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Abstract:We study the asymptotic profile, as ℏ → 0, of positive solutions to

−ℏ2∆u + V(x)u − ℏ2+γu∆u2 = K(x)|u|p−2u, x ∈ ℝN ,

where γ ⩾ 0 is a parameterwith relevant physical interpretations,V and K are givenpotentials and the dimen-
sion N is greater than or equal to 5, as we look for finite L2-energy solutions.We investigate the concentrating
behavior of solutions when γ > 0 and, differently from the case γ = 0 where the leading potential is V, the
concentration is here localized by the source potential K. Moreover, surprisingly for γ > 0 we find a different
concentration behavior of solutions in the case p = 2N

N−2 and when 2N
N−2 < p <

4N
N−2 . This phenomenon does

not occur when γ = 0.

Keywords: Semiclassical States, Concentration Phenomena, Finite Energy Solutions, Non-Autonomous
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1 Introduction
We are concerned with blow-up phenomena for positive solutions to the following class of quasilinear
Schrödinger equations:

− ℏ2∆u + V(x)u − ℏ2+γu∆u2 = K(x)|u|p−2u, x ∈ ℝN , N ⩾ 5, (1.1)

where ℏ > 0 is the adimensionalized Planck constant, γ ∈ ℝ is a parameter which is relevant in several appli-
cations in Physics for which we refer to [21, 32], and which we assume here to be positive, V and K are given
potentials, for themoment real continuous functions, and the nonlinearity is in the range 2N

N−2 ⩽ p <
4N
N−2 . The

restriction on the Euclidean dimension is motivated by the fact that critical limit equations, related to (1.1)
as ℏ → 0, possess explicit solutions which fail to have finite L2-energy in low dimension. Equations of the
type (1.1) appear in the literature in the context of plasma physics and the continuum limit of discrete molec-
ular structures; we refer to [6, 7, 24, 27] and the references therein for the more physics related context
of (1.1).

*Corresponding author: Daniele Cassani, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como;
and RISM–Riemann International School of Mathematics, Villa Toeplitz, Via G.B. Vico, 46 – 21100 Varese, Italy,
e-mail: daniele.cassani@uninsubria.it
Youjun Wang, Department of Mathematics, South China University of Technology, Guangzhou 510640, P. R. China; and
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy,
e-mail: scyjwang@scut.edu.cn

Open Access. ©2021 Cassani and Wang, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.



856 | D. Cassani and Y. Wang, From H1-Critical to Super-Critical Quasilinear Schrödinger Equations

The existence of nontrivial solutions, in particular ground states for (1.1), has been intensively studied
in recent years throughout a very extensive literature, among which let us mention [22, 23, 26]. Though it is
not possible to give exhaustive references on the subject, let us recall a few results which are strictly related
to our problem.

For semiclassical states of (1.1), namely γ = 0 and ℏ → 0, assume 2 < p < 4N
N−2 , N ⩾ 3, K(x) ≡ 1, and that

V : ℝN → ℝ is Hölder continuous and satisfying the following conditions: 0 < V0 < infx∈ℝN V(x) and there is
a bounded open set Λ such that 0 < a := infx∈Λ V(x) < minx∈∂Λ V(x). Then the existence of localized solutions
concentrating near Ω := {x ∈ Λ : V(x) = a}has been obtained in [10, 19] and, by scaling properties, as ℏ → 0,
the limit equation turns out to be the following quasilinear autonomous Schrödinger equation:

− ∆u + au − u∆u2 = |u|p−2u, x ∈ ℝN . (1.2)

We refer to [15, 16, 20, 31, 34] for related results.
Notice that the scaling invariance of (1.1) breaks down as soon as γ > 0. Recently in [11], it has been

proved that in this context both the cases γ = 0 and γ > 0 have similar concentration behavior. However,
the limit equation for γ > 0 is different form the case γ = 0 and turns out to be the following semilinear
Schrödinger equation:

− ∆u + au = |u|p−2u, x ∈ ℝN . (1.3)

Aswe are going to see, this fact will play a crucial role in studying the blow-up profile of solutions to (1.1).
Indeed, loosely speaking, one expects solutions can be localized along suitable normalized truncations and
translations of ground states to the limit equation (1.2) or (1.3). Here the situation is completely different from
the case K ≡ 1 and γ = 0, as a proper normalized, translated and rescaled solution will concentrate around
critical points of the potential K.

It is well known from [3, 5, 30] that for the non-autonomous semilinear Schrödinger equation

−ℏ2∆u + V(x)u = K(x)|u|p−2u, x ∈ ℝN ,

the function
A(x) = [V(x)]

p+2
p −

N
2 [K(x)]−

2
p

retains important information for the concentrating behavior of solutions. Remarkably, for our problem (1.1)
the external Schrödinger potential V does not play any role in the blow-up phenomenon which is governed
by the source potential K.

Another interesting phenomenon addressed in this paper is the different concentrating behavior which
occurs passing from critical to supercritical nonlinearities in (1.1). This is due to the fact that the limit equa-
tion, as ℏ → 0, for (1.1) changes passing from 2N

N−2 < p <
4N
N−2 to p =

2N
N−2 . Surprisingly, in the critical case the

limit equation turns out to be the zero mass semilinear Schrödinger equation. To the best of our knowledge,
this fact has not been observed before.

In order to state our main results, set

v(x) = ℏ
γ
2 u(ℏ1+

(p−2)γ
4 x).

Then equation (1.1) turns into

− ∆v + ℏ
(p−2)γ

2 V(ℏ1+
(p−2)γ

4 y)v − v∆v2 = K(ℏ1+
(p−2)γ

4 y)|v|p−2v, x ∈ ℝN . (1.4)

For simplicity, set
κ = ℏ

(p−2)γ
2 , ε = ℏ1+

(p−2)γ
4

and denote
V(ℏ1+

(p−2)γ
4 y), K(ℏ1+

(p−2)γ
4 y)

by Vε(y), Kε(y), respectively. Thus, equation (1.4) can be written in the following form:

− ∆v + κVε(y)v − v∆v2 = Kε(y)|v|p−2v, x ∈ ℝN . (1.5)
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We assume the potential V and K satisfy the following conditions:
(V) V ∈ C(ℝN ,ℝ) and 0 < inf V(x) ⩽ V(x) ⩽ sup V(x) < +∞.
(K) K : ℝN → ℝ is Hölder continuous, 0 < supx∈ℝN K(x) < K0 and there is a bounded open set O such that

max
x∈∂O

K(x) < m := sup
x∈O

K(x).

SetM := {x ∈ O : K(x) = m}.
Our main results are the following.

Theorem 1.1. Let γ > 0, assume (V), (K) and 2N
N−2 ⩽ p <

4N
N−2 , N ⩾ 5. Then, for sufficiently small ε > 0, there

exists a positive solution vε of (1.5).

The solution vε obtained in Theorem 1.1 is actually uniformly bounded with respect to ε. As a consequence,
we will obtain the blow-up profile of solutions to the original equation (1.1).

In Section 2, we prove some preliminary results. In particular, we deal with the zeromass case and prove
that the equation

− ∆u − u∆u2 = mup (1.6)

has a unique positive radial solution U which belongs to D1,2(ℝN). Similarly to [1, Proposition 6.1], vε → U
in D1,2(ℝN) ∩ C2loc(ℝ

N) as ε → 0. That is,

ℏ
γ
2 uℏ(ℏ1+

(p−2)γ
2 ( ⋅ − xℏ)) → U( ⋅ )

in D1,2(ℝN) ∩ C2loc(ℝ
N) as ℏ → 0.

