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Abstract: Effective fluoride removal from water is a persistent global concern both for drinking
water and wastewater treatment. According to World Health Organization (WHO), standards for
the maximum contaminant level in drinking water cannot be higher than 1.5 mg F− L−1 since
affects the skeletal and nervous systems of humans. Various technologies have been developed
to decrease fluoride concentration from waters, such as adsorption, coagulation, precipitation and
membrane separation. Membrane technology has been found to be a very effective technology,
significantly reducing fluoride to desired standards levels; however, it has received less attention
than other technologies because it is a costly process. This review aims to discuss the recent studies
using modified membranes for fluoride removal. Emphasis is given on cellulose-, polymer- and
graphene-based membranes and is further discussing the modification of membranes with several
metals that have been developed in the last years. It was observed that the main focus of the total
publications has been on the use of polymer-based membranes. Most of the membranes applied
for defluoridation exhibit greater efficiency at pH values close to that of drinking water (i.e., 6–8),
and maximum treatment capacity was obtained with the use of a cellulose modified membrane
Fe-Al-Mn@chitosan with a permeate flux of 2000 L m−2 h−1, following the carbon-based amyloid
fibril nano-ZrO2 composites (CAF-Zr) 1750 L m−2. A technical-economic comparison study of NF
and RO is also referred, concluding that NF membrane is slightly less expensive.

Keywords: filtration; inions; nano filtration; natural waters; polyacrylonitrile; reverse osmosis

1. Introduction

Fluorine is an active non-metal element that has negatively charged species i.e., flu-
oride ions, and affects human health, which includes teeth and bones. Up to a certain
concentration level, it can have a positive effect; however, above 1.5 mg L−1, the impact
is negative [1,2]. In particular, according to the International Standards Organization, the
acceptable concentration values of fluoride in drinking water are usually 0.5–1.0 mg L−1.
According to the World Health Organization (WHO) and the EU Directive 98/83/EC [3,4]
the guideline value for fluoride in drinking water is 1.5 mg L−1, as at lower concentrations
there is an increasing risk of prevention of teeth cavities and at progressively higher levels
there is an increasing risk of dental and skeletal fluorosis [5,6]. The limit has remained
constant also in the revised version of the drinking water directive of 16 December 2020 [7].
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Figure 1a depicts the benefits of fluoridation of water on human teeth in three steps:
First, fluoride ions replace hydroxide anions, resulting from food, inside the teeth; Second,
small amounts of fluoride strengthens teeth, and third, enamel is repaired, because of the
predominant presence of fluoride inions. In Figure 1b, the contrast with the disadvantages
of excess concentration of fluoride ions, leading to dental fluorosis, is presented.
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Figure 1. (a) Benefits of fluoridation of water in three phases; (b) Dental fluorosis problem. This
figure sows both aspects of fluoride presence in water.

Fluoride in the environment occurs both through its natural presence in the earth’s
crust, i.e., natural rocks, mainly as sellaite (MgF2), fluorspar (CaF2), cryolite (Na3AlF6) and
fluorapatite (Ca3(PO4)2Ca(FCl2) and through contamination of water bodies caused by
anthropogenic actions, i.e., the excessive use of phosphate fertilizers that can reach the
groundwater sources [2,8]. Among water sources, groundwater usually contains higher
fluoride concentrations ranging from 1.0 mg L−1 to greater than 35.0 mg L−1 depending
on the local geology, the physical and chemical behavior of the aquifer and its interface
with the environment [9].

Drinking water contaminated with fluoride is considered an environmental issue
affecting the worldwide population, as can be seen in Figure 2. Specifically, in regions
such as India, Bangladesh, China, Pakistan and Africa [10], the displayed concentrations
are too high, so many thousands of people suffer from fluoride-related diseases, with
China and India being the most impacted countries. In Africa, particularly in Ghana
and Tanzania, the local standard for fluoride is 4 mg L−1; thus, there is an indication of
dental fluorosis and several times it exceeds the WHO permeable limit of 1.5 mg L−1, as
illustrated in Figure 3 [11]. In developing countries, this problem is more obvious because
the drinking water is derived mainly from untreated groundwater therefore, the issue of
effective fluoride removal becomes problematic in these areas, mainly due to the lack of
adequate and basic infrastructure but also due to the lack of relevant knowledge [12,13].
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The aforementioned information demonstrates that the problem of the occurrence of
fluoride ions in natural waters is of major importance. It is for this reason that various
technologies have been developed to decrease fluoride concentration from waters, such
as adsorption [13], coagulation [1], precipitation [14] and membrane separations [15,16],
in order to render the treated water potable. Table 1 summarizes the commonly applied
defluoridation techniques and their main advantages and disadvantages. Particularly,
in the case of ion-exchange, the high cost of resin, the need of regeneration, the waste
disposal requirements and lack of selectivity, exclude this method from being efficient
and cost-effective [17]. On the other hand, coagulation is an inexpensive technology but
requires high doses, resulting in high residual concentrations, i.e., of aluminum [18]. In
the precipitation method calcium, aluminum and iron salts are reported in several studies;
however, the problem associated with lime-based defluoridation is the low solubility of
the formed salts, which prevents complete removal of fluoride [17,18]. Another method,
adsorption, is a widely used technique [19] that has the advantage of being a manual
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method with a low-cost operation, with an increased selectivity and adsorbent readiness.
Several materials such as alumina [20], activated carbon [21], ion exchange resins, silica
gel, natural materials like clay, mud and low-cost alternative adsorbents like fly ash, bone
charcoal, etc., are used [13,22,23].

