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Abstract

Subdivision schemes represent an efficient and simple class of methods to generate

curves and surfaces by successive refinements of a set of points with an associated

connectivity defining polygons or meshes in the respective cases. Many applications

require the possibility of interpolating points and associated derivatives. The inter-

polation is guaranteed with the use of interpolatory scalar and interpolatory Hermite

subdivision schemes in each respective case. Moving beyond those schemes, in this

thesis we study the point interpolation and the Hermite interpolation problems with

curves by using the class of scalar linear uniform subdivision schemes.

The motivation for this research is the gaps evident in the literature regarding in-

terpolation with certain approximating schemes. The gaps include the interpolation

with dual subdivision schemes and the derivatives interpolation for any scalar scheme.

We analyze both primal and dual cases taking into consideration odd and even sym-

metry of their masks. That analysis provides a characterization of the singularity for

the interpolation operator represented with a block-circulant matrix. Our choice of in-

terpolation parameters differs from the usual chosen ones at integer parameters, adds

a degree of freedom, and offers the possibility of constructing a family of interpolating

curves. In addition, when in the presence of a singular interpolation operator, we pro-

pose a filter for the least square solution based on the kernel of that operator. This

strategy provides a solution which optimizes a given fairness functional. Under some

considerations that choice is found with a quadratic optimization problem, avoiding

the need of facing the optimization as other fitting solutions in the literature. With

the strategies proposed our research resolves the outstanding problems. The results

are used for the free-form design of curves, the exact offset computation, and an image

segmentation algorithm based on subdivision curves.
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Notations

� `(Z): the space of all real-valued bi-infinite sequences defined on the set Z of all

the integers.

� `0(Z): the subspace of `(Z) with only finitely many non-zero elements.

� supp a = [N,M ]: for a sequence a = {aj, j ∈ Z} ∈ `0(Z), the support is the set

of indexes corresponding to non-zero elements, i.e., aj = 0 for all j /∈ [N,M ].

� A + B = {a+ b | a ∈ A ⊂ R, b ∈ B ⊂ R}: the Minkowski sum of two sets.

� C0 = C0(R): the subspace of continuous functions in C(R) with compact support,

i.e., that vanishes outside some bounded interval.

� suppϕ = [µ, ν]: for a function ϕ ∈ C0, ϕ(t) = 0 for all t ≤ µ and t ≥ ν, with:

µ : = inf
t
{ϕ(t) 6= 0} , ν : = sup

t
{ϕ(t) 6= 0} .

� δ0
j : Kronecker delta defined by:

δ0
j =

1, j = 0

0, j 6= 0.

� As,t: element in s-row and t-column of the matrix A. (All matrices and vectors

are indexed starting from 1.)

� A>: transpose of matrix A (and analogous for vectors).

� A∗: conjugate transpose of A.

� A†: pseudo-inverse of matrix A.
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� diag (v) = diags=1,...,n(vs): diagonal matrix with the entries of v ∈ Cn in the

diagonal. If v ∈ Cd×nd, then we refer to a block diagonal matrix with d × d

blocks.

� Pj(`): denotes the `-th coordinate of the point Pj ∈ Rm, which belongs to the

ordered set of points P = {Pj, j = 0, . . . , n− 1}.

P(:, `): denotes the vector:

P(:, `) = [P0(`) . . . Pn−1(`)]>.

� 0p×q: the null matrix of dimension p× q.

� 1p×q: the matrix with all entries equal to 1 of dimension p× q.

� A⊗B: the Kronecker matrix product (or tensor product) of matrices A ∈ Rp×q

and B ∈ Rr×s defined as:

A⊗B =


a11B a12B . . . a1qB

a21B a22B . . . a2qB
...

...
. . .

...

ap1B ap2B . . . apqB

 .

� Ker(A): the nullspace of the matrix A, i.e., Ker(A) = {w | Aw = 0}.

� Λ(M): the spectrum of the matrix M , i.e., the set of eigenvalues of the matrix

M .

� ‖x‖: when non-specified, the norm considered is Euclidean norm ‖x‖2.
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Chapter 1

Introduction

Curves and surfaces representation and generation is an old problem that has followed

different approaches through the times, from physical meanings and mechanical con-

straints to aesthetic purposes. In particular, the design of ships provides the use of

geometrical handles to achieve a desired shape. Those handles were metal weights

known as ducks to shape the splines1 and they were translated into curves and surfaces

piecewise designed by using control points (see Fig. 1.1) [53].

(a) Mechanical splines drived by “ducks” (b) B-spline curve designed by “control
points”

Figure 1.1: Spline curve design

The splines are piecewise curves defined by a set of basis functions of certain space,

in the particular case of piecewise polynomial space we can consider as an example of

the well known B-splines basis [26]. In these settings a piecewise polynomial curve c(t)

1A flexible strip of wood.
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1. Introduction

can be represented as:

c(t) =
n∑
j=0

PjB
g,τ
j (t), (1.1)

where the basis depends on a knot partition τ = {τj = j, j ∈ Z}, so that

Bg,τ
j (t) =

t− τj
τj+g−1 − τj

Bg−1,τ
j (t) +

τj+g − t
τj+g − τj+1

Bg−1,τ
j+1 (t) (1.2)

and

B0,τ
j (t) =

1, t ∈ [τj, τj+1),

0, otherwise.
(1.3)

The coefficients (or coordinates with respect to that basis) are the so-called control

points. As the name suggests, they allow to control the geometry of the curve with

an intuitive control, based on their geometrical position on the space. Given that the

basis is a partition of the unity, each point on the curve is a convex combination of

those control points.

When the knots partition is uniform, i.e., τ = {τj = j, j ∈ Z}, the basis functions

are shifts of a single one Bg
j (t) = Bg

0(t− j) = Bg(t− j). Additionally, they verify the

refinability property [14]

Bg(t) =
1

2g

g+1∑
j=0

(
g + 1

j

)
Bg(2t− j). (1.4)

The latter allows representation of the same curve by basis functions with a smaller

support [24]:

c(t) =
n∑
j=0

PjB
g(t− j) =

2n∑
j=0

P̂jB
g(2t− j) (1.5)

and

P̂j =
∑
s∈Z

aj−2sPs. (1.6)

The new set of control points {P̂j, j ∈ Z} are called a refinement of the previous set

{Pj, j ∈ Z}. From this, a sequence of control points Pk = {P k
j ∈ Rd, j ∈ Z} can be

produced, satisfying

P k+1
j =

∑
s∈Z

aj−2sP
k
s , (1.7)

2



with P0 = {P 0
j ∈ Rd, j ∈ Z} the initial set of control points and a = {aj ∈ R, j ∈ Z} the

so-called subdivision mask. The previous transformation can be defined by a refinement

operator S such that

SPk = Pk+1. (1.8)

Consequently, we can create a sequence of piecewise linear functions, interpolating

each set Pk, which converges uniformly to the curve c(t) [77] (see Fig. 1.2).

(a) P0 (b) P1

(c) P2 (d) P4

Figure 1.2: Subdivision of the control points

This idea is related with the subdivision schemes, which are algorithms that generate

curves and surfaces by repeated refinements of an initial polygonal or mesh [14, 45, 49,

103]. For example, the curve in Fig. 1.2 can be obtained by the rules:P k+1
2j = 1

8
P k
j−1 + 3

4
P k
j + 1

8
P k
j+1

P k+1
2j+1 = 1

2
P k
j + 1

2
P k
j+1

, j ∈ Z, k ∈ N (1.9)

considering the periodization P k
j+2kn

= P k
j and the initial control points P0 = {P 0

j ∈

3



1. Introduction

Rd, j = 0, . . . , n− 1}, which generates a cubic uniform B-spline curve2.

Before entering in details regarding this topic, let us make some observations on

the interpolation problem. The control points may not lie on the curve, as it can be

seen in Fig. 1.1b and Fig. 1.2, for the respective cases of open and closed curves.

Nevertheless, for some basis functions that could be possible.

A particular relevance of the interpolation requirement can be observed in Fig. 1.3.

For a designer it is hard to model the shape with the control points (in blue), because

there is no visual correlation the between points positions and the final shape. Instead,

with the interpolated points (in red) the design is more intuitive as it works directly

on the shape. In fact, Fig. 1.1a exhibits a tool which makes use of the interpolation

property at chosen points.

Figure 1.3: Ideogram design (meaning “mountain” in Chinese and Japanese)

Therefore, for many applications, a natural question arises on the possibility of

interpolating data points and some derivatives. In other words, we could consider it

as the point interpolation problem, the Hermite interpolation problem, or the Birkhoff

interpolation problem with certain classes of curves generated by subdivision schemes.

In the first case we look for a curve c(t) such that c(tj) = U0
j , j = 0, . . . ,m− 1 for

a given set of points U0 = {U0
j , j = 0, . . . ,m − 1}. For the Hermite case the curve

is required to satisfy c(k)(tj) = Uk
j , j = 0, . . . ,m − 1 with the sets Uk = {Uk

j , j =

0, . . . ,m − 1}, and k = 0, . . . , d. The Birkhoff interpolation demands that certain

derivatives have specified values at specified points. The latter does not enter into our

2In case of equidistant knots the term cardinal B-splines is also used [26]

4



1.1. State of the art

discussion, while we address the first two.

Let us consider the set of control points P0 = {P 0
j , j = 0, . . . , n − 1}. Given a set

of parameters t = {tj, j = 0, . . . , n − 1}, with the linear relation in (1.5) we define as

a direct problem finding the values c(tj) = U0
j . As the values c(tj) depend linearly on

the control points, it is possible to define an interpolating operator M , dependent on

the parameters and the subdivision rule, such that

MP0 = U0. (1.10)

On the contrary, given the set U0, if we fix the set of parameters t, then we define

as a inverse problem finding the control points P0 such that the curve c(t) interpolates

the points in U0 at the parameters in t. That inverse problem defines what we call the

interpolation problem and involves the same operator M defined for the direct case.

The generalization of the previous inverse problem to considering sets Uk with

k = 0, . . . , d defines our Hermite interpolation problem.

The next section shows a brief survey on the interpolation with subdivision schemes.

1.1 State of the art

The literature about subdivision schemes has grown since its origin in 1974. The present

section covers a few selected works which we consider important to understanding the

scope and objectives of this research. Since it is impossible to provide a complete list

of references, a broad survey about the state of the art is provided in [102, 18].

1.1.1 Subdivision schemes

The subdivision schemes origins date back to de Rham’s corner cutting iterations with

trisection of a polygon edges [27] (see Fig. 1.4a). That was a method to manufacture

hammer handles and provide them with a rounded profile from an initial rectangular

shape. De Rahm proved that this method leads to a G1 continuous curve3 but not

analytic. In 1974, Chaikin presented a similar method but splitting each edge by 1:2:1

that was proven later to generate quadratic uniform B-spline curves [11, 102] (see Fig.

1.4b).

3A curve is said G1 continuous if it is tangent continuous.

5



1. Introduction

(a) De Rahm (1947) (b) Chaikin (1974)

Figure 1.4: Corner cutting algorithms.

The next steps regarding subdivision schemes were done on uniform B-spline curves

and then extended to other curves, some of them without a known closed form. The

Bézier curves, which are a particular case of B-spline curves, have as well a subdivision

rule of their control polygon to generate a sequence of polygons converging to the curve

[54]. However, in those cases the subdivision is a local concept for each curve segment

in the Bézier spline curve.

Subdivision schemes are classified in interpolatory and non-interpolatory, also called

approximating. Other classifications include scalar and vectorial, linear and non-linear,

stationary and non-stationary, among others [49, 102, 103].

1.1.2 Interpolatory subdivision schemes

In 1986-1989 the first interpolatory schemes were proposed by Dubuc and Deslauriers

by local interpolation of consecutive vertices with polynomials of a fixed degree [33].

Simultaneously, in 1987 Nira Dyn [50] et al. proposed a family of interpolatory schemes

following a geometrical idea (see Fig. 1.5) but still with linear ruleP k+1
2j = P k

j ,

P k+1
2j+1 = −ωP k

j−1 +
(
ω + 1

2

)
P k
j +

(
ω + 1

2

)
P k
j+1 − ωP k

j+2,
k ∈ N, j ∈ Z. (1.11)

6



1.1. State of the art

That family was based on a shape parameter ω and as a particular case ω = 1
16

it was

possible to get the 4-point scheme proposed by Dubuc and Deslauriers. The subdivision

curves generated with this scheme are C1 for ω ∈
(

0,
√

5−1
8

)
[42].

Pki−1

Pki

Pki+1

Pki+2

Pk+1
2i+1

(a) Geometric interpretation of (1.11)

(b) Initial set of
points

(c) First iteration (d) Third iteration

Figure 1.5: The 4-point interpolatory subdivision scheme geometric rule and a
few iterations of the scheme.

However, those schemes had lower continuity degree than the approximating scheme

already proposed based on B-splines. In general, it is known so far that, for the same

support of the subdivision mask4, the approximating schemes has greater continuity of

the derivatives than the interpolatory schemes.

Before [96] only primal interpolatory schemes were proposed, as all the dual5

schemes we find in the literature are non interpolatory [23], except for those proposed

in [96, 32]. The latter provides the interpolation property when the subdivision mask

has infinite length, which lacks of local control of the geometry. In [98] the authors

4Those concepts are introduced later.
5The concept of primal and dual scheme is introduced in the next chapter.

7



1. Introduction

investigate the dual interpolatory schemes with finite mask and propose a constructive

method to produce new interpolatory schemes.

There have been many contributions to the literature on constructing interpolatory

subdivision schemes from approximating schemes for curves and surfaces [71, 20, 21, 78].

Some of them construct the interpolating rules from the cardinal B-splines masks, while

others use the limit positions of refinements in approximating schemes to propose an

interpolating rule.

It follows then the natural question about how to interpolate control points directly

with approximating schemes or how to produces subdivision schemes of higher smooth-

ness that are able to interpolate the data. There are two possible ways, the first could

be by solving the equations that allow to guess the control points to interpolate the

provided data, the second is to define Hermite subdivision schemes that are able to

interpolate points with associated derivatives, ensuring in this way the smoothness of

the subdivision curve. Let us review first the second option.

