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1
Introduction

W
e are used to associate the motion of a fluid placed in a
temperature gradient to the convection phenomenon. Here
the driving force is an external field, the gravity, while the
role of temperature is simply to modify the density of the
fluid along the direction of the gradient. Nevertheless, nature

is characterized by phenomena where a non-uniform thermal profile can by
itself set a fluid in motion, that is where the temperature gradient behaves like
an effective force. The first observation of such a phenomenon was reported
independently by Ludwig [52], Soret [75, 76, 77] and Fedderesen [26] in the
second half of the Nineteenth century. What they osberved is that when a
binary mixture is placed in a temperaure gradient, an unbalanced migration of
the two species takes place. This phenomenon is known as Ludwig-Soret effect
or thermodiffusion1. In his work of the 1873 Feddersen reported also the first
observation of another phenomenon where the temperature gradient behaves
like a force: He measured the motion of gases towards the hot side of a tube
filled with porous plugs of gypsum or spongy platinum. This phenomenon was
named by Lippman [49] as thermo-osmosis2, and it is the stationary mass
flow wich develops in a one-component gaseous or liquid system placed in a
temperature gradient. Actually, the onset of this flow requires also the presence
of a confining surface not perpendicular to the temperature gradient. Indeed

1In the same years Dufour [19, 20] observed also the reciprocal effect of thermodiffusion in
a mixture of air and hydrogen: A gradient in particles concentration induces a temperature
gradient.

2In gaseous systems it is known also as thermal creep.



2 INTRODUCTION

when the fluid placed in the thermal gradient is homogeneous (a bulk fluid),
the force balance condition implies mechanical equilibrium, thus the pressure
is constant throughout the system. It follows that, in absence of external
forces, in the stationary state the fluid is characterized by a space dependent
density, a constant heat flux, but not by a mass current. Another phenomenon
called thermophoresis was discovered in the same years by Tyndall [79]: He
observed that dust particles suspended in air are repelled by hot surfaces.
Thus, thermophoresis can be defined as the motion induced by a temperature
gradient of mesoscopic particles placed in a fluid. This phenomenon is for
sure interesting from a technological point of view and it is believed that
interfaces play a key role in its onset: When a particle lies in a fluid placed
in a temperature gradient, the particle surface induces the motion of the
fluid alongside. Due to this flow the particle is subject to a net force and,
consequently it drifts.
This brief historical summary highlights the important role that temperature
gradients can play in fluid and soft matter systems. Moreover, it is clear
that such nonequilibrium phenomena have been known for a long time, but
a comprehensive understanding of them is still lacking today. For example,
particles thermophoresis in gaseous systems is rather well understood by
means of the kinetic theory3, and in general the particle drift is directed
towards the cold side of the system. Instead, when denser fluids are considered,
our understanding becomes poorer. Different theoretical models have been
developed in order to clarify thermophoresis in liquid systems and the basic
strategy is to describe the effect of the thermal gradient as an effective force f
acting on the particle. At the stationary state the effective force f is balanced
by the frictional one, thus the total force acting in the particle vanishes.
Unfortunately these theories are not able to explain features such as the fact
that the drift velocity magnitude and direction strongly depend on the surface
properties of the particles, but also on external parameters, such as the average
temperature of the fluid. Recent reviews [63, 64, 83] deeply deal with this
arguments.
Despite the lack of a general satisfactory theory of thermophoresis, it is
now clear the crucial role played by the particle-fluid interface and thus the
deep link with the less-famous thermo-osmosis phenomenon: The particle
motion is due to the thermo-osmotic mass flow that the surface of the particle
itself induces in the sorrounding fluid. Therefore thermo-osmosis is the basic
mechanism responsible for thermophoresis. Moreover, in the last few years the
phenomenon of thermo-osmosis has motivated the interest of Fu et al. [29, 30],
Frenkel et al. [32, 33, 67], Bregulla et al. [9] and Farago [25], because, as it
will be explained in the following, also this fundamental nonequilibrium effect
is characterized by the lack of a satisfactory characterization and theoretical
interpretation, especially in the liquid systems. This renewed interest is justified

3A review about this topic can be found in [84].
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also by possible applications of thermo-osmosis to fuel cells, water recovery
and water management [48], but also in desalination of seawater and in power
generation from the salinity difference with river water [51]. Being an interface
phenomenon, it is interesting (together with thermophoresis) also in nano
systems: It could be employed for particle motion and manipulation through
hot nanostructures [14]. Furthermore, eukaryotic cells are characterized by
large temperature gradients in their structure, thus thermo-osmosis could play
a role also in this kind of living systems [12].
These reasons induced us to tackle the problem of thermo-omsosis, both from
a theoretical and a numerical point of view and the main results achieved
by us are presented in this work. In the remaining of this Chapter we will
present the state of the art of the knowledge of thermo-osmosis, reporting
the most important results related to rarefied and dense systems. In Chapter
2 our theoretical description of this phenomenon will be discussed. It is an
exact microscopic theory, based on linear response theory, generalized to
inhomogeneous systems and it shows that this effect originates from two
independent physical mechanisms. It provides a unified description of thermo-
osmosis and reduces to known expressions in the appropriate density limits.
This microscopic approach resolves also a relevant question related to the
non unicity of the microscopic pressure tensor. This point will be tackled also
from a numerical point of view in Chapter 3, together with the problem in
the definition of transport coefficients in two-dimensional fluid systems. In
Chapter 4 a large number of nonequilibrium molecular dynamics simulations
will be presented. The considered systems are Lennard-Jones two-dimensional
confined fluids placed in a non-uniform temperature profile. The purpose of
this numerical study is the direct “observation” of the thermo-osmotic mass
flow and the evaluation of the relative importance of the two mechanisms
underlying this phenomenon in different conditions of both confinements and
thermodynamic state of the fluid. Moreover, also the asymptotic behavior of
large channels predicted in Chapter 2 will be here numericaly studied.

1.1 STATE OF THE ART

The first observation of thermo-osmosis was performed by Feddersen [26]
in gaseous systems and dates back to 1873. The same phenomenon was later
observed also in liquids, but in these systems the magnitude of the effect is
much smaller than in gases. Probably for this reason, thermo-osmosis was
initially studied both theoretically and experimentally only in the rarefied
regime and a good grade of understanding was achieved. Instead, the interest
on the dense regime arised only in the second half of the Twentieth century and
a less satisfactory understanding was obtained. Moreover, also the theoretical
tools adopted in the description of this phenomenon in the two density regimes
are complitely differents. Thus, following this historical and methodological
discrepancy, we will separately review the the main results regarding thermo-
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osmosis in gases and in liquids.

1.1.1 Thermo-osmosis in Gases

After the first observations by Feddersen, a strong interest in thermo-
osmosis arised due to the invention of the radiometer by Crookes [13] in 1876.
The radiometer consist of a glass vial within which a (nearly) vacuum condition
is reached. In this environment kept at low pressure a fan is placed on a spike.
Each blade of this fan is shiny on one side and blackened on the other, in fact
Crookes devised this object in order to detect the pressure of light. When he
submitted its work to the Royal Society also the referee, which was Maxwell,
agreed with Crookes’s interpretation of the phenomenon: The motion of the fan
was induced by the the light impinging on the blades. Despite the convictions
of Crookes and Maxwell, the origin of the blades motion could not be the
radiation pressure, because the the fan rotation was in the wrong direction.
Instead, after the experiments led by Schuster [71] and the observations of
Reynolds, it became clear that the rotation took place because of an unbalance
of pressure of the gas near the two differently heated sides of each blade. The
reason of this pressure difference was not clear and a debate between Maxwell
and Reynolds began [10]. The solution of this problem is usually ascribed
to Maxwell, who in 1879 showed that tangential stress delevelops in the gas
near the confining surfaces to which a temperature gradient is applied [53].
This tangential stress is responsible for the thermal creep of the gas, and thus
for the radiometer motion. The surprising aspect is that in the case of the
radiometer the tangential stress arises just at the edge of the blame, being
this the surface to which a temperature gradient is applied. The phenomenon
of thermo-osmosis in gases has been clearly shown by a simple experiment
recently devised by Sone and Yoshimoto [74].
Let us now give a pictorial description of Maxwell’s interpretation of thermal
creep. If we consider a confined gas placed in a temperature gradient we can
state that, from a statistical point of view, a particle wich comes from the
hotter side carries a greater momentum than a particle coming from the colder
one. Now, if the particles collisions against the surface are inelastic, than
on average particles coming from the hot side transfer to the surface more
momentum than particles coming from the cold one. It follows that there is a
net momentum transfer from the gas to the surface towards the cold side and,
for the action-reaction principle, the surface applies a net momentum to the
gas in the opposite direction, thus the gas is set in motion towards the hot
side of the system. Therefore, Maxwell understood the fundamental role of
the nature of the particle-surface interaction. He formalized his ideas through
the kinetic theory and obtained an expression4 for the creep velocity for an

4See for example also the classic book by Kennard [44].
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almost ideal gas5 far from the surface and in absence of pressure gradients:

v∞ =
3

4

η

ρ

∇T
T

, (1.1)

being ρ the bulk density and η the shear viscosity of the gas, while ∇T is
the temperature gradient aligned to the confining surface. Moreover, this
asymptotic relation for the slip velocity can be expressed through the mean
free path λ,

v∞ =
3√
8π
λ

√
kBT

m

∇T
T

, (1.2)

where m is the gas particle mass. The mean free path, which has been expressed
through the standard relation for a hard spheres gas

λ =
η

ρ

√
π

2mkBT
, (1.3)

is the only relevant length scale in the thermal creep phenomenon.
To our knowledge, also the first numerical evidence of thermo-osmosis is related
to a gaseous system: Papadopoulos and Rosner [62] in 1995 employed the
direct simulation Monte Carlo technique in order to study the behavior of a
hard spheres gas placed in a temperature gradient and confined in a 2D closed
channel. They were interested only in the observation of the effect, because it
can play a role in microgravity experiments on crystal growth in ampules, and
they were able to achieve this objective. Furthermore their results confirm an
important feature of thermal creep, already predicted by Maxwell’s theory:
Gas is characterized by a slip towards the hot side of the system.

1.1.2 Thermo-osmosis in Liquids

The first observation of thermo-osmosis in liquids dates back to 1907 and
was performed by Lippmann [49] separating two volumes of water, kept at
different temperatures, through a membrane of gelatine. A more systematic
study was carried out a few years later by Aubert [3]: He observed that,
depending on the kind of membrane, the water mass flow can be directed
towards the hot side of the system or the cold one, or can be even absent.
After these seminal works, other scientists in the half of the Twentieth century
tried to study experimentally thermo-osmosis in liquid systems6, but these
results cannot be considered satisfactory: The experimental observations often

5That is a gas of hard spheres, where collisions between particles are allowed, but they
do not interact through a space dependent potential.

6See for example the experiments performed by Derjaguin and Sidorenkov [16], Hutchinson
et al. [41] and Haase and Steinert [35].
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disagree about the magnitude and even the direction of thermo-osmotic fluxes.
To be more precise, the flow is directed towards the cold side of the system
when hydrophobic membranes are involved, while the interpretation on the
direction of the flux is less cleare when hydophilic membranes are employed7.
To our knowledge, the last experimental work concerning thermo-omsosis was
published in 2016 [9] and the authors present the first microscale observation
of the velocity field induced by thermo-osmosis. The experimental set up
consist of a glass slit of about 5µm of thickness and filled with water. At
the upper surface of the slit a gold nanoparticle of 250nm of diameter is
immobilised. A temperature gradient is generated heating this particle with
a laser, and the thermo-osmotic flow is monitored tracking the motion of
smaller gold nanoparticles. In this way the authors were able to observe a flow
directed towards the hot region and with an extrapolated velocity of about
40µm/s. Beyond the importance of the result, this work testifies also a renewed
interest in the experimental study of thermo-osmosis in liquid systems and
the capability to perform microscopic measures of this phenomenon.
From a theoretical point of view, the most important result was obtained
by Derjaguin and Sidorenkov in 1941. Their work is based on the linear
nonequilibrium thermodynamics, mainly developed by Onsager [59]. In order
to understand Derjaguin’s theory8, let us consider a planar wall along the x
direction. Fixed differences of temperature ∆T and pressure ∆p are imposed
at the ends of the wall and their gradients result to be directed along x. As a
consequence heat Jq and mass Jρ fluxes develop along the x direction. Thus,
we can express the rate of entropy production σ across a surface perpendicular
to the direction x as

σ = Jρ∆p+ Jq
∆T

T
, (1.4)

where the two quantities coupled to the fluxes are defined as thermodynamics
forces:

Xρ = ∆p , Xq =
∆T

T
. (1.5)

Linear nonequilibrium thermodynamics assumes that the fluxes are linear
functions of these forces, thus

Jρ = LρρXρ + LρqXq
Jq = LqqXq + LqρXρ ,

(1.6)

where Lαβ are phenomenological coefficients and the α = β ones are easily
interpretable: Lqq is the coefficient related to the thermal conductivity, and

7It is possible to consult also a recent review about the topic of thermo-osmosis in
membranes [5] if more details are needed.

8More details can be found in Ref. [16] and [15].
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describes the heat conduction at constant pressure, while Lρρ is related to the
fluid mass flow at constant temperature. The heat and mass fluxes are coupled
through the cross coefficients Lqρ and Lρq: Lqρ, known as mechanocaloric
coefficient, represents the mechanical contribution to the heat flux, while Lρq
has the opposite meaning. Onsager, exploiting the microscopic reversibility
of the system, showed that these cross coefficients are equal9 [59]. Note that,
if the fluid is homogeneous, heat and mass currents fluctuate independently,
thus the cross coefficients vanish10.
Derjaguin and Sidorenkov applied this linear nonequilibrium thermodynamics
formalism in order to describe thermo-osmosis in liquids. They were interested
in the description of this phenomenon in an open channel, that is a system
characterized by constant pressure, where therefore

Jρ = LρqXq
Jq = LqqXq .

(1.7)

Thus, they expressed the mechanocaloric coefficient in terms of the local excess
(with respect to the bulk value) enthalpy of the fluid, ∆h(z). Then, exploiting
the expression for Jρ, they where able to obtain an expression for the liquid
velocity far from the surface:

v∞ =
1

η

∫ ∞
0

dz∆h(z)
∇T
T

, (1.8)

being η the shear viscosity of a bulk fluid11. Two important hypoteses underlie
this result. The first one is that the viscosity, which should be space-dependent
near the confining wall, can be considered constant and equal to its bulk
value everywhere: The effect of a non-uniform viscosity on the fluid motion is
disregarded. The second hypotesis is that a local enthalpy in the fluid layers
in the proximity of the surface can be defined. Two diffuculties arise in this
regard: First of all the local enthalpy is not a slowly varying function, as
shown for example in Ref. [29]. It follows that the local equilibrium definition
employed by Derjaguin and Sidorenkov is in principle not valid. Moreover,
as will be better discussed in Chapters 2 and 3, enthalpy (which is strictly
related to pressure) cannot be uniquely defined near a surface. Nevertheless,
Derjaguin’s picture suggests that thermo-osmosis in liquids is rooted in the
anisotropy of the pressure tensor, wich develops on a range of the order of the
correlation length.
This phenomenon in liquid systems have been studied also from a numerical
point of view, in particular through the molecular dynamics techniques. The
first observations of thermo-osmosis in dense fluids were reported to our
knowledge by Wold and Hafskjold in 1999 [82] and Galliéro et al. [31] three

9This result is known as Onsager reciprocal relations.
10More details can be found in Ref. [47], Sec. 49 or Ref. [4], Sec. 12.5.
11In the following we will refer to η simply as bulk viscosity.
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years later. Both groups were studying thermodiffusion through molecular
dynamics nonequilibrium simulations, i. e. generating a temperature gradient
in the system, and the thermo-osmotic mass flow was observed as a side effect,
interpreted as a Marangoni effect. The main difference in the two works lays in
the choice of the simulation cell. Galliéro et al. simulated a cell periodic in the
temperature gradient direction. This kind of system introduces as an artifact
a recirculating velocity field. Instead, Wold and Hafskjold considered a closed
channel, where the observed recirculating velocity field is a direct consequence
of the mass conservation principle. Despite these works showed the possibility
to investigate thermo-osmosis through nonequilibrium molecular dynamics
simulations, the first numerical studies focused on this phenomenon in liquid
systems are very recent. The group settled in Lyon performed, in its first work
related to thermo-osmosis [29],two kind of simulations in order to obtain the
mechanocaloric coefficients in liquids confined by Einstein solids12 differently
hydrophilic. In particular, in the mechanocaloric route they applied a body force
per particle to a fluid placed in an infinite channel (i. e. with periodic boundary
condition in the x direction), in order to model a pressure gradient and they
measured the resulting heat flux. In this way they were able to compute
the mechanocaloric coefficient as the ratio between the heat flux and the
pressure drop. Measuring also the excess enthalpy profile and other parameters
they computed the value of Lqρ = Lρq exploiting the result of Derjaguin.
In the thermo-osmotic route they connected a slit channel to two reservoirs
at the same pressure (imposed by two pistons) and different temperatures
and they measured the average thermo-osmotic velocity vs looking at the
time evolution of the number of particles in the two reservoirs. Then they
computed Lqρ = Lρq = vs/(−∇T/T ). Also in this nonequilibrium simulations
the value of Lqρ = Lρq predicted by Derjaguin’s equation was computed
through the excess enthalpy profile in the channel. Their result related to
the mechanocaloric route shows that, in order to describe thermo-osmosis in
this kind of system, Derjaguin’s equation must be modified: Hydrodynamic
corrections accounting for the presence of slippage or stagnant fluid layers in the
proximity of the confining walls must be added. Results related to the thermo-
osmotic route are less clear, because of viscous effects induced by the geometry
of the simulation system. Anyway the adoption of propers corrections allows to
recover the results of the mechanocaloric route. Thus, Derjaguin result cannot
by itself correctly describe thermo-osmosis in liquid systems. Furthermore,
their results show that weakly attractive wall-fluid interactions enhance the
thermo-osmotic flow more than the strong attractive ones and in the first
case this mass flux is directed towards the cold side of the channel, while in
the second towards the hot one. Moreover, in this paper they also measured
a giant thermo-osmotic response of the water-graphene interface, which the
authors related to the very low interfacial friction displayed by this system.

12That is a solid made of indipendent harmonic oscillators.
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This topic was better tackled in a second article [30] published the following
year. Also the group in Cambridge published two articles regarding numerical
simulations of thermo-osmosis in dense fluids. In the first work [32] the authors
compared the slip velocity obtained through three different routes. The first
one is the so-called mechanical route, which develops in two sets of simulations.
First they computed the pressure tensor at different temperautres through
equilibrium simulations by use of two different microscopic definitions13. Then
they exploited these results to evaluate the mechanical force exerted on a fluid
placed in a temperature gradient aligned to the surface, which is the derivative
of the tangential (to the surface) pressure with respect to temperature. Finally
they run isothermal simulations applying these forces to the fluid particles and
computed the resulting slip velocity. The second route is the thermodynamic
route, where the slip velocity is computed from Derjaguin’s equation. The
enthalpy has been computed as

h(z) = u(z) +
p(z)

ρ(z)
, (1.9)

where u(z) is the local energy density, p(z) is the tangential component of the
virial expression for the local tangential pressure and ρ(z) is the local density.
Note that this definition of enthalpy holds only in bulk. The last route exploits
the Onsager reciprocal relations and is very similar to the mechanocaloric
route proposed by Fu et al. [29]. Authors concluded this paper stating that
the results obtained with the three different methods are in good agreement.
Moreover they underlined also the presence of a strong fluid viscosity space
dependence. In the second article [33] a special solution to directly compute
the force exterted on fluid particles due to the presence of a temperature
gradient is devised. A temperature gradient is generated in the x direction
and, at a given time, the particle motion in this direction is paralyzed: In this
way the effective force exerted by the temperature gradient is not balanced
by the viscous forces, and thus it is measurable. Authors compared this exact
force with the ones computed as derivative with respect to temperature of two
definitions of the tangential pressure and the one computed through enthalpy.
They concluded that the last one better predicts the directly computed force.
We remark that these kind of comparisons are not fully jutified because of
intrinsic ambiguities in the microscopic definition of the pressure tensor [70].
It is interesting to note that in 2019 a numerical study of thermo-osmosis was
proposed by Proesmans and Frenkel [67] where molecular dynamics technique
was not employed, in fact the authors exploit instead the multiparticle collision
dynamic technique, also known as stochastic rotation dynamics.

13The question of the non unicity of the pressure tensor will be addressed in the next two
Chapters.





2
Thermal forces from a microscopic

perspective

T
he physical understanding of the mechanisms driving thermo-
osmosis has been studied in the past by the use of two different
theoretical tools for gases and liquids. While in gases the kinetic
theory is employed, in liquids it is described through nonequi-
librium thermodynamics. As a consequence also the emerging

pictures describing thermo-osmosis in these two density regimes are completely
different: In the rarefied limit the particle-surface interaction plays a key
role, while in the dense one the anisotropy of the pressure tensor near the
confining surface holds responsible for the mass flow. Moreover nonequilibrium
thermodynamics does not take into account for the non-uniqueness of the
pressure tensor, even if Ganti et al. showed the importance of this aspect
within thermo-osmosis [32, 33].
In order to obtain a unified description of this phenomenon and a deeper
understanding of its basic mechanisms, i. e. the thermal forces, we developed
an ab initio microscopic theory of thermo-osmosis. The starting point is the
definition, through the microscopic conservation laws, of the operators related
to the desired physical quantities. The link between these microscopic operators
and the associated physical observables is provided by the statistical mechanics
but, being this a nonequilibrium phenomenon, a proper way to compute the
averages must be developed. For this reason the linear response theory, gener-
alized to inhomogeneous and anisotropic environments, is employed. Finally,
suitable boundary conditions will be adopted in the resulting equations for
the mass transport in open and closed channels and a comparison with the
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previous theoretical approaches will be provided.

2.1 MICROSCOPIC CONSERVATION LAWS

The objective of this Section is to provide the local expressions of the fluxes
which satisfy the microscopic counterpart of the macroscopic conservation
laws of mass, momentum and energy. Let us consider a system of N particles
which at a given instant of time are characterized by dN = M (being d the
dimensionality of the system) generalized coordinates qi and M conjugated
momenta pi. This set of variables (q, p) describes any physical observable
A(q, p) of the system and their time evolution is determined by the Hamiltonian
function H(q, p). In fact the trajectories in the phase space (q(t), p(t)) are
solutions of the Hamilton’s equations

{
q̇i = ∂H

∂pi

ṗi = −∂H∂qi
(2.1)

once the initial condition qi(0) and pi(0) are given. This time evolution of q
and p is reflected also in any physical observable A(q, p)

dA

dt
=

M∑
i

[
∂A

∂qi
q̇i +

∂A

∂pi
ṗi

]

=

M∑
i

[
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

]
= −LA

(2.2)

where the Liouville operator L

L · =
M∑
i

[
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

]
· (2.3)

has been introduced and it formally expresses the time evolution of physical
observables.
Now let us consider a system of point particles of equal mass m and interacting
through a central pair-wise additive potential ϕ(|r|) in the presence of an
external potential V (r). Let us consider the generalized coordinates and
conjugated momenta as the components of the position qαi and of the momenta
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pαi of the particles1. Thus the Hamiltonian of the system can be express as

H ({qαi }, {pαi }) =

N∑
i

|pi|2

2m
+

1

2

N∑
i 6=j

ϕji +

N∑
i

V (qi)

= HK ({pαi }) +Hϕ ({qαi }) +HV ({qαi })

(2.4)

being ϕji = ϕ(|qi − qj |) and where the kinetic, internal potential and external
potential contributions to the Hamiltonian have been highlighted. As a conse-
quence also the Liouville operator can be separated into these contributions

L = LK + Lϕ + LV

= −
N∑
i

pi
m

∂

∂qi
+

N∑
i6=j

∂ϕji
∂qi

(
∂

∂pi
− ∂

∂pj

)
+

N∑
i 6=j

∂V (qi)

∂qi

∂

∂pi
.

(2.5)

This form of the Liouville operator is particularly helpful for the derivation
of the microscopic counterpart of the macroscopic conservation laws of mass,
momentum and energy, and will be later exploited.
Now let us consider the usual definition for the local mass density

ρ̂(r) = m

N∑
i

δ(qi − r) (2.6)

and the local momentum density

ĵα(r) =

N∑
i

δ(qi − r)pαi (2.7)

and let us define the local energy density operator as

Ĥ(r) =

N∑
i

δ(qi − r)ĥi

=

N∑
i

δ(qi − r)

 p2
i

2m
+

1

2

N∑
j(6=i)

ϕji + V (qi)

 (2.8)

where it is important to remark that the the interaction energy ϕji between
two particles i and j, located at qi and qj , is ascribed without justification
half to the particle i and half to the particle j. Another admissible definition
of the local energy density could ascribe, for example, the whole interaction
energy ϕji to the point (qi + qj)/2. The apparent ambiguity in Equation 2.8

1All over ths work Latin indices refer to particles, while Greek ones to vector components.
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is related to the non-local nature of the inter-particle interaction potential ϕji
[69, 42] and disappears when Ĥ(r) is integrated over the volume of the system
[21]

Ĥ =

∫
drĤ(r)

=

N∑
i

 p2
i

2m
+

1

2

N∑
j( 6=i)

ϕji + V (qi)

 . (2.9)

The microscopic conservation laws for the local mass density, local momen-
tum density and local energy density can now be obtained exploiting Equation
2.2.

2.1.1 Mass conservation

The microscopic continuity equation for the mass local density can be
easily expressed as

dρ̂(r)

dt
= −LK ρ̂(r)

=

N∑
i

∂

∂qi
δ(qi − r)pi

= −∂αĵα(r)

(2.10)

where ∂α is the partial derivative w.r.t. qα. Equation 2.10 has the form of a
continuity equation expressing the conservation of the mass at the microscopic
level.
It is important to point out that equation 2.10 is fulfilled by any microscopic
mass current operator ĵαρ (r), defined as

ĵαρ (r) = ĵα(r) + Γα(r) , (2.11)

where Γα(r) is any vector field characterized by a vanishing divergence:

∂αΓα(r) = 0 . (2.12)

This simple argument shows an important feature of continuity equations, that
is they define fluxes of conserved quantities only up to zero-divergent vector
fields.