Blow-up phenomena for the autonomous version of problem (1.1) (namely V(x) = λ > 0 and K(x) ≡ 1)
have been studied in [1], where in order to get the asymptotic profile of the solution, uniform estimates of
the rescaled ground state and energy estimates were established. However, their method can not be applied
to deal with the non-autonomous problem (1.1). In [13], the Lyapunov–Schmidt reduction method has been
used to deal with the problem

− ∆u + εV(x)u − u∆u2 = up , u > 0, lim
|x|→+∞

u(x) = 0, x ∈ ℝN . (1.7)

Assuming V > 0, V ∈ L∞ and V(x) = o(|x|−2) as |x| → +∞, Cheng and Wei [13] proved that for ε sufficiently
small problem (1.7) has a positive fast decaying solution provided 2N

N−2 < p <
4N
N−2 , N ⩾ 3.

Surprisingly, the limit equation for (1.1) changes again when p = 2N
N−2 . Precisely, let

v(x) = ℏ
α
2 u(ℏ1+

(p−2)α
4 x) for any 0 < α < γ,

let
λ = ℏ

(p−2)α
2 , ζ = ℏγ−α , ε = ℏ1+

(p−2)α
4

and denote
V(ℏ1+

(p−2)α
4 y), K(ℏ1+

(p−2)α
4 y)

by Vε(y), Kε(y), respectively. Then equation (1.1) turns into the following equation:

− ∆v + λVε(y)v − ζv∆v2 = Kε(y)|v|p−2v, x ∈ ℝN . (1.8)

Note that λ, ζ → 0 as ℏ → 0.
The solution to (1.8) is closely related to the (unique) solution of the following zeromassmean field limit

equation [4]:
− ∆v = mv

N+2
N−2 , x ∈ ℝN , v > 0, v(0) = max v(x). (1.9)

It is well known since [29] that equation (1.9) possesses an explicit one-parameter family of solutions
given by

U = (N(N − 2)m)
N−2
4 (

μ
1 + μ2|x|2

)
N−2
2 , μ > 0.

Notice that the above functions, sometimes called Talenti’s functions, instantons aswell as standard bubbles,
do have finite L2-energy provided N ⩾ 5.
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Theorem 1.2. Assume that γ > 0, that (V), (K) hold and that 2N
N−2 < p <

4N
N−2 , N ⩾ 5. Then, for sufficiently small

ℏ > 0, there exists a local maximum point xℏ of uℏ such that limℏ→0 dist(xℏ,M) = 0 and there exists a positive
solution uℏ of (1.1) satisfying

uℏ( ⋅ ) = ℏ−
γ
2 U(ℏ−1−

(p−2)γ
2 ⋅ −xℏ) + ωℏ( ⋅ ),

where ωℏ( ⋅ ) → 0 in D1,2(ℝN) ∩ C2loc(ℝ
N) as ℏ → 0, and U is the unique fast decay, positive and radial (least

energy) solution of (1.6). Moreover, when p = 2N
N−2 , under the above hypotheses we have

uℏ( ⋅ ) = ℏ−
α
2 [

N(N − 2)μ√m
1 + μ2|ℏ−1−

(p−2)α
2 ⋅ −xℏ|2

]
N−2
2 + ωℏ( ⋅ ) for all 0 < α < γ.

Remark 1.3. In Theorem 1.2, α = γ is not allowed. Indeed, there exist no fast decaying solutions to (1.6) if
p = 2N

N−2 , as established in [13, Theorem 1.1].

Remark 1.4. Throughout this paper, we require N ⩾ 5. This assumption guarantees to obtain finite energy
solutions, namely that the solutions of (1.6) and (1.9) belong to L2(ℝN). It seems out of reach at the moment
to generalize the method of this paper to the case of N ⩽ 4 just assuming the mild condition (V). We mention
that the same restriction on the dimension was used for instance in [12], where infinitely many nonradial
solutions for the semilinear Schrödinger equation with critical growth were established by using a reduction
argument.

Throughout this paper, C will denote a positive constant whose exact value may change from line to line
without affecting the overall result.

2 Preliminaries
In this section, we collect a few results, which we will use in the sequel, on the following zeromass equation:

− ∆u − u∆u2 = m|u|p−2u, x ∈ ℝN , (2.1)

where 2∗ := 2N
N−2 < p < 2(2

∗) := 4N
N−2 , N ⩾ 5.

Uniqueness and non-degeneracy of positive solutions to (2.1) have been completely solved in [2]; see
also [13]. For the reader’s convenience, below we recall a few results we need in the sequel.

The energy functional related to equation (2.1) is given by

I(u) = 12 ∫
ℝN

(1 + 2u2)|∇u|2 dx − m
p ∫
ℝN

|u|p dx

and it is well defined in the set

E = {u ∈ D1,2(ℝN) : ∫
ℝN

u2|∇u|2 dx < +∞}.

Theorem 2.1 ([2, Theorem 1.1] or [13, Theorem 1.1]). Equation (2.1) has a unique positive radial solution
which belongs to D1,2(ℝN). In particular, the ground state of (2.1) is unique up to translations.

Lemma 2.2 ([33, Lemma 2.1]). Let g(s) = √1 + 2s2 and G(t) = ∫t0 g(s) ds. Then G(t) is an odd smooth function
as well as the inverse function G−1(t). Moreover, the following properties hold:
(i) It holds

lim
t→0

G−1(t)
t
= 1.

(ii) It holds

lim
t→+∞

G−1(t)
√t
= 4√2.

(iii) |G−1(t)| ⩽ |t| for all t ∈ ℝ.
(iv) |G−1(t)|2 is convex in t.
(v) |G−1(t)| ⩽ 4√2√|t| for all t ∈ ℝ.
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Next consider the following semilinear elliptic equation, which in some sense is the dual problem of (2.1):

− ∆v = m |G
−1(v)|p−2G−1(v)
g(G−1(v))

, x ∈ ℝN . (2.2)

The energy functional corresponding to (2.2) is defined by

Lm(v) =
1
2 ∫
ℝN

|∇v|2 dx − m
p ∫
ℝN

|G−1(v)|p dx,

which is well defined in D1,2(ℝN) by Lemma 2.2. Moreover, Lm(v) ∈ C1.
Solutions to v of (2.2) satisfy the following Pohozaev identity:

N − 2
2N ∫
ℝN

|∇v|2 dx − m
p ∫
ℝN

|G−1(v)|p dx = 0. (2.3)

Moreover, the ground state has a mountain pass characterization, namely

Lm(U) = Cm = inf
η∈Φ

max
t∈[0,1]

Lm(η(t)),

where
Φ = {η ∈ C([0, 1], D1,2(ℝN)) : η(0) = 0, Lm(η(1)) < 0};

see [1, Proposition 4.3].

Theorem 2.3 ([2, Propositions 2.6 and 3.2]). The following properties hold:
(i) (2.2) has a unique fast decay positive radial solution v(r), namely

lim
r→+∞

rN−2v(r) = c ∈ (0, +∞).

(ii) Let v ∈ D1,2(ℝN) ∩ C2(ℝN) be a positive radially decreasing solution of (2.2). Then there exists C > 0 such
that

CA(r)(1 − O(r−2)) ⩽ v(r) ⩽ CA(r), CA󸀠(r) ⩽ v󸀠(r) ⩽ CA󸀠(r)(1 − O(r−2))

for sufficiently large r. Here
A(r) = 1
(N − 2)|SN−1|rN−2

is the fundamental solution of −∆ onℝN . In particular, we have that

lim
r→+∞

rN−2v(r) = C
(N − 2)|SN−1|

, lim
r→+∞

rN−1v󸀠(r) = − C
|SN−1|

. (2.4)

Theorem 2.4 ([2, Lemma 2.4]). Suppose that

v =
u

∫
0

g(s) ds.