1.1.3 Hermite subdivision schemes

The Hermite problem consists in interpolating points and their associated derivatives

up to order m, which we refer to as the order of the Hermite interpolation problem.

The classical problem has been extensively studied in the literature with polynomial

solutions, where the Hermite problem of order m is solved with polynomial curves of

degree 2m+ 1 [118, 67]. The family of polynomial curves more utilized in design soft-

wares have been the cubic Bézier curves (e.g., in Adobe, CorelDraw, OCAD). Likewise

for every cubic curve two endpoints and associated tangent vectors are interpolated

with a unique solution described by four control points. Those control points are the

coefficients of the cubic Bernstein basis and provide an intuitive control of the geometry

for the designer.

Besides polynomials curves, there are proposed solution with rational polynomials in

Bernstein basis (rational Bézier curves), B-splines, and non-uniform rational B-splines

[9, 55, 70, 80]. As an example of B-spline Hermite interpolation, we can consider the

works of Plonka [94, 93], who studied the interpolation using B-splines with knots of

multiplicity two. Even though many of those contributions have continuity degree C2m

as polynomial curves of degree 2m + 1, the interpolation of derivatives up to order

m assures only a Cm continuity at the interpolated points. The contribution in [79]

shows a solution with free parameters interpolating only first derivatives with a C2

8



1.1. State of the art

polynomial curve in quintic Bernstein basis.

In subdivision, the story started by Merrien work [84] following the local approach

in [50]. The Hermite subdivision idea is to produce in each iteration, like (1.9), not

only new points, but also associated functional data, such as derivatives or normals.

His construction uses only two points on a function f(a) and f(b) with their derivatives

f ′(a) and f ′(b) to sample that function at dyadic parameter points f(xnk) as well as its

derivatives, where:

xnk = a+ k
b− a

2n
, k = 0, . . . , n. (1.12)

In a first example (see Fig. 1.6), the subdivision rule is based on the evaluation of

the unique Hermite cubic interpolant at the middle point of each interval

f(a+b
2

) = 1
2
(f(a) + f(b))− b−a

8
(f ′(b)− f ′(a)), (1.13)

f ′(a+b
2

) = 3
2(b−a)

(f(a) + f(b))− 1
4
(f ′(a) + f ′(b)). (1.14)

In that way, given the initial set V0 = {V 0
j ∈ R2×d, j ∈ Z}, the proposed family of

Hermite subdivision schemes

V k+1
2j =

1 0

0 1

V k
j ,

V k+1
2j+1 =

 1
2

λ
2k

−µ 2k 1−µ
2

V k
j +

 1
2
− λ

2k

µ 2k 1−µ
2

V k
j+1,

k ∈ N, j ∈ Z, (1.15)

dependent on two parameters (λ, µ) is defined [84, 73]. For (λ, µ) =
(

1
8
, 3

2

)
the limit

function is C1 and the subdivision scheme (in (1.13) and (1.14)) converges to the unique

Hermite cubic spline interpolating the initial data at integer parameters [c(j), c′(j)]> =

V 0
j ∈ R2,d. Meanwhile, for (λ, µ) =

(
1
8
, 2
)

the limit function is a quadratic spline. It is

known that Hermite schemes can be represented as spline curves [73].

This approach was extended later to Hermite interpolation on triangulations for

surface generation [85]. Many schemes based on Merrien’s construction appeared in

the succesive years as extensions or generalization, both interpolatory and non inter-

polatory [73, 104, 87].

In 1999 Dyn and Levin provided some analysis tools for Hermite interpolatory

schemes while considering any number of derivatives associated to the data points

9



1. Introduction

(a) V0 (b) V1

(c) V2 (d) V4

Figure 1.6: A few iterations of Merrien’s cubic Hermite subdivision scheme

[48]. Those tools were based on divided-difference operators applied on the succesive

refinements Vk and the consideration of derived stationary Hermite schemes.

We can note that the Hermite subdivision rule (1.15) is non-stationary, in the sense

that it depends on the iteration level k. We can rewrite them as

V k+1
2j = D−k−1

1 0

0 1
2

Dk V k
j ,

V k+1
2j+1 = D−k−1

 1
2

λ

−2µ 1−µ
4

Dk V k
j + D−k−1

 1
2
−λ

2µ 1−µ
4

Dk V k
j+1,

(1.16)

10



1.1. State of the art

with k ∈ N, j ∈ Z, and D =

[
1 0

0 1
2

]
.

In this way we get a subdivision rule that can be written as in (1.7), this time with

matrix coefficients

V k+1
j =

∑
s∈Z

D−k−1 Aj−2s Dk V k
s , j ∈ Z, k ∈ N. (1.17)

The so-called stationary Hermite scheme in [48] considers the mask A = {Aj, j ∈ Z}.
Further details on the analysis of convergence and smoothness of the Hermite schemes

can be found in [40, 39, 41, 86, 17]. They introduce the spectral condition and the

Taylor operator which determines the Taylor scheme associated with A. Then, the

study of convergence and smoothness is based on the properties of the derived Taylor

scheme.

The contributions in [99, 95] construct Hermite subdivision rules based on cardinal

B-splines of odd degree 2n + 1, n ∈ N with simple knots. The order of interpolated

derivatives results n and the cubic case correspond to Merrien’s scheme (1.15). In [99]

the subdivision rule is extended for any arity (or dilation factor) of the refinement

equation6.

Another link between scalar and Hermite subdivision scheme is studied [81]. This

research proposed a way to derive Hermite subdivision rules from scalar subdivision

schemes. Let us consider a scalar stationary subdivision scheme with S as its refinement

operator (1.8) and Mk the interpolating operator providing points on the subdivision

curve and their associated derivatives from the control polygon Pk. It is possible to

define an Hermite subdivision scheme following the commutative diagram

Pk Vk

Pk+1 Vk+1

S

Mk

Mk+1

∃ . (1.18)

However, there were some problems such as the ill-conditioning of the Hermite subdi-

vision matrix constructed and the fact that for some scalar schemes, their convergence

does not imply the derived vectorial scheme convergence.

6Equation (1.4) corresponds to a dilation factor 2 or, in other words, a binary refinement.

11



1. Introduction

Although the idea behind (1.18) shows an interesting link between scalar and Her-

mite schemes, it is not practical in any case. Therefore, rather than explore that

strategy, we study the Hermite problem with scalar schemes without trying such an

approach.

This thesis does not provide a thorough analysis on Hermite subdivision schemes

and any references made to distinguish them from the classic Hermite interpolation

problem solved with scalar subdivision scheme, which is the goal of this document.

1.1.4 Interpolation with scalar subdivision schemes

What has been discussed so far provides the following options for interpolating data

with subdivision schemes. In case of only points, interpolation can use an interpolatory

scheme which has that data as initial control polygon or it can be used an approximating

scheme and then used to compute an initial polygon so that the limit curve interpolates

those points. In case of Hermite interpolation, we can use a Hermite subdivision scheme

or a scalar subdivision scheme, with the same situation as before in case the Hermite

scheme is non-interpolatory. In case of using a scalar subdivision scheme, a suitable

set of initial control points has to be computed as a preprocessing of the data.

In [101], the authors proposed a local rule, named retrofitting strategy, to compute

the initial control points such that a family of schemes called J-splines interpolates

points. That rule can be translated into an iterative method that solve the interpolation

problem (1.10). This method happens to fail when the iteration matrix has a spectral

radius greater or close to 1, which is possible for certain values of the parameter that

define the J-spline family.

Another iterative method was proposed in [118] for point interpolation with uniform

B-spline curves, later generalized in [89] to interpolate tangent vectors and curvature

with cubic B-spline curves. In this case, for tangent and curvature interpolation, the

proposed iteration rules were non-linear and the authors did not provide a formal

proof of convergence for that iterative method. As a restriction the authors only

considered only interpolation of unitary tangent vectors which results in missing some

curve features (see Fig. 1.7).

In relation to the solution of the linear system of equations in (1.10), another

approach has been followed by other authors by considering the computation of the

least square solution of those equations. In [62] a least square solution is proposed while

introducing additional degrees of freedom to interpolate a mesh with the Catmull-Clark

12
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Figure 1.7: Different curves interpolating the same control points and pre-
scribed tangents directions, but changing the length of those tangents.

surface subdivision scheme. The degrees of freedom are set by optimizing a fairness

functional on the surface subject to a set of linear constraints given by the interpolation

conditions. Meanwhile, in [65] a least square fitting approach is proposed with a surface

subdivision scheme that generalizes the Loop surface subdivision scheme for triangular

meshes. Althought those methods are devoted to subdivision sufaces, the nature as

subdivision scheme and least square method applies naturally for both curves and

surfaces.

1.2 Outline of the thesis

The problem we discuss in this thesis is the data interpolation with scalar subdivision

schemes, mainly for the free-form design of curves where the referred data is scattered

on the Euclidean space. Besides the use of interpolatory scalar schemes and interpola-

tory Hermite schemes, the approaches to interpolate points and associated derivatives

described before [101, 89, 62, 65] do not cover all the cases present in subdivision. In

particular, all of them are based on primal schemes and the extension to dual schemes

is not considered. To fill this theoretical gap in the literature, we study the interpola-

tion of points with scalar approximating schemes and the Hermite interpolation with

scalar schemes rather than Hermite schemes or vectorial schemes. It is worth noting

that scalar interpolatory schemes, (e.g., the four-point scheme [50] in (1.11)) do not

interpolate associated tangent vectors.

The second chapter is dedicated to provide the background notions related to sub-

division schemes and the tools used to solve the interpolation problem. Among those

13



1. Introduction

tools, a few energy functionals for describing the fairness of the curves are shown. The

translation of the problem into a Linear Algebra model brings out the use of certain

structured matrices. Therefore, the latter are introduced with some related concepts

and results.

The third chapter shows the proposals to solve the point interpolation problem

and the Hermite interpolation problem. First, a characterization of the singularity

of the interpolation opertor depending on the subdivision mask is provided. When

this operator is singular, we propose some alternatives for facing that situation. A

comparison with iterative methods proposed in the literature is done. In addition, we

compare the performance of the scalar schemes with respect to a few selected Hermite

subdivision scheme as solutions of the Hermite interpolation problem.

The fourth chapter provides applications of the algorithms proposed to solve the

interpolation problem. The first one is the free-form design of curves. The second is

the generation of offset curves, considering both constant and variable distance from

the subdivision curve. The last application studied is an image segmentation algorithm

based on snake curves, which is a sequence of curves converging to the boundary of an

object inside an image. The curves used are subdivision curves corresponding to any

chosen scalar subdivision scheme.

In the conclusion we discuss the results of the thesis and we present a few selected

open problems as well as possible future works.

14



Chapter 2

Background concepts and

foundations

The problem we are solving is based on the use of scalar subdivision schemes. There are

among others different classifications for them, including approximating or interpola-

tory, linear or non linear, geometrical, scalar or vectorial, stationary or non-stationary,

uniform or non uniform. A broad survey can be found in [42, 102, 103, 49, 48, 14].

Some types are not independent, since geometrical subdivision schemes can be de-

scribed as linear subdivision schemes. For instance, the well-known 4-point subdivision

scheme [50] is one such example.

In what follows we present the foundation and notations suitable for understanding

our problem as well as the proposed solution strategies in Chapter 3. Therefore, we

present basic definitions, properties, and results for uniform scalar subdivision schemes.

Further details regarding other kinds of schemes like the Hermite ones, or the concept

of using schemes of higher arities, are presented only for illustrating comparisons with

our proposals [84, 73, 87, 99].

In order to deal with our problem, we use Toeplitz and block-Toeplitz matrices

[107, 60] and specific functionals to measure geometrical features [116, 1] . Those are

presented also here to make the presentation of the following chapters more synthetic.

2.1 Scalar subdivision schemes

This section is mainly devoted to providing the basis and tools regarding subdivision

schemes that we use to model and solve the problem of interest. In this thesis we are

15



2. Background concepts and foundations

not dealing with general subdivision schemes. Rather, we are examining the linear sub-

division schemes. Inside this class we dedicate special attention to stationary uniform

subdivision schemes. For more details concerning subdivision schemes, see [49, 42].

2.1.1 Basis function and refinability

Let ϕ(t) : R→ R be a real continuous function with compact support in [−N,M ], with

N,M ∈ R+ and N > 1, M > 1. Let us consider the vector space generated by the

integer shifts of that basis function ϕ(t):

span {ϕ(t− j), j ∈ Z, t ∈ R} . (2.1)

If we consider n points P = {Pj ∈ Rm, j = 0, . . . , n − 1}, then we can generate the

continuous parametric curve c(t) : R→ Rm:

c(t) =
n−1∑
j=0

Pjϕ(t− j) ∈ span {ϕ(t− j), j ∈ Z} , for t ∈ [−N,M + n− 1].

It is easy to check that c(t) has compact support in [−N,M + n− 1].

Provided some properties of the basis function, such as the partition of unity pre-

sented later, the coefficients Pj have an intuitive relation with the geometry of the

curve c(t). Therefore, more than merely coordinates in the basis (2.1), they are called

control points of the curve, as their representation as points in Rm serves to control the

shape of the curve.

Lemma 1. Given n points {Pj ∈ Rm, j = 0, . . . , n− 1} and the basis function ϕ(t) as

described before, the curve

c(t) =
∑
j∈Z

Pj ϕ(t− j) =
N+n−1∑
j=−M

Pj ϕ(t− j), t ∈ [0, n], (2.2)

considering the periodization Pj = Pj+n, j ∈ Z, is closed.

Proof. Let us prove that c(t) = c(t+ n), as:

c(t+ n) =
∑
j∈Z

Pj ϕ(t+ n− j)

=
∑
j∈Z

Pj ϕ(t− (j − n)) =
∑
s∈Z

Ps+n ϕ(t− s)
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2.1. Scalar subdivision schemes

with the change of variables s = j − n

=
∑
s∈Z

Ps ϕ(t− s) = c(t).

Therefore, the curve c(t) is n-periodic in R. As c(0) = c(n), the restriction to the

interval [0, n] is a closed curve.