Despite the numerous techniques that are available for fluoride removal, effective
removal still remains a challenging issue, and therefore, adsorption is a technology that
this review focuses on, because of certain advantages that makes this technology easier
to apply, especially for remote areas in developing countries [24]. However, adsorption
of fluoride has some points that need further investigation, such as the ability to adsorb
in dilute solutions, pH and contact time, regeneration, adsorption stability and removal
capacity in the presence of other ions, which can ultimately increase the overall cost of the
fluoride removal method [25]. The use of bone char was studied [26] on real groundwater,
providing a fluoride removal up to 90% and in recent years, residues obtained from palm
trees [27] (e.g., palm kernel shell/midribs, and coconut husk/shell/fiber/root) have been
considered as a possible alternative adsorbent material for the effective removal of fluorides
from drinking water thanks to the low cost and its wide availability in some of the countries
most affected by the fluoride problem. Despite the very interesting results on its optimal
removal yields, this alternative adsorbent for fluoride removal will still have to be carefully
studied also because of their disadvantages (high specific surface and low reduction in
uptake capacity when regenerated) [27].

Table 1. Main advantages and disadvantages of commonly applied techniques for fluoride removal from drinking water.

Technique Advantages Disadvantages Ref.

Ion-Exchange Efficient Expensive due to the price of resin; regeneration requirements;
not selective enough; affects other ions [17]

Membranes Effective; wide pH range Cost of membrane; disposal of concentrates [17,28,29]

Precipitation Efficient and easy Excess amount of sludge; low solubility of the resulting
calciumhydroxide related to lime-based processes [17,18]

Adsorption
Low cost; removes many

other pollutants;
increased selectivity

Effective at specific conditions; pH and contact
time; regeneration [25]

Coagulation Efficient and easy High doses; residual concentrations; significant amounts
of sludge [18]

Membrane technology is an effective technology in reducing fluoride to acceptable
concentrations. Nevertheless, it has received less attention than other technologies because
it is supposed to be an expensive process [2], especially in comparison with adsorption
techniques. However, the advantages of using the membrane process are numerous.
Among these is the fact that it is effective in removing other contaminants from water
simultaneously, providing perpetual water quality, and is also effective in a wider pH range,
while being completed in one stage with the minimum use of chemical agents [2,30,31].
In Table 2 some recent applications of membrane engineering in water and wastewater
treatment and some of the achievements that result from their use are presented.

As the cost is the most important disadvantage of this technology, in order to optimize
the method applicability, many studies have been carried out to optimize the parameters
that affect the efficiency and the applicability and also the cleaning of membranes, in order
to extend the effective operation times [44]. The virus retention capabilities of membranes
during operation is also a very important parameter affecting the ability of the membranes,
and there are studies [45] focusing on this determination with standardized and molecular
biology methods. Thus, the membrane technology, due to the large increase in the demand
for drinking water but also to the difficulties that arise due to the complex composition of
the water to be treated, was particularly developed, resulting in increased efficiency with
reduced operating costs. This also found advantages in the application for the removal of
fluoride from the water.
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Table 2. Applications of membrane engineering in water and wastewater treatment.

Application Membrane Type Achievements Ref.

