and distribution under
degeneracy, and provides results on the errors in the estimation. Section 4.5 propose a test of
goodness-of-fit based on the entropy. Section 4.6 wraps up the main conclusions. Appendix 4.7
contains the proofs of the results.

4.2 Notation

We introduce some notation.
We write N for the positive integers, N0 for the non-negative integers and R for the real numbers.

We follow the convention that 0 ln 0 = 0.
For sequences, when n → ∞, we use an ' bn when an = bn · (1 + o (1)), an � bn when

bn/C ≤ an ≤ Cbn for ∞ > C > 0 and n large enough, an � bn when an = o (bn), an . bn when
an ≤ Cbn (with an and bn non-negative) for ∞ > C > 0 and n large enough. We use the same
notation when the limit is with respect to a continuous variable.

We use capital bold letters, such as A, to denote matrices and lowercase bold letters, such as a,
to denote vectors. Let ι be a vector of ones, U a square matrix of ones, I the identity matrix, 0 a
matrix or a vector of zeros. If a confusion is possible, the dimension will be indicated through an
index, as in ιN . For a vector a, let ā be the vector containing the reciprocals of the elements of a.
Let dg (a) be a diagonal matrix having a on its diagonal. Let tr (A) be the trace of A, i.e. the sum
of the diagonal elements of a square matrix A. For a suitable matrix A, A′ is its transpose, A? its
conjugate transpose, A−1 its inverse and A+ its Moore-Penrose pseudoinverse. The element-wise
power of a vector or a matrix is denoted by A�b (so that ā = a�(−1)), while Ab is the usual power
obtained multiplying A by itself b times. The element of A in position (i, j) is denoted as Aij or
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[A]ij ; the matrix with generic element aij is denoted [aij ].

The notation ‖·‖p indicates the Schatten norm, that is ‖A‖p := [
∑
i (si (A))

p
]
1
p where si is the

i-th singular value of A, i.e. the square root of the i-th non-negative eigenvalue of A?A. We will use
mainly the nuclear norm ‖·‖1 and the Frobenius norm ‖·‖2, also written ‖·‖F . When applied to a
vector a, the notation ‖·‖Lp denotes the vector norm defined as ‖a‖Lp := (

∑
i |ai|

p
)

1
p ; when applied

to a matrix A, it denotes the matrix norm induced by the vector norm as ‖A‖Lp := supx6=0
‖Ax‖Lp
‖x‖Lp

.
We use ∼, as in X ∼ N

(
µ, σ2

)
, to denote that X is distributed as the random variable on the

right-hand side. The notations →P and →D denote convergence in probability and in distribution
respectively. For ∼ and →D we sometimes write, with a small abuse of notation, that Xn →D X

where X is a random variable with a given distribution. The symbols E and V respectively denote
the expectation and the variance of a random variable or vector.

Let (Ω,A,P) be a probability space and T : Ω → Ω a measurable transformation. T is called
measure-preserving if P (TA) = P (A) for any A ∈ A. Let us define a trajectory of a stochastic
process as x (ω) = {. . . , x1 (ω) , x2 (ω) , . . . } (note that in the following we will systematically neglect
the argument ω). We can identify T with the shift transformation, i.e. as the function such that
xt (Tω) = xt+1 (ω), so that x (Tω) = {. . . , x2 (ω) , x3 (ω) , . . . }. In this case, a stochastic process
{. . . , x1, x2, . . . } is stationary if the sequences {. . . , x1, x2, . . . } and {. . . , xk+1, xk+2, . . . } have the
same distributions, for every k > 0. The set A is said to be invariant under T if P (A4TA) = 0. The
set of invariant sets under T is a σ-algebra denoted I. T is called ergodic if P (A) = 0 or P (A) = 1

for any A ∈ I. A process is ergodic iff:

lim
K→∞

1

K

K−1∑
k=1

P {{. . . , xk+1, . . . } ∈ B, {. . . , x1, . . . } ∈ A}

= P {{. . . , x1, . . . } ∈ B}P {{. . . , x1, . . . } ∈ A}

for any measurable set A and B. For two sub-σ-fields G and H of A, we define the strong and the
uniform mixing coefficients as:

α (G,H) = sup
G∈G,H∈H

|P (G ∩H)− P (G)P (H)| ,

ϕ (G,H) = sup
G∈G,H∈H

|P (H |G )− P (H)| .

Let us define F t−∞ = σ (. . . , xt−1, xt) and F∞t+m = σ (xt+m, xt+m+1, . . . ) the σ-algebras generated
by the random variables inside the parentheses. We define:

α (m) = sup
t
α
(
F t−∞,F∞t+m

)
,

ϕ (m) = sup
t
ϕ
(
F t−∞,F∞t+m

)
.

We say that the process is strong or α-mixing if limm→∞ α (m) = 0 and uniform or ϕ-mixing if
limm→∞ ϕ (m) = 0.
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4.3 Main Results

Consider a stochastic process {x1, . . . } with finite support, i.e. such that each xi ∈ {1, 2, . . . , B}.
This process can be genuinely discrete or can come from the symbolization of a stochastic process
{x̃1, . . . } whose support is divided into B intervals. The choice of a finite and bounded B may seem
restrictive at first, as several recent papers consider in detail what happens when B is infinite or
diverges with N (see [15, 248, 500, 249]). However, this assumption will turn out to be natural
in Section 4.4 as the estimation procedures we use require finite B and, moreover, it allows us to
concentrate on the main aim of this paper, ruling out several interesting but unexpected behaviors
(see, in particular, [15]).

We suppose that the process {x1, . . . } is stationary. Note that under this assumption the prob-
ability on {1, 2, . . . , B}N can be extended to a probability on {1, 2, . . . , B}Z and this will allow
us to refer interchangeably to one-sided {x1, . . . } or two-sided processes {. . . , x1, . . . }. The hy-
pothesis of stationarity can be generalized using the concept of asymptotic mean stationarity (see
[204, 92, 203, 233]), but we will not pursue this improvement here.

The results we are going to prove are stated for the estimation of the entropy computed on
the marginal distribution of the process. They can be easily adapted to the computation of the
block entropy for blocks of length k. Indeed, let us consider a process {y1, . . . }. We take a process
{x1, . . . } where we identify xi := (yi, . . . yi+k−1). If yi ∈ {1, 2, . . . , b}, xi ∈ {1, 2, . . . , b}k and it
is easy to reorder the elements of this set in such a way that xi ∈ {1, 2, . . . , B} where B = bk.
If {y1, . . . } is stationary, ergodic and mixing with mixing coefficients α (m) (ϕ (m)) for m ∈ N,
then the process {x1, . . . } is respectively stationary, ergodic and mixing with mixing coefficients
α (m− k + 1) (ϕ (m− k + 1)) for m ∈ N. However, this estimator of the block entropy may suffer
from some drawbacks: as the number of cells whose probability is small increases with k, the bias
tends to increase and the bias corrections are less reliable.

The proportions of values equal to i is:

qi =
ni
N

=

∑N
j=1 1 {xj = i}

N
.

The observed entropy is therefore:

HN = −
B∑
i=1

ni
N

ln
ni
N

= −
B∑
i=1

qi ln qi.

With respect to the case in which the observations are from a sequence of iid random variables, the
asymptotic theory is quite different.

We will need the following quantities, characterizing the distribution of the process:

pi = P {x1 = i} i = 1, . . . , B

p
(h)
ij = P {x1 = i, xh+1 = j} i, j = 1, . . . , B, h ∈ N0.

It is clear that p(0)
ii ≡ pi and that p(0)

ij ≡ 0 if i 6= j. Moreover, we will use the notation p(h)
i ≡ p

(h)
ii .
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Stationarity allows us to extend p(h)
ij to h ∈ Z, in which case p(h)

ij = p
(−h)
ji . We also define the vector

of dichotomic variables xj = (1 {xj = 1} , 1 {xj = 2} , . . . , 1 {xj = B})′.
In the following, we outline two examples that will be used throughout the paper to show and

support our main results. The two examples concern a dichotomized first-order autoregressive
process and the Gilbert–Shannon–Reed model whose behavior follows a Markov chain.

Example 4.1. [Dichotomized AR (1) process] Let us consider a process {x̃1, . . . } defined by the
first-order autoregressive (i.e. AR (1)) equation:

x̃i = α · x̃i−1 + εi i = 2, . . .

where {ε1, . . . } is an iid process of normally distributed random variables with mean 0 and variance
1−α2. The initial value has the distribution x̃1 ∼ N (0, 1) that guarantees that the process is strictly
stationary. A symbolized process requires the choice of a partition of the real line {I1, . . . , IB}. Then:

p
(h)
i =P {x1 = i, xh+1 = i} = P {x̃1 ∈ Ii, x̃h+1 ∈ Ii}

=P

{
N

([
0

0

]
,

[
1 αh

αh 1

])
∈ Ii × Ii

}
.

Here we consider only a dichotomized process, i.e. a symbolized process with B = 2, I1 = (−∞, 0)

and I2 = [0,+∞). This process retains only the signs of the original process, i.e.:

xi = 1 + 1 {x̃i ≥ 0} i ∈ N.

It is clear that:

p1 = P {xi = 1} = P {x̃i ≥ 0} = 1/2

p2 = 1− p1 = 1/2.

As to the probabilities of couples separated by h time periods, we first derive the expressions for x̃i
as a function of x̃i−h:

x̃i = αh · x̃i−h +

h−1∑
j=0

αj · εi−j

or:

x̃h+1 = αh · x̃1 +

h∑
`=1

αh−` · ε`+1.

This implies that Cov (x̃1, x̃h+1) = αh ·V (x̃1) = (αhσ2)/(1−α2) and the correlation is αh. From [474,
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p. 189], we have:

p
(h)
22 = P {x1 = 2, xh+1 = 2} = P {x̃1 ≥ 0, x̃h+1 ≥ 0}

= P

{
N

([
0

0

]
,

[
1 αh

αh 1

])
∈ R2

+

}
= πh = 1/4 + 1/2π arcsin

(
αh
)

p
(h)
11 = πh

p
(h)
12 = p

(h)
21 = 1/2− πh.

It is clear that πh → 1/4, |πh − 1/4| ≤ αh/4 and, for large h, πh ∼ 1/4 + 1/2παh.

Example 4.2. [Gilbert–Shannon–Reeds (GSR) model] We consider the Gilbert–Shannon–Reeds
model of shuffles (see, e.g., [36]), but in the following we only need a short description. Let B the
number of cards in a deck. First, a number C is chosen from {0, 1, . . . , B} according to the binomial
distribution with probabilities

(
B
C

)
/ (2B). Second, the first C cards are held in the left hand and the

remaining B − C cards in the right. Third, cards are dropped from a given hand with probability
proportional to packet size. Thus, the first card is dropped from the left hand packet with probability
C/B and from the right hand packet with probability (B − C) /B. If the first card is dropped from
the left packet, the next card is dropped from the left packet with probability (C − 1) / (B − 1) and
from the right packet with probability (B − C) / (B − 1). The process continues until there is no
card left. This describes a Markov chain whose state space is the set of all possible permutations of
the deck of cards, but we will not focus on this process. We will instead consider what happens to
a single randomly selected card when the deck is repeatedly shuffled. Even if there is no guarantee
that aggregating a Markov chain will result in a Markov chain of the same order (see, e.g., [166]),
it is easy to convince oneself that what matters for the position of the card after a shuffle is the
position of that same card before the shuffle, the positions of the other cards being irrelevant. The
transition matrix of this Markov chain is called position matrix in [95]. From Lemma 2.1 in [95] or
Proposition 2.1 in [19], the probability of going from state i to state j is:

πij =


2−j + 2j−1−B if i = j

2j−1−B(B−j
i−j
)

if i > j

2−j
(
j−1
i−1

)
if j > i

The position matrices P = [πij ] are therefore given by the following formulas, valid respectively for

88



B = 2, 3, 4, 5, 6:

P = 4−1

[
3 1

1 3

]

P = 8−1

 5 2 1

2 4 2

1 2 5



P = 16−1


9 4 2 1

3 6 4 3

3 4 6 3

1 2 4 9



P = 32−1


17 8 4 2 1

4 10 8 6 4

6 6 8 6 6

4 6 8 10 4

1 2 4 8 17



P = 64−1



33 16 8 4 2 1

5 18 16 12 8 5

10 8 12 12 12 10

10 12 12 12 8 10

5 8 12 16 18 5

1 2 4 8 16 33


.

The stationary probability of these Markov chains is a uniform distribution on the states, so that
pi = B−1 for i = 1, . . . , B. The probabilities p(h)

ij can then be easily obtained multiplying the
position matrices and the stationary probability.

4.3.1 Limiting behavior

A trivial application of the Birkhoff Ergodic Theorem and of, e.g., Corollary 6.3.1 in [405, p. 174]
yields almost sure convergence of HN to a limiting random variable measurable with respect to the
invariant σ-algebra I.

Proposition 4.1. Under stationarity:

lim
N→∞

HN = H∞ = −
B∑
i=1

P {x1 = i |I } lnP {x1 = i |I } P− as

where H∞ is an invariant random variable. Under stationary ergodicity, H∞ = −
∑B
i=1 pi ln pi is a

constant.
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4.3.2 Bias

The nonlinearity introduced by the logarithm implies that HN will not be an unbiased estimator of
H∞. Moreover, it is well known that the bias is always negative (see, e.g., [378, Proposition 1] and
note that the proof does not depend on the iid assumption). The next result characterizes the bias
of HN .

Proposition 4.2. If the process {x1, . . . } is stationary ergodic:

E [HN ]−H∞ = −B − 1

2N
− 1

N

B∑
i=1

∑N−1
h=1

(
p

(h)
i − p2

i

)
pi

+ o (1)

where −B−1
2N −

1
N

∑B
i=1

∑N−1
h=1

(
p
(h)
i −p

2
i

)
pi

≤ 0 and the right-hand side is o (1). If the process {x1, . . . }
is α-mixing with

∑∞
n=1 α (n) <∞, then:

E [HN ]−H∞ = −B − 1

2N
− 1

N

B∑
i=1

∑∞
h=1

(
p

(h)
i − p2

i

)
pi

+ o
(
N−1

)
where the right-hand side is indeed O

(
N−1

)
.

Remark 4.1. (i) Positive values of the covariance Cov (1 {xj = i} , 1 {x` = i}) = p
(j−`)
i − p2

i , for
i = 1, . . . , B and j, ` ∈ N, for most values of the indices are sometimes used as an indicator of
persistence of the stochastic process{x1, . . . }, often defined as the tendency to assume in a time
period values that are near to the ones of previous time periods. Persistent stochastic processes

will usually have
∑B
i=1

∑N−1
j=1

(
p
(j)
i −p

2
i

)
piN

> 0. This implies not only that the observed entropy is
systematically biased downwards from the true entropy, but that this effect is stronger for the case
of stochastic processes with persistence. Antipersistence can instead reduce the bias.
(ii) Under ergodic stationarity, we have:

1

N − 1

N−1∑
h=1

(
p

(h)
i − p

2
i

)
→ 0

but this term is not necessarily O
(
N−1

)
and so isn’t the bias.

(iii) In the rest of the paper, and especially in Section 4.4, we will use the following definition, valid
under α-mixing with

∑∞
n=1 α (n) <∞:

bias (HN ) := −B − 1

2N
− 1

N

B∑
i=1

∑∞
h=1

(
p

(h)
i − p2

i

)
pi

.

The reason is that most results on which we will rely for the estimation of bias (HN ) require condi-
tions stronger than

∑∞
n=1 α (n) <∞ (see, e.g., [14]).

(iv) It is interesting to see what this result implies for the stationary not necessarily ergodic case.
For a stationary ergodic process, the time average and the ensemble average coincide and the bias
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correction is quite simple to understand and, as we will see below, implement. However, in the gen-
eral case of a stationary process, the limit of HN is the time average H∞, that is an I-measurable
random variable, and a bias correction for the time average should be an I-measurable random
variable too. Nevertheless, in most applications one observes a single time series. It is well known
that a stationary process can be written as a mixing of ergodic processes with respect to a measure
that, e.g., is called contingency law in [479]. This means that each single realization of a stationary
process is obtained, first, extracting a random value from the contingency law and, second, extract-
ing a realization from the ergodic process associated with the previous random value. This implies
that each time series is extracted from an ergodic process whose properties can be inferred using
the Ergodic Theorem, but nothing can be inferred about the contingency law. This point of view is
made very clear in [316, p. 202] with reference to prediction. As a result, the bias correction applies
to the entropy computed on the single trajectory, that can be supposed to be extracted from an
ergodic law.

Example 4.3. [Dichotomized AR (1) process - Example 4.1 continued] The process {x1, . . . } is
ergodic and mixing with α (h) ≤ 1/2π arcsin

(
αh
)
≤ αh/2π. Therefore, we have:

E [HN ] = H∞ −
1

2N
− 2

π

(∑N−1
j=1

(
1− j

N

)
arcsin

(
αj
)

N

)
+ o

(
N−1

)
= H∞ −

1

2N
− 2

πN

 ∞∑
j=1

arcsin
(
αj
)+ o

(
N−1

)
.

In Figure 4.3.1 we show the performance of the bias correction. For the moment, as we have not
yet considered estimation, we correct H∞ to approximate E [HN ].2 The trajectories of HN are
represented by the grey jigsaw lines that oscillate around the dark grey line representing EHN .
They converge from below towards the fixed limiting value H∞. In finite samples, HN is a badly
biased estimator of H∞. We show two corrections to H∞, i.e. in black dotted line H∞ − 1/2N, the
correction for the iid case (the one proposed in [418] for the time-series case), and in black dashed
line H∞ − 1/2N − 2/πN

(∑∞
j=1 arcsin

(
αj
))

, our correction. It is clear that our correction is much
better than the one in [418]. On the right plot, we display the empirical cdf of HN with N = 25

(black dashed line), N = 50 (black dotted line), N = 100 (black dash-dot line), N = 200 (black
solid line). This shows that in the ergodic case HN converges (almost surely) to H∞.

4.3.3 Central Limit Theorem

The following proposition provides an asymptotic distributional result.

Proposition 4.3. If the process {x1, . . . } is α-mixing with
∑∞
n=1 α (n) <∞, we have:

√
N (HN −H∞)→D N

(
0, σ2

)
2In general, the bias correction is applied to HN in order to reduce its distance with respect to the value H∞ that

is being estimated (see Example 4.7).
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Figure 4.3.1: Ensemble and time averages of the entropy in the ergodic (dichotomized AR (1)) case:
on the left plot, 50 trajectories of HN as a function of N (light grey jigsaw lines), H∞ (dark
grey horizontal line), EHN (dark grey curved line), H∞ − 1/2N (black dotted line), H∞ − 1/2N −
2/πN

(∑∞
j=1 arcsin

(
αj
))

(black dashed line), vertical lines at N ∈ {25, 50, 100, 200} (respectively
black dashed, dotted, dash-dot, solid lines); on the right plot, empirical cdf of HN with N = 25
(black dashed line), N = 50 (black dotted line), N = 100 (black dash-dot line), N = 200 (black
solid line).
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where

σ2 :=

B∑
i=1

pi ln2 pi −

(
B∑
i=1

pi ln pi

)2

+ 2

B∑
i=1

B∑
i′=1

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
ln pi ln pi′ .

Provided σ2 6= 0 and ϕ (n) ≤ κ (n+ 1)
−2 for any n:∥∥∥F√N(HN−H∞)/σ − Φ

∥∥∥
∞

= O
(
N−

1/2
)
.

Remark 4.2. (i) When pi = B−1 for any i, the asymptotic variance annihilates. For the iid case, this
was remarked by Miller and Madow in 1954 (see [310, p. 45]) but was later overlooked by [31] (see
[224, pp. 326-327]). Here we show that the same result extends to the case in which the observations
are dependent. The asymptotic distribution in this case is dealt with in Section 4.3.4.
(ii) The Berry-Esséen bound involves a condition on the uniform mixing coefficients because Berry-
Esséen bounds for the strong mixing case are less satisfactory (see [407, Theorem 2, Remark 2,
Application 2]).

Example 4.4. [Dichotomized AR (1) process - Examples 4.1, 4.3 continued] In this case we have
σ2 = 0.

Combining together Propositions 4.2 and 4.3, we obtain the following trivial result.

Corollary 4.1. If the process is α-mixing with
∑∞
n=1 α (n) <∞, we have:

√
N (HN − bias (HN )−H∞)→D N

(
0, σ2

)
.

4.3.4 Asymptotic distribution under degeneracy

Now we turn to the properties when pi = B−1 for any i. In the following proposition we need the
definition of a matrix Ω. In Section 4.4 we will show that this is a modification of a covariance
matrix Σ.

Proposition 4.4. Suppose that the process {x1, . . . } is α-mixing with
∑∞
n=1 α (n) < ∞. Consider

the matrix Ω, whose elements are given by:

Ωii =
2
∑∞
h=1

(
p

(h)
i − p2

i

)
+ pi (1− pi)

2pi
,

Ωii′ =

2
∑∞
h=1

(
p
(h)

ii′ +p
(h)

i′i
2 − pipi′

)
− pipi′

2 (pipi′)
1/2

.
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Let (λ1, . . . , λB) be the eigenvalues of the matrix Ω arranged in decreasing order. Therefore:

N (HN −H∞)→D −
B∑
i=1

λiχ
2
1,i.

Remark 4.3. (i) The derivation of a precise rate of convergence of the finite-sample distribution to the
asymptotic one, namely

∥∥∥FN(HN−H∞) − F−∑B
i=1 λiχ

2
1,i

∥∥∥
∞
, seems to be out of reach given the state of

the literature. According to the proof of Proposition 4.4, the rate of convergence of N (HN −H∞)

to its asymptotic distribution can be linked to the rate of convergence of the chi-square statistic
−N

∑B
i=1

(qi−pi)2
2pi

. In the dependent case there seems to be no available result for the lattice case,
but one can consider what happens in the independent case as a benchmark. In that case, [149]
showed that the convergence rate is O

(
N−

B−1
B

)
(see also [53]), while [194] showed that the rate of

convergence is O
(
N−1

)
for B ≥ 6. We investigate the rate of convergence in Examples 4.5 and 4.6

below.

Example 4.5. [Dichotomized AR (1) process - Examples 4.1, 4.3, 4.4 continued] We have:

Ω11 = Ω22 = 1/4 + 1/π

∞∑
h=1

arcsin
(
αh
)
,

Ω12 = Ω21 = −1/4− 1/π

∞∑
h=1

arcsin
(
αh
)
.

Therefore:

Ω =

{
1/4 + 1/π

∞∑
h=1

arcsin
(
αh
)}
·

[
+1 −1

−1 +1

]
.

This matrix is singular and therefore λ1 = tr (Ω) = 1/2 + 2/π
∑∞
h=1 arcsin

(
αh
)
and λ2 = 0. We have:

N (HN −H∞)→D −

{
1/2 + 2/π

∞∑
h=1

arcsin
(
αh
)}
· χ2

1.

In Figure 4.3.2 we show the difference between the cdf of the entropy and its asymptotic approx-
imation for N ∈ {250, 1000, 4000}. The finite-sample distribution of the entropy is discrete as q1

and q2 can assume only N + 1 values. These distribution are obtained through 1,000,000 samplings.
The Kolmogorov distances between the finite-sample distributions with N ∈ {250, 1000, 4000} and
the asymptotic one are respectively 0.04209815, 0.02110595 and 0.01056157, thus suggesting a rate
of convergence of O

(
N−1/2

)
, that is in line with Remark 4.3 for B = 2.

Example 4.6. [GSR model - Example 4.2 continued] For B ∈ {2, 3, 4, 5, 6} we compute the asymp-
totic distribution and we compare it with the finite-sample distributions for N ∈ {10, 11, . . . , 250}.
These curves are represented in Figure 4.3.3 and are consistent with an increase in the rate of con-
vergence when B increases. The jigsaw profile of the curves in the figure does not seem to be an
artifact of our simulations as it appears consistently across different replications. The curves for B
running from 2 to 6 are respectively based on over 4 · 107, 4.5 · 107, 4.5 · 107, 2 · 108 and 5 · 108

94



−
0.

02
0.

00
0.

02
−

0.
02

0.
00

0.
02

−4 −3 −2 −1 0

−
0.

02
0.

00
0.

02
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Figure 4.3.3: Rate of convergence to zero of the Kolmogorov distance between the cdf of the entropy
and its asymptotic approximation for N ∈ {10, . . . , 250} and B ∈ {2, . . . , 6}.

(non-independent) observations.

The combination of Propositions 4.2 and 4.4 gives the following result.

Corollary 4.2. Suppose that the process {x1, . . . } is α-mixing with
∑∞
n=1 α (n) <∞. Consider the

matrix Ω defined in Proposition 4.4. Therefore:

N (HN − bias (HN )−H∞)→D −
B∑
i=1

λi
(
χ2

1,i − 1
)
.
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4.4 Estimation

When correcting for bias or computing the asymptotic variance of the entropy, we need to compute
the matrix Σ whose elements are (see Lemma 4.3 in Section 4.7.2):

Σii = pi (1− pi) + 2

∞∑
h=1

(
p

(h)
i − p

2
i

)
,

Σii′ = 2

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

We can rewrite the elements as:

Σii = pi (1− pi) + 2

∞∑
h=1

(
p

(h)
i − p

2
i

)
=

∞∑
h=−∞

(
p

(h)
i − p

2
i

)
(4.4.1)

Σii′ = 2

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ =

∞∑
h=−∞

(
p

(h)
ii′ − pipi′

)
(4.4.2)

where we have used the fact that, under stationarity, p(h)
i` = p

(−h)
`i .

The computation of the bias is performed as follows rewriting it as:

bias (HN ) := −B − 1

2N
− 1

N

B∑
i=1

∑∞
h=1

(
p

(h)
i − p2

i

)
pi

= − 1

2N

B∑
i=1

Σii

pi
= − tr (dg (p̄) Σ)

2N
. (4.4.3)

The matrix Ω, used to define the distribution in the degenerate case (see Proposition 4.4), is defined
as:

Ω =
1

2
dg
(
p�(− 1

2 )
)

Σdg
(
p�(− 1

2 )
)
. (4.4.4)

In the following we propose two methods aimed at correcting the bias of the estimator of the
entropy and at computing its variance.

4.4.1 First method

A first method that holds with generality is to estimate the elements of the matrix Σ through an
autocorrelation-consistent (AC) covariance-matrix estimator, like the ones considered in [356, 14,
388]. We show their general structure.

We define:
Π(h) = Cov

(
x1,x

′
1+h

)
whose generic element is

[
Π(h)

]
ii′

= Cov (1 {x1 = i} , 1 {x1+h = i′}) = p
(h)
ii′ − pipi′ . Thus, from
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(4.4.1) and (4.4.2):

Σ =

∞∑
h=−∞

Π(h).

Estimators take the form:

Σ̂ =

N−1∑
h=−N+1

k

(
h

SN

)
Π̂

(h)

where k is a kernel function, SN is a bandwidth parameter and:

Π̂
(h)

=

 1
N

∑N
n=h+1 (xn − q) (xn−h − q)

′
h ≥ 0,

1
N

∑N
n=−h+1 (xn+h − q) (xn − q)

′
h < 0.

A plug-in estimator of Ω is:

Ω̂ =
1

2
dg
(
q�(− 1

2 )
)

Σ̂dg
(
q�(− 1

2 )
)
.

Therefore, a plug-in estimator of the bias is:

̂bias (HN ) = −
tr
(

dg (q̄) Σ̂
)

2N
.

Example 4.7. [Dichotomized AR (1) process - Examples 4.1, 4.3, 4.4, 4.5 continued] Here we con-
sider bias correction using the estimator of [356] and [14]. The light grey jigsaw lines are the
trajectories of HN − ̂bias (HN ) with Newey-West bias correction. They oscillate around a curved
solid grey line that is E

(
HN − ̂bias (HN )

)
with Newey-West bias correction, a curved dashed grey

line that is E
(
HN − ̂bias (HN )

)
with Andrews bias correction, an horizontal dark grey line that is

H∞, a black solid curve that is E (HN ), and a black dashed curve (almost indistinguishable from
H∞) that is E (HN )− bias (HN ). It is apparent from the plot that HN − ̂bias (HN ) is in both cases
less biased than HN (see also Figure 4.3.1). However, the replacement of bias (HN ) with ̂bias (HN ) is
not without consequences. Indeed, the quantity E (HN )−bias (HN ) is represented by a black dashed
line that is almost undistinguishable from H∞, while E

(
HN − ̂bias (HN )

)
is not. The vertical lines

at N ∈ {100, 125, 150, 200} (respectively black dashed, dotted, dash-dot, solid lines) represent the
values of N ∈ {100, 125, 150, 200} at which the empirical cdf of HN − ̂bias (HN ) with Newey-West
bias correction (black lines) and with Andrews bias correction (grey lines) are computed.

In the following we will prove our results under the following assumption.

AC Let q > 0 be such that:
∞∑

h=−∞

|h|q
∥∥∥Π(h)

∥∥∥
L2
<∞

and:
lim
x→0

1− k (x)

|x|q
= kq <∞.

Then, the following conditions hold:
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Figure 4.4.1: Ensemble and time averages of the entropy in the ergodic (dichotomized AR (1))
case with bias corrections: on the left plot, 50 trajectories of HN − ̂bias (HN ) with Newey-
West bias correction as a function of N (light grey jigsaw lines), H∞ (dark grey horizontal line),
E (HN ) (black solid curve), E

(
HN − ̂bias (HN )

)
with Newey-West bias correction (grey solid curve),

E
(
HN − ̂bias (HN )

)
with Andrews bias correction (grey dashed curve), E (HN )− bias (HN ) (black

dashed curve), vertical lines at N ∈ {100, 125, 150, 200} (respectively black dashed, dotted, dash-dot,
solid lines); on the right plot, empirical cdf of HN − ̂bias (HN ) with Newey-West bias correction with
N = 100 (black dashed line), N = 125 (black dotted line), N = 150 (black dash-dot line), N = 200
(black solid line), with Andrews bias correction with N = 100 (grey dashed line), N = 125 (grey
dotted line), N = 150 (grey dash-dot line), N = 200 (grey solid line).
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1. the process is α-mixing with
∑∞
n=1 n

2α (n) <∞;

2. SN/N → 0 as N →∞;

3. k : R → [−1, 1] is symmetric, continuous at 0 and for all but a finite number of points,
and satisfies k (0) = 1 and

∫∞
−∞ k2 (x) dx <∞;

4. if SN 6→ ∞, S−1
N

∑N−1
j=−N+1 |k (j/SN )| = O (1);

5. if q < 1/2, N 1/2−qS
−1/2
N = O (1);

6. one of the following three sets of conditions hold true:

(a) if SN →∞ and kq 6= 0, S−q−
1/2

N N 1/2 = O (1);

(b) if SN →∞ and kq = 0:

S
−1/2
N N

1/2
N−1∑
h=1

(
1− k

(
h

SN

))
Π(h) = O (1)

and this is a fortiori true if S−q−
1/2

N N 1/2 = O (1);

(c) if SN 6→ ∞:

S
−1/2
N N

1/2
N−1∑
h=1

(
1− k

(
h

SN

))
Π(h) = O (1) .

Remark 4.4. (i) The case in which SN 6→ ∞ is required by some recent results on the estimation of
AC covariance matrices (see Theorem 2.1 in [388, p. 707]).
(ii) The case in which SN → ∞ is surely the most interesting. If kq 6= 0, conditions 2 and 6 imply
that N

1
2q+1 . SN � N . In this case condition 4 is always verified and condition 5 is redundant, as

N1−2q . N
1

2q+1 .
(iii) If the function k is non-negative and non-increasing over [0,∞), one can adapt the reasoning in
Theorem 1 in [18, p. 410] to show that assumption 4 is automatically true:

S−1
N

N−1∑
j=−N+1

|k (j/SN )| =S−1
N

1 + 2

N−1∑
j=1

k (j/SN )


≤S−1

N

{
1 + 2

∫ N

1

k (x/SN ) dx+ 2k (1/SN )

}

≤S−1
N + S−1

N

∫ ∞
−∞

k (x/SN ) dx+ 2S−1
N k (1/SN )

≤

√∫ ∞
−∞

k2 (y) dy + 3S−1
N = O (1) .

This holds irrespective of the fact that SN 6→ ∞ or SN →∞.

4.4.2 Second method

Whenever the process is a Markov chain, an alternative is to use the transition matrix in order to
compute the probabilities appearing in the formulas above. We suppose below that the Markov
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chain is ergodic and regular, i.e. irreducible and aperiodic.
We have p′ = p′P, i.e. p is a normalized right eigenvector of the stochastic transition matrix

P corresponding to the eigenvalue equal to 1. We define H := (I−P + ιp′)
−1, the fundamental

matrix of [259] (see also [440]).

Proposition 4.5. For a Markov chain with transition matrix P and ergodic distribution p, we have:

bias (HN ) = −2tr (H)−B − 1

2N

and:
Ω = −1

2
I +

1

2
dg
(
p�

1
2

)
(Hdg (p̄) + dg (p̄) H′ −U) dg

(
p�

1
2

)
.

Example 4.8. [GSR model - Examples 4.2 and 4.6 continued] We can characterize the quantities
appearing in the GSR model. From Theorem 2.2 in [95], the matrix P has eigenvalues given by 2−m

for 0 ≤ m ≤ B−1. Using Theorem 1 in [501], the eigenvalues of H−1 are 1 and 1−2−m for 1 ≤ m ≤
B− 1, and the column eigenvector associated with 1 is proportional to ι. Therefore, the eigenvalues
of H are 1 and (1− 2−m)

−1 for 1 ≤ m ≤ B − 1. This implies that tr (H) = B +
∑B−1
m=1

1
2m−1 . Now,

p = B−1ι from which the matrix Ω in Proposition 4.5 becomes:

Ω =
1

2

(
H + H′ − I−B−1U

)
.

We suppose to estimate P through P̂ defined as:

[
P̂
]
ii′

=

∑N−1
j=1 1 {xj = i, xj+1 = i′}∑B

i′=1

∑N−1
j=1 1 {xj = i, xj+1 = i′}

and p through p̂, the normalized left eigenvector of P̂, i.e. p̂′P̂ = p̂′ (in general p̂ does not coincide

with q). Moreover we define Ĥ :=
(
I− P̂ + ιp̂′

)−1

.

4.4.3 Error in the estimation of bias

We provide a result on the average error induced by the estimation of the bias.

Proposition 4.6. For the method in Section 4.4.1, under AC:

̂bias (HN ) = bias (HN ) +OP

(
S

1/2
N N−

3/2
)
.

