
Under consideration for publication in Theory and Practice of Logic Programming 1

OntoScene, A Logic-based Scene Interpreter:
Implementation and Application

in the Rock Art Domain

DANIELA BRIOLA
Department of Computer Sciences, Systems and Communications

University of Milano Bicocca, Italy
(e-mail: daniela.briola@unimib.it)

VIVIANA MASCARDI and MASSIMILIANO GIOSEFFI
Department of Informatics, Bioengineering, Robotics, and Systems Engineering

University of Genova, Italy
(e-mail: viviana.mascardi@unige.it, gmaxsun89@gmail.com)

submitted 14 January 2019; revised 29 August 2019; accepted 4 November 2019

Abstract

We present OntoScene, a framework aimed at understanding the semantics of visual scenes starting from the
semantics of their elements and the spatial relations holding between them. OntoScene exploits ontologies
for representing knowledge and Prolog for specifying the interpretation rules that domain experts may
adopt, and for implementing the SceneInterpreter engine. Ontologies allow the designer to formalize the
domain in a reusable way, and make the system modular and interoperable with existing multiagent systems,
while Prolog provides a solid basis to define complex rules of interpretation in a way that can be affordable
even for people with no background in Computational Logics. The domain selected for experimenting
OntoScene is that of prehistoric rock art, which provides us with a fascinating and challenging testbed.

KEYWORDS: Prolog; Ontologies; Multiagent Systems; Visual Languages; Scene Interpretation

1 Introduction

Human perception of complex visual scenes has been studied for a long time in psychology
and neuroscience (Kondo et al. 2017): according to the seminal work on “high-level scene per-
ception” (Henderson and Hollingworth 1999), besides low-level or early vision, concerned with
extraction of physical properties such as depth, color, and texture from an image (Marr 1982),
and intermediate-level vision, concerned with extraction of shape and spatial relations that can
be determined without regard to meaning (Ullman 1996), a further level of vision is required to
perceive and understand a scene:

high-level vision concerns the mapping from visual representations to meaning and includes [...] the
identification of objects and scenes.

In their recent studies, Kveraga, Bar, and Baldassano (Kveraga and Bar 2014; Baldassano 2015)
demonstrate that the brain has regions related to higher-order properties like overall geometry,

2 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

interactions between objects, aesthetic beauty or memorability of a scene. These regions show a
larger response to full scenes than to isolated objects.

Artificial Intelligence can play a major role in modelling and understanding, on the one hand,
and reproducing, on the other, the way visual scenes are interpreted by humans.

While deep learning has shown impressive potential in recognizing images (He et al. 2016;
Simonyan and Zisserman 2014; Wan et al. 2014; Donahue et al. 2014), hence providing an ideal
tool for low-level and intermediate-level vision, tackling the high-level vision and associating a
meaning with complex scenes may require an explicit and symbolic representation of the domain
knowledge, and the ability to reason over it.

To understand the semantics of a scene starting from the semantics of its elements and the re-
lations holding among them we developed OntoScene, which exploits a powerful combination of
ontologies and Prolog: ontologies are used for representing knowledge, and Prolog for specify-
ing the rules that domain experts actually use to interpret visual scenes and for implementing the
scene interpreter engine. OntoScene also relies upon technologies developed in the multiagent
systems (MASs) area: it is in fact part of a holonic MAS (Gerber et al. 1999) named IndianaMAS
(Mascardi et al. 2014; Briola et al. 2014; Briola 2016; Briola et al. 2017) where agents and MASs
devoted to multilingual text understanding, hand-drawn sketch recognition, human interaction,
and integration of digital libraries, cooperate and coordinate with the OntoScene framework to
classify heterogeneous digital objects.

Following a widely accepted approach for the interpretation of a scene, we consider a scene
as an instance or phrase of a visual language where, by analogy with textual languages, relevant
graphical symbols can be understood as lexical components or tokens that can be aggregated
through the syntactic rules defined according to relations holding among them. Tokens are the
sub-images that make up the scene, the grammar is represented by rules defined by the domain
expert, and geometric relationships are “vertical”, “overlapping”, “close”, and the like, and repre-
sent aggregation operators. To allow domain experts to describe the rules for interpreting scenes
using a language close to the one in which these rules would be expressed in natural language, we
use Prolog. We have designed a user-friendly language that domain experts may use. This rule-
based, domain specific language is very similar to Prolog but it hides most Prolog technicalities
and can be compiled into standard Prolog clauses.

OntoScene consists of:

• Detector and Classifier, two external modules (whose functioning is outside the scope of
this paper, and which could be based on our own previous proposals (Briola et al. 2017)
or on more recent deep learning techniques) that partition the input image into tokens and
associate a list of classifications with them, respectively;

• SceneInterpreter, the Prolog core of OntoScene; it reasons on a symbolic representation of
images that make up a scene and returns their interpretations;

• OntoScene Agent, an agent providing the interface between OntoScene and the other
agents in IndianaMAS;

• the OntoScene Ontology, which models general concepts needed by OntoScene to work,
as well as domain-dependent concepts.

To show the potentiality of the OntoScene framework, and to verify the concrete applicability
of the proposed solution, we exploit it for the interpretation of complex scenes from the rock
art domain, in particular the one of Mount Bego, in France: Mount Bego archaeological site is
well-known for its petroglyphs (carvings on rocks), ancient testimonies of human first activities

OntoScene: a Logic-based Scene Interpreter 3

(Bianchi 2011; Bicknell 1913; de Lumley and Echassoux 2009; de Lumley and Echassoux 2011).
These carvings represent animals, geometric shapes, rural elements and anthropomorphic figures,
often represented together to form complex scenes: if identifying and interpreting single elements
could be quite simple, interpreting complex scenes requires a very detailed knowledge of the
domain and offers a challenging testbed to OntoScene.

The core functionality of SceneInterpreter, namely the generation of all the possible scene in-
terpretations according to the interpretation rules, is implemented by Donald Knuth’s Algorithm
X for the exact cover problem (Knuth 2000). Algorithm X is a state space searching algorithm that
natively exploits depth-first search and backtracking: Prolog turns out to be the perfect language
for its implementation. Also, Prolog is very effective as a scene interpretation rule modelling
language. Such rules are either sketched by the domain experts using the user-friendly syntax
that we devised to mask Prolog details, or written by ourselves in close cooperation with the
experts: in both cases, the domain expert that we involved in the experiments, the archaeologist
Dr. Nicoletta Bianchi, easily grasped the concepts of unification and backtracking, that allowed
her to specify the rules she had in mind, often based on a generate and test technique, in a natural
and intuitive way.

The paper is organized as follows: Section 2 offers the background knowledge needed for
reading the paper and overviews works related to ours; Section 3 provides a gentle introduction
to OntoScene; Section 4 describes how we modelled domain and spatial knowledge; Section
5 presents the SceneInterpreter module and exemplifies its functioning on a synthetic domain;
Section 6 describes the experiments carried out in the rock art domain; Section 7 concludes and
outlines the future directions of our research.

2 Background and Related Work

OntoScene is used inside the IndianaMAS holonic multiagent system, which has been designed
and developed as a JADE (Java Agent DEvelopment Framework (Bellifemine et al. 2007)) MAS.
Although OntoScene’s main components are not agents, its interface towards the IndianaMAS
components is the JADE OntoScene Agent, which heavily exploits the tools that JADE of-
fers to integrate ontologies in the MAS. Assuming the reader is familiar with knowledge repre-
sentation in general and with ontologies in particular1, in Section 2.1 we provide a brief introduc-
tion to IndianaMAS, to JADE, and to the way ontologies are supported therein. We also provide
references to the JPL Library2 for interfacing SWI-Prolog and Java, and to the JTS Topology
Suite3 we used to compute relationships among elements in a scene. Section 2.2 compares our
work with related proposals in the logic-based visual languages field, and with spatial ontologies
and ontology-driven scene interpretation.

2.1 Background

IndianaMAS. According to the seminal paper by Michael Wooldridge and Nicholas R. Jennings
(Wooldridge and Jennings 1995), an agent is a hardware or, more usually, a software-based com-

1 The reader may find an introduction to computational ontologies in (Guarino et al. 2009), the specification of the
OWL Web Ontology Language in (McGuinness et al. 2004), and information on Protégé on the official website,
https://protege.stanford.edu/, accessed on July 2019.

2 http://www.swi-prolog.org/packages/jpl/, accessed on July 2019.
3 https://locationtech.github.io/jts/, accessed on July 2019.

https://protege.stanford.edu/
http://www.swi-prolog.org/packages/jpl/
https://locationtech.github.io/jts/

4 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

puter system that is autonomous (agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal state); social (agents interact
with other agents and possibly humans via some kind of agent communication language); situ-
ated and reactive (agents perceive their environment and respond in a timely fashion to changes
that occur in it); and pro-active (agents do not simply act in response to their environment, but
they are able to exhibit goal-directed behaviour by taking the initiative).

Agents are the right tool for coordinating the functioning of software artifacts that show dif-
ferent capabilities and are possibly distributed across a network, with the purpose of making the
software architecture as modular, flexible, and reliable as possible.

The “Indiana MAS and the Digital Preservation of Rock Carvings: A Multi-Agent System
for Drawing and Natural Language Understanding Aimed at Preserving Rock Carvings” project
(“IndianaMAS” for short4), funded by the Italian Ministry for Education, University and Re-
search, MIUR, and spanning from March 2012 to February 2015, developed a technology plat-
form based on intelligent software agents for the digital preservation of rock carvings, which
both integrates and complements the techniques usually adopted to preserve heritage sites. Indi-
anaMAS enables the preservation of all kinds of available data about rock carvings, such as im-
ages, geographical objects, textual descriptions of the represented subjects, allowing the domain
experts to organize and structure such digital objects in a standard way and to supply domain
experts with facilities for issuing complex queries on the data repositories.

The choice of agent technology for addressing the IndianaMAS goals was a very natural one,
given the need that each component of the system, while operating in a highly autonomous way,
could interact and coordinate with the other components to share information and to reason about
it in the most effective way. As discussed by Mascardi at al. in (Mascardi et al. 2014), the three
key services offered by IndianaMAS (sketch recognition, image recognition, and multilingual
access to digital libraries) are provided by systems that may be MASs themselves, and that are
seen as black boxes by the IndianaMAS agents.

Besides OntoScene, the main components of IndianaMAS, sketched in Figure 1, are:

• The Indiana Ontology, which structures the domain of interest; it consists of sub-ontologies,
among which the OntoScene Ontology5, and is accessed by all the agents and components
in the system.

• Client with a graphical user interface, for interacting with IndianaMAS.
• The Indiana GioNS Digital Library, which contains all the digital objects inserted into the

system by registered users, together with their metadata, needed for their later retrieval.
• Text Agent, able to interpret multilingual documents according to the Indiana Ontology.
• Query Agents, each managing one query coming from the client.
• Loader Agent, collecting new data from external resources like the Bicknell Legacy web

site6 and managing the creation and insertion of new digital objects into the Indiana GioNS
Digital Libray.

• Interface Agent managing the creation of new Query Agents.

4 We use “IndianaMAS” to denote both the funded project and the MAS that resulted from it. The project web site,
http://indianamas.disi.unige.it/, accessed on July 2019, gives access to all the project’s deliverables
and papers.

5 The OntoScene Ontology shares the “Thing” class with the Indiana Ontology: we will not address the question of
whether it should be named an “ontology” or a “sub-ontology”, as this distinction is not relevant for the paper, and we
will always use “ontology” to describe it.

6 http://www.bicknell-legacy.it, accessed on July 2019.

http://indianamas.disi.unige.it/
http://www.bicknell-legacy.it

OntoScene: a Logic-based Scene Interpreter 5

Fig. 1. IndianaMAS architecture and data flow.

• The Digital Library (DL) Harvester MAS, which independently and proactively searches
digital libraries on the web to retrieve new images and texts related to the domain modelled
by the Indiana Ontology.

• AgentSketch MAS, which interprets manual drawings based on the Indiana Ontology.

JADE. JADE is a Java-based software platform that supports the development of agents and
MASs thanks to a Graphical User Interface and tools supporting the MAS debugging and deploy-
ment phases. JADE MASs can be distributed across machines in a way that is fully transparent to
the developer. The minimal system requirement is the Java runtime environment or JDK, version
5.

Ontologies in JADE. JADE helps developers in achieving semantic interoperability between
agents thanks to a simple and fast way to exploit ontologies directly inside the platform and
the agents: agents can exchange messages referring to a shared ontology, and then rely on the
JADE Ontology management offered by the ContentManager class. The developer may use an
ontology to formalize what the agents knows (Concepts and Predicates) and can do (Actions),
and share this ontology among the agents: in this way, knowledge is modelled outside the agents,
boosting modularity and reuse, and the content of messages is based on a shared ontology, fa-
cilitating interactions and simplifying the serialization phase that is then demanded to the JADE
platform.

The three types of objects considered when creating an ontology for JADE are:

• Predicates: boolean expressions describing something about the agent environment or its
beliefs.

• Concepts: structured objects describing the elements of the world, and their relationships.
• Agent actions: special Concepts modeling what an agent can do and can be requested to

do with a message.

If two agents share the same ontology, one agent can request the other to perform an Action,

6 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

and can receive an answer containing the Action results, which will be a Concept, a Predicate, or
a list of them.

To allow developers to automatically generate a Java representation of an OWL ontology co-
herent with the JADE requirements, the tool OntologyBeanGenerator7 can be adopted. The latest
version of OntologyBeanGenerator available on the official website is 4.1, including a basic on-
tology modeling the over mentioned concepts: domain specific concepts must be added as sub-
classes of Concept, Predicate and Agent, and then the tool will provide a Java representation of
the ontology, directly usable by JADE.

Given some limitations of that version, we developed OntologyBeanGenerator 5.0 (Briola
et al. 2018) as a new Protégé plugin8. OntologyBeanGenerator 5.0 (OBG5.0 in the sequel, avail-
able from www.disi.unige.it/person/MascardiV/Download/OBG5.0.zip) has
been developed with three goals in mind: correcting some bugs of OntologyBeanGenerator 4.1;
adding the methods and exceptions management directly inside the ontology; and producing an
additional output to support the OntoScene framework.

The main improvements of OBG5.0 w.r.t. OntologyBeanGenerator 4.1 are:

• Addition of a new tab called Java Method Mapper to manage the methods creation and
exportation: the purpose of the new tab is to offer the designer of the ontology a way to
directly add methods to the Java version of the ontology: in the previous version, the only
option was to add a property and consequently to get the setter and getter automatically.

• Exception management: methods are allowed to raise Exceptions. To do this, a specific
ontology to be imported has been created. Thanks to this addition, Exceptions can be
exchanged between agents too, since they are a subclass of Concept.

• Correction of some bugs that were present in the ontology generation stage.
• Possibility to export the class hierarchy in a Prolog format: in order to implement Prolog

rules that reason about the ontology, we need a Prolog representation of it. To achieve
this goal we added an automatic ontology export functionality to OBG5.0. The obtained
Prolog representation only formalizes the classes hierarchy, as this is the only knowledge
we currently need in OntoScene.

