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Abstract: We study the asymptotic profile, as i — 0, of positive solutions to
—W2Au + Voou - B ulu? = KoOlulP2u, xeRY,

where y > Ois a parameter with relevant physical interpretations, ¥V and K are given potentials and the dimen-
sion N is greater than or equal to 5, as we look for finite L?-energy solutions. We investigate the concentrating
behavior of solutions when y > 0 and, differently from the case y = 0 where the leading potential is V, the
concentration is here localized by the source potential K. Moreover, surprisingly for y > 0 we find a different
concentration behavior of solutions in the case p = % and when % <p< % This phenomenon does
not occur when y = 0.
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1 Introduction

We are concerned with blow-up phenomena for positive solutions to the following class of quasilinear
Schrédinger equations:

—R2Au + V)u - B2 uhu?® = KoOlulP2u, xeRMY, N>5, (1.1)

where /1 > 0 is the adimensionalized Planck constant, y € R is a parameter which is relevant in several appli-
cations in Physics for which we refer to [21, 32], and which we assume here to be positive, V and K are given
potentials, for the moment real continuous functions, and the nonlinearity is in the range ]5_1\/2 <p< 1\‘,‘—{\’2 The
restriction on the Euclidean dimension is motivated by the fact that critical limit equations, related to (1.1)
as h — 0, possess explicit solutions which fail to have finite L2-energy in low dimension. Equations of the
type (1.1) appear in the literature in the context of plasma physics and the continuum limit of discrete molec-
ular structures; we refer to [6, 7, 24, 27] and the references therein for the more physics related context
of (1.1).
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The existence of nontrivial solutions, in particular ground states for (1.1), has been intensively studied
in recent years throughout a very extensive literature, among which let us mention [22, 23, 26]. Though it is
not possible to give exhaustive references on the subject, let us recall a few results which are strictly related
to our problem.

For semiclassical states of (1.1), namely y = Oand # — 0, assume 2 < p < Al;Nz ,N >3, K(x) =1, and that
V: RN — Ris H6lder continuous and satisfying the following conditions: 0 < Vj < inf,cgy V(x) and there is
abounded open set A such thatO < a := infycp V(Xx) < minycyp V(x). Then the existence of localized solutions
concentrating near Q := {x € A : V(x) = a} has been obtained in [10, 19] and, by scaling properties, as h — 0,
the limit equation turns out to be the following quasilinear autonomous Schrédinger equation:

—Au + au - uAu? = [ulP?u, xeRY. (1.2)

We refer to [15, 16, 20, 31, 34] for related results.

Notice that the scaling invariance of (1.1) breaks down as soon as y > 0. Recently in [11], it has been
proved that in this context both the cases y = 0 and y > 0 have similar concentration behavior. However,
the limit equation for y > 0 is different form the case y = 0 and turns out to be the following semilinear
Schrédinger equation:

—Au+au=ufP?u, xeRV. (1.3)

As we are going to see, this fact will play a crucial role in studying the blow-up profile of solutions to (1.1).
Indeed, loosely speaking, one expects solutions can be localized along suitable normalized truncations and
translations of ground states to the limit equation (1.2) or (1.3). Here the situation is completely different from
the case K = 1 and y = 0, as a proper normalized, translated and rescaled solution will concentrate around
critical points of the potential K.

It is well known from [3, 5, 30] that for the non-autonomous semilinear Schrédinger equation

“B2Au + VO)u = KoOlulP2u, xeRV,

the function - ,
AQ) = V)] 7 2 [K(X)] P

retains important information for the concentrating behavior of solutions. Remarkably, for our problem (1.1)
the external Schrédinger potential V does not play any role in the blow-up phenomenon which is governed
by the source potential K.

Another interesting phenomenon addressed in this paper is the different concentrating behavior which
occurs passing from critical to supercritical nonlinearities in (1.1). This is due to the fact that the limit equa-
tion, as i — 0, for (1.1) changes passing from 2% 5 2 <p< N 2 top = Surprlsmgly, in the critical case the
limit equation turns out to be the zero mass semilinear Schrédinger equatlon. To the best of our knowledge,
this fact has not been observed before.

In order to state our main results, set

-2y

v(x) = hZu(h 7 x).

Then equation (1.1) turns into

= "W - vAV? = K(h“(p;zwy)lvlp‘zv, x € RN, (1.4)

For simplicity, set
(p-2)y (p-2)y
k=h z , e=h'ta

and denote
(p-2)y

vy, KR y)

by Ve(y), Ke(y), respectively. Thus, equation (1.4) can be written in the following form:

— AV + xVe(y)v - vAV? = K.()|IVIP2v, x e RV, (1.5)
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We assume the potential V and K satisfy the following conditions:
(V) Ve CRN, R) and 0 < inf V(x) < V(x) < sup V(x) < +0o0.
(K) K : RN - Ris Holder continuous, O < sup,ry K(x) < Ko and there is a bounded open set O such that

max K(x) < m := sup K(x).
x€00 xeO

Set M :={x € O : K(x) = m}.
Our main results are the following.

Theorem 1.1. Let y > 0, assume (V), (K) and 5 2 <P < x5, N 2 5. Then, for sufficiently small € > 0, there
exists a positive solution v, of (1.5).

The solution v, obtained in Theorem 1.1 is actually uniformly bounded with respect to €. As a consequence,
we will obtain the blow-up profile of solutions to the original equation (1.1).
In Section 2, we prove some preliminary results. In particular, we deal with the zero mass case and prove
that the equation
- Au - uAu? = mw¥ (1.6)
has a unique positive radial solution U which belongs to D*-2(RY). Similarly to [1, Proposition 6.1], v — U
in DH2(RY) n €2 (RY) as e — 0. That s,

loc

h: uh(h“ ( -xu)) — U(+)

in DM2(RN)n ¢ (RN)ash — 0.