For the method in Section 4.4.2:

̂bias (HN ) = bias (HN ) +OP

(
N−

3/2
)
.

Remark 4.5. (i) As SN = o (N) in AC, for the method in Section 4.4.1, we get that the error is
oP
(
N−1

)
.

(ii) The optimal rate of divergence of SN for the Newey-West estimator in [356] is SN � N 1/3, and for
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the second-order kernels in [14] it is SN � N 1/5. The rate of error in the bias decreases respectively
as OP

(
N−4/3

)
and OP

(
N−7/5

)
.

Corollary 4.3. Under the conditions of Propositions 4.3 and 4.6, if SN = o (N), we have:

√
N
(
HN − ̂bias (HN )−H∞

)
→D N

(
0, σ2

)
and

N
(
HN − ̂bias (HN )−H∞

)
→D −

B∑
i=1

λi
(
χ2

1,i − 1
)
.

Using the previous results we can derive the following corollary concerning the MSE.

Corollary 4.4. Under the hypotheses of Propositions 4.3, 4.4 and 4.6:

MSE (HN ) =

O
(
N−1

)
if σ2 > 0

O
(
N−2

)
if σ2 = 0

MSE (HN )−MSE (HN − bias (HN )) = O
(
N−2

)
MSE

(
HN − ̂bias (HN )

)
−MSE (HN − bias (HN ))

=

O
(
S

1/2
N N−2

)
if σ2 > 0

O
(
S

1/2
N N−5/2

)
if σ2 = 0

where the left-hand sides of the first two expressions are always non-negative. For the method in
Section 4.4.2, the formulas still hold with SN ≡ 1.

Example 4.9. [GSR model - Examples 4.2, 4.6 and 4.8 continued] We consider a deck of B = 10

cards and we shuffle it N = 1, 000 times. We record the position taken by the card occupying the
first position in the original order of the deck. It is expected that, in a series of shuffles, the card
will visit each integer number between 1 and B with a probability converging to B−1. Therefore,
the limit value of the entropy is H∞ = lnB = ln 10

.
= 2.302585. We have simulated 1,000,000

times the process of shuffling. The average EHN without bias correction is 2.296466. We have
then computed the Newey-West, Andrews and Markov bias corrections using each time series of
N observations. One should note that the matrix P̂ for the Markov bias correction is estimated
using only N − 1 observations. The values of E

(
HN − ̂bias (HN )

)
with Newey-West, Andrews

and Markov bias corrections are respectively 2.302135, 2.302413 and 2.302571, thus confirming the
order suggested by Proposition 4.6. The empirical cdfs of HN and HN − ̂bias (HN ) with Newey-
West, Andrews and Markov bias corrections confirm these findings. Note that the Markov bias
correction is more precise than the other two. It is also possible to estimate the variance V (HN )

as 1.121541 · 10−5, as well as the variances V
(
HN − ̂bias (HN )

)
with Newey-West, Andrews and

Markov bias corrections respectively as 1.143687 · 10−5, 1.128285 · 10−5 and 1.126361 · 10−5. This
means that the bias correction slightly increases the variance of the estimator, but the MSE is
still improved by the corrections; indeed, the MSE is respectively 4.865827 · 10−5, 1.163983 · 10−5,
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1.131258 · 10−5 and 1.126382 · 10−5 for HN and HN − ̂bias (HN ) with Newey-West, Andrews and
Markov bias corrections.

4.4.4 Error in the estimation of the distribution under degeneracy

One of the problems raised by the previous result is to determine what is the effect of estimating
the weights on the significance level of tests.

Proposition 4.7. Let
(
λ̂1, . . . , λ̂B

)
be the eigenvalues of the matrix Ω̂ defined in Sections 4.4.1

and 4.4.2. The following bound holds true:∥∥∥F−∑B
i=1 λ̂iχ

2
1,i
− F−∑B

i=1 λiχ
2
1,i

∥∥∥
∞

= O
(∥∥∥Ω− Ω̂

∥∥∥
1

)
.

For the method in Section 4.4.1, under AC the bound is OP

(
(SN/N)

1/2
)
. For the method in Section

4.4.2, the bound is OP
(
N−1/2

)
.

Remark 4.6. (i) This result can be used as follows. Suppose that we determine the quantile qα of a
test of level α using −

∑B
i=1 λ̂iχ

2
1,i. Then:

F−
∑B
i=1 λiχ

2
1,i

(qα) = α+O
(∥∥∥Ω− Ω̂

∥∥∥
1

)
.

(ii) The distance
∥∥∥F−∑B

i=1 λ̂iχ
2
1,i
− F−∑B

i=1 λiχ
2
1,i

∥∥∥
∞

is OP
(
N−1/3

)
for the Newey-West estimator in

[356], OP
(
N−2/5

)
for the second-order kernels in [14], and OP

(
N−1/2

)
for the flat-top kernels in [388].

Example 4.10. [GSR model - Examples 4.2, 4.6, 4.8 and 4.9 continued] We compute the asymptotic
distribution F−∑B

i=1 λiχ
2
1,i

and we compare it with the distributions using matrices Σ̂ based on time
series of length N for several values B, as described in Example 4.9. In Table 4.4.1 we compute the
quantity:

E
∥∥∥F−∑B

i=1 λ̂iχ
2
1,i
− F−∑B

i=1 λiχ
2
1,i

∥∥∥
∞

where the expectation is computed over the distribution of the weights based on a series of length
N . It is apparent that when the number of observations N is multiplied by 4 there is a division by 2
of the average Kolmogorov distance, coherently with the OP

(
N−1/2

)
rate predicted by Proposition

4.7.

4.5 A goodness-of-fit test

In this section, we propose a test of goodness-of-fit based on the entropy.
We first describe the setup, then we give two different interpretations of the test procedure.

Suppose to observe a stationary time series {x̃1, . . . , x̃N} with x̃1 taking its values in R. Suppose
that the process is α-mixing with

∑∞
n=1 α (n) < ∞. Its marginal distribution has a density f with

respect to a measure σ. We want to test the null hypothesis H0 : f ≡ f0, where f0 is a completely
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Figure 4.4.2: Empirical cumulative distribution function (cdf) of HN (black line), HN − ̂bias (HN )

with Newey-West bias correction (grey dashed line), HN − ̂bias (HN ) with Andrews bias correction
(grey dotted line), HN − ̂bias (HN ) with Markov bias correction (grey dash-dot line), in comparison
with the expected values EHN (vertical black solid line), E

(
HN − ̂bias (HN )

)
with Newey-West

(vertical grey dashed line), Andrews (vertical grey dotted line) and Markov (vertical grey dash-dot
line) bias corrections, and the true value H∞ (vertical black dashed line).

N

125 250 500 1000 2000 4000

B

2 0.04074774 0.02851654 0.02004530 0.01416706 0.009979191 0.007065414
3 0.04793574 0.03318252 0.02348522 0.01646886 0.011574740 0.008097934
4 0.05325378 0.03648672 0.02570183 0.01806233 0.012672534 0.008901423
5 0.05832340 0.03949900 0.02735191 0.01931552 0.013527968 0.009557864
6 0.06242307 0.04239093 0.02925993 0.02067011 0.014549110 0.010190659

Table 4.4.1: Average Kolmogorov distance between the exact asymptotic distribution and the one
obtained estimating λ̂i, for i = 1, . . . , B through N observations.
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specified density function with respect to σ. We identify a partition of the real line {I1, . . . , IB}
such that: ∫

Ib
f0 (x)σ (dx) = B−1, b = 1, . . . , B.

We introduce the symbolized time series {x̃1, . . . , x̃N} defined by:

xi =

B∑
b=1

b · 1 {x̃i ∈ Ib} .

The symbolization is clearly much simpler when the measure σ is the Lebesgue measure and the
density with respect to σ is a classical probability density function. Note that, by the very definition
of α-mixing, the mixing coefficients of the symbolized process are majorized by the ones of the
original process.

The first justification of the test uses the different behavior of the entropy under the null and
the alternative hypotheses. Under the null hypothesis, the entropy computed on the time series
{x̃1, . . . , x̃N} is degenerate as in Proposition 4.4. The asymptotic distribution of the entropy based
on {x̃1, . . . , x̃N} satisfies:

N (HN −H∞)→D −
B∑
i=1

λiχ
2
1,i

where H∞ = lnB. Therefore, under H0, an acceptance region A = [qα, 0] corresponding to a
significance level α for N (HN − lnB) can be built using the quantile qα of −

∑B
i=1 λiχ

2
1,i such that

F−
∑B
i=1 λiχ

2
1,i

(qα) = α.
Now, we investigate what happens under the alternative hypothesis H1 : f ≡ f1 6= f0. The test

appears to have no power against any f1 such that:∫
Ib
f1 (x)σ (dx) = B−1, b = 1, . . . , B. (4.5.1)

If, however, this does not hold true, Proposition 4.3 implies that σ is strictly positive and that:

P {N (HN − lnB) ∈ A} =P
{
HN ≥ lnB +

qα
N

}
=P
{√

N
HN −H∞

σ
≥
√
N

lnB −H∞
σ

+
qα√
Nσ

}
≤
∥∥∥F√N HN−H∞

σ

− Φ
∥∥∥
∞

+ Φ

(
−
√
N

lnB −H∞
σ

− qα√
Nσ

)
=O

(
N−

1/2
)

+ Φ

(√
N
H∞ − lnB

σ
− qα√

Nσ

)
.

Now, H∞ ≤ lnB with equality if and only if
∫
Ib f1 (x)σ (dx) = B−1 for b = 1, . . . , B (see, e.g., [310,

p. 27]). Therefore, Φ
(√

N H∞−lnB
σ − qα√

Nσ

)
↓ 0, P {N (HN − lnB) ∈ A} ↓ 0 and the power of the

test converges to 1.
Now we come to the second justification. We build the likelihood of the symbolized time

series{x̃1, . . . , x̃N} neglecting the dependence between the values, i.e. supposing that they are inde-
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pendent. This object is sometimes called a pseudolikelihood (see, e.g., [92, Section 2.5] for a general
result and [410, 197] for earlier examples). Despite the data are dependent, it is still possible to
formulate a LR test of H0 : f ≡ f0 that takes the form (see, e.g., [483, p. 252]):

LR =

B∑
i=1

qi ln
qi
B−1

=

B∑
i=1

qi ln qi + lnB = H∞ −HN .

In the context of [355, Section 9], this is called a distance metric statistic. This test will not have
the usual asymptotic distribution of LR tests but its distribution can be obtained from the one of
the entropy. Linking this goodness-of-fit test with a LR test also shows that the test enjoys some
optimality properties in the case of independent data and outperforms commonly used tests such as
the chi-square test (see, e.g., [483, Section 17.6]).

In the following we provide two examples showing the finite-sample properties of the test.

Example 4.11. [Iid process] We consider the previous procedure when applied to an iid standard
Gaussian sample. We symbolize the process in B = 4 equally probable intervals. In Figure 4.5.1,
we depict the deviation between the actual and the nominal significance level:

α 7→P {N (HN − lnB) /∈ A} − P

{
−

B∑
i=1

λiχ
2
1,i /∈ A

}

=P {N (HN − lnB) < qα} − P

{
−

B∑
i=1

λiχ
2
1,i < qα

}
=P {N (HN − lnB) < qα} − α

under the null hypothesis, for B = 4, N ∈ {50, 100, 200, 400} and α ranging from 0.01 to 0.1. As
the curves are based on 5 · 107 replications, for both plots the irregular profile of the curves is not
an artifact of the simulations. In Figure 4.5.2 we depict the statistical power function:

α 7→ π = P {N (HN − lnB) /∈ A} = P {N (HN − lnB) < qα}

under some alternative hypotheses, i.e. when the data are from a sample of iid Gaussian random
variables with mean c ∈ {0.1, 0.2, 0.3} and variance 1. These curves are based on 107 replications.

Example 4.12. [Symbolized AR (1) process] We consider the process described in Example 4.1. We
want to test that its marginal distribution is standard Gaussian. In order to do so, we symbolize
the process as explained above. We apply the Newey-West variance estimator with bandwidth equal
to SN =

⌈
N 1/3

⌉
and the Andrews quadratic spectral variance estimator with bandwidth equal to

SN =
⌈
N 1/5

⌉
. The second choice is advocated in [177, pp. 551, 573] and criticized in [12, p. 17].

The first choice is rather similar to other ones proposed in the literature, such as the commonly
used SN =

⌈
0.75 ·N 1/3

⌉
, but we have chosen the present one for simplicity. We have considered

the adaptive procedures of [14] and [357], but in a small percentage of cases they fail to deliver
reliable results, and this can be a problem in large simulations. Figure 4.5.3 represents the deviation
between the actual and the nominal significance level for B = 4, N ∈ {50, 100, 200, 400}, α ranging
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Figure 4.5.1: Difference between the actual and the nominal significance level in the independent
case, for α ∈ [0.01, 0.1], B = 4 and N ∈ {50, 100, 200, 400} (continuous black line for N = 50,
continuous grey line for N = 100, dotted black line for N = 200, dotted grey line for N = 400).
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Figure 4.5.2: Power function in the independent case, for α ∈ [0.01, 0.1], B = 4, N ∈
{50, 100, 200, 400} , c ∈ {0.1, 0.2, 0.3} (thin line for power equal to α, continuous line for N = 50,
dashed line for N = 100, dotted line for N = 200, dash-dot line for N = 400; left column for c = 0.1,
central column for c = 0.2, right column for c = 0.3).
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Figure 4.5.3: Difference between the actual and the nominal significance level in the dependent case
with Newey-West estimator (on the left) and Andrews estimator (on the right), for α ∈ [0.01, 0.1],
B = 4 and N ∈ {50, 100, 200, 400} (continuous line for N = 50, dashed line for N = 100, dotted line
for N = 200, dash-dot line for N = 400).

109



0.02 0.04 0.06 0.08 0.10

0
0.

25
0.

5
0.

75
1

0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

Figure 4.5.4: Power function in the dependent case with Newey-West (in black) and Andrews (in
grey) estimators, for α ∈ [0.01, 0.1], B = 4, N ∈ {50, 100, 200, 400} , c ∈ {0.1, 0.2, 0.3} (thin line for
power equal to α, continuous line for N = 50, dashed line for N = 100, dotted line for N = 200,
dash-dot line for N = 400; left column for c = 0.1, central column for c = 0.2, right column for
c = 0.3).

from 0.01 to 0.1 with Newey-West (on the left) and Andrews (on the right) estimators. The curves
look smoother than the ones for the independent case because the weights of the distribution are
computed on the basis of the data and differ for each replication. Even for N = 50, the error
in the significance level is rather small. Figure 4.5.4 represents the statistical power functions for
Newey-West (in black) and Andrews (in grey) estimators. In this case the plots are more similar to
the ones for the independent case.

4.6 Conclusions

In this contribution we consider the estimation of the entropy of data coming from a discretely
supported stochastic process. In order to do so, we use the plug-in estimator of the entropy, in which

110



the probabilities of the different values are replaced by their empirical estimators. With respect to
the state of the art, we provide new results concerning asymptotic normality and bias, and we fix an
error about formulas for bias correction and variance that, started in [418], has propagated through
the literature. We demonstrate that our correction of the bias removes the O

(
N−1

)
part of the

bias of the observed entropy HN . One of the central outcomes of the paper is represented by the
behavior of the distribution under degeneracy, i.e. when the marginal distribution of the process
assume equal probabilities for each value of the time series. Indeed, at odds with the general case,
under degeneracy the statistic–with a different scaling–converges in distribution to a weighted sum
of chi square random variables. We finally introduce some estimators of the distribution under
degeneracy and we provide results on the error in the estimation. To complete our analysis, we
showcase an application of the entropy to a goodness-of-fit test for the marginal distribution of the
process. The simulation studies performed throughout the paper to investigate the finite-sample
properties of the estimators enhance the theoretical conclusions.

The present study has some limitations. First of all, we only consider strictly stationary stochas-
tic processes under ergodicity and, for some results, mixing. However, some processes used in signal
processing and information theory exhibit limited amounts of nonstationarity such as cyclostation-
arity (see [182]). Further generalizations of the properties could be obtained through asymptotic
mean stationarity, a more general concept (see, e.g., [233]) than stationarity, encompassing cyclosta-
tionarity. Second, we consider the properties of the plug-in estimator of the entropy in the discrete
or discretized case. This has the consequence, among other things, that the goodness-of-fit test that
we propose has no power against some alternative hypotheses (see (4.5.1)). It could be possible to
circumvent this problem by letting the number of classes B to diverge together with the number of
observations N .

4.7 Proofs

4.7.1 Preliminary results

Here we collect two results for future reference.
The first result (Lemma 4.1) is a general expansion of HN already introduced in [224]. To

keep the paper self-contained, we reproduce the proof here. The second result (Lemma 4.2) is a
multivariate second-order delta method that will be used in the proof of the asymptotic distribution
under degeneracy.

Lemma 4.1. We have:

HN = H∞ −
B∑
i=1

(qi − pi) ln pi +

r∑
m=2

(−1)
m−1

m (m− 1)

B∑
i=1

(qi − pi)m

pm−1
i

+Rr+1

where |Rr+1| ≤ 1
r(r+1)

∑B
i=1

|qi−pi|r+1

(λ?pi)
r for λ? > 0 independent of any qi.

Proof. We take a limited development of −qi ln qi for qi around pi with Lagrange remainder. We
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have:

−qi ln qi = −pi
(

1 +
qi − pi
pi

)
ln

[
pi

(
1 +

qi − pi
pi

)]
= −pi ln pi − (qi − pi) ln pi +

r∑
m=2

(−1)
m−1

m (m− 1)

(qi − pi)m

pm−1
i

+Rr+1,i

where:

Rr+1,i =
(−1)

r

r (r + 1)

(qi − pi)r+1

ξri
,

ξi =λipi + (1− λi) qi, 0 < λi < 1.

This implies that:

HN = H∞ −
B∑
i=1

(qi − pi) ln pi +

r∑
m=2

(−1)
m−1

m (m− 1)

B∑
i=1

(qi − pi)m

pm−1
i

+Rr+1

where Rr+1 =
∑B
i=1Rr+1,i. Now we majorize Rr+1.

Let us first suppose that |qi − pi| < (1− ε) pi for 0 < ε < 1. This implies that
∣∣∣ qi−pipi

∣∣∣ < 1 − ε
and −qi ln qi can be expanded in an infinite series:

−qi ln qi =− pi ln pi − (qi − pi) ln pi +

r∑
m=2

(−1)
m−1

m (m− 1)

(qi − pi)m

pm−1
i

+

∞∑
m=r+1

(−1)
m−1

m (m− 1)

(qi − pi)m

pm−1
i

so that Rr+1,i =
∑∞
m=r+1

(−1)m−1

m(m−1)
(qi−pi)m

pm−1
i

. Now:

|Rr+1,i| ≤
∞∑

m=r+1

1

m (m− 1)

|qi − pi|m

pm−1
i

≤
∞∑

m=r+1

|qi − pi|m

pm−1
i

=
|qi − pi|r+1

pri

∞∑
j=0

|qi − pi|j

pji
≤ |qi − pi|

r+1

εpri

where we have used the fact that, as
∣∣∣ qi−pipi

∣∣∣ < 1− ε,
∑∞
j=0

|qi−pi|j

pji
=
(

1− |qi−pi|pi

)−1

≤ ε−1.
Now, let us consider the case |qi − pi| ≥ (1− ε) pi for 0 < ε < 1. Let

Aε (pi) := {qi ∈ [0, 1] : |qi − pi| ≥ (1− ε) pi} .
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3 Then, Rr+1,i = (−1)r

r(r+1)
(qi−pi)r+1

ξri
will not be zero on Aε (pi). We have:

|Rr+1,i| =
1

r (r + 1)

|qi − pi|r+1

(λipi + (1− λi) qi)r

or:

λi =

(
|qi−pi|r+1

r(r+1)|Rr+1,i|

) 1
r − qi

pi − qi
.

The set Aε (pi) is compact and qi 7→ λi is a continuous positive function, therefore it attains its
minimum on that set and the minimum must be positive. We define:

λ?B := min
1≤i≤B

min
qi∈Aε(pi)

λi (qi) > 0

and we note that this is independent of N .
We define λ? := min

{
λ?B , ε

1
r

}
> 0 and we note it is independent of N . The final formula is

easily obtained.

Lemma 4.2. Let {Xn} be a sequence of vectors in Rk. Assume that τn (Xn − µ) →D X where µ
is a constant vector and {τn} is a sequence of constants such that τn →∞. Let g : Rk → R be twice
differentiable at µ with continuous derivatives and suppose that ∂g(x)

∂x′

∣∣∣
x=µ

(x− µ) ≡ 0 for x in a

neighborhood of µ. Then:

τ2
n (g (Xn)− g (µ))→D

1

2
X′

∂2g (x)

∂x∂x′

∣∣∣∣
x=µ

X.

Proof. The proof follows the one of [294, Theorem 11.2.14 (i), p. 436]. A limited development
gives the following formula:

g (x) = g (µ) +
∂g (x)

∂x′

∣∣∣∣
x=µ

(x− µ) +
1

2
(x− µ)

′ ∂
2g (x)

∂x∂x′

∣∣∣∣
x=µ

(x− µ) +R (x− µ)

where R (y) = o
(
‖y‖2L2

)
as ‖y‖L2 ↓ 0. Now, from ∂g(x)

∂x′

∣∣∣
x=µ

(x− µ) ≡ 0:

τ2
n (g (Xn)− g (µ)) =

1

2
τ2
n (Xn − µ)

′ ∂
2g (x)

∂x∂x′

∣∣∣∣
x=µ

(Xn − µ) + τ2
nR (Xn − µ) .

By the Continuous Mapping Theorem, the first term on the right-hand side yields:

1

2
τ2
n (Xn − µ)

′ ∂
2g (x)

∂x∂x′

∣∣∣∣
x=µ

(Xn − µ)→D
1

2
X′

∂2g (x)

∂x∂x′

∣∣∣∣
x=µ

X.

We then show that τ2
nR (Xn − µ) = oP (1). We define the function h (y) := R (y) / ‖y‖2L2 for y 6= 0

3We amend the notation used by [224], Aε (pi, qi), as the set does not depend on qi.
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and h (0) := 0. This function is continuous at 0 and, therefore:

τ2
nR (Xn − µ) = τ2

n ‖Xn − µ‖2L2 h (Xn − µ)

where τ2
n ‖Xn − µ‖2L2 = OP (1), by definition, and h (Xn − µ) = oP (1), by the fact that τn (Xn − µ)→D

X implies that Xn →P µ and by the Continuous Mapping Theorem. By Slutsky’s theorem, we get
the final result.

4.7.2 Variances

The following lemma contains some formulas for the variances and covariances of q and a central
limit theorem for q.

Lemma 4.3. Under stationarity:

V
[√

N (qi − pi)
]

=pi (1− pi) + 2

N−1∑
h=1

(
1− h

N

)(
p

(h)
i − p

2
i

)
,

Cov
[√

N (qi − pi) ,
√
N (qi′ − pi′)

]
=2

N−1∑
h=1

(
1− h

N

)(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

Under α-mixing, if
∑∞
n=1 α (n) <∞,

√
N (q− p)→D N (0,Σ) where:

Σii = lim
N→∞

V
[√

N (qi − pi)
]

= pi (1− pi) + 2

∞∑
h=1

(
p

(h)
i − p

2
i

)
,

Σii′ = lim
N→∞

Cov
[√

N (qi − pi) ,
√
N (qi′ − pi′)

]
=2

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

Proof. In the following, we will frequently use the rewriting:

N∑
k=1

N∑
`=1

p
(k−`)
ij = Npi · 1 {i = j}+

N−1∑
h=1

(N − h)
(
p

(h)
ij + p

(h)
ji

)
(4.7.1)

where we have used the equality p(h)
i` = p

(−h)
`i , valid under stationarity.

114



We have:

V
[√

N (qi − pi)
]

= NV (qi) =
1

N
V

 N∑
j=1

1 {xj = i}


=

1

N

N∑
j=1

N∑
j′=1

Cov (1 {xj = i} , 1 {xj′ = i})

=
1

N

N∑
j=1

N∑
j′=1

{
E (1 {xj = i} 1 {xj′ = i})− p2

i

}
=

1

N

N∑
j=1

N∑
j′=1

(
p
(j−j′)
i − p2

i

)

= pi (1− pi) + 2

N−1∑
h=1

(
1− h

N

)(
p

(h)
i − p

2
i

)
(4.7.2)

and:

Cov
[√

N (qi − pi) ,
√
N (qi′ − pi′)

]
=NCov (qi, qi′)

=
1

N
Cov

 N∑
j=1

1 {xj = i} ,
N∑
j′=1

1 {xj′ = i′}


=

1

N

N∑
j=1

N∑
j′=1

(
p
(j−j′)
ii′ − pipi′

)

=2

N−1∑
h=1

(
1− h

N

)(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ (4.7.3)

where we have used repeatedly (4.7.1) and 2
∑N
h=1

(
1− h

N

)
= N − 1.

Now, we can apply Lemma 1.1 in [409, p. 2] to V
[√

N (qi − pi)
]
. If lim`→∞ pi (1− pi) +

2
∑`
h=1

(
p

(h)
i − p2

i

)
exists, then V

[√
N (qi − pi)

]
converges to the same limit. Now, it is clear that∣∣∣p(h)

i − p2
i

∣∣∣ ≤ α (h) for any i. If the process is α-mixing with
∑∞
n=1 α (n) <∞, we can apply Lemma

1.2 in [409, p. 3]. Then limN→∞
∑N−1
h=1

(
p

(h)
i − p2

i

)
exists and can be written as

∑∞
h=1

(
p

(h)
i − p2

i

)
.

Therefore:

lim
N→∞

V
[√

N (qi − pi)
]

= pi (1− pi) + 2

∞∑
h=1

(
p

(h)
i − p

2
i

)
. (4.7.4)

The same reasoning allows us to write:

lim
N→∞

Cov
[√

N (qi − pi) ,
√
N (qi′ − pi′)

]
= 2

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′ .

To prove the asymptotic normality of
√
N (q− p), it is enough to apply the CLT in Theorem

18.5.4 of [244]. A vector version of the same result is in [129, p. 67].
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4.7.3 Bias

Proof of Proposition 4.2. From Lemma 4.1 in Section 4.7.1 with r = 2, we have:

EHN = H∞ −
1

2

B∑
i=1

E (qi − pi)2

pi
+ ER3

where:

E |R3| ≤
1

6

B∑
i=1

E |qi − pi|3

(λ?pi)
2 .

Under stationarity:

B∑
i=1

E (qi − pi)2

2pi
=

1

2N

B∑
i=1

(1− pi) +
2
∑N−1
h=1

(
1− h

N

) (
p

(h)
i − p2

i

)
pi


=
B − 1

2N
+

1

N

B∑
i=1

∑N−1
h=1

(
1− h

N

) (
p

(h)
i − p2

i

)
pi

=
B − 1

2N
+

1

N

B∑
i=1

∑N−1
h=1

(
p

(h)
i − p2

i

)
pi

− 1

N2

B∑
i=1

∑N−1
h=1 h

(
p

(h)
i − p2

i

)
pi

.

If the process is ergodic stationary, then:

1

N − 1

N−1∑
h=1

(
p

(h)
i − p

2
i

)
→ 0

(see, e.g., [118, Theorem 13.13]). Now, we show that 1
N2

∑N−1
h=1 h

(
p

(h)
i − p2

i

)
→ 0. Note that most

majorizations do not work here as they would involve taking the absolute value of p(h)
i − p2

i . Let
us define sn := p

(n)
i − p2

i for n ∈ N0 and s0 := 0, and define {an} as the sequence whose partial
sums are given by {sn}, i.e. sn =

∑n
j=0 aj or an = sn − sn−1. Now we define the Cesàro averaging

methods (C,α) for α ≥ 0 (see [448, Section 2.2]). Using Definitions 2.9 and 2.10 and Lemma 2.11
in [448], we are led to consider:

Aαn
Eαn

=

∑n
k=0

(
n−k+α

α

)
ak(

n+α
α

) .

If limn→∞ Aαn/Eαn converges to a limit, we say that {an} is summable (C,α), where summability
(C, k) implies summability (C, k + 1) to the same limit (see [510, Vol. I, p. 76]). Now:

A0
n

E0
n

=

n∑
k=0

ak =sn

A1
n

E1
n

=

∑n
k=0 (n− k + 1) ak

n+ 1
=

∑n
k=0 sk
n+ 1

A2
n

E2
n

=

∑n
k=0 (n− k + 1) (n− k + 2) ak

(n+ 1) (n+ 2)
=2

{∑n
k=0 sk
n+ 2

−
∑n
k=0 ksk

(n+ 1) (n+ 2)

}
.
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The sequence {an} is summable (C, 1) with limit 0 as limn→∞ A1
n/E1

n = 0. Therefore it is also
summable (C, 2), i.e.:

lim
n→∞

2

{∑n
k=0 sk
n+ 2

−
∑n
k=0 ksk

(n+ 1) (n+ 2)

}
= 0

and, as a result, limn→∞ n−2
∑n
k=0 ksk = 0. In our case, 1

N2

∑N−1
h=1 h

(
p

(h)
i − p2

i

)
→ 0.

As to the remainder term:

E |R3| ≤
1

6

B∑
i=1

E |qi − pi|3

(λ?pi)
3 ≤ 1

6

B∑
i=1

E |qi − pi|2

(λ?pi)
3 = o (1) .

This can also be proved in a different way as in [378, Section 4]. Let us start from the formula:

HN = H∞ −
B∑
i=1

(qi − pi) ln pi −DKL (q; p)

where DKL (q; p) :=
∑B
i=1 qi ln qi

pi
is the Kullback-Leibler divergence. Therefore, EDKL (q; p) =

H∞ − EHN and, as DKL (q; p) ≥ 0 (see [184, p. 422]), EHN ≤ H∞ and the bias of HN is always
negative. Now, from [184, Theorem 5]:

DKL (q; p) ≤ ln

(
1 +

B∑
i=1

(qi − pi)2

pi

)

and, through Jensen inequality:

EDKL (q; p) ≤ E ln

(
1 +

B∑
i=1

(qi − pi)2

pi

)
≤ ln

(
1 +

B∑
i=1

E (qi − pi)2

pi

)
.

At last:

0 ≤ H∞ − EHN ≤ ln

(
1 + E

B∑
i=1

(qi − pi)2

pi

)
≤

B∑
i=1

E (qi − pi)2

pi

and: ∣∣∣∣∣H∞ − EHN −
1

2

B∑
i=1

E (qi − pi)2

pi

∣∣∣∣∣ ≤ 1

2

B∑
i=1

E (qi − pi)2

pi
.

Now we turn to the mixing case. We can apply the reasoning leading to (4.7.4) in Lemma 4.3 in
Section 4.7.2 to show that

lim
N→∞

N

B∑
i=1

E (qi − pi)2

2pi
=
B − 1

2
+

B∑
i=1

∑∞
h=1

(
p

(h)
i − p2

i

)
pi

.

As far as E |R3| is concerned, we use Theorem 6.3 in [409]:

N3E |qi − pi|3 = E |N (qi − pi)|3 ≤ 2113

{
s3
N +N

∫ 1

0

[
α−1 (u) ∧N

]2
Q3 (u) du

}
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where s2
N :=

∑N
j=1

∑N
`=1 |Cov (1 {xj = i} , 1 {x` = i})| and Q (·) is the quantile function of the ran-

dom variable 1 {xj = i}. Now:

s2
N :=

N∑
j=1

N∑
`=1

∣∣∣p(j−`)
i − p2

i

∣∣∣ ≤ Npi (1− pi) + 2N

N−1∑
h=1

α (h)− 2

N−1∑
h=1

hα (h)

≤Npi (1− pi) + 2N

N−1∑
h=1

α (h) .

As
∑∞
h=1 α (h) <∞, s2

N = O (N). From (C.10) in [409], using the fact that Q (·) ≤ 1:

Mp,α,N (Q) =

∫ 1

0

[
α−1 (u) ∧N

]p−1
Qp (u) du ≤ max (1, p− 1)

N−1∑
h=1

(h+ 1)
p−2

α (h)

and E |qi − pi|3 . N−
3
2 + N−2

∑N−1
h=1 hα (h). From

∑∞
h=1 α (h) < ∞ we get α (h) = o

(
h−1

)
and

E |R3| = o
(
N−1

)
.

4.7.4 Asymptotic normality and Berry-Esséen bound

Proof of Proposition 4.3. Asymptotic normality ofHN follows from asymptotic normality of
√
N (q− p)

(see Lemma 4.3 in Section 4.7.2) and the delta method (see, e.g., Example 6.1 (b) in [450, p. 279]).
The quantity

√
N (HN −H∞) is asymptotically equivalent to:

B∑
i=1

∂H∞
∂pi

·
√
N (qi − pi) = −

B∑
i=1

(1 + ln pi) ·
√
N (qi − pi) = −

B∑
i=1

ln pi ·
√
N (qi − pi) .

This is asymptotically normal with variance:

B∑
i=1

B∑
i′=1

Σii′ ln pi ln pi′

=

B∑
i=1

pi ln2 pi +

B∑
i=1

B∑
i′=1

{
2

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
− pipi′

}
· ln pi ln pi′

=

B∑
i=1

pi ln2 pi −

(
B∑
i=1

pi ln pi

)2

+ 2

B∑
i=1

B∑
i′=1

∞∑
h=1

(
p

(h)
ii′ + p

(h)
i′i

2
− pipi′

)
ln pi ln pi′

where Σii and Σii′ are defined in Lemma 4.3 in Section 4.7.2, and the first equality uses the fact
that Σii is identical to pi plus the expression for Σii′ in which i′ is formally replaced by i.

Now we turn to the Berry-Esséen bound. We will apply Lemma 1.3 in [450, p. 261], i.e. the
inequality:

‖FW+∆ − Φ‖∞ ≤‖FW − Φ‖∞ + 4E |W∆|+ 4E |∆|

≤ ‖FW − Φ‖∞ + 4
√
EW 2E∆2 + 4

√
E∆2,
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valid for any random variables W and ∆. We identify W + ∆ with
√
N (HN −H∞) /σ and W

with −σ−1
∑B
i=1

√
N (qi − pi) · ln pi. As far as ‖FW − Φ‖∞ is concerned, if

∑∞
j=1 jϕ (j) < ∞, it is

shown to be O
(
N−1/2

)
in [408, Théorème 1]. Now we turn to the second term, and we remark that

EW 2 = 1. Therefore:
‖FW+∆ − Φ‖∞ ≤ O

(
N−

1/2
)

+ 8
√
E∆2.