Oily water MF 90.2% removal of organics [32]
Olive mill wastewater RO COD rejection 97.5–99.1% [33]

Domestic wastewater MF >97% removal of total nitrogen and
total phosphorus [34]

Nitrogen and phosphorus in
microalgae FO and MF 86–99% removal of nitrogen and 100% for

phosphorus [35]

Chlorophenol RO Improved unit performance [36]

Water samples of Sri Lanka RO Removal of hardness 95.8% and
alkalinity 86.6% [37]

Municipal wastewater RO and NF COD removal 90% [38]
Arsenic (As) NF 98% removal [39]

As(V), Cr(VI) and Cu(II) NF Removal rates 99.82% for Cu(II), 96.75% for
As(V) and 97.22% for Cr(VI) [40]

Pathogens and Chemicals of
Emerging Concern

FO-RO Hybrid
Units

Rejection of 18 organic contaminants was >98%.
Detection of total coliform and E. coli in the
FO/RO effluents indicates that disinfectants

must be applied

[41]

Fuel oil wastewater NF 100% removal at a flux of 65 L m−2h−1. [42]

Dyes removal MF Removal rate was twilight yellow (69.98%), red
bordeaux (93.35%) and safranin orange (100%) [43]

Widely used membranes for fluoride removal based on operational driving force [2,46]
are classified as follows:

• pressure-driven membrane operations: reverse osmosis (RO); nano-filtration (NF);
ultra-filtration (UF) and microfiltration (MF);

• electric potential gradient: electro dialysis (ED);
• temperature gradient: membrane distillation (MD); and
• concentration gradient: forward osmosis (FO); dialysis, and pervaporation.

Pressure-driven membrane processes are the most commonly applied for water and
wastewater treatment [47,48]. Mostly, MF, UF, NF and RO (driven separation processes) are
usually made from synthetic organic polymers, including, among others, polyethylene (PE),
polytetrafluorethylene (PTFE), polypropylene (PP), and cellulose acetate (CA) [49]. Table 3
summarizes the advantages and disadvantages for the use of RO and NF membranes in
water treatment [50].

Table 3. Advantages and disadvantages of RO and NF methods in water treatment [50].

Method Advantages Disadvantages

RO

Quick recovery of the membrane.
More than 90% fluoride removal from water

Removal of other dissolved solids.
Wide pH range

High water quality

Costly technique
Demineralization after treatment with

valuable minerals.
Saline solution for water treatment.

NF
High productivity

No chemicals
No Ions interference

Highly expensive
Fouling of membrane

Removal of necessarily ions

Consequently, the enhanced practical efficacy of the membrane-based separation
technologies makes it more likely for further studies [15,51]. Mixed-matrix membranes
(MMMs) consist of well-dispersed inorganic additives within the polymer matrices and can
be used to adsorb many contaminants, including fluoride. These adsorptive membranes
can provide increased filtration efficiency, long-term operation, ability to adsorb various
contaminants from water, better antimicrobial properties, and are easy to reuse [30]. Besides,
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natural polysaccharide-based polymers and their derivatives [52], such as CA [30,53] and
chitosan [54,55], have been widely used as a base for membrane modification. These
natural polymers provide considerate properties such as high water flux, owing to their
hydrophilic nature and compatible dissolution in suitable solvent [52].

Recently, graphene has attracted wide attention of researchers in various fields due to
its excellent properties, such as chemical and thermal stability, as well as the mechanical
flexibility and large specific surface area that make it a potential candidate as an effective
adsorbent [56,57]. However, because graphene sheets consist of hexagonally arrayed sp2-
bonded carbon atoms [58], they can only adsorb substances through van der Waals forces.
Therefore, non-modified graphene is not an appropriate adsorbent for many contaminants.
There are several studies on the potentials of using modified Graphene Oxide (GO)-based
materials in water treatment for removal of toxic heavy metals [59,60], organic dyes, fluo-
ride, and other organic pollutants [59,61,62] but only in some cases, GO-based membranes
have been examined.

Considering the global need for safe drinking water and the problems that arise
with the established legislation limits for drinking water, this review aims to discuss the
recent studies using modified membranes for fluoride removal. Emphasis will be given to
the ongoing effort and new MMM, focusing on cellulose, polymer and graphene-based
membranes and discussing further the modification of membranes with several metals that
have been developed and used in the aforementioned research fields in the last years.

2. Pressure Driven Modified Membranes
2.1. Polymer Membranes

A carbonized bone meal (CBM) impregnated polysulfone-based mixed matrix hollow
fiber membrane has been examined for defluoridation and disinfection of groundwater [63].
The performance of CBM/UF/MMM provided a maximum fluoride uptake capacity of
5 mg g−1, at 34 kPa (0.34 bar) trans membrane pressure (TMP) drop and 10 L h−1 cross
flow rate.