Blow-up phenomena for the autonomous version of problem (1.1) (namely V(x) =A > 0 and K(x) = 1)
have been studied in [1], where in order to get the asymptotic profile of the solution, uniform estimates of
the rescaled ground state and energy estimates were established. However, their method can not be applied
to deal with the non-autonomous problem (1.1). In [13], the Lyapunov-Schmidt reduction method has been
used to deal with the problem

—Au+eV(X)u —ulu? =uP, u>o0, . hm u(x) =0, xeRN. (1.7)
X|—+00

Assuming V > 0, V € L® and V(x) = o(]x|~2) as |x] — +00, Cheng and Wei [13] proved that for ¢ sufficiently

small problem (1.7) has a positive fast decaying solution provided = 2N < p < N 2, N > 3.
Surprisingly, the limit equation for (1.1) changes again when p = Prec1sely, let
(p=2)a

v(x) = hiu(h*" % x) foranyO<a<y,

let
A=n", (=ne, e=pt"
and denote
(p-2)a (p-2)a
VBT y), KmUTy)

by Ve(y), Kc(y), respectively. Then equation (1.1) turns into the following equation:
— AV + AV (y)v — vAV? = K.(y)IvIP~2v, x e RN, (1.8)

Note thatA,{ — Oash — 0.
The solution to (1.8) is closely related to the (unique) solution of the following zero mass mean field limit
equation [4]:
-Av= mv%, xeRN, v>0, v(0)=maxv(x). (1.9)

It is well known since [29] that equation (1.9) possesses an explicit one-parameter family of solutions
given by

U 2
o) R
Notice that the above functions, sometimes called Talenti’s functions, instantons as well as standard bubbles,
do have finite L2-energy provided N > 5.

= (NN -2)m) "7 (
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Theorem 1.2. Assume thaty > 0, that (V), (K) hold and that A%—fvz <p< A‘,‘—f\’z N = 5. Then, for sufficiently small
h > 0, there exists a local maximum point xy, of uy such that limy,_,q dist(xy, M) = 0 and there exists a positive
solution uy, of (1.1) satisfying

(2

_Y _1- =2y
up(-) =h2UMm"""7" - =xp) + wu(-),
where wy(-) — 0 in DM2(RN) n CIZOC(IRN ) as h — 0, and U is the unique fast decay, positive and radial (least
energy) solution of (1.6). Moreover, when p = ﬁ—fvz, under the above hypotheses we have
a N(N -2 w2
uh(')=h_f[ ( (p)f):/m ] " t+wu(-) forallo<a<y.
1+ 2T g2

Remark 1.3. In Theorem 1.2, a = y is not allowed. Indeed, there exist no fast decaying solutions to (1.6) if
p = 2%, as established in [13, Theorem 1.1].

Remark 1.4. Throughout this paper, we require N > 5. This assumption guarantees to obtain finite energy
solutions, namely that the solutions of (1.6) and (1.9) belong to LZ(IRM). It seems out of reach at the moment
to generalize the method of this paper to the case of N < 4 just assuming the mild condition (V). We mention
that the same restriction on the dimension was used for instance in [12], where infinitely many nonradial
solutions for the semilinear Schrodinger equation with critical growth were established by using a reduction
argument.

Throughout this paper, C will denote a positive constant whose exact value may change from line to line
without affecting the overall result.

2 Preliminaries

In this section, we collect a few results, which we will use in the sequel, on the following zero mass equation:
- Au - uhu? = mlulP?u, xeRY, (2.1)

where 2% := 2L < p <2(2%) == L, N> 5.

Uniqueness and non-degeneracy of positive solutions to (2.1) have been completely solved in [2]; see
also [13]. For the reader’s convenience, below we recall a few results we need in the sequel.

The energy functional related to equation (2.1) is given by

I(w) = % J(1 + ) VuP dx- J |ulP dx
]RN p ]RN
and it is well defined in the set

E= {u e DM2(RNY : j u?|Vu|? dx < +oo}.
IRN
Theorem 2.1 ([2, Theorem 1.1] or [13, Theorem 1.1]). Equation (2.1) has a unique positive radial solution
which belongs to DV2(RN). In particular, the ground state of (2.1) is unique up to translations.

Lemma 2.2 ([33, Lemma 2.1]). Let g(s) = V1 + 2s2 and G(t) = jot g(s) ds. Then G(t) is an odd smooth function
as well as the inverse function G~1(t). Moreover, the following properties hold:

(i) It holds

-1
lim G© =
t—0 t

1.

(ii) It holds
-1
lim G ® = 2.

t—+00 t

(iii) IG71(t)| < |t| forall t € R.
(iv) |G~L(t)|? is convex in t.

W) 1G71(t)| < V2\/It| forall t € R.
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Next consider the following semilinear elliptic equation, which in some sense is the dual problem of (2.1):

G W26 H(v)
- g(G(v)

The energy functional corresponding to (2.2) is defined by

- Av e RV, (2.2)

1
Ln(v) = 5 j v dx- " JlG‘l(v)lp dx,
]RN p IRN
which is well defined in D*2(RN) by Lemma 2.2. Moreover, Ly,(v) € C1.
Solutions to v of (2.2) satisfy the following Pohozaev identity:
N-2

— J Vv dx — % j 1G-L()|P dx = o. 2.3)

RN RN

Moreover, the ground state has a mountain pass characterization, namely
Lin(U) = Cy = inf max Lp(n(t)),
ned tel0,1]

where
@ = {n € C([0, 1], D**(RY)) : n(0) = 0, Ly (n(1)) < O};

see [1, Proposition 4.3].