2.1.2 Momentum conservation

The same procedure can be exploited to express the local conservation law
corresponding to the macroscopic momentum balance equation, i. e. evaluating
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the rate of change of the momentum local density ĵα(r) applying the Liouville
operator:

dĵα(r)

dt
= −Lĵα(r)

= −∂β

[
N∑
i

pαi p
β
i

m
δ(qi − r)

]
− ρ̂(r)

m
∂αV (r)

− 1

2

N∑
i 6=l

∂ϕli
∂qαi

[δ(qi − r)− δ(ql − r)] .

(2.13)

In order to obtain the expression of the flux associated to ĵα(r) the last term
in Equation 2.13 must be written as the divergence of a second-rank tensor
and it can be accomplished through the distributional identity [70]:

δ(qi − r)− δ(ql − r) =

∮
`l→i

dyγ
∂

∂yγ
δ(y − r)

= −∂γ
∮
`l→i

dyγδ(y − r) ,

(2.14)

where this integral can be taken along any contour `l→i from ql to qi. Thus
this result, together with Equation 2.13, define the microscopic continuity
equation for the momentum local density ĵα(r)

dĵα(r)

dt
= −∂β Ĵαβj (r)− ρ̂(r)

m
∂αV (r) , (2.15)

where the last term acts as a source contribution when a space dependent
external field V (r) is present. Moreover in equation 2.15 the microscopic

momentum current local density operator Ĵαβj (r) has been defined as2

Ĵαβj (r) =

N∑
i

pαi p
β
i

m
δ(qi − r) +

1

2

N∑
i6=l

∂ϕli
∂qαi

∮
`l→i

dyγδ(y − r) . (2.16)

and the average value of this operator is the well-known (local) pressure tensor

pαβ(r) = 〈Ĵαβj (r)〉 . (2.17)

Note that the expression for Ĵαβj (r) in Equation 2.14 can be slightly simplified
if referred to systems where particles interact through a central pair-wise

2Strictly related to the stress tensor σ̂αβ(r): σ̂αβ(r) = −Ĵαβj (r).
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potential:

Ĵαβj (r) =

N∑
i

pαi p
β
i

m
δ(qi − r)

− 1

2

N∑
i 6=l

qα

|qli|
dϕ(q)

dq

∣∣∣∣
q=|qli|

∮
`l→i

dyβδ(y − r) .

(2.18)

Comment on the microscopic momentum current local density operator

Equation 2.14 shows how the momentum current local density can not
be defined without ambiguity: Different contours in 2.14 lead to different
expressions for Ĵαβj (r), and the same considerations also apply to the pressure
tensor defined in equation 2.17. For example, if a system where particles
interact through a central pair-wise additive potential is considered, the local
pressure tensor reads [70]

pαβ(r) =
ρ(r)kBT

m
δαβ

− 1

2

∫
dy

yα

|y|
dϕ(|y|)

d|y|

∮
`o→y

dsβρ(2)(r − s, r − s+ y) ,
(2.19)

where δαβ is the Kronecker’s delta operator. Here ρ(2)(r, r′) is the two-particle
density [36] and the line-integral is extended, without any loss in generality,
from the origin o to a given point y. Making use of this result it is possible
to show that in the homogeneous and isotropic limit the ambiguity in the
definition of the pressure tensor disappears. Indeed the two-particle distribution
function can be expressed in terms of the radial distribution function

ρ(2)(r, r′) =
ρ2

m2
g(|r − r′|) (2.20)

and thus Equation 2.19 reduces to

pαβ(r) = pδαβ

=
ρ(r)kBT

m
δαβ − 1

2

ρ2

m2

∫
r
rαrβ

|r|
dϕ(|r|)

d|r|
g(|r|) ,

(2.21)

which is the well known virial expression for the pressure in a homogeneous
and isotropic fluid at density ρ [36].
The problem of the non-uniqueness of the local pressure tensor was firstly
implicitly recognized by Kirkwood in the fifties. He obtained two different
expressions for the configurational contribution to the stress tensor: The first
one in a paper with Buff [45] and the second in another work with Irving3

[42]. The first explicit description of this ambiguity was given by Harasima4

3The so called Irving-Kirkwood stress tensor, which will be discussed in the next Chapter.
4Also the Harasima stress tensor will be better introduced in the next Chapter.
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in 1958 [38] and a review was published by Ono and Kondo [58] a couple
of years later. A rigorous and exhaustive study of the problem was given in
the eighties by Schofield and Henderson [70]. More recently, Baus and Lovett
[6, 7] (and also other authors) have attempted to define the pressure tensor
uniquely. However, their definition can not be accepted because it only holds
for particular geometries [69, 68]. This ambiguity related to the definition of
the pressure tensor has been recently revived in two numerical papers [32, 33]
dealing with thermo-osmosis. The authors try to discriminate between different
expressions of the pressure tensor estimating the value of the thermo-osmotic
flow resulting from (approximate) predictions which involve the knowledge of
the pressure tensor itself. In the most recent paper [33], they compare these
predictions with the exact results obtained through a clever nonequilibrium
molecular dynamics simulation: They conclude that both the virial5 and the
Irving-Kirkwood expressions do not accurately predict surface forces due to
temperature gradients.
However, we remark that the infinite possible definitions of the the pressure
tensor are indeed equivalent, i.e. all the physical observables must be invariant
with respect to different choices of the path `i→j [70]. As regards an inhomo-
geneous fluid, the pressure tensor itself is not a well defined observable on a
length scale shorter than the correlation length or the range of the inter-particle
potential [69]. Qualitatively, we can try to understand this circumstance re-
flecting on the fact that it is not possible to identify the surface where the
pressure is acting. Analogously, we can not define without ambiguities the
surface which separates two different phases of the same fluid. On the other
hand, both the pressure exerted on a given region of fluid and the surface
tension of an interface are well defined observables: Indeed proving that they
do not depend on the particular definition of the pressure tensor is possible[70].
As regards approximate theories, such as the local equilibrium assumption or
the approach originally put forward by Derjaguin and recently re-derived in
[32], the invariance of the observables with respect different definitions of the
pressure tensor is not guaranteed a priori. However, the slip velocity of a fluid
subject to a temperature gradient is a genuine physical quantity, also from the
microscopic viewpoint. Therefore every exact prediction of the thermo-osmotic
slip must be invariant on the choice of the trajectory in 2.14: We conclude
that both the local thermal equilibrium and the Derjaguin approach should
be considered as approximations, because their expression are not endowed by
this invariance.
Finally, we remark that the virial pressure tensor (Equation 2.21) extended to
inhomogeneous systems, which has been evaluated in [32, 33] in order to obtain
the thermo-osmotic properties of the fluid, does not correspond to any choice
of the path in 2.14 and in addition it does not fulfill the hydrostatic balance

5Note that any contour `i→j can not define the virial expression for the pressure. This
means that the virial one is not an admissible definition of the pressure tensor.
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condition: If a fluid is in equilibrium near a surface, than the profile of its pres-
sure component normal to this confinement must be shaped in order to balance
the force exerted on the fluid by the surface, but the virial pressure tensor
does not satisfy this condition. This expression is commonly adopted within
continuum hydrodynamics, where it is assumed that the relevant quantities
vary on a length scale much larger than the correlation length.

2.1.3 Energy conservation

The same steps followed before in the case of the mass and momentum
currents allow also to define the microscopic conservation law for the energy
local density Ĥ(r)

dĤ(r)

dt
= −LĤ(r)

= −LKĤ(r)−
N∑
i

δ(qi − r) [Lϕ + LV ]
p2
i

2m
.

(2.22)

The action of the Liouvillians on the energy local density operator reads

LKĤ(r) =

N∑
i

pαi
m

[
hi∂αδ(qi − r)− ∂V (qi)

∂qαi

]

− 1

2m

N∑
i6=j

δ(qi − r)
∂ϕji
∂qαi

(pαi − pαj )

(2.23)

for the kinetic part and

[Lϕ + LV ]
p2
i

2m
=
pαi
m

 N∑
j( 6=i)

∂ϕji
∂qαi

+
∂V (qi)

∂qαi

 (2.24)

for the potential contributions. Making use of these results we get

dĤ(r)

dt
= −∂α

[
N∑
i

δ(qi − r)
pαi
m
ĥi

]
− 1

2m

N∑
i 6=j

pαi
∂ϕji
∂qαi

[δ(qi − r)− δ(qj − r)]

(2.25)

and the distributional identity (Equation 2.14) allows to express Equation
2.25 in the form of a microscopic conservation law

dĤ(r)

dt
= −∂αĴαH(r) , (2.26)
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where the energy local density current has been defined

ĴαH(r) =

N∑
i

δ(qi−r)
pαi
m
ĥi+

1

2

N∑
i

pδi
m

N∑
j(6=i)

∂ϕji
∂qαi

∮
`i→j

dyαδ(y−r) . (2.27)

Here we stress that Equation 2.27 is the microscopic energy flux according
to the definition of the local energy density given in Equation 2.8. Different
microscopic forms of the local energy provide different expressions of ĴαH(r).
In addition to this, the same considerations stated above for the momentum
current apply: The ambiguity in the definition of the heat flux is recovered
in the freedom connected to the choice of the integration path. However the
thermal transport coefficients, which are genuine physical observables, turn
out to be independent on the particular choice in Equations 2.27 and 2.8 [21].

2.2 EVALUATION OF THE AVERAGES

In the previous Section we have defined microscopic operators related to the
physical observables of interest for the description of thermo-osmosis. The link
between these operators and the associated physical observables is provided
by the statistical mechanics through the phase-space distribution function
F (q, p):

〈A〉 =

∫ ∫
dq dpA(q, p)F (q, p) (2.28)

where A(q, p) is any dynamical function and 〈A〉 the associated physical
observable. Let us now consider a system prepared in a starting state F0 and
let us apply a certain perturbation to it at a given instant of time t = 0.
Consequently the distribution function related to this system will evolve in
time. Being F (q, p) a dynamical function of the phase space, also its time
evolution is regulated by the Liouville equation

∂tF (t) = LF (t) (2.29)

which must be supplemented with the initial condition F (t = 0) = F0. The
formal solution of Equation 2.29 can be written as

F (t) = U(t)F0 (2.30)

where U(t) = exp{tL} is the so called Green propagator.
These considerations are important for our purpose: In order to describe
this nonequilibrium phenomenon we can think to start from an equilibrium
system, characterized by an equilibrium distribution function F eq, apply to it
a thermal gradient and let evolve it towards a stationary nonequilibrium state,
characterized by a distribution function F which is stationary solution of the
Liouville Equation 2.29.
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2.2.1 Local equilibrium averages

Thermo-osmosis is a nonequilibrium phenomenon. In order to give a statis-
tical description of it we can start considering a distribution function which
describes a system slightly out of equilibrium, the so-called Local thermal
Equilibrium (LE) distribution function. To introduce it, let us consider a
system of interacting particles in the presence of an external potential, de-
scribed by the Hamiltonian defined in Equation 2.4 and kept at non-uniform
temperature. Following the approach developed by Mori [54, 55], we define
the LE distribution function, which resembles a local generalization of the
Boltzmann distribution:

FLE = Q−1e−
∫

drβ(r)Ê(r) . (2.31)

Here β(r) is a scalar field related to the local temperature, Ê(r) is the internal
energy local density operator and Q is the Local Equilibrium partition function.
The presence of a non-uniform temperature in principles induces in the system
a non-uniform chemical potential and a local velocity profile. Therefore also
the contributions arising from these two local fields must be included in the
internal energy expression:

Ê(r) = Ĥ(r)− ĵ(r) · u(r)− ρ̂(r)µ(r) , (2.32)

where the local Hamiltonian, momentum and particles density have been
defined in the previous Section, while u(r) and µ(r) are the vector and scalar
fields linked respectively to the local velocity profile and the chemical potential
(per unit mass) of the fluid. These three fields just introduced couple locally
to the conserved quantities: µ(r) couples to the local mass, u(r) to the local
momentum and β(r) to the local energy. These fields define the LE state and
are considered as external known parameters (we will discuss later how to
fix them). In order to justify the linear response formalism later employed,
we require that they are smooth functions and that their gradients ∂αβ(r),
∂αu

β(r) and ∂αµ(r) are small. Furthermore we limit to the study of systems
where it is possible to find a Galileo transformation such that the field u(r) is
small6.
The LE distribution defined in Equation 2.31 allows to compute the averages
of the previously introduced microscopic operators in a Local Equilibrium
state. This average evaluation can be accomplished within linear response
theory, as explained in the following. The fundamental hypothesis is that the
nonequilibrium state described by the LE distribution is a small perturbation
of an equilibrium state, characterized by the equilibrium distribution function

F eq = Q−1
0 e−β(H−µmN) , (2.33)

6For this reason we can neglect the quadratic term in the reported expression of Ê(r).
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where Q0 is the equilibrium grand canonical partition function while β and µ
are respectively uniform temperature and chemical potential (per unit mass)
(the velocity field u(r) does not appear in this equilibrium state). In the LE
state these fields can be written in terms of small deviations from their values
in the equilibrium one:

β(r) = β + δβ(r) (2.34)

µ(r) = µ+ δµ(r) (2.35)

u(r) = 0 + δu(r) . (2.36)

These considerations allow to express the LE state as a slight deviation from
the equilibrium one, thus, inspired by the linear response theory, we expand
the LE distribution 2.31 about F eq, expressed in Equation 2.33, to the first
order in the deviations δβ(r), δµ(r) and δu(r). These deviations appear both
in the exponential and in the partition function Q, thus the linearized local
equilibrium distribution reads

FLE = Q−1e−
∫

drβ(r)Ê(r)

' Q0F
eq(1− Ĉe)

Q0(1− CQ)

' F eq(1− Ĉe + CQ) ,

(2.37)

where the linear corrections in the exponential and in the partition function
are

Ĉe =

∫
dr
{
δβ(r)

[
Ĥ(r)− µρ̂(r)

]
− β

[
ĵ(r) · δu(r) + δµ(r)ρ̂(r)

]}
,

CQ =

∫
dr
{
δβ(r)

[
〈Ĥ(r)〉0 − µ〈ρ̂(r)〉0

]
+ βδµ(r)〈ρ̂(r)〉0

}
,

(2.38)

where the averages 〈...〉0 are evaluated through the equilibrium distribution
F eq and the different notation between Ĉe and CQ underlines that only Ĉe
still depends on the phase-space coordinates. The final expression for the LE
distribution within the linear approximation is given by

FLE = F eq
{

1−
∫

dr
{
δβ(r)

[
Ĥ(r)− µρ̂(r)

]
−β
[
ĵ(r) · δu(r) + δµ(r)ρ̂(r)

]}
+ CQ

}
.

(2.39)

Thus, we can express the local equilibrium average of an observable Â(r) as

〈Â(r)〉LE = 〈Â(r)〉0

−
∫

dr′
{
δβ(r′)

[
〈Â(r)Ĥ(r′)〉0 − µ〈Â(r)ρ̂(r′)〉0

]
−β
[
〈Â(r)ĵα(r′)〉0δuα(r′) + δµ(r′)〈Â(r)ρ̂(r′)〉0

]}
+ CQ〈Â(r)〉0 .

(2.40)
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It is important to notice that the expression for 〈Â(r)〉LE can lose some terms:
All the equilibrium averages 〈Ô〉0 that appear in Equation 2.40 vanish if the
averaged resulting operator Ô is odd in the momentum coordinates7.
It is now possible to apply this result to express the local equilibrium averages
for the most relevant observables. In the case of the momentum density it can
be expressed as

〈ĵα(r)〉LE = β

∫
dr′〈ĵα(r)ĵγ(r′)〉0uγ(r′)

= 〈ρ̂(r)〉0uα(r′)

(2.41)

while for the energy current it is

〈ĴαH(r)〉LE = β

∫
dr′〈ĴαH(r)ĵγ(r′)〉0uγ(r′) (2.42)

and for the mass density

〈ρ̂(r)〉LE = 〈ρ̂(r)〉0

−
∫

dr′
{
δβ(r′)

[
〈ρ̂(r)Ĥ(r′)〉0 − µ〈ρ̂(r)ρ̂(r′)〉0

]
− βδµ(r′)〈ρ̂(r)ρ̂(r′)〉0

}
+ CQ〈ρ̂(r)〉0

(2.43)

This result can be written in a more suggestive way:

〈ρ̂(r)〉LE = 〈ρ̂(r)〉0
∣∣∣
β(r),µ(r)

(2.44)

showing that the local equilibrium average of the density can be evaluated as
an equilibrium average through F eq, provided that the temperature and the
chemical potential are fixed at their local value in r: β = β(r) and µ = µ(r).
The local equilibrium average of the momentum current reads

〈Ĵαβj (r)〉LE = 〈Ĵαβj (r)〉0

−
∫

dr′
{
δβ(r′)

[
〈Ĵαβj (r)Ĥ(r′)〉0 − µ〈Ĵαβj (r)ρ̂(r′)〉0

]
− βδµ(r′)〈Ĵαβj (r)ρ̂(r′)〉0

}
+ CQ〈Ĵαβj (r)〉0 .

(2.45)

Note that in Equation 2.45 the equilibrium averages 〈...〉0 are different from

zero also if α 6= β, because the configurational contribution of Ĵαβj is not an
odd operator with respect to the momenta. This means that the pressure
tensor, which is diagonal in equilibrium systems, can acquire off diagonal

7In the equilibrium averages integrals from −∞ to +∞ are performed on the momentum
coordinates
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components when the state of the system is described by a local thermal
equilibrium distribution. Anyway, the same shorthand notation introduced
for 〈ρ̂(r)〉LE can be applied also for the diagonal components of the pressure
tensor:

〈Ĵααj (r)〉LE = 〈Ĵααj (r)〉0
∣∣∣
β(r),µ(r)

= pαα(r)
∣∣∣
β(r),µ(r)

.
(2.46)

It is important to note that this simplified way for the evaluation of the
averages in local thermal equilibrium is not valid for all the observables: For
instance it does not work when the off-diagonal components of the pressure
tensor are considered.

2.2.2 Time-evolution of the distribution function

The equilibrium distribution function F eq depends only on the five global
constant of motion, thus it is a stationary solution of the Liouville equation
2.29. On the other hand it is possible to show that this is not true for the
LE distribution function, i. e. LFLE 6= 0, thus it can not be employed to
evaluate averages in stationary conditions. Indeed, if external constraints (as the
temperature, the chemical potential and the velocity fields) are kept fixed, the
actual phase-space distribution will evolve in time due to the ensuing dynamics
towards a stationary (time-independent) out-of-equilibrium distribution. In
order to obtain such distribution we follow, with slight changes, the approach
proposed by Mori [54, 55]. Thus let us assume that the system is described at
t = 0 by a given LE state: F (t = 0) = FLE . At times t > 0 the phase-space
distribution F (t) will evolve according to the Liouville equation 2.29, whose
formal solution can be written in the integral form as

F (t) = F (0) +

∫ t

0

dt′
d

dt′
F (t′)

= FLE +

∫ t

0

dt′LU(t′)FLE

= FLE +

∫ t

0

dt′ U(t′)
[
LFLE

]
,

(2.47)

where in the last equality we used the fact that within classical statistical
mechanics the Liouvillian operator commutes with the Green propagator. The
explicit evaluation of the right hand side of Equation 2.47, to linear order in the
field u(r) and in the gradients ∂αβ(r), ∂αµ(r) and ∂αu

β(r), is straightforward.
The Liouvillian L acts on the LE distribution as a partial derivative with
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respect to the phase-space coordinates and we get

F (t) = FLE −
∫ t

0

dt′
∫

dr U(t′)
[
FLEβ(r)LÊ(r)

]
= FLE −

∫ t

0

dt′
∫

dr U(t′)
{
FLEβ(r)

[
∂αĴ

α
H(r)− ∂γ Ĵαγj (r)uα(r)

− µ(r)∂αĵ
α
ρ −

ρ̂(r)

m
∂αV (r)uα(r)

]}
,

(2.48)

where the action of L on the local energy, mass and momentum operators has
already been evaluated in Section 2.1 and corresponds to the local conservation
of energy, momentum and mass respectively.
Now, if we assume that the perturbation on the system due to the fields
β(r), u(r) and µ(r) is small, it is possible to evaluate the response of the
system at linear order and thus we can get, within this approximation, the
time-dependent average of a local observable Â(r):

〈Â(r)〉t = 〈Â(r)〉LE

−
∫ t

0

dt′
∫

dr′Tr
{
Â(r)U(t′)

[
FLEβ(r′)

(
∂′αĴ

α
H(r′)− ∂′γ Ĵ

αγ
j (r′)uα(r′)

− µ(r′)∂′αĵ
α
ρ (r′)− ρ̂(r′)

m
∂′αV (r′)uα(r′)

)]}
,

(2.49)

where Tr{...} is the trace over all the degrees of freedom and the symbol ∂′

represents the derivative w.r.t. r′. Now, integrating by parts, neglecting the
contributions at the boundaries8 and taking the limit t→∞9 we obtain the
stationary expression for the average of Â(r)

〈Â(r)〉 = 〈Â(r)〉LE −
∫ ∞

0

dt′
∫

dr′
[
〈Â(r, t′)ĴαH(r′)〉0∂′αβ(r′)

− β〈Â(r, t′)Ĵαγj (r′)〉0∂′γuα(r′)− 〈Â(r, t′)ĵαρ (r′)〉0∂′α[βµ](r′)

+ ∂′αV (r′)〈Â(r, t′)ρ̂(r′)〉0
uα(r′)

m

]
,

(2.50)

where we have shifted the time dependence on the observable Â(r) performing
the canonical transformation U(−t′) and we have retained only the linear
contributions in Equation 2.49.
Looking at Equation 2.50 an important feature of the stationary averages

8Thus, we are assuming that the dynamic correlation functions between Â(r) and the
current operators rapidly decay in space.

9Where the stationary state is expected to be reached.
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here discussed can be noticed: In addition to the local thermal equilibrium
contribution, further corrections appear. These corrections are expressed in
terms of equilibrium dynamic correlation functions, weighted with the ap-
propriate field and integrated over space and time. Note that in Equation
2.49 the divergences of current operators appear and they are independent
of the choice of the contour `i→j . Therefore, also the spatial integrals of the
dynamic correlation functions appearing in Equation 2.50 do not depend on the
definition of the contour. Finally, we can now provide the explicit expressions
for the expectation value of the most important quantities.
The formal expression of the average flux of fluid molecules is

〈ĵσ(r)〉 = 〈ĵσ(r)〉LE −
∫ ∞

0

dt′
∫

dr′
[
〈ĵσ(r, t′)ĴαH(r′)〉0∂′αβ(r′)

− β〈ĵσ(r, t′)Ĵαγj (r′)〉0∂′γuα(r′)− 〈ĵσ(r, t′)ĵαρ (r′)〉0∂′α[βµ](r′)

+ ∂′αV (r′)〈ĵσ(r, t′)ρ̂(r′)〉0
uα(r′)

m

]
,

(2.51)

the average heat flux is

〈ĴσH(r)〉 = 〈ĴσH(r)〉LE −
∫ ∞

0

dt′
∫

dr′
[
〈ĴσH(r, t′)ĴαH(r′)〉0∂′αβ(r′)

− β〈ĴσH(r, t′)Ĵαγj (r′)〉0∂′γuα(r′)− 〈ĴσH(r, t′)ĵαρ (r′)〉0∂′α[βµ](r′)

+ ∂′αV (r′)〈ĴσH(r, t′)ρ̂(r′)〉0
uα(r′)

m

]
,

(2.52)

the average momentum flux reads

〈Ĵσδj (r)〉 = 〈Ĵσδj (r)〉LE −
∫ ∞

0

dt′
∫

dr′
[
〈Ĵσδj (r, t′)ĴαH(r′)〉0∂′αβ(r′)

− β〈Ĵσδj (r, t′)Ĵαγj (r′)〉0∂′γuα(r′)− 〈Ĵσδj (r, t′)ĵαρ (r′)〉0∂′α[βµ](r′)

+ ∂′αV (r′)〈Ĵσδj (r, t′)ρ̂(r′)〉0
uα(r′)

m

]
,

(2.53)

while the average of the mass density results

〈ρ̂(r)〉 = 〈ρ̂(r)〉LE −
∫ ∞

0

dt′
∫

dr′
[
〈ρ̂(r, t′)ĴαH(r′)〉0∂′αβ(r′)

− β〈ρ̂(r, t′)Ĵαγj (r′)〉0∂′γuα(r′)− 〈ρ̂(r, t′)ĵαρ (r′)〉0∂′α[βµ](r′)

+ ∂′αV (r′)〈ρ̂(r, t′)ρ̂(r′)〉0
uα(r′)

m

]
.

(2.54)
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2.2.3 Constraints for the external fields

The expressions reported above are particularly important because allow
to compute the averages of the relevant observables for a system out of
equilibrium. However the time-independent fields β(r), µ(r) and u(r) appear
in these expressions and they have not been fixed yet, but they can not be
determined a priori. In order to understand this point let us consider a fluid
in a channel. To create a thermal gradient ∇β(r) inside it we can control
the the temperature of the two extremities of the channel, but we can not
have a direct control on the temperature profile. On the contrary, it will be
self-consistently determined by the fluid, as well as the chemical potential
profile and the velocity field10.
In order to obtain the expressions of these fields we can make use of the
continuity equation for the average local density 〈Ĥ(r)〉, the local momentum
density 〈ĵγ(r)〉 and the local particle density 〈ρ̂(r)〉, and impose the stationary
condition:

∂γ〈ĵγ(r)〉 = 0 , (2.55)

∂γ〈ĴγH(r)〉 = 0 , (2.56)

∂γ〈Ĵαγj (r)〉 = −〈ρ̂(r)〉
m

∂αV (r) . (2.57)

The solution of this set of five independent differential equations formally
provides the expressions of the gradients of the fields: ∂αβ(r), ∂αµ(r) and
∂αu

γ(r). Unfortunately, without further approximations the general solution
of this system can not be obtained in closed form. On the other hand, when the
equations are specialized to some simple geometry, symmetry considerations
allow to considerably simplify the problem.
In the following we will restrict our results to the so called slit (or slab)
geometry, shown in Figure 2.1, where a fluid fills the region between two
infinite parallel planar walls, placed at fixed distance h. Furthermore we
impose that the walls behave as an external potential constant in the x and y
direction, i.e. V (r) = V (z), and the fluid is kept out of equilibrium applying a
temperature difference in the x-direction. The temperature difference is set
at infinity and in such a way that the gradient is small and finite. On the
basis of the simple geometry of the problem, we expect that the solutions of
the system consisting of Equations 2.55, 2.56, 2.57 will show some additional
properties. Here we will assume these properties and then we will show that
such a solution exists. The assumptions on the solutions are the following:

• The gradient of the field β(r) is uniform throughout the fluid and is set
only in the x-direction

∇β(r) = (∂xβ, 0, 0) (2.58)

10As will be clear later, the velocity field u(r) arises if the fluid is not homogeneous.
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z
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∂xβ

Figure 2.1: Schematic representation of the slab geometry: Fluid particles occupy
the light blue region, while the grey ones represent the confinements. The y direction
is perpendicular to the plane of the sheet.

being ∂xβ constant.