The polyacrylonitrile hollow fiber membranes [64] AlFu metal organic frameworks
(MOF), were produced combining a mixed matrix ultrafiltration hollow fiber membrane
with aluminium fumarate. AlFu MOF MH10 (10 w/w % doped concentration) membrane
indicated a likely performance in contaminated groundwater with a fluoride concentration
of 4.1 mg L−1, at low TMP 0.35 bar, with a breakthrough time of 18 h and a permeate flux
of 20 L m−2 h−1 with a small filtration surface of 0.026 m2. More than 10 w/w % doped
concentration was not used due to the formation of agglomerate.

ABN/TPU-NFM is a modified membrane [65] that exhibited extensive adsorbance
efficiency for fluoride removal from water, with maximum adsorption capacity to be
1.9 mg g−1. For the preparation of this membrane, initially, crystalline TiO2 nanoparticles
were synthesized at room temperature using Bacillus licheniformis bacteria, and addi-
tionally, the modification continued by adding alumina to achieve hybrid biological and
chemically synthesized Al2O3/TiO2 nanocomposite. Finally, this hybrid nanocomposite
was impregnated onto electrospun thermoplastic polyurethane (TPU) nanofibers.

Mg–Al–Fe layered double hydroxides/polyether sulfone MMM (Mg–Al–Fe LDHs/
PES) [66] is another type of modified membrane produced for fluoride removal. According
to the results of this study, the Mg–Al–Fe LDHs/PES membranes exhibited a high adsorp-
tion capacity for fluoride, i.e., 1.61 mg g−1. The membranes could be reused four times.

A membrane has been synthesized by combining poly vinylidene fluoride with ac-
tivated alumina and maifanite in order to finally obtain the (MFS-AA-PVDF) membrane
that was tested as an adsorbent for the removal of fluoride from water [67]. The adsorption
kinetics that were conducted showed that the adsorption into the membrane followed
a pseudo-second-order model; moreover, the Langmuir model best fit the adsorption of
fluoride into the membrane, which described the deposition of fluoride into the membrane
as a monolayer. The optimum pH for this research was found to be 5.02 with an optimum
initial fluoride concentration of 12.37 mg L−1 and a suitable temperature of 36.75 °C. The
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percentage of fluoride removal by the synthesized membrane reached a maximum of 84%,
under the various optimum conditions. In general, novel hybrid polyvinylidene fluoride
membranes were successfully fabricated and have shown a good efficiency in the treatment
of wastewaters from textile industry [68].

The commercial membrane NF90 was investigated in order to study its efficiency to
remove fluoride from brackish waters [69]. The results showed that the rejection rate of the
membrane was stabilized at a pressure of 11 bar. In addition, under optimum conditions
of 42 mg L−1 of fluoride concentration and a pH of 7.2, 98% of fluoride was achieved
while having a permeate flux of 64.8 L m−2 h−1. Taking into account the same conditions
obtained from the results, the authors also found that NF90 was able to remove around
88% of fluoride concentration from a natural groundwater source at an almost neutral pH
to retain a fluoride concentration of 0.35 mg L−1, which is lower than the concentration
limit provided by the WHO.

A polyamide reverse osmosis membrane was investigated for the removal of fluoride
from a binary water mixture, contaminated with fluoride and chromium(VI) [70]. For
a solution containing a mixture of 5 mg L−1 of both fluoride and hexavalent chromium
and under optimum conditions of a pH of 8 and a pressure of 16 bar, the reverse osmosis
membrane was able to achieve a 99.97% rejection for fluoride. Both CFSK and CFSD models
were used in order to evaluate in this work the performance of the membrane though
different parameters such as the mass transfer coefficient and the permeate of the solute
and results showed that the data obtained better fit the CFSK model.

A novel carboxylated polyacrylonitrile nanofibrous membrane (C-PAN NFM) [71]
can be used as an excellent fluoride adsorption material. As a novel porous membrane
material, C-PAN NFM has a wide application potential by using polyacrylonitrile as the
raw material, because of the relative advantages in stability, cost and surface area.

Figure 4 shows the maximum fluoride uptake capacities (mg g−1) presented in this
study. As depicted, the polyacrylonitrile hollow fiber membranes AlFu MOF exhibited the
highest capacity (205 mg g−1), among them.
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2.2. Cellulose Membranes

Fe-Al-Mn@chitosan loaded CA-based mixed matrix membrane (MMM) [72] has been
produced by the phase inversion method, in order to remove fluoride from groundwa-
ter. Respectable compatibility on chitosan and CA further enhances the homogeneous
dispersion of nanoparticles (Fe-Al-Mn@chitosan) in the membrane matrix. The optimum
molecular weight cut off (MWCO) for M8 (8% loading) membranes was found to be
8 kD, which can lead to a residual fluoride concentration within the permissible limit
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(<1.5 mg L−1) for 9 h at operating TMP of 2 bar, initially through adsorption and then
due to electrostatic repulsion. M8 membrane has shown good antifouling properties and
antibacterial prospective in water.