From Lemma 4.1 in Section 4.7.1, we have:

HN = H∞ −
B∑
i=1

(qi − pi) ln pi +R2

where |R2| ≤ 1
2

∑B
i=1

(qi−pi)2
λ?pi

. Therefore, ∆ = −
√
N
σ R2 and:

∆2 ≤ N

4λ?,2σ2

(
B∑
i=1

(qi − pi)2

pi

)2

≤ NB

4λ?,2σ2

B∑
i=1

(qi − pi)4

p2
i

.

Using the fact that α (n) ≤ ϕ (n) and ϕ (n) ≤ κ (n+ 1)
−2 for any n, by Remark 6.3 in [409] or Eq.

(2.10) in [409, p. 36], E (qi − pi)4
= O

(
N−2

)
and E∆2 = O

(
N−1

)
. As a consequence the whole

bound is O
(
N−1/2

)
.

4.7.5 Distribution under degeneracy

Proof of Proposition 4.4. A seldom observed fact is that, if pi ≡ 1/B for any i, the first-order term
in Lemma 4.1 in Section 4.7.1 is:

B∑
i=1

(qi − pi) ln pi = − lnB ·
B∑
i=1

(
qi −

1

B

)
= − lnB ·

(
B∑
i=1

qi − 1

)
= 0.

In this case the asymptotic distribution is a degenerate normal random variable with null variance.
Therefore, we apply Lemma 4.2 in Section 4.7.1 identifying k = B, τn =

√
N , Xn = q, µ = p and

g (x) = −
∑B
i=1 xi lnxi. The convergence

√
N (q− p) →D N (0,Σ) (that is τn (Xn − µ) →D X) is

proved in Lemma 4.3 in Section 4.7.2. We need to compute ∂2g(x)
∂x∂x′ that is the diagonal matrix with[

∂2g(x)
∂x∂x′

]
ii

= − 1
xi
, so that ∂2g(x)

∂x∂x′

∣∣∣
x=µ

is −dg (p). If we write G for a standard normal vector, we

have:
N (HN −H∞)→D −

1

2
G′Σ

1
2 dg (p) Σ

1
2 G.

It can be shown (see, e.g., [467]) that the asymptotic distribution of N (HN −H∞) is minus a
weighted sum of chi square random variables whose weights are the eigenvalues, arranged in de-
creasing order, (λ1, . . . , λB) of the matrix Ω where:

Ωii =
1

2pi
Σii,

Ωij =
1

2 (pipj)
1/2

Σij ,
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where Σii and Σii′ are defined in Lemma 4.3 in Section 4.7.2. At last:

N (HN −H∞)→D −
B∑
i=1

λiχ
2
1,i.

Proof of Corollary 4.2. We have:

N (HN − bias (HN )−H∞) = N (HN −H∞)−Nbias (HN ) .

From (4.4.3) and (4.4.4):

bias (HN ) = − tr (dg (p̄) Σ)

2N
= − tr (Ω)

N
= −

∑B
i=1 λi
N

,

from which we get the result.

4.7.6 Preliminary results on Markov chain estimation

Proof of Proposition 4.5. We can write:[
p

(h)
ii′ − pipi′

]
= dg (p) Ph − pp′

·

[ ∞∑
h=1

(
p

(h)
ii′ − pipi′

)
+

∞∑
h=1

(
p

(h)
i′i − pipi′

)
+ pi1 {i = i′} − pipi′

]

=

∞∑
h=1

(
dg (p) Ph − pp′

)
+

∞∑
h=1

(
dg (p) Ph − pp′

)′
+ dg (p)− pp′.

We then note that pp′ = dg (p) ιp′ allows us to write:

∞∑
h=1

(
dg (p) Ph − pp′

)
= dg (p)

∞∑
h=1

(
Ph − ιp′

)
.

It is well known that:
∞∑
h=0

(
Ph − ιp′

)
= (I−P + ιp′)

−1
= H

from which:
∞∑
h=1

(
Ph − ιp′

)
= H− I. (4.7.5)
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Therefore:

Σ =

∞∑
h=1

(
dg (p) Ph − pp′

)
+

∞∑
h=1

(
dg (p) Ph − pp′

)′
+ dg (p)− pp′

= dg (p)

∞∑
h=1

(
Ph − ιp′

)
+

∞∑
h=1

(
Ph − ιp′

)′
dg (p) + dg (p)− pp′

= dg (p) (H− I) + (H′ − I) dg (p) + dg (p)− pp′

= dg (p) H + H′dg (p)− dg (p)− pp′.

The bias can be computed as:

bias (HN ) = − tr (dg (p̄) Σ)

2N

= −2trH−B − 1

2N

where we have used the equalities tr (AB) = tr (BA), dg (a) dg (ā) = I, tr (A) = tr (A′), pp′ =

pι′dg (p) and tr (pι′) = tr (ι′p) = 1.
The matrix Ω used to obtain the distribution in the degenerate case is then defined as:

Ω = −1

2
I +

1

2
dg
(
p�

1
2

)
(Hdg (p̄) + dg (p̄) H′ −U) dg

(
p�

1
2

)
.

Lemma 4.4. For the method in Section 4.4.2:

̂bias (HN ) ' bias (HN ) +OP

(
N−

3/2
)
.

Proof. Using the matrix differential notation (see [320, 235, 46]), we write dP := P̂−P, where
dP is asymptotically negligible of order OP

(
N−1/2

)
. It is easy to see that:

(p̂− p)
′
(I−P + ιp′) = p̂′

(
P̂−P

)
.

We have:

(p̂− p)
′
(I−P + ιp′) = p̂′dP

(p̂− p)
′

= p̂′dP (I−P + ιp′)
−1

= p̂′dPH

p̂′ = p′ + p̂′dPH

p̂ = p + H′dP′p̂.

Replacing the expression for p̂ in the last formula we get:

p̂ = p + H′dP′p̂ ' p + H′dP′p.
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From this:

Ĥ =
(
I− P̂ + ιp̂′

)−1

= (I−P− dP + ι (p′ + p̂′dPH))
−1

=
(
H−1 + (ιp̂′dPH− dP)

)−1

= H (I + H (ιp̂′dPH− dP))
−1

' H (I−H (ιp̂′dPH− dP))

' H (I−H (ιp′dPH− dP))

Then:

̂bias (HN ) = −2trĤ−B − 1

2N

' −2trH−B − 1

2N
+

tr
[
H2 (ιp′dPH− dP)

]
N

= bias (HN ) +
tr
[
H2 (ιp′dPH− dP)

]
N

.

This implies that ̂bias (HN )− bias (HN ) = OP
(
N−3/2

)
.

4.7.7 Error in the estimation of bias

We first adapt Lemma A.1 in [388, p. 739] to our case. This result is a version of Theorem 10 in
[220, p. 283], Lemma 2 in [12, p. 15], and Proposition 1 in [14, p. 825]. It generalizes these results
as it allows for a bandwidth not diverging to ∞, as required by some recent results (see Theorem
2.1 in [388, p. 707]). We define:

F (q) :=
1

2π

∞∑
h=−∞

|h|q Π(h).

Lemma 4.5. Assume AC. Then, Σ̂−Σ = OP

(
S

1/2
N N−1/2

)
.

Proof. We first restate Assumptions A, B and C in [14]. We identify T with N , t with n, θ with
p, θ̂ with q, Vt (θ) with xn − p, Vt

(
θ̂
)
with xn − q.

In order to verify Assumption A in [14, p. 823], we use his Lemma 1. Our process {x1 − p,x2 − p, . . . }
is zero-mean, fourth-order stationary and bounded. Therefore, we can take ν =∞ and it’s enough
to require

∑∞
n=1 n

2α (n) <∞, as in our condition 1 of assumption AC.
Now we consider Assumption B in [14, p. 825]. Assumption B (i) is verified by an application

of Theorem 18.5.4 of [244] or of [129, p. 67] under
∑∞
n=1 α (n) < ∞. Assumption B (ii) is trivially

true because of the boundedness of xn. For Assumption B (iii) it is enough to identify (∂/∂θ′)Vt (θ)

with (∂/∂p′) (xn − p) = −I. Assumption B (iv) is true under condition 3 of assumption AC.
As far as Assumption C (i) in [14, p. 826] is concerned, this is true by the reasoning reported just

after the statement of his Assumption C. Part (ii) of the assumption is true as
(
∂2/∂θ∂θ′

)
Vta (θ) is
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0.
Now we turn to the requirements stated in [388, p. 739]. Conditions 2, 3 and 4 in our result

come from Lemma A.1 in [388, p. 739], respectively, as a statement in the text, as Eq. (A.1),
and as condition (i). We just note that condition (i) is not needed explicitly in [14] because, when
SN →∞, S−1

N

∑N−1
j=−N+1 |k (j/SN )| →

∫
|k (x)|dx (see [14, p. 852]). This is finite by our condition

3 of Assumption AC. Instead, [388] requires his condition (i) (see [388, p. 744]) because SN may
not diverge. As we allow SN to be bounded, we require it but change its statement. Condition (iii)
of Lemma A.1 in [388, p. 739] is automatically verified as EVt (θ) (∂/∂θ′)Vt−j (θ) = −EVt (θ) and
this is a zero vector. Condition (ii) of Lemma A.1 in [388, p. 739] is trickier. We first note that the
matrix denoted Ω̂ in that source corresponds to the matrix Σ̃ defined as:

Σ̃ =

N−1∑
h=−N+1

k

(
h

SN

)
Π̃

(h)

where:

Π̃
(h)

=

 1
N

∑N
n=h+1 (xn − p) (xn−h − p)

′
h ≥ 0,

1
N

∑N
n=−h+1 (xn+h − p) (xn − p)

′
h < 0.

(Note that Π̃
(h)

is similar to Π(h), but the centering is different.) Now, we have EΠ̃
(h)

= N−h
N Π(h)

and:

EΣ̃ = EΠ̃
(0)

+ 2

N−1∑
h=1

k

(
h

SN

)(
1− h

N

)
Π(h).

This means that:

EΣ̃−Σ = −2

N−1∑
h=1

(
1− k

(
h

SN

))
Π(h) − 2

N

N−1∑
h=1

k

(
h

SN

)
hΠ(h) − 2

∞∑
h=N

Π(h).

The requirement in [388, Lemma A.1] is that EΣ̃ − Σ = O
(
S

1/2
N N−1/2

)
. Let γ be a vector with

‖γ‖L2 = 1.
Let us start from the second term. For q ≥ 1, we have:

1

N

∣∣∣∣∣γ′
{
N−1∑
h=1

k

(
h

SN

)
hΠ(h)

}
γ

∣∣∣∣∣ ≤ 1

N

N−1∑
h=1

∣∣∣∣k( h

SN

)∣∣∣∣h∥∥∥Π(h)
∥∥∥
L2

≤ 1

N

N−1∑
h=1

h
∥∥∥Π(h)

∥∥∥
L2
≤ 1

N

∞∑
h=1

h
∥∥∥Π(h)

∥∥∥
L2
.
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This is automatically O
(
S

1/2
N N−1/2

)
. For q < 1, we use the fact that |h/N | ≤ |h/N |q for h < N :

1

N

∣∣∣∣∣γ′
{
N−1∑
h=1

k

(
h

SN

)
hΠ(h)

}
γ

∣∣∣∣∣ ≤ 1

N

N−1∑
h=1

∣∣∣∣k( h

SN

)∣∣∣∣h∥∥∥Π(h)
∥∥∥
L2

≤N−q
N−1∑
h=1

hq
∥∥∥Π(h)

∥∥∥
L2
.

When q ≥ 1/2, this is automatically O
(
S

1/2
N N−1/2

)
. When q < 1/2, it requires N 1/2−qS

−1/2
N = O (1).

The last term can be majorized as:∣∣∣∣∣γ′
{ ∞∑
h=N

Π(h)

}
γ

∣∣∣∣∣ ≤
∞∑
h=N

∥∥∥Π(h)
∥∥∥
L2

≤N−q
∞∑
h=N

hq
∥∥∥Π(h)

∥∥∥
L2
.

We need N−q
∑∞
h=N h

q
∥∥∥Π(h)

∥∥∥
L2

= O
(
S

1/2
N N−1/2

)
. For q ≥ 1/2, this is automatically verified. For

q < 1/2, it is true under N 1/2−qS
−1/2
N = O (1).

Now we turn to the first term. If SN 6→ ∞ as N → ∞, we just require it to be O
(
S

1/2
N N−1/2

)
.

If SN →∞ as N →∞, we can reason as in [220, p. 284] and in [12, pp. A4-A5]. We have:

SqN

N−1∑
h=1

(
1− k

(
h

SN

))
Π(h) =

N−1∑
h=1

(
1− k (h/SN )

(h/SN )
q − kq

)
hqΠ(h) + kq

N−1∑
h=1

hqΠ(h).

Now, the function defined by 1−k(x)
|x|q for x 6= 0 and by kq for x = 0 is non-negative and bounded by a

constantM . Hence, 1−k(x)
|x|q ≤M . Let us choose a fixed N0 such that

∑∞
h=N0

hq
∥∥∥Π(h)

∥∥∥
L2
≤ ε/ (2M)

for ε > 0. Then:∥∥∥∥∥
N−1∑
h=1

(
1− k (h/SN )

(h/SN )
q − kq

)
hqΠ(h)

∥∥∥∥∥
L2

=

∥∥∥∥∥
N0−1∑
h=1

(
1− k (h/SN )

(h/SN )
q − kq

)
hqΠ(h) +

N−1∑
h=N0

(
1− k (h/SN )

(h/SN )
q − kq

)
hqΠ(h)

∥∥∥∥∥
L2

≤
N0−1∑
h=1

∣∣∣∣1− k (h/SN )

(h/SN )
q − kq

∣∣∣∣hq ∥∥∥Π(h)
∥∥∥
L2

+

N−1∑
h=N0

∣∣∣∣1− k (h/SN )

(h/SN )
q − kq

∣∣∣∣hq ∥∥∥Π(h)
∥∥∥
L2

≤
N0−1∑
h=1

∣∣∣∣1− k (h/SN )

(h/SN )
q − kq

∣∣∣∣hq ∥∥∥Π(h)
∥∥∥
L2

+ 2M

N−1∑
h=N0

hq
∥∥∥Π(h)

∥∥∥
L2

. o (1) + ε = o (1)

where the first term is o (1) due to the bounded convergence of 1−k(x)
|x|q − kq to 0 and the second is
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o (1) due to the arbitrariness of ε. When N →∞,
∑N−1
h=1 h

qΠ(h) converges to F(q). As a result:

− 2

N−1∑
h=1

(
1− k

(
h

SN

))
Π(h)

= −2S−qN

N−1∑
h=1

(
1− k (h/SN )

(h/SN )
q − kq

)
hqΠ(h) − 2kqS

−q
N

N−1∑
h=1

hqΠ(h)

= o
(
S−qN

)
− 2kqS

−q
N F(q).

If kq 6= 0, the second term dominates and we need −2kqS
−q
N F(q) = O

(
S

1/2
N N−1/2

)
. If kq = 0, the

condition boils down to the one for SN 6→ ∞.
Proof of Proposition 4.6. We consider a limited development of ̂bias (HN ) with respect to Σ̂ii

and qi respectively around Σii and pi:

̂bias (HN ) =
1

2N

B∑
i=1

Σ̂ii

qi
=

1

2N

B∑
i=1

Σii +
(
Σ̂ii −Σii

)
pi

(
1 + qi−pi

pi

)
' 1

2N

B∑
i=1

Σii +
(
Σ̂ii −Σii

)
pi

(
1− qi − pi

pi
+

(
qi − pi
pi

)2
)

=
1

2N

B∑
i=1

(
Σii

pi
+

Σ̂ii −Σii

pi
− Σii (qi − pi)

p2
i

−

(
Σ̂ii −Σii

)
(qi − pi)

p2
i

+
Σii (qi − pi)2

p3
i

+

(
Σ̂ii −Σii

)
(qi − pi)2

p3
i

 .

Now, qi − pi = OP
(
N−1/2

)
and, under AC, Lemma 4.5 implies that Σ̂ii −Σii = OP

(
(SN/N)

1/2
)
. At

last we get:
̂bias (HN ) ' bias (HN ) +OP

(
S

1/2
N N−

3/2
)
. (4.7.6)

For the Markov case, we refer to Lemma 4.4 in Section 4.7.6.
Proof of Corollary 4.3. We only consider the case of Section 4.4.1. It is simple to see that:

√
N
(
HN − ̂bias (HN )−H∞

)
=
√
N (HN − bias (HN )−H∞)

+
√
N
(

bias (HN )− ̂bias (HN )
)

=
√
N (HN − bias (HN )−H∞) +OP

(
S

1/2
N N−1

)

125



and:

N
(
HN − ̂bias (HN )−H∞

)
= N (HN − bias (HN )−H∞)

+N
(

bias (HN )− ̂bias (HN )
)

= N (HN − bias (HN )−H∞) +OP

(
S

1/2
N N−

1/2
)

and, provided SN = o (N), the results of Corollaries 4.1 and 4.2.
Proof of Corollary 4.4. Let us first consider the case when σ2 > 0. Then, from Proposition 4.3

it is trivial to see that:
MSE (HN ) = E (HN −H∞)

2
= O

(
N−1

)
.

We have:

MSE (HN )−MSE (HN − bias (HN ))

= E (HN −H∞)
2 − E (HN − bias (HN )−H∞)

2

= bias (HN ) (2EHN − bias (HN )− 2H∞)

' [bias (HN )]
2

= O
(
N−2

)
.

At last:

MSE
(
HN − ̂bias (HN )

)
−MSE (HN − bias (HN ))

= E
(
HN − ̂bias (HN )−H∞

)2

− E (HN − bias (HN )−H∞)
2

= E
(

bias (HN )− ̂bias (HN )
)(

2HN − ̂bias (HN )− bias (HN )− 2H∞

)
= O

([
E
(

bias (HN )− ̂bias (HN )
)2
]1/2

·
[
E
((
HN − ̂bias (HN )−H∞

)
+ (HN − bias (HN )−H∞)

)2
]1/2
)

= O

([
E
(

bias (HN )− ̂bias (HN )
)2
]1/2

·
[
2

(
E
(
HN − ̂bias (HN )−H∞

)2

+ E (HN − bias (HN )−H∞)
2

)]1/2
)

= O
(
S

1/2
N N−2

)
where the third step comes from Cauchy-Schwarz inequality, the fourth from the inequality (a+ b)

2 ≤
2
(
a2 + b2

)
, and the fifth from Proposition 4.6 and Corollaries 4.1 and 4.3.
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When σ2 = 0, from Proposition 4.4:

MSE (HN ) = E (HN −H∞)
2

= O
(
N−2

)
.

The formula for MSE (HN )−MSE (HN − bias (HN )) remains unchanged. The formula for MSE
(
HN − ̂bias (HN )

)
−

MSE (HN − bias (HN )) becomes:

MSE
(
HN − ̂bias (HN )

)
−MSE (HN − bias (HN ))

= O

([
E
(

bias (HN )− ̂bias (HN )
)2
]1/2

·
[
E
((
HN − ̂bias (HN )−H∞

)
+ (HN − bias (HN )−H∞)

)2
]1/2
)

= O
(
S

1/2
N N−

5/2
)

if Corollary 4.1 is replaced by Corollary 4.2.

4.7.8 Error in the estimation of the distribution under degeneracy

Proof of Proposition 4.7. Suppose that the matrix Ω is estimated through Ω̂, where Ω̂−Ω = oP (1).
This means that we will replace the distribution of

∑B
i=1 λiχ

2
1,i by the distribution of

∑B
i=1 λ̂iχ

2
1,i.

We would like to characterize the error in this replacement through a bound on:∥∥∥F∑B
i=1 λ̂iχ

2
1,i
− F∑B

i=1 λiχ
2
1,i

∥∥∥
∞
.

The eigenvalues of both Ω and Ω̂ are non-negative as both of them are variance matrices. Let B?

be the number of non-zero eigenvalues of Σ?, so that λB? > 0. We need to differentiate the case
B? = 1 from the case B? > 1.

By the Wielandt-Hoffman inequality (see [255, p. 126]), we have:∣∣∣λi − λ̂i∣∣∣ ≤ ∥∥∥Ω̂−Ω
∥∥∥

1
, i = 1, . . . , B

and therefore
∣∣∣λB? − λ̂B? ∣∣∣ ≤ ∥∥∥Ω̂−Ω

∥∥∥
1
or λB? −

∥∥∥Ω̂−Ω
∥∥∥

1
≤ λ̂B? . As

∥∥∥Ω̂−Ω
∥∥∥

1
= oP (1), for N

large enough, λ̂B? > 0, so that the two matrices have ultimately the same rank.
We start from the case B? > 1. We define λ = (λ1, . . . , λB), λ̂ =

(
λ̂1, . . . , λ̂B

)
, Λ = dg (λ)

and Λ̂ = dg
(
λ̂
)
. The techniques in [94, 442] do not work directly here, as they require part of the
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eigenvalues to coincide. However, we can write:∥∥∥F∑B
i=1 λ̂iχ

2
1,i
− F∑B

i=1 λiχ
2
1,i

∥∥∥
∞

= sup
x≥0

∣∣∣∣∣P
{

B∑
i=1

λ̂iχ
2
1,i ≤ x

}
− P

{
B∑
i=1

λiχ
2
1,i ≤ x

}∣∣∣∣∣
= sup

x≥0

∣∣∣∣P{∥∥∥N (0, Λ̂
)∥∥∥

L2

≤
√
x

}
− P

{
‖N (0,Λ)‖L2

≤
√
x
}∣∣∣∣ .

We use Theorem 1 in [352]:

sup
x≥0

∣∣∣∣P{∥∥∥N (0, Λ̂
)∥∥∥

L2

≤ x
}
− P

{
‖N (0,Λ)‖L2

≤ x
}∣∣∣∣

≤ C ·


(

B∑
i=1

λ2
i ·

B∑
i=2

λ2
i

)−1/4

+

(
B∑
i=1

λ̂2
i ·

B∑
i=2

λ̂2
i

)−1/4
 ·

B∑
i=1

∣∣∣λi − λ̂i∣∣∣
for an absolute constant C > 0. By theWielandt-Hoffman inequality (see [255, p. 126]),

∑B
i=1

∣∣∣λi − λ̂i∣∣∣ ≤∥∥∥Ω̂−Ω
∥∥∥

1
. Now, Ω̂−Ω = oP (1) implies that also λ̂i − λi = oP (1), so that, for N large enough:

∥∥∥F∑B
i=1 λ̂iχ

2
1,i
− F∑B

i=1 λiχ
2
1,i

∥∥∥
∞
≤ C

∥∥∥Ω̂−Ω
∥∥∥

1(∑B
i=1 λ

2
i ·
∑B
i=2 λ

2
i

)1/4

where the constant C is here different from the one seen above.
When B? = 1, we have:∥∥∥Fλ̂1χ2

1
− Fλ1χ2

1

∥∥∥
∞

= sup
x

∣∣∣P{λ̂1χ
2
1 ≤ x

}
− P

{
λ1χ

2
1 ≤ x

}∣∣∣
= sup

x

∣∣∣P{∣∣∣λ̂1/2
1 Z

∣∣∣ ≤ x}− P
{∣∣∣λ1/2

1 Z
∣∣∣ ≤ x}∣∣∣

= sup
x

∣∣∣P{λ̂1/2
1 Z ≤ x

}
− P

{
λ̂

1/2
1 Z ≤ −x

}
− P

{
λ

1/2
1 Z ≤ x

}
+ P

{
λ

1/2
1 Z ≤ −x

}∣∣∣
≤2 sup

x>0

∣∣∣Φ (x)− Φ
(
λ̂

1/2
1 λ
−1/2
1 x

)∣∣∣ .
We are only interested in the case in which λ̂

1/2
1 λ
−1/2
1 ' 1, therefore we write λ̂

1/2
1 λ
−1/2
1 = 1 + ε and

we get:
Φ (x)− Φ

(
λ̂

1/2
1 λ
−1/2
1 x

)
= Φ (x)− Φ ((1 + ε)x) ' φ (x)xε.

This implies that
∣∣∣Φ (x)− Φ

(
λ̂

1/2
1 λ
−1/2
1 x

)∣∣∣ . supx∈R |φ (x)x| · |ε| ≤ C |ε| (where C can be taken
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equal to or larger than supx∈R |φ (x)x| = 1/
√

2πe
.
= 0.2419707). Therefore:

∥∥∥Fλ̂1χ2
1
− Fλ1χ2

1

∥∥∥
∞

. 2C

∣∣∣∣∣∣ λ̂1 − λ1

λ
1/2
1

(
λ̂

1/2
1 + λ

1/2
1

)
∣∣∣∣∣∣ . C

∣∣∣∣∣ λ̂1 − λ1

λ1

∣∣∣∣∣ .
In this case too,

∥∥∥F∑B
i=1 λ̂iχ

2
1,i
− F∑B

i=1 λiχ
2
1,i

∥∥∥
∞

= O
(∥∥∥Ω̂−Ω

∥∥∥
1

)
.

The final part of the statement comes from the results in Lemma A.1 in [388] under assumption
AC.

4.8 Supplementary results

4.8.1 A Non-ergodic Example

Consider an iid standard Gaussian sequence {y1, y2, . . . } and a standard Gaussian random variable
z independent of the previous sequence. Then we define:

x̃i = βz +
(
1− β2

)1/2
yi.

As above, the dichotomized process is based on the signs of the original process:

xi = 1 + 1 {x̃i ≥ 0} .

It is clear that:

p1 = P {xi = 1} = P {x̃i < 0} = 1/2

p2 = 1− p1 = 1/2.

However, Cov (x̃1, x̃h+1) = Cov
(
βz +

(
1− β2

)1/2
y1, βz +

(
1− β2

)1/2
yh+1

)
= β2. From [474, p.

189], we have:

p
(h)
22 = p

(h)
11 = 1/4 + 1/2π arcsin

(
β2
)

p
(h)
12 = p

(h)
21 = 1/2− p(h)

22 .

In this case, the process {x̃1, x̃2, . . . } is stationary but non-ergodic (see, e.g., Example 13.9 in
[118, p. 196]), and so is {x1, x2, . . . }. Therefore:

q1 =
n1

N
=

∑N
j=1 1 {xj = 1}

N
=

∑N
j=1 1 {x̃j < 0}

N

=

∑N
j=1 1

{
yi < − β

(1−β2)
1/2
z
}

N
→ Φ

(
− β

(1− β2)
1/2
z

)
P− as.
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Note that z is an invariant random variable. At last the limit of the observed entropy is:

H∞ =− Φ

(
− β

(1− β2)
1/2
z

)
ln Φ

(
− β

(1− β2)
1/2
z

)

− Φ

(
β

(1− β2)
1/2
z

)
ln Φ

(
β

(1− β2)
1/2
z

)
.

In Figure 4.8.1 we show what is the behavior of the statistic in this case. The grey jigsaw lines
represent some trajectories of HN , while the dark grey curved line represents EHN (based on 250,000
samples) and the dark grey horizontal line represents EH∞. On the right plot, we display the
empirical cdf of HN with N = 25 (black dashed line), N = 50 (black dotted line), N = 100 (black
dash-dot line), N = 200 (black long dash line). The black solid line represents the empirical cdf of
H∞. In the non-ergodic case HN converges (almost surely) to the random variable H∞.

In this case, H∞ 6= EH∞. The first quantity has been obtained above. The second one is given
by:

EH∞ =− E

{
Φ

(
− β

(1− β2)
1/2
z

)
ln Φ

(
− β

(1− β2)
1/2
z

)}

+ E

{
Φ

(
β

(1− β2)
1/2
z

)
ln Φ

(
β

(1− β2)
1/2
z

)}

=− 2E

{
Φ

(
β

(1− β2)
1/2
z

)
ln Φ

(
β

(1− β2)
1/2
z

)}
.

The first-order bias correction of EHN takes the form:

− B − 1

2N
− 1

N

B∑
i=1

∑N−1
h=1

(
p

(h)
i − p2

i

)
pi

= − 1

2N
− 2 (N − 1)

πN
arcsin

(
β2
)

= O (1) .

Note that, while the first-order bias correction reduces the bias in the estimation of EH∞ through
EHN , nothing guarantees that this reduces the bias in the estimation of H∞ through HN .
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Figure 4.8.1: Ensemble and time averages of the entropy in the non-ergodic case: on the left plot, 50
trajectories of HN as a function of N (light grey jigsaw lines), EH∞ (dark grey horizontal line), EHN

(dark grey curved line), vertical lines at N ∈ {25, 50, 100, 200} (respectively black dashed, dotted,
dash-dot, long dashed lines); on the right plot, empirical cdf of HN with N = 25 (black dashed line),
N = 50 (black dotted line), N = 100 (black dash-dot line), N = 200 (black long dashed line) and
N =∞ (black solid line).
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Chapter 5

Nonparametric Moment-based
Estimation of Simulated Models
without Optimization1

In this chapter, a new method for the estimation of simulated models is presented. It exploits a
nonparametric sieve regression estimated through OLS to find the parameters of a simulation model
producing statistics that are close to the ones obtained in real-world data. The simulation model is
run for several values of the parameters, statistics are computed on each run, and the function linking
the generated statistics and the associated parameters is estimated nonparametrically. Estimates
of the parameters are then obtained through the previous nonparametric estimate using the real-
world statistics as explanatory variables. At odds with simulated minimum-distance techniques (e.g.,
indirect inference and simulated method of moments), our framework does not involve any objective
function and no optimization algorithm is required. The full asymptotic theory of the estimator
is explicitly and rigorously characterized, including the order of the bias, confidence intervals and
hypotheses tests. The approach is evaluated through a small simulation study.

5.1 Introduction

In this paper, we propose a new method for the estimation of simulation-based models. Our aim is to
find the parameters of a simulated model that produce statistics that are close to the ones obtained
in real-world/benchmark data. This generally requires the minimization of a distance between
simulated and real-world data, but our setup does not require any optimization algorithm typically
used in simulated minimum-distance techniques (e.g., indirect inference and method of simulated
moments, see below). Instead, the method relies upon ordinary least squares (OLS) nonparametric
regression.

1This chapter is co-authored with Raffaello Seri.
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Classical frameworks for the estimation, calibration and validation of statistical models through
simulation involve indirect inference (II, [196, 460, 195]), method of simulated moments (MSM
or SMM, [335, 372, 133]), simulated minimum-distance (SMD, [217, 463, 191, 48]), approximated
([292, 293, 157, 2]) and nonparametric simulated maximum likelihood ([156, 272]), and approximate
Bayesian computations (ABC, [148, 25, 131, 175, 168, 458]).

As agent-based models (ABM) produce simulated observations, their estimation and calibration
has been generally performed adapting the previous econometric techniques in order to select the
parameter values that best fit the model (see [444, p. 3]). Many examples can be found in the litera-
ture, among these we quote [189, 190, 54, 150] who estimate the parameters of an ABM via a version
of II, [499, 172, 206, 90] who exploit MSM, [401, 282] who develop calibration techniques based on
SMD, [277, 314] who apply simulated maximum likelihood methods, and [207] who rely on ABC
techniques. The computational burden of ABM simulations has spurred the development of algo-
rithms, relying upon kriging (see [271]) or machine learning techniques, improving the performances
of these estimators through surrogate meta-models (see [422, 283]).

The calibration algorithms have inspired efforts in some related statistical problems that are
relevant for ABM. First, an important branch of application of the minimum-distance approach is
sensitivity analysis (SA). This stream of literature aims at studying the structure and the uncertainty
associated to the model output when a change occurs in the model input (see [395] for a broad
application of SA to different fields of research). Many approaches are possible, the most recent
advances being summarized in [424, 34, 66, 472, 65, 469]. Second, recent years have seen a surge of
interest in the validation of ABM, that is the comparison of the output of a calibrated model with an
external source of data (see [151] and [444, p. 2] for a critical review of the definitions of validation).
This involves both the choice of distances between data to be used in calibration (see [215, 282])
and the development of algorithms for the identification of those combinations of parameters that
reproduce features of real data (see [29, 444]). In the latter case, some care has been devoted in the
literature to avoid numerical optimization.

It is well known that, under certain assumptions, the estimators proposed above are consistent
and asymptotically normal (see, e.g., [475, p. 239]). However, they present some drawbacks. First
of all, almost all of them have strong requirements in terms of computational time (see [472, 307]).
Second, many of them require the choice of a statistical metric measuring the dissimilarity between
simulated and real-world observations (see [184, 301, 402, 32, 329, 426]) and/or the identification of
the moments to match (see [179, 499, 111, 75]). A third drawback, that has not been fully recognized
in the previous literature, is that several simulation models do not respect some of the conditions
for the identification of the parameter θ in simulation-based estimation methods. These issues are
mainly related to the violation of the stochastic equicontinuity condition (see, e.g., [335], [372] and
[355, pp. 2136-2137] for a definition). A detailed treatment of the dependence of the simulated data
on θ and the consequences of the violation of the stochastic equicontinuity condition are exposed in
Section 5.2.

To cope with these issues, some methods based on regression and its variants have been proposed,
but generally for prediction rather than for parameter estimation. These methods often rely on
complex machine learning (ML) techniques (see, e.g., [265, 403, 266] for a review and a comparison
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between regression and kriging meta-modeling in stochastic simulations, [449, 110, 400, 396] for
the estimation of parameters via quantile random forest regressions and neural networks). In a
technique developed by [86], parameter estimation is obtained via the least absolute shrinkage and
selection operator (Lasso). The authors identify a set of parameter values in the parameter space,
launch a simulation model generating a vector of statistics for each value of the parameters, then
they introduce the simulated summary statistics as independent variables in a regression where the
parameters are the dependent variables and, at last, they obtain the estimates as forecasts using the
real-world statistics as regressors in the regression estimated above.

Our aim is similar in spirit, but we perform parameter estimation using a linear regression
combined with sieve estimation (see [208, 354, 88]) and we explicitly and rigorously characterize
the full asymptotic theory of the estimator θ̂(j), including the order of the bias, confidence intervals
and hypotheses tests. In order to do so, we need to introduce a more formalized setup. More
specifically, we consider a simulation model indexed by a vector of parameters θ ∈ Θ ⊂ RK , where
the generic element of θ is θ(j) for j = 1, . . . ,K. For N parameter values selected in Θ we simulate
one or more runs used to compute M ≥ K statistics. Let the index j be fixed, and suppose we are
interested in the estimation of θ(j) alone. We estimate an OLS nonparametric regression of the form
θ

(j)
n = f

(j)
P

(
Ŝ1n, . . . , ŜMn

)
+η

(j)
n , where n = 1, . . . , N , f (j)

P is a linear combination of basis functions

and Ŝ1n, . . . , ŜMn are the statistics obtained from the data simulated by θ
(j)
n . If ŝ1, . . . , ŝM (i.e.