• The gradient of the field µ(r) is uniform throughout the fluid and is set
only in the x-direction

∇µ(r) = (∂xµ, 0, 0) (2.59)

being ∂xµ constant. Let us now consider the field β(r)µ(r) and let us
apply these first two assumptions to write it as

(β + ∂xβ x) (µ+ ∂xµx) = βµ+ ∂x (βµ) x+ ∂xβ∂xµx
2 , (2.60)

Being ∂x (βµ) constant. But, within linear response theory, that is con-
sidering only terms linear in the gradients of the fields, we can state

∇ [βµ] (r) = (∂x (βµ) , 0, 0) . (2.61)

• The only non-vanishing component of the velocity field is along the
x-axis and is dependent only on the coordinate z normal to the wall

u(r) = (ux(z), 0, 0) . (2.62)

In the following we will check the consistency of these assumptions by showing
that they indeed provide a solution of the conservation laws 2.55, 2.56 and
2.57.
At this scope it is useful to review the symmetry properties characterizing
systems in a planar geometry.
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Symmetries in planar systems

Under the hypotheses introduced above, the system is invariant along the x
and y-directions, when held at a constant temperature. Therefore the equilib-
rium averages evaluated by means of the underlying equilibrium distribution
F eq do not depend on that coordinates. To give an example, the average
equilibrium density profile 〈ρ̂(r)〉 depends only on the coordinate orthogonal
to the walls z. Obviously, the thermal gradient along the x direction introduces
an additional dependence of the averages on x.

Furthermore, any second-rank tensor representing a physical quantity and
belonging to systems characterized by a broken symmetry along a single
direction, let us say z as in our case, reads

Tαβ = a δαβ + b ẑαẑβ , (2.63)

because it has to preserve the symmetry of the system. In Equation 2.63 a
and b are constants, possibly position dependent if the tensor is a tensor field,
and ẑ is the unit vector along the z-direction. This peculiar expression is
motivated by the symmetry properties of its terms: The identity tensor has no
intrinsic symmetry whereas the product between the unit versors ẑẑ owns the
symmetry of the problem. Equation 2.63 is the most general expression for a
second-rank tensor that we can obtain combining the delta function and the
unit versor ẑ, which are the unique tensors preserving the symmetries of the
system.
It follows that in planar symmetry the equilibrium momentum flux tensor is
diagonal and is determined by two different non-vanishing components:

p(z) =

pT(z) 0 0
0 pT(z) 0
0 0 pN(z)

 ,
where pT and pN are referred to as the tangential and the normal pressure
respectively. According to the notation introduced in Equation 2.63, a = pT(z)
and b = pN(z)− pT(z).
In the following we will deal with expressions as

Iαγ =

∫
dr′ Tαγ(r′), (2.64)

where Tαγ(r) is second-rank tensor. Now let us impose that the tensor Tαγ(r)
is invariant under a given coordinate transformation R, represented by a
matrix belonging to the orthogonal group O(3)

Tαγ(Rr) = RασRγδTσδ(r).

It follows that the integral must obey the following property

Iαγ = RασRγδIγδ, (2.65)
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because the Jacobian of the transformation is equal to 1. Then, if T is invariant
under all the rotations belonging to O(3) it follows, due to Schur’s lemma,
that the tensor Iαγ = aδαγ . However, if T is invariant under a subset of O(3),
e.g. the rotations about the z-axis, Equation 2.65 is fulfilled only if the Iαγ

has the form (2.63).
Following the same argument adopted in the construction of the second-rank
tensor, it is possible to show that a third-rank tensor endowed with the same
symmetries reads

Tαβγ = a1 δ
αβ ẑγ + a2 δ

αγ ẑβ + a3 δ
γβ ẑα + b ẑαẑβ ẑγ . (2.66)

These symmetries properties in planar systems will be used in the following,
where we will check the consistency of assumptions 2.58-2.62 by showing that
they indeed provide a solution of the conservation laws of the mass, the energy
and the momentum.

Mass and energy conservation laws

Due to the symmetries of the system, it turns out that the steady-state
conservation law for the mass density and for the energy density, expressed in
Equations 2.55 and 2.56, are identically satisfied. In order to show it, let us
apply the assumptions introduced above to the average value of the momentum
density expressed in Equation 2.51:

〈ĵα(r)〉 = 〈ρ̂(z)〉0ux(z)δαx

+

∫ ∞
0

dt′
∫

dr′
[
〈ĵα(r, t′)ĴxH(r′)〉0∂′xβ − β〈ĵα(r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈ĵα(r, t′)ĵxρ (r′)〉0∂′x(βµ)
]

(2.67)

where we only made use of the assumptions introduced above. Note that the
contribution to the averages given by the external potential V (z) vanishes,
because it enters in the expressions multiplied to the velocity profile in the
form

∂αV (r)uα(r) (2.68)

which results to be zero due to the assumption made on u(r) and V (r).
Moreover, due to the symmetry properties of the equilibrium system, only the
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x component of the average momentum density is non-vanishing:

〈ĵy(r)〉 = 0 (2.69)

〈ĵz(r)〉 = 0 (2.70)

〈ĵx(r)〉 = 〈ρ̂(z)〉0ux(z)

+

∫ ∞
0

dt′
∫

dr′
[
〈ĵx(r, t′)ĴxH(r′)〉0∂′xβ

− β〈ĵx(r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈ĵx(r, t′)ĵxρ (r′)〉0∂′x(βµ)
]
.

(2.71)

Therefore the stationary condition for the mass density reads

0 = ∂α〈ĵα(r)〉
= ∂x〈ĵx(r)〉

= ∂x

∫ ∞
0

dt′
∫

dr′
[
〈ĵx(r, t′)ĴxH(r′)〉0∂′xβ

− β〈ĵx(r, t′)Ĵxzj (r′)〉0∂′zux(z′)− 〈ĵx(r, t′)ĵxρ (r′)〉0∂′x(βµ)
]
.

(2.72)

The two-point correlation functions only depend on the difference x− x′, z
and z′, because the averages are evaluated at equilibrium and thus the system
is homogeneous along the coordinate x. Therefore their integral over r′ will be
independent of x and its derivative vanishes. The same considerations apply
also for the continuity equation for 〈Ĥ(r)〉: Only the component of the flux
along the x direction is different from zero:

〈ĴyH(r)〉 = 0 (2.73)

〈ĴzH(r)〉 = 0 (2.74)

〈ĴxH(r)〉 = β

∫
dr′〈ĴxH(r)ĵx(r′)〉0ux(z)

+

∫ ∞
0

dt′
∫

dr′
[
〈ĴxH(r, t′)ĴxH(r′)〉0∂′xβ

− β〈ĴxH(r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈ĴxH(r, t′)ĵxρ (r′)〉0∂′x(βµ)
]

(2.75)

and, as before, the continuity equation, which in the stationary limit reduces
to the derivative w.r.t. x of 〈ĴxH(r)〉, is identically satisfied because the integral
of the correlation functions does not depend on x.

Momentum conservation law

The stationary condition expressed by Equation 2.57 leads to three inde-
pendent equations. Two of them are identically satisfied, as in the case of the
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mass and energy density continuity equations, while the last one defines the
gradient of the velocity profile.
Let us start with the conservation law for 〈ĵz(r)〉. The αz-component of the
momentum current which enters the stationary conservation of momentum
density reads

〈Ĵαzj (r)〉 = 〈Ĵαzj (r)〉LE

+

∫ ∞
0

dt′
∫

dr′
[
〈Ĵαzj (r, t′)ĴxH(r′)〉0∂′xβ

− β〈Ĵαzj (r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈Ĵαzj (r, t′)ĵxρ (r′)〉0∂′x(βµ)
]

= 〈Ĵαzj (r)〉LE

+ δαx
∫ ∞

0

dt′
∫

dr′
[
〈Ĵxzj (r, t′)ĴxH(r′)〉0∂′xβ

− β〈Ĵxzj (r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈Ĵxzj (r, t′)ĵxρ (r′)〉0∂′x(βµ)
]

(2.76)

where the last equality follows from the usual symmetry properties. The
term proportional to the Kronecker delta does not depend on x, because the
correlation functions only depend on x− x′, and a suitable change of variable
in the integral makes it independent of x. The Local equilibrium contribution
〈Ĵαzj (r)〉LE for the considered planar symmetry has not been specified yet.

Applying the usual assumptions to the general definition of 〈Ĵαzj (r)〉LE given
in Equation 2.45 we obtain

〈Ĵαzj (r)〉LE = 〈Ĵαzj (r)〉0

− ∂xβ
∫

dr′x′
[
〈Ĵαzj (r)Ĥ(r′)〉0 − µ〈Ĵαzj (r)ρ̂(r′)〉0

]
+ β∂xµ

∫
dr′x′〈Ĵαzj (r)ρ̂(r′)〉0 + CQ〈Ĵαzj (r)〉0 .

(2.77)

The quantity 〈Ĵyzj (r)〉LE is equal to 0, because on one side the equilibrium

pressure tensor is diagonal (thus 〈Ĵyzj (r)〉0 = 0) and on the other side the
linear corrections, which are integrated along r′, vanishes due to the symmetry
properties of the system. On the other hand 〈Ĵxzj (r)〉LE is different from zero
due to the presence of the linear contributions in the derivatives of the fields
in Equation 2.77. Furthermore this term depends on z , but not on x: The
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integrals in the definition of 〈Ĵxzj (r)〉LE can be rearranged as∫
dr′x′〈Ĵxzj (r)Ô(r′)〉0 =

∫
dr′(x′ − x)〈Ĵxzj (r)Ô(r′)〉0

+ x

∫
dr′〈Ĵxzj (r)Ô(r′)〉0

=

∫
dr′(x′ − x)〈Ĵxzj (r)Ô(r′)〉0 ,

(2.78)

where Ô(r) is one of the scalar operator appearing in Equation 2.77. We
remark that the correlation function 〈Ĵxzj (r)Ô(r′)〉0 depends on z, z′ and
x− x′. We can thus write the xz-component of the LE pressure as

〈Ĵxzj (r)〉LE =

∫
dr′(x− x′)

[
∂xβ〈Ĵxzj (r)Ĥ(r′)〉0

− ∂x(βµ)〈Ĵxzj (r)ρ̂(r′)〉0
]
.

(2.79)

Finally, the continuity equation we are considering involves also the LE average
of the zz-component of the momentum flux, which can be written as

〈Ĵzzj (r)〉LE = pN (z)
∣∣∣
β(x),µ(x)

, (2.80)

and this quantity depends both on z and x, because the equilibrium averages
are evaluated at the local value of the temperature and the chemical potential.
At this point we can express the stationarity condition for the z component of
the momentum density:

∂α〈Ĵαzj (r)〉 = ∂zpN (z)
∣∣∣
β(x),µ(x)

− ρ(z)

m

∣∣∣
β(x),µ(x)

∂zV (z) ,
(2.81)

where ρ(z) is the equilibrium density profile evaluated at the local β(x) and
µ(x), while if hard walls are considered ∂zV (z) vanishes11. Equation 2.81,
the so called hydrostatic equilibrium condition, is identically fulfilled by the
normal component of the pressure tensor for every choice of β and µ and then
at each value of the x-coordinate. Note that for hard walls it implies that the
normal pressure is constant along z and equals the bulk pressure p at the local
temperature β(x) and chemical potential µ(x). However, regardless of V (z)
Equation 2.81 implies that the normal pressure depends on x.
The stationarity condition for 〈ĵy(r)〉 is identically satisfied because of the
symmetry of the problem which implies ∂α〈Ĵαyj (r)〉 = 0.

11With hard walls V (z) =∞ for z < 0 and z > h, while it is equal to 0 in the fluid region.
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The most interesting continuity equation comes from the conservation of the
x-component of the momentum density 〈ĵx(r)〉:

∂α〈Ĵαxj (r)〉 = ∂x〈Ĵxxj (r)〉+ ∂z〈Ĵxzj (r)〉
= 0 ,

(2.82)

and it is immediate to show that the relevant terms in this relation are

〈Ĵαxj (r)〉 = 〈Ĵαxj (r)〉LE

+

∫ ∞
0

dt′
∫

dr′
[
〈Ĵxzj (r, t′)ĴxH(r′)〉0∂′xβ

− β〈Ĵxzj (r, t′)Ĵxzj (r′)〉0∂′zux(z′)

− 〈Ĵxzj (r, t′)ĵxρ (r′)〉0∂′x(βµ)
]
,

(2.83)

where 〈Ĵzxj (r)〉LE has been evaluated in Equation 2.79, 〈Ĵyxj (r)〉LE is equal
to 0 and

〈Ĵαxj (r)〉LE = pT (z)
∣∣∣
β(x),µ(x)

. (2.84)

Note that also the tangential pressure pT acquires a dependence on x because
the equilibrium averages are evaluated at β(x) and µ(x). We can now express
the stationarity condition for the x-component of the momentum density:

0 = ∂xpT (z)
∣∣∣
β(x),µ(x)

+ ∂z

∫
dr′(x− x′)

[
∂′xβ〈Ĵxzj (r)Ĥ(r′)〉0 − ∂′x(βµ)〈Ĵxzj (r)ρ̂(r′)〉0

]
+ ∂z

∫ ∞
0

dt′
∫

dr′
[
〈Ĵxzj (r, t′)ĴxH(r′)〉0∂′xβ

− β〈Ĵxzj (r, t′)Ĵxzj (r′)〉0∂′zux(z′)− 〈Ĵxzj (r, t′)ĵxρ (r′)〉0∂′x(βµ)
]
.

(2.85)

Equation 2.85 defines an integro-differential equation for the velocity profile
ux(z).
In order to make further progress we have to better specify the nature of the
slit and employ the appropriate boundary conditions. For example, in an open
channel a free flow develops imposing equal bulk pressure at the left and right
(in the x direction) boundaries. If the channel is closed the fluid can not flow
through the slit and a bulk pressure gradient develops in order to fulfill the
mass conservation law.

2.3 OPEN CHANNEL

Let us now consider an infinitely long channel, as the one reported in Figure
2.1, where a free flow develops and let us consider its height h large enough to
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guarantee that the fluid properties in the central region of the channel are not
conditioned by perturbations due to the walls. In this region (z ∼ h/2) the
fluid can be considered homogeneous and isotropic, thus the normal and the
tangential components of the pressure tensor are equal and reduce to the bulk
pressure p of the fluid, evaluated at the local value of the fields β(x) and µ(x):

pN

(
z ∼ h

2

) ∣∣∣
β(x),µ(x)

= pT

(
z ∼ h

2

) ∣∣∣
β(x),µ(x)

= p
∣∣
β(x),µ(x)

. (2.86)

The free flow in an open channel imposes equal bulk pressure at the left and
the right boundaries. It means that the temperature and chemical potential
fields will adapt in order to guarantee this condition:

0 = ∂xp
∣∣
β(x),µ(x)

= ∂xβ

[
∂βp+

∂xµ

∂xβ
∂µp

]
.

(2.87)

This equation fixes the ratio between the temperature and the chemical poten-
tial gradients, which can be expressed in terms of thermodynamic quantities
as

∂xµ

∂xβ
= −∂βp

∂µp

=
sT

βρ
,

(2.88)

where s is the entropy density and we made use of the thermodynamic relations

∂T p
∣∣
µ

= −∂T
(

Ω

V

) ∣∣∣
µ

= s

∂µp
∣∣
T

= −∂µ
(

Ω

V

) ∣∣∣
T

= ρ ,

(2.89)

where Ω is the grand potential and its derivatives have been evaluated at
constant volume V . Now we can express the ∂x(βµ) in a more suggestive way:

∂x(βµ) = ∂xβ

(
µ+ T

s

ρ

)
= ∂xβ

u+ p

ρ
= ∂xhm , (2.90)

being u the internal energy density and hm the enthalpy per unit mass. Note
that this use of (macroscopic) thermodynamics relations does not introduce
any ambiguity, because they are applied in the central region of the fluid,
where it supposed to be homogeneous.
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This expression of ∂x(βµ) allows to straightforwardly integrate along z the
stationary condition expressed in Equation 2.85. This integration is performed
from h/2 to z. Note that two terms in Equation 2.85 can be integrated
analytically. Moreover the integrals vanish at z = h/2 where the fluid acquires
bulk properties. Therefore the integro-differential equation for the velocity
profile can be written as∫ h

0

dz′K(z, z′)∂′zu
x(z′) = ∂xβS(z) , (2.91)

where the kernel K(z, z′) is related to the local viscosity of the fluid

K(z, z′) = β

∫ ∞
0

dt′
∫

dr′⊥〈Ĵxzj (r, t′)Ĵxzj (r′)〉0 (2.92)

and S(z) is the source therm of the thermo-osmotic mass flow in an open
channel and can be written as the sum of a static contribution Ss(z) and a
dynamic one Sd(z)12:

S(z) = Ss(z) + Sd(z) , (2.93)

Ss(z) =

∫ z

h
2

dz′
∂pT (z′)

∂β

∣∣∣
p
−
∫

dr′(x− x′)〈Ĵxzj (r)P̂(r′)〉0 , (2.94)

Sd(z) =

∫ ∞
0

dt′
∫

dr′〈Ĵxzj (r, t′)ĴxQ(r′)〉0 . (2.95)

Here we have introduced the operator P̂(r) = hmρ̂(r)−Ĥ(r) and the operator
ĴαQ(r) = ĴαH(r)− hmĵαρ (r) which can be interpreted as the microscopic heat

flux13. In Equation 2.94 the tangential pressure has been rewritten as a function
of the temperature field β(x) and of the bulk pressure p. Indeed we can write

pT

(
h

2

) ∣∣∣
β(x),µ(x)

= p (2.96)

for each value of the coordinate x and we can replace the dependence on the
local chemical potential with the bulk pressure:

∂xpT (z)
∣∣
β(x),p

=
∂pT (z)

∂β

∣∣∣
p
∂xβ . (2.97)

The solution of this set of equations provides the gradient ∂zu
x(z), which does

not have a direct physical meaning. The real flow is instead defined by the

12Static and Dynamic because they are expressed respectively as static and dynamic
correlation functions at equilibrium.

13Note that this definition of the heat flux does not correspond to its microscopic counter-
part introduced within classical hydrodynamics. See for example [42].
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average value of the mass current expressed by Equation 2.71, which in an
open channel reads

〈ĵx(z)〉 = ρ(z)ux(z)

+

∫ ∞
0

dt′
∫

dr′
[
〈ĵx(r, t′)ĴxQ(r′)〉0∂xβ

−β〈ĵx(r, t′)Ĵxzj (r′)〉0∂′xux(z′)
]
.

(2.98)

The mass flux can not be fully determined by this equation: The velocity field,
and not only its derivative, appears in the expression. Thus a full knowledge
of the mass flow requires to know its value at a given height z, i. e. a physical
boundary condition is needed. This point is not a limitation of the theory,
but rather a consequence of the Galilean invariance of the problem, which
in an experimental set-up is broken by the presence of friction between the
fluid and the confining wall [80]. In our model instead V = V (z) and thus the
external potential, which describes the confining wall, does not modify the
x component of the particles’ momenta. One can for example introduce the
no-slip boundary condition:

〈ĵx(0)〉0 = 〈ĵx(h)〉0 = 0 . (2.99)

Beyond its quantitative importance, Equation 2.98 clearly shows that the mass
flow is an interfacial phenomenon: All the contributions that appear in the
Equation vanish in the bulk. In a homogeneous fluid Equation 2.91 admits only
a constant solution for ux(z): The source term vanishes because it involves
bulk integrals of odd rank tensors and the derivative of the tangential pressure
evaluated at constant bulk pressure (and here pT = pN = p). Moreover the
integral of the mass-heat correlation function vanishes because mass and heat
fluctuations are decoupled in the bulk [47]14,[4]15.

This analysis of a model of simple fluid closed to a wall is exact, within
linear response theory, and proves that two distinct mechanisms give rise to
thermo-osmosis. Both these mechanisms are related to interface physics: The
presence of anisotropies in the pressure tensor near the wall, Ss(z) and the role
played by the confining surface on the dynamical correlation functions, Sd(z).
Let us now consider two limiting situations where the relative importance of
these two mechanisms is totally unbalanced.

14See section 49.
15See Section 12.5.
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2.3.1 Thermo-osmosis in liquids

In liquids the theoretical tool for dealing with thermo-osmosis is the
nonequilibrium thermodynamics. As discussed in the previous Chapter, the
reference result is due to Derjaguin [15, 16], who expressed the slip velocity
far from the surface as:

v∞ =
1

η

∫ ∞
0

dz∆h(z)
∇T
T

. (2.100)

Thus the mass flux arises due to the spatial dependence of the local enthalpy
density near the surface. Such a macroscopic approach is however not fully
satisfactory: Continuum theories, as nonequilibrium thermodynamics, can not
account for changes in thermodynamics quantities over length scales of the
order of the range of the microscopic interaction16. Nevertheless in Equation
2.100 the perturbation induced by the surface on the local enthalpy is taken
into account. Moreover, the bulk viscosity appears, without accounting for the
effect of the confining surface on it. Furthermore it is interesting to note that,
according to Derjaguin’s result, the only dynamic quantity that plays a role in
thermo-osmosis is the (bulk) viscosity.
Thus Derjaguin’s result suggests that the contribution of the dynamical corre-
lations is negligible in the liquid state. There are no evidences of the accuracy
of this assumption, but anyway, in order to compare our results with Equation
2.100, we can evaluate Equations 2.91 and 2.98 in the “continuum spirit”: To
do this we evaluate all the dynamic and static correlation functions in the
bulk and we assume that the kernel is a short ranged function:

K(z, z′) ∼ ηδ(z − z′) (2.101)

being η the bulk viscosity. Under these assumptions the dynamic source term
Sd(z) vanishes, and the static one Ss(z) retains only the contribution including
the anisotropy of the pressure tensor. Thus we obtain a simpler source term

SCA(z) =

∫ z

h
2

dz′
∂pT (z′)

∂β

∣∣∣
p
, (2.102)

where the subscript CA refers to continuum approximation. Also Equation
2.98 results simplified by these assumptions:

〈ĵx(z)〉 = ρ(z)ux(z) (2.103)

while the differential equation for the velocity profile reads

∂zu
x(z) = −∂xβ

η

∫ h
2

z

dz′
∂pT (z′)

∂β

∣∣∣
p
. (2.104)

16Similar considerations can be applied also to the result obtained by Ganti et all [32].
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The integration of this first-order differential equation needs a boundary
condition, as previously explained. To go further let us assume the no-slip
boundary condition 〈ĵx(0)〉 = 0, which implies ux(0) = 0. Once this choice is
made, the corresponding mass flux reads

〈ĵx(z)〉 = −ρ(z)
∂xβ

η

∫ h
2

0

dz′min(z, z′)
∂pT (z′)

∂β

∣∣∣
p
, (2.105)

where the following change of variables has been performed:

∫ z

0

dx

∫ h
2

0

dy f(y) =

∫ h
2

0

dy f(y)

∫ min(y,x)

0

dx . (2.106)

In the asymptotic limit, i.e. when h and z are larger than the typical length
scale of the correlations (z → ∞ and h → ∞), min(z, z′) ∼ z′ and the slip
velocity can be written as

v∞ =
〈ĵx〉∞
ρb

= −∂xT
η

∂

∂T

∣∣∣
p

∫ ∞
0

dz′ z [pT (z′)− p]

= −∂xT
η

∂

∂T

∣∣∣
p

∫ ∞
0

dz′ z∆pT (z′) ,

(2.107)

where ρb is the bulk density of the fluid and the bulk pressure in the integral
has been subtracted and does not provide an additional contribution because
the derivative is taken at fixed bulk pressure p. This relation for the slip velocity
far from the surface can be related to Derjaguin’s prediction. To this end, we
note that in order to obtain the thermo-osmotic flow expressed in Equation
2.107 we must evaluate the tangential pressure near a hard wall. While the
normal pressure has been shown, through the continuity equation for the z
component of the momentum density, to be independent of z, the tangential
component is not. In the spirit of the local density approximation [36], we can
then express pT (z) at a given (T (x), [βµ](x)) in terms of the bulk pressure p
at a modified z dependent chemical potential βµ→ βµ+ ψ(z). The shift ψ in
chemical potential is uniquely fixed by imposing that the density profile ρ(z)
coincides with the physical one. Under this assumption the x-derivative of the
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tangential pressure in local thermal equilibrium becomes17

∂x

{
pT (z)

∣∣
T (x),[βµ](x)

}
= ∂x

{
p(z)

∣∣
T (x),[βµ](x)+ψ(z)

}
=
∂p(z)

∂T

∣∣∣
[βµ](x)

∂xT +
∂p(z)

∂[βµ]

∣∣∣
T (x)

∂x[βµ]

=
h(z)

T
∂xT +

ρ(z)

β
∂x[βµ]

=
h(z)− hmρ(z)

T
∂xT ,

(2.108)

where, according to the adopted approximation, p(z) and h(z) are the pressure
and the enthalpy per unit volume of a homogeneous system at density ρ(z)
and the dependence of the thermodynamic variables on β(x) and µ(x) is
understood. Finally we can write the slip velocity far from the surface in
continuum approximation

v∞ =
1

η

∂xT

T

∫ ∞
0

dz′ z [h(z′)− hmρ(z′)] , (2.109)

which resembles Derjaguin’s equation, but there ∆h(z) = h(z)− hmρb, while
Equation 2.109 is the same results obtained by Ganti et all.

