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Abstract

Aim of the study: Analysis of the impact of bradycardia and hypoxemia on the course of cerebral and peripheral oxygenation parameters in preterm

infants in need for respiratory support during foetal-to-neonatal transition.

Methods: The first 15 min after birth of 150 preterm neonates in need for respiratory support born at the Division of Neonatology, Graz (Austria) were

analyzed. Infants were divided into different groups according to duration of bradycardia exposure (no Bradycardia, brief bradycardia <2 min, and

prolonged bradycardia �2 min) and to systemic oxygen saturation (SpO2) value at 5 min of life (<80% or �80%). Analysis was performed considering

the degree of bradycardia alone (step 1) and in association with the presence of hypoxemia (step 2).

Results: In step 1, courses of SpO2 differed significantly between bradycardia groups (p = 0.002), while courses of cerebral regional oxygen saturation

(crStO2) and cerebral fractional tissue oxygen extraction (cFTOE) were not influenced (p = 0.382 and p = 0.878). In step 2, the additional presence of

hypoxemia had a significant impact on the courses of SpO2 (p < 0.001), crStO2 (p < 0.001) and cFTOE (p = 0.045).

Conclusion: Our study shows that the degree of bradycardia has a significant impact on the course of SpO2 only, but when associated with

the additional presence of hypoxemia a significant impact on cerebral oxygenation parameters was seen (crStO2, cFTOE). Furthermore, the

additional presence of hypoxemia has a significant impact on FiO2 delivered. Our study emphasizes the importance of HR and SpO2 during

neonatal resuscitation, underlining the relevance of hypoxemia during the early transitional phase.
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Introduction

Continuous monitoring of heart rate (HR) and peripheral oxygen
saturation (SpO2) by using pulse-oximetry (plus ECG optionally) is
currently considered standard of care during stabilization of preterm
infants in the delivery room (DR). Reaching specific SpO2 values
during resuscitation is advocated, and the titration of blended
supplemental oxygen accordingly is also recommended by interna-
tional guidelines.1,2 SpO2 is widely used as a proxy for adequate
ventilation and oxygenation stabilisation, whereas monitoring of HR is
used as a proxy for cardio-circulatory stability.

There is still uncertainty regarding the optimal initial supplemental
oxygen concentration (FiO2) to start resuscitation in preterm
infants,3,4,5 but there are recommended SpO2 targets to reach.1

Increased incidence of mortality and adverse outcomes such as
intraventricular haemorrhage (IVH) has been reported in those infants
not reaching SpO2 80% at 5 min after birth.6 Increase in HR is often
reflection of adequate respiratory support, but there is still an ongoing
debate to define normal ranges. Nevertheless, it has been shown that
preterm neonates who experience prolonged bradycardia during DR
resuscitation are at increased risk for death and/or IVH.7

To date, the interaction of bradycardia and hypoxaemia and its
effect on tissue oxygen delivery and tissue oxygenation during the
immediate transition after birth is unclear. More understanding of the
physiology of this interaction might explain the interplay between
hypoxemia and bradycardia during neonatal resuscitation. With this
aim and to detect possible regional differences, we included near
infrared spectroscopy (NIRS). NIRS enables the non-invasive
measurement of regional cerebral tissue oxygen saturation (crStO2)
and the calculation of cerebral fractional tissue oxygen extraction
(cFTOE). Thus, NIRS provides information on the balance of cerebral
oxygen delivery and oxygen consumption, increasing the spectrum of
oxygenation parameters. NIRS has been used in neonatal research
setting during postnatal transition with both preterm and term infants.8

Typical changes of cerebral oxygenation in the first minutes after birth,
as well as differences according to the need of respiratory support,
have been described.8�11 NIRS has also been successfully used to
guide respiratory support and supplemental oxygen to reduce the
burden of cerebral hypoxia during immediate transition and
resuscitation after birth.12

The aim of the present study was to analyze the impact of the
degree of bradycardia and the presence of hypoxemia on oxygenation
parameters such as SpO2, crStO2 and cFTOE in preterm infants
needing respiratory support during early neonatal transition. We
hypothesized that the combination of bradycardia and hypoxaemia
would be associated with significantly lower oxygenation parameters.