Fig. 2. A simple ontology to be exported in Prolog.

As an example, the Prolog version of the class hierarchy shown in Figure 2 is:

subclass_of(’C1’, ’C11’).
subclass_of(’C1’, ’C12’).
subclass_of(’C11’, ’C111’).
subclass_of(’C2’, ’C21’).

7 https://protegewiki.stanford.edu/wiki/OntologyBeanGenerator, accessed on July 2019.
8 We asked and obtained a written consent from the author of OntologyBeanGenerator, Chris van Aart, to extend the

original source code.

www.disi.unige.it/person/MascardiV/Download/OBG5.0.zip
https://protegewiki.stanford.edu/wiki/OntologyBeanGenerator

OntoScene: a Logic-based Scene Interpreter 7

The JPL Library. JPL can be used to embed SWI-Prolog in Java as well as for embedding Java
in SWI-Prolog. In both setups it provides a bidirectional interface. The two predicates that we
used for accessing Java from inside SceneInterpreter are:
jpl_new(+X, +Params, -V) where X is an object (non-array) type or descriptor and

Params is a list of values or references, unifies V with the result of an invocation of that type’s
most specifically-typed constructor to whose respective formal parameters the actual Params
are assignable (and assigned).
jpl_call(+V, +Method, +Params, -Result) unifies Result with a JPL ref-

erence to (or value of) the result of calling the named Method of V with Params.

The JTS Suite. The JTS Topology Suite (JTS) is an open source Java software library that pro-
vides an object model for planar geometry together with a set of fundamental geometric func-
tions. In OntoScene, it was used to implement the basic relations between regions that character-
ize the Region Connection Calculus (RCC, (Li and Ying 2003; Randell and Cohn 1989)) such as
disjoint, named “Disconnetted” in RCC, overlap (“Partially Overlapping” in RCC), and
contains (“Non-Tangential Proper Part Inverse” in RCC), plus further derived relations.

Using JPL and JTS together. If GR is a reference to the implementation of the interface for geo-
metric relations, jpl_call(GR, contains, [BB1, BB2], @(true)) succeeds if the
method contains, implemented in Java by exploiting the API offered by JTS, and called on
BB1 (where BB stands for the “Bounding Box” of one image) and BB2 (the bounding box of
another image), returns true. In a similar way, we may have the following predicate calls in a
Prolog piece of code

• jpl_call(GR, overlap, [BB1, BB2], @(true))),
• jpl_call(GR, vertical, [BB2, BB1, ’up’], @(true)),
• jpl_call(GR, near, [BB1, BB2, 0.5], @(true)) (0.5 is the threshold

for considering two bounding boxes close to each other, expressed in pixels),
• ...

with their intuitive meaning, better explained in Section 4.2. As a more complex example, the
call to jpl_call(GR, group, [JavaBBs, 0.5], @(true)) works if JavaBBs is
the Java representation of a Prolog list, and the group method called on that list with 0.5 as
proximity threshold returns true.

2.2 Related work

Logic-based visual languages. Many approaches for dealing with visual languages have been
proposed in the literature: this research area has a long tradition, with both an ad-hoc conference
established in 1984, VL/HCC9, and a high quality journal, the Journal of Visual Languages and
Computing.10 In this section we review some approaches that use logical or relational formalisms
for recognizing and understanding visual languages, starting from the older and more established
ones, and moving towards more recent proposals. A complementary approach, which is out of the

9 The most recent edition of VL/HCC dates back to 2018, https://vlhcc18.github.io/index.html, ac-
cessed on July 2019.

10 https://www.journals.elsevier.com/journal-of-visual-languages-and-computing, ac-
cessed on July 2019.

https://vlhcc18.github.io/index.html
https://www.journals.elsevier.com/journal-of-visual-languages-and-computing

8 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

scope of this paper, is to use visual programming approaches to specify logic-based languages,
as done by Ladret and Rueher (Ladret and Rueher 1991) and Agustı́ et al. (Agustı́ et al. 1998)

Defining visual languages using a logic-based language in general, and Prolog in particular,
ensures that declarative and operational semantics can be shared among humans and between
humans and machines. The declarative semantics allows both humans and machines to reason
about the specification independently of the implementation, while the operational semantics
allows the generation and recognition of images defined by the specification. After a very active
period in the early nineties of the last century, the “logic-based visual languages” research field
has produced less results, probably due to the raise of statistical approaches in the meanwhile.

Crimi et al. introduced the concept of relational grammars (Crimi et al. 1991): while tex-
tual languages use an implicit sequential concatenation relationship, the proposed extension re-
laxes this constraint by providing an arbitrary number of geometric relationships. Helm and
Marriott defined the relationships between images and their meaning via a class of declarative
and constraint-based specification languages, written in Prolog (Helm and Marriott 1991), and
Wittenburg et al. presented a formalism called unification-based grammar and a parsing algo-
rithm for visual languages in (Wittenburg et al. 1991) . The formalism extends D-PATR (Kart-
tunen 1986) with logical constraints and a new bottom-up parsing method. Meyer introduced
a new technique to extend Logic Programming with terms representing partially specified im-
ages (Meyer 1992). To this aim, the Picture Clause Grammar (PCGs), a form of specification
for visual languages similar to the Definite Clause Grammar (DCGs) of textual languages, is
defined. None of these proposals come with an implemented prototype, making their practical
applicability limited.

Santosh et al.’s proposal (Santosh et al. 2009) is close to ours both in the system architecture
and in the methodological approach, but not in the final goal. They aim at expressing graphic
symbols by a number of graphical primitives that may be of any complexity and connecting
relationships that can be deduced from state-of-the art image treatment and analysis tools. The
existence of suitable tools for image pre-processing is also assumed by us, by including the
Detector and Classifier modules presented in the next sections in the OntoScene architecture.
The symbolic representation obtained by the image analysis tools is then provided to an inductive
logic programming solver that outputs a set of logical rules that define the positive example set.
On the contrary, we provide the symbolic representation of elements detected in the scene to a
Prolog program that, thanks to rules that model the domain expert knowledge, provide a semantic
interpretation of the scene.

Antanas et al. present a framework combining compositional hierarchies, qualitative spatial
relations, relational instance-based learning and robust feature extraction (Antanas et al. 2012).
For each layer in the hierarchy, sub-structures in the images are detected, classified and then
employed one layer up the hierarchy to obtain higher-level semantic structures, by making use of
qualitative spatial relations implemented in Prolog. Given that we may have scenes that include
scenes, we support a hierarchical structure as well. So far, we only employed two levels in the
hierarchy (one scene that includes another scene, that only includes “atomic” tokens, as in Table
13, third and fourth images) but there are in principle no reasons for adding more layers. W.r.t.
that work, we also have a domain ontology and a MAS coordinating the interactions among the
framework components.

In their work, Di Martino and Esposito do not consider any low-level image processing stage,
but integrate a domain ontology in the system architecture, like in OntoScene (Di Martino and Es-
posito 2016): the authors describe a procedure and a prototype implementation for the automatic

OntoScene: a Logic-based Scene Interpreter 9

recognition of design patterns from documentation of software artifacts design and implementa-
tion, provided in XMI11. The procedure exploits a semantic representation of the patterns to be
recognized, based on an existing ontology. Both the UML set of diagrams related to the analysed
software artifacts and the patterns represented in the ontology are translated into a Prolog knowl-
edge base. A Prolog program implements the heuristics and features that trigger the recognition
on that knowledge base.

Although not based on logic programming, it is worth mentioning the work by Hammond
and Davis (Hammond and Davis 2007), which uses the rule-based language Jess (Hill 2003) for
specifying how sketched diagrams in a domain are drawn, displayed, and edited, and the work
by Costagliola et al. (Costagliola et al. 2005), which uses rules named “sketch patterns” for
describing and recognizing diagrammatic sketch languages, and that are very close to Jess rules.

Spatial ontologies and ontology-driven scene interpretation. Research on modeling either spa-
tial or domain-dependent concepts (or both) in an ontology, and exploiting such an ontology for
interpreting a graphical scene, is closely connected with our work. Haarslev et al. present one of
the first works in this area (Haarslev et al. 1994), introducing “spatio-terminological inferences”
to mean a three-level view of inference processes combining quantitative, qualitative and con-
ceptual representations. They use the TBox and ABox of LOOM (Baader et al. 1991), and apply
spatio-terminological reasoning to parsing visual programming languages. Other works by the
same research group use different ontology languages and address different application domains,
but remain consistent with the seminal proposal. As an example, Haarslev et al. exploit descrip-
tion logic and apply ontological reasoning to sketch-based queries for Geographical Information
Systems (Haarslev 1999; Haarslev et al. 2002).

In his recent book “Description Logics in Multimedia Reasoning”, Sikos presents an integrated
and comprehensive analysis of issues relevant to our work, with chapters on spatial Description
Logics, spatial annotations, and reasoning tools (Sikos 2017).

Forestier et al. and Bannour and Hudelot present other ontologies for modeling spatial con-
cepts and reasoning on scenes and images (Forestier et al. 2008; Bannour and Hudelot 2011). To
make a recent example, Guérin et al. (Guérin et al. 2017) exploit one ontology that formalizes
the basic concepts of the image processing domain and provides a way to organize and use input
and output data in a formal structure, and provide a formal ontological implementation of the
comic books domain. This ontology is meant to handle the content of a comic book, to support
the automatic extraction of its visual components, and to formalize the semantics of the domain’s
codes.

Whilst taking inspiration from works on spatial ontologies, OntoScene needs to model notions
like “Classification” and “Interpretation” that allow us to distinguish between the “syntax” of
the image, dealt with by the Detector and Classifier modules, and its semantics, devised thanks
to ontological reasoning on the domain, along with logical reasoning. Being a JADE MAS, our
framework requires the OntoScene ontology to be compliant with the JADE requirements for
ontology management. For these reasons, we could not reuse existing ontologies as they are;
moreover, some ontologies were not available to the research community and others were not
modeled in OWL, as needed in our work. Nevertheless, we took them into account when model-
ing the “GeometricRelations” concept.

11 The XML Metadata Interchange (XMI), https://www.omg.org/spec/XMI, accessed on July 2019.

https://www.omg.org/spec/XMI

10 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

3 The OntoScene Framework: a Gentle Introduction

3.1 The Initial Scenario

Fig. 3. A Complex Scene from the book by de Lumley and Echassoux (de Lumley and Echas-
soux 2009), page 176, figure 142. This and all the other images taken from that book are repro-
duced by kind permission of Professors de Lumley and Echassoux.

Viviana is very curious about the prehistoric rock art of Mount Bego and she would like to
know how a domain expert would interpret the image shown in Figure 3 according to the most
recent archaeological findings.

In that image, Viviana can only see a “matrix” in the top right corner, with a kind of filled
trapeze overlapping it, and three symbols very similar to each other, made of lines with filled
rectangles in the middle, in the center and the bottom left corner of the image.

Massimiliano, who is good at detecting and classifying symbols from a purely syntactic point
of view, explains her that the “matrix” can be classified as a “Reticulum Class” with 100% con-
fidence, the trapeze along with the rectangle just below it can be classified as a “Dagger Class”,
and the three symbols made of lines with small filled rectangles in the middle, can be classified
as “Up Corn Class”. These classes are drawn from an ontology modelling information about
Mount Bego’s petroglyphs.

Viviana is far from being satisfied, since this syntactic classification says nothing about the
meaning of symbols and of the scene as a whole. She sends the information provided by Massi-
miliano to Daniela, who knows many archaeologists, and asks her if she can provide a semantic
interpretation of the scene.

Daniela contacts Annie and Henry: Annie is very good in associating domain-dependent mean-
ing to symbol classifications. By exploiting the same ontology used by Massimiliano, she can
confirm that a symbol classified as a “Reticulum Class”, when interpreted inside a rock art
artifact from Mount Bego, actually represents a “Reticulum”; in another domain, the “Retic-
ulum Class” might have been interpreted as “Prison Bars” or “Chess Board”: decoupling the
classification from the interpretation fosters reuse and modularity, and the domain ontology is a

OntoScene: a Logic-based Scene Interpreter 11

good means for achieving this aim. A “Dagger Class” represents a “Dagger” in the Mount Bego
rock art domain, and the “Up Corn Class” represents a “Corniform”.

The semantics associated by Annie with the classifications devised by Massimiliano is still not
enough to interpret the scene: more knowledge and more reasoning are needed. Taking Annie’s
interpretation of symbols belonging to the scene into account, Henry reasons about them and
their spatial relationships and finally informs Daniela that the dagger and the reticulate at the
top of the image identify the “Storm God” inside a pastoral scene, characterized by a group of
corniforms (de Lumley and Echassoux 2009). Another possible interpretation could be that the
two corniforms in the center of the image, one inside the other, identify the “Bull God”, and the
bottom left corniform is a stand-alone symbol, unrelated with the others. However, Henry thinks
that the first interpretation is the most likely one.

Viviana is now happy with this explanation: by moving from symbol classification (symbol
syntax) to interpretation (symbol semantics), and then combining interpretations into coherent
sub-scenes via domain-dependent rules, her friends helped her understanding the image.

Fig. 4. OntoScene Framework: architecture and data flow.

The people involved in this scenario and the way they interact reflect the OntoScene framework
that we developed: each person could be suitably associated with an agent or a component in the
OntoScene software framework depicted in Figure 4:

• Viviana is an unnamed, generic agent AgentX that wants to understand the meaning of a
scene depicted inside an input image: she interacts with a software module (Massimiliano)
able to detect coherent sub-images, also named “tokens”, inside an image and to classify
them, and with another agent (Daniela) that acts as an interface with the domain experts.

• Massimiliano plays the role of token Detector and Classifier, and is able to divide
an input image into sub-images. The computed set of sub-images, each one associated with
a list of possible classifications, is sent back to AgentX, Viviana in this example.

• Daniela acts as the OntoScene Agent, managing the interactions with Annie and Henry,
to provide an interpretation for the image.

• Annie and Henry implement the intelligent engine able to interpret scenes according to the

12 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

meaning of classified tokens, and to the rules that aggregate such interpretations (also tak-
ing spatial relations into account), to provide a semantics of the complex scenes (Scene
Interpreter).

• All these agents and components share a common ontology.

To go deeper inside the high level architecture of OntoScene and the data flow within it, white
rectangles in Figure 4 represent system modules, while light yellow (light gray in B/W) rectan-
gles represent either data flowing between them, or data that are used by them. Circles represent
agents and the blue (dark gray in B/W) rectangles with rounded corners represent the two plat-
forms involved in the process.

An arrow flowing from A to B tagged with data D, represented as a rectangle on the arrow
itself, means that D is generated as an output by A and used as an input by B. An arrow flowing
from A to B with no tag means that A generates some output that becomes an input for B (but
we do not need to identify it). A gray line between two components means that a “uses/is used”
relationship holds between them.