Theorem 2.3 ([2, Propositions 2.6 and 3.2]). The following properties hold:
(i) (2.2) has a unique fast decay positive radial solution v(r), namely

lim rN2v(r) = ¢ € (0, +00).
r—+00

(ii) Letv e DM2(RN) n C2(RN) be a positive radially decreasing solution of (2.2). Then there exists C > O such

that

CA(N(-0@G2) <v(r)<CA®r), CA'(r)<v'(r)<CA'(nN(1-03G7?%)
for sufficiently large r. Here
1
(N - 2)|SN-1|N-2
is the fundamental solution of —A on RN, In particular, we have that
C
!

C
s N-2 _ s N-1 _
71_131 () = RS EEk rEEn r' () = —ISN‘ll' (2.4)

A(r) =

Theorem 2.4 ([2, Lemma 2.4]). Suppose that
u
V= Jg(s) ds.
0

Then the following assertions hold:
() ueEnC3RY)ifandonlyifv € DV2(RN) n C2(RN).
(ii) u is a positive solution of (2.1) if and only if v is a positive solution of (2.2).

3 Proof of Theorems 1.1 and 1.2

We next consider the following quasilinear Schrédinger equation:
— div(g?(w)Vu) + gw)g' ) |Vul? + kVe(x)u = Ke()|ulP~2u, xeRY, (3.1)

where g(s) = V1 + 2s2. Direct calculations show that (3.1) is equivalent to (1.5).
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The energy functional corresponding to (3.1) is given by

1 1
Jew = 5 j [g2W)|Vul? + kV . ()u?] dx - = I Ke(X)|ul? dx.
RN p RN
Note that J, is not even well defined in H!(IRY). However, it is well known since [14, 22] that a suitable
dual approach, hidden in change of variables, turns the energy functional to be smooth and well defined

in a proper function space setting; see [25], and also [10] for an Orlicz space approach. Here, the change of
variables u = G~1(v) yields the following smooth energy:

1 1
Pev) =5 [ AV + xVeIG )P dx - = [ KeolG 0P dix.
]RN p IRN
By Lemma 2.2, it is standard to check that P, € C1(H'(RM), R).
The Euler-Lagrange equation associated to P, is

Glv) G WIP26(v)
-Av+ KVg(x)g— K:(x) 2G1)) ,

= X € ]{ . 3.2

G1(v) G IT(W)IP-2G1(v)
=W 4k,
P MR )

I [Vde) + kVe(x)

RN

¢]dx=0 forall¢ e H'(RY).

Then u = G™1(v) € HY(RN) n L°(RN). For any ¢ € C3°(RV), one has ¢g(G1(v)) € H{(RV) n L°(RV) and

J [Vuve + gw)g' w)|Vul? @ + kVe(x)up - Ke(x)|wlP2we] dx = 0,

RN

which implies that u is a weak solution of (3.1).

Therefore, in order to find nontrivial solutions to (3.1), we are compelled to find nontrivial solutions
of (3.2). Since we are concerned with positive solutions, we actually consider the following truncated energy
functional: 1 1

v S j (IVV|? + KV ()G L (v)]?) dx - 5 J K:(x)|G L (v")P dx.
RN RV
However, in order to avoid cumbersome notations, hereafter we write v in place of v* in the last integral, when
this does not yield confusion.
Set
Le(v) := Pe(v) + Qe(v),

where X

Qe(v) = ( J)(gv% dx - 1)

RN

+

with ye(x) =0 for x € O, := {x e RN : ex € O} and y.(x) = €7 for x ¢ O, where T > 0 has to be determined
later on. By inspection, T's € C'(H*(RY), R). The functional Q, will act as a penalization to force the concen-
tration phenomena to occur inside O. This type of penalization was introduced in [8, 9].

Let U be the unique fast decay positive radial solution of (2.2). Without loss of generality, we may assume
U(0) = max U(x) and that 0 € M. Set U;(x) := U(%) for t > 0. By (2.3), there exists ty > 1 such that

tN-2 N

Lm(Ut):(T—;—*) JlVUlzdx<—2 forall t > to. (3.3)
]RN

Choose a positive number
c dist(M, RN \ 0)

A 100
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and a cut-off function @(x) € C(RY, [0, 1]) such that @(x) = 1 for |x| < B and ¢(x) = 0 for |x| > 2. Set
@:(x) := p(ex) and then define

UX(x) := <p£(x— %)U(x— %) for each y € MP,

where MP = {x e RN : dist(x, M) < B}.

We aim at finding a solution of (1.5) near the set X, := { Ufg' x):ye MP} for sufficiently small € > 0. Let
We,:(x) = @< (x)Ut(x). Note that for fixed x € RYN we have We t(x) —» Oast — 0. So, we set W, o(x) =

Next, we borrow some ideas from [11]. However, here the situation is quite different in particular for the
decaying behavior of the ground state solution of the limit equation and the different concentrating behavior
of the solution.

Lemma 3.1. It holds

lim max |F£(W£ t) = Lm(Up)| — 0.
£—0 te(0,to

Proof. Since supp(W¢,:(x)) c Og, one has Q¢(W¢ (x)) = 0. Thus, for ¢ € (0, to], we have

1
Fe(We,t) = Lin(Ue) = 5 J(|VWs,t|2 — VU dx + = J VelG™H(We,0)|* dx
RY ]RN
1 _ _
- = j(I<£|G Y(We,)lP - m|G™H(U)P) dx. (3.4)
p a
By (2.4) and the Lebesgue dominated convergence theorem, we get
| J(WWE,AZ _ VUL dxl < Ce? J(IVUIZ LU dx+ CEY J 1920~ 1(1+ XD> 2N dx - 0. (3.5)
RY RY RY
as € — 0. Clearly, by Lemma 2.2 (iii), we obtain
J VelG X (W o)|> dx < C J|W€,t|2 dx<C J U? dx < +co. (3.6)
RY RY RY
By the mean value theorem and dominated convergence again, we obtain

|G~ 1(Us + OW, )IP~1
g(G N (U + OW¢y))

|Ug = We,el dx

RN

HUG-l(Ut)V’ -1 W) dx| < p j
4

c j(1 — @e(t))(U2 + UY) dx

IRN
-0 ase—0, (3.7)
where 0 < 0 < 1. Similarly, we have
| J (Ke) = m)IG™ (We )PP dx| < £ j (Ke(t) - m@e(t)US () dx — 0 ase — 0. (3.8)
RN RN
The desired conclusion follows from (3.4)—(3.8). O

Now, from (3.3) and Lemma 3.1, there exists £, > 0 such that for € € (0, &),
rs(We,to) < Lm(Uto) +1<-1.