Connection with the Navier-Stokes equations

It is now interesting to show that Equation 2.107 coincides with the
solution of the linearized Navier-Stokes equation for an incompressible fluid
when a tangential pressure gradient given by the LE expression is applied
[32, 64]. The fully macroscopic Navier-Stokes approach based on the continuum
approximation states that the differential equation obeyed by the stationary
velocity field v(r) of an incompressible fluid can be written as

0 = ∂t (ρvα)

= −∂βΠαβ + Fα .
(2.110)

This is the stationary Navier-Stokes equation, where F is the force field acting
on the fluid and it can be due either to the presence of the wall or to an
external field. The momentum flux tensor Παβ can be written in terms of the

17Recalling that ∂xpT (z)
∣∣
β(x),p

= ∂pT (z)
∂β

∣∣∣
p
∂xβ:

∂∆pT (z)

∂T

∣∣∣
p
∂xT =

∂∆pT (z)

∂β

∣∣∣
p
∂xβ = ∂xpT (z)

∣∣
β(x),p

= ∂xpT (z)
∣∣
β(x),µ(x)

= ∂xpT (z)
∣∣
β(x),[βµ](x)

and the last identities follow from the freedom in the choice of the thermodynamic variables.
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stationary momentum flux 〈Ĵαβj (r)〉

Παβ = 〈Ĵαβj (r)〉+ ρvαvβ − η
[
∂vα

∂rβ
− ∂vβ

∂rα

]
. (2.111)

If the limit of small velocities and planar symmetry are considered, the x-
component of the velocity field fulfills the linearized Navier-Stokes equation

η
d2vx

dz2
= ∂xpT , (2.112)

where we are considering an external potential V (r) = V (z), thus F does
not contributes to the velocity field. As usual, we can express the right hand
side of the previous equation in terms of the temperature derivative of the
tangential pressure at fixed bulk pressure:

η
d2vx

dz2
= ∂xT

∂pT (z)

∂T

∣∣∣
p
. (2.113)

Imposing no-slip boundary conditions at the wall (vx(0) = 0) Equation 2.113
can be easily integrated18 and the asymptotic velocity field reads

v∞ = −∂xT
η

∂

∂T

∣∣∣
p

∫ ∞
0

dz′z′ [pT (z′)− p] , (2.114)

which coincides with Equation 2.107.

2.3.2 Thermo-osmosis in gases

Let us now examine the other limit, i.e. the rarefied regime. Here kinetic
theories provide a quantitative description of the phenomenon, as already
explained in the previous Chapter. Our approach should be able to reproduce
the known results, in the ideal gas limit, where the creep velocity far from the
surface was obtained by Maxwell:

v∞ =
3

4

η

ρ

∇T
T

. (2.115)

In this limit, interparticle interactions are negligible, thus the momentum
(Equation 2.16) and the energy (Equation 2.27) fluxes can be written as

Ĵαβj (r) =

N∑
i

pαi p
β
i

m
δ(qi − r) (2.116)

ĴαH(r) =

N∑
i

p2
i p
α
i

m
δ(qi − r) . (2.117)

18The first integration is from h/2 to z, and we exploit the symmetry of the problem
which implies that the derivative of the velocity profile vanishes at z = h/2. Then, the
second integration proceeds as already described.
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Moreover, let us consider a wall which does not exert a force on the fluid.
Under these assumptions, for an ideal gases pT = pN = p and the static source
term Ss(z) vanishes19: pT does not depend on x and Equation 2.94 simplifies
because the second contribution is odd in particles momenta. Thus only the
dynamic contribution survives and the source term can be written as

SIG(z) =
∑
i,l

〈∫ ∞
0

dt

∫
dr′δ[r − ql(t)]δ(r′ − qi)

· p
x
l (t)pzl (t)

m2
pxi

[
p2
i

2m
−mhm

]〉
0

,

(2.118)

where qi and pi are respectively the coordinate and the momentum of the
particle at t = 0.
Without any kind of interaction between the particles the time integral in
Equation 2.118 diverges because the correlations never decay over time. In
order to mimic the behavior of an almost ideal gas, where some collisions
appear and correlations have a finite life time, we introduce a finite relaxation
time τ . This procedure introduces the collisions between the (ideal) particles
a posteriori, and τ is by definition the time interval between two collisions of
a given particle. Moreover only the self correlation contribution (i.e. i = l)
survives and the source term reads

SIG(z) = N

〈∫ τ

0

dt

∫
dr′δ[r − q(t)]δ(r′ − q)

· p
x(t)pz(t)

m2
px
[
p2

2m
−mhm

]〉
0

,

(2.119)

where also the indistinguishability between particles has been exploited. In the
case of a perfectly reflective wall, it is straightforward to show that the source
term is zero. Indeed, specular reflections without energy exchange conserve
both the x-component and the modulus of the momentum. It follows that all
the integrated quantities in Equation 2.119 can be evaluated at time t. If we
perform the canonical transformation U(−t) the average over the momenta
does not depend on time, and the source term vanishes.
In agreement with the results obtained within kinetic theory [44, 53], the
occurrence of thermal-creep is possible only assuming that in the particle-
surface scattering the momentum or the energy are not conserved. In order to
mimic this behavior and to obtain an analytical result, we assume that, due
to the scattering process between particles and surface, the x-component of
the particle’s momenta before and after the collisions are fully uncorrelated.
Moreover, we consider a semi-infinite geometry, where only the wall at h = 0
is present.

19If V (z) 6= 0 then pT = pN = p, but p acquires a dependence over z and x, thus
Ss(z) 6= 0.
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The averages can be evaluated, without any loss in generality, within the
canonical (N,V, T ) ensemble and the source term reads

SIG(z) =
N

Q̃c

∫ τ

0

dt

∫
dr′
∫

dq

∫
dp δ[r − q(t)]δ(r′ − q)

· p
x(t)pz(t)

m2
px
[
p2

2m
−mhm

]
e−

βp2

2m ,

(2.120)

where Q̃c = V (2πmkBT )
3
2 is the ideal gas partition function. In order to

evaluate the source term it is useful to briefly examine the behavior of a
particle, with initial coordinates q and p, between the instant t′ = 0 and a
given time t′ = t > 0. If pz ≥ −mqz/t, the particle does not bounce on the
wall in the time interval [0, t]20 and we can write

p(t) = p , (2.121)

q(t) = q +
p

m
t . (2.122)

On the other hand, when pz < −mqz/t the particle hits the wall at time
ts = −mqz/pz < t. During the scattering the particle has completely lost
the memory of the value of px before the bounce, therefore the self dynamic
correlation [0, t] is equal to 0 and the contribution in Equation 2.120 arising
from pz < −mqz/t vanishes. Therefore we can restrict the integral over pz to
the domain [−mqz/t,+∞] and, exploiting Equations 2.121 and 2.122, we can
write

SIG(z) =
N

Q̃c

∫ τ

0

dt

∫
dr′
∫

dq

∫
dp⊥

∫ ∞
−mqz/t

dpzδ
(
r − q − p

m
t
)

· δ(r′ − q)
(px)2pz

m2

[
p2

2m
−mhm

]
e−

βp2

2m ,

(2.123)

where the integral over the momentum p⊥ orthogonal to pz is extended to R2.
After the evaluation of the integrals in Equation 2.123 the source term results
to be

SIG(z) = −πNmτ
Q̂cβ4

e−β
mz2

2τ2 . (2.124)

A similar argument allows to write the kernel KIG(z, z′) as

KIG(z, z′) =
2πNm2

Q̂cβ2
Θ(z)Θ(z′)e−β

m(z−z′)2

2τ2 , (2.125)

being Θ(·) the Heaviside function. Performing an appropriate change of vari-
ables the differential equation 2.91 for ux(z) can be written as∫ +∞

0

dz′ ∂′zu
x(z′)

2m

τkB∂xT
e−z

′2+2ζz′ = 1 , (2.126)

20Remembering that the wall is placed at z = 0.
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where ζ = z
√
mβ/2τ2, and the solution of this equation reads

ux(z) =
kB

2m
τ Θ(z + ε)∂xT + C , (2.127)

where C is an additive constant, to be evaluated by imposing the appropriate
boundary condition, and ε→ 0. The relaxation time τ introduced above can
be related to the bulk viscosity η:

η = β

∫ τ

0

dt

∫
dr′〈Ĵxzj (r, t)Ĵxzj (r′)〉0

= pτ

(2.128)

where the integrals have been evaluated through the same arguments introduced
above for SIG(z) and KIG(z, z′). Finally, far from the wall, the field ux(z) can
be written as

ux(z) =
η

p

kBT

2m

∂xT

T
+ C

=
η

2ρ

∂xT

T
+ C .

(2.129)

As already stated, the velocity field ux(z) does not have a direct physical
meaning. The real flow is related to the average value of the x component of
the mass current 〈ĵx(z)〉 which we report here

〈ĵx(z)〉 = ρux(z)

+

∫ τ

0

dt

∫
dr′
{〈
ĵx(r, t)

[
ĴxH(r′)− hmĵx(r′)

] 〉
0
∂xβ

− β
〈
ĵx(r, t)Ĵxzj (r′)

〉
0
∂′zu

x(z′)
}
,

(2.130)

where for an ideal gas confined by the wall21 ρ(z) = ρb, moreover the flux ĴxQ
has been written explicitly. In the following we report the space integrals22 of
the dynamic correlation functions appearing in Equation 2.130:∫

dr′〈ĵx(r, t)ĴxH(r′)〉0 =
5

2

πNm2

Q̂cβ3

2π

mβ

[
erf

(
z

√
βm

2t2

)
+ 1

]

− πNm2

Q̂cβ3

z

t
e−β

mz2

2t2 ,

(2.131)

hm

∫
dr′〈ĵx(r, t)ĵx(r′)〉0 =

5

2

πNm2

Q̂cβ3

2π

mβ

[
erf

(
z

√
βm

2t2

)
+ 1

]
(2.132)

21Note that also the correlations appearing in Equation 2.130 would vanish with a perfect
reflective wall.

22Solved with the usual assumptions.
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and ∫
dr′〈ĵx(r, t)Ĵxzj (r′)〉0∂′zux(z′) =

πNm2kBτ∂xT

Q̂cβ2

z

t2
e−β

mz2

2t2 . (2.133)

After the time integration we can obtain the final result for the mass current

〈ĵx(z)〉 =
η

2

{
1 +

1

2

{
erf

(√
3

2

z

`g

)
−
√

3

2π

z

`g
Ei

[
−3

2

(
z

`g

)2
]}}

∂xT

T
,

(2.134)

where the constant C has been evaluated through no-slip boundary conditions
and resulted C = (η/4ρ)(∂xT/T ), Ei(·) is the exponential integral and `g =

τ
√

3/(mβ). Far from the wall (z � `g) the exponential integral rapidly decays

to 0 and the slip velocity v∞ = 〈ĵx(z)〉|z�`g/ρ reduces to

v∞ =
3

4

η

ρ

∂xT

T

=
3

4
kBT

η

p

∂xT

T
,

(2.135)

which coincides with the kinetic theory result expressed in Equation 2.115,
showing how the slip velocity in rarefied systems is aligned to the temperature
gradient and grows at low pressure, as experimentally demonstrated [73], and
in agreement with the prediction by Maxwell [53].

2.4 CLOSED CHANNEL

Now let us examine the thermo-osmosis phenomenon in a “closed channel”
geometry23. We consider an infinitely long planar slab of height h with, as
usual, a uniform temperature gradient in the x direction. Note that, being the
channel infinitely long, the translation symmetry in the x direction (for the
system at equilibrium) is not broken24, thus all the relations and considerations
up to Equation 2.85 remain valid.
As in the case of the open channel, we have to fix the value of the gradient
∂x[βµ], but in this regard an important difference between the two configura-
tions arises. In the open channel a free flow develops and thus the condition of
constant bulk pressure has been employed. Instead, the closed configuration
imposes the overall constraint of vanishing average mass flux, which can be

23“Closed channel” because besides the walls aligned to the temperature gradient there
are two walls perpendicular to it at the extremities of the channel.

24Perturbations induced by the walls perpendicular to the temperature gradient vanish
within some molecular diameter.
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expressed as

1

h

∫ h

0

dz〈ĵx(z)〉 = 0 . (2.136)

This condition has an important consequence: The (physical) velocity profile
v(z) = 〈ĵx(z)〉/ρ(z) must change sign over z (maintaining its symmetry with
respect to h/2). This happens because the thermo-osmotic mass flow pushes
particles along the x direction towards a side of the channel and, consequently,
a bulk pressure gradient develops in the same direction. It follows that the
Poiseuille effect takes place: The bulk pressure gradient drives a mass flow in
opposition to the overall thermo-osmotic one in order to exactly balance it.
Therefore, the open channel condition to evaluate ∂x[βµ] can not be applied
any more because the bulk pressure is not constant along the x direction,
instead we can make use of the condition expressed by Equation 2.136. Thus,
let us write this equation as

1

h

∫ h

0

dzρ(z)ux(z) +
1

h

∫ h

0

dzA(z)∂xβ −
1

h

∫ h

0

dzB(z)∂x[βµ]

− 1

h

∫ h

0

dz

∫ ∞
0

dt

∫
dr′β〈ĵx(r, t)Ĵxzj (r′)〉0∂′zux(z′) = 0 ,

(2.137)

where

A(z) =

∫ ∞
0

dt

∫
dr′〈ĵx(r, t)ĴxH(r′)〉0 (2.138)

and

B(z) =

∫ ∞
0

dt

∫
dr′〈ĵx(r, t)ĵxρ (r′)〉0 . (2.139)

Reference textbooks, see for example [36], suggest that both A(z) and B(z)
are divergent quantities. But, in the open channel configuration we have shown
that ∂x[βµ]OC = ∂xβhm and we have introduced the integrated dynamic
correlation function

A(z)∂xβ − B(z)∂x[βµ]OC = ∂xβ

∫ ∞
0

dt

∫
dr′〈ĵx(r, t)ĴxOCQ (r′)〉0

= ∂xβ

∫ ∞
0

dt

∫
dr′
〈
ĵx(r, t)

[
ĴxH(r′)− hmĵxρ (r′)

] 〉
0

= COC(z)

(2.140)

where COC(z) = 0 when z →∞ (to be more precise, when z � σ, where σ is
the molecular diameter). Thus in bulk we can write

lim
z→∞

A(z)

B(z)
= γOC , (2.141)
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where we have defined γ = ∂x[βµ]/∂xβ. Relation 2.141 shows that, at least in
the bulk of the fluid, the ratio of the two divergent quantities A(z) and B(z)
is finite and does not depends on z far from the surface25. Thus we can exploit
Equation 2.137 to express the field ∂x[βµ] in a closed channel:

γ =

∫ h
0

dzA(z)∫ h
0

dzB(z)
. (2.142)

Moreover we can express also the heat flux operator as

ĴxQ(r) = ĴxH(r)− γĵxρ (r) . (2.143)

Note that in principle γ = γ(h), because the proportionality between A(z) and
B(z) is guaranteed only for z →∞, but for h→∞ the integrals in Equation
2.142 are dominated by the bulk contribution (z →∞), thus γ(h)→ γOC =
hm

26 and ĴxQ(r)→ ĴxOCQ (r) when h→∞.
Also in the closed channel configuration, the equation for the velocity field
comes from the conservation of the x component of the mass current and it is
written in a formally identical way to the open channel case:∫ h

0

dz′K(z, z′)∂′z(z
′) = ∂xβ [Ss(z) + Sd(z)] , (2.144)

where K(z, z′) = KOC(z, z′), but the expressions of the source terms are
modified:

Ss(z) =

∫ z

h
2

dz′

[
∂pT (z′)

∂β

∣∣∣∣
[βµ]

− γ
∂pT (z′)

∂[βµ]

∣∣∣∣
β

]

−
∫

dr′(x− x′)〈Ĵxzj (r)P̂(r′)〉0 ,
(2.145)

where now

P(r) = γρ(r)−H(r) , (2.146)

25Note that A(z) and B(z) are integrated dynamic correlation functions of an equilibrium
system and thus their value in open and closed systems is the same.

26The deviation from the open channel value is due to the contributions arising near the
surface, on a length scale ξ, thus we can write

γ(h) =

∫ h
0 dzA(z)∫ h
0 dzB(z)

=

∫ ξ
0 dzA(z) +

∫ h
ξ dzA(z)∫ ξ

0 dzB(z) +
∫ h
ξ dzB(z)

and when h→∞

γ(h) ∼

∫ h
ξ dzA(z)∫ h
ξ dzB(z)

= γCO .
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while

Sd(z) =

∫ ∞
0

dt′
∫

dr′〈Ĵxzj (r, t′)ĴxQ(r′)〉0 , (2.147)

being ĴxQ(r) defined in Equation 2.143. Finally, we can write the expression
for the mass flow in a closed channel

〈ĵx(z)〉 = ρ(z)ux(z)

+

∫ ∞
0

dt′
∫

dr′
[〈
ĵx(r, t′)ĴxQ(r′)

〉
0
∂xβ

−β
〈
ĵx(r, t′)Ĵxzj (r′)

〉
0
∂′zu

x(z′)
]
,

(2.148)

where the dependence of 〈ĵx(z)〉 on h due to γ is understood. Also in this case
the full knowledge of the mass flow requires to fix the value of the velocity
field ux(z) at some point, for example z = 0, but now it is formally provided
by Equation the condition of vanishing mass flux∫ h

0

dz
〈
ĵx(z)

〉
= 0 . (2.149)

2.4.1 Asymptotic behavior

The closed channel configuration is particular interesting from an experi-
mental point of view. As previously explained, the onset of the thermo-osmotic
mass flow induces a bulk pressure gradient ∂xp, which is in principle a measur-
able quantity of interest in liquid systems[61, 60, 41]. In this regard it is useful
to understand how the height h of the system affects this quantity, besides
the velocity profile.
At this scope we can use our results for large channels, i. e. h� σ. Moreover
let us consider the dense regime limit: Correlation functions are evaluated
in bulk and the kernel appearing in Equation 2.144 can be expressed as
K(z, z′) ∼ ηδ(z − z′). The point is that the coefficient γ(h) depends on the
height h of the system and tends to the bulk value27 γOC = hm only for
h → ∞. Therefore the source term for a large system SA(z) differs from its
asymptotic value S∞(z) for an additive term due to the difference between
γ(h) and γCO:

SA(z) = S∞(z) + [γ(h)− γOC ]

∫ z

h
2

dz′∂βµpT (z′)

∼ [γ(h)− γOC ]

(
z − h

2

)
∂βµp ,

(2.150)

27The value of γ in an open channel, γOC , coincides with the value of γ in a bulk system,
as shown in Equation 2.141.
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where the second equality holds in the bulk region (i. e. z � σ), and where
both SA(z) and S∞(z) are considered with the dense regime approximations.
Now we substitute this expression in the equation for the velocity profile (in
the bulk region), leading to

η∂zu
x(z) = ρ

γ(h)− γOC
β2

(
z − h

2

)
∂xβ , (2.151)

where the thermodynamic identity ∂βµp = ρ
β2 has been employed. Comparing

this Equation with the familiar Navier-Stokes equation for an incompressible
fluid (Equation 2.110) we see that the pressure gradient is given by

∂xp = ρ
γ(h)− γOC

β2
∂xβ . (2.152)

The solution of Equation 2.151 is the familiar Poiseuille flow:

ux(z) = ux0 −
[
ρ
γ(h)− γOC

β2
∂xβ

]
z(h− z)

2η

= ux0 −
∂xp

2η
z(h− z)

(2.153)

(valid for z � σ) where both γ and ux0 = ux(z = 0) depend on the channel
height h. Let us now employ the mass conservation condition to evaluate u0:

ρh

[
ux(0)− ∂xp

12η
h2

]
= ω , (2.154)

where ω is the contribution coming from the three dynamical correlation func-
tions appearing in Equation 2.137, and, according to the previous assumptions,
it is independent of h. Note that, to be more consistent with the dense regime
approximation assumed in the definition of K(z, z′) and SA(z), we should
set ω = 0. Nevertheless we can maintain this dynamic contribution in order
to include somehow the effect of the dynamic correlation functions near the
surface28. Finally, we can express the full velocity profile29

v(z) =
ω

ρh
+
∂xp

12η
h2 − ∂xp

2η
z(h− z) , (2.155)

while the velocity at mid-height results to be

v(z)|z=h
2

=
ω

ρh
− ∂xp

24η
h2 . (2.156)

28As later explained, their contribution here included becomes negligible in the asymptotic
limit h→∞.

29Note that in bulk v(z) = ux(z).
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In the asymptotic limit, that is when h→∞, the mid-height velocity and the
bulk pressure gradient are connected by a particularly simple relation

v|∞z=h
2

= −∂xp
24η

h2 . (2.157)

Unfortunately both v|∞z=h
2

and ∂xp, expressed in Equation 2.152, in principle

depend on h30, thus Equation 2.157 cannot directly define the behavior of ∂xp
with h. At this point we can only state that ∂xp must go to zero as h−2 or
faster, in order to avoid an unphysical divergent behavior of v|∞z=h

2
.

Note that the numerical factor 1
24 appearing in Equation 2.157 derives from the

adoption of the three-dimensional slit geometry in the Navier-Sokes Equation
reported in 2.110. For what will follow in Chapter 4 it is important to note that
the same numerical factor is obtained in a two-dimensional slit geometry31.
Thus Equation 2.157 holds also in 2D systems.

30On the contrary, η is a bulk property of the fluid, thus it does not depend on h.
31While, for example it changes in a circular pipe geometry, where it results to be 1

48
.





3
The role of correlation functions

I
n the previous Chapter we developed a microscopic theory of the thermo-
osmosis phenomenon. From a physical point of view one of the most
important results of this approach is the rigorous formalization of the
thermal forces. In particular the presence of two different underlying
mechanisms arises, a static one and a dynamic one, whose effects are

expressed in terms of correlation functions, which consequently play a funda-
mental role in the theory of thermo-osmosis. Thus, it is indeed useful leaving
for a while the main object of this thesis in order to examine more in depth
some aspects related to the correlation functions.
As previously discussed, the static source term is written as the sum of two
contributions: The temperature derivative of the pressure tensor and a specific
static correlation function. Both terms are separately ill defined, because
depend on the arbitrary choice of the integration path. However this ambiguity
is expected to cancel in the particular combination defining the full static
source term. This important analytical result will be tested from a numerical
point of view evaluating the pressure tensors according to the two different
definitions by Irving and Kirkwood [42] and Harasima [38]. We will show our
numerical results for a two-dimensional geometry, which allows to simulate
larger systems thereby reducing statistical errors.
Regarding the dynamic correlation functions, our attention will not be focused
on the dynamic source term, but rather we will consider the more general
problem of the definition of transport coefficients in two-dimensional systems1

1For static correlation functions problems related to the dimensionality of the system do
not arise.
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through the linear response theory formalism2. In particular we will numerically
study the viscosity of a 2D fluid. This aspect will be particularly interesting in
the interpretation of the results presented in the next Chapter, where direct
simulations of thermo-osmotic mass flows in 2D systems will be discussed.
All the numerical results presented in this Chapter and in the next one are
obtained by the molecular dynamics simulation technique. This choice is par-
ticular suitable to our purposes, because it allows to simulate both equilibrium
and nonequilibrium systems. Simulations were performed through the open
source software LAMMPS [65] (http://lammps.sandia.gov), supplemented by
few customized routines.

3.1 NUMERICAL ALGORITHM TO COMPUTE CORRE-
LATION FUNCTIONS

The routines employed to compute correlation functions and their integrals
in two-dimensional systems were added to the open source software LAMMPS.
Here we describe their basic structure.
Let us consider two generic operators O1 and O2 and their associated equilib-
rium correlation function

C(r, r′, t) =
〈
O1(r, t)O2(r′)

〉
0
. (3.1)

In order to compute C(r, r′, t) we need to define a mesh over the system. The
elements of this mesh are squares of side ∆ = 0.05σ and for each simulation
step the value of the discretized operators is computed on each of these squares.
The link between the formal definition of these operators and their discretized
counterpart computed on the mesh is provided by the following relation:

Õin =
1

∆2

∫ xi+
∆
2

xi−∆
2

dx′
∫ zi+

∆
2

zi−∆
2

dz′O(r′, tn) , (3.2)

where the subscript i refers to the mesh element centered in the position r,
while n refers to the simulation time step. As a result, also the corresponding
correlation functions are discretized and can be expressed as

C̃ijn =
〈
Õ1
inÕ2

j

〉
0
. (3.3)

Due to the time translation invariance of the equilibrium correlation function,
the label n here refers to the difference between the computational time steps
of Õ1

in and Õ2
j .