Data managed by OntoScene are:

• Image, the raw input image to be interpreted;
• InputImages, the output of the Detector and Classifier representing the input image and

the tokens therein, along with their bounding boxes and their classifications, in a symbolic
format;

• Prolog Rules, which are set by the domain experts and define how to interpret an image;
• Interpretations, which represent the final output computed by OntoScene;
• Ontology, which represents the application domain, namely the classifications, interpreta-

tions and geometric relationships that are meaningful for the specific image domain and
interpretation task; these concepts are used by the Rules (Section 3.5).

3.2 Syntactic Pre-processing: Detector and Classifier

The interpretation of the input scene requires that it has been segmented into atomic sub-images
(“tokens”) and that one or more classifications have been associated with each of them. To this
aim, we assume the availability of a Detector and Classifier.

We do not enter into the details of how these modules could be designed and implemented,
since many libraries and tools for solving the bounding box detection and the classification prob-
lems exist and are available to the community. Just to make some examples, the MathWorks
Image Processing Toolbox12 provides algorithms for image processing, analysis, visualization,
segmentation; OpenCV13, cross-platform and free for both academic and commercial use, of-
fers 2D segmentation and recognition functionalities suitable for the implementation of both the
Detector and the Classifier, besides many other advanced features; ImageJ14, written in Java,
and Pillow15, in Python, are other libraries providing edge detection functionalities useful for
implementing the Detector module.

12 https://www.mathworks.com/products/image.html, accessed on July 2019.
13 http://opencv.org/, accessed on July 2019.
14 https://imagej.nih.gov/ij/index.html, accessed on July 2019.
15 https://python-pillow.org/, accessed on July 2019.

https://www.mathworks.com/products/image.html
http://opencv.org/
https://imagej.nih.gov/ij/index.html
https://python-pillow.org/

OntoScene: a Logic-based Scene Interpreter 13

As far as the classification of images in the rock art domain is concerned, we refer to our pre-
vious work within the IndianaMAS project, where ad-hoc detection and classification algorithms
were developed (Briola et al. 2017; Mascardi et al. 2014).

Fig. 5. How the Detector and Classifier modules interact.

To show how the Detector and Classifier modules are expected to work, we consider
an example. The input image in Figure 5 contains three figures: a rectangle, a triangle, and a
circle. The Detector identifies the three sub-images and associates them with a bounding
box rectangle (BB) representing their position and size within the image. The Classifier
analyzes the sub-images identified by the Detector and assigns the R (rectangle), T (triangle)
and C (circle) classifications, consistently with the domain ontology.

The Classifier is expected to assign multiple classifications to the detected figures, in case
of ambiguity. Its output is hence a list of possible classifications for each BB, with an associated
confidence in the interval [0.0, 1.0]. If there are no doubts about the classification, the list will
contain one element only.

3.3 From Syntax to Semantics: SceneInterpreter

Fig. 6. The SceneInterpreter module.

Figure 6 shows the SceneInterpreter, the core module of OntoScene. SceneInter-
preter takes an image consisting of a set of tokens in input (we will call this set a “scene”)
and returns all its interpretations. It is driven by logical rules that define the possible meanings
of each token recognized during the detection and classification stages, and the “well formed”
scenes that the framework can recognize and interpret along with their meaning.

A figure classified as a Circle might be interpreted as a Planet in an astronomic domain,
as a Face in an emoticon recognition domain, as a Traffic_Light_Element by a self-
driving car: the classification as a circle is not enough to correctly interpret a figure in a context
made up of other figures. Making the link between the classification and the interpretation levels
explicit allows the designer to reuse the classification output and to change the scene interpreta-
tion according to the current domain, by only changing the interpretation rules.

14 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

As an example, in the rock art domain that provides the case study of this work, a figure clas-
sified as an Anthropomorphic_Shape might be interpreted as a Human, a figure classified
as a Line_Shape might be either a Sword or a Staff, and a triangle should be interpreted
as a mage cap.

The interpretation of an individual token is defined by means of the interpretation(Cl,
ImgInt) fact that associates the interpretation ImgInt with the classification Cl. In the rock
art example, interpretation facts might look like

interpretation(’Anthropomorphic_Shape’, ’Human’).
interpretation(’Line_Shape’, ’Sword’).
interpretation(’Line_Shape’, ’Staff’).
interpretation(’Triangle_Shape’, ’MageCap’).

Rules that define how to interpret scenes can be presented, in a user-friendly and simplified
form, as rule(SceneInt, ImgList){Cond}, stating that the scene consisting of sub-
images listed in ImgList should be interpreted as SceneInt based on conditions Cond.
The conditions involve the interpretations of sub-images in ImgList and the spatial relations
between/among them.

interpretationRule ::= rule(sceneInt , [imgList]){cond}
sceneId ::= uppercase alphanumeric string
imgId ::= uppercase alphanumeric string
interprId ::= uppercase alphanumeric string
sceneInt ::= ’ sceneId ’
imgList ::= imgId | imgId , imgList
constraint ::= interprId(imgId) | property(imgList)
disjcond ::= constraint or constraint | constraint or disjcond
cond ::= constraint | (disjcond) | constraint ; cond
property ::= horizontal | vertical | diagonal | disjoint | ...

Table 1. User-friendly modelling language for scene interpretation rules: boldface symbols are
terminals; alphanumeric uppercase strings are defined in the usual way; properties should include
at least the geometric binary relations listed in the BNF, but unary properties such as the image
color or source, and n-ary properties such as belonging to the same group, could be added.

Domain experts may use the user-friendly syntax, whose BNF is presented in Table 1, which
can be automatically translated into standard Prolog16.

As an example, the first rule below can be read as “if token X has been interpreted as a human
figure, and if token Y has been interpreted as a sword, and if X and Y are positioned horizontally,
then they form a scene representing a Warrior”. The second rule is similar, but states when
two tokens represent a Shepherd.

rule(’Warrior’, [X,Y]) { rule(’Shepherd’, [X,Y]) {
Human(X); Human(X);
Sword(Y); Staff(Y);
horizontal(X,Y); horizontal(X,Y);

} }

16 The translation has not been implemented so far, but the automatic translation rules are easy to devise, with ; translated
into ,, or translated into ;, testing of geometric properties translated into jpl call with the property to be tested as
argument.

OntoScene: a Logic-based Scene Interpreter 15

Fig. 7. Input scene: first example.

Let us suppose that the Classifier has classified the left-most sub-image in Figure 7 as
an Anthropomorphic Shape and the right-most as a Line_Shape, and the rules above
have been loaded into the SceneInterpreter module. Let us also assume that the horizontal
geometric relationship holds between the two sub-images. SceneInterpreter generates two
interpretations: Warrior(I1) and Shepherd(I2). Interpretation I1 is generated when the
right-most sub-image is interpreted as a Sword (because of the rule for Warrior) while I2 is
generated when it is interpreted as a Staff (because of the rule for Shepherd).

Fig. 8. Input scene: second example.

Figure 8 shows the interpretations of the same scene shown in Figure 7 where a triangular
shape has been added on top of the human figure. SceneInterpreter always tries to aggre-
gate as many tokens as possible, but since there are no rules involving the mage cap together with
the other elements of the figure, the computed interpretations are those output before, where the
triangle is interpreted as a “stand-alone” element.

If another rule were available,

rule(’Wizard’, [X,Y,Z]) {
Human(X);
MageCap(Y);
Staff(Z);
vertical(X,Y);
horizontal(X,Z);

}

stating that a wizard is a human figure with a magician’s hat on top and a stick placed hori-
zontally, then the SceneInterpreter output would be the one shown in Figure 9.

3.4 Making OntoScene Functionalities Available to JADE: the OntoSceneAgent

OntoScene has been designed to be a component able to offer the interpretation service, and to
be naturally integrated within a JADE MAS. The steps required to perform the integration in a
JADE MAS are:

16 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Fig. 9. Input scene: third example.

• to integrate the ontology used in the MAS with the OntoScene ontology in order to allow
all agents to be aware of the input and output concepts used within the framework and
allow their exchange via JADE messages;

• to add a new JADE action representing the interpretation of a scene (InterpretAction):
we achieved both these two steps thanks to the OBJ5.0 framework (Briola et al. 2018);

• to implement an agent acting as an interface between the other agents and OntoScene; this
agent (the OntoSceneAgent) waits for an agent A to send a request to perform the action
InterpretAction, with an input scene, calls the SceneInterpreter module on
it, and returns the scene interpretations to A.

Since this issue is not central to the paper, which focuses on the implementation of the On-
toScene framework, we do not expand it further.

3.5 The OntoScene Ontology

Fig. 10. The OntoScene Ontology in the OntoScene context.

To formalize the OntoScene domain and make interoperability among the many modules in-
volved in the framework possible (Figure 10), an ontology called OntoScene Ontology has been
designed and implemented.

The OntoScene Ontology is aimed at ensuring modularity and domain-independence: the user
can extend it by adding more domain concepts from existing or new ontologies. In fact, concepts
such as Classification and Interpretation, which characterize the ontology (see

OntoScene: a Logic-based Scene Interpreter 17

Section 4.1 for more details) are necessarily domain-specific: by changing the domain ontology
that extends the OntoScene Ontology, and consistently changing the interpretation rules, the user
can modify the application domain while leaving the OntoScene core functionalities unchanged.

3.6 Back to the Initial Scenario

Fig. 11. The Scene from the book by de Lumley and Echassoux (de Lumley and Echassoux
2009) with detected bounding boxes.

Thanks to the components mentioned in the previous sections, we can obtain the bounding
boxes shown in Figure 11 and the interpretations, represented in a way that should be intuitive
enough and that will be explained in details in Section 5, below:

I1 = [Storm_God(Reticulum-0, Dagger-1),
Group_Of_Corniforms(Corniform-2,Corniform-3,Corniform-4)].

I2 = [Storm_God(Reticulum-0, Dagger-1),
Bull_God(Corniform-2,Corniform-3),Corniform-4].

Given that bb(X,Y,W,H) states the X and Y coordinates of the top- and left-most corner of the
bounding box plus its Width and Heigh, this is the actual result we get by running OntoScene on
the input

image(0, bb(161, 12, 165, 167), [class(’Reticulum_Class’, 1.0)]).
image(1, bb(257, 68, 109, 281), [class(’Dagger_Class’, 1.0)]).
image(2, bb(86, 323, 162, 129), [class(’Up_Corn_Class’, 1.0)]).
image(3, bb(107, 337, 181, 162),[class(’Up_Corn_Class’, 1.0)]).
image(4, bb(3, 506, 144, 23), [class(’Up_Corn_Class’, 1.0)]).

and includes the correct interpretation I1 provided by Henry de Lumley and Annie Echassoux,

18 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

two archaeologists who spent their life on rock art interpretation, in the book from which the
image is taken.

4 Modelling and Implementing Domain and Spatial Knowledge

4.1 Domain Knowledge

The OntoScene ontology imports the JADE template ontology, needed to let the ontology be
directly usable by JADE, as described in Section 2.1. It contains all the concepts that Sce-
neInterpreter uses during a scene interpretation, and is designed to be extended with an
existing domain ontology to integrate SceneInterpreter within a MAS in a transparent
way. The classes provided by the OntoScene ontology are shown in Figure 12.

Fig. 12. The OntoScene ontology.

Point. The Point class contains two single float properties X and Y.

BoundingBox. The BoundingBox class, abbreviated as BB, represents the rectangle that bounds
a single image.

ComputedClassification. The ComputedClassification class represents a classification
computed by the Classifier along with its confidence. It contains the single properties
identifiedClassification with range Classification and confidence with
range float.

OntoScene: a Logic-based Scene Interpreter 19

ComputedInterpretation. The ComputedInterpretation class represents an interpreta-
tion computed by SceneInterpreter with the associated confidence and its size, namely
how many input images have been aggregated. It contains the single properties identified-
Interpretationwith range Interpretation, confidencewith range float and size,
with range int.

Classification and Interpretation. Classification and Interpretation are two classes
without any property and their meaning is the intuitive one. To allow SceneInterpreter to
interpret an input scene, some classes from the domain ontology must necessarily extend these
two classes with domain-specific classifications and interpretations.

GR. The GR class is used as a container for methods representing geometric relationships, to be
called within the body of rules through predicates offered by the JPL library. SceneInterpre-
ter uses an internal class called GeometricRelationsImpl with the implementation of
those methods that we used to test the program. More sophisticated implementations can be used
instead of the ones we provide: the Java Method Mapper panel of OBG5.0 allows the developer
to create methods under the GR class and export their interface, in order to be implemented.

Fig. 13. The Image class. Multiple stands for List of.

Image. The Image class represents a basic or composite scene. It contains a single id property
of type int that acts as an identifier, a single boundingBox property of type BoundingBox
for the BB, a multiple classification property of type ComputedClassification
listing all the classifications assigned by the Classifier to the image in the scene, a multiple
interpretation property of type ComputedInterpretation including the interpreta-
tions computed by SceneInterpreter and a multiple subParts property of type Image
that contains all the sub-images that form the image, as shown in Figure 13.

The Image class is the main data structure used by SceneInterpreter to keep track of
the relationship between Prolog scenes represented as Prolog facts, and Java scenes represented
as instances of the Java Image class. Each time a new node (namely, a new scene) is added to
the scene graph, the corresponding Image instance is also created inside it: there is a one-to-one
association between each node in the scene graph and an Image instance. In the sequel we will
usually use image and sub-image when we refer to data representations on the Java side, and
scene and sub-scene when we refer to the Prolog side.

In order to work properly, SceneInterpreter expects input images with these features:

• id and boundingBox fields instantiated;
• classifications instantiated with a list of one or more classifications;

20 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

• empty interpretations list;
• empty subParts list.

The association between classifications and interpretations is computed by the Prolog engine
via the interpretation/2 predicate introduced in Section 3.3.

After the creation, via the aggregation rules, of a composite scene in Prolog, SceneInter-
preter creates a new Image object that corresponds to the new scene and has these features:

• id field instantiated with a new unique identifier;
• boundingBox obtained by merging the BBs of the sub-scenes;
• empty classifications list, as only basic scenes have a classification;
• interpretations list containing the computed interpretations;
• subParts instantiated with the list of the sub-images.

SceneInterpretation. The SceneInterpretation class represents an interpretation of the
input scene. It contains a composedBy property of type Image that contains all the images of
the interpretation in the format presented above, corresponding to the scenes that can coexist.

The agent that, upon reception of an InterpretScene action presented below, is required
to provide a scene interpretation, returns a SceneInterpretation list.

InterpretScene Action. The InterpretScene class extends the JADE AgentAction class
and represents the action of requesting the interpretation of an input scene. It contains a mul-
tiple property inputImages of type Image representing the images in the input scene and
two boolean properties, distinct and filtered, which refer to the interpretation mode.
When distinct mode is selected, all the scenes in the final list of SceneInterpretation
must be distinct Java objects, in order to obtain a readable and writable data structure. When
filtered mode is on, only filtered interpretations are returned.