For the second equality, it is enough to check the evaluation in the edge cases t = 0

and t = n− ε with ε ∈ (0, 1). In those cases, provided that supp ϕ = [−N,M ], we get

c(0) =
N∑

j=−M

Pj ϕ(−j) =
N+n−1∑
j=−M

Pj ϕ(−j),

and

c(n− ε) =
N+n−1∑
j=−M+n

Pj ϕ(n− ε− j) =
N+n−1∑
j=−M

Pj ϕ(n− ε− j).

Remark 1. Notice that the summation in (2.2) is not performed all over the indices,

considering the compact support of the basis function. Actually, the summation is done

in a subset of the indices depending on the support of ϕ.

From now on, we use the infinite summation for simplicity, although it is a finite

one as the previous Lemma states.

In this setting, each component is independent from the others, so without loss of

generality, for some analysis we can consider the function f : R→ R defined as

f(t) =
∑
j∈Z

pjϕ(t− j), t ∈ R, pj ∈ R. (2.3)

Indeed, the curve in (2.2) is defined component-wise in that way.

Remark 2. If we consider the cardinal data δ = {pj = δ0
j , j = 0, . . . , n − 1}, with

δ0
j being the Kronecker delta sequence, then we find the basis function in (2.3). It is a

trivial observation, but it is useful for what follows.

Linear uniform subdivision schemes are related to refinable basis functions ϕ(t) that
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2. Background concepts and foundations

satisfies the relation

ϕ(t) =
∑
j∈I⊂Z

ajϕ(2t− j), t ∈ R, aj ∈ R. (2.4)

The previous property shows a self-similarity of the basis function with respect to

integer shifts and dilation by 2.

The refinement sequence a = {aj, j ∈ Z} ∈ `0(Z) associated with the refinable

function introduces us to the idea of subdivision. But before describing this concept,

let us illustrate some well-known examples.

Examples:

The quadratic uniform B-splines B2(t) defined for the knots {−1, 0, 1, 2} (see (1.2))

in (1.4) satisfies the refinement relation

B2(t) =
1

4
B2(2t+ 1) +

3

4
B2(2t) +

3

4
B2(2t− 1) +

1

4
B2(2t− 2), (2.5)

for t ∈ [−1, 2].

B2(t)

-1 0 1 2

1
4
B2(2t+ 1)

3
4
B2(2t) 3

4
B2(2t− 1)

1
4
B2(2t− 2)

-1 -1/2 0 1/2 1 3/2 2

Figure 2.1: Refinability of quadratic uniform B-splines

The cubic uniform B-splines B3(t) defined for the knots {−2,−1, 0, 1, 2} satisfies

the refinement relation

B3(t) =
1

8
B3(2t+ 2) +

1

2
B3(2t+ 1) +

3

4
B3(2t) +

1

2
B3(2t+ 1) +

1

8
B3(2t+ 2), (2.6)

for t ∈ [−2, 2].

The length of a is related with the support of ϕ(t) as described in the following

result.

Theorem 1 ([14]). Let ϕ(t) be a refinable function with refinement sequence a satis-

fying supp a = [−N,M ] ∩ Z, then suppϕ = [−N,M ].
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B3(t)

-2 -1 0 1 2

1
8
B3(2t+ 2)

1
2
B3(2t+ 1)

3
4
B3(2t)

1
2
B3(2t− 1)

1
8
B3(2t− 2)

-2 -3/2 -1 -1/2 0 1/2 1 3/2 2

Figure 2.2: Refinability of cubic uniform B-splines

Notice that not every refinable function can be used for representing subdivision

curves, except the scaling function [14].

Definition 1 (Scaling function). Let ϕ(t) ∈ C0 a refinable function and a ∈ `0(Z) its

refinement sequence:

ϕ(t) =
∑
j∈Z

ajϕ(ρt− j), t ∈ R.

Then ϕ is called a ρ-refinable function with refinement sequence a.

Furthermore, if ϕ satisfies ∫ ∞
−∞

ϕ(t)dt = 1,

then the refinable function is called a scaling function.

Remark 3. If a refinable function ϕ satisfies∫ ∞
−∞

ϕ(t)dt = c 6= 0, (2.7)

then 1
c
ϕ is a scaling function.

From this definition we obtain an important property which is used later.

Lemma 2. If a = {aj, j ∈ Z} ∈ `0(Z) is the refinement sequence of a refinable function

ϕ that satisfies (2.7), then ∑
j∈Z

aj = ρ. (2.8)
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2. Background concepts and foundations

Proof. Integrating both sides of the refinement relation we obtain∫ ∞
−∞

ϕ(t)dt =

∫ ∞
−∞

∑
j∈Z

ajϕ(ρt− j)dt

=
∑
j∈Z

aj

∫ ∞
−∞

ϕ(ρt− j)dt =
1

ρ

∑
j∈Z

aj

∫ ∞
−∞

ϕ(ρt− j)d(ρt− j)

=
1

ρ

∫ ∞
−∞

ϕ(t)dt
∑
j∈Z

aj

recalling that the summation is indeed finite. Provided that
∫∞
−∞ ϕ(t)dt = c 6= 0, we

arrive at the desired result.

Definition 2 (Partition of unity). A function ϕ ∈ C0 is said to provide a partition of

unity if ∑
j∈Z

ϕ(t− j) = 1, t ∈ R, (2.9)

where the summation is finite since ϕ has compact support.

Remark 4. In what follows we make use of the dilation factor 2, which corresponds

to 2-refinable functions. The latter consideration simplifies the discussion, but all the

following results can be extended to a general dilation factor.

Let us now consider again the closed curve in (2.2) represented in the basis of

integer shifts of a scaling function ϕ with refinement sequence a ∈ `0(Z). If we use the

refinement relation for each element of the basis, then we deduce

c(t) =
∑
j∈Z

Pjϕ(t− j) =
∑
j∈Z

Pj
∑
s∈Z

asϕ(2(t− j)− s) (2.10)

=
∑
j∈Z

∑
s∈Z

Pjasϕ(2t− (s+ 2j)) =
∑
s∈Z

∑
j∈Z

Pjas−2jϕ(2t− s)

=
∑
s∈Z

P̂sϕ(2t− s),

where

P̂s =
∑
j∈Z

as−2jPj. (2.11)

Recalling that each summation is finite, the switch of summation order is justified.

From this, we can notice that the curve c(t), parametrized in [0, n] in (2.2), is
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2.1. Scalar subdivision schemes

represented in the basis {ϕ(2t− j), j ∈ Z, t ∈ R}. In this new basis the amount of

control points is twice the amount of control points given in the previous basis (2.1).

If we denote by P0 = {P 0
j ∈ Rm, j = 0, . . . , n− 1} the initial control points for the

representation of the curve c(t), and by P1 = {P 1
j ∈ Rm, j = 0, . . . , 2n − 1} the ones

obtained in (2.11), then we can generate a sequence of such sets by the rule

P k+1
s =

∑
j∈Z

as−2jP
k
j . (2.12)

The closed subdivided control polygon preserves the periodicity in (2.2) [14].

Lemma 3 (Preservation of periodicity). Let P0 ∈ `(Z) denote the set of n initial

control points in Rm, for m ≥ 2, such that the periodicity condition

P 0
j+n = P 0

j , j ∈ Z,

is satisfied. Then, for the refinement sequence a ∈ `0(Z), the sequence Pk generated

recursively in (2.12), is also periodic, with

P 0
j+2kn = P 0

j , j ∈ Z, k ∈ N.

By induction it can be proved that the closed curve c(t) is represented as

c(t) =
∑
j∈Z

P k
j ϕ

(
2kt− j

)
, t ∈ R, k ∈ N. (2.13)

The sequence obtained with the sets Pk = {P k
j ∈ Rm, j = 0, . . . , n − 1}, k ∈ N,

defines the subdivision scheme (see Fig. 1.2). The relation in (2.12) is known as

subdivision rule and the refinement sequence forms the so-called subdivision mask a =

{aj, j ∈ Z}.

In addition, from (2.2) follows that it is possible to compute as well the derivatives

of the subdivision curves as

d

dt
c(t) = 2k

∑
j∈Z

P k
j 2k

d

dt
ϕ
(
2kt− j

)
, t ∈ R, k ∈ N. (2.14)
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2.1.2 Linear subdivision schemes

A subdivision scheme is an iterative method where a curve is generated by repeated

refinements of an initial polygon with the set of control points as vertices. The case

we are dealing with in this thesis is the linear case, as the rule (2.12) to generate each

refinement is linear.

As stated previously, in this thesis we use scaling functions with dilation factor 2,

consequently the theory in connection with subdivision schemes is the one concerning

binary schemes. In case of considering higher dilation factors, the schemes under

consideration are of higher arities [34, 115, 64, 103, 98].

Definition 3. For a given mask a ∈ `0(Z), the subdivision operator Sa : `(Z)→ `(Z)

associated to a is defined by:

(SaP)j : =
∑
s∈Z

aj−2sPs, j ∈ Z, (2.15)

where P = {Pj, j ∈ Z} ∈ `(Z).

By iterating the subdivision operator repeatedly to an initial set of control points

P0 =
{
P 0
j , j ∈ Z

}
∈ `(Z) we obtain the sequence of refinements given below:

P0 7−→ P1 = SaP0 7−→ P2 = SaP1 7−→ . . . . (2.16)

Returning to Remark 2, the basic function ϕ can be sampled with a parameteriza-

tion at dyadic parameters by the sequence of refinements of the cardinal data

ϕ = lim
k→∞
Ska δ. (2.17)

The subdivision operator applied in each step maps different dimensions with re-

spect to other steps. Taking into account that the number of points in Pk+1 is twice

the number of points in Pk, the last statement is easier to check. Therefore, the matrix

representation of the subdivision operator in (2.15) depends on the amount of initial

points and the level of refinement applied. To provide an eigenanalysis of that opera-

tor, we introduce the concept of local subdivision operator that maps a neighborhood

of each point at the k-refinement onto a neighborhood with the same “structure” at

the (k + 1)-refinement (see Fig. 2.3) [103].

The parity of the number of elements in the support of a defines what is termed as
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a0a2 a−2

a1 a−1

P 0
−2 P 0

−1 P 0
0 P 0

1 P 0
2

P 1
−4 P 1

−3 P 1
−2 P 1

−1 P 1
0 P 1

1 P 1
2 P 1

3 P 1
4

(a) Primal scheme with mask {a−2, a−1, a0, a1, a2}

a1 a−1

a2 a0

P 0
−2 P 0

−1 P 0
0 P 0

1 P 0
2

P 1
−3 P 1

−2 P 1
−1 P 1

0 P 1
1 P 1

2 P 1
3 P 1

4

(b) Dual scheme with mask {a−1, a0, a1, a2}

Figure 2.3: Refinement structure for primal and dual subdivision schemes in a
neighborhood of P 0

0 .

the primality or duality of a subdivision scheme [103]. An odd number of elements in

the support of a provides a primal scheme (see Fig. 2.3a), where old vertices map into

new vertices and another new vertices are inserted. On the other hand, if there is an

even amount of elements, it is defined a dual scheme. In this case, old edges map into

new edges and another edges are inserted.

Examples:

Let us provide two examples for the local subdivision matrix, one for each type

related with the previous example of quadratic and cubic uniform B-splines. In order

to make more clear the matrix structure, we consider the general case, and more

precisely, the masks {a−2, a−1, a0, a1, a2} for a primal scheme and {a−1, a0, a1, a2} for a

dual scheme.

In the primal case, we consider as local subdivision matrix:

Sa =


a2 a0 a−2 0 0

0 a1 a−1 0 0

0 a2 a0 a−2 0

0 0 a1 a−1 0

0 0 a2 a0 a−2

 such that Sa


P 0
j−2

P 0
j−1

P 0
j

P 0
j+1

P 0
j+2

 =


P 1

2j−2

P 1
2j−1

P 1
2j

P 1
2j+1

P 1
2j+2

 . (2.18)
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2. Background concepts and foundations

On the other hand, for a dual scheme we consider the matrix:

Sa =


a2 a0 0 0

0 a1 a−1 0

0 a2 a0 0

0 0 a1 a−1

 such that Sa


P 0
j−1

P 0
j

P 0
j+1

P 0
j+2

 =


P 1

2j−1

P 1
2j

P 1
2j+1

P 1
2j+2

 . (2.19)

Definition 4. For a given mask a ∈ `0(Z) with support in [µ, ν], associated to a

subdivision scheme, the local subdivision matrix Sa is defined as:

Sa = (as−2j−µ+1)ν−µ+1
s,j=1 (2.20)

such that

Sa



P 0
j+µ

P 0
j+µ+1

...

P 0
j
...

P 0
j+ν−1

P 0
j+ν


=



P 1
2j+µ

P 1
2j+µ+1

...

P 1
2j
...

P 1
2j+ν−1

P 1
2j+ν


. (2.21)

The subdivision scheme converges if the sequence of piecewise linear functions fk(t)

which satisfies the interpolation conditions

fk
(
j

2k

)
= P k

j , j ∈ Z (2.22)

converges uniformly to a limit subdivision curve. The curve c(t) in (2.2) is the contin-

uous limit function

c(t) = lim
k→∞

fk(t). (2.23)

In practice, just a few iterations are enough to provide a polygon that looks smooth

for the human eye.

In the subdivision rule (2.12), for each point every component is independent from

the others, so the analysis of convergence can be stated for functional data as pointed

before in (2.3). Taking that into account, we can formulate the following definition

[45].
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2.1. Scalar subdivision schemes

Definition 5. A binary subdivision scheme is said to be Cd if for every initial data

P0 ∈ `(Z), there exist a limit function f ∈ Cd(R) such that:

lim
k→∞

sup
j∈Z

∣∣∣∣P k
j − f

(
j

2k

)∣∣∣∣ = 0, (2.24)

and f 6= 0 for some initial data p0.

This definition can be extended straightforward to higher arities.

A necessary condition for the uniform convergence is that [45]:∑
j∈Z

a2j =
∑
j∈Z

a2j+1 = 1. (2.25)

Remark 5. We do not cover further details concerning convergence and smoothness

analysis of subdivision schemes, such as sufficient conditions and tools to check when

they are satisfied. That topic is not within the scope of our interest, as this research

considers known convergent subdivision schemes, instead of deriving new subdivision

rules. Further details can be found in [103, 45, 49, 14].