ŝ) are the statistics computed on real-world data, we can estimate θ̂(j) as θ̂(j) = f
(j)
P (ŝ1, . . . , ŝM ).

More details on the procedure are given below.
We believe that our setup has several advantages when compared to other estimation methods.

In the following we discuss these advantages.
First of all, our technique does not require any optimization. The computation of extremum es-

timators is notoriously tricky because of the existence of local extrema, the occurrence of boundary
solutions, the problems of identification of the extrema, etc., and this is exacerbated in simulation-
based estimation methods. Even when stochastic equicontinuity holds true because errors or innova-
tions are recycled (see Section 5.2), it is well known that some simulators do not have good properties
(see, as an early example, [296] for a discussion of the so-called crude frequency simulator for choice
probabilities) and often slow derivative-free methods of optimization are required (see [75, p. 178] for
a recent example). This is amplified when errors or innovations are not recycled because in that case
stochastic equicontinuity is violated and the objective function is discontinuous or non-differentiable
(see [189, 190, 277]). Moreover, as no optimization algorithm is involved in the estimation process,
our technique is less computationally intensive than classical simulation-based estimation methods.
As an example, in MSM the number of steps of the minimization procedure is not known in advance
and it is often larger when the number of replications used to estimate the statistics is smaller. On
the other hand, within our framework we are able to estimate the parameters also when only a
few points in the parameter space have been selected and the statistics are estimated using a small
number of replications. These estimates may be imprecise but are nevertheless available and can be
used as starting points for further refinements.

Second, despite relying on the choice of a finite number of statistics, our method is essentially
nonparametric. Indeed, we model the dependence of the parameters on the statistics as a nonpara-
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metric function through sieve estimation. This peculiarity allows to leave some liberty on the rela-
tion linking the statistics and the parameters to be estimated. When the statistics are moments, the
method shares some similarities with MSM and, more generally, the generalized method of moments
(GMM). GMM compares the moments based on real data with the theoretical moments expressed
as functions, known a priori, of the parameters. When these functions cannot be computed exactly,
MSM replaces them with sample expectations based on simulated data. However, while GMM is
generally semiparametric as it does not impose a functional form on the statistical model but it
only constrains its moments, its simulated counterpart, MSM, requires simulations from completely
specified statistical models and is therefore parametric. Our method, instead, is more flexible, as the
dependence between moments and parameters is left unspecified and estimated nonparametrically.
Our technique shows also some analogies with II, as the function linking the simulated statistics and
the related parameters can be thought of as the link function of II. However, in our framework this
relation is left unspecified and estimated nonparametrically. Therefore, differently from II, we do
not have to rely on the choice of an arbitrary auxiliary model.

Third, despite being nonparametric, our framework relies on OLS regression, a simple technique
available in most statistical computer programs. This implies that the algorithm can be implemented
in most software with less efforts than methods based on simulated minimum-distance, simulated
likelihood or machine learning techniques.

Fourth, our method estimates each parameter separately. On the one hand, this does not allow
to capture the constraints among the parameters and, as a result, the estimates can be outside the
parameter space. On the other hand, however, this may produce a gain of efficiency in terms of
computational time and could reduce the curse of dimensionality, particularly in over-parametrized
contexts. The number of parameters of the simulation model will still have an impact on compu-
tation: the number of parameter values for which simulations are required in order to estimate the
function f (j)

P depends on the number of parameters.
Fifth, our technique applies very much in the same way when the statistics are computed on a

time series extracted from a single simulation or on independent replications of the process. This
depends on the fact that our method only relies on the availability of a vector of statistics. Whether
these statistics are computed exploiting the last R observations of a trajectory or taking the last
observation from R distinct trajectories, the estimation method does not change.

Sixth, our estimation method allows to derive a full asymptotic theory for the estimator θ̂(j).
In particular, we are able to show the rate of convergence of θ̂(j) to θ(j), and to characterize the
asymptotic distribution of the estimator. This is useful to obtain confidence intervals and hypotheses
tests. Note that most estimation methods described above do not provide inferential tools in the
case of ABM, as the derivation of the asymptotic distribution is based on a condition of stochastic
equicontinuity that is not respected in this case. However, as pointed out below, the technique
proposed here does not assume any continuity condition.

At last, as anticipated, an advantage of our setup is that it does not reckon on stochastic equicon-
tinuity, and no condition on the errors or innovations of the model is required. This allows us to
derive the asymptotic behavior of the estimator θ̂(j) without assuming any continuity condition of
the objective function.
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Some weaknesses appear also in our estimation technique. First, the use of linear regression
implies that the number of basis function is bounded from above by the number N of points chosen
out of the parameter space. A solution to this drawback is analyzed in Chapter 6 exploiting Lasso
regression. Second, the convergence rate of θ̂(j) to θ(j) is often worse than in the parametric case.
Since we propose a nonparametric estimator, we expect to obtain sub-optimal rates of convergence
when compared to classical estimation methods. However, the loss of efficiency in terms of con-
vergence rate is compensated by the flexibility deriving from the nonparametric estimation of the
function linking the statistics and the parameters. Third, the advantage coming from the lack of
an optimization process may be weakened by two factors: (i) the computational cost deriving from
the construction of a high-dimensional grid; (ii) the risk of estimating a raw link function for the
region under examination, as the function itself is computed over the whole parameter space. Now,
we will show below that, under certain combinations of the asymptotic parameters, the estimation
of the link function has no impact on the asymptotic distribution of the statistic. This shows that
one could in principle refine the estimate of the function without affecting the properties of the
estimator. A first approach to address these issues is to use adaptive mesh refinements (see, e.g.,
[76]). Another approach could be to apply an iterative procedure. A preliminary estimate of f (j)

P

and θ̂(j) can be obtained taking few, sparse points in the parameter space. Then, θ̂(j) is employed
to select a finer grid that is exploited to restrict the parameter space and to estimate the new f

(j)
P

and θ̂(j). The procedure can be repeated until an accurate estimate is reached.
The rest of the work is organized as follows. In Section 5.2 we explain the problems related with

the violation of the stochastic equicontinuity condition. In Section 5.3, we provide some notations
that will be useful throughout the paper. In Section 5.4, we describe the statistical framework and we
give some examples of construction of the function f (j)

P . In Section 5.5, we outline the assumptions
useful to derive the asymptotic theory. In Section 5.6, we derive the main results of the contribution,
i.e., the rate of convergence of the estimator to the true value and the (nonparametric) convergence
to a normal distribution in two cases: (i) when the asymptotic theory is determined by ŝ, and (ii)
when the asymptotic theory is determined by the simulations. The simulation experiment verifying
the finite-sample properties of the estimator is performed in Section 5.7. Section 5.8 sums up the
main conclusions. The proofs of the results are deferred to Section 5.9.

5.2 Violation of the Stochastic Equicontinuity Condition

Many simulation-based estimators rely on the optimization of an objective function depending on
both real-world and simulated data. Most proofs of the asymptotic properties of these estimators
require an assumption called stochastic equicontinuity (see, e.g., [335], [372] and [355, pp. 2136-
2137]), a condition of probabilistic continuity of the objective function without which asymptotic
properties of simulation-based estimators are not guaranteed.2

We try to explain the problem with the following very simple example in which the only parameter
2Stochastic equicontinuity is useful when the proofs of the asymptotic properties use uniform convergence of the

objective function. When epigraphical convergence is used instead of the uniform one in the proofs of consistency,
this condition can be replaced with a one-sided version (see [231, 92, 232]), but we do not pursue the topic here.
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is the mean µ ∈ R: we have a sample of real data {y1, y2, . . . , yn} and, for a given value of µ, we
draw a sample of independent Gaussian random variables {y1 (µ) , y2 (µ) , . . . , ym (µ)} with mean µ
and variance 1. We compute the estimator µ minimizing the distance between the sample mean of
the real-world data and the simulated sample mean (see, in the context of a different model, [195,
p. 20]):

Q (µ) :=

 1

n

n∑
i=1

yi −
1

m

m∑
j=1

yj (µ)

2

.

We note that yj (µ) = µ + εj , where {ε1, ε2, . . . , εm} are independent standard Gaussian random
variables.3 If the variables {ε1, ε2, . . . , εm} are the same for any value of µ or, as often said, they are
recycled for different values of µ, Q (µ) is a continuous function of µ and stochastic equicontinuity
holds true. If, on the other hand, a new sample {ε1, ε2, . . . } is drawn for any µ the resulting function
Q (µ) will be “rugged” and both the computation and the study of the asymptotic properties of the
estimator will be difficult. For this reason, in order to obtain stochastic equicontinuity, the variables
{ε1, ε2, . . . , εm} of the model must be recycled for different values of θ, as required in [335, p. 999],
[195, p. 16], [272, p. 78] and [143, p. 346].

However, several simulation models, and ABM among them, do not allow for the recycling of
errors. This creates two problems. First, as the function to optimize is rugged, optimization routines
are often very time-consuming and ad hoc algorithms have to be used. As an example, [189, 190]
realize that the objective functions arising in the simulation-based estimation of the parameters
of ABM are non-differentiable and devise algorithms combining a simplex search approach with
a threshold accepting algorithm in order to identify the optimum. In a different example, [277]
outline some problems related to the roughness of the objective function (i.e., multiple local minima,
identification issues leading to large standard deviations), and perform a graphical inspection of
the simulated log-likelihood function (see [277, pp. 23, 36, 39]). Second, the classical asymptotic
properties may not hold and the corresponding inferential tools (tests, confidence intervals) are thus
not necessarily available.

Therefore, as our method does not involve any objective function in the estimation process, it can
be used to bypass the drawbacks related to the violation of the stochastic equicontinuity hypothesis.

5.3 Notations

This section summarizes the notation used below.
We will use capital bold letters, such as A, to denote matrices and lowercase bold letters, such

as a, to indicate vectors. The i-th element of vector a is generally denoted ai. un is a n-vector
composed of ones. In is the (n× n)-identity matrix. Un is a (n× n)-matrix composed of ones. ei,n

is a n-vector of zeros with a one in the i-th position; when the length is clear from the context we
simply use ei. 0m×n is a (m× n)-matrix composed of zeros. We do not indicate the dimensions
when they are clear from the context. diag (a) is a diagonal matrix with a on its diagonal. A′ and

3The variables {ε1, ε2, . . . , εm} are often called errors in cross-sectional models and innovations in dynamic models.
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A−1 are respectively the transpose and the classical inverse of the matrix A, provided they exist.
Now, ‖ · ‖ denotes the L2 norm and ‖ · ‖F denotes the Frobenius norm.

5.4 Framework

Suppose to have a simulation model indexed by some parameters θ ∈ Θ ⊂ RK . The j-th component
of θ is denoted θ(j). For each value in Θ, it is possible to simulate one or more runs that are used
to compute M statistics, with M ≥ K. Each component of the K-vector can be expressed as an
unknown function of the statistics:

θ(j) = f (j) (S1, S2, . . . , SM ) , j = 1, . . . ,K,

where f (j) : RM → R.
We approximate the function f through a function fP given by an expansion in a series of basis

functions:
fP (x) = p′P (x) · γ

where pP (x) = (p1P (x) , . . . , pPP (x))
′ is a P × 1 vector of given basis functions. For f : Rn → R,

we define:

∂λf (x) =
∂|λ|f (x)

∂xλ1
1 . . . ∂xλnn

for a multi-index λ = (λ1, . . . , λn), where |λ| = λ1 + · · ·+λn. We will need the following definitions:

|f |s := max
|λ|≤s

sup
x

∣∣∂λf (x)
∣∣ ,

‖f‖∞ := sup
x
|f (x)| ,

ζs (P ) := max
|λ|≤s

sup
x

∥∥∂λpP (x)
∥∥ .

Suppose to extract N configurations of parameters (θ1, . . . ,θN )
′ ⊂ Θ indexed with n. The j-th

statistic based on the run (or runs) generated by θn is Ŝjn.We estimate a nonparametric regression
of the form:

θ(j)
n = f

(j)
P

(
Ŝ1n, . . . , ŜMn

)
+ η(j)

n , n = 1, . . . , N, j = 1, . . . ,K,

where
η(j)
n := f (j)

(
Ŝ1n, . . . , ŜMn

)
− f (j)

P

(
Ŝ1n, . . . , ŜMn

)
+ ε(j)

n

and ε(j)
n is the error due to the estimation of the statistics. Note that each parameter θ(j)

n can be
estimated separately.

We then compute the statistics ŝ1, . . . , ŝM on the basis of some real data. We can forecast the
value of θ(j) as:

θ̂(j) ' f (j)
P (ŝ1, . . . , ŝM ) .

The construction of the function fP is outlined below using some examples. We first consider
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some cases when x is a scalar, i.e. x = x. Moreover, we suppose that x ∈ [0, 1].

Example 5.1. [Power series] A solution is to use pjP (x) = xj−1. In this case, ζs (P ) . P 1+2s.

Example 5.2. [Orthogonal polynomial series] An alternative is to use orthogonal polynomials as,
e.g., Legendre polynomials, that are orthonormal with respect to the Lebesgue measure on [0, 1]:

p′P (x) =
(

1,
√

3x,
√

5/4
(
3x2 − 1

)
, . . .

)
.

The value of ζs (P ) does not change.

Example 5.3. [Spline series] A spline series of order 1 starts from a finite number of equally spaced
knots `1, . . . , `k−2 in [0, 1] and defines:

pP (x) =
(
1, x, (x− `1)+ , . . . , (x− `k−2)+

)′
.

The cubic splines or spline series of order 3 starts instead from the equally spaced knots `1, . . . , `k−4

to get:
pP (x) =

(
1, x, x2, x3, (x− `1)

3
+ , . . . , (x− `k−4)

3
+

)′
.

This can be generalized to an arbitrary order s0. It is often the case that, instead of splines, B-splines
are used. In this case, ζs (P ) . P

1
2 +s.

Other examples are in [109], [13], [241], [88] and [40].
Now we cover the case when x = (x1, . . . , xM ) is a vector where each component is supposed to

belong to [0, 1].

Example 5.4. [Tensor products] In this case, the solution is to take a series pPi (xi) for any i =

1, . . . ,M . The vector pP (x) is then built as the tensor product of the previous ones, i.e.:

pP (x) = pP1
(x1)⊗ · · · ⊗ pPM (xM ) .

The number of terms is P =
∏M
i=1 Pi. The value of ζs (P ) is the same of the corresponding method

in the scalar case.

Example 5.5. [Total degree space of monomials] The previous solution contains elements of order
higher than each Pi. As an example, if each pPi (xi) is a polynomial series, we will observe a term
of order P1 + P2 like xP1

1 xP2
2 but we will not observe xP1+P2

1 . In some cases, it is possible to build
pP (x) as a union of forms, where a form is a homogeneous polynomial (as in linear or quadratic
form). [340] calls total degree space the set of monomials of degree smaller than a certain value. As
an example, if x = (x1, x2) we have:

pP (x) =
(
1, x1, x2, x

2
1, x1x2, x

2
2, . . .

)′
.

In the general case, if the degree of each scalar polynomial is p, the number of terms is P = (M+p)!
p!M ! ∼
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pM

M ! , where the last relation holds for large p. The corresponding product of tensors is:

pP (x) =
(
1, x1, x2, x1x2, x

2
1, x

2
2, x

2
1x

2
2, . . .

)′
.

The value of ζs (P ) can be bounded from above by ζMs (p).

5.5 Assumptions

In this section we will provide a more formal derivation of the estimation method that will shed
some light on the assumptions we will introduce.

A1 The parameter space Θ ⊂ RK is supposed to be compact.

For any value of the parameter θ ∈ Θ, the model produces a statistic (generally a moment) through
a function g:

S = g
(
θ(1), . . . , θ(K)

)
= g (θ) .

We suppose that the statistic is a fixed number, not a random variable (this is generally associated
with the fact that the model is ergodic, see [233]). Later we will see what happens when the statistic
is estimated. We suppose to observe K of these statistics and we index the statistic S and the
function g with a progressive subscript:

Sj = g(j)
(
θ(1), . . . , θ(K)

)
= g(j) (θ) , j = 1, . . . ,K. (5.5.1)

In vector coordinates, S = g (θ), where g = (g1, . . . , gK)
′

: RK → RK . Under Assumption A2
below, we have θ = g−1 (S) = f (S) or:

θ(j) = f (j) (S1, S2, . . . , SK) , j = 1, . . . ,K, (5.5.2)

where f (j) : RK → R. In general, as some statistics may be unable to discriminate among different
values of θ, one would like to consider M ≥ K statistics. We are therefore led to the model:

θ(j) = f (j) (S1, S2, . . . , SM ) , j = 1, . . . ,K,

where, with an abuse of notation, we keep the notation f (j) for the function with domain in RM .
The following assumption is required to guarantee global invertibility of g.

A2 For a subset of cardinality K of {1, . . . ,M}, the system (5.5.1) can be globally inverted to give
the system (5.5.2), where the functions f (j) are continuous.

Note that we do not use the Inverse Function Theorem as this would only provide local invertibility.
Now we come to estimation. We choose N configurations of parameters indexed by n, say

(θ1, . . . ,θN )
′ ⊂ Θ. Then:

θ(j)
n = f (j) (S1n, S2n, . . . , SMn) = f (j)

(
Sn
M×1

)
, j = 1, . . . ,K, n = 1, . . . , N.
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We replace the function f (j) through a function f
(j)
P given by an expansion in a series of basis

functions, say f (j)
P (·) = p′P (·)γj . Therefore:

θ(j)
n = f

(j)
P (Sn) +

[
f (j) (Sn)− f (j)

P (Sn)
]
, j = 1, . . . ,K, n = 1, . . . , N.

If we stack all the N observations:

θ(j)

N×1
= f

(j)
P

(
S

M×N

)
+ ε(j), j = 1, . . . ,K.

Note that all variables are fixed and ε(j) is only an approximation error.
We replace Sn with Ŝn, estimated on the basis of R observations:

θ(j)
n = f

(j)
P

(
Ŝn

)
+
[
f

(j)
P (Sn)− f (j)

P

(
Ŝn

)]
+
[
f (j) (Sn)− f (j)

P (Sn)
]

= p′P

(
Ŝn

)
1×P

γPj
P×1

+ η(j)
n , j = 1, . . . ,K, n = 1, . . . , N.

Note that the regressors p′P
(
Ŝn

)
and the error η(j)

n are generally correlated. If we stack all the
observations:

θ(j)

N×1
= p′P

(
Ŝ
)

N×P

γPj + η(j), j = 1, . . . ,K.

Provided N ≥ P , and neglecting the dependence between p′P
(
Ŝ
)
and η(j), this leads us to the

OLS estimator:
γ̂Pj =

(
pP

(
Ŝ
)
· p′P

(
Ŝ
))−1

· pP
(
Ŝ
)
· θ(j). (5.5.3)

The forecast value of θ is, for j = 1, . . . ,K:

θ̂(j) = p′P (ŝ) · γ̂Pj . (5.5.4)

We define:
Π := pP (S) · p′P (S) .

A3 As N →∞ and any P � N , the matrix 1
NΠ converges to a given positive definite matrix Π0P ,

whose smallest eigenvalue is bounded away from zero.

A4 As N →∞ and any P � N , the matrix 1
N · pP (S) · θ(j) converges to a given vector π0P .

We define the approximation errors:

E
(1)
NP :=

∥∥N−1Π−Π0P

∥∥ ,
E

(2)
NP :=

∥∥∥N−1pP (S) · θ(j) − π0P

∥∥∥ .
Moreover, we set:

ENP := E
(1)
NP + E

(2)
NP .
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Note that A3 and A4 imply that E(1)
NP and E(2)

NP converge asymptotically to 0 as N →∞.
If we knew the values of S, the choice of γj minimizing the squared loss would be:

γNPj := arg min
γj

1

N

N∑
n=1

[
θ(j)
n − p′P (Sn)γj

]2
or:

γNPj := Π−1 · pP (S) · θ(j). (5.5.5)

Assumptions A3 and A4 imply that this converges, when N diverges for fixed P , to:

γPj := Π−1
0P · π0P . (5.5.6)

We define the approximation error:

NP := sup
s

∣∣∣f (j) (s)− p′P (s)γPj

∣∣∣ .
The following are two technical assumptions that are required to simplify the formulas and to

guarantee consistency.

A5 N
1
2M

R
1
2
· ζ1 (P ) = o (1).

A6 N−1ζ0 (P ) = O (1).

The following assumptions concern the MSE and the asymptotic distribution of ŝ1, . . . , ŝM . They
are both consistent with the fact that ŝk − sk = OP

(
S−

1
2

)
.

A7 E (ŝk − sk)
2 ≤ c

S for k = 1, . . . ,M .

A8 S
1
2 (ŝ− s)→D N (0,Σ).

The statistics Ŝ1n, . . . , ŜMn for n = 1, . . . , N are such that their MSE converge to 0 at rate R−1.
This is compatible with the fact that Ŝkn − Skn = OP

(
R−

1
2

)
, but no convergence in distribution is

explicitly required.

A9 E
(
Ŝkn − Skn

)2

≤ c
R for n = 1, . . . , N, k = 1, . . . ,M .

A10 E
∣∣∣Ŝkn − Skn∣∣∣3 ≤ c

R
3
2
for n = 1, . . . , N, j = 1, . . . ,M .

In the following, we analyze the approximation errors E(1)
NP and E

(2)
NP under some appropriate as-

sumptions.
As in [109, p. 714], we define the design measure, i.e. the discrete uniform distribution supported

by the values {θn, n = 1, . . . , N}:

PN (A) := N−1
N∑
n=1

1 {θn ∈ A}
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where A is a Borel set in RK . (This is not properly speaking an empirical distribution as the points
are not random.) We suppose that PN converges to an asymptotic design measure P.

The first assumption requires that the parameter space can be reduced to a hypercube. The
condition that parameters are variation free is not uncommon in econometrics (see, e.g., [147]).

A11 The parameters are variation free, i.e. the parameter space is given by the product of the
parameter space of each single component of θ. Moreover, each component of the parameter
vector is rescaled to the interval [0, 1].

The following assumption states that the limiting matrices in A3 and A4 can be written as expec-
tations with respect to a probability measure P.

A12 There is a probability measure P such that:

[Π0P ](i,j) =

∫
RM

piP (g (x)) pjP (g (x))P (dx) ,

[π0P ](j) =

∫
RM

piP (g (x))xjP (dx) .

The next assumption bounds the derivatives of the functions linking the parameters with the statis-
tics.

A13 For any k and j,
∣∣∣ ∂gk∂θ(j)

∣∣∣ ≤ µ in a neighborhood of the true parameter value.

5.6 Results

In this section, we state our main results.

Theorem 5.1. Under Assumptions A1-A5, A7 and A9, the rate of convergence is:

θ̂(j) − θ(j) = OP

(
M · ζ1 (P ) ·

(
1

S
1
2

+
ζ0 (P )

R
1
2

))
+O (NP + ζ0 (P ) · ENP ) .

The first result covers the case in which the asymptotic theory is determined by ŝ. What is
remarkable of this result is that, once it is guaranteed that the bias is negligible, the function f

enters the result only through the variance. This implies that one can adjust the function f , e.g.,
varying the subset of Θ used for the simulations of the training set, without affecting the asymptotic
distribution of the estimator, provided this does not increase the bias term.

Theorem 5.2. Under Assumptions A1-A3, A5 and A7-A9, we have:

S
1
2

(
θ̂ − θ

)
−ANP →D N (0,Ω)

where:

[Ω]ij =
∂f (i) (s)

∂s′
·Σ · ∂f

(j) (s)

∂s
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and:

[ANP ]j = O
(
S

1
2NP + S

1
2 ζ0 (P ) · ENP

)
+OP

(
S

1
2M

R
1
2

· ζ0 (P ) ζ1 (P ) +
M2ζ2 (P )

S
1
2

)
.

Corollary 5.1. Under Assumptions A1-A3, A5 and A7-A9, we have:

S
1
2

(
θ̂(j) − θ(j)

)
−A(j)

NP →D N
(

0,Ω
(j)
P

)
where:

Ω
(j)
P =

∂f (j) (s)

∂s′
·Σ · ∂f

(j) (s)

∂s

and:

A
(j)
NP = O

(
S

1
2NP + S

1
2 ζ0 (P ) · ENP

)
+OP

(
S

1
2M

R
1
2

· ζ0 (P ) ζ1 (P ) +
M2ζ2 (P )

S
1
2

)
.

The second result covers the case in which the asymptotic theory is determined by the simulations,
and not by the real-world data. This case is less desirable, as the distribution is more complicated
to characterize.

Theorem 5.3. Let BNP be a sequence such that BNP → +∞ and |lnBNP |PBNP
↓ 0. Under Assumptions

A1-A3, A5-A7 and A9-A10, we have:

θ̂(j) − θ(j) =XNP + oP

(
B

1
3

NPN
1
3MR−

1
2P

1
3 ζ1 (P ) ·

(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))

+OP

((
MR−1ζ0 (P ) ζ1 (P ) + S−

1
2

)
·Mζ1 (P )

)
+O

((
1 +NR−

1
2Mζ1 (P )

)
· (NP + ζ0 (P ) · ENP ) +R−

1
2Mζ2

0 (P ) ζ1 (P )
)

where:

XNP ∼N

(
0,

N∑
n=1

c′n ·
∂pP (Sn)

∂s′
· V
(
Ŝn

)
·
(
∂pP (Sn)

∂s′

)′
· cn

)
,

cn =e′n
{
IN − p′P (S) Π−1pP (S)

}
θ(j) ·Π−1pP (s)

− e′np
′
P (S) Π−1pP (s) ·Π−1pP (S)θ(j)

and:
V (XNP ) = O

(
M2N

R
· ζ2

1 (P )

)
.

Remark 5.1. The previous result uses Yurisnkii’s coupling. The reason to prefer this result to a more
classical CLT is that it seems very difficult to find primitive conditions under which the variance of
the asymptotic distribution converges to a constant or is bounded away from zero.

The following result characterizes the behavior of E(1)
NP and E

(2)
NP . It takes two distinct forms

according to the type of points that are used. As in [363, p. 14], the term “sequence” is used to
denote an infinite sequence, while the term point-set is used to denote a set of points of cardinality
N .
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Proposition 5.1. Under A1-A2 and A11-A13, we have:

E
(1)
NP ≤C (M,K) ·

(
µ ∨ µK

)
·DN,P

· ζK (P ) ·

(µ ∨ µK) · ζK (P ) +

(
P∑
i=1

‖piP ‖2∞

) 1
2


E

(2)
NP ≤C (M,K) ·DN,P ·

(µ ∨ µK) · ζK (P ) +

(
P∑
i=1

‖piP ‖2∞

) 1
2


where:

DN,P := sup
A⊆[0,1]K

|PN (A)− P (A)|

is the non-uniform unanchored discrepancy and A is any axis-parallel rectangle. For any N , it is
possible to find a point-set such that DN,P = O

(
(lnN)d−1

N

)
if P is the uniform measure on Θ and

such that DN,P = O

(
(lnN)

3d+1
2

N

)
if P is not the uniform measure on Θ; there is a sequence such

that DN,P = O
(

(lnN)d

N

)
if P is the uniform measure on Θ and such that DN,P = O

(
(lnN)

3d+4
2

N

)
if

P is not the uniform measure on Θ.

Remark 5.2. (i) Here C (M,K) is a constant depending only on K and M that changes from place
to place. However, following the proof it is possible to obtain a value for it.
(ii) For the case in which P is the uniform measure but the functions f (j) and g(k) are not smooth,
one could use the results in [69].

5.7 Simulation Experiments

In this section, we report the results of some simulation experiments intended to verify the finite-
sample properties of our estimator. We start providing two simple examples, concerning the estima-
tion of the mean µ and the standard deviation σ of a Gaussian random variable. Although we are
considering two trivial cases, these two cases are very informative and exemplify well the behavior
of the estimator in different frameworks.4 Indeed, µ represents a case in which the parameter to be
estimated can be expressed as a finite linear combination of the basis functions used in the regression;
this means that µ is a parametric function of the limiting values of the statistics. For σ, instead,
the parameter can be represented as a linear combination of an infinite number of basis functions.
The first example covers a parametric relation between parameters and statistics, while the second
one involves a nonparametric relation.

The algorithm is composed by the following steps:

1. we select a grid of N points {(µn, σn) , n = 1, . . . , N} ⊂ Θ = (−∞,+∞) × (0,+∞), that will
be used to create the training dataset;

4We are considering to exploit our technique to estimate an agent-based computational model in which the evolu-
tionary dynamics of the financial market are driven by agents with heterogeneous beliefs.
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2. for each point in the grid, we simulate a sample of R independent random variables distributed
as N

(
µn, σ

2
n

)
, and we compute the first four non-central moments on each of the N samples,

i.e.
(
Ŝ1n, Ŝ2n, Ŝ3n, Ŝ4n

)
;

3. for each point in the grid, we compute the Hermite polynomials up to order p for the first
and the third moments and the Laguerre polynomials up to order p for the second and the
fourth moments: this choice is dictated by the fact that Hermite polynomials have support
(−∞,+∞) as odd moments have, while Laguerre polynomials have support [0,+∞) as even
moments have;

4. for each point in the grid, we build the regressors as the tensor product of the previously
computed polynomials;

5. we use as regressors the variables computed in item 4 and as dependent variable the corre-
sponding values of µn (or σn), and we estimate the function f (j)

P

(
Ŝ1n, Ŝ2n, Ŝ3n, Ŝ4n

)
with a

least-squares regression;

6. we create a test dataset: we repeat item 1 with a different selection of the parameters (see
below) and item 2 with a different number of observations (replacing R with S); we get the
statistics (ŝ1, ŝ2, ŝ3, ŝ4) and we repeat items 3 and 4 on these statistics;

7. we use the regressors created in item 6 and the regression function estimated in item 5 to
estimate the parameters.

The procedure is replicated a certain number of times using 16 different configurations.5 The
parametrization of the simulation experiment is reported in Table 5.7.1. For the training sam-
ple, the values of each one of the two parameters µ and σ are chosen according to an equispaced grid
with range and cardinality detailed in the table. The final values of (µ, σ) form a two-dimensional
grid in Θ, i.e. the parameter values in item 1 above are chosen according to a full factorial design.
This is not necessarily the best choice, but it seems to be a rather simple one. Moreover, we reckon
on an equispaced grid for two reasons: (i) it is a “worst-case” scenario since it is well known that
other configurations of points of smaller cardinality provide equivalent approximations; (ii) we com-
ply with the design matrix used in so-called computational experiments by the most popular ABM
softwares (e.g., NetLogo).6 For the test sample for µ, we have fixed σ ≡ 1 and we have taken µ on a
grid, ranging in the interval [−0.76,+0.76], of cardinality specified in the table. For the test sample
for σ, we have taken µ ≡ 0 and σ belonging to a grid, ranging in the interval [0.6, 1.5], of cardinality
reported in the table.

Let us see which variances we should expect from the method. We note that s1 = µ and
s2 = σ2 + µ2.

5For the estimator of the mean, we replicate the procedure about 20,000 times. For the estimator of the standard
deviation, we replicate the procedure about 80,000 times. A larger number of replications is needed for the standard
deviation than for the mean because the estimates appear to be more volatile in some regions of the parameter space.

6Many alternatives are possible to explore the parameter space. Among these we highlight Nearly Orthogonal
Latin Hypercube sampling (see, e.g., [422]) and Quasi-Monte Carlo with sampling based on Sobol’ sequences (see,
e.g., [274] for a comparison of the two techniques).
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Table 5.7.1: Parametrization of the simulation experiment
Training sample Test sample Test sample

p R = S N µ σ for µ for σ
card. range card. range card. card.

2 10 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
2 100 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
2 1,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
2 10,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
3 10 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
3 100 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
3 1,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
3 10,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
4 10 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
4 100 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
4 1,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
4 10,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
5 10 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
5 100 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
5 1,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91
5 10,000 980 49 [−0.96,+0.96] 20 [0.1, 2] 91 91

Note: “card.” stands for “cardinality”.

For the estimator of µ, we have µ = s1, i.e. f is the identity. Therefore, limS→∞ V
(
S

1
2 (µ̂− µ)

)
=

limS→∞ V
(
S

1
2 ŝ1

)
= σ2. This means that we can compare the variance V (µ̂) with σ2

S . By the way,
this is the Cramér-Rao lower bound (CRLB) for the estimation of the mean, therefore the comparison
provides a measure of efficiency of the procedure.

For the estimator of σ, σ =
√
s2 − s2

1. Therefore:

lim
S→∞

V
(
S

1
2 (σ̂ − σ)

)
=
[

∂f
∂s1

∂f
∂s2

]
lim
S→∞

 V
(
S

1
2 ŝ1

)
Cov

(
S

1
2 ŝ1, S

1
2 ŝ2

)
Cov

(
S

1
2 ŝ1, S

1
2 ŝ2

)
V
(
S

1
2 ŝ2

) [ ∂f
∂s1
∂f
∂s2

]

=
1

s2 − s2
1

[
−s1

1
2

] [ σ2 2µσ2

2µσ2 2σ2
(
2µ2 + σ2

) ] [ −s1

1
2

]
=
σ2

2
.

Therefore, we can compare the variance V (σ̂) with σ2

2S . By the way, this is the CRLB for the
estimation of the standard deviation.

5.7.1 Estimation of the mean of a Gaussian random variable

The bias and the variance of the estimator of µ are represented in Figures 5.7.1 and 5.7.2 respectively.
In the bias plots, the grey horizontal line represents the value 0. In the variance plots, the CRLB for
each value of S is represented by the thin horizontal line with the same style as the corresponding
variance of the estimator. Note that in the plots we use the fact that the bias is an odd function
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Figure 5.7.1: Bias of the estimator of µ with R = 10 (top left), R = 100 (top right), R = 1, 000 (bottom left),
R = 10, 000 (bottom right) and N = 980, for different configurations of parameters: p = 2 (solid line), p = 3 (dashed
line), p = 4 (dotted line) and p = 5 (dash-dot line).

and the variance an even function of µ.
The bias of the estimator of µ is negligible and tends to decrease when the number of simulations,

S = R, increases (see Figure 5.7.1). The prominent reason for this phenomenon seems to be the
fact that, while the statistics themselves are unbiased, the polynomials are nonlinear functions of
the statistics and this introduces a bias that is stronger when R is small. It is worth noting that if
the number of simulated observations is much greater than the real-world observations, i.e. R� S,
the bias term will disappear almost surely. In our simulation experiment we consider a “stress-test”
scenario in which S = R. In this situation, the behavior of the estimator could be tricky, and the
bias may not be negligible. A solution to this drawback could be to consider a debiasing procedure
(see, e.g., [91, 481]).