Define the minimax level

Ce = n:ggjg max, Te(ne(s)),

where
@, = {ne € C([0, 1], H{RY)) : 7:(0) = 0, (1) = We .}
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Lemma 3.2. It holds lim;_,g C¢ = Cy,.

Proof. Let ng(s) = We,s,, s € [0, 1], such that n.(s) € ®@,. Since ¢y > 1, from Lemma 3.1, we have

limsup C¢ < limsup max [g(We ;) < max Ly,(Us) = Cpy.
£—0 e—0  t€[0,to] te[0,to]

It remains to prove that lim inf,_,o C¢ > Cp,. By definition of C,, for any € > 0, there exists i}, € @, such that

mg)i] Te(e(s)) < Ce +E. (3.9)

s€[o,

Since P¢(f]¢(0)) = 0 and P¢(77¢(1)) < Te(W¢ ¢,) < —1, there exists so € (0, 1) such that
Pe(fe(s0)) =-1 and Pe(f(s)) > -1, s € [0, so).

Then we have
Qc(Ne(s)) < Te(fe(s) +1 < Ce+€+1, s €0, so].

By Lemma 2.2 (v), we have

j G- (Re(s))IP dx < 4/2P j lie(s)1% dx

RN\ O, RN\ O,

< V2P [\ Qe(ije(s)) + 1] < V2PeT[\/Ce + E+ 1+ 1]

for s € [0, sg]. Therefore, the following lower bound holds:

Pe(1e(s)) 2 Lm(7e(s)) + %(m - Ko) J 1G™ (e(s))IP dx

RM\ O,
> Lin(fe(s)) + %(m ~Ko)V2Pe"[\/Cc+E+1+1], s€[0,s0l. (3.10)

In particular, we have
Lin(fe(s0)) < %(Ko —m)V2PeT[\[C:+E+1+1]-1<0 forsmalle > 0.

Hence, 71¢(tso) € @ and maxsejo,1] Lm(f1(tso)) = Cp. So, by (3.9) and (3.10), we get

~ _ 1 4 —
Ce+E> Sg[loeg] Te(fe(S)) = C + E(m - Ko)V2Pe™[\|Ce + €+ 1 + 1],

which yields lim inf,_,o C, > Cy, since € is arbitrary. This completes the proof of the lemma. O

Remark 3.3. Let D, = maxse[o,1] ['«(W¢,st,). From the proof of Lemma 3.2 we get

lim D¢ = Cpy.

=0

Next, we consider the space EX := Hj(Bg/(0)) endowed with the norm

1
2
Mer=[ | avP+viyax].
BR/E(O)
Note that any v € EX can be regarded as an element of H!(RY) by defining v = 0 on RY \ Bg/-(0).

Define also the level sets
I¢:={ueER:T.(u) <}

and
Xt i={u e B influ-vier <d}, d>0.
Ve
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In what follows, for small d > 0, let v, € xgn n E§n" with &, — 0 and R, — +o0o be such that
nli_{go [e,(vn) < Cyp  and r}i_)r{)lollrén(vn)ll(g:)f =0.

From the definition of Xgn, we can find a sequence {y,} M# such that

Yn Yn
v-ga (- )U( )
This implies that {v,} is bounded in H*(RN). Since M? is compact, we may assume, up to a subsequence, that
Yn — Yo € MP.

<d. (3.11)

€n,Ry

Lemma 3.4. It holds
lim sup v2dx=0 forallR > 0.

n—oo z€{zeRN: %ﬁslenz—ynlﬁﬁ}BR @)
Proof. Suppose by contradiction that there exist R > 0 and a sequence

1
{zn} c {Z eRY: EB < lenz —ynl < 3/3}

such that
lim J v2dx > 0. (3.12)
n—oo
Br(zn)
Assume

1
EnZn — Zg € {zelRszﬂglz—yolsw}.

Let 74(+) := vn(- + z,) be such that ¥, — 7 in HY(RY) and ¥, — 7 in L, (RY), p € [2, 2*). Then, by (3.12),
we get
72 dx = lim j 7 dx >0,
n—oo
Br(0) Br(0)
which yields v # 0.
Letg € CS"(]RN). Then, for large n, we have ¢(- - z,) € Ef:. Since

. ]
nll)rgo”rgn (v”)”(Ef,t')’ = 0’

we obtain
- |G (n)P2G (V) G 1(¥n)
1 = Vi,V - K d V. ————0¢d
on(Dl@lle,,r, “ Ve — Ke, (X + zp) 2(G1(7)) ¢] X+ Kn j 8"(X+Z”)g(G—1(vn))¢ X
RN RN
—p( JX£"|Vn|% dx - 1) JX&,,(X + 2)|7nl 20 dx, (3.13)
RN +]RN
where
2(p-2)y
Kn = E,T(FZW .
Clearly,
. ~ 22~ _
nlLrgo J)(gn(x+zn)|vn|2 Vp¢pdx = 0.
IRN
Since {v,,} is bounded in H*(RY), we have
G (V)
Ve, (X + z2p) ————¢ dx < +00. (3.14)
J ‘ " G
RN
By the Lebesgue dominated convergence theorem, we get
. |G ()P~ G (Vn) IGT1(W)P2G71(V)
lim J Ke,(x+z - dx = J K(z - dx. (3.15)
N B O I R ()