2We remember that linear response theory allows to compute a given transport coefficient
as the integrals over space and time of a particular dynamic correlation function, i. e. through
the so-called Green-Kubo relations.
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For our purposes the most interesting quantities are the space integrals of the
correlation functions, and we can easily express them as∫

dr′C(r, r′, t)→
∑
j

C̃ijn∆2

= ∆2
∑
j

〈
Õ1
inÕ2

j

〉
0

= ∆2

〈
Õ1
in

∑
j

Õ2
j

〉
0

= ∆2
〈
Õ1
in Ĩ2

〉
0
,

(3.4)

where the arrow links the analytical and numerical definitions of the integrals.
When the system is characterized by some translation symmetry it can be
exploited to improve the statistics accuracy in the calculation of the integrated
correlation function. This is accomplished through an average operation in the
translation-invariant direction:∫

dr′C (r − r′, t) =
1

A

∫
dr

∫
dr′C (r − r′, t)

→ ∆2

A

∑
i

〈
Õ1
in I2

〉
0

∆2

=
∆4

A

〈∑
i

Õ1
in I2

〉
0

=
∆4

A

〈
I1
n I2

〉
0

(3.5)

where A is the area of the system and a homogeneous system has been con-
sidered. Note that if O1 and O2 refer to conserved quantities the associated
correlation function computed through a molecular dynamics simulation will
be zero or constant over time. For example, in order to numerically compute
dynamic correlation functions a NVE dynamics is required and so if the oper-
ators O1 or O2 refers to the particles momenta the corresponding correlation
function computed through Equation 3.5 would be equal to zero. In appendix
A we will show a way that possibly overcomes this problem.
In a bulk system Equation 3.5 can be employed to compute a given trans-
port coefficient T , but in its Green-Kubo definition also a time integration is
involved

T → ∆4

A

N∑
n=0

〈
I1
nI2

〉
0
δt , (3.6)

where δt is the time separation between two consecutive time steps. Here
the arrow → points out that the right hand side of the Equation 3.6 does
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not necessary define the transport coefficient T : Indeed the time integration
domain in its definition is (0,∞), and this cannot be reproduced on a computer
(where N 6→ ∞). More importantly, in 2D systems the possibility to define
transport coefficient is still a debated issue. This happens because general
arguments suggest that at long times C(r, r′, t) is characterized by the power-

law decay t−
d
2 [66, 36], where d is the dimensionality of the system. It follows

that in 2D systems the time integral should diverge.
In the last Section of this Chapter we will address this problem by computing
the viscosity, defined as

η(r) = β

∫ ∞
0

dt

∫
dr′
〈
Ĵxzj (r, t)Ĵxzj (r′)

〉
0
, (3.7)

in a 2D closed system3. In a confined system the associated viscosity (if
existing) is space-dependent, η = η(r), thus we should not use Equation 3.6.
Nevertheless it is still possible to exploit this Equation also in a confined
system in order to obtain the average viscosity

1

A

∫
drη(r)→ ∆4

A
β

N∑
n=0

〈Πxz
n Πxz〉0 δt , (3.8)

where the integral operator Πxz is defined as

Πxz =
∑
l

J̃xzj,l . (3.9)

The operators Πxz are computed during the simulation, while the time inte-
gration and the autocorrelation operation are performed by post processing of
the data.
Let us now consider the contribution given by the static correlation function
to the static source term. Its numerical form can be expressed as∫

dr′(x′ − x)
〈
O1(r)O2(r′)

〉
0
→ ∆2

∑
ξ′

(ξ′ − ξ)
∑
ζ′

〈
Õ1
ξζÕ2

ξ′ζ′

〉
0

= ∆2

〈
Õ1
ξζ

∑
ξ′

(ξ′ − ξ)
∑
ζ′

Õ2
ξ′ζ′

〉
0

(3.10)

where ξ and ζ are respectively the x and z indices of the mesh element centered
in r, while ξ′ and ζ ′ of the one centered in r′. If we now consider a system
such as the one shown in Figure 2.1, the integral of Equation 3.10 depends
just on the z coordinate. Moreover, we can express it in an equivalent form as∫

dr′(x′ − x)
〈
O1(r)O2(r′)

〉
0

=

∫
dr′x′

〈
O1(r)O2(r′)

〉
0

(3.11)

3Note that the viscosity coefficient could acquire a dependence also on the simulation
box size, but we will deeply discuss this point in the last Section of this Chapter.
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and as a consequence its numerical counterpart can be expressed as∫
dr′x′

〈
O1(r)O2(r′)

〉
0
→ ∆2

〈
Õ1

0ζ

∑
ξ′

ξ′
∑
ζ′

Õ2
ξ′ζ′

〉
0

, (3.12)

where now the index ξ is kept fix at ξ = 04. The algorithm based on Equation
3.10 can exploit the invariance of the system with respect to translation in the
x direction, but the one based on 3.12 resulted to be significantly faster.
Note that all the equilibrium averages 〈...〉0 are performed both through
different initial conditions (ensemble average) and exploiting the ergodicity of
fluid systems (time average). However the average procedure will be better
explained later.

3.2 NON UNIQUENESS OF THE MICROSCOPIC PRES-
SURE TENSOR

Let us now recall the expression of the static source term in an open
channel:

Ss(z) =

∫ z

h
2

dz′
∂
〈
Ĵxxj (z′)

〉
0

∂β

∣∣∣∣∣∣
p

−
∫

dr′(x− x′)〈Ĵxzj (r)P̂(r′)〉0 , (3.13)

where the operator P̂ is defined as

P̂(r) = hmρ̂(r)− Ĥ(r) . (3.14)

The operators ρ̂(r) and Ĥ(r) are punctual operators, that is they are defined
exactly on the particles positions (see their expressions in Equations 2.6 and
2.8). Instead, the momentum flux operator is characterized by a non-local

term which arises from the Ĵαβj (r) configurational contribution5

Ĵαβj,CO(r) = −1

2

N∑
i 6=l

qα

|qli|
dϕ(q)

dq

∣∣∣∣
q=|qli|

∮
`l→i

d`βδ(`− r) . (3.15)

Indeed it is defined also in the regions of space (and thus in the corresponding
mesh elements) intersected by the contour `l→i and not just at the particles
position qi and ql: The integral contour can be interpreted as the path across
which particles i and l exchange the force dϕli/dq. Moreover, as pointed out

4Note that x ∈ [−Lx/2,+Lx/2]., where Lx is the length of the simulation box in the x
direction.

5Here a system of particles interacting through a central pair-wise potential is considered.
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Figure 3.1: Representation of the Iriving-Kirkwood (panel a, red line) and Harasima
(panel b, blue line) contours. Labelled light blue spheres symbolize two fluid particles.

in the previous Chapter, different contours `l→i lead to different non-local
configurational contributions and because of this freedom in the choice of the
integration contour it is not possible to define a unique pressure tensor.
In what follows we will introduce two different kinds of contours, which lead to
the definitions of the well-known Irving-Kirkwood (IK) and Harasima (Ha)
pressure tensors, and we will use them to numerically verify the independence
of Ss(z) from the choice of the integration contour.

3.2.1 Irving-Kirkwood and Harasima contours

Let us now consider two different choices of lines across which particles
exchange forces. The first one is simply the straight segment joining particle i
and particle l (shown in Figure 3.1, panel a), that is

` = qiλ+ ql(1− λ)

= qliλ+ ql ,
(3.16)

where λ is the unique parameter of the chosen line and λ ∈ [0, 1]. We can
change the integration variable from `β to λ (referring to Equation 3.15), thus
we can write

Ĵαβj,IK(r) =
∑
i

pαi p
β
i

m
δ(qi − r)

− 1

2

∑
i 6=l

qαilq
β
il

|qil|
dϕli
dq

∫ 1

0

dλ
∏
γ=x,z

δ(qγilλ+ qγi − r
γ) ,

(3.17)
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where the subscript IK points out that this choice of ` is the one which defines
the Irving-Kirkwood [42] local pressure tensor:

〈
Ĵαβj,IK(r)

〉
0

=

〈∑
i

pαi p
β
i

m
δ(qi − r)

〉
0

− N

2

〈∑
i6=l

qαilq
β
il

|qil|
dϕli
dq

∫ 1

0

dλ
∏
γ=x,z

δ(qγilλ+ qγi − r
γ)

〉
0

.

(3.18)

Let us now consider a system characterized by a planar geometry as shown in
Figure 2.1, where the translational invariance is maintained in the x direction.
The local pressure tensor then acquires a dependence only on the z variable,
and we can exploit the average in the x direction to increase statistics:〈
Ĵαβj,IK(z)

〉
0

=
1

Lx

∫
dx
〈
Ĵαβj,IK(r)

〉
0

=
ρ(z)

Lxβ
δαβ

− N

2Lx

〈∑
i6=l

qαilq
β
il

|qil|
dϕli
dq

∫ 1

0

dλ δ(zilλ+ zi − z)

〉
0

=
ρ(z)

Lxβ
δαβ

− N

2Lx

〈∑
i6=l

qαilq
β
il

|qil||zil|
dϕli
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

,

(3.19)

where Lx is the size of the system in the x direction and Θ is the Heaviside
step function. Thus, the normal (α = β = z) and tangential (α = β = x)
components of the local pressure tensor read

pIKT (z) =
ρ(z)

Lxβ
− N

2Lx

〈∑
i 6=l

x2
il

|qil||zil|
dϕli
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

(3.20)

and

pIKN (z) =
ρ(z)

Lxβ
− N

2Lx

〈∑
i 6=l

z2
il

|qil||zil|
dϕli
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

(3.21)

while the out-of-diagonal component results to be

pIKxz (z) = − N

2Lx

〈∑
i6=l

xilzil
|qil||zil|

dϕli
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

. (3.22)

Another possible choice of the contour line ` is represented by two segments
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(shown in Figure 3.1, panel b): One which connects the points (xi, zi) and
(xl, zi), while the other connects the points (xl, zi) and (xl, zl). Such a line can
be expressed as:

` = (xilλx + xi, zilλz + zi) (3.23)

where two parameters λx and λz have been introduced and λz = 0 for λx ∈
[0, 1), while λz ∈ (0, 1] for λx = 1. Adopting this contour the momentum flux
operator results to be

Ĵαzj,Ha(r) =
∑
i

pαi p
β
i

m
δ(qi − r)

− 1

2

∑
i 6=l

qαilq
z
il

|qil|
dϕli
dq

δ(x− xl)
∫ 1

0

dλ δ(zilλz + zi − z)
(3.24)

and

Ĵxxj,Ha(r) =
∑
i

(pxi )2

m
δ(qi − r)

− 1

2

∑
i 6=l

x2
il

|qil|
dϕli
dq

δ(z − zi)
∫ 1

0

dλ δ(xi + xliλx − x) ,

(3.25)

where the subscript Ha indicates that
〈
Ĵαβj,Ha(r)

〉
0

is the pressure tensor

defined by Harasima [38] (and by Kirkwood and Buff [45]). Now we can
specialize also this pressure tensor to the usual geometry of Figure 2.1 and
thus obtain

pHaT (z) =
ρ(z)

Lxβ
− N

2Lx

〈∑
i 6=l

x2
il

|qil|
dϕli
dq

δ (z − zi)

〉
0

, (3.26)

pHaN (z) =
ρ(z)

Lxβ
− N

2Lx

〈∑
i 6=l

z2
il

|qil||zil|
dϕil
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

(3.27)

and

pHaxz (z) = − N

2Lx

〈∑
i6=l

xilzil
|qil||zil|

dϕli
dq

Θ

(
zl − z
zil

)
Θ

(
z − zi
zil

)〉
0

. (3.28)

At this point it is useful to compare the components of the two tensors
expressed for the slit geometry. The tangential pressures, which enter in the
first term of the static source term, result to be different6, while the normal

6It is interesting to note that pHaT is equal to the expression of the tangential virial
pressure in the slit geometry.
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Figure 3.2: Phase diagram of the two-dimensional Lennard-Jones fluid. This Figure
is taken from Ref. [72], where the meaning of the different symbols and lines are
explained.

components are identical, as the hydrostatic equilibrium condition imposes.
Also the expressions for pxz are the same, and it means that pIKxz and pHaxz
fluctuate around zero exactly at the same way, while the fluctuations are
different if the local expressions of these operators (Equation 3.17 and 3.24)
are considered. This observation implies that the microscopic expression of
Ĵxzj,IK and Ĵxzj,Ha must be employed in order to compute correlation functions,
like the one appearing in the second term of the static source term, while
the first one can be obtained through pHaT and pIKT . It is now interesting to
evaluate through molecular dynamics simulations the differences related to
the tangential components of these two tensors, with particular attention to
the derivative ∂βpT (z)|p and its integral

∫ z
h
2

dz′∂βpT (z′)|p.

Simulation details

The interparticle interactions are modeled through a truncated and shifted
Lennard-Jones potential

ϕ(r) =

{
ϕLJ(r)− ϕLJ(rc) r ≤ rc
0 r > rc

(3.29)

where the cut-off distance rc is rc = 4.5σ 7 and the expression of the 12-6 LJ
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Physical quantity Unit Value fo Ar

Length σ 3.4× 10−10 m
Energy ε 1.65× 10−21 J
Mass m 6.69× 10−26 kg

Time τ = σ
√
m/ε 2.17× 10−12 s

Table 3.1: Other quantities presented in the following can be directly derived by σ,
ε, m and τ . For future references also the value of these parameters for Argon are
reported.

potential reads

ϕLJ(r) = 4εff

[(σff
r

)12

−
(σff
r

)6
]

(3.30)

where the parameters εff = 1ε and σff = 1σ represent the depth of the
potential well and the particle diameter respectively8. The phase diagram of
the two-dimensional Lennard-Jones fluid is shown in Figure 3.2. This Figure
is not a result obtained by us, instead it is taken from Ref. [72]. Here and in
the following simulation results are expressed adopting the unit of measure
expressed in Tab. 3.1.
Rectangular simulation boxes with Lx = 200σ and periodic boundary condi-
tions in the x direction are employed. In the z direction particles are confined
by a wall at the bottom (z = 0) and by a piston at the top (see Figure 3.3).
This piston is pushed down by a force F gauged in order to obtain the desired
bulk pressure9, thus it works like a barostat. Three kind of lower confining
walls are considered, a reflective wall and two Einstein solids. Particles of the
Einstein solids behave as independent harmonic oscillators (they are fixed to
their position by a harmonic potential with elastic constant k = 5000ε/σ2)
but they interact with fluid particles with a LJ 12-6 truncated and shifted
potential. Two different εwf parameters were considered for the two walls,
εwf = 0.1ε and εwf = 0.5ε, while in both cases σwf = 1σ.
The temperature control is achieved through the so-called Bussi-Donadio-
Parrinello thermostat (see Appendix B for more details) [11], and, in order
to compute ∂βpT (z)|p, for each considered confinement and value of bulk
pressure p we performed two independent simulations at TH = 0.95ε/kB and
TC = 0.85ε/kB. Systems at different bulk pressures were simulated, ranging
from p ≈ 0.036ε/σ2 (with ρH ≈ 0.039σ−2, NC = 837, ρC ≈ 0.045σ−2 and

7As shown in Ref. [29] the fluid static properties near the wall are essentially unaffected
by the choice of the cut-off distance if it is greater than 4σ.

8The subscript ff refers to the fluid-fluid interaction while in the following the subscript
wf will be introduced; it refers to the wall-fluid interaction.

9Therefore the height of the fluid is not properly fixed, because the piston slightly
oscillates.
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x

z

F

Figure 3.3: Schematic of the simulated system. Fluid particles are represented by the
light blue spheres, while the piston, which is modeled as an Einstein solid and pushed
by the force F , by the grey ones. The confinement placed at z = 0 is represented by
the green line.

NC = 1000) up to p ≈ 1.31ε/σ2 (with ρH ≈ 0.675, NH = 4725, ρC ≈ 0.707σ−2

and NC = 4949).
The time step has been chosen as δt = 0.005τ . Simulations are divided into

three stages: In the first stage the systems are equilibrated keeping the piston
fixed for 107 time steps. In the second, the piston is released and the external
force F is applied. 107 time steps are required to dump oscillations. In the last
stage measurements are performed for 109 time steps.
As previously stated, the mesh size is set to ∆ = 0.05σ and pressure profiles
are measured in the whole system.

Results

These equilibrium simulations allow to compute the Irving-Kirkwood and
Harasima pressure tensors previously introduced. The tangential components
reported in Equations 3.20 and 3.26 clearly manifest their dissimilarity also in
the numerical results, as shown in Figure 3.4, panel a. Here the fluid is kept at
p ≈ 1.31ε/σ2 and T = 0.85ε/kB and the bulk density is ρ ≈ 0.707σ−2, while
the lower confinement is provided by a reflective wall. Both the tangential
components strongly oscillate near the wall, while the normal component
is everywhere constant, as it should be due to the hydrostatic equilibrium
condition. All curves converge to the bulk pressure value within about 10σ from
the confining surface. This kind of simulation allows also to verify the effect
of different confinements on the tangential component of the pressure tensor
and it is shown in the panel b of Figure 3.4, where three different systems
confined by the walls previously introduced and in the same thermodynamic
conditions of the previous case are considered. Here only the Harasima tensor
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Figure 3.4: a): The anisotropy of the pressure tensor is shown considering the normal
component (black dots) and both the Irving-Kirkwood (red dots) and Harasima (blue
dots) formulations of the tangential one. The fluid, with a bulk density ρ ≈ 0.7σ−2,
is kept at T = 0.85ε/kB and it is confined by a reflective wall. b): Harashima
tangential pressure components for fluids (kept in the same thermodynamics con-
ditions introduced in panel a) confined by reflective walls (blue dots) and Einstein
solids characterized by εwf = 0.1ε (purple dots) and εwf = 0.5ε (green dots). c):
Harashima tangential pressure components for fluids confined by reflective walls and
kept at T = 0.85ε/kB. Four bulk densities are considered: ρ ≈ 0.7σ−2 (blue dots),
ρ ≈ 0.55σ−2 (light blue dots), ρ ≈ 0.35σ−2 (yellow dots) and ρ ≈ 0.045σ−2 (orange
dots). For a greater legibility bulk pressures are subtracted to the corresponding
tangential ones.
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Figure 3.5: Comparison between of ∂βpT (z)|p (panel a) and
∫ z
h/2

dz′∂βpT (z′)|p (panel

b) computed with the Harasima (blue dots) and the Irving-Kirkwood (red dots)
pressure tensor formulations. Fluid is confined by reflective walls. c): Effect of the
confining surface on ∂βpT (z)|p, computed with the Harasima tensor. The considered
confinements are reflective walls (blue dots) and Einsteins walls characterized by
εwf = 0.1ε (purple dots) and εwf = 0.5ε (green dots). In all panels profiles refer to
systems kept at T = 0.90ε/kB and ρ ≈ 0.7σ−2.

is presented. Near the confining surface the results are considerably different:
The more attractive is the wall the stronger are the oscillations (the reflective
wall can be considered as a perfectly repulsive potential), but their range is not
enhanced by more attractive walls. The corresponding profiles of the Irving-
Kirkwood tensor are qualitatively similar. Finally, in the panel c of Figure
3.4 the role of the bulk density has been investigated: The oscillations around
p of the Harasima tangential components of three systems, characterized by
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T = 0.85ε/kB, confined by reflective walls and kept at different bulk densities
are shown. Lowering the density these oscillations near the surface decrease.
This behavior, shared also by the Irving-Kirkwood profiles, is expected, because
in the ideal gas limit also the tangential component is constant10.
Simulations were performed also at T = 0.95ε/kB at the same bulk pressures:
In this way it is possible to compute the derivative ∂βpT (z)|p at T = 0.90ε/kB.
It is interesting to note that also these derivatives are different when computed
with the Harasima or the Irving-Kirkwood tangential components, as shown
in Figure 3.5, panel a (where the bulk pressure and confinement are the same
of Figure 3.4, panel a). But what is more important is that also their integrals∫ z
h/2

dz′∂βpT (z′)|p are different (Figure 3.5, panel b). This results numerically

proof that the static source term Ss(z) can not be uniquely defined by the
tangential pressure contribution alone. Moreover, the difference induced by
different walls on the tangential pressures profiles are found also in their
derivatives, as shown in panel c. Also in this case the oscillations are more
important with the more attractive confinement11. Note that both ∂βpT (z)|p
and

∫ z
h/2

dz′∂βpT (z′)|p tend to zero when the bulk density is decreased (see

the comment related to the panel c of Figure 3.4).

3.2.2 Numerical evaluation of the static source term and its
invariance

The results just presented are a numerical proof of the non uniqueness of
the term

∫ z
h/2

dz′∂βpT (z′)|p. Thus the invariance of the static source term Ss(z)

must be provided, as predicted by the theory, by the integrated correlation
function

C(z) =

∫
dr′x′

〈
Ĵxzj (r)

[
hmρ̂(r′)− Ĥ(r′)

]〉
0
. (3.31)

The computation of this quantity was accomplished through the numerical
implementation of Equation 3.12, where O2(r) = hmρ̂(r)−Ĥ(r) and O1(r) =
Ĵxzj (r). Obviously the computation of both CIK(z) and CHa(z) (that is with

O1(r) = Ĵxzj,IK(r) and O1(r) = Ĵxzj,Ha(r) respectively) is needed in order to
verify the invariance of the static source term with respect to the choice of the
pressure tensor definition.
Conceptually the easiest way to obtain C(z) would be to compute during

10In Equations 3.20 and 3.26 only the kinetic term survives: The pressure tensor becomes
isotropic and invariant with the choice of the integration path.

11Actually the profile related to the Einstein wall characterized by εwf = 0.1ε is very
similar to the hard wall one, but slightly translated. The similarity is due to the fact that the
potential of this Einstein wall is weakly attractive, thus it resembles a reflective wall. The
translation is instead due to the position of the wall particles with respect to the position of
the hard wall.
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the simulation only the correlation function, and then perform its weighted
spatial integral as a data post processing. However, this procedure requires
a considerable amount of storage. Thus during the simulation the weighted
integral is directly computed, as expressed in Equation 3.12. A further problem
arises due to the integration over the x coordinate, i. e. the sum over the ξ
variable. In principle the summation should run from −∞ to +∞. In order to
define a cut-off κ we must have some information on the decay of the weighted
correlation function. Therefore we performed the numerical evaluation of a
sequence of correlation functions defined as

C̃κ(z) = ∆2

〈
Õ1

0ζ

+κ∑
ξ′=−κ

ξ′
∑
ζ′

Õ2
ξ′ζ′

〉
0

. (3.32)

Different values of κ were taken into account and the convergence is achieved
when the integrals computed with κi and κi+1 are equal, i. e.:

C̃(z) ' C̃κi(z) ' C̃κi+1(z) . (3.33)

Equation 3.32 is the final expression employed for the computation of C̃(z)
during the molecular dynamic simulation and, due to the expensive time cost
of this computation, just one system has been simulated.

Simulation details

Fluid particles interact through the Lennard-Jones 12-6 potential previously
introduced. The simulation box is rectangular, with Lx = 44σ and Lz = 30σ.
Periodic boundary conditions are employed in the x-direction, while in z the
system is confined by reflective walls. Also in this case the temperature is
controlled through the Bussi-Donadio-Parrinello thermostat and it is set at
T = 0.90ε/kB. Instead the desired bulk pressure p is obtained by selecting the
proper number of fluid particles N .
The average 〈...〉0 was computed exploiting both different initial conditions
and the ergodicity of the fluid system. Therefore up to 1500 different initial
conditions were simulated (for the largest integration domain here considered).
The time step is set equal to 0.001τ and the mesh size is ∆ = 0.05σ. Each
of these independent simulations is divided into two stages. In the first stage
equilibration is obtained with 107 steps, while in the second one the evaluation
of Equation 3.32 takes place during 5 × 107 time steps. Both IK and Ha
correlations are computed. The number of simulated particles is N = 726,
resulting in a bulk density ρ ≈ 0.557σ−2 and a bulk pressure p ≈ 0.583ε/σ2.
The final outputs of this simulation are then combined with the corresponding
integrals

∫ z
h/2

dz′∂βpT (z′)|p evaluated as discussed in Section 3.2.1, at the same

bulk pressure and temperature.
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Figure 3.6: a) The effect of different integration domains [−κ,+κ] on C̃κ,Ha(z) is
shown, considering κ = 1σ (purple dots), κ = 2σ (green dots), κ = 3σ (light blue
dots), κ = 4σ (black dots) and κ = 5σ (blue dots). These differences are less evident
when C̃κ,IK(z) is considered (data not shown). b) Comparison between C̃5σ,Ha(z)
(blue dots) and C̃5σ,IK(z) (red dots). Thermodynamic properties of the simulated
fluid are ρ ≈ 0.557σ−2, p ≈ 0.583ε/σ2 and T = 0.9ε/kB
.

Results

First we identify a proper integration domain [−κ,+κ] by examining five
different values of κ: κ = 1σ, 2σ, 3σ, 4σ and 5σ. This range of the integration
domain might seem small, but, as shown in Figure 3.6 panel a, the curve
C̃4σ,Har(z) and C̃5σ,Har(z) are equal within the statistical uncertainty12. For
sure more statistics would bring out more details of these curves, and probably
a greater value of κ would be needed to achieve convergence. However the
associated computation costs prevented this improvement. Note that the range
of the functions C̃5σ,Har(z) is about 5σ, thus the integration domain [−5σ,+5σ]

should be enough for evaluating C̃(z).
In panel b of the same Figure both C̃IK(z) ≈ C̃5σ,IK(z) and C̃Ha(z) ≈
C̃5σ,Har(z) are shown and they result to be visibly different.
Let us now consider

∫ z
h/2

dz′∂βpT (z′)|p at p ≈ 0.583ε/σ2 for the two contours

12The same consideration holds also for C̃4σ,IK(z) and C̃5σ,IK(z).
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Figure 3.7: a) The first contributions
∫ z
h/2

dz′∂βpT (z′)|p to the static source terms

obtained with the IK (red dots) and Ha (blue dots) pressure tensors are shown. b)
Invariance of the static source term with respect to the pressure tensor definition: The
resulting Ss(z) computed with the IK (red dots) and the Ha (blue dots) formulations
are statistically equivalent. The data in panel a are added to those of Figure 3.6b
and refer to a fluid characterized by ρ ≈ 0.557σ−2, p ≈ 0.583ε/σ2 and T = 0.9ε/kB.

(Figure 3.7 panel a) and let us sum to them respectively C̃IK(z) and C̃Ha(z)
in order to obtain the two static source term SIKs (z) and SHas (z). The result
of this operation is reported in Figure 3.7, panel b: The two static source
terms collapse on the same curve within the statistical accuracy. This is the
numerical proof of the theoretical prediction of Chapter 2: The expression of
the static source term reported in Equation 3.13 is invariant with respect to
the choice of the pressure tensor definition because it is defined as the sum of
two ill-defined quantities.
Note that for a system at ρ ≈ 0.557σ−2 confined by a reflective wall the static
source term vanishes within a distance of 5σ from the confinement: This is a
further confirmation of the interfacial nature of thermo-osmosis.

The control of the confined system bulk pressure p through pistons has
been already employed in literature (see for example Ref. [29, 30, 32, 33]).
In particular, also in Ref. [32] and [33] Ganti et al. computed the quantity
∂T pT (z)|p in order to investigate the problem of the non uniqueness of the
pressure tensor: One of their objectives was to understand what is the effect
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of different definitions of this quantity on the thermo-osmotic flow.
In Ref. [32] they simulated three-dimensional systems confined by an Einstein
solid or a repulsive potential, and computed the derivative of the tangential
pressure with respect to temperature at different values of T , considering the
Irving-Kirkwood and the virial pressure tensors13. Then they applied these
mechanical forces to a confined fluid in order to mimic a thermo-osmotic mass
flow, and compared the resulting slip velocities far from the surface with the
results obtained with other methods. They concluded that all the slip velocities
were in agreement.
Instead, in the more recent paper [33] they compared the mechanical forces
∂T p

IK
T (z)|p and ∂T p

V
T (z)|p with the exact effective force exerted by a temper-

ature gradient, computed through a suitable nonequilibrium simulation. They
found that neither of the two adopted definitions of the pressure tensor was
able to recover the exact result.
We recall that there are, in principle, infinite correct definitions of this quantity
but, physical observable are not affected by this freedom in the choice of the
pressure tensor, as shown by our theoretical prediction and numerical results
just discussed, because of the presence of corrective quantities.