From (2.2) it follows that the basic function ϕ(t) can be obtained by iterating the

initial data P0 = {δ0
j , j = 0, . . . , n− 1}.

When the mask is such that a2j = δ0
j , for i ∈ Z, then ϕ(0) = 1 and the subdivision

scheme is said to be interpolatory (see (1.11)), as c
(
j

2k

)
= P k

j for all i, k ∈ Z. Thus, the

points in Pk are a sampling of the curve c(t) for every k ∈ N. Instead, in the case of

approximating subdivision schemes, to know the values c( j
2k

) it is necessary to compute

the values of ϕ
(

1
2k

Z
)

and evaluate in (2.13). In particular, the values βj = ϕ(j) for

j ∈ Z, provide the so-called first limit stencil and

c(i) = Vi =
∑
j∈Z

βi−jP
0
j . (2.26)

The equation (2.26) can be represented as

MnP
0 =


β0 β−1 β−2 . . . β2 β1

β1 β0 β−1 . . . β3 β2

...
...

...
. . .

...
...

β−1 β−2 β−3 . . . β1 β0



P 0

0

P 0
1
...

P 0
n−1

 =


V0

V1

...

Vn−1

 =


c(0)

c(1)
...

c(n− 1)

 . (2.27)
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2. Background concepts and foundations

We refer to Mn as the matrix that represents the point interpolation operator for linear

subdivision schemes.

In general we could speak about d-th limit stencil. Let V k
j = c(k)(j) be the k-th

derivative of the curve c(t) at t = j, j ∈ N. This case can also be represented by a

matrix. In this case, better described as a block-matrix which is shown and discussed

later.

Definition 6. The ordered set βk−1 =
{
βk−1
j = ϕ(k−1)(j), j ∈ Z

}
, k = 1, 2, . . ., is

called k-th limit stencil (or limit stencil of order k) and by (2.2) it holds that the k-th

derivative of the curve at integer parameters can be computed as

c(k)(j) = V k
j =

∑
s∈Z

βkj−sP
0
s . (2.28)

The condition in (2.25) ensures the existence of ϕ[1](t) from ϕ(t) such that [45]

dϕ(t)

dt
= ϕ[1](t+ 1)− ϕ[1](t) (2.29)

and therefore from (2.2)

c′(t) =
∑
j∈Z

(P 0
j − P 0

j−1)ϕ[1](t− j). (2.30)

It turns that ϕ[1](t) is a refinable function with the mask given below

a
[1]
2j = 2

j∑
s=0

(a2s − a2s−1) (2.31)

a
[1]
2j+1 = 2

[
j−1∑
s=0

(a2s−1 − a2s) + a2j−1

]
. (2.32)

In analogous way, by recursion, ϕ[k](t) can be defined if there exists a Ck limit curve

for the subdivision scheme. In such a way the k-th limit stencil can be computed from

the evaluation of ϕ[k](t) in Z.

One of the usual requirements is the symmetry1 of the mask.

Definition 7. A subdivision scheme is said to be odd-symmetric if a−j = aj and

1Here symmetry makes reference to the index.
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2.1. Scalar subdivision schemes

even-symmetric if a1−j = aj for j ∈ N.

These symmetries are particular cases of the primal and dual form of subdivision

schemes respectively, and the limit stencils have the same kind of symmetries [103].

As a consequence the odd-order limit stencil (recall Definition 6) inherits the odd

or even symmetry

β2d
−j =

β2d
j , for odd-symmetric schemes,

β2d
j+1, for even-symmetric schemes,

d ∈ N. (2.33)

For the even-order limit stencil then we obtain

β2d+1
−j =

−β2d+1
j , for odd-symmetric schemes,

−β2d+1
j+1 , for even-symmetric schemes,

d ∈ N. (2.34)

For d ≥ 1 we have
∑
j∈Z

βdj = 0 and
∑
j∈Z

β0
j = 1.

As can be seen from (2.2), changing the position of the initial control points changes

the geometry of the curve. Therefore, for free-form design of curves, among other

applications, the relation between the position of the points in P0 and the geometry of

the subdivision curve c(t) should be intuitive. In particular, it is relevant to solve either

the interpolation problem of finding the control points P0 given the points {Vj, j =

0, . . . , n−1} in (2.28) or the Hermite interpolation problem of finding P0 given {Vj, j =

0, . . . , n− 1} and certain derivatives on those points.

2.1.3 Exact evaluation of linear uniform stationary subdivi-

sion schemes

In case of the interpolatory subdivision schemes, as ϕ(j − s) = δsj , we have

c

(
j

2k

)
=
∑
s∈Z

P k
s δ

s
j = P k

j . (2.35)

Moreover, because of (2.22) and (2.23) it holds

c

(
j

2k

)
= lim

q→∞
fk+q

(
2qj

2k+q

)
= lim

q→∞
P k+q

2qj , q ∈ N. (2.36)
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2. Background concepts and foundations

In case of interpolatory schemes, the center and right hand expressions are limits of

constant sequences that converge to the point P k
j as stated in (2.35). Otherwise, the

right hand sequence allows to analyze the exact value of c
(
j/2k

)
.

Remark 6. A subdivision curve c(t) is usually represented by a polygon (that we defined

as fk in (2.22)) that interpolates Pk whose vertices are obtained after some refinements

of an initial polygon P0. For the sake of simplicity, we shall refer to Pk as the set

of refined control points in the k iteration, as well as the related polygon, called the

control polygon, whose vertices are given by the previous ordered set of points. For

computations we write the involved control polygon as vector like in (2.27).

When k increases the control polygon Pk provides a better approximation of c(t). In

this research we approximate c(t) by the polygon {c(j/2k), j ∈ Z, k ∈ N} whose vertices

are on the curve. For interpolatory subdivision schemes both Pk and {c(j/2k)} are the

same, but they are different in the case of non-interpolatory schemes. In this way we

use a unified framework to represent the subdivision curve, always by points lying on

the curve.

In many applications, no matter if the scheme is interpolatory or not, it is enough

to work with Pk instead of {c(j/2k), j ∈ Z, k ∈ N} and in fact this is one of the

advantages of applying subdivision schemes. The computational cost of computing the

latter adds an O(n) operations (with n the amount of control points) to the one of

generating Pk. However we take profit of that sampling for energies quadrature in

applications presented more ahead.

The evaluation of the basic function at dyadic parametric values ϕ
(
j

2k
− s
)

for any

s, j ∈ Z and k ∈ N can be computed as the subdivision of the polygon with vertices

P0 =
{

(j, δ0
j ), j ∈ Z

}
by k times (see Fig. 2.4 and 2.5).

The procedure used to compute the sampling {c(j/2k), j ∈ Z, k ∈ N} is not by

subdividing the Pk towards the limit. Rather we employ (2.2) with a pre-computed

sampling ϕ
(
j

2k
− s
)

of the basis function, storing the results in a table. In this way,

it is possible not only to compute that particular sampling in dyadic parameters, but

also n-adic parameters [106].

Moreover, our approach has the advantage of working with different samplings of

the subdivision curve, while the other allows only to work with dyadic parameters.

The values of the basic function can be found from the eigenanalysis of the local

subdivision matrix (2.20) [103, 49, 111]. Likewise, they can be computed from the
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2.1. Scalar subdivision schemes

ϕ(t)

t

1

-3 -2 -1 1 2 30

(a) Values of ϕ 1
16

(s), s ∈ Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(b) Values of ϕ 1
16

(s), s ∈ 1
2Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(c) Values of ϕ 1
16

(s), s ∈ 1
4Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(d) Values of ϕ 1
16

(s), s ∈ 1
8Z

Figure 2.4: Generating the values of the basic function for the 4-point subdivi-
sion scheme.

refinement equation (2.4). Let us illustrate it with two examples, with the quadratic

and cubic uniform B-splines as before.

Examples:

For the quadratic uniform B-spline with refinement relation in (2.5) we have
ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 =


1
4

0 0 0
3
4

3
4

1
4

0

0 1
4

3
4

3
4

0 0 0 1
4



ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 . (2.37)

Thus, the values {ϕ(−1), ϕ(0), ϕ(1), ϕ(2)} are obtained as solution of an homogeneous

equation or has an eigenvector corresponding to the eigenvalue 1 for that matrix,

which is, in fact, the transpose of the local subdivision matrix (2.19). The property of

partition of unity (2.9) provides the particular solution of interest in the eigenspace.

In this way, we obtain the solution, which is also the first limit stencil
ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 =


0
1
2
1
2

0

 . (2.38)
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ϕ(t)

t

1

-2 -1 1 20

(a) Values of ϕ(s), s ∈ Z

ϕ(t)

t

1

-2 -1 1 20

(b) Values of ϕ(s), s ∈ 1
2Z

ϕ(t)

t

1

-2 -1 1 20

(c) Values of ϕ(s), s ∈ 1
4Z

ϕ(t)

t

1

-2-2 -1 1 20

(d) Values of ϕ(s), s ∈ 1
8Z

Figure 2.5: Generates the values of the basic function for the cubic B-spline
subdivision scheme

On the other hand, for the cubic uniform B-spline from (2.6) we obtain that
ϕ(−2)

ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 =



1
8

0 0 0 0
3
4

1
2

1
8

0 0
1
8

1
2

3
4

1
2

1
8

0 0 1
8

1
2

3
4

0 0 0 0 1
8




ϕ(−2)

ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 . (2.39)

Analogous to the previous case, with the restriction imposed by the partition of

unity property, we obtain the solution to the eigenvector problem with respect to the

eigenvalue 1, corresponding to the first limit stencil
ϕ(−2)

ϕ(−1)

ϕ(0)

ϕ(1)

ϕ(2)

 =


0
1
6
2
3
1
6

0

 . (2.40)

It is worth noting again that the analyzed matrix is the transpose of the local subdi-

vision matrix (2.18).
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2.1. Scalar subdivision schemes

In general, if the basis function ϕ(t) has support in [µ, ν], then we find

ϕ(µ)

ϕ(µ+ 1)
...

ϕ(0)
...

ϕ(ν − 1)

ϕ(ν)


= Ga



ϕ(µ)

ϕ(µ+ 1)
...

ϕ(0)
...

ϕ(ν − 1)

ϕ(ν)


(2.41)

with

Ga = (a2s−j+µ−1)ν−µ+1
s,j=1 . (2.42)

For symmetric masks we have that Ga = ST
a , that is the transpose of the local subdi-

vision matrix in (2.20).

Provided that for a convergent subdivision scheme the local subdivision matrix has

dominant eigenvalue 1 [49], we can claim the following.

Lemma 4. The first limit stencil of a subdivision scheme with symmetric mask a =

{aµ, aµ+1, . . . , aν} is the dominant left eigenvector of the local subdivision matrix with

sum 1.

Although derivatives can be numerically approximated with divided differences from

the function sampling, it is possible to extend the previous result to these cases. For

the derivatives we can obtain an analogous result, as the refinement relation becomes

ϕ(k)(t) =
∑
j∈Z

2kajϕ
(k)(2t− j). (2.43)

Therefore, in this case the k-th limit stencil is a left eigenvector associated with the

eigenvalue 1
2k

.

The partition of unity property cannot be used in those cases, as it leads to ho-

mogeneous system of equations with not unique solutions. Thus, in order to choose a

proper vector in the eigenspace associated to the eigenvalue 1
2
, in [106] the following

auxiliary constraint is proposed∑
j∈Z

(j − t)ϕ′(t− j) = 1, (2.44)
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2. Background concepts and foundations

requiring that the first derivative of the linear function t must yield the value 1.

The preceding restriction can be extended for higher order derivatives.

In case of computing a sampling of the subdivision curve in the grid 1
n
Z, we can

also use the refinement equation [106]. For a basic function with suppϕ = [µ, ν] we

have

ϕ
( r
n

)
=
∑
j∈Z

ajϕ

(
2r − nj

n

)
, r ∈ Z, n ∈ N\{0}. (2.45)

Therefore, substituting all the values of 1
n
Z∩ [µ, ν] in the refinement relation (2.4),

we get (ν−µ)n−1 homogeneous equations or an eigenvalue problem, because the vector

of ordered evaluations ϕ
(

1
n
Z ∩ [µ, ν]

)
is an eigenvector associated to the eigenvalue 1

for the matrix denoted as Ga,n. More precisely we have

Ga,n = (b2s−j+µ−1)n(ν−µ)+1
s,j=1 , with bj =

a j−µn +µ, if (j − µ) mod n = 0,

0, otherwise.
(2.46)

It can be verified that Ga,1 = Ga in (2.42) and each row in (2.46) is obtained from

an up-sampling of the mask a with factor n. Analogous to (2.41), with (2.46) we get

the linear relation

Ga,nΦa,n = Φa,n, with Φa,n =
[
ϕ(µ), ϕ

(
µ+ 1

n

)
, . . . , ϕ(ν)

]T
. (2.47)

The partition of unity property, as in the previous examples for integer sampling,

allows us to choose the proper vector in the eigenspace. In this case we can write it as 1ν−µ ⊗ In

1

0
...

0

Φa,n = 1T
n , with 1n = [11 . . . 1] ∈ R1×n. (2.48)

Once more, this restriction can be used to find a feasible solution for the eigenvector
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2.1. Scalar subdivision schemes

problem in (2.47) or to define the linear system of equations



Ga,n − In(ν−µ)+1

1ν−µ ⊗ In

1

0
...

0


Φa,n =



0
...

0

1
...

1



n(ν − µ) + 1

n

. (2.49)

Both approaches should lead to the solution, and the choice for one or the other depends

on the involved solver. The dimension of both problems depends on n and ν−µ, which

for practical applications are at most 103 and 10, respectively.

For the derivatives an analogous procedure is applied.

2.1.4 Linear non-stationary subdivision schemes

A more general form of linear subdivision schemes are the non-stationary ones [49],

where the refinement rule (2.12) becomes

P k+1
s =

∑
j∈Z

aks−2jP
k
j , (2.50)

with masks ak depending on each level of iteration. As in the previous presentation, it

can be generalized to higher dilation factor, but we still restrict our discussion to the

binary case for the sake of simplicity in the considered examples.