Then the following assertions hold:
(i) u ∈ E ∩ C2(ℝN) if and only if v ∈ D1,2(ℝN) ∩ C2(ℝN).
(ii) u is a positive solution of (2.1) if and only if v is a positive solution of (2.2).

3 Proof of Theorems 1.1 and 1.2
We next consider the following quasilinear Schrödinger equation:

− div(g2(u)∇u) + g(u)g󸀠(u)|∇u|2 + κVε(x)u = Kε(x)|u|p−2u, x ∈ ℝN , (3.1)

where g(s) = √1 + 2s2. Direct calculations show that (3.1) is equivalent to (1.5).
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The energy functional corresponding to (3.1) is given by

Jε(u) =
1
2 ∫
ℝN

[g2(u)|∇u|2 + κVε(x)u2] dx −
1
p ∫
ℝN

Kε(x)|u|p dx.

Note that Jε is not even well defined in H1(ℝN). However, it is well known since [14, 22] that a suitable
dual approach, hidden in change of variables, turns the energy functional to be smooth and well defined
in a proper function space setting; see [25], and also [10] for an Orlicz space approach. Here, the change of
variables u = G−1(v) yields the following smooth energy:

Pε(v) =
1
2 ∫
ℝN

(|∇v|2 + κVε(x)|G−1(v)|2) dx −
1
p ∫
ℝN

Kε(x)|G−1(v)|p dx.

By Lemma 2.2, it is standard to check that Pε ∈ C1(H1(ℝN),ℝ).
The Euler–Lagrange equation associated to Pε is

− ∆v + κVε(x)
G−1(v)
g(G−1(v))

= Kε(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
, x ∈ ℝN . (3.2)

If v ∈ H1(ℝN) ∩ L∞(ℝN) is a solution of (3.2), then it satisfies

∫

ℝN

[∇v∇ϕ + κVε(x)
G−1(v)
g(G−1(v))

ϕ − Kε(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
ϕ] dx = 0 for all ϕ ∈ H1(ℝN).

Then u = G−1(v) ∈ H1(ℝN) ∩ L∞(ℝN). For any φ ∈ C∞0 (ℝN), one has φg(G−1(v)) ∈ H1(ℝN) ∩ L∞(ℝN) and

∫

ℝN

[∇u∇φ + g(u)g󸀠(u)|∇u|2φ + κVε(x)uφ − Kε(x)|w|p−2wφ] dx = 0,

which implies that u is a weak solution of (3.1).
Therefore, in order to find nontrivial solutions to (3.1), we are compelled to find nontrivial solutions

of (3.2). Since we are concerned with positive solutions, we actually consider the following truncated energy
functional:

v 󳨃→ 1
2 ∫
ℝN

(|∇v|2 + κVε(x)|G−1(v)|2) dx −
1
p ∫
ℝN

Kε(x)|G−1(v+)|p dx.

However, in order to avoid cumbersomenotations, hereafterwewrite v in place of v+ in the last integral, when
this does not yield confusion.

Set
Γε(v) := Pε(v) + Qε(v),

where
Qε(v) = ( ∫

ℝN

χεv
p
2 dx − 1)

2

+

with χε(x) = 0 for x ∈ Oε := {x ∈ ℝN : εx ∈ O} and χε(x) = ε−τ for x ̸∈ Oε, where τ > 0 has to be determined
later on. By inspection, Γε ∈ C1(H1(ℝN),ℝ). The functional Qε will act as a penalization to force the concen-
tration phenomena to occur inside O. This type of penalization was introduced in [8, 9].

Let U be the unique fast decay positive radial solution of (2.2).Without loss of generality, wemay assume
U(0) = maxU(x) and that 0 ∈M. Set Ut(x) := U( xt ) for t > 0. By (2.3), there exists t0 > 1 such that

Lm(Ut) = (
tN−2

2 −
tN

2∗ ) ∫
ℝN

|∇U|2 dx < −2 for all t ⩾ t0. (3.3)

Choose a positive number

β < dist(M,ℝN \ O)
100
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and a cut-off function φ(x) ∈ C∞0 (ℝN , [0, 1]) such that φ(x) = 1 for |x| ⩽ β and φ(x) = 0 for |x| ⩾ 2β. Set
φε(x) := φ(εx) and then define

Uyε (x) := φε(x −
y
ε )
U(x − yε )

for each y ∈Mβ ,

whereMβ = {x ∈ ℝN : dist(x,M) < β}.
We aim at finding a solution of (1.5) near the set Xε := {U

y
ε (x) : y ∈Mβ} for sufficiently small ε > 0. Let

Wε,t(x) = φε(x)Ut(x). Note that for fixed x ∈ ℝN we haveWε,t(x) → 0 as t → 0. So, we setWε,0(x) = 0.
Next, we borrow some ideas from [11]. However, here the situation is quite different in particular for the

decaying behavior of the ground state solution of the limit equation and the different concentrating behavior
of the solution.

Lemma 3.1. It holds
lim
ε→0

max
t∈(0,t0]
|Γε(Wε,t) − Lm(Ut)| → 0.

Proof. Since supp(Wε,t(x)) ⊂ Oε, one has Qε(Wε,t(x)) = 0. Thus, for t ∈ (0, t0], we have

Γε(Wε,t) − Lm(Ut) =
1
2 ∫
ℝN

(|∇Wε,t|2 − |∇Ut|2) dx +
κ
2 ∫
ℝN

Vε|G−1(Wε,t)|2 dx

−
1
p ∫
ℝN

(Kε|G−1(Wε,t)|p − m|G−1(Ut)|p) dx. (3.4)

By (2.4) and the Lebesgue dominated convergence theorem, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(|∇Wε,t|2 − |∇Ut|2) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ Cε2 ∫

ℝN

(|∇U|2 + U2) dx + CtN0 ∫
ℝN

|φ2
ε (tx) − 1|(1 + |x|)2−2N dx → 0. (3.5)

as ε → 0. Clearly, by Lemma 2.2 (iii), we obtain

∫

ℝN

Vε|G−1(Wε,t)|2 dx ⩽ C ∫
ℝN

|Wε,t|2 dx ⩽ C ∫
ℝN

U2 dx < +∞. (3.6)

By the mean value theorem and dominated convergence again, we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(|G−1(Ut)|p − |G−1(Wε,t)|p) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ p ∫
ℝN

|G−1(Ut + θWε,t)|p−1

g(G−1(Ut + θWε,t))
|Ut −Wε,t| dx

⩽ C ∫
ℝN

(1 − φε(tx))(U2 + U
p
2 ) dx

→ 0 as ε → 0, (3.7)

where 0 < θ < 1. Similarly, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(Kε(x) − m)|G−1(Wε,t)|p dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ tN0 ∫
ℝN

(Kε(tx) − m)φε(tx)U
p
2 (x) dx → 0 as ε → 0. (3.8)

The desired conclusion follows from (3.4)–(3.8).

Now, from (3.3) and Lemma 3.1, there exists ε0 > 0 such that for ε ∈ (0, ε0),

Γε(Wε,t0 ) ⩽ Lm(Ut0 ) + 1 < −1.

Define the minimax level
Cε = inf

ηε∈Φε
max
s∈[0,1]

Γε(ηε(s)),

where
Φε = {ηε ∈ C([0, 1], H1(ℝN)) : ηε(0) = 0, ηε(1) = Wε,t0}.
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Lemma 3.2. It holds limε→0 Cε = Cm.