3.3 THE PROBLEM OF TRANSPORT COEFFICIENTS IN
TWO-DIMENSIONAL SYSTEMS

Until the end of the 1960s it was believed that, far from the critical
points, the dynamic autocorrelation functions of non-conserved variables decay
exponentially at long times14. This expectation was questioned when Alder
and Wainwright published their molecular-dynamics results related to the
self diffusion of hard particles in two and three-dimensional systems [1, 2]:
They showed that the velocity dynamic autocorrelation function decays at
long times as t−

D
2 , being D the dimensionality of the system. The presence

of these slowly-decaying tails suggests that collective effects play a relevant
role in the process of self diffusion. Alder and Wainwright gave a simple but
interesting interpretation of their results: Basically they suggested that the
initial motion of a given particle gives rise to a vortex or backflow around
it. This vortex in turn causes the development of a current in the direction
of the initial velocity of the tagged particle. This current would lead to the
t−

D
2 decaying behavior. After this important numerical result a series of works

13Actually, as already stated in Chapter 2, the virial pressure tensor does not correspond
to any choice of the integration contour `i→l, thus it does not define an admisible form of
the microscopic pressure tensor. However it is possible to show that in the planar geometry
considered in Ref. [32] the tangential components of the virial and the Harasima formulations
of the pressure tensor are identical.

14It is instead well known that fluctuations in the conserved hydrodynamic variables decay
infinitely slowly in the long wavelength limit.
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tried to analytically investigate this behavior [22, 18, 66], apparently shared
also by the momentum and energy flux dynamic autocorrelation functions.
The presence of long-time tails is particularly important in 2D systems: Its
consequence is that at this dimensionality the transport coefficients related
to those dynamic autocorrelation functions cannot be defined, at least in
their microscopic formulation given by the linear response theory through the
Green-Kubo integrals, because indeed they would lead to divergence. Therefore
it is important to give some more detail about this question. In this regard
we will provide a brief summary of the treatment of the viscosity given by
Pomeau15. Thus, let us roughly introduce the Landau and Placzek method [46],
which provides a powerful tool in the analysis of the dynamic autocorrelation
functions. Accordingly to this method we can start considering a dynamic
autocorrelation function 〈X(r, 0)Y (t)〉0 where X(r, 0) depends on the initial
dynamic state of the many-body system in the neighborhood of r and Y (t)
on the dynamic state of the system at time t. We divide the system into cells,
large enough to be considered statistically independent. Thus X(r, 0) only
depends on the initial state of a given cell ∆V 0 and r ∈ ∆V 0. The method
replaces Y (t) by its average value over a nonequilibrium ensemble initially
in a given nonequilibrium situation around r and at equilibrium far from
r16. Assuming that for long times this nonequilibrium ensemble relaxes to
equilibrium according to the laws of hydrodynamics, we can replace Y (t) in
this limit by its value over the corresponding local equilibrium ensemble. That
is, the correlation function related to the viscosity in an homogeneous system17

ψ(t) =

〈∑
i

δ(r − ri)Xi(Ω
0
N )
∑
j

Xj

(
Ω∗N (t,Ω0

N )
)〉

0

(3.34)

for large times can be expressed as

ψ(t)
t→∞'

〈∑
i

δ(r − ri)Xi(Ω
0
N )Z(t,Ω0

N ∩∆V 0)

〉
∆V 0

(3.35)

where Ω0
N is the phase-space point of the N -particle system at t′ = 0, its coordi-

nates at time t′ = t are Ω∗N (t,Ω0
N ) and Ω0

N ∩∆V 0 is the set of initial positions
and momenta of particles lying in the cell ∆V 0. Moreover 〈...〉∆V 0 is the aver-
age over the equilibrium ensemble located in the cell ∆V 0 while Z(t,Ω0

N∩∆V 0)

15More details and the treatment of other transport coefficients can be found in [66] and
[36].

16The underlying idea is that at t = 0 the quantity Y (t = 0) is characterized in r by a
fluctuation with respect to its equilibrium value.

17Here Ĵxzj =
∑
i

Xi and we recall that the freedom in the choice of the integral contour

in the definition of Ĵxzj does not hamper the uniqueness of the definition of transports
coefficients.
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is the time-dependent local equilibrium average of
∑
j

Xj(Ω
∗
N (t,Ω0

N )).

The local equilibrium ensemble over which Z is computed is defined by a set
of D + 2 = 4 functions of r, t and Ω0

N ∩∆V 0. This set of functions will be
called hydrodynamical field and it is defined by

f(r, t) ≡ {S(r, t), p(r, t),u(r, t)} , (3.36)

being S(r, t) the local entropy for unit mass, p(r, t) the local pressure and
u(r, t) the local velocity field of the fluid. Moreover we can introduce the
perturbation of the hydrodynamical field, defined as δf(r, t) = f(r, t) − f ,
being f the equilibrium value of f(r, t) and we assume that f(r, t) varies
smoothly in space, thus the space-dependent thermodynamical quantities
are related through the equilibrium equations of state. Furthermore we also

assume that δf(r, t)
t→∞→ 0, therefore for long times δf can be described

by the linearized equations of hydrodynamics. These equations are easier to
handle if the Fourier transform of the hydrodynamical quantities is considered

δf(k, t) =

∫
dre2πik·rδf(r, t) . (3.37)

In particular, if the viscosity is considered, the relevant hydrodynamic quantity
in the local equilibrium average Z is the velocity field18

Z(T,Ω0
N ∩∆V 0)

t→∞' ρ

∫
dku∗x(k, t)uy(k, t) (3.38)

and if also the limit k→ 0 is considered it is possible to show that

Z(T,Ω0
N ∩∆V 0)

t→∞' α
δPxδPz

D(D + 2)ρ

( ρ

8πt

)D
2

(3.39)

where α is a constant and δPx and δPz are the fluctuations at t = 0 in ∆V 0

of the x and z component of the average momentum of the particles in ∆V 0.
It follows that the Green-Kubo integrand which defines the viscosity decays in
time as

ψ(t)
t→∞∼ t−

D
2 (3.40)

and thus the viscosity

η = β

∫ ∞
0

dt ψ(t) (3.41)

18The configurational contribution decays in time faster than the kinetic one, thus it can
be neglected in the long time limit.
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diverges logarithmically in two-dimensional systems. This result thus implies
that it is not possible to define viscosity19 through the linear response theory
formalism if 2D systems are considered.
This rough summary of Pomeau’s work does not want to be exhaustive, but
simply to emphasize the relevant role played by hydrodynamics (for long times
the motion of the many-body system was described by the linearized laws of
hydrodynamics) in the treatment of this problem. Therefore the validity of
this result can be questioned and so a series of papers tried to clarify this
question by numerical simulations.
The first works were published by D. J. Evans and G. P. Morris [23, 56] in
the eighties. They performed nonequilibrium dynamical simulations applying
a shear stress to a fluid of soft-disk20, and they confirmed the long-time tail
predicted by theories.
In the nineties this question was again considered through both nonequilibrium
and equilibrium simulations of large soft-disk systems [39, 40, 34, 28] and
the general conclusions of these works led to partially overturn the previous
convictions: These simulations suggest the existence of the viscosity coefficient
in 2D fluids, but not of the self-diffusion coefficient. In particular Ciccotti
et al. computed in periodic systems the velocity and shear stress dynamic
autocorrelation functions up to t = 10τ . Regarding the first quantity they
confirmed a t−1 behavior, while data related to the shear stress dynamic
autocorrelation function did not allow to obtain clear results about its time
decay. However they concluded that the viscosity in 2D soft-disk fluid exists,
because the time integral of its dynamic autocorrelation function reaches a
plateau within t ≈ 3τ .
The question of the velocity dynamic autocorrelation function was definitely
clarified by Masaharu Isobe in 2008 [43]: It was computed up to t = 5×103τ in
large periodic systems (N up to about 106) of hard-disk through equilibrium
simulations, and a time decaying faster than t−1 was clearly observed. In this
work a relevant point related to the computation of dynamical autocorelation
functions in periodic system is underlined: Being c the speed of sound and
Lbox the side of the simulation box, it is possible to define a recurrence time
tr = Lbox

c and the computed dynamic autocorrelation functions are reliable
only up to t ≈ tr. Indeed this recurrence time defines the time needed to a
sound wave to propagate along the simulation box, and after tr non-physical
effects induced by the periodic boundary conditions arise in the dynamic
autocorrelation functions.
In literature it is possible to find more recent works also related to the
problem of viscosity in two-dimensional fluids. In particular, Goree et al.
published a series of experimental [57, 37] and numerical [50, 17, 27] works
concerning 2D fluids of particles interacting through a Yukawa potential ϕ(r) =

19Actually in general transport coefficients, see [66].
20That is particles interact through the potential ϕ(r) = ε

[
σ
r

]12
.
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Ar−1exp{−r/B}. Also in these numerical papers equilibrium simulations are
performed on periodic systems. They found that the existence of viscosity
depends on the temperature of the Yukawa system: It exists in cool fluids
but not in hot ones. Moreover, they tackled also the problem of the diffusion
and thermal conductivity coefficients and they concluded that the first one
exists in hot systems but not in cool ones, while data did not allow to obtain
clear results for the thermal conductivity. It is important to notice that they
recognize that definitive results could require greater system sizes Lbox, in
order to avoid artifact introduced by the sound wave propagation in periodic
systems.
Therefore the numerical efforts did not produce a definite answer to the problem
of the existence of transport coefficient in 2D fluids. Nevertheless they strongly
suggest that they exist at least in some temperature and inter-particle potential
conditions. In the next Chapter we will present nonequilibrium simulations
of Lennard-Jones two-dimensional fluids kept at a temperature of the order
of T = 0.9ε/kB. To our knowledge the problem of transport coefficients in a
two-dimensional fluid characterized by this interaction particles potential (and
temperature) has never been tackled, thus it is interesting to get some hints
about, at least, the existence of the viscosity coefficient.

3.3.1 Viscosity in two-dimensional Lennard-Jones fluids

In the computation of dynamic autocorrelation functions two relevant
characteristic times must be considered. The first one is the collision time tc
[34], which is a measure of the mean time between two consecutive collisions
of the same particle, and it can be defined as

tc =
1

c
√
ρ
, (3.42)

being 1/
√
ρ the average distance between particles and c the speed of sound21.

The second characteristic time is the already introduced recurrence time tr:

tr =
Lbox
c

. (3.43)

21In this definition of the collision time, adopted by Gravina et al. in Ref. [34], the average
distance between particles is divided by the speed of sound and not, as might be expected,
by the ballistic velocity of the particle, which in a two-dimensional system is

vb =

√
2

mβ
.

However, at T = 0.9ε/kB its value is vb = 1.342σ/τ and it is comparable to the value of the
speed of sound c that will be computed in the following. Therefore, due to the qualitative
nature of the role played by the collision time tc in our discussion, both definitions are
equally acceptable.
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In order to observe the time-tail behavior it is important to compute the
dynamic autocorrelation function up to t � tc. In this way a particle can
undergo a great number M of collisions. But we must also take into account
that the computation time t must be smaller than the recurrence time if
periodic systems are considered. Thus the following condition must be satisfied
if periodic boundary conditions are applied to the system

tc � t ≤ tr . (3.44)

Now, exploiting Equations 3.42 and 3.43, we can simply relate the number of
collisions M that take place within tr to the box size Lbox:

M = Lbox
√
ρ (3.45)

and, considering a square box, also to the number of particles N in the system

N = M2 . (3.46)

Equation 3.46 is particularly useful because connects the size of the system to
the number of collisions that will take place within tr.
The problem is that it is not possible to know a priori how large M must be
in order to compute the dynamic autocorrelation function up to a sufficient
value of t, that is up to its asymptotic time behavior. As a consequence it is
not possible to know how large the system must be.
Another possible route is to consider closed systems. This solution does not
solve the problem of recurrence effects, because now particles will bounce
against the confining surfaces. Nevertheless, in this case the recurrence effects
acquire a genuine physical nature. Thus, dynamic correlation functions main-
tain a fully physical meaning also for t > tr, and consequently a less restrictive
condition on the correlation time can be adopted:

tc � t . (3.47)

However we stress that the dynamic correlation functions computed in a
closed systems are expected to be dependent both on the position and on the
system size due to the recurrence effects. Moreover, also the resulting viscosity
coefficient (if existing) would be characterized by these dependencies.
Despite this, we decided to try to verify the existence of the viscosity coefficient
in 2D Lennard-Jones fluids considering closed systems. Actually, we numerically
computed the spatial-averaged dynamic autocorrelation function of our interest
as

〈ψ(t, r, Lbox)〉r =
∆4

A
〈Πxz

t Πxz〉0 , (3.48)

where we recall that

Πxz =
∑
l

J̃xzj,l , (3.49)
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while the symbol 〈...〉r emphasizes the space-averaged nature of this quantity.
As we will see later, the noise of this output does not allow to evaluate the long-
time behavior of 〈ψ(t, r, Lbox)〉r. Therefore we decided to test the existence of
the viscosity coefficient looking directly at the time integral (multiplied by β)
of the dynamic autocorrelation function

〈η(r, Lbox; t)〉r =
∆4

A
β

t∑
n=0

〈Πxz
n Πxz〉0 δt , (3.50)

which is also a space-averaged quantity. Moreover, we can assume that Equation
3.50 defines the spaced-averaged viscosity coefficient 〈η(r, Lbox)〉r only if the
integral reaches a plateau at a certain value of time t = tp, and then we can
assume that

〈η(r, Lbox)〉r = 〈η(r, Lbox; t ≥ tp)〉r : (3.51)

Indeed the presence of a plateau suggests that the dynamic autocorrelation
function rapidly converges to 0 for t > tp and so the existence of the viscosity
coefficient.
The resulting coefficient 〈η(r, Lbox)〉r would be dependent on the system length
Lbox because of the recurrence effects and the space dependency of the dynamic
autocorrelation function induced by the presence of the confining surfaces.
However, when large systems are considered this space-averaged quantity and
the bulk viscosity η are expected to become equal, i. e.

〈η(r, Lbox)〉r
Lbox→∞

= η . (3.52)

Unfortunately, we do not know how 〈η(r, Lbox)〉r depends on Lbox, and con-
sequently we cannot extrapolate the value of η by numerical simulations of
systems with different lengths.
However, we computed the value of the viscosity in closed systems in the
nonequilibrium simulations presented in the next Chapter22. The system is
characterized by T̄ ≈ 0.9ε/kB and ρ̄ ≈ 0.548σ−2 23 and the resulting viscosity
coefficient is ηneq = 0.7855± 0.0448τε/σ2. We stress that in principle also ηneq

can depend on the system size and thus it cannot be considered representative
of the bulk viscosity value. Despite this, a comparison between the viscosity
coefficient obtained through the Green-Kubo relation 3.50 and this nonequilib-
rium value could be helpful: If result are comparable the idea of the existence
of the viscosity coefficient in these systems would be strengthen.
In order to get some hints about the reliability of Equality 3.51 it is useful
to understand how large is the average number of collisions per particle M

22In the bulk of the system a parabolic velocity field develops and, thanks to the Poiseuille
law, viscosity can be obtained by fitting the velocity profile.

23T̄ and ρ̄ because are the average value in those nonequilibrium systems.
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within tp, but estimating it requires the knowledge of the sound velocity c in
this Lenard-Jones fluid, and24

c =

√
Cp
CV

1

m

∂p

∂ρ

∣∣∣∣
T

, (3.53)

where m is the mass of the particles (set to 1) while Cp and CV are the heat
capacities at constant pressure and volume respectively, defined as

Cp =
∂H

∂T

∣∣∣∣
p

(3.54)

and

CV =
∂U

∂T

∣∣∣∣
V

, (3.55)

where U and H are respectively the internal energy and the enthalpy of the
system. We decided to compute the speed of sound c employing the definitions
given in Equations 3.54 and 3.55 of the heat capacities. Thus we had to simulate
two systems at the same pressure and different temperatures to compute Cp
and two systems at the same pressure and different temperatures to obtain
CV . Moreover, in order to get c we simulated also two systems at different
densities but at the same temperature.

Simulation details

Thus, six different systems have been simulated. All of them are square
box with Lbox = 80σ and they are confined by repulsive walls. This kind of
confinements is characterized by a reflective wall (placed for example at z = 0)
plus a repulsive potential of the form

Vr(z) =

{
Vr(z) = k(z − zr)2 0 < z ≤ zr
0 z > zr

(3.56)

with k = 0.1ε/σ2 and zr = 5σ. This wall will be employed also in the evaluation
of the dynamic correlation functions, where the energy conservation must be
ensured: With pure reflective walls the energy conservation in a NVE ensemble
(required in the dynamical correlation computation) is only satisfied to O(δt),
rather than to O(δt2) as it would be for simulation of systems without reflective
walls [8]. This happens basically because of the particles that collide against
the reflective wall. The repulsive potential minimizes these collisions and thus
improves the energy conservation.

24See for example [47], p. 247.
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In all systems the temperature control is achieved through the Bussi-Donadio-
Parrinello thermostat and they were characterized by an equilibration stage of
2×107 time steps, each of duration 0.001τ , and by 2×108 time steps of the same
duration for the production phase. For the computation of Cp a system with
N = 3510 and T = 0.85ε/kB and another with N = 3193 and T = 0.95ε/kB

were simulated. The number of particle was gauged in order to get the same
bulk pressure p in both systems and to be equal to p̄, i. e. the average value
obtained in the nonequilibrium simulations where η was computed. For CV
the two systems are characterized by same number of particle N = 3350 but
by different temperatures T = 0.85ε/kB and T = 0.95ε/kB. This number of
particles leads to ρ ≈ ρ̄. For the derivative of p with respect to ρ at constant
temperature the two systems were kept at T = 0.90ε/kB with N = 3180 and
N = 3520.

Results

The main outputs of these simulations are the internal energy, enthalpy,
pressure and density profiles. All the derivatives appearing in the definition of
c are computed considering the bulk values of these quantities, and the heat ca-
pacity at constant pressure per unit of area results to be C̃p ≈ 1.948kB/σ

2, the

one at constant volume C̃V ≈ 0.904kB/σ
2, while the derivative of bulk pressure

with respect to the bulk density at constant temperature is ∂ρp|T ≈ 2.858ε25.
Follows from Equation 3.53 that c ≈ 2.482σ/τ .
The bulk density of the system is ρ ≈ 0.548σ−2, thus follows from Equation
3.42 that the average time between two consecutive collisions of the same
particle is tc ≈ 0.544τ .

Let us now present our numerical results related to the viscosity. As
previously explained they are not fully exhaustive, but their objective is simply
to strengthen the possibility that viscosity can be defined in this kind of
systems.

Simulation details

Simulation cells are square closed boxes of side Lbox and confinements
are provided by the repulsive walls previously introduced. The number of
Lennard-Jones particles is gauged in order to get a bulk density ρ ≈ 0.548σ−2

and, in order to study the effect of the system size, four values of Lbox
are considered: Lbox = 40σ, 60σ, 80σ and 100σ. The computation of the
dynamic autocorrelation function is performed through Equation 3.48, and
the equilibrium averages are computed exploiting both the ergodicity of the

25That is slightly greater than the ballistic velocity vb, probably because of collective
effects.
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Lbox [σ] τ0 [τ ] Ap 〈η(r, Lbox)〉r [τεσ−2]

40 30 -0.024 0.5545± 4× 10−4

60 40 -0.016 0.5860± 4× 10−4

80 50 -0.011 0.6208± 4× 10−4

100 60 -0.008 0.6453± 5× 10−4

Table 3.2: Dependence on Lbox of oscillations period τ0, the amplitude of the first
oscillation Ap and spaced-averaged viscosity 〈η(r, Lbox)〉r in the simulated confined
systems. The last column can be compared with the viscosity value obtained in
the nonequilibrium simulations presented in the next Chapter, ηneq = 0.7855 ±
0.0448τε/σ2.

fluid systems and different initial conditions. Thus, for each value of Lbox 144
independent simulations were run, each characterized by the usual two stages.
The first one is the equilibration phase and it lasts 2× 107 time steps during
which the temperature is controlled through the Bussi-Donadio-Parrinello
thermostat and it is set at T = 0.9ε/kB. The second stage is the production
one. This phase is characterized by a NVE integration of the particles equations
of motion26 and it lasts 5 × 107 time steps. In both these stages the time
step duration is δt = 0.001τ . The spatial-integrated operator Πxz is computed
during the production phase every 10 time steps over the whole system area,
while the autocorrelation operation and the time integration are performed as
data post processing.

Results

The spaced-averaged dynamic autocorrelation function 〈ψ(t, r, Lbox)〉r,
normalized by its initial value, is shown for the system with Lbox = 60σ in
Figure 3.8, panel a. As anticipated, it is clearly not possible to obtain clean
results regarding the long-time behavior of 〈ψ(t, r, Lbox)〉r because of the noise,
and the situation is similar when systems with others Lbox are considered.
Nevertheless an interesting feature of 〈ψ(t, r, Lbox)〉r can be observed: It is
characterized by evident, even if small, oscillations, as shown in the panel b of
Figure 3.8, where the systems with Lbox = 40σ and Lbox = 60σ are considered.
What is more interesting is that the period τo of these oscillations increases
with Lbox, as reported in Table 3.2 (approximate values). The suggestion
coming from this increase of τ0 is that these oscillations can be interpreted as
recursive effects induced by the propagating sound waves in a closed system.
Therefore, as expected, the space-averaged dynamic autocorrelation function
〈ψ(t, r, Lbox)〉r depends on the system length. It follows that also the resulting
viscosity coefficient is characterized by this dependence. Indeed, enlarging the

26The absence of thermostats ensures the tracking of correct particles trajectories.
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Figure 3.8: a) Normalized dynamical autocorrelation function of the xz component
of the pressure tensor for the system with Lbox = 60σ. Note that data are shown
in a log-log scale, thus negative values of the normalized dynamical autocorrelation
function do not appear in the graph. b) Oscillations in ψ(t)/ψ(0) for systems with
Lbox = 60σ (blue dots) and Lbox = 40σ (read dots). c) Viscosity obtained through the
Green-Kubo relation integrated up to different times t for the system with Lbox = 60σ
(solid lines indicate the errors). The inset shows that the long time behavior is not
characterized by further oscillations (at least within statistical uncertainty). For the
sake of simplicity the inset ordinate label is 〈η〉r instead of 〈η(r, Lbox, t)〉r. Fluid
bulk density and temperature are respectively ρ ≈ 0.548σ−2 and T = 0.90ε/kB.
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system these recursive effects become less important, as testified by a decrease
of the oscillations amplitude with the increase of Lbox, as reported in the Table
where the amplitude of the first (negative) oscillation peak is reported for the
different Lbox.
Let us now consider the problem of viscosity. As previously shown, the noisiness
of the time tail of the dynamic autocorrelation function 〈ψ(t, r, Lbox)〉r does
not allow to come to a conclusion about its existence. Thus we decided to con-
sider the time-dependent quantity expressed in Equation 3.50, 〈η(r, Lbox, t)〉r,
shown in the panel c of Figure 3.8 for the Lbox = 60σ system (the other systems
are characterized by similar results). A clear plateau begins at tp ≈ 250τ and
this suggests that a value of the viscosity can be computed through the Green-
Kubo relation also in this kind of systems. Note that during this time frame
a particle in the bulk undergoes about Mp ≈ 450 collisions27. The resulting
space-averaged values 〈η(r, Lbox)〉r = 〈η(r, Lbox, t ≥ tp)〉r are reported in the
Table for the different systems. They result to be smaller than the nonequi-
librium value ηneq. The increasing trend of 〈η(r, Lbox)〉r with Lbox suggests
that ηneq is less affected by size effects, and thus a better approximation of
the real bulk viscosity. However, the Green-Kubo and nonequilibrium values
are comparable. These results are for sure not exhaustive, but overall they
suggest that viscosity can be defined in the kind of systems considered in
the present work, because of both the plateau reached by 〈η(r, Lbox, t)〉r, the
increase of 〈η(r, Lbox)〉r with the box size and the comparable values with ηneq.

For the sake of simplicity, in the following Chapter we will refer to ηneq

as bulk viscosity η.

27That is, a system of N ≈ 250000 particles would be needed to simulate a periodic
system and obtain the viscosity value without non-physical recursive artifacts.





4
Nonequilibrium simulations

T
he theoretical approach developed in chapter 2 allows to describe
thermo-osmosis both in open and closed channel configurations.
The emerging scenario is extremely complex, and a numerical
study of this phenomenon can be useful to rationalize some rele-
vant aspect, such as the role played by thermodynamic conditions

of the fluid and the properties of confinements. In this context, the molecular
dynamics technique is the most natural choice, because of the nonequilibrium
and microscopic nature of thermo-osmosis. The reliability of this numerical tool
for the study of thermo-osmosis is testified by the fact that this phenomenon
was observed as a side effect in nonequilibrium simulations performed by
Wold and Hafskjold [82] and by Galliéro et al. [31]1. The authors of Ref. [31]
employed periodic boundary conditions in the direction of the temperature
gradient, simulating in such a way an open channel, and they observed a veloc-
ity field characterized by a backflow in the middle of the channel. This shape
of the velocity profile is not due to real physical effects, but it is an artifact
induced by the presence of periodic boundary conditions in the direction of
the temperature gradient: At the ends of the simulation box in the periodic
direction fluid portions kept at the hottest and coldest temperatures are in
contact, therefore in this tight region a steep temperature gradient develops,
but it is in opposition to the thermal gradient that characterizes the main
part of the system. It follows that an artificial themo-osmotic flow develops in
opposition to the physical one.