CDs-PyBA is an amino-modified cellulose membrane containing pyrene-boronic acid-
based carbon dots that has been developed recently, by Li et al. [73], for the selective
detection and removal of fluoride ion. This ratiometric nanosensor applied as the energy
donor-acceptor pair for selectivity detecting F−, showed fast detection and excellent re-
moval capacity for F− of 90.2%. Cellulose-based sensors could offer a dual-functionality for
both sensing and removal of fluoride ions with the prospective benefits of processability,
cost effectiveness and environmental friendliness.

Another cellulose membrane for defluoridation studies is the prepared PES/CA/Fe2O3,
which is about an iron oxide (Fe2O3) modified polyethersulfone (PES)/CA blend flat sheet
membrane [74]. According to the results obtained, this membrane exhibited the optimum
pure water flux of 156 L m–2 h–1 and maximum fluoride removal efficiency of 70.3%. In
addition, extended durability of the composite membrane was confirmed by re-usability
studies for 8 cycles with constant rejection rate.

A CA-alumina flat sheet mixed matrix membrane has been delivered and examined
for fluoride removal, achieving a removal of 88–92% by using as feed fluoride concentration
12 mg L−1 [30]. It is perceived that the molecular weight cut off (MWCO) of the produced
membranes decreases with alumina concentration, with an initial value of 24 kDa. Cellu-
lose acetate phthalate (CAP)-alumina membrane could be regenerated for five cycles of
operation. In addition, simultaneously with the removal of fluoride, the removal of mi-
croorganisms was achieved by applying this type of membrane. CAP as the base polymer
and activated alumina as an additive, were also used in order to produce a mixed matrix
membrane (MMM), for cross flow ultrafiltration of fluoride, by Mondal et al. [75].

Aluminum fumarate metal oxide framework was added to CAP in order to synthesize
a novel mixed matrix membrane suitable for the defluoridation process of groundwater [76].
Depending on the membrane MOF concentration within the membrane, the adsorption
of fluoride varied, as it reached values of 107 mg g−1 to 179 mg g−1 for MOF weight
percentage ranging between 2% and 10%. For a 10% concentration of aluminium fumarate,
a 99% rejection of fluoride was achieved by the membrane; in addition, it was found that
the life of the membrane was about 17 h for a fluoride concentration 10 mg L−1. The most
desired transmembrane pressure was found to be 138 kPa, which lead to a breakthrough
time of 15.5 h and resulted in a permeate flux of 17 L m−2 h−1.

Figure 5 summarizes the cellulose-based membrane categories, analyzed in this review.
Maximum fluoride uptake capacities (mg g−1) are compared. The results indicate that
the aluminum fumarate metal oxide membrane AlFu MOF exhibited the highest capacity
(179 mg g−1).
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2.3. Graphene Membranes

The Zirconium-Chitosan/Graphene Oxide Membrane (Zr-CTS/GO) [31] appears to
be an innovative and recent emerging material having an effective application in removing
fluoride ions from aqueous media, in a wide pH range of 3–11 and quite short contact time
of 45 min. According to this study, the Zr-CTS/GO membrane could effectively remove
fluoride with an adsorption capacity 29.06 mg g−1, in a multilayer form as exhibited by the
Freundlich model.

A further investigation from the same authors was conducted for the purpose of
material characterization and its implementation for anion removal from groundwater [77].
Results indicated that mixing GO and zirconium chitosan to form the previously men-
tioned membrane led to an increase in the thermal stability of the components alongside
mechanical strength. Moreover, the removal of fluoride from groundwater was efficient
throughout a temperature range between 15 °C and 40 °C, and equilibrium adsorption was
reached within 1 h.

An innovative graphene-based nanocomposite flat-sheet cross-flow module mem-
brane was manufactured by interfacial polymerization (IP) over chemical bonding of GO
layer to polyethersulfone (PES) surface [78]. The application of this type membrane pros-
pered in removal of more than 80% of fluoride from water. A significant advantage of
the application of this graphene-based nanocomposite membrane is the preservation of
beneficial calcium and magnesium minerals in drinking water. The practically high flux
of about 150 L m−2 h−1 at a TMP of 15 bar shows that the aforementioned membrane
provides a sustainable operation without any substantial drop in flux.