Proof. Let ηε(s) = Wε,st0 , s ∈ [0, 1], such that ηε(s) ∈ Φε. Since t0 > 1, from Lemma 3.1, we have

lim sup
ε→0

Cε ⩽ lim sup
ε→0

max
t∈[0,t0]

Γε(Wε,t) ⩽ max
t∈[0,t0]

Lm(Ut) = Cm .

It remains to prove that lim infε→0 Cε ⩾ Cm. By definition of Cε, for any ε̃ > 0, there exists η̃ε ∈ Φε such that

max
s∈[0,1]

Γε(η̃ε(s)) < Cε + ε̃. (3.9)

Since Pε(η̃ε(0)) = 0 and Pε(η̃ε(1)) ⩽ Γε(Wε,t0 ) < −1, there exists s0 ∈ (0, 1) such that

Pε(η̃ε(s0)) = −1 and Pε(η̃ε(s)) > −1, s ∈ [0, s0).

Then we have
Qε(η̃ε(s)) ⩽ Γε(η̃ε(s)) + 1 < Cε + ε̃ + 1, s ∈ [0, s0].

By Lemma 2.2 (v), we have

∫

ℝN\Oε

|G−1(η̃ε(s))|p dx ⩽
4√2p ∫
ℝN\Oε

|η̃ε(s)|
p
2 dx

⩽ 4√2pετ[√Qε(η̃ε(s)) + 1] ⩽
4√2pετ[√Cε + ε̃ + 1 + 1]

for s ∈ [0, s0]. Therefore, the following lower bound holds:

Pε(η̃ε(s)) ⩾ Lm(η̃ε(s)) +
1
p
(m − K0) ∫

ℝN\Oε

|G−1(η̃ε(s))|p dx

⩾ Lm(η̃ε(s)) +
1
p
(m − K0)

4√2pετ[√Cε + ε̃ + 1 + 1], s ∈ [0, s0]. (3.10)

In particular, we have

Lm(η̃ε(s0)) ⩽
1
p
(K0 − m)

4√2pετ[√Cε + ε̃ + 1 + 1] − 1 < 0 for small ε > 0.

Hence, η̃ε(ts0) ∈ Φ and maxt∈[0,1] Lm(η̃ε(ts0)) ⩾ Cm. So, by (3.9) and (3.10), we get

Cε + ε̃ > max
s∈[0,s0]

Γε(η̃ε(s)) ⩾ Cm +
1
p
(m − K0)

4√2pετ[√Cε + ε̃ + 1 + 1],

which yields lim infε→0 Cε ⩾ Cm since ε̃ is arbitrary. This completes the proof of the lemma.

Remark 3.3. Let Dε = maxs∈[0,1] Γε(Wε,st0 ). From the proof of Lemma 3.2 we get

lim
ε→0

Dε = Cm .

Next, we consider the space ERε := H1
0(BR/ε(0)) endowed with the norm

‖v‖ε,R = [ ∫
BR/ε(0)

(|∇v|2 + v2) dx]
1
2
.

Note that any v ∈ ERε can be regarded as an element of H1(ℝN) by defining v = 0 onℝN \ BR/ε(0).
Define also the level sets

Γcε := {u ∈ ERε : Γε(u) ⩽ c}

and
Xd := {u ∈ ERε : infv∈X

‖u − v‖ε,R < d}, d > 0.
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In what follows, for small d > 0, let vn ∈ Xdεn ∩ E
Rn
εn with εn → 0 and Rn → +∞ be such that

lim
n→∞

Γεn (vn) ⩽ Cm and lim
n→∞
‖Γ󸀠εn (vn)‖(ERnεn )󸀠 = 0.

From the definition of Xdεn , we can find a sequence {yn} ⊂M
β such that

󵄩󵄩󵄩󵄩󵄩󵄩vn − φεn( ⋅ −
yn
εn
)U( ⋅ − ynεn

)
󵄩󵄩󵄩󵄩󵄩󵄩εn ,Rn
⩽ d. (3.11)

This implies that {vn} is bounded in H1(ℝN). SinceMβ is compact, wemay assume, up to a subsequence, that
yn → y0 ∈Mβ.

Lemma 3.4. It holds
lim
n→∞

sup
z∈{z∈ℝN : 12 β⩽|εnz−yn |⩽3β}

∫
BR(z)

v2n dx = 0 for all R > 0.

Proof. Suppose by contradiction that there exist R > 0 and a sequence

{zn} ⊂ {z ∈ ℝN : 12β ⩽ |εnz − yn| ⩽ 3β}

such that
lim
n→∞
∫

BR(zn)

v2n dx > 0. (3.12)

Assume
εnzn → z0 ∈ {z ∈ ℝN : 12β ⩽ |z − y0| ⩽ 3β}.

Let ṽn( ⋅ ) := vn( ⋅ + zn) be such that ṽn ⇀ ṽ in H1(ℝN) and ṽn → ṽ in Lploc(ℝ
N), p ∈ [2, 2∗). Then, by (3.12),

we get
∫

BR(0)

|ṽ|2 dx = lim
n→∞
∫

BR(0)

ṽ2n dx > 0,

which yields ṽ ̸≡ 0.
Let ϕ ∈ C∞0 (ℝN). Then, for large n, we have ϕ( ⋅ − zn) ∈ E

Rn
εn . Since

lim
n→∞
‖Γ󸀠εn (vn)‖(ERnεn )󸀠 = 0,

we obtain

on(1)‖ϕ‖εn ,Rn = ∫
ℝN

[∇ṽn∇ϕ − Kεn (x + zn)
|G−1(ṽn)|p−2G−1(ṽn)

g(G−1(ṽn))
ϕ] dx + κn ∫

ℝN

Vεn (x + zn)
G−1(ṽn)
g(G−1(ṽn))

ϕ dx

− p( ∫
ℝN

χεn |vn|
p
2 dx − 1)

+
∫

ℝN

χεn (x + zn)|ṽn|
p
2−2 ṽnϕ dx, (3.13)

where
κn = ε

2(p−2)γ
4+(p−2)γ
n .

Clearly,
lim
n→∞
∫

ℝN

χεn (x + zn)|ṽn|
p
2−2 ṽnϕ dx = 0.

Since {vn} is bounded in H1(ℝN), we have

∫

ℝN

Vεn (x + zn)
G−1(ṽn)
g(G−1(ṽn))

ϕ dx < +∞. (3.14)

By the Lebesgue dominated convergence theorem, we get

lim
n→∞
∫

ℝN

Kεn (x + zn)
|G−1(ṽn)|p−2G−1(ṽn)

g(G−1(ṽn))
ϕ dx = ∫

ℝN

K(z0)
|G−1(ṽ)|p−2G−1(ṽ)

g(G−1(ṽ))
ϕ dx. (3.15)

Combine (3.13), (3.14) and (3.15), to have

∫

ℝN

[∇ṽ∇ϕ − K(z0)
|G−1(ṽ)|p−2G−1(ṽ)

g(G−1(ṽ))
ϕ] dx = 0 for all ϕ ∈ C∞0 (ℝ

N),
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which implies that ṽ is a positive solution of the following equation:

− ∆ṽ = K(z0)
|G−1(ṽ)|p−2G−1(ṽ)

g(G−1(ṽ))
, x ∈ ℝN . (3.16)

Recall that, on the right-hand side of the above equality, ṽ is actually ṽ+. Thus, by the maximum principle,
we get ṽ > 0. Because of K(z0) ⩽ m, we get CK(z0) ⩾ Cm.