An example Ontology: Battle. The Battle ontology models a simplified domain that will be
used in the next section. Figure 14 shows how the Classification and Interpretation
classes of OntoScene can be sub-classed by classes characterizing the Battle domain, where
armed warriors fight using swords or axes. The Java files generated by OBG5.0 are shown in
Figure 15.

4.2 Spatial Knowledge

To interpret scenes with SceneInterpreter, the user must identify the required geometric
relationships and must create methods in the GR class of the OntoScene ontology to represent
them. If the user has no special requirements, (s)he can use the GRImpl we provide with the
framework. Implementing geometric relationships is not easy, because different domains may
need different relationships. An exception are topological relationships (disjoint, overlap, etc.)
for which known mathematical formalisms exist. We used the JTS library to implement the fol-
lowing ones:

Boolean horizontal (BB bb1, BB bb2, String pos)
Boolean horizontal (BB bb1, BB bb2)
Boolean vertical (BB bb1, BB bb2, String pos)
Boolean vertical (BB bb1, BB bb2)
Boolean diagonal (BB bb1, BB bb2, String pos)

OntoScene: a Logic-based Scene Interpreter 21

Fig. 14. Domain-dependent concepts that ex-
tend OntoScene classes.

Fig. 15. The files generated by OBG5.0.

Boolean diagonal (BB bb1, BB bb2)
Boolean disjoint (BB bb1, BB bb2)
Boolean overlap (BB bb1, BB bb2)
Boolean contains (BB bb1, BB bb2)
Boolean absNear (BB bb1, BB bb2, float th) /* absolute proximity */
Boolean relNear (BB bb1, BB bb2, float th) /* relative proximity */
Boolean absGroup (List <BB> bbs, float th) /* group, using absNear */
Boolean relGroup (List <BB> bbs, float th) /* group, using relNear */

Horizontal, vertical and diagonal relationships. The parameters of these methods are two BBs
and – optionally – a string indicating the position that bb1 must have w.r.t. bb2. The position
may be right or left for horizontal, up or down for vertical and se, sw, ne, nw for diagonal. For
example, diagonal(bbx, bby, ne) is true if bbx is positioned north-east w.r.t. bby.

Topological relationships disjoint, overlap and contain. These methods take two BBs bbx and
bby in input and answer whether bbx rel bby holds. For example, contains(bbx,bby)
is true if bbx contains bby.

Absolute proximity AbsNear and relative proximity RelNear. Besides the two BBs, these methods
also have a third parameter to state the threshold under which the two BBs are considered “close”.
This threshold therefore defines the proximity semantics.

In absNear the threshold indicates an absolute value expressed in an arbitrary measure unit
determined by the domain expert such as pixels, centimeters, etc. For example, assuming pixels
as the measure unit, absNear(bbx, bby, 10.0) is true if the absolute distance between
the edges of bbx and bby is less than 10px.

In relNear the threshold indicates a relative value between 0 and 1.0. This allows us to
define “proximity” in a way robust to the image scaling. For example, relNear(bbx, bby,
0.2) is true if X ≤ 0.2, where X is the value of some expression that the user can define. The one
we implemented is explained in Figure 16: we compute JTSDist, namely the distance between
bbx and bby computed by JTS, we merge bbx and bby into mbb, we compute Diagonal,
namely the length of mbb diagonal. X is JTSDist/Diagonal. If both bounding boxes are

22 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Fig. 16. Graphical representation of the formula used by relNear.

scaled by a factor F, relNear(bbx*F, bby*F, 0.2) is the same as relNear(bbx,
bby, 0.2), making the definition invariant w.r.t. scaling.

Finally, the absGroup and relGroup methods compute the “neighborhood” relationship
on a list of BBs using absNear and relNear respectively.

5 SceneInterpreter

The Detector and Classifier modules work on raw images and produce an “input im-
age” consisting of bounding boxes associated with possibly many classifications of their content,
drawn from an ontology, along with a confidence on that classification. SceneInterpreter
takes this classified “input image” as input and transforms it into a set of “basic scenes”, namely
triples consisting of (image, classification, interpretation).

For each input image, SceneInterpreter creates as many basic scenes from the (classi-
fication, interpretation) pairs as it can. For example, if a sub-image Img1 has been classified by
the Classifier module as C1 or C2, and C1 has I11 and I12 as possible interpretations,
while C2 can only be interpreted as the I21, three basic scenes are generated:

basic_scene(Img1, C1, I11).
basic_scene(Img1, C1, I12).
basic_scene(Img1, C2, I21).

The scene interpretation rules that drive SceneInterpreter define how to aggregate the
elements in a scene, be they atomic sub-images or scenes, depending on the geometric relation-
ships holding among them. We name them aggregation rules in the remainder. Aggregation rules
have been also called “scene interpretation rules” in the paper; in this section we prefer to use
“aggregation” to clearly differentiate them from the interpretation predicate that will be
presented in Section 5.1, which associates an interpretation to a basic image, based on its classi-
fication. A composite scene is a scene created by the aggregation of other scenes, which may be
in turn basic or composite ones. We talk about scene, without further distinction, when it is not
necessary to distinguish whether the scene is a basic or a composite one. SceneInterpreter
generates a scene graph representing all the scenes that can be derived by applying the aggrega-
tion rules to the basic scenes generated from an input image.

As an example, the figure in Table 2, left, shows a scene graph resulting from an input scene
containing five different sub-images: they have been transformed into five basic scenes (BS1,
BS2, BS3, BS4 and BS5), and then into [composite] scenes thanks to the available aggregation
rules. For example in this case, by applying some aggregation rule, BS1 and BS2 can be aggre-
gated into CS1. BS2, BS3 and BS4 can be aggregated into CS2, and so on. We point out that
BS2 was used by an aggregation rule to form CS1, and by another to form CS2. In the same way,

OntoScene: a Logic-based Scene Interpreter 23

BS4 can be used to form both CS2 and CS3. BS2 and BS4 are called shared scenes. The scenes
graph is oriented (from top to bottom) and acyclic. A top node, or top scene, is a node with no
incoming edges. In the figure in Table 2, left, CS1 and CS4 are top nodes.

Input Image Interpretations

I1 = [BS1, BS2, BS3, BS4, BS5]
I2 = [CS1, BS3, BS4, BS5]
I3 = [CS1, BS3, CS3]
I4 = [BS1, CS2, BS5]
I5 = [BS1, CS4]

Table 2. A scene graph created from an input image with five sub-images, plus the generated
interpretations.

SceneInterpreter core functionalities have been implemented in Prolog. For efficiency
issues, however, geometric relationships have been implemented in Java and are called by Prolog
through the JPL library introduced in Section 2.1.

The steps to be performed to set up SceneInterpreter and to interpret an input image
are the following:

1. define the aggregation rules in Prolog (done only once);
2. initialize the Java SceneInterpreter module;
3. select the aggregation rules;
4. load a scene composed of a list of images plus their classification (the output of the

Detector and Classifier modules), serializing them into basic scenes;
5. apply aggregation rules to create composite scenes and generate the scene graph;
6. generate all the interpretations by calling the knuth algo x predicate on the scene

graph;
7. filter out interpretations that can be derived from others (optional) and provide the final,

sorted result.

The steps from 4 to 7 are discussed in Sections from 5.1 to 5.4, respectively.

5.1 Serializing Images in Basic Scenes

To allow SceneInterpreter to serialize input images into Prolog scenes, associations be-
tween classifications and domain interpretations created under the Classification and In-
terpretation ontology classes must be provided. The predicate that OntoScene offers to this
aim is

interpretation/2
interpretation(Class,Inter).

whose meaning is that a picture classified as Class can be interpreted as Inter. For the clas-
sification and interpretation within the Battle domain we defined the following facts:

24 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

interpretation(’Human_Class’, ’Human’).
interpretation(’Sword_Class’, ’Sword’).
interpretation(’Axe_Class’, ’Axe’).

The Human Class classification can be directly interpreted as Human, the Sword Class as
Sword and the Axe Class as Axe. During the image serialization, these facts are used by
SceneInterpreter to create the basic scenes.

A predicate called scenes/6 is used to represent basic and composite scenes in Prolog. The
signature of the predicate is the following:

scenes/6.
scenes(ID, BB, Class, Inter, Conf, SS).

• ID is the identifier that Prolog uses to identify scenes17;
• BB is the reference to the Java object representing the BoundingBox of the image in the

input scene;
• Class is the classification of the image from which this scene comes from. The field is

instantiated in basic scenes and is empty in composite scenes;
• Inter is the interpretation of the scene. For basic scenes the variable is instantiated by

calling the interpretation/2 predicate, while for composite scenes the value to as-
sociate with the variable is computed by applying the aggregation rules;

• Conf is the confidence of the interpretation associated with the scene. For basic scenes
whose confidence in the classification is C, Conf is computed as C*(1.0/Count),
where Count is the number of interpretations associated with the scene. For composite
scenes, Conf = (Conf1 + Conf2 + ... ConfN) / Nwhere N is the number of
aggregated scenes, and ConfX is the confidence of X scene;

• SS stands for SubScenes and is the list of the IDs of the basic scenes belonging to the
scene.

The serialization algorithm is, in pseudocode, the following:

InputScene S;
For (Image img: S.getImages ())

For (Classification class: img.getClassifications ())
For (Interpretation inter: interpretation (class, inter))

Assert (scenes (ID, BB, class, inter, Conf, SS))

That is, given an input scene S, for each sub-image img belonging to S, for each classification
class of img, for each interpretation inter found by calling the Prolog interpretation/2
predicate, the fact scene with suitable arguments is asserted in the Prolog knowledge base, for
efficient retrieval. Each individual input image is subdivided into as many basic scenes as the
found (class, inter) pairs.

For example, let us suppose that the input scene consists of three sub-images shown in Table
3, classified as Human Class, Sword Class, and Axe Class with maximum confidence.
Images are serialized in three scene Prolog facts as shown in the right part of the table.

In the first example, each classification is associated with only one interpretation defined by the
domain ontology, but in general there could be a one-to-many relationship. Let us now make the

17 The Id property of the Image class is used by Java and may be different from ID.

OntoScene: a Logic-based Scene Interpreter 25

Input Image Interpretations

scene(0, BB1, ’Human_Class’, ’Human’, 1.0, [0]).
scene(1, BB2, ’Sword_Class’, ’Sword’, 1.0, [1]).
scene(2, BB3, ’Axe_Class’, ’Axe’, 1.0, [2]).

Table 3. Input Scene, example 1.

Fig. 17. Extending the Battle ontology with new classifications and interpretations.

example more complex by adding the Dagger Class classification and the Dagger, God,
God Axe, and Wizard interpretations (Figure 17). New interpretation facts could be
defined as:

interpretation(’Human_Class’, ’God’).
interpretation(’Human_Class’, ’Wizard’).
interpretation(’Axe_Class’, ’God_Axe’).
interpretation(’Dagger_Class’, ’Dagger’).

Input Image Interpretations

scene(0, BB1, ’Human_Class’, ’Human’, 0.33, [0]).
scene(0, BB1, ’Human_Class’, ’God’, 0.33, [0]).
scene(0, BB1, ’Human_Class’, ’Wizard’, 0.33, [0]).
scene(1, BB2, ’Sword_Class’, ’Sword’, 0.8, [1]).
scene(1, BB2, ’Dagger_Class’, ’Dagger’, 0.5, [1]).
scene(2, BB3, ’Axe_Class’, ’Axe’, 0.5, [2]).
scene(2, BB3, ’Axe_Class’, ’God_Axe’, 0.5, [2]).

Table 4. Input Scene, example 2.

In a second example shown in Table 4, the image in the center can be classified in two ways:
Sword Class and Dagger Class (each having only one interpretation), while the image
on the left has one classification Human Class with three interpretations (Human, God and
Wizard). The image on the right has one classification (Axe Class) and two interpretations
(Axe and God Axe). The confidence is 1.0*(1.0/3) = 0.33 for each interpretation of the

26 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

left image, is 0.8*(1.0/1) and 0.5*(1.0/1)) for the two interpretations of the image in
the center, and is 1.0*(1.0/2) for the image on the right.

5.2 Applying aggregation rules for composite scenes and updating the scene graph

After defining the interpretation/2 predicate for the basic scenes, it is necessary to create
aggregation rules for composite scenes. We use the predicate rules/2, stating which scenes
should be aggregated, which geometric relationships between their BBs should hold, and com-
puting a list of scene facts that SceneInterpreter uses to generate (possibly) a new com-
posite scene, with interpretation Inter.

The clauses for the rule predicate, which are semi-automatically compiled into Prolog from
the user-friendly modelling language presented in Table 1, follow this pattern:

rule(Inter, Scenes): -
% Part 1: Selects the scenes to be aggregated in the Scenes list
% Part 2: Computes geometric relationships

These rules convey the very same meaning and structure as those presented in Section 3.3;
they are less readable since they use the concrete Prolog syntax and JPL calls to spatially-related
methods based on JTS. For sake of clarity we will abuse Prolog notation by using ImgInt(X)
to mean that token X has been interpreted as ImgInt. The (manual) process for compiling the
user-friendly modelling language into Prolog is not optimized: this can be noticed for example
in the usage of append in Table 5, which could be avoided by using unification instead. While
losing in elegance of the resulting code, the naif manual compilation produced rules which follow
the same pattern and gave useful hints on how they implement the automatic compilation, which
will be addressed as a close future work.
Two utility predicates used inside rule clauses are

relations/1
relations(GR).

and

subclass_of/2
subclass_of(Class, SubClass).

relations(GR) unifies GRwith a reference to the implementation of the interface for the geo-
metric relations, instantiated during the OntoScene configuration stage via a call to jpl new/3.
In our code, the assertion of the relations(GR) predicate is achieved via

assert_relations :-
jpl_new(’onto_impl.GeometricRelationsImpl’, [], GR),
assert(relations(GR)).

Other OntoScene users might use our implementation of geometric relations, provided via the
’onto impl.GeometricRelationsImpl’ interface, or develop a new one.

The subclass of(Class, SubClass) is a predicate exported with OBG5.0: it allows
scenes to be analyzed by exploring hierarchies of classes in the ontology, in particular those
below the Classification and Interpretation classes.

Each scene generated by applying one aggregation rule is asserted as a node of the scene graph

OntoScene: a Logic-based Scene Interpreter 27

which is modelled via the image graph(G) fact, and which is updated any time a new scene
interpretation is computed for a given image, reaching at the end the structure exemplified in
Table 2.

In the sequel we provide some examples of aggregation (scene interpretation): near is used
as an abbreviation for absNear and lengths are expressed in pixels.

Example 1: Warrior Scene (Human + Weapon). A generic Warrior scene can be defined as
a combination of a Human scene and a basic scene classified as X, where X is a sub-class of
Weapon Class in the ontology (Table 5).