Figure 5.7.2 shows that the variance of the parameter behaves well, as it approaches the CRLB.
Therefore, the estimation method seems to be efficient. This is due to the fact that the parameter to
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Figure 5.7.2: Variance of the estimator of µ with R = 10 (top left), R = 100 (top right), R = 1, 000 (bottom left),
R = 10, 000 (bottom right) and N = 980, for different configurations of parameters: p = 2 (solid line), p = 3 (dashed
line), p = 4 (dotted line) and p = 5 (dash-dot line).
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Figure 5.7.3: Bias of the estimator of σ with R = 10 (top left), R = 100 (top right), R = 1, 000 (bottom left),
R = 10, 000 (bottom right) and N = 980, for different configurations of parameters: p = 2 (solid line), p = 3 (dashed
line), p = 4 (dotted line) and p = 5 (dash-dot line).

be estimated is a function of the limiting value of the statistics. Hence, we can estimate f (j)
P so fast

that the estimation of the function does not influence the asymptotic distribution of the estimator
itself.

These results are not surprising, but rather they confirm our expectations as µ is a parametric
function of the limiting value s1.

5.7.2 Estimation of the standard deviation of a Gaussian random variable

The behavior of the bias and the variance of the estimator of σ are reported in Figures 5.7.3 and
5.7.4 respectively. The grey horizontal line in the bias plots represents the value 0. In the variance
plots, the CRLB for each value of S is represented by the thin grey line.

When dealing with a nonparametric function of the statistics, as in the case of σ, the bias is not
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Figure 5.7.4: Variance of the estimator of σ with R = 10 (top left), R = 100 (top right), R = 1, 000 (bottom left),
R = 10, 000 (bottom right) and N = 980, for different configurations of parameters: p = 2 (solid line), p = 3 (dashed
line), p = 4 (dotted line) and p = 5 (dash-dot line).
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negligible but decreases as the order of polynomials, p, increases. The shape of the bias as a function
of the parameter values is not directly interpretable (see Figure 5.7.3), as it is due to the interaction
of two separate sources, the error of approximation arising when the nonparametric function f is
approximated by a polynomial and the bias induced by the nonlinear transformation of the unbiased
statistics.

In this case too, the variance of the estimator of σ is still aligned with the CRLB (see Figure
5.7.4), and we can conclude that the estimator seems to be efficient.

The same observations concerning the behavior of the estimator of µ in terms of bias and efficiency
hold also in this case.

5.8 Conclusions

In this work, we develop a nonparametric technique to estimate the parameters of simulation models,
without involving any optimization algorithm. The parameters of the simulated models are estimated
combining OLS regression and sieve estimation. The nonparametric element allows to detect the
nonlinear and unknown relations linking the statistics used as explanatory variables in the regression
and the parameters to be estimated. Since we do not rely on optimization, our framework over-
comes some issues generally met when estimating simulation models via classical simulation-based
econometric methods (i.e., roughness of the objective function and lack of stochastic equicontinuity).

The full asymptotic theory of the estimator θ̂(j) is explicitly and rigorously characterized, includ-
ing the order of the bias, confidence intervals and hypotheses tests. As we consider a nonparametric
setup, we obtain a sub-optimal asymptotic rate of convergence of θ̂(j) to θ(j). Nevertheless, we
compensate this loss of efficiency with the flexibility deriving from the nonparametric estimation of
the function linking the statistics and the parameters.

At last, the simulation study shows that the estimator behaves differently when the parameter
to be estimated is a parametric function of the limiting values of the statistics, rather than when we
deal with a nonparametric relation (e.g., a parameter that can be represented as a linear combination
of an infinite number of basis functions). In the first case, the bias is negligible and tends to decrease
when the number of observations, S, and the number of simulations, R, increase. In the second case,
although the bias is not negligible and its shape as a function of the parameters values is not directly
interpretable, it seems to decrease as the order of polynomials increases. In both cases the variance
of the estimator approaches the Cramér-Rao lower bound, hence the estimator seems to be efficient.

5.9 Appendix

We define the matrices:

Π = ΠNP := pP (S) · p′P (S) ,

Π̂ = Π̂NP := pP

(
Ŝ
)
· p′P

(
Ŝ
)
.
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We note that under Assumption A3, for fixed P :

lim
N→∞

1

N
Π = Π0P .

As in [354] and [40] among others, we assume without loss of generality that the matrix Π0P is the
identity matrix of dimension P , IP . This implies that both λmin

(
1
NΠ

)
and λmax

(
1
NΠ

)
converge to

1.
We start collecting some results that we will use repeatedly in the following.

Lemma 5.1. We have:

• without any assumptions:

∥∥IN − p′P (S) ·Π−1 · pP (S)
∥∥ =1,

‖pP (s)‖ ≤ζ0 (P ) ,∥∥∥∥∂pP (s)

∂s′

∥∥∥∥ ≤M 1
2 ζ1 (P ) ;

• under A1,
∥∥∥θ(j)

∥∥∥ = O
(
N

1
2

)
;

• under A3:

∥∥Π−1
∥∥ 'N−1,

‖pP (S)‖ 'N 1
2 ;

• under A9,
∥∥∥pP (Ŝ

)
− pP (S)

∥∥∥ = OP

(
R−

1
2N

1
2Mζ1 (P )

)
;

• under A7:

‖ŝ− s‖ = OP

(
S−

1
2M

1
2

)
,

‖pP (ŝ)− pP (s)‖ = OP

(
S−

1
2Mζ1 (P )

)
;

• under A1 and A3:

∥∥γNPj∥∥ =O (1) ,∥∥γPj∥∥ =O
(

1 + E
(2)
NP

)
,∥∥γNPj − γPj∥∥ .ENP .

153



Proof. Under A1,
∥∥∥θ(j)

∥∥∥ =
(∑N

n=1 θ
(j)
n

) 1
2

is O
(
N

1
2

)
. Under A3, we have:

∥∥Π−1
∥∥ =λmax

(
Π−1

)
= λ−1

min (Π) = N−1λ−1
min

(
1

N
Π

)
'N−1λ−1

min (Π0P ) = N−1.

For the same reason, ‖pP (S)‖ = λ
1
2
max (Π) ' N

1
2 . We also have

∥∥IN − p′P (S) ·Π−1 · pP (S)
∥∥ = 1,

as the matrix is idempotent.
The definition of ζs implies that ‖pP (s)‖ ≤ ζ0 (P ) and that:

∥∥∥∥∂pP (s)

∂s′

∥∥∥∥2

≤
∥∥∥∥∂pP (s)

∂s′

∥∥∥∥2

F

=

P∑
j=1

M∑
k=1

(
∂pjP (s)

∂sk

)2

≤Mζ2
1 (P ) .

We define:
dP := pP

(
Ŝ
)
− pP (S) . (5.9.1)

Now:

‖dP‖2 ≤‖dP‖2F

=

N∑
n=1

P∑
j=1

{
pjP

(
Ŝn

)
− pjP (Sn)

}2

'
N∑
n=1

P∑
j=1

{
M∑
k=1

∂pjP (Sn)

∂Skn
·
(
Ŝkn − Skn

)}2

≤M ·
N∑
n=1

M∑
k=1

(
Ŝkn − Skn

)2

·
P∑
j=1

(
∂pjP (Sn)

∂Skn

)2

≤M · ζ2
1 (P ) ·

N∑
n=1

M∑
k=1

(
Ŝkn − Skn

)2

(5.9.2)

where we have used (
∑n
i=1 xi)

2 ≤ n
∑n
i=1 x

2
i and the definition of ζ2

1 (P ). Then, from A9:

E ‖dP‖2 .M · ζ2
1 (P ) ·

N∑
n=1

M∑
k=1

(
Ŝkn − Skn

)2

≤ c · NM
2

R
· ζ2

1 (P )

and:

‖dP‖ = OP

(
N

1
2M

R
1
2

· ζ1 (P )

)
.

Under A7, we have:

E ‖ŝ− s‖2 = E
M∑
k=1

(ŝk − sk)
2 ≤ cM

S
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from which:
‖ŝ− s‖ = OP

(
S−

1
2M

1
2

)
.

The result for ‖pP (ŝ)− pP (s)‖ comes from:

‖pP (ŝ)− pP (s)‖ ≤‖ŝ− s‖ ·
∥∥∥∥∂pP (s?)

∂s′

∥∥∥∥
≤OP

(
S−

1
2Mζ1 (P )

)
where s? lies between ŝ and s.

Under A1 and A3:

∥∥γNPj∥∥ ≤∥∥Π−1
∥∥ · ‖pP (S)‖ ·

∥∥∥θ(j)
∥∥∥ = O (1) ,∥∥γPj∥∥ ≤∥∥Π−1

0P

∥∥ · ‖π0P ‖ = ‖π0P ‖

≤
∥∥∥π0P −N−1pP (S) · θ(j)

∥∥∥+
∥∥∥N−1pP (S) · θ(j)

∥∥∥
≤E(2)

NP +N−1 ‖pP (S)‖ ·
∥∥∥θ(j)

∥∥∥ ' E(2)
NP + 1.

Moreover:

γNPj − γPj

=

(
1

N
Π

)−1

· 1

N
pP (S) · θ(j) −Π−1

0P · π0P

=

(
1

N
Π

)−1

·
[
Π0P −N−1Π

]
·Π−1

0P ·
1

N
pP (S) · θ(j)

+ Π−1
0P ·

[
1

N
pP (S) · θ(j) − π0P

]
and:

∥∥γNPj − γPj∥∥
≤
∥∥∥(N−1Π

)−1
∥∥∥ · ∥∥Π0P −N−1Π

∥∥ · ∥∥Π−1
0P

∥∥ · ∥∥N−1pP (S)
∥∥ · ∥∥∥θ(j)

∥∥∥
+
∥∥Π−1

0P

∥∥ · ∥∥∥∥ 1

N
pP (S) · θ(j) − π0P

∥∥∥∥
. E

(1)
NP + E

(2)
NP = ENP .

QED
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Lemma 5.2. Under Assumptions A1-A3, A5 and A9, we have:

θ̂(j) − θ(j) = (pP (ŝ)− pP (s))
′
γPj

− p′P (ŝ) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

+ p′P (ŝ) ·Π−1 ·
(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+O (NP + ζ0 (P ) · ENP ) +OP

(
M2

R
· ζ0 (P ) ζ2

1 (P )

)
.

Proof. The matrix Π̂
−1

can be written as:

Π̂
−1

= ((pP (S) + dP) · (p′P (S) + dP′))
−1

=
1

N

(
1

N
Π +

1

N
[pP (S) · dP′ + dP · p′P (S) + dP · dP′]

)−1

where dP is defined in (5.9.1). Now, through Lemma 5.1, under A3
∥∥ 1
NΠ

∥∥ ' 1 and under A3 and
A9: ∥∥∥∥ 1

N
[pP (S) · dP′ + dP · p′P (S) + dP · dP′]

∥∥∥∥
≤ N−1 ·

(
2 ‖dP‖ · ‖pP (S)‖+ ‖dP‖2

)
≤ OP

(
M

R
1
2

· ζ1 (P ) +
M2

R
· ζ2

1 (P )

)
= oP (1)

where the last step comes from A5.
From [321, p. 168], we then have:

Π̂
−1

= ((pP (S) + dP) · (p′P (S) + dP′))
−1

=
1

N

(
1

N
Π +

1

N
[pP (S) · dP′ + dP · p′P (S) + dP · dP′]

)−1

=Π−1 −Π−1 (pP (S) · dP′ + dP · p′P (S) + dP · dP′) Π−1 + R1. (5.9.3)

Here, from Lemma 5.1, under A3
∥∥Π−1

∥∥ ' N−1 and:

∥∥Π−1 · pP (S) · dP′ ·Π−1
∥∥ ≤∥∥Π−1

∥∥2 · ‖pP (S)‖ · ‖dP‖

=OP

(
M

NR
1
2

· ζ1 (P )

)
= oP

(∥∥Π−1
∥∥)∥∥Π−1 · dP · dP′ ·Π−1

∥∥ ≤∥∥Π−1
∥∥2 · ‖dP‖2

=OP

(
M2

NR
· ζ2

1 (P )

)
= oP

(∥∥Π−1 · pP (S) · dP′ ·Π−1
∥∥)
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where we have used A3, A5 and A9. Moreover (see [321, p. 169]), using A3, A5 and A9:

R1 '
{
Π−1 [pP (S) · dP′ + dP · p′P (S) + dP · dP′]

}2
Π−1,

‖R1‖ =O
((
‖pP (S)‖2 · ‖dP‖2 + ‖dP‖4

)
·
∥∥Π−1

∥∥3
)

=OP

(
M2

NR
· ζ2

1 (P ) ·
(

1 +
M2

R
· ζ2

1 (P )

))
= oP

(∥∥Π−1 · pP (S) · dP′ ·Π−1
∥∥) .

Therefore, we can neglect the term R2 := −Π−1·dP·dP′·Π−1+R1 where ‖R2‖ = OP

(
M2

NR · ζ
2
1 (P )

)
.

Using (5.5.3), (5.9.1) and (5.9.3), the coefficient β̂j can be written as:

β̂j =Π̂
−1
· pP

(
Ŝ
)
· θ(j) = Π̂

−1
· (pP (S) + dP) · θ(j)

=Π−1 · pP (S) · θ(j) + Π−1 · dP · θ(j)

−Π−1 · (pP (S) · dP′ + dP · p′P (S)) ·Π−1 · pP (S) · θ(j)

−Π−1 · (pP (S) · dP′ + dP · p′P (S)) ·Π−1 · dP · θ(j)

+ R2 · (pP (S) + dP) · θ(j)

=Π−1 · pP (S) · θ(j)

−Π−1 · pP (S) · dP′ ·Π−1 · pP (S) · θ(j)

+ Π−1 · dP ·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+ R3

where

R3 := −Π−1 · (pP (S) · dP′ + dP · p′P (S)) ·Π−1 · dP · θ(j) + R2 · (pP (S) + dP) · θ(j).

Now, under A1, A3, A5 and A9:

‖R3‖ ≤2
∥∥Π−1

∥∥2 · ‖dP‖2 · ‖pP (S)‖ ·
∥∥∥θ(j)

∥∥∥+ ‖R2‖ · (‖pP (S)‖+ ‖dP‖) ·
∥∥∥θ(j)

∥∥∥
=OP

(
M2

R
· ζ2

1 (P )

)
.

We consider γNPj = Π−1 · pP (S) · θ(j) as in (5.5.5). As a result, the forecast value of θ is given,
for j = 1, . . . ,K, by (5.5.4):

θ̂(j) =p′P (ŝ) · β̂j
=p′P (ŝ) · γNPj − p′P (ŝ) ·Π−1 · pP (S) · dP′ ·Π−1 · pP (S) · θ(j)

+ p′P (ŝ) ·Π−1 · dP ·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+ p′P (ŝ) ·R3.
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However, θ is given, for j = 1, . . . ,K:

θ(j) =f
(j)
P (ŝ) +

[
f

(j)
P (s)− f (j)

P (ŝ)
]

+
[
f (j) (s)− f (j)

P (s)
]

=p′P (ŝ)γPj +
[
p′P (s)γPj − p′P (ŝ)γPj

]
+
[
f (j) (s)− p′P (s)γPj

]
where γPj is given by (5.5.6). We will analyze it through the following decomposition:

θ̂(j) − θ(j) = (p′P (ŝ)− p′P (s))γPj −
(
f (j) (s)− p′P (s)γPj

)
+ p′P (ŝ) ·

(
γNPj − γPj

)
− p′P (ŝ) ·Π−1 · pP (S) · dP′ ·Π−1 · pP (S) · θ(j)

+ p′P (ŝ) ·Π−1 · dP ·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+ p′P (ŝ) ·R3.

The second term is majorized by NP . As concerns the third term, from Lemma 5.1, under A1 and
A3 we have:

∥∥p′P (s) ·
(
γNPj − γPj

)∥∥ ≤ ‖pP (s)‖ ·
∥∥γNPj − γPj∥∥ = O (ζ0 (P ) · ENP ) . (5.9.4)

As concerns the sixth term, from Lemma 5.1 and under A1, A3, A5 and A9, we have:

‖p′P (ŝ) ·R3‖ ≤ ‖pP (ŝ)‖ · ‖R3‖ = OP

(
M2

R
· ζ0 (P ) ζ2

1 (P )

)
.

QED
Proof of Theorem 5.1. Let us start from the second and third terms in the statement of Lemma

5.2. They can be majorized as:∥∥∥p′P (ŝ) ·Π−1 · pP (S) · dP′ ·Π−1 · pP (S) · θ(j)
∥∥∥

≤ ‖pP (ŝ)‖ ·
∥∥Π−1

∥∥2 · ‖pP (S)‖2 · ‖dP‖ ·
∥∥∥θ(j)

∥∥∥
= OP

(
M

R
1
2

· ζ0 (P ) ζ1 (P )

)
and: ∥∥∥p′P (ŝ) ·Π−1 · dP ·

{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

∥∥∥
≤ ‖pP (ŝ)‖ ·

∥∥Π−1
∥∥ · ‖dP‖ ·

∥∥IN − p′P (S) ·Π−1 · pP (S)
∥∥ · ∥∥∥θ(j)

∥∥∥
= OP

(
M

R
1
2

· ζ0 (P ) ζ1 (P )

)
where we have used A1, A3 and A9.
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Therefore, we have:

θ̂(j) − θ(j) = (p′P (ŝ)− p′P (s))γPj

+O (NP + ζ0 (P ) · ENP ) +OP

(
M

R
1
2

· ζ0 (P ) ζ1 (P )

)
.

Now:
pP (ŝ)− pP (s) =

∂pP (s?)

∂s′
P×M

· (ŝ− s)
M×1

where s? lies between ŝ and s. Under A1, A3 and A7, we have:

∣∣(p′P (ŝ)− p′P (s))γPj
∣∣

≤ ‖pP (ŝ)− pP (s)‖ ·
∥∥γPj∥∥

≤
∥∥∥∥∂pP (s?)

∂s′

∥∥∥∥ · ‖ŝ− s‖ ·
∥∥γPj∥∥

' OP

(
S−

1
2Mζ1 (P ) ·

(
1 + E

(2)
NP

))
where we have majorized

∥∥γPj∥∥ and
∥∥∥∂pP (s?)

∂s

∥∥∥ through Lemma 5.1. From this, the result follows.
QED

Proof of Theorem 5.2. We use Lemma 5.2 as well as the first steps in the proof of Theorem 5.1
to get, under A1-A3, A5 and A9:

S
1
2

(
θ̂(j) − θ(j)

)
=S

1
2γ′Pj (pP (ŝ)− pP (s))

+O
(
S

1
2NP + S

1
2 ζ0 (P ) · ENP

)
+OP

(
S

1
2M

R
1
2

· ζ0 (P ) ζ1 (P )

)
. (5.9.5)

Now, we can write:

S
1
2

(
θ̂(j) − θ(j)

)
=S

1
2 (f (ŝ)− f (s)) + S

1
2

(
γ′PjpP (ŝ)− f (ŝ)

)
− S 1

2

(
γ′PjpP (s)− f (s)

)
+O

(
S

1
2NP + S

1
2 ζ0 (P ) · ENP

)
+OP

(
S

1
2M

R
1
2

· ζ0 (P ) ζ1 (P )

)
.

The second and the third terms are both majorized by S
1
2NP . As to the first term, f (ŝ)− f (s) =

∂f(s?)
∂s′ · (ŝ− s), where s? lies between ŝ and s. Therefore:

S
1
2

(
θ̂(j) − θ(j)

)
=
∂f (s?)

∂s′
· S 1

2 (ŝ− s)

+O
(
S

1
2NP + S

1
2 ζ0 (P ) · ENP

)
+OP

(
S

1
2M

R
1
2

· ζ0 (P ) ζ1 (P )

)
.

From A2 and A8, the first part can be shown to converge to N
(
0, ∂f(s)

∂s′ ·Σ ·
∂f(s)
∂s

)
. QED

Proof of Theorem 5.3. Consider the expression in Lemma 5.2. Reasoning as in Theorem 5.1,
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under A1, A3 and A7, we have:

∣∣(p′P (ŝ)− p′P (s))γPj
∣∣ = OP

(
S−

1
2Mζ1 (P )

)
.

The asymptotic behavior in this case is determined by the second and third terms in the statement
of Lemma 5.2. We replace there pP (ŝ) with pP (s). We have:

− p′P (ŝ) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

= −p′P (s) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

− (p′P (ŝ)− p′P (s)) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

and:

p′P (ŝ) ·Π−1 ·
(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

= p′P (s) ·Π−1 ·
(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+ (p′P (ŝ)− p′P (s)) ·Π−1 ·
(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

where, under A1, A3, A7 and A9:∣∣∣∣(p′P (ŝ)− p′P (s)) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

∣∣∣∣
≤ ‖pP (ŝ)− pP (s)‖ ·

∥∥Π−1
∥∥2 · ‖pP (S)‖2 ·

∥∥∥pP (Ŝ
)
− pP (S)

∥∥∥ · ∥∥∥θ(j)
∥∥∥

= OP

(
S−

1
2R−

1
2M2ζ2

1 (P )
)
,∣∣∣(p′P (ŝ)− p′P (s)) ·Π−1 ·

(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

∣∣∣
≤ ‖pP (ŝ)− pP (s)‖ ·

∥∥Π−1
∥∥ · ∥∥∥pP (Ŝ

)
− pP (S)

∥∥∥ · ∥∥IP − p′P (S) ·Π−1 · pP (S)
∥∥ · ∥∥∥θ(j)

∥∥∥
= OP

(
S−

1
2R−

1
2M2ζ2

1 (P )
)
.

From this, using A5:

θ̂(j) − θ(j) =− p′P (s) ·Π−1 · pP (S) ·
(
pP

(
Ŝ
)
− pP (S)

)′
·Π−1 · pP (S) · θ(j)

+ p′P (s) ·Π−1 ·
(
pP

(
Ŝ
)
− pP (S)

)
·
[
IP − p′P (S) ·Π−1 · pP (S)

]
· θ(j)

+O (NP + ζ0 (P ) · ENP ) +OP

((
M

R
· ζ0 (P ) ζ1 (P ) +

1

S
1
2

)
·Mζ1 (P )

)
. (5.9.6)

We rewrite the leading two terms as:
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p′P (s) ·Π−1 · dP ·
{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

− θ(j),′ · p′P (S) ·Π−1 · dP · p′P (S) ·Π−1 · pP (s)

= p′P (s) ·Π−1 · dP ·
N∑
n=1

ene′n ·
{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

− θ(j),′ · p′P (S) ·Π−1 · dP ·
N∑
n=1

ene′n · p′P (S) ·Π−1 · pP (s)

=

N∑
n=1

p′P (s) ·Π−1 ·
(
pP

(
Ŝn

)
− pP (Sn)

)
·
[
e′n ·

{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

]
−

N∑
n=1

θ(j),′ · p′P (S) ·Π−1 ·
(
pP

(
Ŝn

)
− pP (Sn)

)
·
[
e′n · p′P (S) ·Π−1 · pP (s)

]
= a′ ·

N∑
n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· an

− b′ ·
N∑
n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· bn

=
[

a′ −b′
]
·

 ∑N
n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· an∑N

n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· bn

 (5.9.7)

where:

an =e′n ·
{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

bn =e′n · p′P (S) ·Π−1 · pP (s)

a′ =p′P (s) ·Π−1

b′ =θ(j),′ · p′P (S) ·Π−1.

We note some facts that will be used in the following. From Lemma 5.1, respectively under A3 and
under A1 and A3:

‖a‖ ≤‖pP (s)‖ ·
∥∥Π−1

∥∥ = O
(
N−1ζ0 (P )

)
,

‖b‖ ≤
∥∥∥θ(j)

∥∥∥ · ‖pP (S)‖ ·
∥∥Π−1

∥∥ = O (1) .
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From the same source, respectively under A1 and A3, and under A3:

|an| =
∣∣∣e′n · {IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

∣∣∣
=
∣∣∣θ(j)
n − p′P (Sn) · γNPj

∣∣∣
=
∣∣∣(f (j) (Sn)− p′P (Sn) · γPj

)
+ p′P (Sn) ·

(
γPj − γNPj

)∣∣∣
≤NP + ‖pP (Sn)‖ ·

∥∥γPj − γNPj∥∥
=O (NP + ζ0 (P ) · ENP ) ,

|bn| =
∣∣p′P (Sn) ·Π−1 · pP (s)

∣∣
≤‖pP (Sn)‖ ·

∥∥Π−1
∥∥ · ‖pP (s)‖

≤N−1ζ2
0 (P ) .

We are led to consider the vectors:

Xn :=

 (pP (Ŝn

)
− pP (Sn)

)
· an(

pP

(
Ŝn

)
− pP (Sn)

)
· bn


for n = 1, . . . , N . We rewrite (5.9.7) as:

[
a′ −b′

]
·

 ∑N
n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· an∑N

n=1

(
pP

(
Ŝn

)
− pP (Sn)

)
· bn

 =
[

a′ −b′
]
·
N∑
n=1

Xn.

Let Xn := Xn − EXn. We start writing this as:

[
a′ −b′

]
·
N∑
n=1

Xn =
[

a′ −b′
]
·
N∑
n=1

Xn +
[

a′ −b′
]
·
N∑
n=1

EXn.

This implies that (5.9.6) becomes, under A1-A3, A5, A7 and A9:

θ̂(j) − θ(j) =
[

a′ −b′
]
·
N∑
n=1

Xn +
[

a′ −b′
]
·
N∑
n=1

EXn

+O (NP + ζ0 (P ) · ENP ) +OP

((
M

R
· ζ0 (P ) ζ1 (P ) +

1

S
1
2

)
·Mζ1 (P )

)
. (5.9.8)
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Now, under A1 and A3:∣∣∣∣∣[ a′ −b′
]
·
N∑
n=1

EXn

∣∣∣∣∣
≤

∥∥∥∥∥
[

a

b

]∥∥∥∥∥ ·
N∑
n=1

‖EXn‖

≤
(
‖a‖2 + ‖b‖2

) 1
2 ·

N∑
n=1

∥∥∥EpP (Ŝn

)
− pP (Sn)

∥∥∥ · (a2
n + b2n

) 1
2

= O
((

1 +N−1ζ0 (P )
)
·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))

·
N∑
n=1


P∑
j=1

[
EpjP

(
Ŝn

)
− pjP (Sn)

]2
1
2

.

We take a limited development of pjP
(
Ŝn

)
around Sn:

pjP

(
Ŝn

)
' pjP (Sn) +

M∑
h=1

∂pjP (Sn)

∂Snh

(
Ŝnh − Snh

)
and, through the definition of ζ1 (P ) and A9:

P∑
j=1

[
EpjP

(
Ŝn

)
− pjP (Sn)

]2

'
P∑
j=1

[
M∑
h=1

∂pjP (Sn)

∂Snh
E
(
Ŝnh − Snh

)]2

≤M
P∑
j=1

M∑
h=1

[
∂pjP (Sn)

∂Snh
E
(
Ŝnh − Snh

)]2

≤M
P∑
j=1

M∑
h=1

∣∣∣∣∂pjP (Sn)

∂Snh

∣∣∣∣2 E ∣∣∣Ŝnh − Snh∣∣∣2
≤ cM2

R
sup
h

P∑
j=1

∣∣∣∣∂pjP (Sn)

∂Snh

∣∣∣∣2 ≤ cM2ζ2
1 (P )

R
. (5.9.9)

At last, using A6:∣∣∣∣∣[ a′ −b′
]
·
N∑
n=1

EXn

∣∣∣∣∣
= O

(
NMζ1 (P )

R
1
2

·max
{

1, N−1ζ0 (P )
}
·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))

= O

(
NMζ1 (P )

R
1
2

·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))
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from which (5.9.8) becomes, under A1-A3, A5-A7 and A9:

θ̂(j) − θ(j) =
[

a′ −b′
]
·
N∑
n=1

Xn +OP

((
Mζ0 (P ) ζ1 (P )

R
+

1

S
1
2

)
·Mζ1 (P )

)
+O

((
1 +

NMζ1 (P )

R
1
2

)
· (NP + ζ0 (P ) · ENP ) +

Mζ2
0 (P ) ζ1 (P )

R
1
2

)
. (5.9.10)

We approximate
∑N
n=1 Xn with a Gaussian vector having the same mean and the same variance

as
∑N
n=1 Xn, say GN . Then we would like to find conditions for

[
a′ −b′

]
·
∑N
n=1 Xn to be near

to
[

a′ −b′
]
·GN . We have, using A6:

∣∣∣∣∣[ a′ −b′
]
·
N∑
n=1

Xn −
[

a′ −b′
]
·GN

∣∣∣∣∣
=

∣∣∣∣∣[ a′ −b′
]
·

(
N∑
n=1

Xn −GN

)∣∣∣∣∣
≤

∥∥∥∥∥
[

a

b

]∥∥∥∥∥ ·
∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥ =
(
‖a‖2 + ‖b‖2

) 1
2 ·

∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥
= O

((
1 +N−1ζ0 (P )

)
·

∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥
)

= O

(∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥
)
. (5.9.11)

Now,
∥∥∥∑N

n=1 Xn −GN

∥∥∥ can be dealt with using Yurisnkii’s coupling. We recall that this is the
inequality in [390, Theorem 10, p. 244].

Theorem. Let Xn, for n = 1, . . . , N , be independent random P -vectors with EXn = 0, for n =

1, . . . , N , and let β :=
∑N
n=1 E ‖Xn‖3. For each δ > 0 there exists a random vector GN with a

N
(
0,V

(∑N
n=1 Xn

))
distribution such that:

P

{∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥ > δ

}
≤ C0

βP

δ3
·

(
1 +

∣∣ln (δ3/βP)∣∣
P

)

for some universal constant C0.

Note that the statement of Yurinskii’s coupling can be written as:

P

{∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥ >
(
βP

ε

) 1
3

}
≤ C0ε ·

(
1 +
|ln ε|
P

)

where ε ↓ 0. This means, provided ε·|ln ε|
P ↓ 0 too, that:∥∥∥∥∥

N∑
n=1

Xn −GN

∥∥∥∥∥ = oP

((
βP

ε

) 1
3

)
. (5.9.12)
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This is the statement we are going to use in the following. Therefore, A1-A3, A5-A7 and A9, (5.9.10)
becomes:

θ̂(j) − θ(j) =
[

a′ −b′
]
·GN + oP

((
βP

ε

) 1
3

)

+OP

((
Mζ0 (P ) ζ1 (P )

R
+

1

S
1
2

)
·Mζ1 (P )

)
+O

((
1 +

NMζ1 (P )

R
1
2

)
· (NP + ζ0 (P ) · ENP ) +

Mζ2
0 (P ) ζ1 (P )

R
1
2

)
(5.9.13)

provided ε ↓ 0 and ε·|ln ε|
P ↓ 0.

Then we define:

βn :=E
∥∥Xn

∥∥3
= E

∣∣∣X′nXn

∣∣∣ 32
≤E

∣∣∣[ (pP (Ŝn

)
− EpP

(
Ŝn

))′
· an

(
pP

(
Ŝn

)
− EpP

(
Ŝn

))′
· bn

]
·

 (pP (Ŝn

)
− EpP

(
Ŝn

))
· an(

pP

(
Ŝn

)
− EpP

(
Ŝn

))
· bn

∣∣∣∣∣∣
3
2

≤E
∣∣∣∣(pP (Ŝn

)
− EpP

(
Ŝn

))′ (
pP

(
Ŝn

)
− EpP

(
Ŝn

))∣∣∣∣ 32 · (a2
n + b2n

) 3
2 .

The terms of this equation can be dealt with as follows. We have:

E
∣∣∣∣(pP (Ŝn

)
− EpP

(
Ŝn

))′ (
pP

(
Ŝn

)
− EpP

(
Ŝn

))∣∣∣∣ 32
= E

∥∥∥pP (Ŝn

)
− EpP

(
Ŝn

)∥∥∥3

= E
∥∥∥[pP (Ŝn

)
− pP (Sn)

]
+
[
pP (Sn)− EpP

(
Ŝn

)]∥∥∥3

≤ E
{∥∥∥pP (Ŝn

)
− pP (Sn)

∥∥∥+
∥∥∥pP (Sn)− EpP

(
Ŝn

)∥∥∥}3

≤ 4

{
E
∥∥∥pP (Ŝn

)
− pP (Sn)

∥∥∥3

+
∥∥∥pP (Sn)− EpP

(
Ŝn

)∥∥∥3
}

≤ 4E
∥∥∥pP (Ŝn

)
− pP (Sn)

∥∥∥3

+O

(
M3ζ3

1 (P )

R
3
2

)
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where the last step uses A9 and follows the development of (5.9.9). The first term is:

E
∥∥∥pP (Ŝn

)
− pP (Sn)

∥∥∥3

' E
∥∥∥∥∂pP (Sn)

∂s′

(
Ŝn − Sn

)∥∥∥∥3

≤ E

[
M∑
k=1

(
Ŝkn − Skn

)2
] 3

2

·
∥∥∥∥∂pP (Sn)

∂s′

∥∥∥∥3

≤M 1
2

M∑
k=1

E
∣∣∣Ŝkn − Skn∣∣∣3 · ∥∥∥∥∂pP (Sn)

∂s′

∥∥∥∥3

≤M 3
2 sup

k
E
∣∣∣Ŝkn − Skn∣∣∣3 ·M 3

2 ζ3
1 (P )

= M3ζ3
1 (P ) sup

k
E
∣∣∣Ŝkn − Skn∣∣∣3

≤ cM3ζ3
1 (P )

R
3
2

where we have majorized
∥∥∥∂pP (Sn)

∂s′

∥∥∥ as in Lemma 5.1 and we have used A10. Using the expression
for an and bn above, this implies that, under A1, A3 and A10:

βn = O

(
M3ζ3

1 (P )

R
3
2

·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
)3)

and:
β = O

(
NM3ζ3

1 (P )

R
3
2

·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
)3)

.