]RN
Combine (3.13), (3.14) and (3.15), to have

_ G MIP*6H(@)

¢|dx=0 forall e CPRY),
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which implies that 7 is a positive solution of the following equation:

G (W)IP2G71 ()
g(G1w)

Recall that, on the right-hand side of the above equality, ¥ is actually ¥*. Thus, by the maximum principle,

we get V > 0. Because of K(zp) < m, we get Cg(z,) = Cm.
Choosing R > 0 sufficiently large, by Pohozaev’s identity, we obtain

— AV = K(zo) e RV, (3.16)

2 lim J Vval? dx J V712 dx = NLg(z)(#) = NCi(zy) > NCin. (3.17)

Bg (zn) RN

However, it follows from (3.11) that

j [Vvn|? dx < d? + 262 J 'V(pgn(x—y—")U(x—y—">2dx+ J (pgn(x—y—")VU(x—y—")zdx
Briza) Briza) e e Briza) e e
<d+Ce:+C J (1+}x+zn—y—n )Z_ZNdx. (3.18)
En

Br(0)
Note that limy,_,c|zn — Z—:I = +oo. Thus, for n large enough, by (3.17) and (3.18), we get a contradiction for

small d > 0. This completes the proof of Lemma 3.4. O

Now choose 17 € C3°(RN) such that 0 < 7 < 1 and

@ 1 ifze{zeRN:B <zl <28},
Z) =
1 0 ifzeR¥\{zeRN:1B<|z|<3B}.

By setting n,(z) = n(€nz — yn)va, clearly, n, is bounded in H L(RM). Thus, from Lemma 3.4, we have

lim su j 2dx =0.
n—oo ZG]RI:I)V |rln|
IRN

This fact together with Lions’ concentration-compactness lemma gives n,, — 0 in L4 (RN), g € (2,2%). So, we
obtain

lim j [val? dx < lim J [nnl? dx = 0. (3.19)

n—oo n—-oo

{xeRN:B<|enx—yq|<2B} RN
Setvp1(-) = @¢, (- — ’8'—:)v,,( -)and vp,» = vy — vp,1. Then let us prove the following lemma.
Lemma 3.5. It holds
Te,(vn) 2 Te, (V1) + T, (Vn,2) + 0n(1).
Proof. Since supp(vp,1) € O¢, we have
Qen (Vn,1) =0 and Qs,, (Vn,2) = Qs,, (Vn).

Therefore, by Lemma 2.2 (iv), (v) and G~1(0) = 0, for large n, we deduce that

Te,(Vn,1) + Te, (Vn,2) = T, (V) + J Pe, (X — y_n)[(ps"(x - &) B 1]|an|2 dx
En En
]RN
K
5 J Ve, UG (va, ) + 167 (va,2)I* = G (vn)|*] dx
RN
1 _ _ —
+= Jl(gn(x)[lG L)l =167 (v, )IP = G (vn,2)IP] dx + 04(1)
P
<Te,(vp)+C J |Vn|% dx + oq(1). (3.20)
{xeRN:B<|enx—yn|<2B}

By (3.19) and (3.20), we get the result. O
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In what follows, we use the following notation:

Ao = {x e RV : lenx — ynl < B},
Ap =[x e RN : lgyx —ynl = 2B},
Ay =[x e RN : B < |enx — yul < 2B

Lemma 3.6. It holds I's, (vn,2) > O.
Proof. From (3.11), we get
J (IVvn2l?* +vi ,) dx = j (IVva|? +v2) dx < d?.
Al Al
Similarly, we get
J (IVVn2l* +va,)dx < C J (IVval? + v3) dx < Cd® + 0x(1).
Az AZ

For n large enough, we have [|v,,2 ]|y ry) < Cd for small d > 0. On the other hand, by Lemma 2.2 (i) and (ii),
we get |G™1(vp,2)IP < Clvn,2|*". Hence,

Pevn2) > 5 [ IWnaP dx—C [Ivnal? dx
RY RY
1 2 r=2 2
> 5 JIan,zl dx-Cd > jIan,zl dx
RN RN
1 2
> J|an,2| dx > 0. (3.21)
IRN
This concludes the proof of Lemma 3.6. O

Denote the usual norm in D(l)’2 (Bgry/£(0)) as follows:

%
Mg = ( j vV dx) .

Bg/e(0)

Lemma 3.7. Forsmalld > 0, there exist a sequence {z,} ¢ RN and yo € M with e, — 0 and R,, — +co satisfy-
ing, up to a subsequence,

Jim lenzn —yol =0 and  lim va(-) = @, (- = 20)U(- = 20l g, = O-

Proof. Let
o L Yn
Wp(+) = vm( + P )

n
Then {wy} is bounded in H* (RN). Thus, up to a subsequence if necessary, we may assume w,, — win H*(R"),
w, — win LfOC(IRN), q € [2,2%),and w, — wa.e.in RV. From (3.11), for a given R > 0, as n is large enough
we get

dx > J [Wn — @¢, U|* dx.
Ao Br(0)

Thus, we have
w? dx = lim J wadx > C-d?,
n—.oo
Bg(0) Bg(0)

which yields w # 0.
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Let ¢ € C(RY). Note that
Yn Yn
Wn(x) = vn,1<x + —) = v,,(x+ —)
€

n En
for x € supp(¢) and large n. Moreover,

supp(wy(x)) € fx € RN : |e x| < 2B} c 0.