Methods

This study represents a retrospective analysis of four studies,
conducted between December 2010 and March 2017 at the Division
of Neonatology, Department of Pediatrics and Adolescent Medicine,
Medical University of Graz, Austria.9,10,12,13 We included preterm
infants <37 weeks’ gestation, who fulfilled the following criteria: (i)
decision to conduct full life support, (ii) written parental consent, (iii)
need for respiratory support during resuscitation, and (iv) no severe
congenital malformation. The Regional Committee on Biomedical
Research Ethics had approved all the studies and allowed post-hoc

analysis. For all infants, maternal medical history and neonatal
demographic data were documented. The included studies were
designed to measure crStO2 during the first 15 min after birth using
NIRS. A standardized protocol was followed in all studies. In all infants,
the cord was clamped within 30 s after birth. After that, the neonate
was placed on the resuscitation table (CosyCot; Fisher& Paykel
Healthcare; New Zealand or Giraffe incubator, GE Healthcare; United
Kingdom) in supine position. A polyethylene bag was used in
neonates <28 weeks’ gestation. Then, a NIRS sensor was attached to
the infant’s left forehead. A pulse oximetry sensor (IntelliVue
MP50 monitor; Philips; Netherland) was applied on the right palm
or wrist to monitor SpO2 and HR. Upper airway suction was performed
as needed. Respiratory support as continuous positive airway
pressure and/or positive pressure ventilation was provided via a face
mask (LSR Silicon mask no. 0/0 or 0/1; Laerdal; Norway) and the
‘Neopuff Infant T- Piece Resuscitator’ (Perivent; Fisher& Paykel
Healthcare; New Zealand) with the following starting setting: gas flow
6�8 L/min, positive end-expiratory pressure 5 cmH2O, peak inspira-
tory pressure 30 cmH2O and FiO2 0.3. HR, SpO2 and crStO2 were
recorded every second for the first 15 min after birth and stored in a
multichannel system alpha-trace digital MM (BEST Medical Systems;
Austria). Cerebral oxygenation was measured with INVOS 5100C
(Somanetics, Troy, Michigan) or NIRO 200-NX (Hamamatsu, Japan).
cFTOE was calculated for each minute as follows: (SpO2-crStO2)/
SpO2.

14 Values of crStO2 higher than correspondent SpO2 were
considered artefacts and eliminated from the analysis, as well as HR
and/or SpO2 values taking longer than 5 min to be detected and
displayed.

Definition of degree of bradycardia and presence of

hypoxemia

We created a statistical model to first analyse the impact of the degree
of bradycardia alone on oxygenation parameters (step 1), then to
explore the interplay between the degree of bradycardia and the
presence of hypoxemia (step 2).

Bradycardia was defined as HR < 100 bpm. Degree of bradycardia
was calculated considering the sum of episodes the neonate spent
with HR < 100 bpm within the first 15 min of life. Hypoxemia was
considered as SpO2 <80% at 5 min after birth.

In step 1, we divided our population of infants into three groups,
according to duration of exposure to bradycardia during the first 15 min
after birth: no Bradycardia (nB), brief bradycardia (<2 min) (bB) and
prolonged bradycardia (�2 min) (pB).

In step 2, we integrated the presence of hypoxemia using a
dichotomous criterion. We divided our population into 2 groups: a
group with no presence of hypoxemia (H�), infants had SpO2�80% at
5 min after birth; and a group with presence of hypoxemia (H+), infants
had SpO2 <80% at 5 min after birth.