Figure 6 presents the maximum adsorption capacity (mg g−1) only for Zirconium-
Chitosan/ GO Membrane (Zr-CTS/GO), while there are no relative data for graphene
oxide (GO) layer/polyethersulfone (PES) membrane.

C 2021, 7, x FOR PEER REVIEW 10 of 17 
 

 
Figure 6. Schematic graph of depicting maximum fluoride uptake capacities (mg g−1) of presented. Graphene-based 
membranes. 

2.4. Other Modified Membranes 
Carbon-based amyloid fibril nano-ZrO2 (<10 nm) composite (CAF-Zr) is a recently 

developed hybrid membrane for fluoride removal both from wastewater and drinking 
water [79]. This type of membrane exhibited excellent fluoride removal capacity above 
99% for feeding concentrations up to 200 mg L−1, high selectivity and easy and fast 
purification via filtration. Hybrid CAF-Zr membranes are effective in fluoride removal 
either in low or high initial concentrations, typical of the tap and waste waters infection 
status, performing a treatment capacity of 1750 L water m−2, with a prospect effective 
regeneration of the membrane by alkaline treatment. 

The use of zirconium for the modification of membranes was studied very recently 
by Mohamed et al. [16], according to whose research, composite nanofiber membranes 
(CNMs) were modified by using zirconium based on UiO-66 and its amino version (UiO-
66-NH2) powders, resulting in UiO-66-NH2 CNM membranes. According to the results of 
this study, high fluoride removal occurred owing to both electrostatic interactions 
between the fluoride ions and the metal sites in MOF and the hydrogen bonds formed 
with MOF amino groups, with an adsorption capacity of 95 mg g−1 at pH 8. 

Another modified membrane was produced by He et al. [80], who studied its 
application in the removal of fluoride from drinking water. Therefore, the Al-HAP 
membrane produced by modification of hydroxyapatite with Al(OH)3 nanoparticles is a 
biocompatible and novel membrane that exhibited a testament capacity of 1568 L m−2 for 
feed fluoride concentration of 5 mg L−1. An important factor in increasing the efficiency of 
the membrane was its thickness, the study of which showed that the fluoride removal 
efficiency increased with the thickness of Al-HAP membrane, providing as optimal the 
0.3 mm. It is worth mentioning that this membrane, after six adsorption-desorption cycles, 
appeared to be suitable for regeneration. 

One study synthesized a membrane based on zirconium metal organic framework 
(Zr-MOF) for the purpose of fluoride remediation from water [81]. After obtaining good 
results of the adsorption capabilities of the zirconium based MOF, the membrane 
experiments revealed that the Zr-MOF membrane was able to remove fluoride in an 
efficient manner through a dynamic input where the removal efficiency depended on the 
flow rate of the fluoride feed. When fluoride concentrations of 5, 8 and 10 mg L−1 were fed 
to the membrane of 20 μm thickness, the resulting removal capabilities were 5510, 5173 
and 4664 L m−2 respectively. It was also found that the membrane can deal with a 
maximum water volume of 2700 mL when the fluoride concentration was 5 mg L−1 at a 
flow rate of 15 mL min−1. Regeneration studies showed that this amount dropped to 2235 
mL after six cycles, which promotes this membrane as suitable for regeneration. 

An economically efficient hybrid filtration cell (HFC), which utilizes limestone and 
activated carbons for fluoride’s removal from water, was examined [82], demonstrating 
that fluoride could be completely removed from artificial water at pH of 5.0, within 1.5 h, 
with an initial fluoride concentration of 30 mg L−1, adsorbent dosage of 30 mg L−1 and 
water temperature of 313 K. 

Figure 6. Schematic graph of depicting maximum fluoride uptake capacities (mg g−1) of presented. Graphene-based membranes.

2.4. Other Modified Membranes

Carbon-based amyloid fibril nano-ZrO2 (<10 nm) composite (CAF-Zr) is a recently
developed hybrid membrane for fluoride removal both from wastewater and drinking
water [79]. This type of membrane exhibited excellent fluoride removal capacity above 99%
for feeding concentrations up to 200 mg L−1, high selectivity and easy and fast purification
via filtration. Hybrid CAF-Zr membranes are effective in fluoride removal either in low or
high initial concentrations, typical of the tap and waste waters infection status, performing
a treatment capacity of 1750 L water m−2, with a prospect effective regeneration of the
membrane by alkaline treatment.