Thus, from

] Vn _
(T2, ¢+ = 31)) = oDl v,
and analogously to the proof of (3.14) and (3.15), w is a positive solution of the following equation:

G WP 6 (w)

- Aw = K(yo) , xeRV, (3.22)
YO e (6T w)
Claim:
lim sup J |wp — w|? dx = 0. (3.23)
nHOOZEIRN
Bi(2)

Indeed, if (3.23) does not occur, then there exists a sequence {z,} ¢ R¥ with |z,| — +oo such that

n—oo
Bi(zn)

lim J Wy — w|?dx > 0.

Thus, we have
lim J [w*>dx =0, lim J [Wn|? dx > 0.
n—oo n—.,oo
Bi(zn) Bi(zn)
We have |€n2,| < 3B. Infact, if |€nz,| > 3B, by Lemma 3.4, we have

0< lim J |wp|? dx < lim sup [val? dx = 0,

n—oo N.1lp<c —v.l<
Biizy) ze{zeRN: 5 B<|enz ynl\Bﬁ}Bl(z)

which is impossible. Thus, up to a subsequence, we may assume £,z, — 2o € {z € RV : |z] < % B}. Suppose
V(- + 2z + Z—:) — v1(-) in HY(RV). As in the proof of (3.22), we have

IGT (v)IP 26 (ve)

N
2(G-1(vy) , € R". (3.24)

—Avy = K(yo + 20)

By the maximum principle, v; > 0.
Thus, for large R, we obtain

2
dx

%NCm < J |an,1(x +2Zn + Z—:)
Br(0)

= | warax
Br(znt+ 2t
< Cefl +C I [Vva|? dx
Br(za+2L)
<Cei+Cd+C I (1 + |x + zp)> 2N dx.
Br(0)

We get a contradiction for large n and small d since |z,| — +00.

Therefore, (3.23) holds and the claim is proved.

Again by Lions’ concentration-compactness lemma, we have w, — win L4(R"), q € (2, 2*). As a conse-
quence

n—co
RN RN

lim J Ke, (x + ?)IG"l(wn)lp dx = I K(yo)IG (W)l dx. (3.25)
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By Fatou’s lemma, Lemmas 3.5 and 3.6 and by (3.21), up to a subsequence, we have
Cp = lim T'¢, (vp)
n—oo
2 lim T, (vp,1) + lim T (vn,2)
n—.oo n—,oo
> lim ¢, (V1)
n—oo

~ i L 2 Yn\ -1 2 1 Yn\ ~-1 12
= lim > J(|an| +KnV€n(x+a)|G (W) )dx-E J Kgn(x+£—)|G (W)l dx

n

RN RN
1 1
>3 J|VW|2 dx- > I K(yo)lGL(w)PP dx
RN p RN
2 Cx(yy) 2 Cmi- (3.26)

Hence, we getlim,_, I'¢, (Vn,1) = Cm. Moreover, we get K(yo) = m and we see that w is a ground state to (2.2).
Thus, there exists some z € R such that w(- + z) = U(-). By (3.25) and (3.26), we have

lim J [Vw,|? dx = J |Vw|? dx.
n—oo
RV RV
Letz, =z + ’g’—: Then
"Vn,l( ) - (Pen( -—zp)U(- - Z")";n,Rn — 0.

Finally, by (3.21) and (3.26), we have

. 1.
0= lim T¢, (vn,2) > 7 Jim J [VVn,2|* dx,
RN
which yields limnﬁmllvn,zllzn R, = 0, and the lemma is proved. O

Let d € (0, dp) such that Lemmas 3.4-3.7 hold and define
X% :={uekER: Vienxfsllu -Vlig<d}, d>o.
Lemma 3.8. For any d € (0, dy), there exist positive constants 64, Rq and €4 such that
||Fé(V)||(E§)' 264
foranyv e ERnT? n(x%\ X9),R > Rgand € € (0, £g).
Proof. By contradiction, we assume that for some d € (0, do) there exist €, < %, R, >nand
vn € B nThe N (X2 \ X2)
such that 1
IT, vl gty <~
By Lemma 3.7, there exist a sequence {z,} ¢ RN and y, € M satisfying
Aim |enzn = yol =0, lim vy - @e, (- = zn)U(- = zn)llg, g, = O

up to a subsequence. Thus, for large n, £nzn € MP, ¢, (- — 2,)U(- - zy) € X, and v, € X¢ , which contradicts
the fact that v, € ng \Xd . O

Lemma 3.9. For any given 6 > 0, there exist small positive constants €1 and d < dg such that T¢(v) > Cy — 6
foranyv e X4 and e € (0, &1).

Proof. Forv e X4, there exists y € MP such that

UY(x) := (pg(x - %)U(x— )E/) €eX, and |v-U(0)|e <d.
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Thus, we get

Te(UY) ~ Cp >

N =

[ 1vpev? - Ry ax + = [ 46w - 16 @uiP ax.

RN RN
Similarly to the proof of Lemma 3.1, for small € > 0, we have

6

Te(UY) = Com - > (3.27)

On the other hand, for v € Xg, by choosing d small enough, we have
Te(v) - Te(UY) = —g. (3.28)
The result follows from (3.27) and (3.28). O

Lemma 3.10. For sufficiently small € > 0 and large R > 0, there exists a sequence {v¥ .} c EfX n T2 0 X% such
that
ITLvR Dllgry — O asn — co.

Proof. The proof is similar to [18, 19]. For the reader’s convenience, let us give a detailed proof. By contra-
diction, for small € > 0 and large R > 0, there exists C(g, R) > 0 such that

ITL(V)llgry > C(e,R), v e ERNTP nx®.
On the other hand, by Lemma 3.8, there exists 6 > 0 independent of € € (0, £9) and R > Ry such that
ITLWlgry > 6, v e ERnT2 n (X \ X3).