Statistical analysis

Observed data are presented as mean � SD or absolute frequencies
and percentages. We investigated the changes in HR, SpO2, FiO2,
crStO2 and cFTOE within the first 15 min after birth using a linear
mixed model with a first-order ante-dependence covariance structure.
In step 1, fixed effects “time”, “degree of bradycardia” (nB vs. bB vs.
pB) and the interaction of these two factors were included. In step 2,
the fixed effect “presence of hypoxemia” (H� vs. H+), the interaction
“time with presence of hypoxemia” and the interaction “time with
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degree of bradycardia with presence of hypoxemia” was added.
Results are presented as estimated means and 95% confidence
intervals. Post hoc analysis of differences between groups for each
minute were performed. A p-value <0.05 was considered statistically
significant. The statistical analyses were performed using SAS 9.4
(SAS Institute Inc., Cary, NC, USA).

Results

The original four publications included 636 infants, and after selection
150 infants were analysed (Fig. 1,Table 1). Demographic data are
outlined in Table 2. The cohort displayed a mean gestational age of 33
weeks and a mean birth weight of 1758 g. Only 11% of infants needed
intubation. Two (1%) infants suffered from severe IVH, and the overall
mortality was 3%. The mean (SD) duration until HR was displayed on
the monitor was 93 (42) seconds.

� Degree of bradycardia and SpO2at 5 min and differences in

the HR course

In step 1, courses of HR differed significantly between bradycardia
groups (p < 0.001). Neonates in the pB group had significantly lower
HR values until minute 8 compared to neonates in the nB group, and
until minute 4 compared to neonates in the bB group. Neonates in the
bB group had significantly lower HR values until minute 6 compared to
neonates with no bradycardia. After minute 8 there were no
differences between groups anymore (Fig. 2A).

In step 2, impact of degree of bradycardia on the course of HR was
still present. Additionally, the presence of hypoxemia had a significant
impact on the course of HR (p = 0.013). In the pB group, neonates with
hypoxia (H+ group) had a lower HR within the first minutes (Fig. 2B).
Tables of HR, FiO2, CrStO2 and cFTOE values at each minutes and
statistical significance are available as Supplementary material.
� Degree of bradycardia and SpO2at 5 min and differences in

the FiO2course

In step 1, courses of FiO2 did not differ significantly between the
three bradycardia groups, but there was a trend (p = 0.058). This trend
was caused by significantly higher FiO2 from minute 5 to 13 in pB
group, and significant higher FiO2 from minute 7 to 10 in bB group,
compared to nB group. There were no differences in FiO2 between the
bB and the pB groups. (Fig. 2C).

In step 2, there was no significant impact of degree of bradycardia
on the course of FiO2. Presence of hypoxemia had a significant impact
on the course of FiO2 (p < 0.001). While in the H+ group neonates with
no bradycardia had almost no changes in FiO2 values, in the bB and in

Fig. 1 – Process of infants’ selection for post-hoc analysis from four studies.

Table 1 – Groups assignment (n).

No presence of
hypoxemia
(H-) (71)

Presence of
hypoxemia
(H+) (79)

No bradycardia (nB) (46) H-nB (26) H + nB (20)
Brief bradycardia (<2 min)
(bB) (56)

H-bB (25) H + bB (31)

Prolonged bradycardia
(bB) (56)

H-pB (20) H + pB (28)
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the pB groups FiO2 values increased after minute 6 and minute
5 respectively (Fig. 2D).
� Degree of bradycardia and SpO2at 5 min and differences in

the SpO2course

In step 1, courses of SpO2 differed significantly between
bradycardia groups (p = 0.002). Neonates in the pB group had
significantly lower SpO2 values until minute 5 compared to nB group,
and until minute 4 compared to bB group. After minute 5 there were no
differences between groups (Fig. 3A).

In step 2, impact of degree of bradycardia on the course of SpO2

was still present. Additionally, the presence of hypoxemia had a
significant impact on the course of SpO2 (p < 0.001). Regardless of
degree of bradycardia, neonates in the H� group had higher SpO2

values in the first minutes compared to infants in the H+ group
(Fig. 3B).
� Degree of bradycardia and SpO2at 5 min and differences in

the crStO2course

In step 1, courses of crStO2 were similar between the three
bradycardia groups (p = 0.382) (Fig. 3C).