Example Image Scene Interpretation Rule

rule(’Warrior’, Scenes) :-
scene(ID1, BB1, Class1, ’Human’, Conf1, SS1),
subclass_of(’Weapon_Class’, Class),
interpretation(Class, Weapon),
scene(ID2, BB2, Class2, Weapon, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Human’, Conf1, SS1)],

[scene(ID2, BB2, Class2, Weapon, Conf2, SS2)],
Scenes),

relations(GR),
jpl_call(GR, horizontal, [BB1, BB2], @(true)),
jpl_call(GR, near, [BB1, BB2, 2.0], @(true)).

Table 5. Warrior Scene (Human + Weapon). Image and rule.

A composite scene can be defined by other composite scenes. For example, if we want to
define a Battle scene as a combination of two composite Warrior scenes, a rule could
be defined to check that two Warrior scenes have been detected in the image, and that they
are close enough. In general, the user can implement rule in any way, using all the expressive
power of Prolog and creating auxiliary predicates for designing and implementing more complex
rules. The rules presented so far only aggregate two scenes at a time, but of course it is possible
to select a larger number. For example, a scene of War could be formed by an arbitrary number
of Battle scenes close to each other, as shown in the next paragraph.

Example 2: War scene (group of Battle). Figure in Table 6 shows a War scene consisting of three
Battle scenes, close to each other. The rule implementation could be the one on the right of
the table, which looks for all the asserted Battle scenes and nondeterministically selects some
of them using the sublist/2 predicate. Finally, it checks that those scenes are close enough
to form a group (jpl call(GR, group, [BBs, 10.0], @(true))).

Example Image Scene Interpretation Rule

rule(’War’, Scenes) :-
findall(scene(ID, BB, Class, ’Battle’, Conf, SS),

scene(ID, BB, Class, ’Battle’, Conf, SS),
Battles),

sublist(Battles, Scenes),
relations(GR),
jpl_call(GR, group, [BBs, 10.0], @(true)).

Table 6. War scene (group of Battles).

28 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

5.3 Computing all the possible interpretations

The main functionality of SceneInterpreter consists of analyzing all the nodes in the scene
graph to determine which of them can coexist in an interpretation (which has to contain all the
basic scenes). Two nodes can coexist in the same interpretation if and only if they do not share
any basic scene. For example, in the figure in Table 2, node CS1 and node CS2 cannot coexist in
an interpretation because they share BS2.

This “coexistence check” resorts to the NP-complete exact cover problem (Karp 1972). Let X
be the set of the basic scenes computed, and asserted, in the way discussed in Section 5.1. Each
node in the scene graph identifies a subset of X: the scene graph is a collection S of subsets of a
set X. By definition, an exact cover of X is a subcollection S* of S that satisfies two conditions:

1. The intersection of any two distinct subsets in S* is empty, i.e., the subsets in S* are
pairwise disjoint. In other words, each element in X is contained in at most one subset in
S*.

2. The union of the subsets in S* is X, i.e., the subsets in S* cover X. In other words, each
element in X is contained in at least one subset in S*.

A subcollection S* satisfying the two properties above is indeed what we name a scene inter-
pretation. SceneInterpreter implements Donald Knuth’s Algorithm X for the exact cover
problem (Knuth 2000). Algorithm X is a recursive, nondeterministic, depth-first, backtracking
algorithm: the ideal algorithm for Prolog!

If we disregard the code for managing matrices (an update matrix predicate is needed,
whose code is not shown), the Algorithm X’ Prolog implementation is 14 lines long, excluding
comments.

The exact cover problem is represented in Algorithm X using a matrix A consisting of 0s and
1s. The goal is to select a subset of the rows so that the digit 1 appears in each column exactly
once. Table 7 shows the Prolog code for the algorithm, implemented by the knuth algo x
predicate:

knuth_algo_x/5.
knuth_algo_x(M, Nodes, NumNodes, AccSolution, Solution).

• M represents the matrix associated with the collection S of subsets of X (which, in turn, is
associated with the scene graph stored via the image graph(G) fact); it is represented in
a standard way as a list of lists, making it possible to exploit the transpose/2 predicate
offered by the SWI-Prolog CLP(FD) library for Constraint Logic Programming over Finite
Domains18.

• Nodes is the list of nodes in the scene graph.
• NumNodes is the number of nodes in the scene graph.
• AccSolution is the accumulator argument.
• Solution is unified with the solution, when the algorithm terminates.

The nondeterministic choice of the row via the member(Row, M) goal allows the algorithm
to “clone” itself into independent subalgorithms which work on a reduced version of the matrix
M. Searching the state space is of course left to the Prolog interpreter.

18 https://www.swi-prolog.org/pldoc/doc/_SWI_/library/clp/clpfd.pl, accessed on July
2019.

https://www.swi-prolog.org/pldoc/doc/_SWI_/library/clp/clpfd.pl

OntoScene: a Logic-based Scene Interpreter 29

% if the matrix is empty, terminate by unifying the last argument
% with the accumulator
knuth_algo_x([], _, _, Solution, Solution) :- !.

% otherwise
knuth_algo_x(M, Nodes, NumNodes, AccSolution, Solution) :-

% deterministically select one column containing as few 1s
% as possible
transpose(M, TM),
get_col_with_less_ones(TM, NumNodes, 0, 0, ColIndex, ColCount),
ColCount > 0,

% non deterministically select one row with the selected
% column equal to 1
member(Row, M),
nth0(ColIndex, Row, 1, _),

% update the partial solution
nth0(Index, M, Row, _),
nth0(Index, Nodes, SolutionNode, _),
append(AccSolution, [SolutionNode], NewAccSolution),

% update the matrix
findall(I, nth0(I, Row, 1, _), ColumnsToRemove),
update_matrix(M, ColumnsToRemove, NewM, RemovedRowsIndexes),

% remove the nodes that were associated with the removed rows
findall(N,(member(N,Nodes), nth0(I1, Nodes, N, _),
\+ member(I1, RemovedRowsIndexes)), NewNodes),

% recursively call the algorithm on the reduced matrix and nodes
knuth_algo_x(NewM, NewNodes, NumNodes, NewAccSolution, Solution).

Table 7. Donald Knuth’s Algorithm X implementation in Prolog.

Each set of nodes in the graph scene which is an exact cover of the basic scenes is an interpre-
tation of the input scene. The possible interpretations of the figure in Table 2, left, are reported
in the table right side.

The set [BS1, BS2, BS3] is not an interpretation because it does not contain all the input
images (BS4 and BS5 are missing) and [CS1, CS4] is not correct as well because both CS1
and CS4 share the same scene BS2 (and hence cannot coexist).

5.4 Filtering, sorting, and returning interpretations

Usually one input image generates many scene interpretations, some of which can be derived
from others by substituting one aggregated scene with the sub-scenes which form it. Scene-
Interpreter can filter out interpretations that can be derived by others in this way. In the
example above, I1 and I2 can be derived from I3 and can be filtered out: if we substitute CS1
with its children BS1 and BS2, and (resp. or) CS3 with BS4 and BS5, we obtain I1 (resp. I2).

Each interpretation is checked against the others computed so far, to avoid duplicates due to

30 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

the order of nodes in the interpretation, and is associated with a weight computed as the sum
of the squares of the aggregated scenes lengths. As an example, the weight of the following
interpretations is 8 and 4, respectively.

I1 = [W1(Human-0, Sword-1), W2(Human-3, Sword-2)]. % Weight = 8
I2 = [Human-0, Sword-1, Human-3, Sword-2]. % Weight = 4

Interpretations are sorted in decreasing weight order, from the one which aggregates more
scenes together to the one where less aggregation rules have been exploited. In the example
above, I1 “aggregates more” than I2 and comes before I2 in the list of computed interpretations,
but both are returned.

5.5 SceneInterpreter at work

In this section we show further examples in the Battle domain, each coming with an informal
description and the interpretations that the Prolog interpreter generates when the genera-
teAllInterpretations and generateFilteredInterpretations predicates are
called. We consider images whose possible classifications are Human Class, Sword Class
and Axe Class, with maximum confidence. For each classification, we assume that only one
interpretation exists:

interpretation(’Human_Class’, ’Human’).
interpretation(’Sword_Class’, ’Sword’).
interpretation(’Axe_Class’, ’Axe’).

In Table 8 the basic scenes generated for the images that will be used in the examples are
reported.

Input Image Basic Scenes

scene(ID1, BB1, ’Human_Class’, ’Human’, 1.0, [0]).
scene(ID2, BB2, ’Sword_Class’, ’Sword’, 1.0, [1]).
scene(ID3, BB3, ’Axe_Class’, ’Axe’, 1.0, [2]).

Table 8. Basic scenes used in the next examples.

In the next examples, for each scene we show the scene graph (generated by calling the
applyRules method) and the generated interpretations. We consider the following compos-
ite scenes:
Warrior = Human + Weapon (Sword or Axe)
with distance between the BB of Human and the BB of Weapon ≤ 2px.
Battle = Warrior + Warrior
with distance between the BBs ≤ 5px.

OntoScene: a Logic-based Scene Interpreter 31

Example scene 1. Table 9 shows a Human (ID = 0) close to another figure (ID = 1) that
can be classified as Sword Class and Axe Class, and hence interpreted as Sword and Axe.
The scene graph generated by applyRules contains two Warriors, W1 and W2. The gener-
ated interpretations are reported on the right of the table.

Input Image Interpretations

generateAllInterpretations (4):
I1 = [W1(Human-0, Sword-1)].
I2 = [W2(Human-0, Axe-1)].
I3 = [Human-0, Sword-1].
I4 = [Human-0, Axe-1].

GenerateFilteredInterpretations (2):
I1 = [W1(Human-0, Sword-1)].
I2 = [W2(Human-0, Axe-1)].

Table 9. Example 1 of a complex scene with its interpretations.

Example scene 2. Table 10 shows four Humans and four Weapons. Each Human is close enough
to the Weapon at its right to be interpreted as a Warrior (W1, W2, W3, W4), and each
Warrior is close enough to the adjacent Warrior to be considered as a Battle (B1, B2,
B3). The first five generated interpretations, on a total of 29 ones, are reported on the right of the
table.

Input Image Interpretations

generateAllInterpretations (29):
I1 = [B1(W1, W2), B3(W3, W4)].
I2 = [W1(Human-0, Sword-1), B2(W2, W3),

W4(Human-6, Axe-7)].
I3 = [W1(Human-0, Sword-1), W2(Human-2, Sword-3),

B3(W3, W4)].
I4 = [B1(W1, W2), W3(Human-4, Sword-5),

W4(Human-6, Axe-7))].
I5 = [Human-0, Sword-1, B2(W2, W3),

W4(Human-6, Axe-7)].

(24 more interpretations are generated).

GenerateFilteredInterpretations (2):
I1 = [B1(W1, W2), B3(W3, W4)].
I2 = [W1(Human-0, Sword-1), B2(W2, W3),

W4(Human-6, Axe-7)].

Table 10. Example 2 of a complex scene with its interpretations.

Example scene 3. Table 11 shows two Humans on the right and on the left of the picture, both
close to the two Swords in the center. Each Human can only be associated with the Sword
that is closest to him (Human 0 cannot be associated with Sword 2 and the same for 3 and 1).
Hence, the only possible interpretations are two Warriors W1 and W2 and one Battle B1.
The generated interpretations are reported on the right of the table.

32 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Input Image Interpretations

generateAllInterpretations (3):
I1 = [B1(W1, W2)].
I2 = [W1(Human-0, Sword-1), W2(Human-3, Sword-2)].
I3 = [Human-0, Sword-1, Human-3, Sword-2].

GenerateFilteredInterpretations (1):
I1 = [B1(W1, W2)].

Table 11. Example 3 of a complex scene with its interpretations.

6 Case Study: Interpreting Scenes from the Rock Art Domain

In this section, we present OntoScene at work. The domain where we experimented it is the one
introduced in Section 3.1: Mount Bego’s prehistoric rock art.

6.1 Studies by Clarence Bicknell and Henry de Lumley

Archaeologists and historians look at the area around Mount Bego as an incredibly valuable
source of knowledge, due to the up to 40,000 figurative petroglyphs and 60,000 non-figurative
petroglyphs scattered over a large area at an altitude of 2,000 to 2,700 meters.

The historical relevance of the Mount Bego petroglyphs is unquestionable, as they date back
to the early Bronze Age, when humans left no written evidences and the only witnesses of their
existence are their tools and, indeed, their drawings.

The explorer who first realized the importance of Mount Bego carvings was Clarence Bicknell,
who, at the turn of the 20th century, created an important catalogue of most of the petroglyphs in
Mount Bego (Bicknell 1913).

Many years after Bicknell’s campaigns, several teams led by Henry de Lumley have been
surveying and mapping this archaeological area starting from 1967 (Bianchi 2011; de Lumley
and Echassoux 2009).

The University of Genova owns a collection of 16,000 drawings and reliefs made by Clarence
Bicknell between 1898 and 1910, in his campaigns on Mount Bego. Bicknell’s Legacy also
includes nine notebooks, filled with notes in Victorian English, mostly unpublished. The publi-
cation on the web of about 350 images from the Bicknell’s drawings and reliefs (Rolls 8, 20, 23,
available on the Bicknell Legacy web site) along with their classification was one of the results
of the IndianaMAS research project.

The images used for the experiments presented in this section and in the Appendix come
from the Bicknell’s Legacy and from the book by de Lumley and Echassoux (de Lumley and
Echassoux 2011): we report an identifier under each image to refer to the first (abbreviated into
BL, R. for Roll and P. for page) or to the second (abbreviated into DE, P. for page and F. for
figure number).

For each type of scene in the dataset, three or four images were manually selected to repre-
sent the most frequent recognized patterns. The Detector and Classifier modules were
simulated by manually drawing BBs around the sub-images of the scene and assigning them the
classifications provided by Dr. Nicoletta Bianchi, who collaborated with us in the IndianaMAS
project and in the construction of the Bicknell Legacy website. With her help, we also produced
a natural language interpretation rule for Bicknell’s images and we translated them in Prolog for

OntoScene: a Logic-based Scene Interpreter 33

each scene type. As far as de Lumley and Echassoux’ images are concerned, the natural language
interpretation rules are those written in their book.

6.2 Experiments

We analyzed 34 images of scenes, covering 9 different interpretations. In the sequel we report
the facts and rules used to interpret the pastoral scene, and the results of the performed tests; to
make the paper more compact, for three more scenes we only provide a textual explanation of
the scene interpretation and the computed results. The Prolog rules for these three scenes can be
found in the Appendix, along with five more examples. For sake of clarity, the bb(X,Y,W,H)
argument of the image predicate is omitted in the following tables, which report the selected
images and the respective interpretations with the test results.

6.3 Pastoral scene (corniforms group)

Interpretation of the scene by archaeologists: A group of corniforms close to each others rep-
resents a pastoral scene.

Association between sub-image classification and sub-image interpretation:

interpretation(’Corniform_Class’, ’Corniform’).