1In fact both groups were studying thermodiffusion.
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The first nonequilibrium simulations specifically devised for the investigation
of thermo-osmosis were performed by Fu et al. [29]. They were able to simulate
three-dimensional fluids in an open-channel-like configuration: A channel is
connected to two large particles reservoirs, kept at different temperatures,
but at the same pressure by means of two pistons. In this way the fluid in
the channel is characterized by a temperature gradient and by constant bulk
pressure. Unfortunately, also with this clever solution the velocity profile re-
sulted to be affected by viscous effects, induced by the different geometries
of the channel and the reservoirs. Despite this they were able to correct this
effect and to check the validity of Derjaguin’s expression for the slip velocity:
Accordingly to their results this expression must be modified in order to take
into account also hydrodynamic effects induced by the surface. Moreover, they
showed that the flow is directed towards the cold side when the wall-fluid
interaction is weakly attractive, while it is reversed and weakened with more
attractive wall-fluid interactions surfaces.
In order to avoid these difficulties related to the open-channel configuration,
we decided to simulate closed systems, as already done by Wold and Hafskjold
[82]. In this way, because of mass conservation, a bulk pressure gradient de-
velops giving rise to a Poiseuille backflow in the middle of the channel. This
is a genuine physical effect and this bulk pressure gradient can be useful in
order to devise future experiments on thermo-osmosis. This property of our
configuration will be studied in the last Section of this Chapter. Moreover,
due to the large number of simulated systems and the need to obtain results
statistically meaningful2, we decided to simulate two-dimensional fluids. This
choice could seem dangerous: The applicability of linear response theory and
the existence of transport coefficients in two-dimensional systems is still an
open question. Nevertheless, the most recent results on this topic and our
studies related to the viscosity coefficient, presented in the previous Chapter,
suggest this possibility, at least for the model system we investigated, i. e.
two-dimensional Lennard-Jones fluids kept at a temperature T ≈ 0.9ε/kB.
Therefore we feel confident in the interpretation of the numerical results pre-
sented in the following through our microscopic theory of thermo-osmosis.
Moreover, in the following we will not attempt a quantitative comparison
between theory and simulations, limiting our analysis at a qualitative level.

4.1 NONEQUILIBRIUM SIMULATIONS DETAILS

In this set of simulations the fluid-fluid interaction is modeled through
the already introduced truncated and shifted Lennard-Jones 12-6 potential.
The simulation boxes are two-dimensional rectangular cells (see Fig. 4.1) of
width h and length Lx. Different values of these parameters will be considered.

2Often the signal-to-noise ratio is a challenge.
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h
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z

Figure 4.1: Schematic of a typical system. Blue and red rectangles represent the
thermostated regions (cold and hot, respectively) while fluid particles are symbolized
by the light blue spheres. Blue contours represent reflective walls and the green ones
are different kind of confining surfaces, as explained in the main text.

The length of the thermostated region is 30σ at lower densities and is reduced
to 10σ for the more concentrated systems. The number of particles in the
simulation box is determined by the desired bulk density and approximately
ranges from few tens up to 105. Along the x direction the particles are confined
by purely reflective walls3 (blue lines in Fig. 4.1), placed at x = 0 and x = Lx
in all the simulation runs. On the other hand, thermo-osmosis is a surface-
induced phenomenon. Thus, in order to exhibit the diverse phenomenology
related to the static and dynamic mechanisms described in Chapter 2, different
external potentials will be chosen to confine the fluid in the z direction (these
walls are placed at z = 0 and z = h, as shown by the green lines in Fig. 4.1).
The analytical form and the peculiarities of the external potentials studied in
this Chapter are introduced in Section 4.2 where the resulting thermo-osmotic
flows are also presented.
Regardless of the confinement, each initial configuration is first equilibrated
through a NVT dynamics, obtained employing the Bussi-Donadio-Parrinello
thermostat for 3×107 steps. The time step δt is set equal to 0.005τ throughout
all the simulations. The temperature gradient ∂xT along the x axis is obtained
by setting the temperature of the thermostated regions at two different values,
TC and TH . Under these conditions, a NVE time integration is performed for
further 3×107 steps, during which the system reaches the stationary state. The
results presented in the next Section have been obtained through an average
process on the data accumulated by running the simulation for a number of
steps ranging from 109 to 1.2 × 1011, depending on the bulk density (more
diluted systems need larger amount of data for a better statistics).

3Namely a step potential, vanishing in the fluid region and divergent outside.
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Figure 4.2: Properties in the x direction are sampled in the region highlighted by
the red rectangle of the top panel. An example of such a property is given in the
central panel, where the mass flow in the x direction is shown. The properties in the
z direction are sampled in the red rectangles shown in the lower panel. The resulting
z profiles are usually averaged, but only if not affected by the lateral hard walls (that
is, referring to the example, if belonging to the black rectangle).
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The sampling scheme is presented in Fig. 4.2. The red rectangle in the top
panel outlines the region where bulk properties in the x direction are measured
with a granularity of 2σ 4. It is centered in the box, with a length equal to
Lx, while its width depends on the value of h and must ensure to sample bulk
properties. An example of a sampled property is given in the central panel,
where the bulk mass flow j̄x(x) is shown. Here an important feature of closed
channels systems is clear: Lateral reflective walls affect the physical properties
within a certain range.
This aspect is important when profiles in the z direction are considered.
These are measured in the red rectangles shown in the bottom panel, with a
granularity of 0.05σ. In order to improve statistics these profiles are averaged,
but only those regions where the bulk properties are not affected by the
thermostats (only particles within the black rectangle in the bottom panel)
contribute to the average.

4.1.1 Linearity of the temperature profile

As previously explained, the thermal gradient is obtained keeping the
two thermostated regions at different temperatures TC and TH through a
canonical sampling thermostat and performing a NVE time integration. The
theoretical approach formulated in Chapter 2, which was a guide for this
molecular dynamics survey of thermo-osmosis, assumes a linear response of the
system to the perturbation induced by a constant temperature gradient. For
this reason the temperatures of the reservoirs were carefully chosen in order to
obtain the same linear behavior. Moreover, in accordance with theory, a linear
temperature profile induces linear bulk density and pressure profiles in the x
direction. This prediction is confirmed by our molecular dynamics simulations,
as shown in Fig. 4.3, where data for a typical simulated system are shown.
A temperature gradient ∂xT ≈ 0.0005ε/kBσ

5 allows to obtain these linear
behaviors independently of the bulk densities and of the external confining
potentials considered in the present work. Lower values of the thermal gradient
satisfy these linearity requirements, but induces weak responses to ∂xT with
consequent problems related to the signal-to-noise ratio. Instead higher values
induce a non-linear behavior of these thermodynamics properties in the more
rarefied systems: Here, in bulk, p ≈ ρkBT and a high temperature gradient
emphasizes this non-linear relation between T , p and ρ.
The average temperature is defined by the thermostated regions temperatures
T ≈ TH+TC

2 and, if not differently specified, it is T ≈ 0.9ε/kB. This value is
high enough to keep systems far away from the gas-liquid coexistence region[72],

4Note that these properties are measured also in the thermostated regions.
5Note that if we consider Argon particles then Lennard-Jones parameters acquire the

following values: σ = 3.4× 10−10m, m = 6.69× 10−26kg and ε = 1.65× 10−21J. Thus in
physical units this temperature gradient becomes ∂xT ≈ 1.6× 106K/cm.
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Figure 4.3: Linearity of the temperature (a, red dots), bulk density (b, blue dots)
and pressure (c, green dots) profiles in the x direction, for a typical system.

regardless of density and box length Lx. At the same time it is low enough to
avoid a damping effect on the external potentials6, when present.
The most relevant observables which characterize thermo-osmosis in a closed
pore are the velocity profile vx(z) and the bulk pressure gradient ∂xp, which
carries the same information of the pressure drop usually measured in experi-
ments. In the following, we will provide results for a temperature gradient equal
to ∂xT = 0.0005ε/kBσ. Being in the linear regime, our numerical results can
be extrapolated to smaller temperature differences. Moreover, bulk pressure
gradients are obtained through linear fitting of profiles such as the one shown

6In the Boltzmann factor the external potential is multiplied by β = 1
kBT

.
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in panel c of Figure 4.3.

4.2 THE ROLE OF CONFINEMENTS ON THERMODY-
NAMIC PROPERTIES

In order to express in a clear way the results of this Section, they are divided
on the basis of the confining walls. First we will present systems confined
by the simplest surfaces, i. e. the purely reflective and diffusive walls. Then
the reflective walls plus smooth potentials will be discussed. Finally a more
physical confinement, made of Einstein solids, will be considered. The section
ends with a discussion about the sign of the thermo-osmotic mass flow with
respect to the temperature gradient. Note that, regardless of the particular
confinement, all systems in this Section are characterized by a length in the x
direction equal to Lx = 180σ+ 2R, being R the length of the reservoir regions
previously discussed. Instead, the height of these systems in the z direction is
equal to h = 30σ + 2W , where W is the wall thickness and it is equal to 6σ
for Einstein solids, 0 otherwise.

4.2.1 Purely reflective and diffusive walls

The simplest kind of confinement is a purely reflective wall, namely an
external step potential, equal to zero in the fluid region and divergent outside.
As shown in Chapter 2, in the ideal gas limit7, i. e. at densities where the
interparticle interactions are negligible and the pressure tensor is isotropic,
both the static and the dynamic source terms vanish due to the peculiar form
of the external potential which conserves both the energy and the x-component
of the momentum after the collision of the fluid particles with the wall. For
the same reason all the remaining contributions to the mass current vanish
in the same limit. Therefore the theoretical approach suggests that a thermo-
osmotic flow does not arise at low densities when the fluid is confined by
purely reflective walls. We stress that the suppression of the static mechanism
in rarefied conditions is due to the purely reflective walls which confine the
fluid: Thermo-osmosis can be induced also at low density by including an
additional attractive or repulsive tail to the hard wall confining potential,
because in this way the static source term is not vanishing and we will later
investigate this effect. However, at higher densities, the interaction between
particles becomes relevant and in principle both the static source term and
the dynamic contributions to the mass current are not vanishing, leading to a
detectable effect.

7Note that it is mandatory to introduce a finite relaxation time to avoid divergences of
the time integrals.
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The data (squares) in Figure 4.4 show the bulk pressure gradient of a Lennard-
Jones fluid confined by purely reflective walls as a function of the bulk density.
At low densities the mass flux is extremely weak8 in the bulk region and a
significant thermo-osmotic flow only appears when the density is increased
above ρ ≈ 0.075σ−2. The bulk pressure gradient is negative for all the values of
the density studied: The direction of the thermo-osmotic slip is thus opposite to
the temperature gradient9. The behavior shown in Figure 4.4 can be interpreted
on the basis of the predictions of the linear response approach. The derivatives
of the tangential pressure near the surface for a dilute and a dense system
confined by a purely reflective wall are shown in Figure 4.5, panel c and d. At
the lower density this weak static contribution drives particles near the surface
towards the cold side of the system. Qualitatively the same consideration
can be made also for the system at the higher density, but the magnitude of
∂xpT (z) increases and thus also the bulk pressure gradient modulus. These

8In the most dilute systems statistical accuracy does not allow to discriminate the
presence of a clear bulk pressure gradient, while from ρ ≈ 0.04σ−2 the mass flux is not
totally vanishing: Indeed particles interactions are not completely negligible also at these
densities.

9The backflow is parallel to the temperature gradient, thus the thermo-osmotic flow must
be in the opposite direction.
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a Lennard-Jones fluid confined by a hard wall at bulk densities ≈ 0.04σ−2 (panel a
and c) and ≈ 0.55σ−2 (panel b and d).

data do not allow to make any consideration about the role of the dynamic
mechanism, but the static one clearly acquires importance with density and
drives particles towards the cold side of the system: This is in accordance with
the trend and the sign of the bulk pressure gradient shown in Figure 4.4. Note
that the derivative shown in panels c and d of Figure 4.5 are taken directly
from the nonequilibrium simulations, differently from the ones shown in the
previous Chapter. Moreover, in panels a and b of the Figure are shown also
the density profiles and it is interesting to note that a trace of layering effect
starts to appear at higher density.
The specular reflection of a particle’s velocity after the collision with a smooth,
perfectly flat, hard wall guarantees the exact conservation of the particle’s
momentum, without any exchange between the particle and the wall. However,
as suggested by Maxwell[53], real surfaces are characterized by the presence
of roughness, which can be modeled by small asperities with different height:
These asperities entangle the impinging particles, which, after some collisions
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in the cavities, return to the surrounding gas with a different momentum. This
behavior can be modeled by the so called diffusively reflecting wall. The diffusive
wall confines in a half-space the fluid exactly like a flat hard wall, but absorbs,
with a given probability, the impinging particles and afterwards allows them
to evaporate with a new momentum selected from the a Maxwell-Boltzmann
distribution at the same temperature of the wall[53]. Our implementation of
the diffusive wall is slightly different than Maxwell’s original idea: The normal
component of the impinging particle is specularly reflected after the collision,
as in the case of a smooth hard wall, but the tangential component px is taken
from a Maxwell-Boltzmann distribution at the local temperature T (x) of the
wall, defined by

T (x) = TC −
TC − TH

Lx
x, (4.1)

where x is the coordinate of the point of impact. The diffusive confining
potential, employed for the first time in a molecular dynamics simulation many
years ago[78] and recently applied to a nonequilibrium molecular dynamics
simulation[82], implies that neither the particle’s momentum nor the energy
are conserved during the impact. Under these assumptions it can be shown
that, according to the linear response approach, a current flow arises also in the
dilute limit, because the dynamic source term and the dynamic contributions
to the mass current are in general different from zero. In the simpler case
of an open channel it is possible to obtain an analytical expression for the
thermo-osmotic velocity, expressed in Equation 2.135, at very low densities,
showing that the flow is parallel to the temperature gradient. The data (circles)
in Figure 4.4 confirm these expectations, being ∂xp a positive quantity in
rarefied systems. But, quite surprisingly, the bulk pressure gradient is not a
monotonic function of the bulk density: After a linear increase at very low
densities, the pressure gradient reaches a plateau at ρb ≈ 0.05σ−2 and, after a
decrease it becomes negligible for densities larger than 0.3σ−2. This behavior is
compatible with the understanding of the phenomenon provided by microscopic
approach introduced above: While the dynamic mechanism is now important
also in rarefied fluids, due to the particular particle-surface interaction, the
static one is extremely weak at low densities also when the fluid is confined by
a diffusive wall10 and gains importance in dense systems. Moreover, as shown
by data related to the purely reflective walls, the static mechanism drives
particles towards the cold side of the system. Thus the dynamic and static
mechanisms start to balance gradually out, as confirmed by the behavior of
the bulk pressure gradient at high densities: When the system is confined by
the diffusive wall particles in the rarefied regime are driven by the dynamic

10Because the pressure tensor is isotropic for an ideal gas. Moreover, even if also the static
statistical properties in these two systems could in principle differs, the density profiles
numerically computed are equivalent within uncertainty, suggesting that the static properties
can be considered equivalent.
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Figure 4.6: Velocity profile of the fluid along the nanochannel at different values of
the bulk density. Green squares and light blue circles refer to reflective and diffusive
confinements respectively.

mechanism through the hot side and a bulk pressure gradient develops, while
increasing the density ∂xp tends to vanish because the dynamic mechanism
is still relevant, also for this concentrated systems, but it is opposite to the
static one. As interestring consequence of this result we can state that the
approximations introduced in Chapter 2 for the dense regime, which lead to
Derjaguin’s result, are not always justified.
More insights about this picture can be obtained by looking at the velocity
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profiles, shown in Figure 4.611. Let us consider systems confined by reflective
walls. In regime I (panel a) both dynamic and static mechanisms are feeble,
but comparable: The velocity profile is negative near the confinements, but
further it becomes positive. In regime II (panel b) the static source term
acquires more importance and it completely dominates in regime III (panel c).
The diffusive wall strongly enhances the dynamic mechanisms which pushes
particles towards the hot side, to the extent that in the densest system the
flow is extremely weakened. Furthermore in Chapter 2 we showed that the slip
velocity for a three dimensional ideal gas in an open channel reads

v∞ =
3

4

η

ρ

∂xT

T
(4.2)

where η = pτc, and it is possible to show that this result holds also for two-
dimensional ideal gas, where the mean collision time τc can be expressed as

τc =
m

2σρvb

=

√
βm3

2
√

2σρ
,

(4.3)

being vb the ballistic velocity, leading to

v∞ =
3

8
√

2

√
m

β

1

ρσ

∂xT

T
. (4.4)

If we now consider the conditions of the system reported in panel a of Figure
4.6, i. e. ρ ≈ 0.04σ−2, T ≈ 0.9ε/kB and ∂xT = 0.0005ε/kBσ, the resulting slip
velocity is v∞ ≈ 3.5× 10−3σ/τ . This result cannot be directly compared with
any of the velocity values in the profile related to the diffusive wall of panel
a of Figure 4.6, because of the different geometries and boundary conditions
involved: In the closed channel a back flow takes place and the velocity profile
is not characterized by no slip boundary conditions. Nevertheless, v∞ is about
one order of magnitude greater than the velocity positive peak in profile a of
Figure 4.6, which is a reasonable result12.

4.2.2 Reflective walls plus potentials

If an external potential is present, thermo-osmosis in rarefied systems can
arise also due to the static source term. In the ideal gas limit the pressure

11It is important to note that here and in the following no-slip boundary conditions are
not imposed. This is due to the fact that walls do not exert a force on the fluid particles in
the x direction.

12Note that this gap is reduced if we considered the difference ∆v between the velocity
positive peak and the velocity at z = 0, in fact ∆v ≈ 10−3σ/τ .
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tensor is isotropic everywhere, so both its normal and tangential components
are defined by the hydrostatic equilibrium condition, which, in presence of a
temperature gradient aligned to the tangential direction, can be written as

∂zp(z, x) = −ρ(z, x)

m
∂zV (z), (4.5)

where the local thermal equilibrium condition has been employed. Here p(z, x)
is the isotropic pressure and V (z) is an external potential, constant along the
tangential direction. If V (z) vanishes in bulk, the pressure profile reads

p(z, x) = p(x)e−β(x)V (z). (4.6)

Thus the derivative of the tangential pressure can be expressed as

∂xp(z) =
[
∂xp− pV (z)∂xβ

]
e−βV (z), (4.7)

being p and β the average bulk pressure and the inverse of the thermal energy
of the system. Equation 4.7 shows that the static source term can arise also
in ideal gases if an external potential V (z) is present13. As a consequence,
thermo-osmosis in diluted systems does not necessarily require the activation
of the dynamic mechanism.
This condition can be numerically investigated confining fluid particles with
reflective walls and a smooth external potential: Particle energy and momentum
parallel to the surface are conserved during the collision against the wall, thus
the dynamic source term does not arise, while V (z) provides the static one
according to Equation 4.7. Two kinds of external potentials are added to the
purely reflective wall: A repulsive one (already introduced in Chapter 3)

Vr(z) =

{
k(z − zr)2 0 < z ≤ zr
0 z > zr,

(4.8)

where k = 0.1ε/σ2 and zr = 5σ, and a Lennard-Jones 9-3 one

Va(z) =

{
ε93

[
2
15

(
σ93

z

)9 − (σ93

z

)3]
0 < z ≤ za

0 z > za,
(4.9)

where ε93 = 1ε, σ93 = 1σ and za = 10σ. This potential is attractive everywhere,

but for z <
(

2
5

) 1
6 σ where it becomes highly repulsive. The same potentials

confine the fluid near the upper wall at z = 30σ. Nonequilibrium simulations
allow to directly compute ∂xpT (z) and in rarefied systems there is a good
agreement between simulation data and equation 4.7, as shown in figure 4.7

13Note that if an open channel is considered than ∂xp = 0, and the sign of ∂xp(z) is fully
determined by V (z).
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Figure 4.7: Pressure profiles derivatives for system confined by reflective walls plus
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are simulation results (where Vr(z) and Va(z) are respectively employed). Panel a
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panel a. This means that at these densities the ideal gas approximation holds
rather well and thus ∂xp(z) is really the only force responsible for thermo-
osmosis. The agreement is lost if denser systems are considered, as shown in
figure 4.7 panel b, where strong deviations from the ideal solution take place.
Nonetheless, in presence of the repulsive external potential, the ideal and real
behaviors are qualitatively similar, probably because of the low density near
the surface induced by Vr(z). Instead, the Lennard-Jones 9/3 potential gives
rise to particles layering and a complex tangential pressure derivative profile
arises, completely different to the ideal gas solution.
In these dense systems not only the pressure tensor is anisotropic, but the
deviation from ideality implies also that dynamic mechanisms can possibly
contribute to thermo-osmosis. Therefore, there is not a simple relation between
the external potential and the thermo-osmotic flow direction. This information
can be easily obtained through the bulk pressure gradients, presented in figure
4.8. The sign of the overall thermo-osmotic flow results to be independent
of bulk density: It is against the thermal gradient for the repulsive potential
Vr(z), while it is parallel to it if V (z) = Va(z). The magnitude of the effect is
instead strongly dependent on the bulk density. In diluted systems the value of
|∂xp| for the two potential is similar and increases approximately linearly with
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ρ. Repulsive potentials lead it to grow also at the higher densities, while its
trend is no longer monotonic in presence of the attractive one: This behavior
is probably due to the complex shape of ∂xpT (z) shown in figure 4.7 panel b.
Even if the absolute value of the bulk pressure gradient is very similar for
rarefied systems, the shape of the velocity profiles does not share the same
property, as shown in figure 4.9, panel a. In both cases the velocity field develops
within the scale of the potential, as expected14, and it becomes essentially flat
in the center of the system (actually, it is an extremely wide parabola). Most
significant differences arise near the confining surfaces: Attractive potentials
induce, as shown in the inset of figure 4.9, panel a, a negative peak velocity in
the proximity of the surface, where Va(z) is positive. This peak essentially does
not contribute to the mass flow, being there the density very low: The Lennard-
Jones potential is highly repulsive near the surface, thus fluid particles rarely

occupy this region. Indeed, for z <
(

2
5

) 1
6 σ, Va(z) becomes rapidly repulsive

and at a given value of z particles do not occupy these region at all, as shown

14Indeed at these densities and with these kind of confinements only the static source
term arises.
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in the inset of panel a, Figure 4.9: The velocity field does not arise in the
proximity of the confining surface, where there are no particles. Moreover it is

interesting to note that at z ≈
(

2
5

) 1
6 σ ≈ 0.86σ there is a peak in the velocity

profile. This suggests that thermo-osmosis is driven by the attractive force

when z >
(

2
5

) 1
6 σ and by the repulsive one for z <

(
2
5

) 1
6 σ: Thermo-osmosis

seems to be a local phenomenon.
At higher densities it is difficult to compute the velocity profile for systems

confined by the Lennard-Jones potential, because, interestingly, the velocity
becomes extremely low. Also with the repulsive potential the fluid velocity
decreases at higher density, as shown in figure 4.9, panel b, but accurate results
can still be obtained. In this case, far from the walls the back flow velocity
is clearly parabolic, in agreement with Poiseuille law. The deviation from
the parabolic behavior takes place at about 5σ from the confining surfaces
and this value is comparable with the range of ∂xpT (z)15, suggesting that the
thermo-osmotic flow in this dense system is originated by the static mechanism.

15We recall that zr = 5σ.
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The effect of the average temperature

Let us now study the effect of the average temperature of the system
on the velocity profiles. In Figure 4.10 panel a, diluted systems confined by
the repulsive potential are considered for different average temperatures of
the fluids. It is clear that an increase of the temperature leads to a weaker
thermo-osmotic flow. A simple interpretation to this observation is that the
inverse of the temperature, β, enters in the Boltzmann factor multiplying
the external potential contribution, V (z). Thus, we expect that the higher is
the temperature, the lower is the effect of the external potential peculiarities
on the fluid properties: V (z) tends to behave like a reflective wall. The data
presented previously show that the repulsive potential strongly enhances the
thermo-osmotic flow, thus it is reasonable that the mass flux decreases with
temperature. This scenario is confirmed also by data presented in the panel
b of Figure 4.10, where the velocity profiles for dense systems, confined by
the repulsive potential and kept at different average temperatures, are shown,
but also from the inset, where the bulk pressure gradient as a function of the
temperature is shown.
The most interesting consequence of these observations is that if a given
potential induces a thermo-osmotic flow towards the hot side of the system (as
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ε93 = 1ε ε93 = 0.6ε Reflective Wall

T [ε/kB] ∂xp× 106 [ε/σ3] ∂xp× 106 [ε/σ3] ∂xp× 106 [ε/σ3]

0.9 2.44± 0.20 −3.97± 0.49 −12.44± 0.42
2.5 1.19± 0.18 −0.71± 0.28 −1.27± 0.52

Table 4.1: Dependence on the average temperature T of the bulk pressure gradient
for systems at ρ ≈ 0.45σ−2 and confined by reflective walls plus the potential Va(z)
and purely reflective walls. Different values of the wall-particles interaction parameter
εwf are taken into account: εwf = 1ε and 0.6ε.

Va(z), for example), then a change of the mass flow direction is expected above
a certain average temperature of the fluid. In order to verify this condition
we performed a set of simulations of systems confined by the Lennard-Jones
9-3 potential and at a bulk density ρ ≈ 0.45σ−2. We considered two different
average temperatures, T ≈ 0.9ε/kB and 2.5ε/kB, and wall-fluid interaction
parameters, ε93 = 1ε and 0.6ε. The main results are reported in Table 4.1.
When the potential is strongly attractive (ε93 = 1ε) the bulk pressure gradient
is positive for the two value of T considered, even in if it decreases with a
temperature increase. If the interaction parameter is decreased at ε93 = 0.6ε
the product βε93 decreases as well, but also in this case there is not an inversion
of the bulk pressure gradient sign in the considered temperature gap: The
modulus of ∂xp still decreases with T , but now it results to be negative for
both the considered average temperatures. This proves that, when attractive
external potentials are involved, the product βε93 plays an important role in
the definition of the direction of the thermo-osmotic mass flow with respect to
the temperature gradient. Probably the inversion of sign in this temperature
gap can be observed for value of ε93 included between the two considered here.
Moreover, data reported above confirm that reflective walls plus potential tend
to behave like a purely reflective wall when the product βV (z) is decreased,
thus it is interesting to evaluate the effect of T on a system directly confined
by this kind of wall. At this scope we simulated a system with a bulk density
ρ ≈ 0.45σ−2 and T = 2.5ε/kB and the resulting bulk pressure gradient
is reported in Table 4.1. Comparing this result with the value of ∂xp at
T ≈ 0.9ε/kB it is clear that the hotter is the system the weaker is the thermo-
osmotic mass flow when fluids are confined by purely reflective walls. Thus
the suggestion is that an increase of the average temperature generally leads
to a weaker thermo-osmotic flow.