From (5.9.11) and (5.9.12):∣∣∣∣∣[ a′ −b′
]
·
N∑
n=1

Xn −
[

a′ −b′
]
·GN

∣∣∣∣∣
≤ O

(∥∥∥∥∥
N∑
n=1

Xn −GN

∥∥∥∥∥
)

= oP

((
βP

ε

) 1
3

)

= oP

(
N

1
3P

1
3Mζ1 (P )

ε
1
3R

1
2

·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))

.
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Therefore, from (5.9.10), under A1-A3, A5-A7 and A9-A10, if ε ↓ 0 and ε·|ln ε|
P ↓ 0:

θ̂(j) − θ(j) =
[

a′ −b′
]
·GN

+ oP

(
N

1
3P

1
3Mζ1 (P )

ε
1
3R

1
2

·
(
NP + ζ0 (P ) · ENP +N−1ζ2

0 (P )
))

+OP

((
Mζ0 (P ) ζ1 (P )

R
+

1

S
1
2

)
·Mζ1 (P )

)
+O

((
1 +

NMζ1 (P )

R
1
2

)
· (NP + ζ0 (P ) · ENP ) +

Mζ2
0 (P ) ζ1 (P )

R
1
2

)
.

The result follows taking ε = B−1
NP .

Now we turn to the variance of
[

a′ −b′
]
·GN and its order in probability. We have:

V
{[

a′ −b′
]
·GN

}
= V

{
N∑
n=1

(ana′ − bnb′) ·
(
pP

(
Ŝn

)
− pP (Sn)

)}

=

N∑
n=1

(ana′ − bnb′) · V
(
pP

(
Ŝn

))
· (ana− bnb)

'
N∑
n=1

(ana′ − bnb′) · ∂pP (Sn)

∂s′
· V
(
Ŝn

)
·
(
∂pP (Sn)

∂s′

)′
· (ana− bnb) .

As to the order in probability, we write:

V

(
N∑
n=1

Xn

)
=V

 N∑
n=1

[
anIP 0P×P

0P×P bnIP

] pP

(
Ŝn

)
− pP (Sn)

pP

(
Ŝn

)
− pP (Sn)


=

N∑
n=1

[
anIP 0P×P

0P×P bnIP

]{
U2 ⊗ V

(
pP

(
Ŝn

)
− pP (Sn)

)}[ anIP 0P×P

0P×P bnIP

]

and:

λmax

(
V

(
N∑
n=1

Xn

))

≤ λmax

(
N∑
n=1

[
anIP 0P×P

0P×P bnIP

]{
U2 ⊗ V

(
pP

(
Ŝn

)
− pP (Sn)

)}[ anIP 0P×P

0P×P bnIP

])

≤ λmax

([ ∑N
n=1 a

2
nIP 0P×P

0P×P
∑N
n=1 b

2
nIP

])
· sup
n
λmax

(
V
(
pP

(
Ŝn

)
− pP (Sn)

))
≤ max

{
N∑
n=1

a2
n,

N∑
n=1

b2n

}
· sup
n

∥∥∥∥∂pP (Sn)

∂s′

∥∥∥∥2

· sup
n
λmax

(
V
(
Ŝn − Sn

))
.
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Now, respectively under A1 and under A3:

N∑
n=1

a2
n =θ(j),′ ·

{
IN − p′P (S) ·Π−1 · pP (S)

}
·
N∑
n=1

ene′n ·
{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

=θ(j),′ ·
{
IN − p′P (S) ·Π−1 · pP (S)

}
· θ(j)

≤
∥∥∥θ(j)

∥∥∥2

= O (N) ,

N∑
n=1

b2n =p′P (s) ·Π−1 · pP (S) ·
N∑
n=1

ene′n · p′P (S) ·Π−1 · pP (s)

=p′P (s) ·Π−1 · pP (s) ≤ ‖pP (s)‖2 ·
∥∥Π−1

∥∥ = O
(
N−1ζ2

0 (P )
)
,

so that, under A6, max
{∑N

n=1 a
2
n,
∑N
n=1 b

2
n

}
= O

(
N ·

(
1 +N−2ζ2

0 (P )
))

= O (N). Now, from

Lemma 5.1,
∥∥∥∂pP (Sn)

∂s′

∥∥∥ ≤M 1
2 ζ1 (P ) and, under A9:

λmax

(
V
(
Ŝn − Sn

))
≤ tr

(
V
(
Ŝn − Sn

))
=

M∑
k=1

V
(
Ŝkn − Skn

)
≤ cM

R
.

Therefore, under A1, A3, A6 and A9:

λmax

(
V

(
N∑
n=1

Xn

))
= O

(
NM2

R
· ζ2

1 (P )

)
.

At last, under A1, A3, A6 and A9:

V

{
N∑
n=1

(ana′ − bnb′) ·
(
pP

(
Ŝn

)
− pP (Sn)

)}

=
[

a′ −b′
]
· V

(
N∑
n=1

Xn

)
·

[
a

−b

]

≤

∥∥∥∥∥
[

a

−b

]∥∥∥∥∥
2

· λmax

(
V

(
N∑
n=1

Xn

))

=
(
‖a‖2 + ‖b‖2

)
· λmax

(
V

(
N∑
n=1

Xn

))

= O

((
1 +N−2ζ2

0 (P )
)
· M

2N

R
· ζ2

1 (P )

)
= O

(
M2N

R
· ζ2

1 (P )

)
.

QED
Proof of Proposition 5.1. Let us start from E

(1)
NP . We can writeN−1Π = N−1

∑N
n=1 pP (Sn) p′P (Sn).

The generic element
[
N−1Π

]
(i,j)

of this matrix is:

1

N

N∑
n=1

piP (Sn) p′jP (Sn) .
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Any Skn is a deterministic function of θn, say Skn = g(k) (θn). We write the vector version of this
equality as Sn = g (θn). Therefore:

1

N

N∑
n=1

piP (Sn) p′jP (Sn) =
1

N

N∑
n=1

piP (g (θn)) p′jP (g (θn)) .

It is clear that:

1

N

N∑
n=1

piP (Sn) p′jP (Sn) =

∫
RK

piP (g (x)) pjP (g (x))PN (dx) .

Under A12, we have:

[
N−1Π−Π0P

]
(i,j)

=

∫
RM

piP (g (x)) pjP (g (x)) (PN − P) (dx) .

Using the Koksma-Hlawka inequality stated in [192, Corollary 2.4], [225, p. 165], [6]:∣∣∣[N−1Π−Π0P

]
(i,j)

∣∣∣ ≤ VHK (piP (g (·)) pjP (g (·))) ·DN,P

where VHK (f) is the Hardy-Krause total variation (see, e.g., [370]) and DN,P is the non-uniform
unanchored discrepancy defined in [192, p. 100] or [225, p. 165]:

DN,P := sup
A⊆[0,1]K

|PN (A)− P (A)|

where A is any axis-parallel rectangle. This implies that:

∥∥N−1Π−Π0P

∥∥2

≤
∥∥N−1Π−Π0P

∥∥2

F

=

P∑
i=1

P∑
j=1

∣∣∣[N−1Π−Π0P

]
(i,j)

∣∣∣2
≤D2

N,P ·
P∑
i=1

P∑
j=1

[VHK (piP (g (·)) pjP (g (·)))]2 .

We will make use of the following inequality:

VHK (fg) ≤
(
3K + 1− 2K+1

)
· VHK (f)VHK (g) + ‖f‖∞ VHK (g) + ‖g‖∞ VHK (f) , (5.9.14)
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derived from the last formula on p. 251 in [62] for ϕ (x) = x. Then we have:

P∑
i=1

P∑
j=1

[VHK (piP (g (·)) pjP (g (·)))]2

≤
P∑
i=1

P∑
j=1

[(
3M + 1− 2M+1

)
· VHK (piP ◦ g)VHK (pjP ◦ g)

+ ‖piP ◦ g‖∞ VHK (pjP ◦ g) + ‖pjP ◦ g‖∞ VHK (piP ◦ g)
]2

≤
(
3K + 1− 2K+1

)2 · 3{ P∑
i=1

[VHK (piP ◦ g)]
2

}2

(5.9.15)

+ 6

P∑
i=1

‖piP ‖2∞ ·
P∑
j=1

[VHK (pjP ◦ g)]
2

where we have used the inequality (
∑n
i=1 xi)

2 ≤ n
∑n
i=1 x

2
i .

Now, from Eq. (3) in [33, p. 1948] (see also [370, p. 61]):

VHK (f) ≤
∑
u6=∅

∫
[0,1]u

∣∣∣∣∂|u|f (θu; 1−u)

∂θu

∣∣∣∣dθu
≤
∑
u 6=∅

sup
θu∈[0,1]u

∣∣∣∣∂|u|f (θu; 1−u)

∂θu

∣∣∣∣
≤
∑
u 6=∅

sup
θ∈[0,1]K

∣∣∣∣∂|u|f (θ)

∂θu

∣∣∣∣ ,
where:

∂|u|f (θ)

∂θu
=
∂|u|piP (g (θ))

∂θu
.

In order to compute this derivative of a composite function, we apply the results in [101] and
[33]. In the following we prefer to follow the notation in [101] as this paper contains some results
that we will find useful, but we will modify their formula according to the lines of [33]. Theorem
2.1 in [101] considers h (x) = f (g (x)) where x ∈ Rd and g (x) ∈ Rm. Suppose that a vector
ν = (ν1, . . . , νd) ∈ Nd0 with n := |ν| 6= 0 is given. For a vector m = (m1, . . . ,md), we denote
fm = ∂|m|f

∂x
m1
1 ···∂x

md
d

. We use [101, Theorem 2.1] or [33, Theorem 2].

In our case, the vector ν (that we call u) belongs to the set {0, 1}d \ {0}. As a result we can apply
Lemma 3 and the reasoning leading to Eq. (9) in [33], taking into account the different notations of
the two papers. As a consequence, `j ∈ {0, 1}d \ {0} and kj ∈ {0, 1}m with |kj | = 1. Therefore, we
identify kj with the (only) integer kj for which kj takes the value 1. Applying this, we get:

[
g`j
]kj

=
∂g(kj)

∂x`j
.
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Under A13, for n = |ν| 6= 0, we have:

|hν | ≤ν!
∑

1≤|λ|≤n

|fλ|
n∑
s=1

∑
ps(ν,λ)

s∏
j=1

∣∣∣[g`j ]kj ∣∣∣
(kj !) [`j !]

|kj |

≤ (µ ∨ µn)ν!

n∑
k=1

∑
|λ|=k

|fλ|
n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |

≤ (µ ∨ µn)ν!

n∑
k=1

√√√√√∑
|λ|=k

|fλ|2 ·
∑
|λ|=k


n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |


2

≤ (µ ∨ µn)ν!

n∑
k=1

√√√√√
∑
|λ|=k

|fλ|2
 ·

∑
|λ|=k

n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |


2

≤ (µ ∨ µn)

n∑
k=1

∑
|λ|=k

|fλ|2
 1

2

·mkSkn

where the second inequality uses A13, the third uses Cauchy-Schwarz inequality, the fourth uses∑n
i=1 x

2
i ≤ (

∑n
i=1 xi)

2, and the fifth uses Corollary 2.9 in [101, p. 511]. In the previous formulas,
Skn is a Stirling number of the second kind. In our case, h (·) = f (g (·)) is replaced by piP (g (·)), ν
is replaced by u, n is identified with |u|, m is replaced by M :

P∑
i=1

[VHK (piP ◦ g)]
2 ≤

P∑
i=1

∑
u 6=∅

(µ ∨ µn)

n∑
k=1

∑
|λ|=k

|fλ|2
 1

2

·MkSkn


2

≤
(
µ ∨ µK

)2 P∑
i=1

∑
u6=∅

n∑
k=1

∑
|λ|=k

|fλ|2
 1

2

·MkSkn


2

≤
(
µ ∨ µK

)2 P∑
i=1

∑
u 6=∅

n∑
k=1

∑
|λ|=k

|fλ|2
 ·

∑
u6=∅

n∑
k=1

M2kS2k
n


≤
(
µ ∨ µK

)2∑
u6=∅

n∑
k=1

∑
|λ|=k

P∑
i=1

∣∣∂λpiP ∣∣2
 ·

∑
u6=∅

n∑
k=1

M2kS2k
n


≤
(
µ ∨ µK

)2∑
u6=∅

n∑
k=1

∑
|λ|=k

ζ2
k (P )

 ·
∑
u6=∅

n∑
k=1

M2kS2k
n


where the third step uses Cauchy-Schwarz inequality while the others are simply rearrangements.
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Now:

∑
u 6=∅

n∑
k=1

∑
|λ|=k

ζ2
k (P ) =

K∑
n=1

(
K

n

) n∑
k=1

(
K + k − 1

k

)
ζ2
k (P )

=

K∑
k=1

(
K + k − 1

k

)
ζ2
k (P )

K∑
n=k

(
K

n

)

≤ζ2
K (P ) ·

K∑
k=1

(
K + k − 1

k

) K∑
n=k

(
K

n

)

and:

∑
u6=∅

n∑
k=1

M2kS2k
n =

K∑
n=1

(
K

n

) n∑
k=1

M2kS2k
n

=

K∑
k=1

M2kS2k
n

K∑
n=k

(
K

n

)
.

At last:

P∑
i=1

[VHK (piP ◦ g)]
2 ≤

(
µ ∨ µK

)2
ζ2
K (P ) ·

(
K∑
k=1

(
K + k − 1

k

) K∑
n=k

(
K

n

))

·

(
K∑
k=1

M2kS2k
n

K∑
n=k

(
K

n

))
=:
(
µ ∨ µK

)2
ζ2
K (P ) · C (M,K)

for a constant C (M,K) depending only on M and K.
Replacing this into (5.9.15), we get:

P∑
i=1

P∑
j=1

[VHK (piP (g (·)) pjP (g (·)))]2

≤
(
3K + 1− 2K+1

)2 · 3{(µ ∨ µK)4 ζ4
K (P ) · C2 (M,K)

}
+ 6

P∑
i=1

‖piP ‖2∞ ·
(
µ ∨ µK

)2
ζ2
K (P ) · C (M,K)

≤ C (M,K) ·
(
µ ∨ µK

)2
ζ2
K (P ) ·

{(
µ ∨ µK

)2
ζ2
K (P ) +

P∑
i=1

‖piP ‖2∞

}
.

From this the final result for E(1)
NP follows.

The result for E(2)
NP is obtained remarking that, underr A12:

[
N−1pP (S) · θ(j) − π0P

]
(j)

=

∫
RM

piP (g (x))xj (PN − P) (dx)
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Then: ∥∥∥N−1pP (S) · θ(j) − π0P

∥∥∥2

≤ D2
N,P ·

P∑
i=1

[VHK (piP (g (·))xj)]2

where:

VHK (piP (g (·))xj) ≤
(
3K + 1− 2K+1

)
· VHK (piP (g (·)))VHK (xj) + ‖piP ‖∞ VHK (xj)

+ ‖xj‖∞ VHK (piP (g (·)))

≤
(
3K + 1− 2K+1

)
· VHK (piP (g (·))) + ‖piP ‖∞ + VHK (piP (g (·)))

=
(
3K + 2− 2K+1

)
· VHK (piP (g (·))) + ‖piP ‖∞ .

This leads to:

∥∥∥N−1pP (S) · θ(j) − π0P

∥∥∥2

≤C (M,K) ·D2
N,P ·

{
P∑
i=1

[VHK (piP (g (·)))]2 +
P∑
i=1

‖piP ‖2∞

}

≤C (M,K) ·D2
N,P ·

{(
µ ∨ µK

)2 · ζ2
K (P ) +

P∑
i=1

‖piP ‖2∞

}

from which the final result follows.
The results on the discrepancy can be found in [5] and [6]. Note that some of these results are

stated for the anchored discrepancy while others are stated for the unanchored one, but the rate of
decrease in N is the same. QED
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Chapter 6

Nonparametric Moment-based
Estimation of Simulated Models via
Regularized Regression1

This chapter is similar in spirit to the work by [86]. The statistical framework is close to the one
exposed in Chapter 5 but, instead of OLS, we estimate the parameters of a simulated models via a
nonparametric least absolute shrinkage and selection operator (Lasso) regression. The nonparametric
element is introduced to capture the nonlinear relations between the statistics and the parameters.
This implies some advantages, when comparing the method to the previous chapter, that will be
clarified in the following. First of all, the Lasso allows the joint estimation and automatic selection
of a subset of the basis functions used to model the nonparametric function linking the statistics
and the parameters to be estimated. Second, in Lasso regression the number of basis function in
the dictionary is not upper bounded by the number of points chosen out of the parameter space,
while in OLS it is. Third, the oracle property of the Lasso suggests that the researcher may run
this algorithm, identify the nonnull coefficients of the regression, and run a nonparametric sieve
regression estimated by OLS containing only the retained coefficients, thus making the inferential
tools of Chapter 5 available in the present situation. Furthermore, we explicitly and rigorously
characterize the asymptotic behavior of the estimator. We end the chapter with a small simulation
study showing the correct behavior of the method.

6.1 Introduction

In the present work, we develop a new estimation technique for simulated models inspired by the
one of [86]. We aim at characterizing the parameters of a simulation model generating moments
that are similar to real-world/benchmark statistics.

1This chapter is jointly written with Raffaello Seri.
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Most econometric methods used to estimate simulation-based models exploit indirect inference
([196, 460, 195]), method of simulated moments ([335, 372, 133]), simulated minimum-distance ([217,
463, 191, 48]), approximate ([292, 293, 157, 2]) and nonparametric simulated maximum likelihood
([156, 272]), and approximate Bayesian computations ([148, 25, 131, 175, 168, 458]).

The parameters of an agent-based model are generally estimated applying the above-mentioned
techniques (see [444, p. 3]). Many instances have been published in the last decades. The majority
of them use indirect-based inference (see [189, 190, 54, 150]), MSM (see [499, 172, 206, 90]), SMD
(see [401, 282]), simulated maximum likelihood (see [277, 314]), ABC (see [207]) and surrogate
meta-models (see [422, 283]).

A drawback of simulation-based econometric methods is that estimation is performed by opti-
mizing complex objective functions that can often be seen as distances between simulated and real-
world/benchmark data. This creates some issues in terms of computational time (see [472, 307]),
choice of the statistical distance (see [184, 301, 402, 32, 329, 426]) and/or determination of the
statistics to match (see [179, 499, 111, 75]).

Furthermore, as detailed in Chapter 5, when estimating ABM via classic simulation-based econo-
metric techniques we meet three important problems. First of all, in order to establish the asymptotic
properties of the estimators, the objective function must respect a stochastic equicontinuity hypoth-
esis (see [335], [372] and [355, pp. 2136-2137]). To comply with this assumption, simulation-based
estimators must use the same draw of (pseudo-)random numbers involved in the approximation of
the objective function for different values of the parameter θ (see [335, p. 999], [195, p. 16], [272,
p. 78] and [143, p. 346]). As a consequence, they work well with models characterized by recur-
sive equations (see [196] and [195]), but not with ABM, in which new samples of (pseudo-)random
numbers are drawn for any θ (i.e. random numbers are not “recycled”). Second, since the (pseudo-
)random numbers are not recycled, the objective function in the case of ABM is rugged and nowhere
differentiable. This implies that the researcher tackles some difficulties deriving from the presence
of multiple local minima, identification issues leading to large standard deviations, etc. (see [277]).
Therefore, in order to obtain the numerical convergence of the objective function, the derivative-free
algorithms used for standard optimization routines must be integrated with other approaches (see,
e.g., [189] and [190]). Finally, the asymptotic properties and the corresponding inferential tools
developed for classic simulation-based methods do not hold.

To deal with these problems, we draw on [86] and we develop a method that does not involve
any optimization of an objective function. Instead, the moments are selected using a least absolute
shrinkage and selection operator nonparametric regression. Other regression-based frameworks have
been previously developed by [403, 449, 110, 266, 400, 396]. Nevertheless, these methods are more
suitable for prediction rather than estimation.

Differently from the above-mentioned contributions, [86] use a regularized linear regression for
parameter estimation. Despite the advantages deriving from its simplicity and versatility, the work
of [86] presents some minor weaknesses. First of all, their work assumes and, consequently, estimates
a linear relation linking the statistics to the parameters, but it is reasonable to suppose that the
relation is nonlinear. Second, they provide no asymptotic properties for their method.

In this paper, we propose solutions to both problems. First, we improve their contribution adding
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sieve estimation (see [208, 354, 88]) to the Lasso regression. Second, we explicitly and rigorously
characterize the asymptotic behavior of the estimator θ̂(j).

Let us introduce how our method works. We have a simulation model indexed by a parameter
vector θ ∈ Θ ⊂ RK , where θ(j), for j = 1, . . . ,K, is the generic element of θ. We select N parameter
values in the parameter space Θ and, for each value in the parameter space, we simulate some runs
and we calculate M ≥ K statistics on these runs. We aim at obtaining an estimation of θ(j). We
estimate the following Lasso nonparametric regression:

θ(j)
n = f

(j)
P

(
Ŝ1n, . . . , ŜMn

)
+ η(j)

n ,

where n = 1, . . . , N , f (j)
P is a linear combination of basis functions (also called dictionary) and

Ŝ1n, . . . , ŜMn are the moments obtained from the data simulated using θn as parameter. When we
consider the statistics ŝ1, . . . , ŝM computed on real-world/benchmark observations, we estimate θ(j)

as:
θ̂(j) = f

(j)
P (ŝ1, . . . , ŝM ) .

We conceive that our framework can bring some improvements to the literature. Most of them
already arise when nonparametric ordinary least squares estimation is used instead of nonparametric
Lasso and have been examined in Chapter 5. Therefore, in the next lines, we elucidate only the
specific advantages of using Lasso.

First of all, our method, as the one in [86], allows joint estimation and automatic selection of a
subset of the basis functions used to model the nonparametric dependence. This is one of the focal
points of the contribution: as our aim is to estimate highly parametrized simulation models and, in
particular, ABM, the possibility of considering a number of basis functions larger than the number
of observations and of reducing them contextually with estimation is of great interest.

Second, differently from OLS, in Lasso regression the number of basis functions in the dictionary
is not bounded from above by the number N of points chosen out of the parameter space. This
implies that also the number of statistics that are used, namelyM , can be an asymptotic parameter.

Third, the Lasso has generally an oracle property, i.e. it is asymptotically able to identify the
elements of the dictionary whose coefficients in f

(j)
P are not zero. This opens up the possibility

that the researcher may estimate a model through our nonparametric Lasso, identify the regression
coefficients that are nonnull, and estimate a OLS regression inserting only the elements of the
dictionary whose coefficient is not zero. It is sensible to suppose that the parameters estimated by
this procedure maintains the asymptotic properties of OLS estimates. This makes the large-sample
theory of Chapter 5 available for the construction of inferential tools (tests, confidence intervals,
etc.).

To be fair, also our technique has some weaknesses. First, we only provide an asymptotic rate
of convergence of θ̂(j) to θ(j), we consider its implications in different cases, and we discuss at some
lengths the assumptions that are needed to obtain it, but we do not give a proof of the above-
mentioned oracle property. Second, as we study the properties of a nonparametric estimator, the
convergence speed of θ̂(j) to θ(j) may be slower than the parametric one. On the other hand, the
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nonparametric component allows us to gain some flexibility from the estimation of the function
linking the statistics and the parameters. Finally, the method seems to work very well when we deal
with many observations. Indeed, when we consider a few noisy observations, the oracle property is
not respected and the Lasso may select parameters that are equal to 0.

The structure of the paper is the following. Section 6.2 clarifies the notations used in the
contribution. Section 6.3 outlines the statistical framework and provides some auxiliary results
on the statistics and the dictionary. In Section 6.4, the main results of the work are derived, i.e.
the error in the estimation of the coefficients and the prediction. Section 6.5 presents a simulation
study to test the correct behavior of the estimation method. Section 6.6 wraps up the conclusions.
In Section 6.7, the proofs of the theorems and the corollaries are provided.

6.2 Notation

We will write N for the positive integers, N0 for the non-negative integers, R for the real numbers
and C for the complex numbers. Capital bold letters, such as A, denote matrices while lowercase
bold letters, such as a, usually denote vectors. The i-th element of vector a is generally denoted
ai. un is a n-vector composed of ones. In is the (n× n)-identity matrix. Un is a (n× n)-matrix
composed of ones. ei,n is a n-vector of zeros with a one in the i-th position; when the length is
clear from the context we simply use ei. 0m×n is a (m× n)-matrix composed of zeros. We do not
indicate the dimensions when they are clear from the context. diag (a) is a diagonal matrix with a

on its diagonal. A′ and A−1 are respectively the transpose and the classical inverse of the matrix
A, provided they exist.

6.3 Framework

We consider a parameter θ ∈ Θ ⊂ RK . We suppose that each component of the K-vector can be
expressed as an unknown function of M statistics:

θ(j) = f (j) (S1, S2, . . . , SM ) , j = 1, . . . ,K, (6.3.1)

where f (j) : RM → R and M ≥ K.
Our aim is to get an estimate of the function f (j) and use it to predict the value of θ. In order

to obtain an estimate, we extract N configurations of parameters {θ1, . . . ,θN} ⊂ Θ ⊂ RK indexed
with n. For each point θn, we simulate one or more runs and, on the basis of these observations,
we estimate the M statistics. The k-th statistic based on the run generated by θn is written as Ŝkn
and is an estimate of the fixed value Skn. We define:

θ(j)
n = f (j) (S1n, . . . , SMn) = f (j)

(
Ŝ1n, . . . , ŜMn

)
+ ε(j)

n , n = 1, . . . , N, j = 1, . . . ,K,

where ε(j)
n captures the error due to the estimation of the statistics. We approximate f (j) through
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a function f (j)
P given by an expansion in a series of P basis functions:

f
(j)
P (x) = p′P (x) · β(j).

We then estimate a Lasso nonparametric regression of the form:

θ(j)
n = f

(j)
P

(
Ŝ1n, . . . , ŜMn

)
+ η(j)

n , n = 1, . . . , N, j = 1, . . . ,K,

where
η(j)
n := f (j)

(
Ŝ1n, . . . , ŜMn

)
− f (j)

P

(
Ŝ1n, . . . , ŜMn

)
+ ε(j)

n .

Note that each parameter can be estimated separately, therefore in the following we will remove
the index j when clear from the context.

6.3.1 Link between statistics and parameters

Let us start from the case of a single statistic. The simulation model produces a value of the statistic
for any value of the parameter θ ∈ Θ. The link is a function g : RK → R:

S = g
(
θ(1), . . . , θ(K)

)
= g (θ) .

The statistic is a fixed number, not a random variable, a fact that is often associated with model
ergodicity (see [233]).

We suppose to observe M ≥ K statistics and we will mark this fact by introducing a progressive
subscript both on S and on g:

S(j) = g(j)
(
θ(1), . . . , θ(K)

)
= g(j) (θ) , j = 1, . . . ,M. (6.3.2)

In vector coordinates, S = g (θ), where g = (g1, . . . , gM )
′

: RK → RM . We need the following
assumption.

Der For any k and j,
∣∣∣∂g(k)∂θ(j)

∣∣∣ ≤ µ in a neighborhood of the true parameter value.

We suppose that the relation linking θ to S can be inverted into a function linking each θ(k) with S:

θ(k) = f (k) (S) , k = 1, . . . ,K.

The simplest way to do this is to select K statistics out of M belonging to S, thus creating the
system S? = g? (θ), where S? ∈ RK and g? = (g1, . . . , gK)

′
: RK → RK . We suppose that the

conditions for the inversion of the system are respected and we get θ = f? (S?). As we cannot be
sure that the statistics selected in S? are the right ones, we extend the system as θ = f (S).2

We suppose to choose some values {θn, n = 1, . . . , N} in the parameter space Θ. We define the
design measure (see [109, p. 714]) as the discrete uniform distribution supported by the values

2We will let the Lasso set to 0 the coefficients of the irrelevant variables.
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{θn, n = 1, . . . , N}:

PN (A) := N−1
N∑
n=1

1 {θn ∈ A}

for a Borel set A ⊂ RK . We suppose that PN converges to an asymptotic design measure P.
The following assumption requires that the parameter space can be reduced to a hypercube. In

econometrics this condition is often stated as the requirement that the parameters are variation free
(see [147], or Assumptions 8 and 11 in [354]).

Par The parameter space is given by the product of the parameter space of each single component
of θ. Moreover, each component of the parameter vector can be rescaled to the interval [0, 1].
The design measure PN converges to an asymptotic design measure P.

We define the (non-uniform) unanchored discrepancy as a measure of distance between PN and P:

DN,P := sup
A⊆[0,1]K

|PN (A)− P (A)| (6.3.3)

where A is any axis-parallel rectangle in [0, 1]
K . For any N , it is possible to find a point-set such

that DN,P = O
(

(lnN)d−1

N

)
if P is the uniform measure on Θ and such that DN,P = O

(
(lnN)

3d+1
2

N

)
if P is not the uniform measure on Θ; there is a sequence such that DN,P = O

(
(lnN)d

N

)
if P is

the uniform measure on Θ and such that DN,P = O

(
(lnN)

3d+4
2

N

)
if P is not the uniform measure

on Θ. These results can be found in [5] and [6] (some of these results are stated for the anchored
discrepancy, but they have the same rate of decrease in N).

To each value θn for n = 1, . . . , N , a statistic vector Sn is associated as Sn = g (θn). These
vectors are stacked in a (P ×N)-matrix S.

6.3.2 Statistics estimated through simulation

We suppose to estimate each Sn through an estimator Ŝn based on R observations simulated from
a model. These observations can be independent, if they are obtained as the result of R runs of the
model, or dependent, if they are obtained aggregating one or more segments from a smaller number
of runs. This is largely irrelevant for the computation of the rate of convergence, but may affect
the computing time and the precision of the estimators. Indeed, a larger number of runs generally
requires more time but should provide more precise estimates.

We define the error induced by estimation as:

εn := θn − f
(
Ŝn

)
= f (Sn)− f

(
Ŝn

)
.

In the following we will introduce some hypotheses concerning the distribution of εn. They can be
easily generalized to the case of α-sub-exponential random variables (see, e.g., [193]), but we will
not pursue this topic here.
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A centered random variable X is sub-Gaussian with variance proxy σ2 ∈ [0,+∞) if:

E exp {uX} ≤ exp

{
u2σ2

2

}
for all u ∈ R. A random vector is sub-Gaussian iff all of its coordinates are.

subG We suppose that the following inequality holds true for any n:

E exp {uεn} = E exp
{
u
(
θn − f

(
Ŝn

))}
≤ exp

{
uµn +

u2σ2
R

2

}

where σ2
R is a variance proxy dependent on R but not on n. Moreover,

∑N
n=1 µ

2
n ≤ Nµ2

R.

By taking a limited development on both sides around u = 0 it is easy to see that µn = Eεn =

θn − Ef
(
Ŝn

)
and that:

V (εn) = V
(
f
(
Ŝn

))
≤ σ2

R.

Through an informal reasoning, it is possible to get some more information about µR and σ2
R.

Assuming that Ŝn − Sn = OP

(
R−

1
2

)
and using a mean value theorem, we have:

µn = Eεn = Ef
(
Ŝn

)
− f (Sn) = O

(∥∥∥bias
(
Ŝn

)∥∥∥
2

+R−1
)

and:
V (εn) = V

(
f
(
Ŝn

))
≤ σ2

R

where V (εn) = O
(
R−1

)
. Supposing that

∥∥∥bias
(
Ŝn

)∥∥∥
2

= O
(
R−1

)
, we have:

µR =O
(
R−1

)
,

σR ≥O
(
R−

1
2

)
.

We note that the coordinates of ε are independent of each other. Therefore, we have:

E exp {u′ (ε− µ)} ≤ exp

{
‖u‖22 · σ2

R

2

}
.

Note that the requirement that σ2
R depends on R but not on n is not strictly necessary, but simplifies

the interpretations of the bounds.
Another hypothesis concerns sub-exponentiality for εn. A centered random variable X is sub-

exponential if:

E exp {uX} ≤ exp

{
u2σ2

2

}
for |u| ≤ 1

c
.

A random vector is sub-exponential iff all of its coordinates are.
Note that a sub-Gaussian random variable is formally equivalent to a sub-exponential random

variable with c ≡ 0. For this reason, in the main statements we will only consider the following
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assumption.

subE We suppose that the following inequality holds true for any n:

E exp {u (εn − µn)} = E exp
{
u
(
θn − f

(
Ŝn

)
− µn

)}
≤ exp

{
u2σ2

R

2

}
for |u| ≤ 1

cR

where σ2
R is a variance proxy and cR a threshold parameter dependent on R but not on n.

Moreover,
∑N
n=1 µ

2
n ≤ Nµ2

R.

It is important to recall that a variable respecting subE has a bound of the following form:

P {εn ≥ µn + t} ≤ exp

{
−1

2
min

(
t

cR
,
t2

σ2
R

)}
.

We will see below that bounds of this kind can arise in some cases of real interest.
As the coordinates of ε are independent of each other, we have:

E exp {u′ (ε− µ)} ≤ exp

{
‖u‖22 · σ2

R

2

}

under ‖u‖∞ ≤ c
−1
R .

As Assumption subE may look daunting at first, the following proposition covers a case in
which a variant of the hypothesis holds true. The difference with subE is the presence of a leading
multiplicative (non-absolute) constant. In the remarks following the main results of the paper, we
will allow for the case in which subE is replaced by a version with a multiplicative constant.

Proposition 6.1. Suppose that the estimator Ŝ of S ∈ RM can be written as Ŝ := 1
R

∑R
r=1 Xr where

Xr are iid with mean EXr = S and Σ := EXrX
′
r, and such that ‖Xr − S‖2 ≤ B. Let f : RM → R

be a Lipschitz function, i.e. |f (x)− f (y)| ≤ L · ‖x− y‖2. Then:

1. for |u| ≤ c−1
R < C2R

M2BL :

Eeu{f(Ŝ)−f(S)} ≤ C (R,B,L,M, tr (Σ)) · exp

{
L2λmax (Σ)

R
u2

}
,

where the precise value of C (R,B,L,M, tr (Σ)) is derived in the proof of the result;

2. with probability 1− δ:

∣∣∣f (Ŝ
)
− f (S)

∣∣∣ ≤M2BL

C2R
· ln 2C1M

2

δ
+

√
2L2λmax (Σ)

R
ln

4

δ
+ LR−

1
2 · (tr (Σ))

1
2

≤max

{
2M2BL

C2R
· ln

max
{

2C1M
2, 4
}

δ
,√

8L2λmax (Σ)

R
· ln max {2C1M2, 4}

δ

}
+ LR−

1
2 · (tr (Σ))

1
2

for two absolute constants C1 > 0 and C2 > 0;
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3. for t ≥ 0:

P
{∣∣∣f (Ŝ

)
− f (S)

∣∣∣ > t+ LR−
1
2 · (tr (Σ))

1
2

}
≤max

{
2C1M

2, 4
}
· exp

{
−min

{
C2R

2M2BL
· t, R

8L2λmax (Σ)
· t2
}}

.