Choosing R > 0 sufficiently large, by Pohozaev’s identity, we obtain

2 lim
n→∞
∫

BR(zn)

|∇vn|2 dx ⩾ ∫
ℝN

|∇ṽ|2 dx = NLK(z0)(ṽ) ⩾ NCK(z0) ⩾ NCm . (3.17)

However, it follows from (3.11) that

∫
BR(zn)

|∇vn|2 dx ⩽ d2 + 2ε2n ∫
BR(zn)

󵄨󵄨󵄨󵄨󵄨󵄨∇φεn(x −
yn
εn
)U(x − ynεn

)
󵄨󵄨󵄨󵄨󵄨󵄨
2
dx + ∫

BR(zn)

󵄨󵄨󵄨󵄨󵄨󵄨φεn(x −
yn
εn
)∇U(x − ynεn

)
󵄨󵄨󵄨󵄨󵄨󵄨
2
dx

⩽ d + Cε2n + C ∫
BR(0)

(1 +
󵄨󵄨󵄨󵄨󵄨󵄨x + zn −

yn
εn
󵄨󵄨󵄨󵄨󵄨󵄨)
2−2N

dx. (3.18)

Note that limn→∞|zn − ynεn | = +∞. Thus, for n large enough, by (3.17) and (3.18), we get a contradiction for
small d > 0. This completes the proof of Lemma 3.4.

Now choose η ∈ C∞0 (ℝN) such that 0 ⩽ η ⩽ 1 and

η(z) =
{
{
{

1 if z ∈ {z ∈ ℝN : β ⩽ |z| ⩽ 2β},
0 if z ∈ ℝN \ {z ∈ ℝN : 1

2β ⩽ |z| ⩽ 3β}.

By setting ηn(z) = η(εnz − yn)vn, clearly, ηn is bounded in H1(ℝN). Thus, from Lemma 3.4, we have

lim
n→∞

sup
z∈ℝN
∫

ℝN

|ηn|2 dx = 0.

This fact together with Lions’ concentration-compactness lemma gives ηn → 0 in Lq(ℝN), q ∈ (2, 2∗). So, we
obtain

lim
n→∞

∫

{x∈ℝN :β⩽|εnx−yn |⩽2β}

|vn|q dx ⩽ lim
n→∞
∫

ℝN

|ηn|q dx = 0. (3.19)

Set vn,1( ⋅ ) = φεn ( ⋅ −
yn
εn )vn( ⋅ ) and vn,2 = vn − vn,1. Then let us prove the following lemma.

Lemma 3.5. It holds
Γεn (vn) ⩾ Γεn (vn,1) + Γεn (vn,2) + on(1).

Proof. Since supp(vn,1) ⊂ Oε, we have

Qεn (vn,1) = 0 and Qεn (vn,2) = Qεn (vn).

Therefore, by Lemma 2.2 (iv), (v) and G−1(0) = 0, for large n, we deduce that

Γεn (vn,1) + Γεn (vn,2) = Γεn (vn) + ∫
ℝN

φεn (x −
yn
εn
)[φεn(x −

yn
εn
) − 1]|∇vn|2 dx

+
κn
2 ∫
ℝN

Vεn (x)[|G−1(vn,1)|2 + |G−1(vn,2)|2 − |G−1(vn)|2] dx

+
1
p ∫
ℝN

Kεn (x)[|G−1(vn)|p − |G−1(vn,1)|p − |G−1(vn,2)|p] dx + on(1)

⩽ Γεn (vn) + C ∫

{x∈ℝN :β⩽|εnx−yn |⩽2β}

|vn|
p
2 dx + on(1). (3.20)

By (3.19) and (3.20), we get the result.
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In what follows, we use the following notation:

A0 = {x ∈ ℝN : |εnx − yn| ⩽ β},
A1 = {x ∈ ℝN : |εnx − yn| ⩾ 2β},
A2 = {x ∈ ℝN : β ⩽ |εnx − yn| ⩽ 2β}.

Lemma 3.6. It holds Γεn (vn,2) > 0.

Proof. From (3.11), we get

∫
A1

(|∇vn,2|2 + v2n,2) dx = ∫
A1

(|∇vn|2 + v2n) dx ⩽ d2.

Similarly, we get

∫
A2

(|∇vn,2|2 + v2n,2) dx ⩽ C ∫
A2

(|∇vn|2 + v2n) dx ⩽ Cd2 + on(1).

For n large enough, we have ‖vn,2‖H1(ℝN ) ⩽ Cd for small d > 0. On the other hand, by Lemma 2.2 (i) and (ii),
we get |G−1(vn,2)|p ⩽ C|vn,2|2

∗ . Hence,

Γεn (vn,2) ⩾
1
2 ∫
ℝN

|∇vn,2|2 dx − C ∫
ℝN

|vn,2|2
∗ dx

⩾
1
2 ∫
ℝN

|∇vn,2|2 dx − Cd
2∗−2
2 ∫

ℝN

|∇vn,2|2 dx

⩾
1
4 ∫
ℝN

|∇vn,2|2 dx > 0. (3.21)

This concludes the proof of Lemma 3.6.

Denote the usual norm in D1,2
0 (BR/ε(0)) as follows:

‖v‖∗ε,R = ( ∫
BR/ε(0)

|∇v|2 dx)
1
2
.

Lemma 3.7. For small d > 0, there exist a sequence {zn} ⊂ ℝN and y0 ∈M with εn → 0 and Rn → +∞ satisfy-
ing, up to a subsequence,

lim
n→∞
|εnzn − y0| = 0 and lim

n→∞
‖vn( ⋅ ) − φεn ( ⋅ − zn)U( ⋅ − zn)‖∗εn ,Rn = 0.

Proof. Let
wn( ⋅ ) := vn,1( ⋅ +

yn
εn
).

Then {wn} is bounded inH1(ℝN). Thus, up to a subsequence if necessary, wemay assumewn ⇀ w inH1(ℝN),
wn → w in Lqloc(ℝ

N), q ∈ [2, 2∗), and wn → w a.e. in ℝN . From (3.11), for a given R > 0, as n is large enough
we get

d2 ⩾ ∫
A0

󵄨󵄨󵄨󵄨󵄨󵄨vn,1 − φεn(x −
yn
εn
)U(x − ynεn

)
󵄨󵄨󵄨󵄨󵄨󵄨
2
dx ⩾ ∫

BR(0)

|wn − φεnU|2 dx.

Thus, we have

∫
BR(0)

w2 dx = lim
n→∞
∫

BR(0)

w2
n dx ⩾ C − d2,

which yields w ̸= 0.
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Let ϕ ∈ C∞0 (ℝN). Note that
wn(x) = vn,1(x +

yn
εn
) = vn(x +

yn
εn
)

for x ∈ supp(ϕ) and large n. Moreover,

supp(wn(x)) ⊂ {x ∈ ℝN : |εnx| ⩽ 2β} ⊂ O.

Thus, from
⟨Γ󸀠εn (vn), ϕ( ⋅ −

yn
εn
)⟩ = on(1)‖ϕ‖εn ,Rn

and analogously to the proof of (3.14) and (3.15), w is a positive solution of the following equation:

− ∆w = K(y0)
|G−1(w)|p−2G−1(w)

g(G−1(w))
, x ∈ ℝN . (3.22)

Claim:
lim
n→∞

sup
z∈ℝN
∫

B1(z)

|wn − w|2 dx = 0. (3.23)

Indeed, if (3.23) does not occur, then there exists a sequence {zn} ⊂ ℝN with |zn| → +∞ such that

lim
n→∞
∫

B1(zn)

|wn − w|2 dx > 0.