Thus, there exists a pseudo-gradient vector field Y in a neighborhood N ¢ ER of ER TP nx%. Let
NE ¢ NR such that L
ITEV)llgry > SCER), ve NR,

We choose two positive Lipschitz continuous functions ¢¥ and ¢ satisfying

) - 1 ifveERnTD nx%,
§ 0 ifveER\NR o<(®<1,

and £ <1,
1 ifja-Cpl <
€(a)=<‘ , "

Define

g _ | SEWETm)YE ifv e NE,
“ o ifv ¢ Ec\ NX.

Then the initial value problem

d
Epg(v, t) = YR (FE(v, 1)),

FR(v,0) = v,

yields a unique global solution F§ : E. x [0, +00) — E§. For the properties of F§, we refer to, e.g., [19, 28].
Let ne(s) = West, = @eUst,, S € [0, 1], as before. Then, for small d; > 0, there exists some u > 0 such that if
|sto — 1| < u, then

Ine(s) = @ Ull = llpe(Ust, = U)Il < ClUs¢, — Ul < d1,

which implies n.(s) € Xfl C }?gl since 0 € M. On the other hand, if sty — 1| > u, since t = 1 is the unique
maximum point of Ly, (U;) and maxso Ly (Ut) = Ly (U1) = Cpy, thereexistsp > Osuch that Ly, (Ust,) < Cm — 2p
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for |sty — 1| = u. From Lemma 3.1, there exists €1 > 0 such that

max |Te(We st,) — Lin(Use,)| < p, €€ (0, €1).
s€(0,1]

So, for |stp — 1| = u, we have

TFe(ne(s)) = ra(Wa,sto)
< |r£(Ws,sto) - Lm(Ust0)| + Lm(Usto)
<Cm-p, €€(0,€1). (3.29)

Define nR(s, t) := FR(n¢(s), 1), (s, t) € [0, 1] x [0, +00). Since

Ie(M:(0)), Te(ne(1)) ¢ (0, 2Cm),

we get r1§(s, t) € @, forany t > 0.
If sty — 1| = u, by (3.29), we have

Te(nR(s, £) <Te(e(s)) < Cm - p,

which is impossible by Lemma 3.2.
If |sto — 1| < u, we get ne(s) € Xfl. In this case one of the following alternatives holds:
(@) nR(s,t) e X% forall t > 0.
(b) There exists some ts > 0 such that n¥(s, t5) ¢ Xg".
If (a) holds, we have
‘d
Te(nf(s, £) = Te(ne(s) + | 5 Tetnf(s, 1) de
0
< D, - min{§?, C(g, R)?}t.
Thus, lim;_, o Te(nR(s, t)) = —0c0, which contradicts Lemma 3.9. So, we have that (b) holds. For any fixed s
with |sto - 1| < u, we find ¢}, t2 > 0 such that nR(s, t) € X2\ X% fort e [tL, 2] c (0, ts) for |t} — t2] > o for
some 0 > 0 dependent of dy and d;. Thus, by Remark 3.3, we get
&
R d R
Terf(s, 5,)) < Telne(s) + | 4T, 1) de
ti

<D - 8%(t2 - t})
1 .
<Cm—§620, t e [tl, 2], andif sto - 1| < p.

Therefore, since [0, 1] is compact, by the covering theorem, for all s € [0, 1] with |sty — 1] < u, we can find t§
such that 1
Te(nZ(s, t)) < Cm = 5 6%0,

which is a contradiction to Lemma 3.2 since nf(s, tf) € @,. O
Lemma 3.11. For sufficiently small € > 0, there exists a critical point v, € Xf‘) n r? ¢ of Te.

Proof. By Lemma 3.10, there exist €9 and Ro > 0 such that there exists a sequence {v¥ } c E¥ n 2 n x%
such that
ITLOVR Dligry — 0 asn — oo

for € € (0, &) and R € (Ro, +00). Clearly, {vR } is bounded in H{(Bg/s(0)) since v € X% Up to a subse-
quence if necessary, we may assume

vE = v in H}(Bg/:(0)),

vR, = V& inLP(Bri(0)), p € [1,2%),

e,n

R R

i RN
Ven — Ve ae inRV.
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Thus vk is a solution of

Ke)IG ' MP2671 (v) - kVe ()G (v)

_Av =
Y g(G1(v))

—p< j )(glvlgdx—1> Xelvl?™2v, x € Bgje(0). (3.30)
+

Brye(o)

From (3.30) we have vR | — v in H{(Bg/¢(0)) and v¥ € X% 1P By the maximum principle, vR > 0. Note
that any positive solution of (3.30) satisfies

—-Av < <cvil , X € Bg/e(0),

where C > 0is independent of £ and R. In particular, —~AvE < C(vR)2~1, x € Bg/.(0). By applying the standard
Moser iteration (see [17]), {v} is bounded in Lq (IRN ) uniformly on R > Ry and ¢ € (0, &) for any g < co.
Moreover, for any y € RY, we have

(3.31)

R
Ve llLagss vy < Cllvg "LZ(B )’

By [17, Theorem 8.17] and (3.31), we have

R
Iz

sup vg < C(Iv§ )t IR aa ) < CIVEIL 5

Bi(y) L By(

L3 By’

In particular, this implies that v stays bounded in L®(RYN). Since ||vE||; and {T;(v¥)} are bounded, we get
that {Qg(v?j)} is uniformly bounded on R > Ry and € € (0, &9). So, we have

p p p
J [vR|Z dx < J VB2 dx = €7 J)(glvifl? dx<e'C
RM\B g, (0) RN\, RN
£

forany R > Rpand € € (0, &). Thus, for |x| > % +4and R > Ry, we have (vﬁ)%‘1 < eTCv§. By the comparison
principle, similarly to the proof of [9, Proposition 3], we get

lim I [IVVRP + xVe(0)IG L (vB)?] dx = 0 (3.32)
A—+o00

RN\B,4(0)
uniformly on R > Ry. Let vk = vfk and Ry — +co as k — co. Then {v;} is bounded in H*(RM), and we may
assume vi — Ve in HY(RY) and vi — v, a.e. in RY. Since v; satisfies (3.30) and by using (3.32), we get
vk = velle — O as k — co. Thus, v, € XSO n F?S and I'L(v¢) = 0. O