Rules for scene interpretation:

rule(’Group_Of_Corniforms’, Scenes) :-
findall(scene(ID, BB, Cl, ’Corniform’, Conf, SS),

scene(ID, BB, Cl, ’Corniform’, Conf, SS),
Corns),

sublist(Corns, Scenes),
findall(BB,

member(scene(_, BB, _, _, _, _), Scenes),
BBs),

prolog_list_to_java_list(BBs, JavaBBs),
relations(GR),
jpl_call(GR, group, [JavaBBs, 0.5], @(true)).

Explanation: the rule

• creates the set of corniforms in the scene by calling findall(scene(ID, BB, Cl,
’Corniform’, Conf, SS), scene(ID, BB, Cl, ’Corniform’, Conf,
SS), Corns)),

• non deterministically picks one partition of the set of corniforms by calling sublist(Corns,
Scenes),

• for the selected partition, retrieves the list of bounding boxes of the images therein by call-
ing findall(BB, member(scene(, BB, , , ,), Scenes), BBs),

• transforms the Prolog list BBs into a format suitable for being passed as an argument to a
Java call (prolog list to java list(BBs, JavaBBs), and finally

• checks if the bounding boxes form a group by calling relations(GR), jpl call(GR,
group, [JavaBBs, 0.5], @(true)).

Table 12 reports the results of the four analyzed images, all correctly interpreted.

34 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Image Input Single Images Resulting Interpretation Final result

BL, R. 20, P. 5

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 1.0)])
image(5, [class(’Corniform_Class’, 1.0)])
image(6, [class(’Corniform_Class’, 1.0)])
image(7, [class(’Solid_Ellipse_Class’, 1.0)])
image(8, [class(’Corniform_Class’, 1.0)])
image(9, [class(’Corniform_Class’, 1.0)])
image(10, [class(’Solid_Ellipse_Class’, 1.0)])
image(11, [class(’Corniform_Class’, 0.6)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4, Corniform-5,
Corniform-6, Corniform-8, Corniform-9, Corniform-11),
Cup_Stone_7, Cup_Stone_10]
I2 = [Corniform-0, Corniform-1, Corniform-2, ...,
Cup_Stone_7, Cup_Stone_10]

Passed

BL, R. 20, P. 63

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 1.0)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4)]
I2 = [Corniform-0, Corniform-1, Corniform-2,
Corniform-3, Corniform-4]

Passed

BL, R. 20, P. 80

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])
image(4, [class(’Corniform_Class’, 0.7)])
image(5, [class(’Corniform_Class’, 1.0)])])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3, Corniform-4, Corniform-5)]
I2 = [Corniform-0, Corniform-1, Corniform-2, ...]

Passed

DL, P. 230, F. 202

image(0, [class(’Corniform_Class’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])
image(2, [class(’Corniform_Class’, 1.0)])
image(3, [class(’Corniform_Class’, 1.0)])

I1 = [Group_Of_Corniforms(Corniform-0, Corniform-1,
Corniform-2, Corniform-3)]
I2 = [Corniform-0, Corniform-1, Corniform-2,
Corniform-3]

Passed

Table 12. Results of the interpretation of Pastoral scenes.

6.4 Ritual sacrifice

Interpretation of the scene by archaeologists: One halberd near one, or few more, corniforms,
represents a ritual sacrifice. From the analysis of the available images, we identified three pat-
terns: one where the BB of the corniform is inside the one of the halberd, another one where the
two BBs are overlapping, and a last one where there are more corniforms.

Explanation: the rule shown in Section 8.1 selects one halberd and another scene called Victim
(a corniform or a group of corniforms) in the Scenes list. The check succeeds if the halberd’s
BB contains or overlaps with the one of the Victim.

Table 13 reports the results of the four analyzed images: the last one has not been recognized
because the two bounding boxes are neither overlapping nor one inside the other, as required by
the rule.

6.5 Bull God birth

Interpretation of the scene by archaeologists: One corniform below the High Goddess, shown
in Figure 18, represents the Bull God born by the High Goddess. By analyzing the available im-
ages, two patterns were discovered: the first is where the high Goddess is above the Bull God,

OntoScene: a Logic-based Scene Interpreter 35

Image Input Single Images Resulting Interpretation Final result

DE, P. 187, F. 154(3)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,Corn-1)]
I2=[Halberd-0, Corn-1]

Passed

DE, P. 187, F. 154(10)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,Corn-1)]
I2=[Halberd-0, Corn-1]

Passed

DE, P. 187, F. 154(12)

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])
image(2,[(’Corniform_Class’,1.0)])

I1=[Ritual_Sacrifice(Halberd-0,
Group_Of_Corniforms(Corniform-1,Corniform-2))]
I2=[Halberd-0,
Group_Of_Corniforms(Corn-1, Corn-2)]
I3=[Halberd-0, Corn-1, Corn-2]

Passed

BL, R. 8, P. 165

image(0,[(’Halberd_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])
image(2,[(’Corniform_Class’,1.0)])

I1=[Halberd-0,
Group_Of_Corniforms(Corn-1, Corn-2)]
I2=[Halberd-0, Corn-1, Corn-2]

Failed (no
overlap)

Table 13. Results of the interpretation of Ritual Sacrifice scenes.

Fig. 18. The High Goddess, DE, P. 328, F. 342.

and close to him; the other is where she is above and partially overlaps with him.

Explanation: the rule shown in Section 8.2 checks whether the token recognized as High God-
dess is vertically aligned with the token representing the Bull God, and either overlaps with it, or
it is close to it.

Table 14 reports the results of the four analyzed images: the fourth one has not been correctly
interpreted because the High Goddess is not close enough to the Bull God. The problem might be
easily solved by changing the proximity parameter in jpl call(GR, near, [BB1, BB2,
0.5], @(true)) from 0.5 to a higher value. Nevertheless, given that in most scenes rep-
resenting the Bull God birth, the High Goddess is very close to him, increasing the proximity

36 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

threshold might cause scenes with the High Goddess and one unrelated corniform nearby to be
interpreted in the wrong way.

Image Input Single Images Resulting Interpretation Final result

BL, R. 20, P. 134

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(2)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(4)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [HG_Giving_Birth_BG(High_Goddess-0,
Bull_God-1)]
I2 = [High_Goddess-0, Bull_God-1]

Passed

DE, P. 330, F. 345(3)

image(0, [class(’Double_Appendixes’, 1.0)])
image(1, [class(’Corniform_Class’, 1.0)])

I1 = [High_Goddess-0, Bull_God-1]
Failed (not close
enough)

Table 14. Results of the interpretation of Bull God Birth scenes.

6.6 Storm God

Interpretation of the scene by archaeologists: One dagger and one reticulum with some over-
laps represent the Storm God.

Explanation: the rule shown in Section 8.3 searches for a dagger and a reticulum, checking if
they overlap.

Table 15 reports the results of four analyzed images; the first three ones have been correctly
interpreted. The last one has not, because the reticulate and the dagger are very close, but do not
overlap.

OntoScene: a Logic-based Scene Interpreter 37

Image Input Single Images Resulting Interpretation Final result

DE, P. 171, F.
133(2)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1]

Passed

DE, P. 171, F.
133(4)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1]

Passed

DE, P. 171, F.
133(5)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])

I1=[Storm_God(Dagger-0, Reticulum-1)]
I2=[Dagger-0, Reticulum-1]

Passed

BL, R. 20, P. 33

image(0,[(’Corniform_Class’,1.0)])
image(1,[(’Reticulum_Class’,1.0)])
image(2,[(’Dagger_Class’,1.0)])
image(3,[(’Corniform_Class’,1.0)])

I1=[Dagger-2, Reticulum-1,Corn-0, Corn-3]
Failed (no
overlap)

Table 15. Results of the interpretation of Storm God scenes.

6.7 Discussion

Suitability of Prolog for modelling and implementing the scene interpretation rules. The power
of Prolog for specifying scene interpretation rules is properly exemplified by the rule in Section
6.3 that exploits the findall all-solutions predicate for collecting all the images interpreted as
corniforms into one set, generates one partition of the set in a nondeterministic way, and tests
whether this partition enjoys the definition of being a group. If it does not, another partition is
generated in backtracking and tested. By putting the sublist predicate inside a findall
one, and then running the “is a group?” test on all the computed solutions, we would have ob-
tained many more interpretations, one for each sub-group of corniforms in the scene. To keep it
as simple and efficient as possible, the rule(’Group Of Corniforms’, Scenes) goal
succeeds as soon as the first group is found. While this rule was directly implemented in Prolog
by the authors, based on the trivial intuition of what is a group of corniforms, other rules where
sketched by the domain expert Dr. Nicoletta Bianchi using the formalism presented in Table 1,
and then translated by the authors into Prolog, following translation rules that can be easily au-
tomatized. This is the case, for example, of the Bull God birth rule presented in Section 8.2,
whose rule in the user-friendly syntax is

rule(’HG_Giving_Birth_BG’, [X,Y]) {
High_Goddess(X);
Bull_God(Y);
(vertical(X,Y) or near(X,Y) or overlap(X,Y))

}

38 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Test results. We consider one test passed when OntoScene returns the correct interpretation, pos-
sibly together with other ones; 29 scenes out of 34 were correctly interpreted. The 5 scenes whose
interpretation failed, did not satisfy the geometric constraints that the associated rule imposed.
Failures are due to sub-images in the scene which do not overlap, while they should according to
the rule, or that are not close enough, or that do not respect the expected orientation. In one case,
failure is due to the lack of a suitable implementation for a geometric relation, “around”. Given
that scenes in this domain present a high variability, even when they have been resorted to the
same interpretation by the domain experts, writing “the perfect rules”, keeping them as compact
as possible, and as few as possible, is very hard. For example, the last test presented in Section
8.8 fails because the priest is above the repository, whereas the rule designed by the expert only
accepts scenes where the priest is (or the two priests are) below. Adding one rule for coping with
the failed test would not be difficult, but Nicoletta Bianchi knew that scenes like the one that
failed the test are definitely less frequent than those that passed the test, and she suggested that –
in some cases – obtaining a false negative could be better than designing many complex rules. In
fact, OntoScene is meant to be a support to the domain experts, and not to substitute them in any
way. Having a sound tool as OntoScene is, allows the expert to trust the “Passed” result, and to
check only the “Failed” one. Although the human in the loop is still required, this approach may
save a lot of time.

Likelihood of interpretations. SceneInterpreter computes all the scene interpretations
which are consistent with the provided rules, but says nothing on the likelihood of one inter-
pretation versus another. Coping with this further refinement does not represent a technical ob-
stacle as it just resorts to sorting the elements in the list of computed interpretations according
to some criterion. The actual obstacle is eliciting the sorting criterion from the domain experts,
and formalizing it. In all the 29 passed tests, the first interpretation returned, namely the one
which “aggregates more” (see Section 5.4), turned out to be the correct one. This observation
might suggest some heuristics for pruning the search tree, such as keeping the weight of the
best interpretation obtained so far, and avoiding to expand branches whose weight is expected
to be lower. However, the fact that this simple sorting criterion worked finely in the rock art
application domain, tells nothing on its generality. Different domain experts may have different
personal opinions on how to select the correct interpretation of a scene, among many plausible
ones, and associating a likelihood weight with each scene is not only domain dependent, but even
domain expert dependent. This makes general and universally accepted sorting criteria difficult
to assess: we did not face this issue in this paper, but it could be addressed either by integrating a
heuristic criterion in the Algorithm X presented in Section 5.3 to stop recursion before the matrix
M is empty, or by adding a post-processing stage of the SceneInterpreter output into the
framework data flow. In the first case, the solution could be computed more efficiently, but could
even get lost if the heuristic is not precise enough. In the second case, all the solutions should be
computed, and efficiency would not benefit from the post-processing.

Performance. We did not assess the performance of OntoScene, both because efficiency was
not our main concern, and because our experiments were run on scenes with no more than 11
sub-images: too few to raise efficiency issues. Despite the implemented optimization of Donald
Knuth’s Algorithm X, where selection of the column to remove is made in a clever way, the
complexity of the problem itself is high, and the only way to reduce it would be to give up
finding the exact solution, and integrate some heuristics in the algorithm.

OntoScene: a Logic-based Scene Interpreter 39

If stress-tested on scenes consisting of a large number of sub-images, we expect that On-
toScene bottleneck should turn out to be SceneInterpreter, which would be a bottleneck
even if implemented in any other language, because of the complexity of the exact cover algo-
rithm it implements. Dovier et al. (Dovier et al. 2005) show how different NP-complete problems
could be solved with either ASP (Lifschitz 1999) or CLP(FD) (Marriott and Stuckey 1998), also
on inputs with size greater than 2000. Based on these results, and considering that they date back
to 15 years ago, we may suppose that, with today’s computing power, with efficient Prolog im-
plementations, and possibly with a careful exploitation of more advanced technologies like ASP
and CLP(FD), we could use SceneInterpreter on scenes with 2000 sub-images or more.

We point out, however, that adopting OntoScene to model scenes with hundreds or thousands
of sub-images does not seem a viable approach to scene interpretation, and not because of per-
formance issues. Rule modelling is worth the effort if the modelled rules are general enough
to cover a large number of different scenes, but the more the scene elements, the more specific
the rule. For example, designing an OntoScene rule for interpreting the scene represented in the
Parthenon frieze would require to model the relations holding between/among 378 human figures
and 245 animals. A precise rule for achieving this goal would succeed on the Parthenon frieze,
and would fail on anything else, and its usefulness would be very limited.

7 Conclusions and Future Works

OntoScene is a modular platform aimed at supporting the interpretation of complex scenes based
on ontologies and logical rules defined in Prolog. Ontologies allow the designer to formalize the
domain and make the system modular and interoperable with existing MASs, while Prolog pro-
vides a solid basis to define complex rules of interpretation in a way that can be affordable even
for people with no background in Computational Logics. The feedback we got from Nicoletta
Bianchi, with whom we designed the rules presented in Sections 6 and 8, is that such rules are in
a one-to-one, straightforward correspondence with the interpretation rules she had in mind, mak-
ing their formalization easy to address at least in the user-friendly syntax presented in Section
3.

The overall design of our framework allows to easily change both the domain, modifying
the ontology in the domain specific parts (under Classification and Interpretation
classes), the used geometric relationships, and the Prolog rules (that are formalized in an external
file): furthermore its inclusion in an already existing JADE MAS is quite simple (as described
in Section 3.4) thanks to the adoption of the standard JADE usage of OWL ontologies. This
makes the exploitation of our framework for other visual languages and existing systems easily
achievable.

The case study presented in Section 6 comes from the IndianaMAS project. The results ob-
tained from the experiments are encouraging and demonstrate the flexibility of our approach.
The failures that we have reported might have been solved by minor changes to the rules or to
the parameters therein. Given that the purpose of our experiments was neither to stress-test the
framework, nor to provide a systematic evaluation of its precision and recall, but to show its
applicability to a real domain, we left them as hints for a practical use of the framework.