These schemes extend the class of limit curves generated by the stationary ones.

Those classes include hyperbolic, trigonometric (and as a consequence conics), and

exponential-polynomials curves [4, 22, 97].

When the mask ak =
{
akj , j ∈ Z

}
is independent of the refinement level, i.e., ak = a

for all k ∈ N, we find the stationary case already described. In the non-stationary case,

each refinement uses a different subdivision operator Sak .
Instead of the procedure in (2.17) for stationary scheme, in this case we have a

sequence of basic functions {ϕk(t)} defined as

ϕak = lim
s→∞

(
s∏
j=0

Sak+j

)
δ. (2.51)
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2. Background concepts and foundations

In other words, each basic function ϕak is obtained starting with the refinement itera-

tions from the mask of k-th level.

The functions in the sequence {ϕk(t)} in (2.51) are related by a system of refinement

equations [49]

ϕak(t) =
∑
j∈Z

akjϕak+1(2t− j), k ∈ N. (2.52)

In the stationary case this system reduces to (2.4).

If the non-stationary scheme is convergent starting from the 0-the level (i.e., with

a0), then it is convergent starting from any k-th level [46]. Thus, if we consider a

fixed starting level k, then the limit of the refinements starting from P0 is the curve

represented in the basis of integer shifts of the basic function ϕak(t) as

c(t) =
∑
j∈Z

P 0
j ϕak(t− j). (2.53)

The support of the latter basic function can be determined by the Minkowski sum

of the support of the masks al for l ≥ k [49]

suppϕak =
∞∑
l=k

2k

2l+1
supp al, (2.54)

as an extension of the result for stationary schemes (see Theorem 1).

The difference for the analysis of convergence and smoothness with the stationary

schemes is subtle. A special technique to analyze the convergence of a non-stationary

schemes relies on the identification of a convergent stationary subdivision scheme

asymptotically equivalent to it [49, 21, 47, 19, 18]. However, it is not our purpose

to study the convergence of subdivision schemes here, rather to use known schemes for

solving the interpolation problem.

Finally, we want to highlight the possibility of evaluating the basic function at some

parameter, like dyadic for example, for such schemes.

Example:

As an example we can consider the family of non-stationary schemes generalizing

the cubic B-spline scheme proposed in [97] with masks

ak =

{
αk
8
,
1

2
,
4− αk

4
,
1

2
,
αk
8

}
, with αk ∈

[0, 2), k = 0,

(0, 2), k ∈ N\{0}.
(2.55)
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2.2. Toeplitz, circulant and block-circulant matrices

This scheme generates C1 subdivision curves if limk→∞ αk = α ∈ (0, 2), and C2

subdivision curves if
∑∞

k=0|αk − 1| < ∞. For αk = 1 the cubic uniform B-spline is

obtained.

For the schemeP k+1
2j = αk

8
P k
j−1 + 4−αk

4
P k
j + αk

8
P k
j+1,

P k
2j+1 = 1

2
P k
j + 1

2
P k
j+1,

j ∈ Z, k ∈ N, (2.56)

corresponding to the mask in the example already presented [97], it is possible to

provide exact evaluation of the limit curve and its first derivative at integer parameter

values. The given result can be extended to dyadic parameter values by considering

the initial iteration from another refinement level.

2.2 Toeplitz, circulant and block-circulant matrices

Toeplitz and circulant matrices appear in many areas and applications [25, 75, 90, 88],

but for the particular problem we are analyzing, we consider particular cases of them.

In this section we also present a few properties regarding block-circulant matrices, as

they appear in the modeling of our problem of interest.

Definition 8. Let α = [α0, α−1, . . . , α−n+1] with αj ∈ R. A circulant matrix C =

circ(α) is defined as satisfying Cs,t = Cs+1,t+1 = αs−t, i.e.,

C =



α0 α−1 α−2 . . . α−n+1

α1 α0 α−1
. . . α−n+2

... α1 α0
. . .

...

αn−2
. . . . . . . . . α−1

αn−1 αn−2 . . . α1 α0


(2.57)

with αj = αj mod (n) for all j ∈ Z.

This matrix C = circ(α) can be represented as

C =
n−1∑
j=0

Πj
nαj, (2.58)
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2. Background concepts and foundations

where Πn is the permutation matrix

Πn =



0 0 0 . . . 0 1

1 0 0
. . . 0 0

0 1 0
. . . 0 0

0 0 1
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0 . . . 1 0


. (2.59)

From [25] we have the following result.

Lemma 5. The matrix Πn can be factorized as

Πn = FnΩnF
∗
n, (2.60)

where Fn is the Fourier matrix defined as

Fn =

[
e−2πijk/n

√
n

]n−1

j,k=0

, i2 = −1, (2.61)

and

Ωn = diags=1,...,n

(
e2πi(s−1)/n

)
. (2.62)

As a consequence, C can be diagonalized as

C = FnLnF
∗
n, (2.63)

where

Ln = diags=1,...,n

(
n−1∑
j=0

e2πi(s−1)j/nαj

)
. (2.64)

Note that the diagonal matrix Ln is defined by the Fourier transform of the first column

of C.

From [59, Theorem 6.4] we infer the following result.

Theorem 2. In the case where C =
∑ν

j=−µ Πj
nαj with fixed µ, ν < bn/2c, then

Λ(C) =

{
f

(
2πj

n

)
, j = 0, . . . , n− 1

}
, (2.65)

36



2.2. Toeplitz, circulant and block-circulant matrices

with

f(θ) :=

q∑
j=−p

αje
ijθ (2.66)

also called symbol of C.

Corollary 1. The singularity of C depends on whether f(θ) has roots in the grid
2Nπ
n
∩ [0, 2π].

As an extension, we can also consider the block-circulant matrices, whereBj ∈ Rk×k

for j = 0, . . . , n− 1.

Definition 9. Let A = [A0,A−1, . . . ,A−n+1] with Aj ∈ Rd×d, and consider Aj =

Aj mod (n). An (d × d)-block-circulant matrix C = circ(A), is defined as satisfying

Cs,t = Cs+1,t+1 = As−t, i.e.,

C =


A0 A−1 A−2 . . . A−n+2 A−n+1

A1 A0 A−1
. . . A−n+3 A−n+2

...
. . . . . . . . . . . .

...

An−1 An−2 An−3 . . . A1 A0

 =
n−1∑
j=0

Πj
n ⊗Aj. (2.67)

Analogously to the previous case, we have the following result.

Lemma 6. The block-circulant matrix C can be diagonalized by fast Fourier transforms

as C = (Fn ⊗ Id)Ln(F∗n ⊗ Id), where Id is the identity matrix of dimension d ∈ N and

Ln a block-diagonal matrix:

Ln =
n−1∑
j=0

Ωj
n ⊗Aj, (2.68)

where

Ln = diags=1,...,n

(
n−1∑
j=0

e2j(s−1)iπ/nAj

)
. (2.69)

Proof. We need the following property of the Kronecker product:

� (AC)⊗ (BD) = (A⊗B)(C⊗D) whenever it makes sense the products AC and

BD.

From (2.67) and (2.60) we have:

C =
n−1∑
j=0

Πj
n ⊗Aj
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2. Background concepts and foundations

=
n−1∑
j=0

(
FnΩ

j
nF
∗
n

)
⊗ (AjId) =

n−1∑
j=0

((
FnΩ

j
n

)
⊗Aj

)
(F∗n ⊗ Id)

=
n−1∑
j=0

((
FnΩ

j
n

)
⊗ (IdAj)

)
(F∗n ⊗ Id) =

n−1∑
j=0

(Fn ⊗ Id)
(
Ωj
n ⊗Aj

)
(F∗n ⊗ Id)

= (Fn ⊗ Id)

(
n−1∑
j=0

Ωj
n ⊗Aj

)
(F∗n ⊗ Id) = (Fn ⊗ Id) Ln (F∗n ⊗ Id) .

Remark 7. In the case where C =
∑q

j=−p Πj
n ⊗Aj with fixed p, q < bn/2c, then

Λ(C) =

{
λk

(
f

(
2πj

n

))
, k = 1, . . . ,m, j = 0, . . . , n− 1

}
,

with f(θ) :=
∑q

j=−pAjeıjθ an m×m-matrix valued function and λk(f(θ)), k = 1, . . . ,m

its eigenvalue functions.

We can consider a more general kind of matrices, known as Toeplitz matrices, with

the circulant matrices being a particular case.

Definition 10. A Toeplitz matrix is defined as Tn = (αj−k)
n
j,k=1, i.e.,

Tn =



α0 α−1 α−2 . . . α−n+1

α1 α0 α−1
. . . α−n+2

... α1 α0
. . .

...

αn−2
. . . . . . . . . α−1

αn−1 αn−2 . . . α1 α0


. (2.70)

As an extension we can consider the γ-Toeplitz matrices defined as follows.

Definition 11. A γ-Toeplitz matrix is defined as Tn,γ = (αj−γk)
n
j,k=1, i.e.,

Tn,γ =



α0 α−γ α−2γ . . . α−(n−1)γ

α1 α1−γ α1−2γ
. . . α1−(n−1)γ

... α2−γ α2−2γ
. . .

...

αn−2
. . . . . . . . . αn−2−(n−1)γ

αn−1 αn−1−γ . . . αn−1−(n−2)γ αn−1−(n−1)γ


. (2.71)
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2.2. Toeplitz, circulant and block-circulant matrices

From these definitions, we notice that the local subdivision operator in (2.20) as well

as the transpose of the matrices defined in (2.42) and (2.46) are 2-Toeplitz matrices.

For the previous class of matrices an eigendecomposition is not possible. However

many spectral properties are known [59, 88].

2.2.1 The ω-circulant and the ω-block-circulant matrices

The result about circulant and block-circulant matrices can be extended to ω-circulant

matrices (see, e.g., [15, 5, 107] for more details) by considering the perturbed matrix

Πn,ω =



0 0 0 . . . 0 ω

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0


, (2.72)

with the permutation matrix Πn in (2.59) being such that Πn,1 = Πn.

In this setting, we can provide the following definition.

Definition 12. Let α = [α0, α−1, . . . , α−n+1] with αj ∈ R, and consider α−j = αn−j.

An ω-circulant matrix Cω = circω(α), is defined as satisfying

(Cω)s,t =

{
αs−t, if s > t,

ωαs−t, if s ≤ t.

We can notice that the case ω = 1 provides the original circulant matrices.

Analogously to the original case, the matrix Cω can be represented as

Cω =
n−1∑
j=0

Πj
n,ωαj, (2.73)

Let us write ω = ρeiψ with ρ > 0 and consider n
√
ω = n

√
ρ eiψ

n . Then, thanks to

(2.60), the matrix Πn,ω can be factorized as

Πn,ω = n
√
ωDωΠnD

−1
ω = n

√
ωDωFnΩnF

∗
nD
−1
ω (2.74)
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with Dω = diags=1,...,n

(
ω−

s−1
n

)
and Ωn as in (2.62). Note that this is equivalent to

write Πn,ω = n
√
|ω|Dn,ωFnΩn,ωF

∗
nD
−1
ω with

Ωn,ω = diags=1,...,n

(
ei(2π(s−1)+ψ)/n

)
(compare with (2.62) for a better understanding of the role of ω).

Let us define Fn,ω = DωFn. As it is expected, for ω = 1 we get Fn,1 = Fn. Then,

we get the factorization Cω = Fn,ωLn,ωF
−1
n,ω where

Ln,ω = diags=1,...,n

(
n−1∑
j=0

ωj/ne2πi(s−1)j/nαj

)
. (2.75)

Remark 8. In the case where Cω =
∑ν

j=−µ Πj
n,ωαj with fixed µ, ν < bn/2c, and

ω = eiψ, then

Λ(Cω) =

{
f

(
2πj + ψ

n

)
, j = 0, . . . , n− 1

}
,

with f(θ) :=
∑ν

j=−µ αje
ijθ.

The extension to ω-block-circulant matrices is similar to the block-circulant case

in (2.67), considering in this case the tensor products Πj
n,ω ⊗ Aj. As expected, when

ω = 1 the latter case reduces to (d× d)-block-circulant matrices.

Also in the block case, ω-circulants can be diagonalized by fast Fourier transforms

as follows

Cω =
n−1∑
j=0

Πj
n,ω ⊗Aj = (Dω ⊗ Id)(Fn,1 ⊗ Id)Ln,ω(F ∗n,1 ⊗ Id)(D−1

ω ⊗ Id)

= (Fn,ω ⊗ Id)Ln,ω(F−1
n,ω ⊗ Id)

where

Ln,ω = diags=1,...,n

(
n−1∑
j=0

ωj/ne2πi(s−1)j/nAj

)
, (2.76)

and Id is the identity of size d.

Remark 9. In the case where Cω =
∑ν

j=−µ Πj
n,ω ⊗ Aj with fixed µ, ν < bn/2c, and

ω = eiψ then

Λ(Cω) =

{
λk

(
f

(
2πj + ψ

n

))
, k = 1, . . . , d, j = 0, . . . , n− 1

}
,
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2.3. Energy functionals

with f(θ) :=
∑ν

j=−µAjeıjθ an d× d-matrix valued function and λk(f(θ)), k = 1, . . . , d

its eigenvalue functions.

2.3 Energy functionals

Besides the interpolatory condition of a subdivision curve, we should check the fairness

[56] of the curve when there are so many possible curves, if not infinite, that satisfy

the considered requirement. In the last setting, the fairest one is chosen. The fairness

may be seen as a subjective criteria, based on how pleasant the curve is for certain

applications and the absence of artifacts. There are many proposals referring to how to

measure it, based on physical or geometrical properties of the curve that are described

by energies functionals [55].

Those functionals are described originally based on arc-length parameterization of

the curve. However, in practice for geometrical algorithms only straight lines admit

arc-length parameterization by rational functions [105]. Thus, to overcome the com-

putationally expensive cost of evaluating such functionals, approximations based on

other parameterizations are needed. A few contributions to the literature can be found

in [72, 1, 116, 62].