Thus, we have
lim
n→∞
∫

B1(zn)

|w|2 dx = 0, lim
n→∞
∫

B1(zn)

|wn|2 dx > 0.

We have |εnzn| ⩽ 1
2β. In fact, if |εnzn| >

1
2β, by Lemma 3.4, we have

0 < lim
n→∞
∫

B1(zn)

|wn|2 dx ⩽ lim
n→∞

sup
z∈{z∈ℝN : 12 β⩽|εnz−yn |⩽3β}

∫
B1(z)

|vn|2 dx = 0,

which is impossible. Thus, up to a subsequence, we may assume εnzn → z0 ∈ {z ∈ ℝN : |z| ⩽ 1
2β}. Suppose

vn,1( ⋅ + zn + ynεn ) ⇀ v1( ⋅ ) in H1(ℝN). As in the proof of (3.22), we have

− ∆v1 = K(y0 + z0)
|G−1(v1)|p−2G−1(v1)

g(G−1(v1))
, x ∈ ℝN . (3.24)

By the maximum principle, v1 > 0.
Thus, for large R, we obtain

1
2NCm ⩽ ∫

BR(0)

󵄨󵄨󵄨󵄨󵄨󵄨∇vn,1(x + zn +
yn
εn
)
󵄨󵄨󵄨󵄨󵄨󵄨
2
dx

= ∫

BR(zn+ ynεn )

|∇vn,1(x)|2 dx

⩽ Cε2n + C ∫
BR(zn+ ynεn )

|∇vn|2 dx

⩽ Cε2n + Cd + C ∫
BR(0)

(1 + |x + zn|)2−2N dx.

We get a contradiction for large n and small d since |zn| → +∞.
Therefore, (3.23) holds and the claim is proved.
Again by Lions’ concentration-compactness lemma, we have wn → w in Lq(ℝN), q ∈ (2, 2∗). As a conse-

quence
lim
n→∞
∫

ℝN

Kεn(x +
yn
εn
)|G−1(wn)|p dx = ∫

ℝN

K(y0)|G−1(w)|p dx. (3.25)
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By Fatou’s lemma, Lemmas 3.5 and 3.6 and by (3.21), up to a subsequence, we have

Cm ⩾ lim
n→∞

Γεn (vn)

⩾ lim
n→∞

Γεn (vn,1) + limn→∞
Γεn (vn,2)

⩾ lim
n→∞

Γεn (vn,1)

= lim
n→∞

1
2 ∫
ℝN

(|∇wn|2 + κnVεn(x +
yn
εn
)|G−1(wn)|2) dx −

1
p ∫
ℝN

Kεn(x +
yn
εn
)|G−1(wn)|p dx

⩾
1
2 ∫
ℝN

|∇w|2 dx − 1
p ∫
ℝN

K(y0)|G−1(w)|p dx

⩾ CK(y0) ⩾ Cm . (3.26)

Hence, we get limn→∞ Γεn (vn,1) = Cm. Moreover, we get K(y0) = m andwe see thatw is a ground state to (2.2).
Thus, there exists some z ∈ ℝN such that w( ⋅ + z) = U( ⋅ ). By (3.25) and (3.26), we have

lim
n→∞
∫

ℝN

|∇wn|2 dx = ∫
ℝN

|∇w|2 dx.

Let zn = z + ynεn . Then
‖vn,1( ⋅ ) − φεn ( ⋅ − zn)U( ⋅ − zn)‖∗εn ,Rn → 0.

Finally, by (3.21) and (3.26), we have

0 = lim
n→∞

Γεn (vn,2) ⩾
1
4 lim
n→∞
∫

ℝN

|∇vn,2|2 dx,

which yields limn→∞‖vn,2‖∗εn ,Rn = 0, and the lemma is proved.

Let d ∈ (0, d0) such that Lemmas 3.4–3.7 hold and define

X̃dε := {u ∈ ERε : infv∈Xε
‖u − v‖∗ε,R < d}, d > 0.

Lemma 3.8. For any d ∈ (0, d0), there exist positive constants δd, Rd and εd such that

‖Γ󸀠ε(v)‖(ERε )󸀠 ⩾ δd

for any v ∈ ERε ∩ Γ
Dε
ε ∩ (X

d0
ε \ X̃dε ), R ⩾ Rd and ε ∈ (0, εd).

Proof. By contradiction, we assume that for some d ∈ (0, d0) there exist εn < 1
n , Rn > n and

vn ∈ ERnεn ∩ Γ
Dε
εn ∩ (X

d0
εn \ X̃

d
εn )

such that
‖Γ󸀠εn (vn)‖(ERnεn )󸀠 <

1
n
.

By Lemma 3.7, there exist a sequence {zn} ⊂ ℝN and y0 ∈M satisfying

lim
n→∞
|εnzn − y0| = 0, lim

n→∞
‖vn − φεn ( ⋅ − zn)U( ⋅ − zn)‖∗εn ,Rn = 0

up to a subsequence. Thus, for large n, εnzn ∈Mβ, φεn ( ⋅ − zn)U( ⋅ − zn) ∈ Xεn and vn ∈ X̃dεn , which contradicts
the fact that vn ∈ Xd0εn \ X̃dεn .

Lemma 3.9. For any given δ > 0, there exist small positive constants ε1 and d ⩽ d0 such that Γε(v) > Cm − δ
for any v ∈ Xdε and ε ∈ (0, ε1).

Proof. For v ∈ Xdε , there exists y ∈Mβ such that

Uyε (x) := φε(x −
y
ε )
U(x − yε )

∈ Xε and ‖v − Uyε (x)‖ε ⩽ d.
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Thus, we get

Γε(U
y
ε ) − Cm ⩾

1
2 ∫
ℝN

[|∇(φεU)|2 − |∇U|2] dx +
m
p ∫
ℝN

(|G−1(U)|p − |G−1(φU)|p) dx.

Similarly to the proof of Lemma 3.1, for small ε > 0, we have

Γε(U
y
ε ) ⩾ Cm −

δ
2 . (3.27)

On the other hand, for v ∈ Xdε , by choosing d small enough, we have

Γε(v) − Γε(U
y
ε ) ⩾ −

δ
2 . (3.28)

The result follows from (3.27) and (3.28).

Lemma 3.10. For sufficiently small ε > 0 and large R > 0, there exists a sequence {vRε,n} ⊂ ERε ∩ Γ
Dε
ε ∩ X

d0
ε such

that
‖Γ󸀠ε(vRε,n)‖(ERε )󸀠 → 0 as n →∞.

Proof. The proof is similar to [18, 19]. For the reader’s convenience, let us give a detailed proof. By contra-
diction, for small ε > 0 and large R > 0, there exists C(ε, R) > 0 such that

‖Γ󸀠ε(v)‖(ERε )󸀠 ⩾ C(ε, R), v ∈ ERε ∩ Γ
Dε
ε ∩ X

d0
ε .

On the other hand, by Lemma 3.8, there exists δ > 0 independent of ε ∈ (0, ε0) and R > R0 such that

‖Γ󸀠ε(v)‖(ERε )󸀠 ⩾ δ, v ∈ ERε ∩ Γ
Dε
ε ∩ (X

d0
ε \ X̃

d1
ε ).

Thus, there exists a pseudo-gradient vector field ΥRε in a neighborhood NRε ⊂ ERε of ERε ∩ Γ
Dε
ε ∩ X

d0
ε . Let

ÑRε ⊂ NRε such that
‖Γ󸀠ε(v)‖(ERε )󸀠 ⩾

1
2C(ε, R), v ∈ ÑRε .