Remark 6.1. (i) The assumption of boundedness of Xr can be weakened (see Theorem 1.1 and
Remark 1.1 in [505]).
(ii) If all the other arguments are fixed, the constant C (R,B,L,M, tr (Σ)) converges to 1 provided
R

1
2 cR →∞. Moreover, it asymptotically behaves as

C (R,B,L,M, tr (Σ)) ' 1 +
L (tr (Σ))

1
2

R
1
2 cR

+O

(
1

R (cR ∧ c2R)

)
.

(iii) The origin of the constants C1 and C2 is explained in the proof of the result.

6.3.3 Real-world statistics

For the real-world data that are used to calibrate the model, we formulate an assumption that is
similar to subE above.

subE’ We suppose that the following inequality holds true:

E exp {u (f (ŝ)− Ef (ŝ))} ≤ exp

{
u2σ2

S

2

}
for |u| ≤ 1

cS

where σ2
S is a variance proxy and cS a threshold parameter dependent on S but not on n.

Moreover, |Ef (ŝ)− f (s)| ≤ µS .

If cS = 0, then we will say that subG’ holds true.

6.3.4 Approximating dictionaries

A major difference of our approach with respect to the one in [86] is that, in the regression, we replace
the statistics (S1, S2, . . . , SM ) with a set of functions of these statistics. In order to approximate the
functions f (k) for k = 1, . . . ,K, we consider a dictionary PP = {p1P (·) , . . . , pPP (·)}, indexed by P ,
composed of functions pjP : RM → R. The index P refers to the number of items in the dictionary.
On the basis of the set PP , it is possible to build the vector pP (·) = (p1P (·) , . . . , pPP (·))′. In most
cases, PP will be a subset of size P of an infinite sequence P.

Example 6.1. [Linear form] The method of [86] is obtained when pjP (x) = xj for any j. Therefore,
PP = {1, x1, x2, . . . , xM}.

In the most common case, the functions are basis functions such that a linear combination of
these functions can approximate f . The number of these functions, P , is allowed to increase with
the number of observations.
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Example 6.2. [Monomials] One of the simplest examples concerns low-degree monomials. Suppose
to have just one variable defined over [0, 1]. Then we have:

P =
{

1, x1, x
2
1, x

3
1, . . .

}
.

Example 6.3. [Orthogonal polynomials] A solution with better properties is to use orthogonal
polynomials. As an example, Legendre polynomials on [0, 1] are:

P =
{

1, 2x1 − 1, 6x2
1 − 6x1 + 1, . . .

}
but several other options are possible.

Example 6.4. [Tensor product space of monomials] When more than one variable is involved, a
common solution is to consider a set like the one in Example 6.2 for each xm in (x1, x2, . . . , xM ),
say Pm,p =

{
1, xm, x

2
m, . . . , x

p
m

}
. Then one takes the tensor product of these sets, i.e. the set

of all interactions obtained multiplying the elements of each Pm,p. This can be represented using
multi-indexes. Let λ ∈ NM0 be a multi-index of size M , and let ΛP be a set of multi-indices of
cardinality P . For a multi-index λ ∈ NM0 and a vector x = (x1, . . . , xM ), we define the monomial
xλ =

∏M
j=1 x

λj
j . For a set of multi-indexes ΛP , we define:

PP =
{
xλ,λ ∈ ΛP

}
. (6.3.4)

The choice ΛP =
{
λ ∈ NM0 , λj ≤ p, j = 1, . . . ,M

}
provides the desired set. Therefore, P = (p+ 1)

M .

If we define the row p-vectors xi :=
[

1 xi x2
i · · · xp−1

i

]
for i = 1, . . . ,M , we can write the

tensor product as:

pP (x) =

M⊗
i=1

xi (6.3.5)

where
⊗

denotes the Kronecker product.

Example 6.5. [Total degree space of monomials] The previous solution has the defect that the
highest degree is equal to pM , but it does not contain all the monomials of this degree (e.g., it
contains

∏M
m=1 x

p
m but not xpMm ). Another solution is to arrange the previous set of monomials

according to the degree and cut off all those that are larger than p. This is called a total degree
space in [340]. In this case we have ΛP =

{
λ ∈ NM0 ,

∑M
j=1 λj ≤ p

}
where the number of terms is:

P =
(M + p)!

p!M !
.

For large p, we have P ∼ pM

M ! .

Example 6.6. [Tensor product space of orthogonal polynomials] Very much in the same way as we
defined the tensor product of monomials, we can define a tensor product of orthogonal polynomials.
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Let {π0, π1, . . . } be a sequence of orthogonal polynomials with scalar argument. Then we define:

PP =


M∏
j=1

πλj (xj) ,λ ∈ ΛP

 . (6.3.6)

With the choice ΛP =
{
λ ∈ NM0 , λj ≤ p, j = 1, . . . ,M

}
, these tensor products can be written as

pP (x) =
⊗M

i=1 pp (xi).

Other examples are in [109], [13], [354], [241], [88] and [40].
We define a measure of approximability of the function by the dictionary as:

NP := sup
x∈RM

inf
β∈RP

|f (x)− p′P (x) · β| .

Several results concerning the rate of decreases of NP are available in the literature.

Example 6.7. [Tensor product space of monomials] From [305, Theorem 8, p. 90], if d is the
number of continuous derivatives of f : RM → R, we can see that:

NP .M · p−d ∼M · P− d
M .

The values taken by the dictionary PP in a point θn is a P -vector pP (Sn). These values are
stacked in a (P ×N)-matrix pP (S).

We need two further definitions. First, we consider ξP defined by:

ξP := sup
1≤j≤P

√√√√ 1

N

N∑
n=1

p2
jP (Sn).

The quantity ξ2
P is the maximum value on the diagonal of the Gram matrix ΞN := 1

N pP (S) p′P (S),
or the entrywise maximum norm of ΞN . Note that a suitable normalization of the design matrix can
make ξP = 1, but this introduces dependence among the rows of the matrix. The next Proposition
6.2 gives an upper bound on ξ2

P .

Proposition 6.2. Under Par and Der, we have:

sup
1≤j≤P

∣∣∣∣∣ 1

N

N∑
n=1

p2
jP (Sn)−

∫
RK

p2
jP (g (x))P (dx)

∣∣∣∣∣ ≤ C (M,K) · ζ2
K (P ) ·DN,P

or:
ξ2
P ≤ sup

1≤j≤P

∫
RK

p2
jP (g (x))P (dx) + C (M,K) · ζ2

K (P ) ·DN,P

and:
ξ2
P ≥ sup

1≤j≤P

∫
RK

p2
jP (g (x))P (dx)− C (M,K) · ζ2

K (P ) ·DN,P.

We also need a function measuring the growth of the derivatives of the approximating polyno-
mials. Let us define, for f : Rn → R and a multi-index λ = (λ1, . . . , λn) with |λ| := λ1 + · · · + λn,
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the partial derivative:

∂λf (x) =
∂|λ|f (x)

∂xλ1
1 . . . ∂xλnn

.

Then we define:
ζk (P ) := sup

1≤j≤P
sup

λ:|λ|≤k
sup
x

∣∣∂λpjP ∣∣ .
It is clear that ξP ≤ ζ0 (P ) and that ζk (P ) is increasing in k.

As to ζk (P ), we provide some hints about its computation in some special cases.

Example 6.8. [Monomials] For a monomial, the j-th element of PP is xj−1
1 and its k-th derivative

is (j−1)!
(j−1−k)!x

j−1−k
1 . Therefore:

ζk (P ) =
(P − 1)!

(P − 1− k)!
≤ (P − 1)

k
.

Example 6.9. [Orthogonal polynomials] For orthogonal polynomials, we can use Markov brothers’
inequality (see, e.g., [446]), valid for any polynomial of degree n:

sup
x∈[0,1]

∣∣∣π(k) (x)
∣∣∣ ≤ 2k

n2
(
n2 − 1

)
· · ·
(
n2 − (k − 1)

2
)

1 · 3 · · · (2k − 1)
sup
x∈[0,1]

|π (x)| ≤ n2k sup
x∈[0,1]

|π (x)| .

If we impose the normalization sup1≤j≤P supx∈[0,1] |pjP (x)| ≤ 1, we have:

ζk (P ) = sup
1≤j≤P

sup
λ:|λ|≤k

sup
x

∣∣∂λpjP ∣∣ ≤ ck (P − 1)
2k
.

In this case the exponent of P is much worse than in Example 6.8, but better exponents can be
obtained in special cases.

Example 6.10. [Tensor product space of monomials] In the case of a tensor product, let ∂λpjP (x) =∏M
i=1

∂λix
ki
i

∂x
λi
1

for a multi-index λ. We have:

∂λpjP =

M∏
i=1

∂λixkii
∂xλi1

=

M∏
i=1

ki!

(ki − λi)!
xki−λi1

≤
M∏
i=1

ki!

(ki − λi)!
≤

M∏
i=1

kλii ≤ p
∑M
i=1 λi = p|λ|

from which ζk (P ) = pk =
(
P

1
M − 1

)k
≤ P k

M .

Example 6.11. [Total degree space of monomials] In this case, it is easy to see that ζk (P ) = pk.
Using the expression of P for large p, we see that ζk (P ) ∼ (M !P )

k
M .

6.3.5 The restricted eigenvalue condition

In order to clarify this condition, we repeat the reasoning in [57, p. 1710].
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Let X be, in this paragraph, the N ×P design matrix of the regression problem that we denoted
elsewhere as pP (S). OLS is based on the assumption that the matrix X′X is invertible or that its
smallest eigenvalue is bounded away from 0. Let us define the Gram matrix ΞN := 1

NX′X. The
Rayleigh-Ritz quotient of ΞN is:

δ′ΞNδ

δ′δ
=
δ′X′Xδ

Nδ′δ
=

(
‖Xδ‖2√
N ‖δ‖2

)2

.

In terms of this quotient, the smallest eigenvalue of the Gram matrix is:

λmin (ΞN ) = min
δ 6=0

√
δ′X′Xδ

Nδ′δ
= min
δ 6=0

‖Xδ‖2√
N ‖δ‖2

.

A consequence of this assumption is that the matrix X must have more rows than columns or,
otherwise stated, that the number of observations must be larger than the number of variables.

For the Lasso this condition can be weakened as the minimum can be replaced over a smaller
set of possible vectors (or directions) δ. In particular, it has been shown (and we will show it in
the proofs of the results below) that the following set of directions can be considered. Let J0 be
the set of non-zero coefficients of the vector β. The Lasso respects with a probability close to 1 the
following condition: ∥∥∥∥(β̂ − β)

Jc0

∥∥∥∥
1

≤ c0
∥∥∥∥(β̂ − β)

J0

∥∥∥∥
1

for a strictly positive constant c0. This means that the error in the estimates of the zero coefficients
(i.e.

(
β̂ − β

)
Jc0

) is somewhat smaller than the error in the estimates of the non-zero coefficients (i.e.(
β̂ − β

)
J0
). Now, in the proof below we will need conditions on

∥∥∥X(β̂ − β)∥∥∥
2
, thus suggesting

that we can identify δ above with β̂ − β. Therefore, we will introduce a condition on the Rayleigh-
Ritz quotient of ΞN for those directions δ such that

∥∥δJc0∥∥1
≤ c0 ‖δJ0‖1. This explains why we are

interested in the (modified) Rayleigh-Ritz quotient of ΞN :

min
δ 6=0,

∥∥∥δJc0∥∥∥1≤c0‖δJ0‖1
‖Xδ‖22
N ‖δJ0‖

2
2

=

 min
δ 6=0,

∥∥∥δJc0∥∥∥1≤c0‖δJ0‖1
‖Xδ‖2√
N ‖δJ0‖2

2

.

As we do not know the true J0, we will express the condition as a minimum over all possible J0. At
last, we will limit the relation to those J0 with |J0| ≤ s. Here s is a measure of “sparsity”, i.e. of the
maximum number of non-zero coefficients we are allowed to consider.

We have the following assumption:

RE(s, c0) For some integer s such that 1 ≤ s ≤ P and a positive number c0, the following condition
holds:

κ (s, c0) := min
J0⊆{1,...,P},|J0|≤s

min
δ 6=0,

∥∥∥δJc0∥∥∥1≤c0‖δJ0‖1
‖Xδ‖2√
N ‖δJ0‖2

> 0.

We pass to the second assumption. Consider integers s,m such that 1 ≤ s ≤ P/2, m ≥ s and
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s + m ≤ P . Take a vector J0 ⊆ {1, . . . , P} with |J0| ≤ s. Let J1 be the subset of J\J0 containing
the m coordinates largest in absolute value. Let J01 := J0 ∪ J1. We have the following assumption:

RE(s,m, c0) For two integers s and m such that 1 ≤ s ≤ P/2, m ≥ s and s+m ≤ P , and a positive
number c0, the following condition holds:

κ (s,m, c0) := min
J0⊆{1,...,P},|J0|≤s

min
δ 6=0,

∥∥∥δJc0∥∥∥1≤c0‖δJ0‖1
‖Xδ‖2√
N ‖δJ01‖2

> 0

where J01 is defined above.

Provided s respects the conditions necessary for RE(s,m, c0) to be well defined, the only difference
is in the denominators, as ‖δJ01‖2 ≥ ‖δJ0‖2. As a result, κ (s,m, c0) ≤ κ (s, c0) and RE(s, c0) is
weaker than RE(s,m, c0). Some further considerations on these and other assumptions are in [57,
pp. 1711-1714] or in [482].

In the following proposition we provide a lower bound for the restricted eigenvalue. Let Ξ be
the matrix whose (j, k)-element is:

[Ξ](j,k) =

∫
RM

pjP (g (x)) pkP (g (x))P (dx)

where P is the probability defined in Par. Let λmin (Ξ) be its smallest eigenvalue.

Proposition 6.3. Under Par, Der, RE(s,m, 3), we have:

κ (s,m, 3) ≥ λmin (Ξ)−
√
C (M,K) · s ·DN,P · ζK (P ) .

Characterizing the behavior of λmin (Ξ) is more difficult. However, we can provide some hints
through some special cases. We will frequently use the following two tricks.

First, the (P ×N)-matrix pP (S) in our applications is often characterized by the fact of having
P comparable with or even larger than N . However, in order to study λmin (Ξ) we can use results
for pP (S) with N larger than P and consider what happens to ΞN := 1

N pP (S) p′P (S) when N

diverges. This is eased by the fact that most results quoted are really independent of N .
Second, we recall that, for a generic matrix A, the (Euclidean) condition number of A is given

by:

κ (A) :=

√
λmax (A′A)

λmin (A′A)
.

If the matrix A is symmetric, then:

κ (A) =
λmax (A)

λmin (A)
.

Writing:

λmin (Ξ) =
λmin (Ξ)

λmax (Ξ)
· λmax (Ξ) =

λmax (Ξ)

κ (Ξ)
,

we reduce the problem to bounding λmax (Ξ) from below and κ (Ξ) from above. Now, the maximum
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eigenvalue λmax (Ξ) can be bounded from above by the trace:

λmax (Ξ) ≤ tr (Ξ) ≤ P · sup
1≤j≤P

∫
RK

p2
jP (g (x))P (dx)

and from below, as in [468, Eq. (2.2)], by the largest diagonal element:

λmax (Ξ) ≥ sup
1≤j≤P

∫
RK

p2
jP (g (x))P (dx) .

We recall that a Vandermonde matrix is a (N × P )-matrix of the form:

VP (x) :=


1 x1 x2

1 · · · xP−1
1

1 x2 x2
2 · · · xP−1

2

...
...

...
. . .

...
1 xN x2

N · · · xP−1
N


where x is a generic row P -vector

[
1 x x2 · · · xP−1

]
, while a polynomial Vandermonde or

Vandermonde-like matrix (see [183]) is a (N × P )-matrix of the form:

VP (pP (x)) :=


p0 (x1) p1 (x1) p2 (x1) · · · pP−1 (x1)

p0 (x2) p1 (x2) p2 (x2) · · · pP−1 (x2)
...

...
...

. . .
...

p0 (xN ) p1 (xN ) p2 (xN ) · · · pP−1 (xN )

 .

These matrices may be relevant because:

Ξ = lim
N→∞

1

N
V′P (x) ·VP (x) .

Now, we consider some special cases. The analysis is mostly restricted to the case M = 1, but
the results suggest that the case M > 1 should not be too different. Moreover, most examples cover
the case M = K.

Example 6.12. [Monomials] In the case of monomials, Ξ is a Hankel matrix defined by the equality:

[Ξ](j,k) =

∫
R
xj+k−2P (dx) = µj+k−2

where µn is the n-th non-central moment of P (·). The matrix Ξ is well studied in the literature and
is related to the moment problem. A rather general result is proved in [497] where it is shown that,
under certain conditions on P:

λmin (Ξ) ∼ AP 1
2BP

for constants A > 0 and 0 < B < 1 that can be characterized. Several other cases have been
considered in the literature, see for example [497, 89, 43, 44]; in particular, [43, 44] consider the
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case in which λmin (Ξ) is bounded away from 0 (the so-called indeterminate case of the moment
problem). One can have a confirmation through the literature on condition numbers of Hankel and
Vandermonde matrices. Theorems 3.6 and 4.1 in [37] (see also Corollaries 5.3 and 5.5 in [38]) state
that κ (Ξ) grows at least exponentially in P when the support of the points is any bounded or
unbounded interval. The literature does not seem to contain upper bounds applicable to our case.

Example 6.13. [Orthogonal polynomials] The picture changes when we turn away from monomials
to orthogonal polynomials. In this case the matrix can be well conditioned or even optimally
conditioned (i.e. all eigenvalues are equal to 1). Theorems 2 and 4 in [276] apply to polynomial
Vandermonde matrices and show that a careful choice of the integration measure–rather difficult
to achieve in pratice–can lead to λmin (Ξ) = 1. A more general result (see [40, Proposition 2.1])
shows that λmin (Ξ) may be bounded away from 0. Suppose that M = K and PP is a sequence of
orthonormal polynomials with respect to a measure µ. Let Q be the image measure of P under g

and suppose that the Radon-Nikodým derivative of Q with respect to µ is bounded from below on
its support, i.e. dQ/dµ ≥ c > 0. Then:

λ′Ξλ =

∫
R

[
λ′pP (y)

]2 Q (dy) =

∫
R

[
λ′pP (y)

]2 dQ
dµ

µ (dy)

≥c
∫
R

[
λ′pP (y)

]2
µ (dy) = cλ′λ

from which λmin (Ξ) ≥ c > 0.

Example 6.14. [Tensor products] As in (6.3.5), suppose that pP (x) =
⊗M

i=1 pp (xi). Let Q be the
image measure of P under g and suppose that the Radon-Nikodým derivative of Q with respect to
a product measure µ =

⊗M
i=1 µi is bounded from below on its support, i.e. dQ/dµ ≥ c > 0. Then:

λ′Ξλ =

∫
R

[
λ′pP (y)

]2 Q (dy) =

∫
R

[
λ′

M⊗
i=1

pp (yi)

]2

dQ
dµ

µ (dy)

≥cλ′
{∫

R

[
M⊗
i=1

pp (yi) ·
M⊗
i=1

p′p (yi)

]
M⊗
i=1

µi (dyi)

}
λ

=cλ′

{∫
R

[
M⊗
i=1

pp (yi) p
′
p (yi)

]
M⊗
i=1

µi (dyi)

}
λ

=cλ′

(
M⊗
i=1

Ξi

)
λ ≥ cλ′λ

M∏
i=1

λmin (Ξi)

where Ξi :=
∫
R pp (yi) p

′
p (yi)µi (dyi).

The previous examples show that there is an advantage in passing from a linear combination
of monomials to a combination of orthogonal polynomials. However, we can do much better using
a trick that is quite common in econometrics (see [353, 354]). The trick consists in exploiting the
invariance of the estimator to the choice of the basis by modifying the dictionary from pP (·) to p?P (·).
The objective is to use this new dictionary p?P (·) to compute an improved rate of convergence. We
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are not proposing to use p?P (·) in estimation, but simply to replace pP (·) with p?P (·) in the proofs
of the properties of

∣∣∣θ̂ − θ∣∣∣. There may be computational advantages in using p?P (·) but, apart from
these advantages, it is largely immaterial whether one uses pP (·) or p?P (·) because of the invariance
of the estimator to the choice of the basis. Here is the main assumption.

Ort For every P there is a constant and nonsingular matrix B such that, for p?P (·) = BpP (·), the
smallest eigenvalue of the matrix Ξ? defined by:

Ξ? :=

∫
RM

p?P (g (x)) p?,′P (g (x))P (dx) =

∫
RM

p?P (y) p?,′P (y)Q (dy)

is bounded away from zero uniformly in P .

The following proposition is a reformulation of Lemma A.15 in [353]. We make the hypothesis that
the multi-index set ΛP is downward closed with respect to the partial order in NM0 , i.e. if λ ∈ ΛP

and µ ≤ λ then µ ∈ ΛP (see [340, p. 140]).

Proposition 6.4. Suppose that the multi-index set ΛP is downward closed with respect to the partial
order in NM0 . Suppose that the space can be reduced to the unit hypercube [0, 1]

M . Let the density of
Q be bounded from below by C

∏M
j=1 y

ν
j (1− yj)ν . Then, there is a choice of B such that Ort holds

true, NP is unchanged and one can take ζP (k) ≤ C · P 1
2 +ν+2k.

6.4 Main results

The following is our main result.

Theorem 6.1. Let 1 > δ > 0 be a constant. Under subE, let:

τ := 2

{
max

{
σRξP

N
1
2

√
2 ln

2P

δ
,

2cRζ0 (P )

N
ln

2P

δ

}
+ ξP (µR +NP )

}
.

Under RE(s, 3), with probability at least 1− δ:

∥∥∥β̂J0 − βJ0∥∥∥
2
≤ 3τs

1
2

κ2 (s, 3)

and: ∥∥∥p′P (Ŝ
)
·
(
β̂ − β

)∥∥∥
2
≤ 3τN

1
2 s

1
2

κ (s, 3)
.

Under RE(s,m, 3), with probability at least 1− δ:

∥∥∥β̂ − β∥∥∥
2
≤
(

1 + 9
s

m

) 1
2 3τs

1
2

κ2 (s,m, 3)
.
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Under subE, subE’ and RE(s,m, 3), with probability at least 1− δ −∆:

∣∣∣θ̂ − θ∣∣∣ ≤ (1 + 9
s

m

) 1
2 3ζ0 (P ) τs

1
2P

1
2

κ2 (s,m, 3)
+NP + max

{
σS

√
2 ln

2

∆
, 2cS ln

2

∆

}
+ µS .

Remark 6.2. (i) The results under Assumptions subG and subG’ are obtained setting, respectively,
cR ≡ 0 and cS ≡ 0.
(ii) If Assumptions subG and subE are supposed to hold with a leading constant, i.e. E exp {u (εn − µn)} ≤
CR exp

{
u2σ2

R

2

}
either for all u of for |u| ≤ 1

cR
, the result of Theorem 6.1 still holds by replacing

ln 2P
δ in the formula for τ with ln 2CRP

δ . The same holds true for Assumptions subG’ and subE’.

Let us suppose that µR = O
(
R−1

)
, σR = O

(
R−

1
2

)
, µS = O

(
S−1

)
, σS = O

(
S−

1
2

)
, ξP ' 1 and

NP = O (P−α). Then, under subG and subG’, we have:

τ �
√

lnP − ln δ

NR
+R−1 + P−α

and, with probability at least 1− δ −∆:

∣∣∣θ̂ − θ∣∣∣ ≤(1 + 9
s

m

) 1
2 3ζ0 (P ) τs

1
2P

1
2

κ2 (s,m, 3)
+NP + max

{
σS

√
2 ln

2

∆
, 2cS ln

2

∆

}
+ µS

.
(

1 +
s

m

) 1
2 ζ0 (P ) s

1
2

κ2 (s,m, 3)

(√
P (lnP − ln δ)

NR
+ P

1
2R−1 + P

1
2−α

)
+ P−α + S−

1
2

√
|ln ∆|+ S−1.

Moreover, suppose that RE(s,m, 3) holds true. Now we consider two scenarios.

• Suppose that θ can be expressed in such a way that J0 has finite cardinality. In this case, s is
finite and:

∣∣∣θ̂ − θ∣∣∣ . ζ0 (P )

κ2 (s,m, 3)

(√
P (lnP − ln δ)

NR
+ P

1
2R−1 + P

1
2−α

)
+ P−α + S−

1
2

√
|ln ∆|+ S−1.

Let us fix δ and ∆:

∣∣∣θ̂ − θ∣∣∣ . ζ0 (P )

κ2 (s,m, 3)

(√
P lnP

NR
+R−1 + P−α

)
+ P−α + S−

1
2 .

• Suppose that θ can be expressed as a function of a subset of dimension M0 =: χM , for
χ ∈ (0, 1), of the M statistics involved in the estimation process. We take the tensor products
of monomials as dictionary. If p− 1 is the maximal degree of each variable, we have P ∼ pM .
Moreover, s ∼ pM0 and we take s = m. Then:

∣∣∣θ̂ − θ∣∣∣ . ζ0 (P )

κ2 (s, s, 3)
pM0

(√
pM (M ln p− ln δ)

NR
+ p

M
2 R−1 + p(

1
2−α)M

)
+p−αM+S−

1
2

√
|ln ∆|+S−1.

191



Let us fix δ and ∆:

∣∣∣θ̂ − θ∣∣∣ . ζ0 (P )

κ2 (s, s, 3)

(√
p(2χ+1)M ln p

NR
+ p(χ+ 1

2 )MR−1 + p(χ+ 1
2−α)M

)
+ p−αM + S−

1
2 .

6.5 Simulation experiments

The simulation study described in this section, follows the procedure exposed in Section 5.7 of
Chapter 5 on nonparametric moment-based estimation via OLS. Below we detail two examples,
the estimation of the mean µ and of the standard deviation σ of a Gaussian random variable. As
explained in Section 5.7 of Chapter 5, we choose to estimate µ, in order to cover the parametric
case, and σ to deal with the nonparametric situation. For the sake of clarity, σ can be expressed
as a linear combination of an infinite number of basis functions, but this number is of a smaller
order than the order of elements of the dictionary. Both the estimation of µ and σ are therefore
characterized by sparsity. Nevertheless, in both cases the variance seems to reach the Cramér-Rao
Lower Bound (CRLB), whose come.

The algorithm follows the steps elucidated in Section 5.7 of Chapter 5. The main difference
relies on the estimation of function f (j)

P , that is carried out exploiting Lasso regression with a tuning
parameter (λ) selected through cross-validation.

We replicate the procedure 10, 000 times, with 16 different configurations. Table 6.5.1 describes
the parametrization of the simulation study. The values of µ and σ for the training sample are
selected according to equispaced grids (see Table 6.5.1 for the range and the cardinality of the grid).
A two-dimensional set of points in Θ is then built through a full factorial design of the values of µ
and σ. The parameter values can be chosen according to other methods; we pursue this technique
for simplicity. The value of µ for the test sample is determined fixing σ ≡ 1 and taking µ on a grid
covering [−0.76,+0.76]. The values of σ for the test sample are determined fixing µ ≡ 0 and taking
σ on a grid covering [0.6, 1.5]. The cardinalities of µ and σ for the test samples are specified in Table
6.5.1.

6.5.1 Estimation of the mean of a Gaussian random variable

Figure 6.5.1 and 6.5.2 describe, respectively, the behavior of the bias and the variance of the estimator
of µ. The thin line with the same style as the corresponding variance of the estimator, in the variance
plot, represent the CRLB.

Figure 6.5.1 shows that the bias of the estimator of µ is small and decreases when the number
of simulations, S = R, and the number of training points, N , increase. Two phenomena are at work
here: first, for small S and R the regressors are biased estimators of the same quantities for S and R
equal to infinity, as the polynomials are nonlinear functions of unbiased statistics; second, the Lasso
is in itself a biased estimator of the function f (j)

P .
The variance of the estimator of µ, exhibited in Figure 6.5.2, seems to reach the CRLB. Hence,

the estimator seems to be efficient.

192



−0.5 0.0 0.5

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Test value of µ

B
ia

s

−0.5 0.0 0.5

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Test value of µ

B
ia

s

−0.5 0.0 0.5

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Test value of µ

B
ia

s

−0.5 0.0 0.5

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Test value of µ

B
ia

s

Figure 6.5.1: Bias of the estimator of µ with R = 10 (dash-dot line), R = 100 (dotted line), R = 1, 000 (dashed
line) and R = 10, 000 (solid lime), for different configurations of parameters: p = 4 and N = 980 (top left), p = 6 and
N = 980 (top right), p = 6 and N = 3960 (bottom left) and p = 9 and N = 980 (bottom right).

193



−0.5 0.0 0.5

1e
−

04
5e

−
04

5e
−

03
5e

−
02

Test value of µ

Lo
g−

va
ria

nc
e

−0.5 0.0 0.5

1e
−

04
5e

−
04

5e
−

03
5e

−
02

Test value of µ

Lo
g−

va
ria

nc
e

−0.5 0.0 0.5

1e
−

04
5e

−
04

5e
−

03
5e

−
02

Test value of µ

Lo
g−

va
ria

nc
e

−0.5 0.0 0.5

1e
−

04
5e

−
04

5e
−

03
5e

−
02

Test value of µ

Lo
g−

va
ria

nc
e

Figure 6.5.2: Variance of the estimator of µ with R = 10 (dash-dot line), R = 100 (dotted line), R = 1, 000 (dashed
line) and R = 10, 000 (solid line), for different configurations of parameters: p = 4 and N = 980 (top left), p = 6 and
N = 980 (top right), p = 9 and N = 980 (bottom left) and p = 6 and N = 3, 960 (bottom right).
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Table 6.5.1: Parametrization of the simulation experiment
Training sample Test sample Test sample

p R = S N µ σ for µ for σ
card. range card. range card. card.

4 10 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
4 100 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
4 1,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
4 10,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
6 10 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
6 100 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
6 1,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
6 10,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
9 10 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
9 100 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
9 1,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
9 10,000 980 49 [−0.96,+0.96] 20 [1, 2] 39 10
6 10 3960 99 [−0.98,+0.98] 40 [1, 2] 77 19
6 100 3960 99 [−0.98,+0.98] 40 [1, 2] 77 19
6 1,000 3960 99 [−0.98,+0.98] 40 [1, 2] 77 19
6 10,000 3960 99 [−0.98,+0.98] 40 [1, 2] 77 19

Note: “card.” stands for “cardinality”.

6.5.2 Estimation of the standard deviation of a Gaussian random variable

Figure 6.5.3 and 6.5.4 describe, respectively, the behavior of the bias and the variance of the estimator
of σ. The thin line with the same style as the corresponding variance of the estimator, in the variance
plot, represent the CRLB.

When we move to the estimation of σ, which is a nonparametric function of the statistics, the
bias of the estimator is not negligible. Furthermore, its shape as a function of the parameter values,
is not immediately intelligible (see 6.5.3). Nonetheless, it decreases as the order of polynomials, P ,
and the number of simulated observations, S = R, increase. In this case three phenomena are at
work: as above, for small S and R the regressors are biased estimators of their asymptotic values
and the Lasso is a biased estimator of f (j)

P ; however, the function f (j)
P is a biased estimator of the

function f (j), as the approximation of the function by a linear combination of basis functions neglect
a bias term given by f (j) − f (j)

P .
Also in this case, the variance of the estimator of σ reaches the CRLB (see 6.5.4). Therefore, the

estimator seems to be efficient.

6.6 Conclusions

In this paper, we propose a new method for the nonparametric estimation of simulated models.
Starting from the work of [86], we draw on their contribution adding sieve estimation to the Lasso
regression, in order to capture the nonlinear and unknown relations between the statistics used as
regressors and the parameters to be estimated, and rigorously characterizing the asymptotic behavior
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Figure 6.5.3: Bias of the estimator of σ with R = 10 (dash-dot line), R = 100 (dotted line), R = 1, 000 (dashed
line) and R = 10, 000 (solid line), for different configurations of parameters: p = 4 and N = 980 (top left), p = 6 and
N = 980 (top right), p = 9 and N = 980 (bottom left) and p = 6 and N = 3960 (bottom right).
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Figure 6.5.4: Variance of the estimator of σ with R = 10 (dash-dot line), R = 100 (dotted line), R = 1, 000 (dashed
line) and R = 10, 000 (solid line), for different configurations of parameters: p = 4 and N = 980 (top left), p = 6 and
N = 980 (top right), p = 9 and N = 980 (bottom left) and p = 6 and N = 3, 960 (bottom right).
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of the estimator θ̂(j).
The asymptotic rate of convergence of θ̂(j) to θ(j) is generally sub-optimal as we consider a

nonparametric estimation technique, but the loss of efficiency in terms of convergence speed is
compensated by the flexibility deriving from the nonparametric estimation of the function linking
the statistics and the parameters. The asymptotic results on the error in the estimation of the
coefficients and the prediction are good and quite general.

Finally, the simulation experiment concerning the finite-sample properties of the estimator shows
that, when the parameter to be estimated is a parametric function of the limiting values of the
statistics (e.g., can be expressed as a finite linear combination of the elements of the dictionary
used in the regression), the bias is negligible and tends to decrease when S, the number of real-
world observations, R, the number of simulations, and N , the number of training points, increase.
Instead, when we deal with a parameter that can be represented as a linear combination of an infinite
number of basis functions (e.g., a nonparametric relation between the parameter to be estimated
and the statistics is involved), although the bias seems to decrease as the order of polynomials and
the number of simulated observations increase, it is not negligible and its shape as a function of the
parameter values is not directly interpretable. In both cases the variance of the estimator reaches
the Cramér-Rao lower bound, hence the estimator seems to be efficient.

6.7 Proofs

6.7.1 Auxiliary results

Lemma 6.1. Let X be a non-negative random variable with a tail inequality 1 − FX (x) ≤ ce−Cx

for x > 0. Then, for 0 ≤ u < C: ∫ ∞
0

euxdFX (x) ≤ c uC C

C − u
.