Let us consider a curve c(t) and the associated curvature κ(t) and torsion τ(t)

functions [38]. The following functionals (see [116]):

Estretch(c) :=

∫
R
‖c′(t)‖ dt,

Ebend(c) :=

∫
R
κ(t)2 ‖c′(t)‖ dt,

Etwist(c) :=

∫
R
τ(t)2 ‖c′(t)‖ dt,

relate the variation of tangent, curvature, and torsion along the curve, respectively.

The first energy controls curve length stretching and its minimization restricts the

occurrence of loops or other undesired effects of the curve length. The second energy

indicates the global curve bending. The latter is combined with the first as in some

cases the minimization of bending can introduce large loops [116]. The minimization

of the third energy, (i.e., the twisting energy,) prevents the curve from coming out of

the osculating plane at each point. According to this criterion the curve is locally as
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2. Background concepts and foundations

close to a plane curve as possible. For many applications it is desired that those values

are not excessively large, since too much stretch implies the presence of loops, while

the bending and twisting reflects unpleasant shapes.

Remark 10. We can notice that for plane curves the torsion τ(t) is zero at every

point, which implies the omission of the twisting energy for the fairness measurement.

As the fairness reflects the beauty of the curve, we require low values of those

functionals or the combined expressions obtained from them.

The previous energies considered are non-linear, as a consequence their optimiza-

tions lead to a non-linear and non-convex problem. In order to solve a convex problem,

these energies can be approximated [1, 116, 72] as

Ẽstretch(c) :=

∫
R
‖c′(t)‖2 dt, (2.77)

Ẽbend(c) :=

∫
R
‖c′′(t)‖2 dt, (2.78)

Ẽtwist(c) :=

∫
R
‖c′′′(t)‖2 dt, (2.79)

and for modelling purposes one can choose to minimize a linear combination of these

functionals, i.e.

E(c) = α1 Ẽstretch(c) + α2 Ẽbend(c) + α3 Ẽtwist(c), (2.80)

for some αk ∈ R, k ∈ {1, 2, 3}. If we normalize these energies, we could consider a

convex combination with αk ∈ [0, 1], k ∈ {1, 2, 3}, and α1 + α2 + α3 = 1.

The values of the functionals in (2.77), (2.78), and (2.79) are not in the same range.

A normalization to make them lie in the interval [0, 1] is not trivial. Therefore, the

choices for each αk in (2.80) have to care of that fact.

As a result of the previous considerations, the optimization problem obtained with

respect to the control points is a quadratic problem.

Let c(t) be a closed curve defined as in (2.2). To minimize E(c), we start by

considering

Ẽstretch(c) =

∫
R

∥∥∥∥∥∑
j∈Z

(P 0
j − P 0

j−1)ϕ[1](t− j)

∥∥∥∥∥
2

dt
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2.3. Energy functionals

=

∫
R

m∑
`=1

∥∥∥∥∥∑
j∈Z

(P 0
j − P 0

j−1)(`)ϕ[1](t− j)

∥∥∥∥∥
2

dt

=
m∑
`=1

P0(:, `)>D>1 G1D1P
0(:, `), (2.81)

where D1, D>1 are circulant matrices with

D1 =



1 0 . . . 0 −1

−1 1
. . . 0 0

...
. . . . . .

...
...

0 0
. . . 1 0

0 0 . . . −1 1


(2.82)

and

G1 :=

[ ∫
R
ϕ[1](t− j) ϕ[1](t− k) dt

]n
j,k=1

. (2.83)

Since ϕ[1] is a refinable function, the elements of G1 can be computed as in [76]. In a

similar way one can treat the other energies.

For the second energy we find

Ẽbend(c) =

∫
R
‖c′′(t)‖2dt (2.84)

=

∫
R

∥∥∥∥∥∑
j∈Z

(P 0
j+1 − 2P 0

j + P 0
j−1)ϕ[2](t− j)

∥∥∥∥∥
2

dt

=

∫
R

m∑
`=1

∥∥∥∥∥∑
j∈Z

(P 0
j+1 − 2P 0

j + P 0
j−1)(`)ϕ[2](t− j)

∥∥∥∥∥
2

dt

=
m∑
`=1

P0(:, `)>D>2 G2D2P
0(:, `). (2.85)

Analogously, the twisting energies can be computed as

Ẽtwist(c) =
m∑
`=1

P0(:, `)> D>3 G3 D3 P0(:, `). (2.86)
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The matrices D2, D3, and their transposes are circulant matrices defined as

D2 :=



−2 1 0 . . . 0 1

1 −2 1 . . . 0 0

0 1 −2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . −2 1

1 0 0 . . . 1 −2


(2.87)

and

D3 :=



−3 3 −1 0 . . . 0 1

1 −3 3 −1 . . . 0 0

0 1 −3 3
. . . 0 0

...
. . . . . . . . . . . . . . .

...

−1 0 0 0
. . . −3 3

3 −1 0 0 . . . 1 −3


. (2.88)

Moreover

Gr :=

[∫
R
ϕ[r](t− j)ϕ[r](t− k)dt

]n
j,k=1

, (2.89)

for r = 2, 3.

Finally, we obtain the expression for the fairness energy

E(c) =
m∑
`=1

P0(:, `)>
(
α1D

>
1 G1D1 + α2D

>
2 G2D2 + α3D

>
3 G3 D3

)
P0(:, `). (2.90)

Remark 11. The matrices Gr depend only on the basic function and they are in-

dependent of the control polygon. Hence, those matrices can be pre-computed in the

implementation once the subdivision scheme is chosen.
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Chapter 3

Interpolating with scalar

subdivision schemes

Interpolatory subdivision schemes provide a direct solution to the interpolation of data

points [50, 33, 34]. Similarly, Hermite subdivision schemes generate a curve interpo-

lating given points and associated derivatives [84, 73]. However, in the first case they

do not generate curves smoother than the ones obtained with approximating schemes.

On the other hand, Hermite schemes usually generate spline curves that locally have

higher continuity degree than in the interpolation points.

Linear scalar subdivision schemes has been extensively studied in the literature

[118, 102, 42, 103, 14, 18]. Although there are proposed solutions for the interpola-

tion with approximating schemes, both for univariate and bivariate cases, some gaps

need to be covered. The interpolation with dual approximating subdivision schemes,

the treatment of special cases for family of schemes as the J-splines [101], and the

interpolation of derivatives, are some examples those gaps.

This chapter examines the interpolation problem. The first section addresses only

points while the second section covers associated derivatives. When the interpolation

operator in (2.27) is singular, we consider three possible approaches. This aspect

is covered in a follow-up section. Those alternatives to solving the problem with a

singular operator are the perturbation of the spectrum of the interpolation operator

as a regularization problem, the perturbation of the least square solution to maximize

a fairness functional, and the shift of the parameters where the interpolation occurs.

The latter provides a non-singular operator making the problem easier to solve. The

final section compares the strategies proposed with existing methods [89, 101].
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3. Interpolating with scalar subdivision schemes

3.1 Point interpolation problem

Let Mn be the matrix representing the point interpolation operator for linear uniform

stationary subdivision schemes in (2.27), in the sense that MnP
0 = V, with V the

vector with entries {Vi = c(i), i = 0, . . . , n− 1}. Our goal is to compute the n control

points P0 = {P 0
i , i = 0, . . . , n − 1} which define the subdivision curve c(t). Then,

the matrix Mn, that we analyze in this section, is a circulant matrix because of the

imposed periodicity.

Let β0 = {β−p, . . . , β−1, β0, β1, . . . , βq} be the first limit stencil of a subdivision

scheme, with p = q for primal schemes and q = p − 1 for the dual case. Let us also

consider the symmetry conditions β−j = βj and β1−j = βj (j ∈ N) for primal and dual

schemes, respectively.

In [101] the authors proposed1 a one-parameter family of subdivision schemes,

blending two well-known subdivision schemes, the cubic B-spline and the 4-point sub-

division schemes, where the first is an approximating scheme, and the second is an

interpolatory one. One advantage of this family is that it can produce limit curves

with higher smoothness than C2, unlike the cubic B-spline or the 4-point scheme.

These schemes are called J-splines and their subdivision rules are reported belowP k+1
2j = ν

8
P k
j−1 + 8−2ν

8
P k
j + ν

8
P k
j+1,

P k+1
2j+1 = ν−1

16
P k
j−1 + 9−ν

16
P k
j + 9−ν

16
P k
j+1 + ν−1

16
P k
j+2,

j ∈ Z, k ∈ N. (3.1)

This family includes many known schemes. For ν = 0 the 4-point subdivision

scheme [33] is obtained, if ν = 1
2

we find the scheme proposed in [100] and, when

ν = 1, (3.1) reduce to the uniform cubic B-spline [77]. In general, those rules produce

curves that are at least C1 for ν ∈ [–1.7, 5.8], C2 for ν ∈ (0, 4), C3 for ν ∈ (1, 2.8], and

C4 for ν = 3/2, which corresponds to the uniform quintic B-spline subdivision scheme.

The elements in the support of the limit stencils are the following

β0 =
1

12(6 + ν)
{(ν–1)ν, 2ν(8–ν), 72 + 2(ν–9)ν, 2ν(8–ν), (ν–1)ν} , (3.2)

β1 =
1

12
{1–ν, 2(ν–4), 0, –2(ν–4), –(1–ν)} , (3.3)

β2 =
1

2ν
{ν − 1, 2(2− ν), 2(ν − 3), 2(2− ν), ν − 1} , (3.4)

1Originally proposed by Maillot and Stam, 2001.
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3.1. Point interpolation problem

β3 =
1

2
{1, −2, 0, 2, −1} . (3.5)

Let us consider as example for a primal scheme the J-spline scheme with its first

limit stencil (3.2). For the interpolation of 6 and 7 points we obtain the matrices

M6 =



72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 (ν–1)ν
12(6+ν)

(ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0

0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

(ν–1)ν
12(6+ν)

0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)


(3.6)

and

M7 =



72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 0 (ν–1)ν
12(6+ν)

(ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 0

0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0

0 0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

(ν–1)ν
12(6+ν)

0 0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

2ν(8–ν)
12(6+ν)

(ν–1)ν
12(6+ν)

0 0 (ν–1)ν
12(6+ν)

2ν(8–ν)
12(6+ν)

72+2(ν–9)ν
12(6+ν)


, (3.7)

respectively. In this case the matrix Mn depends on the parameter ν.

The symbol in (2.66) can be translated into the polynomial

p(z) = zp
q∑

k=−p

βkz
k, (3.8)

such that, from (2.65), we deduce that Mn is singular if and only if p(z) vanishes at

any root of unity of order n.

For the primal schemes bn :=
[
β0, β−1, . . . , β−p,01×(n−2p−1), βp, . . . , β1

]
∈ Rn and

we find

b(θ) =

p∑
k=−p

βke
kiθ = β0 + 2

p∑
k=1

βk cos(kθ). (3.9)

On the other hand, for the dual schemes bn :=
[
β0, β−1, . . . , β−p+1,01×(n−2p), βp, . . . , β1

]
∈
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3. Interpolating with scalar subdivision schemes

Rn, we have

b(θ) =

q∑
k=−p

βke
kiθ =

p∑
k=1

βk
(
e(−k+1)iθ + ekiθ

)
= e

iθ
2

p∑
k=1

βk

(
e(−k+ 1

2)iθ + e(k−
1
2)iθ
)

= 2e
iθ
2

p∑
k=1

βk cos
(
(2k − 1) θ

2

)
. (3.10)

In both cases, the first limit stencil satisfies b(0) = 1.

From (3.10) we get that for even-symmetric schemes b(π) = 0 independently of the

values of n and β. As π belong to the grid 2Nπ
n
∩ [0, 2π] for even n, then by (2.65) we

conclude the following.

Lemma 7. For any even-symmetric subdivision scheme, if the amount of interpolated

points n is even, then the interpolation matrix Mn is singular.

We notice that for primal schemes:

b(2π − θ) = β0 + 2

p∑
k=1

βk cos(k(2π − θ)) = β0 + 2

p∑
k=1

βk cos(kθ) = b(θ) (3.11)

while for the dual cases:

b(2π − θ) = 2e
i(2π−θ)

2

p∑
k=0

βk cos
(

(2k − 1) (2π−θ)
2

)
= 2e

−iθ
2

p∑
k=0

βk cos
(
(2k − 1) θ

2

)
= e−iθb(θ). (3.12)

Therefore, the study of the symbol in the interval [0, π] give us information also in the

interval [0, 2π]. In particular, for every symbol (3.9) and (3.10) we deduce that b(θ) = 0

if and only if b(2π − θ) = 0.

The symbols (3.9) and (3.10) can be rewritten by using the Chebyshev polynomials

of first kind Tn(cos(θ)) = cos(nθ), so that in each respective case from (3.9) we have

b(θ) = β0 + 2

p∑
k=1

βk Tk(cos(θ)) (3.13)

and from (3.10)

b(θ) = 2e
iθ
2

p∑
k=1

βk T2k−1

(
cos
(
θ
2

))
. (3.14)
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3.1. Point interpolation problem

The preceding representations provide some insight concerning the nature of the

symbols namely, the amount of roots and useful bounds for the norms.

Lemma 8. The symbol b(θ) in (3.13), corresponding to a primal subdivision scheme,

has at most 2p roots in the interval [0, 2π].

Proof. Let us define:

c(z) := β0 + 2

p∑
k=1

βk Tk(z), (3.15)

then b(θ) = c(cos(θ)).

If θ0 is a root of b(θ), then z0 = cos(θ0) is a root of c(z). On the other hand, if

there exists a root z0 ∈ [−1, 1] of c(z), then θ0 = arccos(z0) ∈ [0, π] is a root of b(θ).

By (3.11), 2π − θ0 ∈ [π, 2π] is also a root of b(θ).

The polynomial c(z) has degree p, because that is the higher degree of the Cheby-

shev polynomials in (3.15). Then c(z) has at most p real roots in [−1, 1]. Thus, the

symbols have at most 2p roots in the interval [0, 2π].