We choose two positive Lipschitz continuous functions ζ Rε and ξ satisfying

ζ Rε (v) =
{
{
{

1 if v ∈ ERε ∩ Γ
Dε
ε ∩ X

d0
ε ,

0 if v ∈ ERε \ ÑRε , 0 ⩽ ζ Rε ⩽ 1,

and ξ ⩽ 1,

ξ(a) =
{
{
{

1 if |a − Cm| ⩽ 1
2Cm ,

0 if |a − Cm| ⩾ Cm .

Define

ΨR
ε =
{
{
{

−ζ Rε (v)ξ(Γε(v))ΥRε if v ∈ NRε ,
0 if v ̸∈ Eε \ NRε .

Then the initial value problem

d
dt
FRε (v, t) = ΨR

ε (FRε (v, t)),

FRε (v, 0) = v,

yields a unique global solution FRε : Eε × [0, +∞) → ERε . For the properties of FRε , we refer to, e.g., [19, 28].
Let ηε(s) = Wε,st0 = φεUst0 , s ∈ [0, 1], as before. Then, for small d1 > 0, there exists some μ > 0 such that if
|st0 − 1| ⩽ μ, then

‖ηε(s) − φεU‖ = ‖φε(Ust0 − U)‖ ⩽ C‖Ust0 − U‖ ⩽ d1,

which implies ηε(s) ∈ Xd1ε ⊂ X̃d1ε since 0 ∈M. On the other hand, if |st0 − 1| ⩾ μ, since t = 1 is the unique
maximumpoint of Lm(Ut)andmaxt⩾0 Lm(Ut) = Lm(U1) = Cm, there exists ρ > 0 such that Lm(Ust0 ) < Cm − 2ρ
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for |st0 − 1| ⩾ μ. From Lemma 3.1, there exists ε1 > 0 such that

max
s∈(0,1]
|Γε(Wε,st0 ) − Lm(Ust0 )| < ρ, ε ∈ (0, ε1).

So, for |st0 − 1| ⩾ μ, we have

Γε(ηε(s)) = Γε(Wε,st0 )

⩽ |Γε(Wε,st0 ) − Lm(Ust0 )| + Lm(Ust0 )
< Cm − ρ, ε ∈ (0, ε1). (3.29)

Define ηRε (s, t) := FRε (ηε(s), t), (s, t) ∈ [0, 1] × [0, +∞). Since

Γε(ηε(0)), Γε(ηε(1)) ̸∈ (0, 2Cm),

we get ηRε (s, t) ∈ Φε for any t > 0.
If |st0 − 1| ⩾ μ, by (3.29), we have

Γε(ηRε (s, t)) ⩽ Γε(ηε(s)) < Cm − ρ,

which is impossible by Lemma 3.2.
If |st0 − 1| ⩽ μ, we get ηε(s) ∈ X̃d1ε . In this case one of the following alternatives holds:

(a) ηRε (s, t) ∈ X
d0
ε for all t > 0.

(b) There exists some ts > 0 such that ηRε (s, ts) ̸∈ X
d0
ε .

If (a) holds, we have

Γε(ηRε (s, t)) = Γε(ηε(s)) +
t

∫
0

d
dτ

Γε(ηRε (s, τ)) dτ

⩽ Dε −min{δ2, C(ε, R)2}t.

Thus, limt→+∞ Γε(ηRε (s, t)) = −∞, which contradicts Lemma 3.9. So, we have that (b) holds. For any fixed s
with |st0 − 1| ⩽ μ, we find t1s , t2s > 0 such that ηRε (s, t) ∈ X

d0
ε \ X̃

d1
ε for t ∈ [t1s , t2s ] ⊂ (0, ts) for |t1s − t2s | > σ for

some σ > 0 dependent of d0 and d1. Thus, by Remark 3.3, we get

Γε(ηRε (s, ts0 )) ⩽ Γε(ηε(s)) +
t2s

∫

t1s

d
dt

Γε(ηRε (s, τ)) dτ

⩽ Dε − δ2(t2ε − t1ε )

< Cm −
1
2 δ

2σ, t ∈ [t1s , t2s ], and if |st0 − 1| ⩽ μ.

Therefore, since [0, 1] is compact, by the covering theorem, for all s ∈ [0, 1]with |st0 − 1| ⩽ μ, we can find tRε
such that

Γε(ηRε (s, tRε )) < Cm −
1
2 δ

2σ,

which is a contradiction to Lemma 3.2 since ηRε (s, tRε ) ∈ Φε.

Lemma 3.11. For sufficiently small ε > 0, there exists a critical point vε ∈ Xd0ε ∩ ΓDεε of Γε.

Proof. By Lemma 3.10, there exist ε0 and R0 > 0 such that there exists a sequence {vRε,n} ⊂ ERε ∩ Γ
Dε
ε ∩ X

d0
ε

such that
‖Γ󸀠ε(vRε,n)‖(ERε )󸀠 → 0 as n →∞

for ε ∈ (0, ε0) and R ∈ (R0, +∞). Clearly, {vRε,n} is bounded in H1
0(BR/ε(0)) since vRε,n ∈ X

d0
ε . Up to a subse-

quence if necessary, we may assume

vRε,n ⇀ vRε in H1
0(BR/ε(0)),

vRε,n → vRε in Lp(BR/ε(0)), p ∈ [1, 2∗),
vRε,n → vRε a.e. inℝN .
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Thus vRε is a solution of

− ∆v = Kε(x)|G
−1(v)|p−2G−1(v) − κVε(x)G−1(v)

g(G−1(v))
− p( ∫

BR/ε(0)

χε|v|
p
2 dx − 1)

+
χε|v|

p
2−2v, x ∈ BR/ε(0). (3.30)

From (3.30) we have vRε,n → vRε in H1
0(BR/ε(0)) and vRε ∈ X

d0
ε ∩ Γ

Dε
ε . By the maximum principle, vRε > 0. Note

that any positive solution of (3.30) satisfies

−∆v ⩽ Cv
p
2−1, x ∈ BR/ε(0),

where C > 0 is independent of ε and R. In particular, −∆vRε ⩽ C(vRε )
p
2−1, x ∈ BR/ε(0). By applying the standard

Moser iteration (see [17]), {vRε } is bounded in Lqloc(ℝ
N) uniformly on R ⩾ R0 and ε ∈ (0, ε0) for any q < ∞.

Moreover, for any y ∈ ℝN , we have
‖vRε ‖Lq(B3(y)) ⩽ C‖vRε ‖L p2 (B4(y)). (3.31)

By [17, Theorem 8.17] and (3.31), we have

sup
B1(y)

vRε ⩽ C(‖vRε ‖L p2 (B2(y)) + ‖(v
R
ε )

p
2−1‖Lq(B3(y))) ⩽ C‖vRε ‖L p2 (B4(y)).

In particular, this implies that vRε stays bounded in L∞(ℝN). Since ‖vRε ‖ε and {Γε(vRε )} are bounded, we get
that {Qε(vRε )} is uniformly bounded on R ⩾ R0 and ε ∈ (0, ε0). So, we have

∫

ℝN\B R0
ε
(0)

|vRε |
p
2 dx ⩽ ∫

ℝN\Oε

|vRε |
p
2 dx = ετ ∫

ℝN

χε|vRε |
p
2 dx ⩽ ετC

for any R ⩾ R0 and ε ∈ (0, ε0). Thus, for |x| ⩾ R0ε + 4 and R ⩾ R0, we have (v
R
ε )

p
2−1 ⩽ ετCvRε . By the comparison

principle, similarly to the proof of [9, Proposition 3], we get

lim
A→+∞

∫

ℝN\BA(0)

[|∇vRε |2 + κVε(x)|G−1(vRε )|2] dx = 0 (3.32)

uniformly on R ⩾ R0. Let vk = vRkε and Rk → +∞ as k →∞. Then {vk} is bounded in H1(ℝN), and we may
assume vk ⇀ vε in H1(ℝN) and vk → vε a.e. in ℝN . Since vk satisfies (3.30) and by using (3.32), we get
‖vk − vε‖ε → 0 as k →∞. Thus, vε ∈ Xd0ε ∩ Γ

Dε
ε and Γ󸀠ε(vε) = 0.