Many improvements can be made to OntoScene.
So far, we assume that the Detector associates one bounding box with each sub-image: we

did not take the possibility of detection ambiguity into account, as we assume that the Detector
operates in a deterministic way. Apart from a growing time complexity, there would be no tech-

40 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

nical obstacles in allowing the Detector to produce more solutions (we mean producing, for the
same input image, different decompositions into the sub-images detected there, namely different
“sets of recognized bounding boxes”) and then deal with each of them separately, by running the
Classifier and the SceneInterpreter on each of them.

Also, scenes are sensitive to orientation. While this is the correct approach in the rock art
domain, where the interpretation may change depending, for example, on one sub-image being
above or below another, it might turn out to be a limitation in other domains.

As far as Prolog rules are concerned, we only used rules meeting a very specific pattern: the
initial part of the rule deals with the selection of the scenes to be aggregated, while the second
part computes the geometric relations holding among them. This pattern worked well in the rock
art domain, but more properties could be associated with images, ranging from features intrinsic
to the image itself like the color, to semantically or emotionally related notions like the mood,
and these properties could be part of the rules as well. OntoScene allows to add new properties to
the Image class in the ontology, and use these properties within the logical rules, according to
the needs of the end user. For example, we might want to extend the example presented in Figure
7, and define a happy, red warrior. The Prolog rule might be

rule(’Red_Happy_Warrior’, Scenes) :-
scene(ID1, Img1, Class1, ’Human’, Conf1, SS1),
scene(ID2, Img2, Class2, ’Sword’, Conf2, SS2),
append([scene(ID1, Img1, Class1, ’Human’, Conf1, SS1)],

[scene(ID2, Img2, Class2, ’Sword’, Conf2, SS2)],Scenes),
bb(Img1, BB1),
bb(Img2, BB2),
mood(Img1, ’Happy’),
color(Img2, ’Red’),
relations(GR),
jpl_call(GR, overlap, [BB1, BB2], @(true)).

where mood and color appear before the relations predicate.
Another extension we could address in the close future, is to improve geometric relationships.

OntoScene supports the addition and definition of new arbitrarily complex geometric relation-
ships: the Image class in the ontology can be extended with new geometric properties as the
area, the notion of BB can be refined by using a polygonal closed line instead of a rectangle, and
so on: the framework puts no limits on the type of accepted geometric relationships.

Finally, engraved rock art scenes are represented by black-white, bidimensional images often
containing just a few elements placed in relatively simple geometric relationships. Given that
the two phases of the SceneInterpreter computation (the creation of the scenes graph and
the generation of interpretations) are computationally heavy, they might require optimizations
to scale to more complex domains. The possibility to improve the SceneInterpreter ef-
ficiency by rewriting it in ASP or CLP(FD) is under evaluation, although, before facing this
language shift, we should find a domain where scenes are as complex as to motivate it.

The Prolog code for the SceneInterpreter and for some of the examples used for our ex-
periments, and the OWL representation of the ontology, are currently available “as they are” from
http://www.disi.unige.it/person/MascardiV/Download/OntoScene.zip.
Once the above improvements will be ready, we plan to make OntoScene available to the research

http://www.disi.unige.it/person/MascardiV/Download/OntoScene.zip

OntoScene: a Logic-based Scene Interpreter 41

community via a well designed website, after a suitable addition of comments, tutorials, and a
user guide in English.

Acknowledgments

We thank Prof. Henry de Lumley and Annie Echassoux for granting us the permission to repro-
duce some figures from their book (de Lumley and Echassoux 2011), and Martine Bertéa, Rights
Director of CNRS éditions, for helping us in obtaining their permission.

We are grateful to Dr. Nicoletta Bianchi for her precious support in the IndianaMAS project
and in the activities we faced after its conclusion.

Finally, we thank the anonymous reviewers for their thorough reading and for their construc-
tive comments.

42 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

References

AGUSTÍ, J., PUIGSEGUR, J., AND ROBERTSON, D. 1998. A visual syntax for logic and logic programming.
Journal of Visual Languages & Computing 9, 4, 399–428.

ANTANAS, L., VAN OTTERLO, M., MOGROVEJO, O., ANTONIO, J., TUYTELAARS, T., AND DE RAEDT,
L. 2012. A relational distance-based framework for hierarchical image understanding. In Proceedings
of the 1st International Conference on Pattern Recognition Applications and Methods. Vol. 2. 206–218.

BAADER, F., BÜRKERT, H.-J., HEINSOHN, J., AND HOLLUNDER, B. 1991. Terminological knowledge
representation: A proposal for a terminological logic. In International Workshop on Terminological
Logics. KIT-Report 89, TU Berlin, Fachbereich Informatik.

BALDASSANO, C. 2015. Visual scene perception in the human brain: connections to memory, categoriza-
tion, and social cognition. PhD Thesis, Stanford University.

BANNOUR, H. AND HUDELOT, C. 2011. Towards ontologies for image interpretation and annotation. In
Content-Based Multimedia Indexing (CBMI), 2011 9th International Workshop on. IEEE, 211–216.

BELLIFEMINE, F. L., CAIRE, G., AND GREENWOOD, D. 2007. Developing multi-agent systems with
JADE. John Wiley & Sons.

BIANCHI, N. 2011. Mount Bego prehistoric rock carvings. Adoranten, 70–80.
BICKNELL, C. 1913. A Guide to the Prehistoric Rock Engravings in the Italian Maritime Alps. Tip. G.

Bessone.
BRIOLA, D. 2016. Agents and ontologies for a smart management of heterogeneous data: The indianamas

system. Studies in Computational Intelligence, vol. 616. Springer, 25–36.
BRIOLA, D., DEUFEMIA, V., MASCARDI, V., AND PAOLINO, L. 2017. Agent-oriented and ontology-

driven digital libraries: the indianamas experience. Software - Practice and Experience 47, 11, 1773–
1799.

BRIOLA, D., DEUFEMIA, V., MASCARDI, V., PAOLINO, L., AND BIANCHI, N. 2014. Ontology-driven
processing and management of digital rock art objects in indianamas. In Proceedings of 5th International
Conference Digital Heritage (EuroMed 2014). Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8740, 217–227.

BRIOLA, D., MASCARDI, V., AND GIOSEFFI, M. 2018. OntologyBeanGenerator 5.0: Extending ontology
concepts with methods and exceptions. In Proceedings of the 19th Workshop From Objects to Agents,
Palermo, Italy, M. Cossentino, L. Sabatucci, and V. Seidita, Eds. CEUR Workshop Proceedings, vol.
2215. CEUR-WS.org, 116–123.

COSTAGLIOLA, G., DEUFEMIA, V., AND RISI, M. 2005. Sketch grammars: a formalism for describing and
recognizing diagrammatic sketch languages. In Eighth International Conference on Document Analysis
and Recognition (ICDAR’05). 1226–1230 Vol. 2.

CRIMI, C., GUERCIO, A., NOTA, G., PACINI, G., TORTORA, G., AND TUCCI, M. 1991. Relation gram-
mars and their application to multi-dimensional languages. Journal of Visual Languages & Comput-
ing 2, 4, 333–346.

DE LUMLEY, H. AND ECHASSOUX, A. 2009. The rock carvings of the chalcolithic and ancient bronze
age from the mont bego area. the cosmogonic myths of the early metallurgic settlers in the southern alps.
L’Anthropologie 113, 5, 969–1004.

DE LUMLEY, H. AND ECHASSOUX, A. 2011. La montagne sacrée du Bego. CNRS Editions.
DI MARTINO, B. AND ESPOSITO, A. 2016. A rule-based procedure for automatic recognition of design

patterns in UML diagrams. Software: Practice and Experience 46, 7, 983–1007.
DONAHUE, J., JIA, Y., VINYALS, O., HOFFMAN, J., ZHANG, N., TZENG, E., AND DARRELL, T. 2014.

Decaf: A deep convolutional activation feature for generic visual recognition. In International conference
on machine learning. 647–655.

DOVIER, A., FORMISANO, A., AND PONTELLI, E. 2005. A comparison of CLP(FD) and ASP solutions to
np-complete problems. In Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain,
October 2-5, 2005, Proceedings, M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science,
vol. 3668. Springer, 67–82.

OntoScene: a Logic-based Scene Interpreter 43

FORESTIER, G., DERIVAUX, S., WEMMERT, C., AND GANÇARSKI, P. 2008. An evolutionary approach
for ontology driven image interpretation. In Workshops on Applications of Evolutionary Computation.
Springer, 295–304.

GERBER, C., SIEKMANN, J. H., AND VIERKE, G. 1999. Holonic multi-agent systems. Tech. Rep. DFKI-
RR-99-03, Deutsches Forschungszentrum für Künztliche Inteligenz - GmbH, Postfach 20 80, 67608
Kaiserslautern, FRG.

GUARINO, N., OBERLE, D., AND STAAB, S. 2009. What is an ontology? In Handbook on ontologies.
Springer, 1–17.

GUÉRIN, C., RIGAUD, C., BERTET, K., AND REVEL, A. 2017. An ontology-based framework for the
automated analysis and interpretation of comic books’ images. Inf. Sci. 378, C (Feb.), 109–130.

HAARSLEV, V. 1999. A logic-based formalism for reasoning about visual representations. Journal of Visual
Languages & Computing 10, 4, 421–445.

HAARSLEV, V., MÖLLER, R., AND SCHRÖDER, C. 1994. Combining spatial and terminological reasoning.
In Annual Conference on Artificial Intelligence. Springer, 142–153.

HAARSLEV, V., MÖLLER, R., AND WESSEL, M. 2002. Visual spatial query languages: A semantics using
description logic. In Diagrammatic Representation and Reasoning. Springer, 387–403.

HAMMOND, T. AND DAVIS, R. 2007. LADDER, a sketching language for user interface developers. In
ACM SIGGRAPH 2007 Courses. SIGGRAPH ’07. ACM, New York, NY, USA.

HE, K., ZHANG, X., REN, S., AND SUN, J. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

HELM, R. AND MARRIOTT, K. 1991. A declarative specification and semantics for visual languages.
Journal of Visual Languages & Computing 2, 4, 311–331.

HENDERSON, J. M. AND HOLLINGWORTH, A. 1999. High-level scene perception. Annual review of
psychology 50, 1, 243–271.

HILL, E. F. 2003. Jess in action: Java rule-based systems. Manning Publications Co.
KARP, R. M. 1972. Reducibility among combinatorial problems. In Proceedings of a symposium on the

Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, R. E. Miller and J. W. Thatcher, Eds. The IBM Research
Symposia Series. Plenum Press, New York, 85–103.

KARTTUNEN, L. 1986. D-PATR: A development environment for unification-based grammars. In Proceed-
ings of the 11th Conference on Computational Linguistics. Association for Computational Linguistics,
74–80.

KNUTH, D. 2000. Dancing links. Millennial Perspectives in Computer Science 1.
KONDO, H. M., VAN LOON, A. M., KAWAHARA, J.-I., AND MOORE, B. C. J. 2017. Auditory and visual

scene analysis: an overview. Philosophical Transactions 372, 1714 (February).
KVERAGA, K. AND BAR, M., Eds. 2014. Scene Vision: Making Sense of What We See. Mit Press.
LADRET, D. AND RUEHER, M. 1991. Vlp: a visual logic programming language. Journal of Visual

Languages & Computing 2, 2, 163–188.
LI, S. AND YING, M. 2003. Region connection calculus: Its models and composition table. Artif. In-

tell. 145, 1-2, 121–146.
LIFSCHITZ, V. 1999. Answer set planning. In International Conference on Logic Programming and

Nonmonotonic Reasoning. Springer, 373–374.
MARR, D. 1982. Vision. W.H. Freeman, San Francisco, CA.
MARRIOTT, K. AND STUCKEY, P. 1998. Programming with Constraints – An Introduction. MIT Press.
MASCARDI, V., BRIOLA, D., LOCORO, A., GRIGNANI, D., DEUFEMIA, V., PAOLINO, L., BIANCHI, N.,

DE LUMLEY, H., MALAFRONTE, D., AND RICCIARELLI, A. 2014. A holonic multi-agent system for
sketch, image and text interpretation in the rock art domain. Int. J. of Innovative Computing, Information
and Control 10, 1 (Feb.), 81–100.

MCGUINNESS, D. L., VAN HARMELEN, F., ET AL. 2004. Owl web ontology language overview. W3C
recommendation 10, 10, 2004.

44 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

MEYER, B. 1992. Pictures depicting pictures on the specification of visual languages by visual grammars.
In Visual Languages, 1992. Proceedings., 1992 IEEE Workshop on. IEEE, 41–47.

RANDELL, D. A. AND COHN, A. G. 1989. Modelling topological and metrical properties in physical
processes. In Proceedings of the 1st International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’89). Toronto, Canada, May 15-18 1989., R. J. Brachman, H. J. Levesque, and
R. Reiter, Eds. Morgan Kaufmann, 357–368.

SANTOSH, K. C., LAMIROY, B., AND ROPERS, J. 2009. Inductive logic programming for symbol recog-
nition. In 2009 10th International Conference on Document Analysis and Recognition. 1330–1334.

SIKOS, L. F. 2017. Description Logics in Multimedia Reasoning. Springer.
SIMONYAN, K. AND ZISSERMAN, A. 2014. Very deep convolutional networks for large-scale image

recognition. CoRR abs/1409.1556.
ULLMAN, S. 1996. High-Level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge,

MA.
WAN, J., WANG, D., HOI, S. C. H., WU, P., ZHU, J., ZHANG, Y., AND LI, J. 2014. Deep learning for

content-based image retrieval: A comprehensive study. In Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 157–166.

WITTENBURG, K., WEITZMAN, L., AND TALLEY, J. 1991. Unification-based grammars and tabular
parsing for graphical languages. Journal of Visual Languages & Computing 2, 4, 347–370.

WOOLDRIDGE, M. AND JENNINGS, N. R. 1995. Intelligent agents: theory and practice. Knowledge Eng.
Review 10, 2, 115–152.

OntoScene: a Logic-based Scene Interpreter 45

8 Appendix

8.1 Ritual sacrifice

Association between sub-image classification and sub-image interpretation:
interpretation(’Corniform_Class’, ’Corniform’).
interpretation(’Halberd_Class’, ’Halberd’).

Rules for scene interpretation:

rule(’Group_Of_Corniforms’, Scenes):-...
% Rule for interpreting a group of corniforms, Section 5.3.

rule(’Ritual_Sacrifice’, Scenes) :-
scene(ID1, BB1, Class1, ’Halberd’, Conf1, SS1),
(Victim = ’Corniform’;
Victim = ’Group_Of_Corniforms’),
scene(ID2, BB2, Class2, Victim, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Halberd’, Conf1, SS1)],

[scene(ID2, BB2, Class2, Victim, Conf2, SS2)], Scenes),
relations(GR),
(jpl_call(GR, contains, [BB1, BB2], @(true));
jpl_call(GR, overlap, [BB1, BB2], @(true))).