The use of zirconium for the modification of membranes was studied very recently by
Mohamed et al. [16], according to whose research, composite nanofiber membranes (CNMs)
were modified by using zirconium based on UiO-66 and its amino version (UiO-66-NH2)
powders, resulting in UiO-66-NH2 CNM membranes. According to the results of this
study, high fluoride removal occurred owing to both electrostatic interactions between the
fluoride ions and the metal sites in MOF and the hydrogen bonds formed with MOF amino
groups, with an adsorption capacity of 95 mg g−1 at pH 8.
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Another modified membrane was produced by He et al. [80], who studied its appli-
cation in the removal of fluoride from drinking water. Therefore, the Al-HAP membrane
produced by modification of hydroxyapatite with Al(OH)3 nanoparticles is a biocompatible
and novel membrane that exhibited a testament capacity of 1568 L m−2 for feed fluoride
concentration of 5 mg L−1. An important factor in increasing the efficiency of the mem-
brane was its thickness, the study of which showed that the fluoride removal efficiency
increased with the thickness of Al-HAP membrane, providing as optimal the 0.3 mm. It is
worth mentioning that this membrane, after six adsorption-desorption cycles, appeared to
be suitable for regeneration.

One study synthesized a membrane based on zirconium metal organic framework (Zr-
MOF) for the purpose of fluoride remediation from water [81]. After obtaining good results
of the adsorption capabilities of the zirconium based MOF, the membrane experiments
revealed that the Zr-MOF membrane was able to remove fluoride in an efficient manner
through a dynamic input where the removal efficiency depended on the flow rate of
the fluoride feed. When fluoride concentrations of 5, 8 and 10 mg L−1 were fed to the
membrane of 20 µm thickness, the resulting removal capabilities were 5510, 5173 and
4664 L m−2 respectively. It was also found that the membrane can deal with a maximum
water volume of 2700 mL when the fluoride concentration was 5 mg L−1 at a flow rate of
15 mL min−1. Regeneration studies showed that this amount dropped to 2235 mL after
six cycles, which promotes this membrane as suitable for regeneration.

An economically efficient hybrid filtration cell (HFC), which utilizes limestone and
activated carbons for fluoride’s removal from water, was examined [82], demonstrating
that fluoride could be completely removed from artificial water at pH of 5.0, within 1.5 h,
with an initial fluoride concentration of 30 mg L−1, adsorbent dosage of 30 mg L−1 and
water temperature of 313 K.

NF/RO membranes under variable solar irradiance conditions were used to treat
natural Tanzanian waters of high F- concentrations (17–60 mg L−1). These batteryless
directly powered photovoltaic membrane filtration (PV-membrane) systems [83] demon-
strated resilience that was more dependent on membrane type, and as it turned out,
tighter NF/RO membranes showed high resilience to variations in permeate quality. The
MWCO of the used NF90 and NF270 membranes was 90–180 and 150–340 kDa, respectively,
demonstrating a permeability of 6.0–11.0 and 14.0–19.0 L h−1 m−2 bar−1.

Table 4 shows the reviewed membranes when employed for the removal of fluoride
from water and offers evidence about their applications in water treatment. As shown in
this Table, most of the membrane applied for defluoridation exhibit greater efficiency at
pH values close to that of drinking water (i.e., 6–8). Maximum treatment capacity was
obtained with the use of a cellulose modified membrane (Fe-Al-Mn@chitosan [72]) with a
permeate flux of 2000 L m−2 h−1 similar to those obtained from the membrane produced
by modification of hydroxyapatite with Al(OH)3 nanoparticles [80] (1568 L m−2 h−1) and
zirconium-based MOF [79] (1750 L m−2 h−1).

A technical-economic comparison study of NF and RO in the reduction of fluoride
from groundwater occurred [85]. One NF and two RO polyamide membranes were used,
and the results showed that NF membrane is slightly less expensive, with the following
order: NF90 (NF) < BW30LE (RO) < TM710 (RO). The total annualized cost of water
treatment by the NF membrane was calculated to be 0.43 $ m−3 [86].

Analysing the reviewed data in this paper, relative to the percentage % of publications
on each membrane category (Figure 7), it was observed that the main focus of the reviewed
publications, has been on the use of polymer-based membranes, with 46%, followed by
cellulose-based and other type modified membranes at the same percentage % of occurrence
(39% of the total publications) and only some cases (~15%) of GO-based membranes have
been examined. The studies are mainly focusing on the membranes technique effect on the
performance of fluoride removal addressing their possible impact on human health and
the environment.
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Table 4. Comparison of membranes in literature.