4.2.3 Physical surfaces

In real systems confining surfaces are made of particles, which interact
and exchange momentum and energy with the fluid: Both dynamic and static
mechanisms are activated, also at low density. In order to keep systems as simple
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Figure 4.11: Purple dots show the bulk pressure gradients for systems at different
bulk densities confined by Einstein walls with εwf = 0.1ε. Inset: Harasima tangential
pressure derivative for the more dilute system.

as possible, we decided to investigate the effect of particle-wall interactions by
the simplest model of a real confining surface: An Einstein wall, where particles
are organized in a simple square lattice with density 0.9σ−2 and bound to
their position by a harmonic potential with k = 5000ε/σ2. They interact with
the fluid particles through the usual truncated (rc = 4.5σ) and shifted 12-6
Lennard-Jones potential and the interaction parameters are εwf = 0.1ε and
σwf = 1σ. The sign of the overall thermo-osmotic mass flow can be deduced
by figure 4.11, where bulk pressure gradients for systems at different bulk
densities are reported. In the more rarefied systems the thermo-osmotic flow
is aligned to the temperature gradient, while the derivative of the tangential
pressure near the surface is positive, as shown for the more dilute system in
the inset of Figure 4.11. This means that here the predominant mechanism is
the dynamic one, and it promotes motion towards the hot side of the system.
At higher densities, where the static mechanism gains importance, the overall
flow becomes opposite to the thermal gradient.
Moreover, the trend of |∂xpb| with bulk density is not monotonic. This inversion
of trend is characterized by a significant change in the shape of the tangential
pressure derivative, shown in figure 4.12: The strong oscillations at the higher
densities weakens the net effect of pressure on the flow, as shown also in the
inset of the same figure: The velocity profile at the highest density essentially
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Figure 4.12: Harasima tangential pressure gradients for systems at different bulk
densities, confined by particle walls. Inset: Velocity profiles for systems at ρb ≈ 0.5
(blue data) and ρb ≈ 0.7 (red data).

vanishes far from the surface, while a stronger effect is present in the system
at ρ ≈ 0.5σ−2. The oscillations of ∂xpT (z) are promoted by particles layering
near the surface and this condition is enhanced by both attractive potentials
and high densities. Indeed, they take place also in the highest bulk density
considered for systems confined by reflective wall plus the 9-3 Lennard-Jones
potential, but not in the systems confined by the purely repulsive interaction
Vr(z), as shown in the inset of Figure 4.816.
The important effect that these oscillations have on the contribution to the
static source term expressed by the integral over z of ∂xpT (z) can be observed
in Figure 4.13. Data reported here are taken from the equilibrium simulations
presented in Chapter 3 and refer to the Harasima pressure tensor. In panel
a results related to systems in the same conditions of the ones presented
in Figure 4.12 are presented, while in panel b a comparison between the
integrals obtained in systems at ρ ≈ 0.7σ−2 and confined by Einstein walls

16Note also that in the system confined by the repulsive potential the results obtained
with the IK (violet data) and the Ha (orange data) contours are very similar. This is due to
the fact that near the surface, were the two pressure tensors should be different, the fluid
density is very low. Instead, the Lennard-Jones potential induces a strong layering effect
near the surface, thus the resulting IK and Ha tangential derivative are strongly different.
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εwf = 0.1ε. In panel b the density is ρ ≈ 07σ−2 and two interaction parameters are
considered, εwf = 0.1ε and εwf = 0.5ε.

with εwf = 0.1ε and εwf = 0.5ε is shown. As shown in Chapter 3, probably,
the full static source term, i. e. including the further contribution previously
discussed, results to be smoother, but however profiles shown in panel a of
Figure 4.13 suggest that the overall effect of the static contribution to the
thermo-osmotic mechanism is weakened by particle layering. Panel b shows
that this weakening is stronger with the more attractive wall, being the layering
more effective.

4.2.4 Some considerations about the sign of the mass flow

A quantitative comparison of the phenomenon arising with the different
confining surfaces considered here is not particularly informative, because much
depends on the details of the walls. Despite this, some interesting considerations
about the sign of the thermo-osmotic flow can be made. Considering the results
of the Einstein wall and the diffusive one, the dynamic mechanism drives flux
towards the hot side of the system, a result in agreement with the ideal gas
limit. Instead, the effect of external potentials seems to be strongly related to
the mass excess close to the surface, a quantity known as mass adsorbtion and
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Figure 4.14: Mass excess at different bulk densities and confinements. Green dots
refer to reflective walls confinement, purple ones to the Einstein wall surface and the
red and blue ones to systems confined by Vz() and Vr(z) respectively.

defined as (see for example Ref. [24])

Γ =

∫ h
2

0

dz
[
ρ(z)− ρ

]
, (4.10)

where the density profile ρ(z) is evaluated at x = Lx/2. Figure 4.14 highlights
a strong correlation, both in sign and modulus, between the mass adsorbtion
and the bulk pressure gradient shown in Figures 4.4, 4.8 and 4.11 for different
confining surfaces. This numerical evidence suggests a simple rule of thumb:
Particles accumulation near the surface lead to a thermo-osmotic flow aligned
to the temperature gradient, while it is reversed if depletion takes place.
Moreover, as previously discussed, particle layering weakens the effect. As a
consequence, repulsive potentials enhance a mass flux against the temperature
gradient, while attractive potentials favor a particle current towards the hot
side.
In order to better investigate this suggestion we decided to consider a “trap”
potential Vt(z), which is defined as a combination of the previously introduced
ones:

Vt(z) = Va(z) + Vr(z), (4.11)
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Figure 4.15: a) velocity profile obtained in a rarefied system confined by the trap
potential shown in panel b. The inset shows a detail of the velocity profile in the
proximity of the wall.

where here k = 0.1ε/σ2, ε93 = 2.5ε, σ93 = 1σ, zr = 5σ and za = 10σ.
The form of this potential is shown in Figure 4.15, panel b. We simulated
a rarefied fluid (ρ ≈ 0.025σ−2) confined by Vt(z). Due to the low density of
this gas and the nature of this confinement, dynamic effects are not expected
to be relevant, and the resulting velocity profile, shown in Figure 4.15, is
mainly due to the static contribution induced by the trap potential. The
shape of the velocity field is very similar to the one of Vt(z), but what
is more interesting is the relation between mass excess and bulk pressure
gradient: In this system the mass excess and the bulk pressure gradient are
respectively Γ ≈ −3.61× 10−2σ−1 and ∂xp ≈ −1.55± 0.7× 10−7εσ−3, while
in the systems with a similar density but confined by reflective walls plus the
Lennard-Jones 9-3 potential and the repulsive potential the corresponding
results are respectively Γa ≈ 2.34× 10−2σ−1, ∂xp

a ≈ 1.10± 0.02× 10−6εσ−3

and Γr ≈ −7.06× 10−2σ−1, ∂xp
r ≈ −1.35± 0.02× 10−6εσ−3, instead, when a

purely reflective wall is considered both the source terms are negligible at these
densities, and Γrw ≈ −1.1× 10−3σ−1, ∂xp

rw ≈ −9± 2× 10−8εσ−3. Therefore,
also this simulation performed with the trap potential suggests the important
role of the mass adsorption in the definition of the sign of thermo-osmotic
mass flow with respect to the temperature gradient direction when the static
source term prevails: A surface that induces a particle depletion leads to a
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flow towards the cold side, while particle accumulation promotes a mass flux
in the opposite direction.

4.3 ASYMPTOTIC BEHAVIOR IN CLOSED CHANNELS

In the last Section of Chapter 2 the theory of thermo-osmosis in a closed
channel has been developed and analytical expressions, valid in large systems
(h� σ), for the fluid velocity in the middle of the channel

v(z)|z=h
2

=
ω

ρh
− ∂xp

24β2η
h2 (4.12)

and the bulk pressure gradient

∂xpb = ρ
γ(h)− γoc

β2
∂xβ (4.13)

have been derived. Being ω a constant, independent of h, equation 4.12 suggests
that ∂xpb ∼ h−n, with n ≥ 2, because otherwise v(z)|z=h

2
would diverge when

h→∞. On general grounds, no further analytical considerations can be made
with respect to ∂xp or v(z)|z=h

2
: It is not possible to derive the dependence of

γ on h from the equations. Nevertheless, knowing the scaling behavior of ∂xpb
with h is important, because of the relevance of this quantity in experimental
measures. Also the bulk velocity v(z)|z=h

2
can be a useful parameter in the

implementation of hydrodynamic computations of thermo-osmotic flows in
large and complex systems. Thus it is interesting to employ molecular dynamics
simulations in order to get some more insights about these quantities and their
asymptotic behavior with h.

4.3.1 Scaling law of the bulk pressure gradient with the
height of the channel

All the systems are characterized by the same bulk density ρb ≈ 0.55σ−2

and confinements, i.e. reflective walls at x = 0 and x = Lx and reflective walls
plus the repulsive potential Vr(z) at z = 0 and z = h, but differ for the heights
h, ranging from h = 30σ up to h = 700σ. In the first set of simulations the
length of channels is Lx = 200σ for each value of h and the behavior of the bulk
pressure gradient ∂xp with the system height is obtained, as shown in figure
4.16. The black line results from the fit of the data relative to the systems with
largest values of h with the curve f(h) = a

h2 , where a = 0.3429± 0.0054ε/σ.
This fit is characterized by a p-value of the χ2 distribution equal to 0.9708,
and this suggests that the bulk pressure gradient asymptotically behaves as

∂xp ∼ h−2 , (4.14)
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leading to a finite value of v(z)|z=h
2

according to Equation 4.12.

It is thus possible to give an estimate of a reliable value of ∂xp in experimental
systems. Real systems are three-dimensional while our estimates are based on
two-dimensional simulations. On the basis of the simple slab geometry of the
problem, we can guess that our scaling holds also in three dimensions and that
the quantitative conversion between dimensional quantities can be obtained by
use of the natural length unit of the problem: The particle diameter σ. This
gives p3D = p2D/σ. Consequently we can express the bulk pressure gradient
in large 3D slits as ∂xp = a

σh2 . Now, considering fluid argon17 and applying
the proper conversion from Lennard-Jones units to real units we can estimate
the pressure drop in a wide channel of height h and where the temperature
difference between its extremities is ∆T as: ∆P ≈ 2.8×107 ∆T

h2 , where pressure
is expressed in Pascal, temperature in Kelvin and height in nanometers. This
relation suggests that the bulk pressure gradient should be experimentally
detectable, even if its magnitude strongly depends on the confining surface.

4.3.2 Asymptotic velocity field

Data in Figure 4.16, together with Equation 4.13, reveal also another
important feature of large systems: The asymptotic value of the bulk velocity

17Characterized by the following Lennard-Jones parameters: σ = 3.4 × 10−10m, m =
6.69× 10−26kg and ε = 1.65× 10−21J
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v(z)|z=h
2

does not depend on h, being

v(z)|z=h
2

= −∂xp
24η

h2

= − a

24η
.

(4.15)

Equation 4.15 is useful, because it defines a simple relation between the
bulk pressure gradient, in principle experimentally measurable, and the bulk
velocity. Prediction of this Equation can be directly verified through the
velocity profiles computed in the simulations: For h� σ the velocity in the
center of the channel, v(z)|z=h

2
, should reach a plateau value at −a/24η. Note

that the bulk viscosity can be directly estimated from a parabolic fit of the
velocity profile, according to Poiseuille law.
Unfortunately the expected scaling 4.15 is not observed in the simulations,
as shown in panel a of Figure 4.17: In the systems with larger h v(z)|z=h

2

decreases with h. The reason of this discrepancy between data and theory can
be found in panel b of Figure 4.17, where fluid bulk viscosity η is reported
for the different heights. Beeing η a bulk property it should not depend on
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2
.

the height of the channel18, but this expectation is confirmed only in the
smallest systems. The p-values of the parabolic fits performed to estimate η
are reported in the inset of the Figure and it show a sudden drop at h = 200σ
suggesting that velocity profiles are characterized by a parabolic shape only for
the smallest systems, where η results to be independent on h. This means that
Poiseuille law is violated for the widest channels, thus it cannot be employed
to compute the bulk viscosity.
The physical reason for this occurrence must be sought in the adopted geometry
of the system: Data suggest that when the ratio h

Lx
>̃1 the system length Lx is

not big enough to allow a full development of the velocity profile. Consequently
the Poiseuille law is no more applicable and the computation of the viscosity
through the parabolic fit fails.
The only way to test this hypothesis is simulating systems characterized by

the same height but with different lengths Lx and looking at the corresponding
velocity profiles. The chosen height is h = 350σ, being it big enough to
guarantee the asymptotic behavior of ∂xp, and four lengths are considered:

18To be more precise, being the system closed the viscosity coefficient could in principle
acquire some dependence on the height h of the channel, but, according also to results
exposed in Chapter 3, we expect this dependence, if existing, to be weak.
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Lx = 200σ, 300σ, 500σ and 700σ. It is important to underline that the resulting
bulk pressure gradients are, within the statistical uncertainty, equivalent in
these systems. This means that data (and relative considerations) presented in
Figure 4.16 are not affected from the value of the ratio h

Lx
: The bulk pressure

gradient scaling law and Equation 4.15 maintain their validity.
The resulting velocity profiles are shown in Figure 4.18, panel a, and the effect
of the channel length is clear: Increasing Lx the shapes of the profiles change up
to Lx = 500σ, where the bulk parabolic behavior is recovered and the velocity
profiles become independent on the channel length. This change in the velocity
profile shapes is reflected also in the value of v(z)|z=h

2
, as shown in panel b of

Figure 4.18: For the two longest channels it can be considered equal and in
excellent agreement with the asymptotic value predicted −a/24η. Note that the
value of viscosity obtained by the parabolic fits is η = 0.78554± 0.04448τε/σ2.
It follows that the deviation of data in Figure 4.17 from the plateau value is
due only to the the ratio h

Lx
and a numerical proof of the validity of Equation

4.15 is provided. Thus, the asymptotic value of the velocity in the center of
the channel for this system is equal to v(z)|z=h

2
= 0.01819± 0.00104σ/τ . We

can now express this result in real units referred to argon and, considering a
temperature gradient of 100K/cm, we obtain v(z)|z=h

2
≈ 160µm/s.



5
Conclusions and perspectives

T
hermo-osmosis has been studied since its discovery in 1873. De-
spite this, a deep understanding of this phenomenon was lacking,
as testified by the discrepancy in its description in gaseous and
liquid states. In rarefied fluid kinetic theory was employed, and
the particle-surface interaction was recognized as the key point

in the development of thermal creep. Instead, thermo-osmosis in liquid state
was studied by means of the linear nonequlibrium thermodynamics and the
anisotropy of the pressure tensor emerged as the driving force. In Chapter 2
we developed a microscopic theory of this phenomenon, based on the linear
response theory generalized to inhomogenous environments. This approach
is exact within the limits of validity of linear response theory, i. e. for small
gradients in the fields. The emerging scenario results to be quite complex:
Two distinct driving mechanisms are recognized, related to both static and
dynamic equilibrium properties of the confined fluid. The resulting equations
for the velocity field are valid in the whole phase diagram of fluid: Indeed,
when the proper approximations are adopted, our approach applied to an
infinite open channel is able to reproduce the result obtained by Maxwell [53]
for the dilute regime while in the liquid state it leads to an expression for the
slip velocity in good agreement with Derjaguin’s one [16]. Due to its generality,
this description of thermo-osmosis can be generalized to the description of
other phenomena where temperature gradients induce particles motion, such
as thermophoresis and thermodiffusion.
Moreover, although our expressions contain the tangential pressure near a
wall, which is not uniquely defined on microscopic grounds, the physical quan-
tities turn out to be independent of the adopted definition of the pressure
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tensor. This feature, absent in the approximate result by Derjaguin, emerges
due to the presence of a further contribution which depends on a particular
static correlation function. This solves the problem posed in Ref. [32, 33].
This theoretical prediction has been numerically verified through equilibrium
molecular dynamics simulations, presented in Chapter 3: We showed that the
static source terms computed adopting the Irving-Kirkwood and the Harasima
pressure tensors are equal within statistical uncertainty, despite the evident
differences between the pressure tensors computed accordingly to the two
prescriptions.
In the same Chapter we tackled also the debated question of transport coeffi-
cients in two-dimensional systems: Theoretical arguments, developed mainly in
the Seventies, suggest that dynamic autocorrelation functions of non-conserved
quantity decay in time as t−1 and consequently their time integrals, which
define the corresponding transport coefficients, diverge. This picture was ques-
tioned by a series of numerical works, which showed that, at least in certain
thermodynamic conditions and particle-particle interaction potentials, trans-
port coefficients in two-dimensional fluid can be defined through Green-Kubo
integrals. We did not attempt to solve this complex question, but just to
understand if at least the viscosity coefficient can be defined in Lennard-Jones
two-dimensional fluids in the thermodynamic conditions of interest. Therefore,
we performed equilibrium molecular dynamics simulations in order to com-
pute the spatially integrated shear component of the pressure tensor dynamic
autocorrelation function. Our results rely mainly on the time integral of this
quantity and they suggest the existence of the viscosity coefficient in the
systems of our interest.
These considerations are important, because due to the emerging complexity
of thermo-omosis, we decided to study this phenomenon in Chapter 4 through
nonequilibrium molecular dynamics simulations, but, in order to save compu-
tational time, we considered two-dimensional fluids. The first nonequilibrium
simulations specifically devised to the study thermo-osmosis were performed by
Fu et al. [29]. They considered a clever three-dimensional geometry in order to
simulate an infinite open-channel, computing the mass flow. These simulations
were able to check the validity of Derjaguin’s expression for the slip velocity
and found that some correction should be included in order to take into account
hydrodynamic effects induced by the surface. Our simulations were instead
performed on closed-channel configurations. In this way the resulting velocity
profiles are characterized by a genuine Poiseuille backflow, induced by the
bulk pressure gradient originating in the closed channel because of the mass
conservation principle. Thus, the closed-channel configuration introduces the
physical effect of a bulk pressure gradient, which can be useful in order to
devise future experiments of thermo-osmosis, especially in the liquid state.
Moreover we examined, by the use of numerical simulations in wide channels,
the scaling if the bulk pressure gradient with the width h of the channel:
The resulting h−2 behavior implies an asymptotic velocity in the middle of
the channel independent of h. Note that a channel width of the order of few
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hundreds of molecular diameters is enough to reach the asymptotic behavior.
In physical units, this correspond to a channel width of the order of tens
of nanometers. These results can be also exploited for the implementation
of proper boundary conditions in hydrodynamic computations for the study
thermo-osmosis in more complex systems.
Beyond the study of this asymptotic behavior, our simulations were devised
also in order to verify the relative importance of the two mechanisms emerging
from our theory. To this aim, we considered a wide range of fluid densities and
temperatures, and a few different confining surfaces. In particular it emerged
that, as predicted by our approach, in the rarefied limit it is possible to activate
both the static and the dynamic mechanisms according to the properties of
the confining surfaces: The first through the presence of an external smooth
potential while the second employing diffusive walls and both of them if Ein-
stein walls are considered. Moreover, it is possible also to suppress both of
these mechanisms when pure reflective walls are considered. When denser
systems are considered, interesting observations can be made. Indeed the static
mechanism appears to be quite similar for a reflective and a diffusive wall.
Despite this, the bulk pressure gradient and the velocity profiles in the systems
with these two kind of confinements are deeply different: This means that
the diffusive wall introduces strong dynamic effects also in liquid systems.
Moreover, the dynamic mechanism enhances the fluid motion towards the hot
side of the channel also in the dense fluid. When systems are confined by a
reflective wall plus the repulsive potential the velocity profiles deviate from
the Poiseuille parabolic shape only within z ≈ zr far from the surface, being
zr the range of the confining potential. This result strongly suggests that here
the static mechanism is predominant, being zr the relevant length scale in
the velocity profile. The effect of the attractive potential at high density is
weakened by particles layering, as also happens in systems confined by Einstein
walls. In fact particle layering decreases the contribution of the static source
term.
Furthermore, the large amount of data allowed to establish an empirical re-
lation between the sign of the thermo-osmotic mass flow and the surface
adsorbtion when the static source term dominates: When the confining surface
induces a particle depletion, the flow is directed towards the cold side of the
system, while it is reversed if particle accumulation takes place. In order to
strengthen the reliability of this relation between mass excess and sign of
the flow we simulated a rarefied fluid confined by a trap potential. Here the
relevant mechanism is the static one, and despite the complex shape of the
confining potential the relation between mass adsorption and sign of the flow
is still valid.
Finally, the average temperature of the system plays an important role on
the effects of the confining potential on the fluid motion: The higher is the
temperature, the lower is the effect of the shape of the external potentials,
approaching the limiting behavior of the purely reflective wall as the tempera-
ture increases. Therefore, we showed that a thermo-osmotic mass flow directed
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towards the hot side of the system can be reversed by decreasing the ratio
V (z)/T .
These numerical results confirm the complexity of thermo-osmosis, but they
are also helpful in order to rationalize the role played by the two underlying
mechanisms and could be employed as guide to design future experiments on
this phenomenon.



Appendix A

ALGORITHM TO COMPUTE CONSERVED QUANTITIES
DYNAMIC AUTOCORRELATION FUNCTIONS

In Chapter 3 we presented a general algorithm to numerically compute
spatial-integrated dynamic correlation functions C̃. In particular, if homoge-
neous systems are considered, it results that

C̃(t) =
∆4

A

〈
I1
t I2

〉
0
, (A.1)

being

I =
∑
i

Õi . (A.2)

Now let us assume that Õ1
i and Õ2

i refer to a globally conserved quantity, such
as a particles momentum component in a NVE ensemble, then it immediately
follows that

It = 0 (A.3)

for each t, and so also the corresponding C̃(t) is equal to zero. But the spatial-
integrated dynamic autocorrelation function

∫
dr
∫

dr′ 〈jα(r, t)jα(r′)〉0 is
not a vanishing quantity: For example, for t = 0 it is easy to show that
1
A

∫
dr
∫

dr′ 〈jα(r, t = 0)jα(r′)〉0 = ρ/β.
The reason of this discrepancy lies in the fact that dynamical correlation
functions are numerically computed in a microcanonical ensemble, so that
genuine particles trajectories are tracked, and not in a, for example, canonical
one. Thus, in order to obtain the correct result we must find a way to maintain
a NVE ensemble but also to break the momentum conservation of the system.
These two requirements are contradictory, but we can try to fulfill them di-
viding the NVE system in Ω subsystems, characterized by the same number
of particles randomly chosen: Particles that belong to a given subsystem ω
can exchange momentum both with particles of the same subsystem and with
the ones of the others Ω− 1. It follows that each subsystem does not conserve
the momentum, and so Itω 6= 0. Now, we can express the spatial-integrated
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dynamic correlation function as

C̃(t) =
∆4

A

∑
ω

〈IωItω〉0 +
∑
ω 6=γ

〈IωItγ〉0

 . (A.4)

Let us now assume that the self-subsystem contributions are statistically equal,
thus

C̃(t) =
∆4

A

Ω 〈IωItω〉0 + Ω
∑
γ(6=ω)

〈IωItγ〉0

 . (A.5)

If we assume also that the contributions expressed in the second term are
statistically equivalent for every ω and γ, then we can write

C̃(t) =
∆4

A

[
Ω 〈IωItω〉0 + Ω (Ω− 1) 〈IωItγ〉0

]
, (A.6)

with ω 6= γ.
It is important to underline that the assumption which leads from Equation
A.5 to Equation A.6 is not formally justified. Moreover Ω must be greater
than 2, otherwise Itγ = −Itω and so C̃ = 0 for each t.
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BUSSI-DONADIO-PARRINELLO THERMOSTAT

The simulation of NVT ensembles requires the control of the temperature
of the systems. Rescaling particles velocities is the simplest way to obtain
this result, being the temperature a measure of the kinetic energy of the
system. Therefore, we can control the temperature simply rescaling, with a
given frequency, particles velocities by a factor α

α =

√
K̄

K
, (B.1)

being K the kinetic energy of the system at the considered time step and K̄
the desired one.
The authors developed a different way to compute the rescaling factor α, in
order to enforce a canonical distribution for the kinetic energy. They do not
force the kinetic energy to be exactly equal to K̄, instead they select a target
value Kt with a stochastic procedure aimed at obtaining the desired NVT
ensemble. Thus the velocity-rescaling factor becomes

α =

√
Kt

K
, (B.2)

where Kt could be sampled by the canonical equilibrium distribution for the
kinetic energy:

P̄ (Kt)dKt ∝ K
Nf
2−1

t eβKtdKt , (B.3)

where Nf are the degrees of freedom of the system. Thus, a simple way to
obtain a NVT ensemble would be to extract every M time steps a value of
Kt, compute the corresponding factor α and apply it, and then run a NVE
dynamics for the following M time steps. In this way the ensemble would
be canonical, but this method would disturb considerably the velocities of
the particles: Each time the rescaling is applied, the moduli of the velocities
will exhibit a fast fluctuation with relative magnitude 1/

√
Nf , and so also

the particles trajectories would be less genuine in time. Thus the authors
developed a smoother approach accordingly to which the value Kt is not
randomly chosen by the distribution expressed in Equation B.3, but instead it
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is based on the previous value of K: At each time step an auxiliary continuous
stochastic dynamics is considered to compute the value of Kt, assuming K
as initial condition. This value of Kt is then used to compute α and particles
velocities are rescaled. The choice of the stochastic dynamics has some degree
of arbitrariness, the only constraint being that it has to leave the canonical
distribution in Equation B.3 invariant. Thanks to the Fokker-Planck equation
it is possible to express this auxiliary continuous stochastic dynamics as

dK = (K̄ −K)
dt

τ
+ 2

√
KK̄

Nf

dW√
τ
, (B.4)

where τ is an arbitrary parameter which determines the time scale of the
thermostat and dW is a Wiener noise.
Thus this thermostat samples the canonical ensemble and, thanks to its elabo-
rate method to compute α, the particles trajectories are not heavily influenced
by the temperature control.
More details can be found in Ref. [11].

Note that this thermostat does not perform a time integration but only
modifies velocities. Instead, in our simulations a NVE dynamics is achieved
through the velocity-Verlet integrator [81].
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