We are now in the position to prove Theorem 1.1 and Theorem 1.2.
By Lemma 3.11, for small ε > 0, there exists a positive solution vε to the following equation:

− ∆v + κVε(x)
G−1(v)
g(G−1(v))

= Kε(x)
|G−1(v)|p−2G−1(v)

g(G−1(v))
− p( ∫
ℝN

χεv
p
2 dx − 1)

+
χεv

p
2−1. (3.33)

Since vε ∈ Xd0ε , by the Moser iteration [17], {vε} is uniformly bounded in L∞(ℝN) for small ε > 0.
By Lemma 3.4, for small d > 0, there exist a sequence {zε} ⊂ ℝN and y0 ∈M satisfying

lim
ε→0
|εzε − y0| = 0, lim

ε→0
‖vε( ⋅ ) − φε( ⋅ − zε)U( ⋅ − zε)‖∗ε = 0

up to a subsequence. Then
lim
n→∞
‖vε( ⋅ + zε) − U( ⋅ )‖∗ = 0. (3.34)

From (3.33), there exist some C1 > 0 and C2 > 0 such that

−∆vε + C1κvε ⩽ C2v2
∗−1
ε .

Thus, for given σ > 0, there exist R > 0 and ε0 > 0 such that

sup
ε∈(0,ε0)

κ ∫
ℝN\BR(0)

v2ε (x + zε) dx ⩽ σ. (3.35)
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Setting wε( ⋅ ) = vε( ⋅ + zε), we have −∆wε ⩽ Cwε. Hence, from [17, Theorem 8.17], there exists a constant
C0 = C0(N, C) such that

sup
B1(y)

wε ⩽ C0‖wε‖L2(B2(y)) for all y ∈ ℝN .

In view of (3.35), we conclude that wε(x) → 0 as |x| → ∞. Let yε be a maximum point of wε(x). Then {yε} is
bounded. Otherwise, ‖wε(yε)‖L∞ → 0 as ε → 0, which would contradict (3.34).

Now, fix ε > 0 sufficiently small. By Lemma 2.2 (i), we choose R0 > 0 such that

G−1(v)
g(G−1(v))

⩾
1
2 v for |x| ⩾ R0

Thus, from (3.33), we have
−∆v + 12 κV0v ⩽ K0v

p−1 for |x| ⩾ R0.

Let
ϕ(y) = κ

1
2−p v( y
√κ
), |y| ⩾ √κR0.

Then
−∆ϕ + 12V0ϕ ⩽ K0ϕ

p−1.

Since 1
√κ
|y| → +∞,

we get ϕ(y) → 0. Thus, there exists R1 > 0 such that

K0|w|p−2 ⩽
1
4V0.

Thus, for |y| ⩾ √κR1, we have
−∆ϕ + 14V0ϕ ⩽ 0.

Now define the function
ψ(x) = M exp(−ξ|y|),

where ξ and M are such that 4ξ2 < V0 and for all |y| = √κR1,

M exp(−ξ√κR1) > ϕ(y)

It is straightforward to check that for all x ̸= 0,

∆ψ ⩽ ξ2ψ ⩽ 14V0ψ.

Thus,
−∆(ψ − ϕ) + 14V0(ψ − ϕ) ⩾ 0 for |y| ⩾ √κR1.

By the maximum principle, we have that

ϕ(y) ⩽ M exp(−ξ|y|) for |y| ⩾ √κR1,

which yields that
wε(x) ⩽ Mκ

1
p−2 exp(−ξ√κ|x|) for |x| ⩾ R1. (3.36)

and in turn
wε(x) ⩽ C exp(−ξ√κ|x|) for x ∈ ℝN .

Set xε = yε + zε. Then xε is a maximum point of vε(x) and

vε(x) = wε(x − zε) ⩽ C exp(−ξ√κ|x − xε|) for x ∈ ℝN .
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As a consequence, we have that

∫

ℝN

χεv
p
2
ε dx = ε−τ ∫

ℝN\Oε

v
p
2
ε dx

⩽ Cε−τ ∫
ℝN\Oε

exp(−c√κ|x − xε|) dx

⩽ Cε−τ−N ∫
ℝN\O

exp(−c√κ|x/ε − xε|) dx → 0 as ε → 0

(notice that here we use that fact √κ/ε = 1/ℏ → 0 as ε → 0). Thus, Qε(vε) = 0 for small ε > 0 and vε is a
positive critical point of Pε. So, uε = G−1(vε) is a positive solution of (1.5). Furthermore,

‖uε( ⋅ + xε) − G−1(U( ⋅ + y0))‖D1,2(ℝN ) → 0.

Finally, let us prove the last part of Theorem 1.2 which concerns the critical case p = 2N
N−2 . Set

G−1ε (t) =
t

∫
0

gε(s) ds,

where
gε(s) = √1 + 2ζs2.

Then equation (1.7) turns into the following equation:

−∆v + κVε(x)
G−1ε (v)

gε(G−1ε (v))
= Kε(x)

|G−1ε (v)|p−2G−1ε (v)
gε(G−1ε (v))

, x ∈ ℝN .

Herewe just stress the differenceswith respect to the previous case. First, the unique fast decay positive radial
solution of (2.2) should be replaced by the unique positive radial solution (ground state) of (1.9). Besides,

Lm(v) =
1
2 ∫
ℝN

|∇v|2 dx − m
p ∫
ℝN

|v|p dx.

Since gε(t) → 1 and G−1ε (t) → t for any t ∈ ℝ as ε → 0, equation (3.15) turns into

lim
n→∞
∫

ℝN

Kεn (x + zn)
|G−1ε (ṽn)|

4
N−2 G−1ε (ṽn)

gε(G−1ε (ṽn))
ϕ dx = ∫

ℝN

K(z0)|ṽ|
4
N−2 ṽϕ dx.

So, (3.16) turns into
−∆ṽ = K(z0)|ṽ|

4
N−2 ṽ, x ∈ ℝN .

Similarly, (3.24) becomes
−∆v1 = K(y0 + z0)|v1|

4
N−2 v1, x ∈ ℝN .

The rest can be discussed in a similar fashion and following the analysis carried out in Lemmas 3.1–3.11;
the proofs are thus complete.

Remark 3.12. Inequality (3.36) is not true for all x ∈ ℝN . In fact, from (3.33), we deduce that

∫

ℝN

|∇wε|2 dx < ∫
ℝN

[1 + g
󸀠(G−1(wε))G−1(wε)
g(G−1(wε))

]|∇wε|2 dx + κ ∫
ℝN

Vε(x + zε)|G−1(wε)|2 dx

⩽ ∫

ℝN

Kε(x + zε)|G−1(wε)|p dx ⩽ C‖wε‖
p−2∗
L∞(ℝN )[ ∫

ℝN

|∇wε|2 dx]
2∗
2
.

By (3.34), we get ‖wε‖L∞(ℝN ) ⩾ C, where C is independent of κ.
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