Type MWCO
(kDa)

Feed Fluoride
(mg L−1)

TMP
(bar)

Treatment Capacity
(L m−2 h−1) pH Ref.

Polymer Membranes

CBM/UF/MMM 23 3.2 0.34 - 7.4 [63]
AlFu MOF 150 4.1 0.35 20 6.5–7 [64]

ABN/TPU-NFM - 6.0 - - - [65]
MFS-AA-PVDF - 12.37 - - 5.02 [67]

NF90 - 42.0 11 64.8 7.2 [84]
PA-RO - 5.0 16 - 8 [70]

Cellulose Membranes

Fe-Al-Mn@chitosan 8 3.8 6–8 2000 6–9 [72]
PES/CA/Fe2O3 - 20 - 156 - [74]
CAP/activated

alumina 24 12.0 0.5–1 - 7.0 [30]

AL-Fu MOF - 10.0 1.38 17 - [76]

Graphene Membranes

Zr-CTS/GO - 13.4 - - 3–11 [31]
Graphene-
based/PES - 20.2 15 150 10 [78]

Other Modified Membranes

CAF-Zr - 10.0 - 1750 6.2–6.5 [79]
UiO-66-NH2 CNM - 20.0 - - 8 [16]

Al-HAP - 5.0 - 1568 - [80]
Zr-MOF - 5.0 - - - [81]

- no data.
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3. Conclusions

This review article presents the recently developed modified membranes for fluoride
removal. Cellulose-, polymer- and graphene-based membranes were compared, as well as
several modified membranes with metals, developed in the last years. The major findings
are listed in the following points:

• Most of the membranes applied for fluoride removal reveal higher efficiency at the
pH range relevant to drinking water treatment (i.e., 6–8).

• The polyacrylonitrile hollow fiber membrane AlFu MOF exhibited the highest fluoride
capacity (205 mg g−1).
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• Maximum treatment capacity was obtained with the use of a cellulose-modified mem-
brane Fe-Al-Mn@chitosan with a permeate flux of 2000 L m−2 h−1. The carbon-based
amyloid fibril nano-ZrO2 composites (CAF-Zr) and Al-HAP membrane produced
by modification of hydroxyapatite with Al(OH)3 follows, with values for treatment
capacity of 1750 and 1568 L m−2, respectively.

• Main focus of the reviewed studies has been on the use of polymer-based membranes.
• A technical-economic comparison study of NF and RO in the reduction of fluoride

from groundwater showed that NF membrane is slightly less expensive.
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ogy, A.K.T., I.A.K., G.Z.K., E.A.D., V.T. and M.C.C.; validation, I.A.K., G.Z.K., E.A.D., V.T. and M.C.C.;
formal analysis, A.K.T., E.M., F.M.C., I.A.K., G.Z.K. and E.A.D.; investigation, A.K.T., E.M., F.M.C. and
I.A.K.; resources, A.K.T., E.M., F.M.C., I.A.K., G.Z.K., E.A.D., V.T. and M.C.C.; data curation, A.K.T.,
E.M. and F.M.C.; writing—original draft preparation, A.K.T., E.M. and F.M.C.; writing—review and
editing, A.K.T., I.A.K., G.Z.K., E.A.D., V.T. and M.C.C.; visualization, A.K.T., E.M., F.M.C., I.A.K.,
G.Z.K., E.A.D., V.T. and M.C.C.; supervision, A.K.T., I.A.K., G.Z.K., E.A.D., V.T. and M.C.C. All
authors have read and agreed to the published version of the manuscript.
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List of Abbreviations

ABN/TPU-NFM
Al2O3/bio-TiO2 nanocomposite impregnated electrospunTPU
nanofiber membrane

Al Fu MOF Aluminium fumarate metal organic frameworks
CAF-Zr Carbon based amyloid fibril nano-ZrO2 composites
CBM Carbonized bone meal
CA Cellulose acetate
CAP Cellulose acetate phthalate
GO Graphene Oxide
MOF Metal organic frameworks
MF Microfiltration
MFS-AA-PVDF Polyvinylidene fluoride-activated alumina-maifanite membranes
MMM Mixed matrix membrane
MWCO Molecular weight cut off
NF Nanofiltration
PES Polyethersulfone
PV-membrane Photovoltaic membrane
RO Reverse osmosis
TPU Thermoplastic polyurethane
TMP Trans membrane pressure
UF Ultrafiltration
Zr-CTS/GO Zirconium-chitosan/graphene oxide membrane
Zr-MOF Zirconium metal organic framework
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