In step 2, there was no significant impact of degree of bradycardia
on the course of crStO2. Presence of hypoxemia had a significant
impact on the course of crStO2 (p < 0.001). While at the beginning the
increase of crStO2 was comparable between both hypoxemia groups,
in the H+ group this increase continued until minute 12 and in the H-
group flattened at minute 6 (Fig. 3D).
� Degree of bradycardia and SpO2at 5 min and differences in

the cFTOE course

In step 1, courses of cFTOE were similar between the three
bradycardia groups (p = 0.878) (Fig. 3E).

In step 2 there was no significant impact of degree of bradycardia
on the course of cFTOE. Presence of hypoxemia had a significant
impact on the course of cFTOE (p = 0.045). Because of a steeper
decrease in the H+ group, this group reached stable values at minute
10, whereas the H� group reached stable values at minute 7 (Fig. 3F).

Discussion

To our knowledge, this is the first study analysing the impact of the
degree of bradycardia exposure alone and in combination with the
presence of hypoxemia on circulatory and oxygenation parameters in
preterm infants needing respiratory support during stabilisation at
birth. Analysing the degree of bradycardia alone, our results showed
that it had impact on systemic oxygenation only (SpO2). Including the
presence of hypoxemia, we showed that the combination had impact
on all three oxygenation parameters, confirming our hypothesis. The
additional presence of hypoxaemia had a significant impact on FiO2

delivery as well.

Degree of bradycardia

Traditionally, HR < 100 bpm during neonatal transition is considered
bradycardia. However, this definition still rises concern. There is lack
of evidence that this threshold value is clinically relevant. In this
regard, Smit et al. have shown that healthy infants after uncomplicated
birth had significantly lower HR values than defined referenced
ranges, and the 10th percentile was even <100 bpm until 5 min after
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birth.15 In our analysis, we considered bradycardia HR < 100 bpm
using the same criteria as Kapadia and co-workers. They showed that
preterm neonates who experience prolonged bradycardia during DR
resuscitation have increased risk for death and for IVH.7 However, our
population is substantially different, as they analyzed only infants less
than 32 weeks’ gestation. In our study, most of the time spent on
bradycardia was within the first minutes after birth. This finding might
be explained with the slowly increasing oxygen tension during the
initial aeration of the lungs, which are both known to be strong
impulses for post-natal increment in HR.

We also found that only courses of SpO2 differed significantly
between the bradycardia groups. On the contrary, courses of cerebral
oxygenation parameters did not show significant differences. This
finding further emphasizes that cerebral oxygenation was still
preserved during periods of bradycardia. Moreover, such a situation
potentially even allows preservation of oxygenation capacity for the
heart to be able to increase HR and overcome bradycardia. However,
our findings might take into account a slight compensation by increase
in FiO2 delivered. Although courses of FiO2 did not differ significantly
between the three bradycardia groups, there was a trend to higher
FiO2 in the groups with bradycardia. Certainly, both degree of
bradycardia and presence of hypoxemia trigger clinical decision to

change FiO2, then course of FiO2 is biased by the clinical approach of
the neonatologists.

Additional presence of hypoxaemia

In an individual patient analysis of 8 RCTs, Oei and co-workers found
that if SpO2 80% was not reached within 5 min after birth, there was a
2-fold risk of death and increased morbidity, such severe IVH.6 The
authors concluded that whether these findings are due to the infants’
illness or to the amount of oxygen administered during stabilization
remains unclear. In view of these findings, we integrated SpO2at 5 min
into our analysis, and we used it to define presence of hypoxemia.
However, again our population is substantially different, as they
analyzed only infants less than 32 weeks’ gestation. We found a
significant impact of the combination of bradycardia and hypoxemia
on all three oxygenation parameters and on FiO2 in our cohort.
Particularly, only if there was a combination of bradycardia and
hypoxemia, cerebral oxygenation dropped. We previously reported
that the brain had the highest saturation levels in infants during
uncomplicated fetal-to-neonatal transition, indicating a preference for
oxygen delivery to the brain.11,16 The underlying mechanisms are
unknown. Further we showed that in preterm infants reduced oxygen