Proposition 6.5. Under Par, Der, we have:∣∣∣∣[Π̂]
(j,k)
− [Π](j,k)

∣∣∣∣ ≤ C (M,K) · ζK (P ) · (ζK (P ) + ζ0 (P )) ·DN,P.
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6.7.2 Proofs of auxiliary results

Proof of Lemma 6.1. We use the alternative expectation formula applied to the mgf of a positive
random variable. By integration by parts:

−
∫ ∞

0

euxdFX (x) =

∫ ∞
0

euxd (1− FX (x))

= eux (1− FX (x))|∞0 − u
∫ ∞

0

(1− FX (x)) euxdx,∫ ∞
0

euxdFX (x) = − eux (1− FX (x))|∞0 + u

∫ ∞
0

(1− FX (x)) euxdx.

To guarantee that the first term is bounded, we use a bound of the form 1− FX (x) ≤ ce−Cx. The
term is bounded, provided u < C, and yields:∫ ∞

0

euxdFX (x) = 1 + u

∫ ∞
0

(1− FX (x)) euxdx.

Using the bound 1− FX (x) ≤ ce−Cx again, we get:

1− FX (x) ≤ min
{

1, ce−Cx
}

=

1 x ≤ ln c
C

ce−Cx x > ln c
C

and:∫ ∞
0

euxdFX (x) ≤ 1 + u

∫ ln c
C

0

euxdx+ cu

∫ ∞
ln c
C

e(u−C)xdx = 1 + u
c
u
C − 1

u
+ cu

c
u
C−1

C − u
= c

u
C

C

C − u
.

QED
Proof of Proposition 6.1. Let Yr := Xr−S, let G be a zero-mean Gaussian vector with variance

Σ, and let G? := Σ−
1
2 G. We can write Ŝ = 1

R

∑R
r=1 Yr + S. Therefore, we have the following

decomposition that will be used in the following:

f

(
1

R

R∑
r=1

Yr + S

)
− f (S) =f

(
1

R

R∑
r=1

Yr + S

)
− f

(
R−

1
2 G + S

)
+ f

(
R−

1
2 G + S

)
− Ef

(
R−

1
2 G + S

)
+ Ef

(
R−

1
2 G + S

)
− f (S) .
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Note that the first and the third terms can be majorized as:∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f

(
R−

1
2 G + S

)∣∣∣∣∣ ≤LR ·
∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

, (6.7.1)

∣∣∣Ef (R− 1
2 G + S

)
− f (S)

∣∣∣ ≤L · E∥∥∥R− 1
2 G
∥∥∥

2
≤ L ·

(
E
∥∥∥R− 1

2 G
∥∥∥2

2

) 1
2

=LR−
1
2 · (EG′G)

1
2 = LR−

1
2 · (tr (Σ))

1
2 . (6.7.2)

Let us start from the mgf. Using the Cauchy-Schwarz inequality, we have:

Eeu{f(
1
R

∑R
r=1 Yr+S)−f(S)} ≤

√
Ee2u

{
f( 1

R

∑R
r=1 Yr+S)−f

(
R−

1
2 G+S

)}

·
√
Ee2u

{
f
(
R−

1
2 G+S

)
−Ef

(
R−

1
2 G+S

)}
· eu

{
Ef
(
R−

1
2 G+S

)
−f(S)

}
. (6.7.3)

From [386, pp. 180-181], the second term in (6.7.3) can be majorized as:

Ee2u
{
f
(
R−

1
2 G+S

)
−Ef

(
R−

1
2 G+S

)}
≤ exp

{
2
L2λmax (Σ)

R
u2

}
,√

Ee2u
{
f
(
R−

1
2 G+S

)
−Ef

(
R−

1
2 G+S

)}
≤ exp

{
L2λmax (Σ)

R
u2

}
.

The first term in (6.7.3) can be majorized through (6.7.1) as:

Ee2u
{
f( 1

R

∑R
r=1 Yr+S)−f

(
R−

1
2 G+S

)}
≤ Ee

2|u|L
R ·

∥∥∥∑R
r=1 Yr−R

1
2 G
∥∥∥
2 .

We apply Lemma 6.1 with c = C1M
2 and C = C2R

M2BL . Therefore:√
Ee2u

{
f( 1

R

∑R
r=1 Yr+S)−f

(
R−

1
2 G+S

)}
≤
√

Ee
2|u|L
R ·

∥∥∥∑R
r=1 Yr−R

1
2 G
∥∥∥
2

≤

√
C2R

C2R− 2M2BL |u|
· exp

{
M2BL |u|
C2R

ln
(
C1M

2
)}

.

The third term in (6.7.3) can be majorized through (6.7.2). At last, we have:

Eeu{f(Ŝ)−f(S)} ≤

√
C2R

C2R− 2M2BL |u|
·exp

{[
M2BL

C2R
ln
(
C1M

2
)

+
L (tr (Σ))

1
2

R
1
2

]
|u|+ L2λmax (Σ)

R
u2

}
,

for |u| < C2R
M2BL . Over |u| ≤ c−1

R , with c−1
R < C2R

M2BL :

Eeu{f(Ŝ)−f(S)} ≤
√

C2RcR
C2RcR − 2M2BL

·exp

{[
M2BL

C2R
ln
(
C1M

2
)

+
L (tr (Σ))

1
2

R
1
2

]
c−1
R +

L2λmax (Σ)

R
u2

}
.
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Now we turn to the majorization of the tail probability. We have:∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f (S)

∣∣∣∣∣
≤

∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣∣∣+
∣∣∣Ef (R− 1

2 G + S
)
− f (S)

∣∣∣
≤

∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f

(
R−

1
2 G + S

)∣∣∣∣∣
+
∣∣∣f (R− 1

2 G + S
)
− Ef

(
R−

1
2 G + S

)∣∣∣+
∣∣∣Ef (R− 1

2 G + S
)
− f (S)

∣∣∣
≤L
R
·

∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

+
∣∣∣f (R− 1

2 G + S
)
− Ef

(
R−

1
2 G + S

)∣∣∣
+
∣∣∣Ef (R− 1

2 G + S
)
− f (S)

∣∣∣ .
We start with the first two terms. We write:

P

{∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣∣∣ > t

}

≤P

{
L

R
·

∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

+
∣∣∣f (R− 1

2 G + S
)
− Ef

(
R−

1
2 G + S

)∣∣∣ > t

}

≤P

{∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

>
R

L
· t1

}
+ P

{∣∣∣f (R− 1
2 G + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣ > t2

}
(6.7.4)

where t1 + t2 = t. Now, from [51, p. 155], the first term in (6.7.4) can be bounded as:

P

{∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

>
R

L
· t1

}
≤ C1M

2 exp

{
− C2R

M2BL
· t1
}

or, with probability at least 1− δ1:∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f

(
R−

1
2 G + S

)∣∣∣∣∣ ≤ M2BL

C2R
· ln C1M

2

δ1
.

Now, we consider the second term in (6.7.4). We plan to apply [291, Ch. 2.3, Eq. (2.35)]. The
result applies to a function of a standard normal vector, i.e. to h (x) := f

(
R−

1
2 Σ

1
2 x + S

)
. We

show that h is Lipschitz with constant LR−
1
2λ

1
2
max (Σ):

|h (x)− h (y)| ≤
∣∣∣f (R− 1

2 Σ
1
2 x + S

)
− f

(
R−

1
2 Σ

1
2 y + S

)∣∣∣ ≤ LR− 1
2λ

1
2
max (Σ) · ‖x− y‖2 .
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Therefore, we have:

P
{∣∣∣f (R− 1

2 G + S
)
− Ef

(
R−

1
2 G + S

)∣∣∣ > t2

}
≤ 2 exp

{
− Rt22

2L2λmax (Σ)

}
or, with probability at least 1− δ2:

∣∣∣f (R− 1
2 G + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣ ≤
√

2L2λmax (Σ)

R
ln

2

δ2
.

As a result, taking δ1 = δ2 = δ/2:∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣∣∣ ≤ M2BL

C2R
· ln 2C1M

2

δ
+

√
2L2λmax (Σ)

R
ln

4

δ
.

To get the final result, we use (6.7.2).
The tail probability result can be obtained from (6.7.4), letting t1 = t2 = t

2 :

P

{∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣∣∣ > t

}

≤P

{∥∥∥∥∥
R∑
r=1

Yr −R
1
2 G

∥∥∥∥∥
2

>
R

L
· t1

}
+ P

{∣∣∣f (R− 1
2 G + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣ > t2

}
≤C1M

2 exp

{
− C2R

M2BL
· t1
}

+ 2 exp

{
− R

2L2λmax (Σ)
· t22
}

≤max
{
C1M

2, 2
}
·
{

exp

{
− C2R

M2BL
· t1
}

+ exp

{
− R

2L2λmax (Σ)
· t22
}}

≤2 max
{
C1M

2, 2
}
· exp

{
−min

{
C2R

M2BL
· t1,

R

2L2λmax (Σ)
· t22
}}

≤max
{

2C1M
2, 4
}
· exp

{
−min

{
C2R

2M2BL
· t, R

8L2λmax (Σ)
· t2
}}

.

At last, through (6.7.2):

P

{∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− Ef

(
R−

1
2 G + S

)∣∣∣∣∣ > t

}

=P

{∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f (S) + f (S)− Ef

(
R−

1
2 G + S

)∣∣∣∣∣ > t

}

≥P

{∣∣∣∣∣f
(

1

R

R∑
r=1

Yr + S

)
− f (S)

∣∣∣∣∣− LR− 1
2 · (tr (Σ))

1
2 > t

}
.

QED
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Proof of Proposition 6.5. Under Par, we have:[
Π̂−Π

]
(i,j)

=

∫
RM

piP (g (x)) pjP (g (x)) (PN − P) (dx) .

The Koksma-Hlawka inequality of [192, Corollary 2.4], [225, p. 165], [6] yields:∣∣∣[N−1Π−Π0P

]
(i,j)

∣∣∣ ≤ VHK (piP (g (·)) pjP (g (·))) ·DN,P

where VHK (f) is the Hardy-Krause total variation (see, e.g., [370]) and DN,P is the non-uniform
unanchored discrepancy defined in (6.3.3) (see also [192, p. 100] or [225, p. 165]).

The inequality derived from the last formula on p. 251 in [62] for ϕ (x) = x:

VHK (fg) ≤
(
3K + 1− 2K+1

)
· VHK (f)VHK (g) + ‖f‖∞ VHK (g) + ‖g‖∞ VHK (f) , (6.7.5)

yields:

VHK (piP (g (·)) pjP (g (·)))

≤
(
3M + 1− 2M+1

)
· VHK (piP ◦ g)VHK (pjP ◦ g)

+ ‖piP ◦ g‖∞ VHK (pjP ◦ g) + ‖pjP ◦ g‖∞ VHK (piP ◦ g)

≤
(
3M + 1− 2M+1

)
· VHK (piP ◦ g)VHK (pjP ◦ g) (6.7.6)

+ ζ0 (P ) · VHK (pjP ◦ g) + ζ0 (P ) · VHK (piP ◦ g) .

Eq. (3) in [33, p. 1948] (see also [370, p. 61]) gives:

VHK (f) ≤
∑
u 6=∅

∫
[0,1]u

∣∣∣∣∂|u|f (θu; 1−u)

∂θu

∣∣∣∣ dθu ≤∑
u6=∅

sup
θu∈[0,1]u

∣∣∣∣∂|u|f (θu; 1−u)

∂θu

∣∣∣∣ ≤∑
u 6=∅

sup
θ∈[0,1]K

∣∣∣∣∂|u|f (θ)

∂θu

∣∣∣∣ ,
where:

∂|u|f (θ)

∂θu
=
∂|u|piP (g (θ))

∂θu
.

As this is a composite function, we apply the results in [101] and [33]. We follow the notation
in [101] but we will use some results from [33]. Theorem 2.1 in [101] applies to h (x) = f (g (x))

where x ∈ Rd and g (x) ∈ Rm. Let ν = (ν1, . . . , νd) ∈ Nd0 be a vector with n := |ν| 6= 0. For
m = (m1, . . . ,md), let fm = ∂|m|f

∂x
m1
1 ···∂x

md
d

.
We use [101, Theorem 2.1] or [33, Theorem 2]. As our vector ν (that we call u in the above

passages) belongs to the set {0, 1}d \ {0}, we can apply Lemma 3 and the reasoning leading to Eq.
(9) in [33]. Therefore, `j ∈ {0, 1}d \ {0} and kj ∈ {0, 1}m with |kj | = 1. It is easy to identify kj

with the (only) integer kj for which kj takes the value 1:

[
g`j
]kj

=
∂g(kj)

∂x`j
.
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Under Der, for n = |ν| 6= 0, we have:

|hν | ≤ν!
∑

1≤|λ|≤n

|fλ|
n∑
s=1

∑
ps(ν,λ)

s∏
j=1

∣∣∣[g`j ]kj ∣∣∣
(kj !) [`j !]

|kj |

≤ (µ ∨ µn)ν!

n∑
k=1

∑
|λ|=k

|fλ|
n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |

≤ (µ ∨ µn)ν!

n∑
k=1

√√√√√∑
|λ|=k

|fλ|2 ·
∑
|λ|=k


n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |


2

≤ (µ ∨ µn)ν!

n∑
k=1

√√√√√
∑
|λ|=k

|fλ|2
 ·

∑
|λ|=k

n∑
s=1

∑
ps(ν,λ)

s∏
j=1

1

(kj !) [`j !]
|kj |


2

≤ (µ ∨ µn)

n∑
k=1

∑
|λ|=k

|fλ|2
 1

2

·mkSkn

where the second inequality comes from Der, the third from Cauchy-Schwarz inequality, the fourth
from

∑n
i=1 x

2
i ≤ (

∑n
i=1 xi)

2, and the fifth from Corollary 2.9 in [101, p. 511]. Note that Skn is a
Stirling number of the second kind. We replace h (·) = f (g (·)) with piP (g (·)), ν with u, m with
M , and n equals |u|, and we use the definition of ζk (P ) to get:

VHK (piP ◦ g) ≤
∑
u 6=∅

(µ ∨ µn)

n∑
k=1

∑
|λ|=k

|fλ|2
 1

2

·MkSkn

≤
(
µ ∨ µK

)∑
u 6=∅

n∑
k=1

∑
|λ|=k

ζ2
k (P )

 1
2

·MkSkn


≤
(
µ ∨ µK

)
· C (M,K) · ζK (P )

for a constant C (M,K) depending only on M and K.
Replacing this into (6.7.6), we get:

VHK (piP (g (·)) pjP (g (·)))

≤ C (M,K) · ζK (P ) ·
(
µ ∨ µK

)
·
(
ζK (P ) ·

(
µ ∨ µK

)
+ ζ0 (P )

)
≤ C (M,K) · ζK (P ) · (ζK (P ) + ζ0 (P )) .

QED
Proof of Proposition 6.2. The proposition is simply a corollary of Proposition 6.5. Indeed, the
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result derives from:

sup
1≤j≤P

(
1

N

N∑
n=1

p2
jP (Sn)−

∫
RK

p2
jP (g (x))P (dx)

)
≤ C (M,K) · ζ2

K (P ) ·DN,P.

QED
Proof of Proposition 6.3. Let us define ΞN = 1

N p
′
P (S) pP (S). We define a distance as:

d∞ (ΞN ,Ξ) := max
j,k

∣∣∣[ΞN ](j,k) − [Ξ](j,k)

∣∣∣ .
Then, from Corollary 10.1 in [482]:

κ (s,m, c0) ≥ λmin (Ξ)− 4
√
d∞ (ΞN ,Ξ) · s.

Applying Proposition 6.5, we get:

κ (s,m, c0) ≥ λmin (Ξ)−
√
C (M,K) · s · ζK (P ) · (ζK (P ) + ζ0 (P )) ·DN,P.

QED
Proof of Proposition 6.4. The space of polynomials spanned by PP in (6.3.4) and PP in (6.3.6)

is the same, provided the set ΛP is downward closed with respect to the partial order in NM0 .
Moreover, the space spanned does not depend on the choice of the polynomials. Therefore, as in
[353], we take the explicit choice of normalized Gegenbauer or ultraspherical polynomials C(α)

n , n ∈ N
(see [366, Chapter 18]). These are the orthogonal polynomials with respect to the weighting function(
1− x2

)α− 1
2 on [−1,+1] and can be made orthonormal by a simple normalization. In the following,

we will use the notation C
(α)
n to denote the orthonormal ones. Moreover, as the support of the

polynomials is [−1,+1], a scaling of the argument is necessary. As a final result, we consider:

PP =


M∏
j=1

C
(α)
λj

(2xj − 1) , λ ∈ ΛP

 .

Let `P be the largest element of any multi-index in ΛP . Then we define:

Λ̃P :=
{
λ ∈ NM0 : λj ≤ `P , 1 ≤ j ≤M

}
.

Note that Λ̃P is the set of all multi-indexes with elements ranging from 1 to `P . Let P̃P and p̃P (·) be
the set PP and the vector pP (·) when ΛP is replaced by Λ̃P . It is clear that p̃P (y) =

⊗M
j=1 p̃`P (yj).

Then, by the Cauchy interlacing theorem, we have:

λmin

{∫
R
pP (y) p′P (y)Q (dy)

}
≥ λmin

{∫
R
p̃P (y) p̃′P (y)Q (dy)

}
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and, by the variational property of the eigenvalues and the positive semi-definiteness of the matrices:

λmin

{∫
RM

p̃P (y) p̃′P (y)Q (dy)

}
= λmin

{∫
RM

p̃P (y) p̃′P (y)
Q (dy)

dy
dy

}

≥ λmin


∫
RM

p̃P (y) p̃′P (y)C

M∏
j=1

yνj (1− yj)ν dy


+ λmin


∫
RM

p̃P (y) p̃′P (y)

Q (dy)

dy
− C

M∏
j=1

yνj (1− yj)ν
dy


≥ Cλmin


∫
RM

M⊗
j=1

p̃`P (yj) p̃
′
`P (yj)

M∏
j=1

yνj (1− yj)ν dy


= Cλmin


M⊗
j=1

∫
R
p̃`P (yj) p̃

′
`P (yj) y

ν
j (1− yj)ν dyj

 = C.

Therefore, Ort holds true. The value of NP is clearly unchanged, as it is invariant with respect to
a different choice of polynomials, provided they span the same space. As to ζP (k), this comes from
[353, p. 271]. QED

6.7.3 Proofs of main results

Proof of Theorem 6.1. From the definition of the Lasso, we have, for any θ ∈ RN :

1

N

∥∥∥θ − p′P (Ŝ
)
· β̂
∥∥∥2

2
≤ 1

N

∥∥∥θ − p′P (Ŝ
)
· β
∥∥∥2

2
+ 2τ ‖β‖1 − 2τ

∥∥∥β̂∥∥∥
1
.

We multiply by N and we use θ = f (S) = f
(
Ŝ
)

+ ε:

∥∥∥f (Ŝ)+ ε− p′P
(
Ŝ
)
· β̂
∥∥∥2

2
≤
∥∥∥f (Ŝ

)
+ ε− p′P

(
Ŝ
)
· β
∥∥∥2

2
+ 2Nτ ‖β‖1 − 2Nτ

∥∥∥β̂∥∥∥
1∥∥∥f (Ŝ

)
− p′P

(
Ŝ
)
· β̂
∥∥∥2

2
−
∥∥∥f (Ŝ

)
− p′P

(
Ŝ
)
· β
∥∥∥2

2
≤2ε′p′P

(
Ŝ
)
·
(
β̂ − β

)
+ 2Nτ ‖β‖1 − 2Nτ

∥∥∥β̂∥∥∥
1
.

We write η := f
(
Ŝ
)
− p′P

(
Ŝ
)
· β for the approximation error. We have:

∥∥∥η + p′P

(
Ŝ
)
·
(
β − β̂

)∥∥∥2

2
− ‖η‖22 ≤ 2ε′p′P

(
Ŝ
)
·
(
β̂ − β

)
+ 2Nτ ‖β‖1 − 2Nτ

∥∥∥β̂∥∥∥
1∥∥∥p′P (Ŝ

)
·
(
β − β̂

)∥∥∥2

2
+ 2η′ · p′P

(
Ŝ
)
·
(
β − β̂

)
≤ 2ε′p′P

(
Ŝ
)
·
(
β̂ − β

)
+ 2Nτ ‖β‖1 − 2Nτ

∥∥∥β̂∥∥∥
1∥∥∥p′P (Ŝ

)
·
(
β − β̂

)∥∥∥2

2
≤ 2 (ε′ + η′) · p′P

(
Ŝ
)
·
(
β̂ − β

)
+ 2Nτ ‖β‖1 − 2Nτ

∥∥∥β̂∥∥∥
1
.
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Now we maximize 2 (ε′ + η′) ·p′P
(
Ŝ
)
·
(
β̂ − β

)
. We start from the term containing η, i.e. η′p′P

(
Ŝ
)
·(

β̂ − β
)
. Through Hölder’s inequality:

η′p′P

(
Ŝ
)
·
(
β̂ − β

)
≤
∥∥∥pP (Ŝ

)
η
∥∥∥
∞
·
∥∥∥β̂ − β∥∥∥

1
≤ max

1≤j≤P

∣∣∣∣[pP (Ŝ
)]

(j,·)
η

∣∣∣∣ · ∥∥∥β̂ − β∥∥∥
1

≤ max
1≤j≤P

∥∥∥∥[pP (Ŝ
)]

(j,·)

∥∥∥∥
2

‖η‖2 ·
∥∥∥β̂ − β∥∥∥

1
≤ ξPN

1
2 ‖η‖2 ·

∥∥∥β̂ − β∥∥∥
1

≤ NξPNP ·
∥∥∥β̂ − β∥∥∥

1
.

For ε′p′P
(
Ŝ
)
·
(
β̂ − β

)
we use Hölder’s and triangle inequalities to get:

ε′p′P

(
Ŝ
)
·
(
β̂ − β

)
≤
∥∥∥pP (Ŝ

)
ε
∥∥∥
∞
·
∥∥∥β̂ − β∥∥∥

1

≤
∥∥∥pP (Ŝ

)
(ε− µ)

∥∥∥
∞
·
∥∥∥β̂ − β∥∥∥

1
+
∥∥∥pP (Ŝ

)
µ
∥∥∥
∞
·
∥∥∥β̂ − β∥∥∥

1
.

The second term can be majorized through the Cauchy-Schwarz inequality and through
∥∥∥∥[pP (Ŝ

)]
(j,·)

∥∥∥∥
2

≤

N
1
2 ξP , for any j, and

∑N
n=1 µ

2
n ≤ Nµ2

R (subG and subE):

∥∥∥pP (Ŝ
)
µ
∥∥∥
∞

= max
1≤j≤P

∣∣∣∣[pP (Ŝ
)]

(j,·)
µ

∣∣∣∣ ≤ max
1≤j≤P

∥∥∥∥[pP (Ŝ
)]

(j,·)

∥∥∥∥
2

‖µ‖2 ≤ NξPµR.

Now we maximize
∥∥∥pP (Ŝ) (ε− µ)

∥∥∥
∞

using subE. We first note that we can write:

∥∥∥pP (Ŝ
)

(ε− µ)
∥∥∥
∞

= max
1≤j≤P

∣∣∣∣[pP (Ŝ
)]

(j,·)
(ε− µ)

∣∣∣∣ .
Let us suppose that subE holds true. Using

∥∥∥∥[pP (Ŝ
)]

(j,·)

∥∥∥∥
2

≤ N 1
2 ξP , for any j:

P
{∥∥∥pP (Ŝ

)
(ε− µ)

∥∥∥
∞
≥ t
}

=P
{

max
1≤j≤P

∣∣∣∣[pP (Ŝ
)]

(j,·)
(ε− µ)

∣∣∣∣ ≥ t} ≤ P∑
j=1

P
{∣∣∣∣[pP (Ŝ

)]
(j,·)

(ε− µ)

∣∣∣∣ ≥ t}

≤
P∑
j=1

2e−tsE exp

{
s
[
pP

(
Ŝ
)]

(j,·)
(ε− µ)

}
≤

P∑
j=1

2e−ts exp

(
1

2
σ2
Rs

2

∥∥∥∥[pP (Ŝ
)]

(j,·)

∥∥∥∥2

2

)

≤2P exp

(
1

2
σ2
Rs

2 max
1≤j≤P

∥∥∥∥[pP (Ŝ
)]

(j,·)

∥∥∥∥2

2

− ts

)
≤ 2P exp

(
1

2
σ2
Rs

2ξ2
PN − ts

)

under the constraint that
∥∥∥∥s [pP (Ŝ

)]
(j,·)

∥∥∥∥
∞
≤ c−1

R or |s| ≤ 1
cRξ′P

. The s minimizing the bound

without any constraint is:
s? =

t

σ2
Rξ

2
PN

.
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If t
σ2
Rξ

2
PN
≤ 1

cRξ′P
, we have:

P
{∥∥∥pP (Ŝ

)
(ε− µ)

∥∥∥
∞
≥ t
}
≤ 2P exp

(
− t2

2σ2
Rξ

2
PN

)
.

When t
σ2
Rξ

2
PN

> 1
cRξ′P

or σ2
Rξ

2
PN

cRξ′P
< t, the maximum occurs at s? = 1

cRξ′P
and we have:

P
{∥∥∥pP (Ŝ

)
(ε− µ)

∥∥∥
∞
≥ t
}
≤ 2P exp

(
1

2
σ2
R

ξ2
PN

c2Rξ
′.2
P

− t 1

cRξ′P

)
≤ 2P exp

(
− t

2cRξ′P

)
.

At the end we have:

P
{∥∥∥pP (Ŝ

)
(ε− µ)

∥∥∥
∞
≥ t
}
≤ 2P exp

(
−min

{
t

2cRξ′P
,

t2

2σ2
Rξ

2
PN

})
.

Therefore, with probability 1− η:

∥∥∥pP (Ŝ
)
ε
∥∥∥
∞
≤ max

{√
2σ2

Rξ
2
PN ln

2P

η
, 2cRξ

′
P ln

2P

η

}
+ ξPNµR

and:

ε′p′P

(
Ŝ
)
·
(
β̂ − β

)
≤

{
max

{√
2σ2

Rξ
2
PN ln

2P

η
, 2cRξ

′
P ln

2P

η

}
+ ξPNµR

}∥∥∥β̂ − β∥∥∥
1
.

At last, on A:

2 (ε′ + η′)·p′P
(
Ŝ
)
·
(
β̂ − β

)
≤ 2

{
max

{√
2σ2

Rξ
2
PN ln

2P

η
, 2cRξ

′
P ln

2P

η

}
+NξPµR +NξPNP

}∥∥∥β̂ − β∥∥∥
1
.

Let:

τ := 2

max


√

2σ2
Rξ

2
P

N
ln

2P

η
,

2cRξ
′
P

N
ln

2P

η

+ ξP (µR +NP )

 .

In both cases, on A:∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2
≤ τN

∥∥∥β̂ − β∥∥∥
1

+ 2Nτ ‖β‖1 − 2Nτ
∥∥∥β̂∥∥∥

1
.

We can write:∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2
≤ 2τN

(∥∥∥β̂ − β∥∥∥
1

+ ‖β‖1 −
∥∥∥β̂∥∥∥

1

)
− τN

∥∥∥β̂ − β∥∥∥
1
.

Let the support J0 of θ be the list of indexes of θ such that the corresponding parameter is not 0.
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Then:∥∥∥β̂ − β∥∥∥
1

+ ‖β‖1 −
∥∥∥β̂∥∥∥

1
=
∥∥∥β̂J0 − βJ0∥∥∥

1
+
∥∥∥β̂Jc0 − βJc0∥∥∥1

+
∥∥βJ0∥∥1

+
∥∥∥βJc0∥∥∥1

−
∥∥∥β̂J0∥∥∥

1
−
∥∥∥β̂Jc0∥∥∥1

=
∥∥∥β̂J0 − βJ0∥∥∥

1
+
∥∥∥β̂Jc0∥∥∥1

+
∥∥βJ0∥∥1

−
∥∥∥β̂J0∥∥∥

1
−
∥∥∥β̂Jc0∥∥∥1

=
∥∥∥β̂J0 − βJ0∥∥∥

1
+
∥∥βJ0∥∥1

−
∥∥∥β̂J0∥∥∥

1
≤ 2

∥∥∥β̂J0 − βJ0∥∥∥
1
.

Therefore, on A: ∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2
+ τN

∥∥∥β̂ − β∥∥∥
1
≤ 4τN

∥∥∥β̂J0 − βJ0∥∥∥
1
. (6.7.7)

On the one hand, this implies that, on A:

4
∥∥∥β̂J0 − βJ0∥∥∥

1
≥
∥∥∥β̂ − β∥∥∥

1

=
∥∥∥β̂J0 − βJ0∥∥∥

1
+
∥∥∥β̂Jc0 − βJc0∥∥∥1

,

3
∥∥∥β̂J0 − βJ0∥∥∥

1
≥
∥∥∥β̂Jc0 − βJc0∥∥∥1

.

Therefore we can apply Assumption RE(s, 3) to get:

∥∥∥β̂J0 − βJ0∥∥∥
2
≤

∥∥∥p′P (Ŝ
)
·
(
β̂ − β

)∥∥∥
2√

Nκ (s, 3)
.

On the other hand, (6.7.7) becomes:∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2
≤ 3τN

∥∥∥β̂J0 − βJ0∥∥∥
1
≤ 3τN ‖β‖

1
2
0

∥∥∥β̂J0 − βJ0∥∥∥
2
. (6.7.8)

Combining the two, we have:

Nκ2 (s, 3)
∥∥∥β̂J0 − βJ0∥∥∥2

2
≤
∥∥∥p′P (Ŝ

)
·
(
β̂ − β

)∥∥∥2

2
≤ 3τN ‖β‖

1
2
0

∥∥∥β̂J0 − βJ0∥∥∥
2

or: ∥∥∥β̂J0 − βJ0∥∥∥
2
≤ 3τ ‖β‖

1
2
0

κ2 (s, 3)
=

3τs
1
2

κ2 (s, 3)

and: ∥∥∥p′P (Ŝ
)
·
(
β̂ − β

)∥∥∥
2
≤ 3τN

1
2 ‖β‖

1
2
0

κ (s, 3)
=

3τN
1
2 s

1
2

κ (s, 3)
.

Now we turn to
∥∥∥β̂ − β∥∥∥

2
. The proof follows the one of Theorem 7.1 in [57]. The k-th largest in

absolute value element of β̂ − β is such that:

∣∣∣∣∣
[(
β̂ − β

)
Jc0

]
(k)

∣∣∣∣∣ ≤
∥∥∥∥(β̂ − β)

Jc0

∥∥∥∥
1

k
.
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As a result:

∥∥∥∥(β̂ − β)
Jc01

∥∥∥∥2

2

≤
|J\J01|∑
k=1

[(
β̂ − β

)
Jc0

]2

(k)

≤
∑

k≥m+1

∥∥∥∥(β̂ − β)
Jc0

∥∥∥∥2

1

k2
=

∥∥∥∥(β̂ − β)
Jc0

∥∥∥∥2

1

m
.

Now:∥∥∥∥(β̂ − β)
Jc01

∥∥∥∥
2

≤ 1√
m

∥∥∥∥(β̂ − β)
Jc0

∥∥∥∥
1

≤ 3√
m

∥∥∥∥(β̂ − β)
J0

∥∥∥∥
1

≤ 3

√
s

m

∥∥∥∥(β̂ − β)
J0

∥∥∥∥
2

≤ 3

√
s

m

∥∥∥∥(β̂ − β)
J01

∥∥∥∥
2

and: ∥∥∥β̂ − β∥∥∥2

2
=

∥∥∥∥(β̂ − β)
J01

∥∥∥∥2

2

+

∥∥∥∥(β̂ − β)
Jc01

∥∥∥∥2

2

≤
∥∥∥∥(β̂ − β)

J01

∥∥∥∥2

2

+ 9
s

m

∥∥∥∥(β̂ − β)
J01

∥∥∥∥2

2

≤
(

1 + 9
s

m

)∥∥∥∥(β̂ − β)
J01

∥∥∥∥2

2

. (6.7.9)

From (6.7.8):

∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2
≤ 3τN ‖β‖

1
2
0

∥∥∥∥(β̂ − β)J0
∥∥∥∥

2

≤ 3τN
√
s

∥∥∥∥(β̂ − β)
J01

∥∥∥∥
2

.

Through RE(s,m, 3):

∥∥∥∥(β − β̂)
J01

∥∥∥∥2

2

≤

∥∥∥p′P (Ŝ
)
·
(
β − β̂

)∥∥∥2

2

Nκ2 (s,m, 3)
≤

3τ
√
s

∥∥∥∥(β̂ − β)
J01

∥∥∥∥
2

κ2 (s,m, 3)

and: ∥∥∥∥(β − β̂)
J01

∥∥∥∥
2

≤ 3τ
√
s

κ2 (s,m, 3)
.

With this inequality, (6.7.9) becomes:

∥∥∥β̂ − β∥∥∥2

2
≤
(

1 + 9
s

m

) 9τ2s

κ4 (s,m, 3)
.

At last we see what happens to the forecast. We have:

θ̂ − θ =p′P (ŝ) · β̂ − f (s)

=
{
p′P (ŝ) · β̂ − p′P (ŝ) · β

}
+ {p′P (ŝ) · β − f (ŝ)}+ {f (ŝ)− f (s)}

=
{
p′P (ŝ) · β̂ − p′P (ŝ) · β

}
+ {p′P (ŝ) · β − f (ŝ)}+ {f (ŝ)− f (s)} .

The first term is majorized as follows:∣∣∣p′P (ŝ) · β̂ − p′P (ŝ) · β
∣∣∣ ≤ ‖pP (ŝ)‖2 ·

∥∥∥β̂ − β∥∥∥
2
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where:

‖pP (ŝ)‖22 =

P∑
j=1

p2
jP (s) ≤ P · ξ′,2P .

The second term is majorized by NP . The third term can be majorized as:

|f (ŝ)− f (s)| = |ε| ≤ |ε− µ|+ |µ| .

Under Assumption subE’, we have |µ| ≤ µS and, reasoning as above:

P {|ε− µ| ≥ t} ≤ 2 exp

(
−min

{
t2

2σ2
S

,
t

2cS

})
.

Taking t = max
{
σS

√
2 ln 2

∆ , 2cS ln 2
∆

}
, with probability 1−∆:

|ε− µ| ≤ max

{
σS

√
2 ln

2

∆
, 2cS ln

2

∆

}
.

QED
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