Lemma 9. The symbol b(θ) in (3.14), corresponding to a dual subdivision scheme, has

at most 4p+ 1 roots in the interval [0, 2π], being π one of them.

Proof. As in the previous lemma, let us define:

c(z) :=

p∑
k=1

βk T2k−1 (z) , (3.16)

then b(θ) = 2e
iθ
2 c
(
cos
(
θ
2

))
.

Analogously to the previous Lemma, if θ0 is a root of b(θ), then z0 = cos( θ0
2

) is

a root of c(z). On the other hand, if there exists a root z0 ∈ [−1, 1] of c(z), then

θ0 = 2 arccos(z0) ∈ [0, 2π] is a root of b(θ). Because of (3.12), 2π − θ0 is also a root of

b(θ).

As T2k+1(0) = 0 for every k ∈ N, we get that π = 2 arccos(0) is always a root of

b(θ).

In this case, the polynomial c(z)/z has degree 2p and therefore it has at most 2p

roots in [−1, 1]. Thus, b(θ) has at most 4p+ 1 roots in the interval [0, 2π], by counting

π at least once.
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3. Interpolating with scalar subdivision schemes

The analysis of the considered polynomials is done in the Chebyshev polynomial

basis, instead of the standard monomial basis. Also the study of the roots can be done

in that basis by using the colleague matrix [114]:

C =



0 1 0 0 . . . 0 0

1
2

0 1
2

0
. . . 0 0

0 1
2

0 1
2

. . . 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0
. . . 0 1

2

0 0 0 0 . . . 1
2

0


− 1

4βp


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

β0 2β1 . . . 2βp−1

 (3.17)

of dimension p× p for the primal case (3.15), and

C =



0 1 0 0 . . . 0 0

1
2

0 1
2

0
. . . 0 0

0 1
2

0 1
2

. . . 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0
. . . 0 1

2

0 0 0 0 . . . 1
2

0


− 1

2βp


0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 β1 0 β2 . . . βp−1 0

 (3.18)

of dimension (2p − 1) × (2p − 1) for the dual case (3.16). In particular, the roots of

each polynomial are equal to the eigenvalues of the respective colleague matrices. This

approach is more suitable for these polynomial basis, while for the monomial basis it

is used the companion matrix to find its eigenvalues which are also equal to the roots

of the polynomial [114].

Remark 12. The proofs of the previous lemmas provide necessary conditions for the

singularity of matrix Mn by the analysis of the roots of the classes of polynomials in

(3.15) and (3.16). In this setting, if c(t) has a root of type cos(2jπ
n

) or cos( jπ
n

), for each

respective case, with j = 0, . . . , n− 1, then Mn happens to be singular.

Examples:

As an example of a primal scheme, for both M6 and M7 in (3.6) and (3.7), by using

(3.9) we obtain the same symbol

b(θ) = 72+2(ν–9)ν
12(6+ν)

+ 4ν(8–ν)
12(6+ν)

cos(θ) + 2(ν–1)ν
12(6+ν)

cos(2θ). (3.19)
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3.1. Point interpolation problem

Then, for (3.6) and (3.7) we have the spectrum

Λ(M6) =
{
b
(

2jπ
6

)
, j = 0, . . . , 5

}
and Λ(M7) =

{
b
(

2jπ
7

)
, j = 0, . . . , 6

}
, (3.20)

respectively.

We can notice that b(π) = 2ν2−13ν+18
3(6+ν)

and then for ν = 2 or ν = 4.5 we deduce that

b(π) = 0. Therefore we have a zero value in the spectrum of M2n for those parameter

values as b(π) = b(2jπ
2n

) for j = n, and therefore the matrix M2n is singular.

We can verify2 that b(θ) only vanishes at real solution pairs

{ν = 2, θ = π} , {ν = 9/2, θ = π/2} , {ν = 9/2, θ = π} , and {ν = 9/2, θ = 3π/2} .

On the other hand, as an example of a dual scheme, let us consider the family of

schemes proposed by Dyn, Floater, Hormann in [43] with subdivision rulesP k+1
2j = −7ν

8
P k
j−1 + 6+9ν

8
P k
j + 2+3ν

8
P k
j+1 − 5ν

8
P k
j+2,

P k+1
2j+1 = −5ν

8
P k
j−1 + 2+3ν

8
P k
j + 6+9ν

8
P k
j+1 − 7ν

8
P k
j+2,

j ∈ Z, k ∈ N. (3.21)

For ν ∈
(
0, 1

6

]
the scheme generates curves with C2 continuity and for ν = 0 the

generated C1 curves are the quadratic B-splines generated by the Chaikin algorithm

[11].

The first limit stencil of these schemes is

β0 =
{

5ν2

8(1−ν)
,− (7ν+8)ν

8(1−ν)
, ν

2+2ν+2
4(1−ν)

, ν
2+2ν+2
4(1−ν)

,− (7ν+8)ν
8(1−ν)

, 5ν2

8(1−ν)

}
. (3.22)

Then, by (3.10) we obtain the symbol

b(θ) = 2e
iθ
2

(
ν2+2ν+2
4(1−ν)

cos
(
θ
2

)
− (7ν+8)ν

8(1−ν)
cos
(

3θ
2

)
+ 5ν2

8(1−ν)
cos
(

5θ
2

))
. (3.23)

As a consequence, it is straightforward to see that b(π) = 0 for all ν ∈ R, and so

every matrix M2n is singular for all ν ∈ R, as pointed out in Lemma 7.

We can ask two questions:

2We provide the tools to check later for the general case in Table 3.1.
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3. Interpolating with scalar subdivision schemes

1. Is matrix Mn singular? This is equivalent of asking: when the trigonometric

polynomial b(θ) vanishes in the grid 2π
n

Z ∩ [0, π]?

2. If the matrix Mn is singular, is the matrix Mn+1 singular too?

The answer to the second question may require that we take into consideration a

different number of control points to avoid the singular case.

To answer the first question we use the Chebyshev series to determine the roots

of b(θ). For polynomials of degree up to 4, we could immediately use the well-known

formulas to find their roots. That would provide sufficient conditions for the first limit

stencils to check whether the matrix Mn is singular. Instead, we choose an analytic

strategy (see Algorithm 1) that allows for weaker necessary conditions and might be

used in the general case for a polynomial of degree larger than 4. Such a strategy

consists of dividing the process of root-finding in three steps. First to check if there

exists some roots (necessary conditions), second to locate the intervals where those roots

lie, and third, to verify if the roots are in the analyzed grid (sufficient conditions).

Algorithm 1 Check if b(θ) vanishes in the grid 2π
n

Z ∩ [0, π]

Input: subdivision mask a, n

Output: boolean value for singularity

1: Compute first limit stencils β0 from mask a

2: if a is odd-symmetric then

3: c(z) = β0 + 2

p∑
k=1

βk Tk(z)

4: else if a is even-symmetric then

5: c(z) =

p∑
k=1

βk T2k−1 (z)

6: end if

7: Find roots z̃j of c′(z) in [−1, 1]

8: Check c (z̃j) c (z̃j+1) ≤ 0

9: Check if the root in [z̃j, z̃j+1] is contained in
{

cos
(

2πN
n

)}
10: return boolean value for singularity

Those roots can be found by the root finding algorithm [6] and then confirmed

they match with the Chebyshev points in the grids 2π
n

Z ∩ [0, π] for suitable n, as n
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3.1. Point interpolation problem

is the amount of control points provided by the user. The amount is limited by the

application.

For the lower degrees of the polynomial c(z) the previous Algorithm 1 can be

simplified into conditions based on the first limit stencil values. What follows is an

examination of odd-symmetric and even-symmetric cases.

3.1.1 Primal subdivision schemes

Let us analyze first the primal case, that is stencils of the form

β0 = {βp, . . . , β1, β0, β1, . . . , βp},

for the particular cases of p = 1 and p = 2.

First degree trigonometric polynomials

If the first limit stencil is of the form β0 = {β1, β0, β1} with β1 6= 0, then bn =

[β0, β1,01×(n−3), β1] ∈ Rn and

b(θ) = β0 + 2β1 cos(θ), c(z) = β0 + 2β1z, (3.24)

with b(0) = β0 + 2β1 = 1 and c(z) defined as in (3.13).

From Lemma 8 the symbol b(θ) might have no zeros, one zero or two zeros in the

interval [0, 2π]. In the case of only one zero the root of c(z) in (3.24) is z0 = arccos(π) =

−1 and then β0 = 2β1, n has to be even so that π ∈ 2Nπ
n
∩ [0, 2π]. The case of two

zeros implies that the root |z0| < 1 and thus |β0| < 2|β1|. We should recall that the

root has to be z0 = arccos(2sπ
n

) for some s ∈ {1, . . . ,
⌊
n
2

⌋
}.

If the root |z0| > 1 then b(θ) does not vanish and the matrix Mn is non-singular.

In this case we haveβ0 + 2β1 = 1

|β0| > 2|β1|
⇔

β0 + 2β1 = 1

β2
0 − 4β2

1 > 0
⇔

β0 + 2β1 = 1

β0 − 2β1 > 0

⇔
{
β0 >

1
2
, β1 <

1
4

}
. (3.25)

Therefore we obtain the following.
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3. Interpolating with scalar subdivision schemes

Lemma 10. For a primal subdivision scheme with symmetric first limit stencil β0 =

{β1, β0, β1}, if β0 >
1
2

and β1 <
1
4
, then Mn is non-singular.

Let us suppose that b
(

2sπ
n

)
= 0 for some s ∈ {0, . . . , n − 1} and b

(
2tπ
n+1

)
= 0 for

some t ∈ {0, . . . , n}. Then there are two possibilities as b(θ) = b(2π − θ).
The first one is that

sπ

n
+

tπ

n+ 1
= π ⇔ s(n+ 1) + tn = n(n+ 1),

and the latter leads to a contradiction because n and n+ 1 are coprime, and it should

hold that n divides s.

On the other hand, it could happen that

tπ

n+ 1
− sπ

n
= 0⇔ s(n+ 1) = tn,

and this leads to the same contradiction. Thus, it does not happen that b(θ) has as

roots 2sπ
n

and 2tπ
n+1

for some s and t. The latter statement addresses the second question.

In order to answer the first question, we should look at the linear system of equationsb(0) = β0 + 2β1 = 1,

b
(

2sπ
n

)
= β0 + 2β1 cos

(
2sπ
n

)
= 0.

(3.26)

Thus, we find

β0 = 1− 1

2 sin2
(
sπ
n

) , β1 =
1

4 sin2
(
sπ
n

) for some s ∈ {1, . . . , n− 1}. (3.27)

Then it happens that also b
(

2(n−s)π
n

)
= 0. If n is even and s = n/2, then we find the

case of one root.

We can now provide the following result.

Proposition 1. Let β0 = {β1, β0, β1} be the first limit stencil of a dual subdivision

scheme. Then, Mn is singular if and only if Mn+1 is non-singular.

Second degree trigonometric polynomials

When the first limit stencil is β0 = {β2, β1, β0, β1, β2} with β2 6= 0, we have

bn = [β0, β1, β2,01×(n−5), β2, β1] ∈ Rn
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3.1. Point interpolation problem

and

b(θ) = β0 + 2β1 cos(θ) + 2β2 cos(2θ), (3.28)

c(z) = β0 + 2β1T1(z) + 2β2T2(z) = β0 − 2β2 + 2β1z + 4β2z
2. (3.29)

To see how many roots the function b(θ) has, we analyze the roots of c(z) in [−1, 1].

Even if we have a quadratic polynomial, we follow an approach that can provide insights

for a general case. First we find its extreme values that is

c′(z) = 2β1 + 8β2z = 0⇔ z = − β1

4β2

.

Then we observe that this function may have roots in
[
−1,− β1

4β2

]
and

[
− β1

4β2
, 1
]

if and

only if ∣∣∣∣ β1

4β2

∣∣∣∣ ≤ 1. (3.30)

Otherwise, the polynomial has a root in [−1, 1] if and only if

c(−1)c(1) = β0 − 2β1 + 2β2 ≤ 0.

This condition, together with c(1) = 1 implies that

β1 ≥ 1
4
, β0 + 2β2 ≤ 1

2
. (3.31)

If the root is z = −1, then also b(θ) has only one root. In this case β1 = 1
4

and

β0 + 2β2 = 1
2
.

The function b(z) has no roots when the polynomial c(z) has no real roots or when

it vanishes outside the interval [−1, 1]

c(−1)c(1) = β0 − 2β1 + 2β2 > 0,

which implies

β1 <
1
4
, β0 + 2β2 >

1
2
. (3.32)

Lemma 11. For a primal subdivision scheme with symmetric first limit stencil β0 =

{β2, β1, β0, β1, β2} with β2 6= 0, if |β1| > 4|β2|, β1 <
1
4

and β0 + 2β2 >
1
2
,then Mn is

non-singular.
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3. Interpolating with scalar subdivision schemes

If (3.30) holds, then the function vanishes in the interval
[
− β1

4β2
, 1
]

when

c
(
− β1

4β2

)
c(1) = β0 − 2β2 − β2

1

4β2
≤ 0.

The latter is equivalent to

β2

(
4β0β2 − β2

1 − 8β2
2

)
≤ 0. (3.33)

Analogously, to determine whether there is none or one root in the interval
[
−1,− β1

4β2

]
,

we use the inequality

c(−1)c
(
− β1

4β2

)
=

(β0 − 2β1 + 2β2) (4β0β2 − β2
1 − 8β2

2)

4β2

≤ 0,

that is equivalent to

β2(β0 − 2β1 + 2β2)
(
4β0β2 − β2

1 − 8β2
2

)
≤ 0. (3.34)

If there is a root in
[
− β1

4β2
, 1
]
, then this condition reduces to β0 − 2β1 + 2β2 ≥ 0.

The case c
(
− β1

4β2

)
= 0 provides a single root with double multiplicity. In that case,

4β0β2 − β2
1 − 8β2

2 = 0.