8.2 Bull God birth
Association between sub-image classification and sub-image interpretation:
interpretation(’Double_Appendixes’, ’High_Goddess’).
interpretation(’Corniform_Class’, ’Bull_God’).

Rules for scene interpretation:
rule(’HG_Giving_Birth_BG’, Scenes) :-

scene(ID1, BB1, Class1, ’High_Goddess’, Conf1, SS1),
scene(ID2, BB2, Class2, ’Bull_God’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’High_Goddess’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ’Bull_God’, Conf2, SS2)],
Scenes),

relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ’up’], @(true)),
(jpl_call(GR, near, [BB1, BB2, 0.5], @(true));
jpl_call(GR, overlap, [BB1, BB2], @(true)))

8.3 Storm God
Association between sub-image classification and sub-image interpretation:
interpretation(’Dagger_Class’, ’Dagger’).
interpretation(’Reticulum_Class’, ’Reticulum’).

Rules for scene interpretation:
rule(’Storm_God’, Scenes) :-

scene(ID1, BB1, Class1, ’Dagger’, Conf1, SS1),
scene(ID2, BB2, Class2, ’Reticulum’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Dagger’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ’Reticulum’, Conf2, SS2)],Scenes),
relations(GeometricRelations),
jpl_call(GeometricRelations, overlap, [BB1, BB2], @(true)).

8.4 Rain Invocation

Interpretation of the scene by archeologists: One human wielding a halberd or an axe (or in
general a weapon) represents the rain invocation. From the analysis of the available images, we

46 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

discovered that the weapon is usually on above the human, positioned in a vertical or diagonal
way.

Association between sub-image classification and sub-image interpretation:

interpretation(’Human_Class’, ’Human’).
interpretation(’Halberd_Class’, ’Halberd’).
interpretation(’Axe_Class’, ’Axe’).

Rules for scene interpretation:

rule(’Rain_Summon’, Scenes) :-
scene(ID1, BB1, Class1, ’Human’, Conf1, SS1),
subclass_of(’Weapon_Class’, Class),
interpretation(Class, Weapon),
scene(ID2, BB2, Class2, Weapon, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Human’, Conf1, SS1)],
[scene(ID2, BB2, Class2, Weapon, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB2, BB1, ’up’], @(true)),
!,
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

rule(’Rain_Summon’, Scenes) :-
[omissis] % as in the previous rule
relations(GR),
(jpl_call(GR, diagonal, [BB2, BB1, ’ne’], @(true)) ;
jpl_call(GR, diagonal, [BB2, BB1, ’nw’], @(true))),
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

Explanation: the rule searches for a human figure, then it searches for a weapon (note that
halberd and axe are subclasses of weapon in the domain ontology, so we write a general rule in-
cluding all the weapons as required by the archeologists) and checks for the correct geometrical
relationship; then, the rule checks if the BBs of the human and of the weapon are close to each
other, and if the one of the weapon is above the human, in vertical or diagonal relationship.

Table 16 reports the results of the four analyzed images, all correctly interpreted.

8.5 Queens Fight

Interpretation of the scene by archeologists: Two corniforms with juxtaposed horns represent
a ritual fighting called in archeology “the Queens Fight”. The two corniforms must be one over
the other, with contrary directions of the horns (we assume that the classifier is able to discrim-
inate between the two different positions), and their BBs may, or may not, intersect, but should
be close to each other.

Association between sub-image classification and sub-image interpretation:

interpretation(’Up_Corn_Class’, ’Corniform’).
interpretation(’Up_Down_Corn_Class’, ’Corniform’).

Rules for scene interpretation:

rule(’Queens_Fight’, Scenes) :-
scene(ID1, BB1, ’Up_Down_Corn_Class’, ’Corniform’,Conf1, SS1),
scene(ID2, BB2, ’Up_Corn_Class’, ’Corniform’,Conf2, SS2),
append([scene(ID1, BB1, ’Up_Down_Corn_Class’,’Corniform’, Conf1, SS1)],

[scene(ID2, BB2, ’Up_Corn_Class’,’Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ’up’], @(true)),
jpl_call(GR, near, [BB1, BB2, 0.5], @(true)).

Explanation: the rule searches for two corniforms, one with up horns and the other with down

OntoScene: a Logic-based Scene Interpreter 47

Image Input Single Images Resulting Interpretation Final result

DE, P. 189, F. 157(4)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1]

Passed

DE, P. 189, F. 157(6)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1]

Passed

DE, P. 189, F. 157(12)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Halberd_Class’,1.0)])

I1=[Rain_Summon(Human-0,Halberd-1)]
I2=[Human-0, Halberd-1]

Passed

DE, P. 200, F. 171(2)

image(0,[(’Human_Class’, 1.0)])
image(1,[(’Axe_Class’,1.0)])

I1=[Rain_Summon(Human-0,Axe-1)]
I2=[Human-0, Axe-1]

Passed

Table 16. Results of the interpretation of Rain Invocation scenes.

horns, in vertical relationship and close to each other.

Table 17 reports the results of the four analyzed images: the last one is not correctly interpreted
because the geometrical relationships “Around” has not been implemented yet, and a third unex-
pected element (a rock) appears in the scene.

8.6 Bull God

Interpretation of the scene by archeologists: One corniform inside the horns of another one
represents the Bull God. By analyzing the available images, two patterns were discovered: the
first is one or more corniforms inside another one, another is a group of corniforms vertically
aligned, not necessary one inside the other.

Association between sub-image classification and sub-image interpretation:
interpretation(’Up_Corn_Class’, ’Corniform’).

Rules for scene interpretation:
rule(’Group_Of_Corniforms’, Scenes) :- (from Section 5.3)

rule(’Bull_God’, Scenes) :- (Inner = ’Corniform’;

48 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Image Input Single Images Resulting Interpretation Final result

DE, P. 221, F. 191(5)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(7)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(8)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Queens_Fight(Corniform-0,Corniform-1)]
I2=[Corniform-0,Corniform-1]

Passed

DE, P. 221, F. 191(9)

image(0,[(’Up_Down_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Rock_Class’,1.0)])

I1=[Corniform-0,Corniform-1, Rock-1]

Failed
(Around
not avail-
able)

Table 17. Results of the interpretation of Queens Figth.

Inner = ’Group_Of_Corniforms’),
scene(ID1, BB1, Class1, Inner, Conf1, SS1),
scene(ID2, BB2, Class2, ’Corniform’, Conf2, SS2),
append([scene(ID1, BB1, Class1, Inner, Conf1, SS1)],

[scene(ID2, BB2, Class2, ’Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, contains, [BB2, BB1], @(true)).

rule(’Bull_God’, Scenes) :-
get_corniforms_same_direction(Corniforms),
sublist(Corniforms, Scenes), length(Scenes, Len), Len > 1,
findall(BB, member(scene(_, BB, _, _, _, _), Scenes), BBs),
relations(GR),
test_vertical(BBs, GR).

Explanation: the first rule selects one corniform (or a group of corniforms) and another one
from the list, and checks if they are one inside the other. The second rule uses the predicate
get_corniforms_same_direction to get all the corniforms with the same orientation
and checks if they are in vertical relationships. We omit here the definition of the test ver-
tical(BBs, GR) predicate.

Table 18 reports the results of the four analyzed images, all correctly interpreted.

8.7 Rain Propitiatory Rite

Interpretation of the scene by archeologists: One dagger between the horns of a corniform
represents a propitiatory rite for the rain. The two sub-images should intersect and at the same
time the dagger should be partially inside the horns, above them. With the currently implemented
geometrical relationships we cannot express this relation in a precise way, so we approximated it.

Association between sub-image classification and sub-image interpretation:

OntoScene: a Logic-based Scene Interpreter 49

Image Input Single Images Resulting Interpretation Final
result

DE, P. 218, F. 186(2)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1)]
I2=[Corn-0,Corn-1]

Passed

DE, P. 218, F. 186(9)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2)]
I2=[Corn-0,Corn-1,Corn-2]

Passed

DE, P. 218, F. 186(7)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])
image(3,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2,Corn-3)]
I2=[Corn-0, Bull_God(Corn-1,Corn-2,Corn-3)]
I3=[Corn-0,Corn-3,Bull_God(Corn-1, Corn-2)]
I4=[Corn-0,Corn-1,Corn-2,Corn-3)]

Passed

DE, P. 218, F.
186(18)

image(0,[(’Up_Corn_Class’,1.0)])
image(1,[(’Up_Corn_Class’,1.0)])
image(2,[(’Up_Corn_Class’,1.0)])
image(3,[(’Up_Corn_Class’,1.0)])
image(4,[(’Up_Corn_Class’,1.0)])

I1=[Bull_God(Corn-0,Corn-1,Corn-2,Corn-3, Corn-4)]
I2=[Corn-0,Bull_God(Corn-1, Corn-2,Corn-3,Corn-4)]
I3=[Bull_God(Corn-0, Corn-1,Corn-2),
Bull_God(Corn-3, Corn-4)]
... other 7 interpretations

Passed

Table 18. Results of the interpretation of Bull God.

interpretation(’Corniform_Class’, ’Corniform’).
interpretation(’Dagger_Class’, ’Dagger’).

Rules for scene interpretation:
rule(’Rain_Propitiatory_Rite’, Scenes) :-

scene(ID1, BB1, Class1, ’Dagger’, Conf1, SS1),
scene(ID2, BB2, Class2, ’Corniform’, Conf2, SS2),
append([scene(ID1, BB1, Class1, ’Dagger’, Conf1, SS1)],

[scene(ID2, BB2, Class2, ’Corniform’, Conf2, SS2)], Scenes),
relations(GR),
jpl_call(GR, vertical, [BB1, BB2, ’up’], @(true)),
jpl_call(GR, overlap, [BB1, BB2], @(true)).

Explanation: the rule searches for a dagger and a corniform, checking if they overlap and if the
dagger is above the corniform.

Table 19 reports the results of the three analyzed images, all correctly interpreted.

8.8 Agricultural Rite

Interpretation of the scene by archeologists: One or two priests making water spring from an
artificial repository represent an agricultural rite. The most recurring pattern includes one or two

50 Daniela Briola, Viviana Mascardi, and Massimiliano Gioseffi

Image Input Single Images Resulting Interpretation Final result

DE, P. 170, F. 132(1)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed

DE, P. 170, F. 132(2)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed

DE, P. 170, F. 132(7)

image(0,[(’Dagger_Class’,1.0)])
image(1,[(’Corniform_Class’,1.0)])

I1=[Rain_Propitiatory_Rite(Dagger-0, Corniform-1)]
I2=[Dagger-0, Corniform-1]

Passed

Table 19. Results of the interpretation of Rain Propitiatory Rite.

humans holding a repository, which is above them, from which the water falls down.

Association between sub-image classification and sub-image interpretation:
interpretation(’Human_Class’, ’Priest’).
interpretation(’Repository_Class’, ’Repository’).
interpretation(’Water_Class’, ’Water’).

Rules for scene interpretation:
rule(’Agricultural_Rite’,

[scene(ID1, BB1, Class1, ’Priest’, Conf1, SS1),
scene(ID2, BB2, Class2, ’Priest’, Conf2, SS2),
scene(ID3, BB3, Class3, ’Repository’, Conf3, SS3),
scene(ID4, BB4, Class4, ’Water’, Conf4, SS4)]) :-

scene(ID1, BB1, Class1, ’Priest’, Conf1, SS1),
scene(ID2, BB2, Class2, ’Priest’, Conf2, SS2),
scene(ID3, BB3, Class3, ’Repository’, Conf3, SS3),
scene(ID4, BB4, Class4, ’Water’, Conf4, SS4),
relations(GR),
jpl_call(GR, diagonal, [BB1, BB3, ’sw’], @(true)),
jpl_call(GR, near, [BB1, BB3, 0.5], @(true)),
jpl_call(GR, diagonal, [BB2, BB3, ’se’], @(true)),
jpl_call(GR, near, [BB2, BB3, 0.5], @(true)),
jpl_call(GR, vertical, [BB3, BB4, ’up’], @(true)),
jpl_call(GR, near, [BB3, BB4, 0.5], @(true)).

Explanation: the rule searches for the two humans, the water and the repository, checking if
the two humans are in diagonal (one on the left and one on the right) below the repository, and
if the water is under the repository. All the images should be close to each other. Another rule,
searching for only one human, is not reported since it is very similar to one shown here.

Table 20 reports the results of the three analyzed images: the last one has not been correctly
interpreted because the human is above (not below and in diagonal) the repository.

OntoScene: a Logic-based Scene Interpreter 51

Image Input Single Images Resulting Interpretation Final result

DE, P. 284, F. 268(1)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Human_Class’,1.0)])
image(2,[(’Repository_Class’,1.0)])
image(3,[(’Water_Class’,1.0)])

I1=[Agricultural_Rite(Priest-0, Priest-1,
Repository-2, Water-3)]
I2=[Priest-0,Priest-1,Repository-2,Water-3]

Passed

DE, P. 284, F. 268(4)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Repository_Class’,1.0)])
image(2,[(’Water_Class’,1.0)])

I1=[Agricultural_Rite(Priest-0,
Repository-1, Water-2)]
I2=[Priest-0,Repository-1,Water-2]

Passed

DE, P. 284, F. 268(5)

image(0,[(’Human_Class’,1.0)])
image(1,[(’Repository_Class’,1.0)])
image(2,[(’Water_Class’,1.0)])

I1=[Human-0,Repository-1,Water-2]

Failed
(Human
over repos-
itory)

Table 20. Results of the interpretation of Agricultural Rite.

	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related work

	3 The OntoScene Framework: a Gentle Introduction
	3.1 The Initial Scenario
	3.2 Syntactic Pre-processing: Detector and Classifier
	3.3 From Syntax to Semantics: SceneInterpreter
	3.4 Making OntoScene Functionalities Available to JADE: the OntoSceneAgent
	3.5 The OntoScene Ontology
	3.6 Back to the Initial Scenario

	4 Modelling and Implementing Domain and Spatial Knowledge
	4.1 Domain Knowledge
	4.2 Spatial Knowledge

	5 SceneInterpreter
	5.1 Serializing Images in Basic Scenes
	5.2 Applying aggregation rules for composite scenes and updating the scene graph
	5.3 Computing all the possible interpretations
	5.4 Filtering, sorting, and returning interpretations
	5.5 SceneInterpreter at work

	6 Case Study: Interpreting Scenes from the Rock Art Domain
	6.1 Studies by Clarence Bicknell and Henry de Lumley
	6.2 Experiments
	6.3 Pastoral scene (corniforms group)
	6.4 Ritual sacrifice
	6.5 Bull God birth
	6.6 Storm God
	6.7 Discussion

	7 Conclusions and Future Works
	References
	8 Appendix
	8.1 Ritual sacrifice
	8.2 Bull God birth
	8.3 Storm God
	8.4 Rain Invocation
	8.5 Queens Fight
	8.6 Bull God
	8.7 Rain Propitiatory Rite
	8.8 Agricultural Rite