Fig. 2 – Course of HR (bpm) during the first 15 min of neonatal transitional according to (A) degree of bradycardia and (B)
degree of bradycardia plus integration of presence of hypoxemia. Course of FiO2 (%) according to (C) degree of
bradycardia and (D) degree of bradycardia plus integration of presence of hypoxemia.
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delivery to the brain was not only associated with lower crStO2 values,
but with changes in cerebral perfusion as well.17 In healthy neonates,
cerebral blood volume decreases significantly during fetal-to-neonatal
transition, most probably due to cerebral vasoconstriction associated
with the steep increase in blood oxygen tension.18 In infants with need
of respiratory support with a diminished increase in oxygen tension in
the first minutes after birth, there is consecutively less change in

cerebral blood volume, which may improve cerebral oxygenation by
maintaining cerebral blood volume including oxygenated hemoglobin.
Nevertheless, cerebral oxygenation was less challenged by degree of
bradycardia as compared to additional presence of hypoxemia. No
differences in course of cFTOE was seen when the neonate
experience various degree of bradycardia alone. This implies that
there was no increase in cerebral oxygen extraction during

Fig. 3 – Course of SpO2 (%) during the first 15 min of neonatal transitional phase according to (A) degree of bradycardia
and (B) degree of bradycardia plus integration of presence of hypoxemia. Course of crStO2 (%) according to (C) degree
of bradycardia and (D) degree of bradycardia plus integration of presence of hypoxemia. Course of cFTOE according to
(E) degree of bradycardia and (F) degree of bradycardia plus integration of presence of hypoxemia.
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bradycardia to compensate for a significant change in oxygen
delivery. On the contrary, additional presence of hypoxemia resulted
in a significant increase of FTOE. Recently, it has been shown that
during resuscitation cFTOE was a sensible marker displaying
changes in cerebral oxygen delivery during return of spontaneous
circulation in a newborn asphyxiated lamb model.19

The present study emphasizes that the combination of both
parameters is important and should be followed during neonatal
resuscitation. It seems reassuring that cerebral tissue may be less
challenged by bradycardia alone as compared to additional presence
of hypoxaemia. This aspect strongly underlines the importance of a
quick titration of FiO2 to ensure adequate oxygen delivery within the
first minutes, although often challenging for clinicians.6,20

Our analysis has some limitations. First, the uncertainty in the
definition of bradycardia in contrast to the more structured
definition of hypoxemia imposes caution in the interpretation of
the results. Then, the present study is retrospective, and our
findings should be confirmed by future prospective data. Our study
included mainly low birth weight infants, then comparison with
other studies is not appropriate especially in regard to clinical
outcomes.6,7 However, it is innovative in showing that the
combination of bradycardia and hypoxemia is not only a threat
for the most immature infants.

With the use of SpO2 and FiO2 we were only able to integrate
supplemental oxygen and arterial oxygenation into our analysis, but
certainly pCO2 might have influenced cerebral perfusion too. In this
regard, we showed that in healthy preterm and term infants pCO2

levels were within normal ranges during neonatal transition.21

Nevertheless, both pCO2 and pO2 levels may vary according to the
efficacy of ventilatory support.22 In addition, we did not differentiate
between different respiratory support modalities, which could have
influenced our data. Furthermore, blood glucose levels are associated
with crStO2 values,

23 but we did not integrate blood glucose levels into
our model. In addition, crStO2 was measured with two different
devices (INVOS 5100C and NIRO 200-NX), which provide systemati-
cally different values. However, in separate analysis these tools
showed very similar results.24

Conclusion

Our study shows that the degree of bradycardia has a significant
impact on the course of SpO2 only, but when associated with the
additional presence of hypoxemia a significant impact on cerebral
oxygenation parameters is observed. Furthermore, the additional
presence of hypoxemia has a significant impact on FiO2delivered. Our
study emphasizes the importance of HR and SpO2 during neonatal
resuscitation, underlining the relevance of hypoxemia during the
neonatal transitional phase.
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