We are now in the position to prove Theorem 1.1 and Theorem 1.2.
By Lemma 3.11, for small € > 0, there exists a positive solution v, to the following equation:

Gl(v) Gt (W)IP2G7(v) 2 21
—Av + KVS(X)M = K¢ (x) 2(G10) —p(ﬂiv Xev?Zdx — 1>+)(£v . (3.33)

Since v, € Xg", by the Moser iteration [17], {v¢} is uniformly bounded in L (R") for small € > 0.
By Lemma 3.4, for small d > 0, there exist a sequence {z.} ¢ RN and y, € M satisfying

limleze —yol =0, lim|ve(:) — @e(- = 2)U(- = 2¢)ll; =0
-0 £—0

up to a subsequence. Then
dim [lve(- +z¢) - U(C)I" = 0. (3.34)

From (3.33), there exist some C; > 0 and C, > 0 such that
~Ave + C1kve < Cov2 1
Thus, for given ¢ > 0, there exist R > 0 and €9 > 0 such that

sup V(X +z¢)dx < 0. (3.35)

e€(0,&9)
RN\B(0)
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Setting we(-) = ve(- + 2z¢), we have ~Aw, < Cw,. Hence, from [17, Theorem 8.17], there exists a constant
Co = Co(N, C) such that
sup we < ColWellrza,(y forally e RV,
Bi(y)
In view of (3.35), we conclude that w.(x) — 0 as |x| — oo. Let y. be a maximum point of w(x). Then {y.} is
bounded. Otherwise, [|w,(ye)|L~ — 0 as € — 0, which would contradict (3.34).
Now, fix £ > 0 sufficiently small. By Lemma 2.2 (i), we choose Ry > 0 such that

G l(v)
— 2 = fi >R
gG iy - 2" oriER
Thus, from (3.33), we have

1
-Av + EKVOV <Kov?™' for [x| = Ro.

Let
_ = (Y
Py) = x> pv(ﬁ)’ lyl > VkRo.
Then 1
—A(l) + 5V0¢ < K0¢p_1.
Since

SRV
_ — +00,
N y
we get ¢(y) — 0. Thus, there exists R; > 0 such that
51
Ko|lwlP~* < Z Vo.

Thus, for |y| > vxR1, we have
1
A+ 2 Vo <0.

Now define the function
P(x) = Mexp(=¢lyl),

where ¢ and M are such that 4¢? < V and for all |y| = vxRy,
Mexp(-§ViR1) > ¢ (y)

It is straightforward to check that for all x # 0,

Ap < &2 < %Vol,b.
Thus,
1
-AY - @) + ZVo(l/J -$)=>0 forly| > VkR;.
By the maximum principle, we have that

d(y) < Mexp(-&ly)) for |yl > VkR1,

which yields that .
we(x) < Mx72 exp(-&Vk|x|) for|x| = R;. (3.36)

and in turn
we(x) < Cexp(-&Vklx|) forx e RN,

Set x¢ = ¥ + z¢. Then x, is a maximum point of v.(x) and

Ve(x) = we(x — z¢) < Cexp(-&Vklx — x¢|) forx e RN,
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As a consequence, we have that
b p
ngvé dx=¢" J vE dx
RN RN\O,
<Ce T I exp(—cVk|x — xg|) dx
RM\O,
<Ce™N J exp(—cVk|x/e —x¢|)dx - 0 ase — 0
RV\O
(notice that here we use that fact vx/e = 1/h — 0 as € — 0). Thus, Q¢(v¢) = 0 for small € >0 and v, is a
positive critical point of P.. So, us = G™1(v,) is a positive solution of (1.5). Furthermore,
lue(- +xe) = G (U(- + yo)lIpraryy — O.

Finally, let us prove the last part of Theorem 1.2 which concerns the critical case p = 1\%_1\/2 Set

t
G2L(b) = jgg(s)ds,
0

where
ge(s) = 1 +2{s2.

Then equation (1.7) turns into the following equation:

G:1(v) |G WIP2G 1 (v)
— = Ke(®) —~
8:(G¢ () 8:(Ge (v))

Here we just stress the differences with respect to the previous case. First, the unique fast decay positive radial
solution of (2.2) should be replaced by the unique positive radial solution (ground state) of (1.9). Besides,

-Av + kVq(x) , xeRN.

L(v) = % J IVv|? dx - % j WP dx.

RN RN

Since g¢(t) — 1 and G;(t) — tforany t € Ras ¢ — 0, equation (3.15) turns into

G_l ~n ﬁGgl ~n oA
Jim j I<gn(x+zn)| s ;:(2;1(,7n))(v )q')dx: JK(ZO)IVIN—ZV(],') dx.

RN RN

So, (3.16) turns into
“AV = K(zo)|7|72 ¥, xeRY,

Similarly, (3.24) becomes
-Avy = K(yo +ZO)|V1|ﬁv1, x € RV,

The rest can be discussed in a similar fashion and following the analysis carried out in Lemmas 3.1-3.11;
the proofs are thus complete.

Remark 3.12. Inequality (3.36) is not true for all x € RY. In fact, from (3.33), we deduce that

! -1 -1
J IVwe|? dx < J [1 + 8 (Gg(gti)(ﬁ))(wg)]wwdz dx + x j Ve(x + z¢)| G (we)|? dx

RN RN RN

.

2% 2
< | Ketxs 2016wl dx < Clwelltg [ [ 19wel? ax]
RN

RN

By (3.34), we get [|w¢| o rvy = C, where C is independent of k.
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