Therefore, recalling Lemma 8, the amount of zeros of b(θ) can be from 0 to 4, as

summarized in the Table 3.1.

no roots
{
|β1| > 4|β2|, β1 <

1
4
, β0 + 2β2 >

1
2

}
one root

{
β1 = 1

4
, β0 + 2β2 = 1

2

}
two roots

{
|β1| > 4|β2|, β1 ≥ 1

4
, β0 + 2β2 ≤ 1

2

}
or

{|β1| ≤ |4β2|, 4β0β2 − β2
1 − 8β2

2 = 0}
three roots

{
β1 = 1

4
, |β2| > 1

16
, β2

(
4β0β2 − 8β2

2 − 1
16

)
≤ 0, β0 + 2β2 = 1

2

}
four roots {|β1| < 4|β2|, β2 (4β0β2 − β2

1 − 8β2
2) ≤ 0, β0 − 2β1 + 2β2 > 0}

Table 3.1: Conditions for the existence of roots of the symbol b(θ).

Example:

The J-spline subdivision scheme produces curves which are at least C1 for ν ∈
[–1.7, 5.8], C2 for ν ∈ (0, 4), C3 for ν ∈ (1, 2.8] and C4 for ν = 3/2, which corresponds

to the uniform quintic B-spline subdivision scheme [101].
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3.1. Point interpolation problem

For this family of schemes

β0 = 72+2(ν–9)ν
12(6+ν)

, β1 = 2ν(8–ν)
12(6+ν)

, β2 = (ν–1)ν
12(6+ν)

, (3.35)

the constraint (3.30) becomes∣∣∣∣2(8–ν)

(ν–1)

∣∣∣∣ ≤ 1⇔ ν ∈
[

17
3
, 15
]
. (3.36)

Then, we could only consider ν ∈
[

17
3
, 5.8

)
to analyze the existence of more than one

root, but this interval would be only of interest for the C1 continuity and no more than

that smoothness. From this, the only possibility for a C2 scheme in this family to have

a singular interpolation matrix Mn is that (3.31) holds, which results in

72+2(ν–9)ν
12(6+ν)

− 4ν(8–ν)
12(6+ν)

+ 2(ν–1)ν
12(6+ν)

=
(2ν − 9)(ν − 2)

3(6 + ν)
≤ 0⇔ ν ∈

[
2, 9

2

]
. (3.37)

The other case ν ≤ −6 is out of the convergence interval.

Therefore, as a first conclusion, for ν ∈ (−1.7, 2) ∪
(

9
2
, 5.8

)
, Mn is non-singular.

The condition
(2ν − 9)(ν − 2)

3(6 + ν)
= 0⇔ ν = 2, ν = 9

2
(3.38)

implies two different scenarios. For ν = 2, we find c(z) = 5
12

+ 1
2
z+ 1

12
z2 = (z+1)(z+ 1

5
).

As cos(πν) = −1
5

has no rational solution, the only root of b(θ) in the grid 2π
n

Z∩ [0, π]

is θ = π, of even n ∈ N.

On the other hand, for ν = 9
2
, we get c(z) = 1

2
z+ 1

2
z2 = 1

2
z(z+ 1). Then, we obtain

the roots of b(θ), θ1 = π
2

and θ2 = π. If n mod (2) = 0 then b(θ) vanishes in the grid

only at θ1, but if n mod (4) = 0, then b(θ) vanishes at
{
π
2
, π, 3π

2

}
.

If ν ∈
(
2, 9

2

)
, then there is one root of c(z) in [−1, 1]. That root should be confirmed

to belong to the grid of interest in order to imply the singularity of Mn.

Let us suppose that b
(

2sπ
n

)
= 0 for some s ∈ {0, . . . , n − 1} and b

(
2tπ
n+1

)
= 0 for

some t ∈ {0, . . . , n}.
Then

0 = b
(

2sπ
n

)
− b
(

2tπ
n+1

)
= β0 + 2β1 cos

(
2sπ
n

)
+ 2β2 cos

(
4sπ
n

)
−
(
β0 + 2β1 cos

(
2tπ
n+1

)
+ 2β2 cos

(
4tπ
n+1

))
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3. Interpolating with scalar subdivision schemes

no roots ν ∈ [0, 2) ∪ (2, 9
2
) ∪ (9

2
, 4]

one root ν = 2, n mod (2) = 0

two roots ν ∈ (2, 9
2
) if b(θ) has a root in the grid 2π

n
Z ∩ [0, π]

three roots ν = 9
2
, n mod (4) = 0

Table 3.2: Conditions for the existence of roots of the J-spline symbol b(θ) in
the grid 2π

n
Z ∩ [0, π].

= 2β1

(
cos
(

2sπ
n

)
− cos

(
2tπ
n+1

))
+ 2β2

(
cos
(

4sπ
n

)
− cos

(
4tπ
n+1

))
=
(
cos
(

2sπ
n

)
− cos

(
2tπ
n+1

)) (
2β1 + 4β2

(
cos
(

2sπ
n

)
+ cos

(
2tπ
n+1

)))
.

The first factor is non-zero as it was analyzed before. Therefore we have

0 = 2β1 + 4β2

(
cos
(

2sπ
n

)
+ cos

(
2tπ
n+1

))
. (3.39)

With (3.39) we have the linear system of equations
b(0) = β0 + 2β1 + 2β2 = 1,

b
(

2sπ
n

)
= β0 + 2β1 cos

(
2sπ
n

)
+ 2β2 cos

(
4sπ
n

)
= 0,

2β1 + 4β2

(
cos
(

2sπ
n

)
+ cos

(
2tπ
n+1

))
= 0.

(3.40)

By using standard elimination operations, we arrive to the equivalent system
β0 + 2β1 + 2β2 = 1,

(2− 2 cos
(

2sπ
n

)
)β1 + (4− 4 cos2

(
2sπ
n

)
)β2 = 1,

4
(
cos
(

2sπ
n

)
− 1
) (

cos
(

2tπ
n+1

)
− 1
)
β2 = 1.

(3.41)

For s and t different from zero, the respective coefficients of β2 in the third row and

β1 in the second row are non zero. Thus, the system has a unique solution once fixed

the values of s, t and n = n0 ∈ N.

Remark 13. For those values of β0, β1, β2 that define b(θ) with roots 2sπ
n0

and 2tπ
n0+1

,

the question is if it is possible that b(θ) also vanishes in the grids 2π
n

Z ∩ [0, π] and
2π
n+1

Z ∩ [0, π] for other values of n 6= n0 ∈ N.

The answer is positive and that translates into the fact that
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3.1. Point interpolation problem

s
n0
∈
(

Z
n
∩ Z

n0

)
and t

n0+1
∈
(

Z
n+1
∩ Z

n0+1

)
⇔

n = k
n0(n0 + 1)

gcd(s, n0) gcd(t, n0 + 1)
+ n0, k ∈ N (3.42)

or,

t
n0+1

∈
(

Z
n
∩ Z

n0+1

)
and s

n0
∈
(

Z
n+1
∩ Z

n0

)
⇔

n = k
n0(n0 + 1)

gcd(s, n0) gcd(t, n0 + 1)
− (n0 + 1), k ∈ N. (3.43)

Then, the following result can be stated.

Proposition 2. Let β0 = {β2, β1, β0, β1, β2} be the first limit stencil of a dual sub-

division scheme. If Mn is singular, as well as Mn+1, then we deduce that Mn+2 is

non-singular.

Proof. Let n be such that Mn and Mn+1 are both singular. Then, if Mn+2 were also

singular, by the previous results and (3.43), we would have

n+ 2 =
n(n+ 1)

gcd(s, n) gcd(t, n+ 1)
− (n+ 1), (3.44)

which leads to a contradiction as no divisor of n+ 1 can also divide n+ 2.

Arbitrary degree case

Let us consider now the general symbol in (3.9). As we stated in Lemma 8, Mn is

singular iff b
(

2jπ
n

)
= 0 for some j = 0, . . . , n−1, which is equivalent to c

(
cos
(

2jπ
n

))
= 0,

where

c(z) = β0 + 2

p∑
k=1

βk Tk(z).

As c(z) is a polynomial of degree p, then it can be defined by p roots.

Theorem 3. Let b(θ) be such that it vanishes in the set{
2j0π

n0

,
2j1π

n0 + 1
, . . . ,

2jp−1π

n0 + p− 1

}
, n0, p ∈ N∗, (3.45)

for some integers js ∈ {0, . . . , n0 + s} and s = 0, . . . , p − 1. Then for the symbol b(θ)

we find that the associated matrices Mn0 ,Mn0+1, . . . ,Mn0+p−1 are all singular.

59



3. Interpolating with scalar subdivision schemes

Proof. The roots of b(θ) are defined by the roots of c(z) = c(cos(θ)). If b(θ) is a

trigonometric polynomial of degree p (3.9), then the associated Chebyshev series c(z)

in (3.15) is a polynomial of degree p and is has the roots{
cos

(
2j0π

n0

)
, cos

(
2j1π

n0 + 1

)
, . . . , cos

(
2jp−1π

n0 + p− 1

)}
, n0, p ∈ N∗, (3.46)

and those are the only roots of b(θ). From the study of the spectrum of Mn we deduce

that all the matrices Mn0 , Mn0+1, . . . , Mn0+p−1 are singular, because they have at least

one zero in their spectra.

It just remains to analyze the case where for some n ∈ N exists j ∈ {1, . . . , n− 1},
such that

2jπ

n
∈
{

2j0π

n0

,
2j1π

n0 + 1
, . . . ,

2jp−1π

n0 + p− 1

}
, n0, p ∈ N∗. (3.47)

In that case, the matrix Mn associated with the same symbol is also singular.

3.1.2 Dual subdivision schemes

For this kind of subdivision schemes the limit stencil is of the form

β0 = {βp, . . . , β1, β0, β0, β1, . . . , βp}.

Let us analyze first what happens for the particular cases of p = 0 and p = 1.

In the case of first degree trigonometric polynomials, i.e. p = 0, from (3.10), we

find a symbol of the form b(θ) = 2e
iθ
2 β0 cos

(
θ
2

)
. Then we have that b(θ) = 0 if and only

if θ = π, independent of the value of β0. Besides, because of the b(0) = 1, we obtain

β0 = 1
2
.

The value π belongs to the grid 2π
n

Z ∩ [0, π] if and only if n is even. Therefore, we

can state the following result.

Proposition 3. Let β = {β0, β0} be the first limit stencil of a dual subdivision scheme.

Then, Mn is singular if and only if n is even.

Second degree trigonometric polynomials

For p = 1 we obtain the symbol

b(θ) = 2e
iθ
2

(
β0 cos

(
θ
2

)
+ β1 cos

(
3θ
2

))
= 2e

iθ
2 cos

(
θ
2

) (
β0 + β1

[
4 cos2

(
θ
2

)
− 3
])
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3.1. Point interpolation problem

= 2e
iθ
2 cos

(
θ
2

) [
β0 − 3β1 + 4β1 cos2

(
θ
2

)]
, (3.48)

and the associated Chebyshev series

c(z) = z
(
β0 − 3β1 + 4β1z

2
)
. (3.49)

As in the previous case, we have b(π
2
) = 0 independent of the limit stencil β0 =

{β1, β0, β0, β1}, and then Mn is singular for every even n ∈ N.

Let us analyze when the factor c(z)z−1 = β0 − 3β1 + 4β1z
2 vanishes in the grid

cos
(

2π
2n+1

Z
)
∩ [−1, 1] for n ∈ N. It follows that

c (z0) = β0 − 3β1 + 4β1z
2
0 = 0 ⇔ 3β1 − β0

4β1

∈ [0, 1], (3.50)

for z0 = cos
(

2sπ
2n+1

)
, s ∈ {1, . . . , 2n}.

As in the primal case, it is possible to provide a stencil β0 such that the symbol

b(θ) vanishes at the value 2sπ
2n+1

, as solution of the linear system of equationsβ0 + β1 = 1
2
,

β0 − 3β1 + 4β1 cos2
(

2sπ
2n+1

)
= 0.

(3.51)

The unique solution for β0, β1 is guaranteed provided that sin
(

2sπ
2n+1

)
6= 0, for s ∈

{1, . . . , 2n}.

Then the values in the limit stencil are

β0 = 1
2
− β1, β1 =

1

8 sin2
(

2sπ
2n+1

) , for some s ∈ {1, . . . , 2n}. (3.52)

Proposition 4. Let β0 = {β1, β0, β0, β1} be the first limit stencil of a dual subdivision

scheme. If M2n, M2n+1 and M2n+2 are singular, then M2n+3 is non-singular.

Proof. For each n ∈ N, the odd numbers 2n + 1 and 2n + 3 are coprimes, then if b(θ)

vanishes in the grid 2π
2n+1

Z ∩ [0, π], it does not vanish in the grid 2π
2n+3

Z ∩ [0, π].
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3. Interpolating with scalar subdivision schemes

Quartic degree case

The next considered case is that of p = 2 with a symbol of the form

b(θ) = 2e
iθ
2

(
β0 cos

(
θ
2

)
+ β1 cos

(
3θ
2

)
+ β2 cos

(
5θ
2

))
(3.53)

= 2e
iθ
2 cos

(
θ
2

) (
β0 + β1

[
4 cos2

(
θ
2

)
− 3
]

+ β2

[
16 cos4

(
θ
2

)
− 20 cos2

(
θ
2

)
+ 5
])

= 2e
iθ
2 cos

(
θ
2

) (
[β0 − 3β1 + 5β2] + [4β1 − 20β2] cos2

(
θ
2

)
+ 16 cos4

(
θ
2

))
, (3.54)

and the associated Chebyshev series

c(z) = z
(
β0 − 3β1 + 5β2 + [4β1 − 20β2] z2 + 16z4

)
. (3.55)

We can study the second factor in the previous expression with the change of

variables λ = z2. As a result, the analysis of this case is similar to the one provided

for the second degree case for primal schemes, with the additional constraint of non-

negativity of the roots.

As an example of this case we have the scheme with symbol (3.23) proposed in [43].

Arbitrary degree case

Let us consider now the general symbol in (3.10). Similar to the case of primal subdi-

vision schemes, from Lemma 9, Mn is singular iff b
(

2jπ
n

)
= 0 for some j = 0, . . . , n− 1,

and that is equivalent to c
(
cos
(
jπ
n

))
= 0, where

c(z) =

p∑
k=0

βk T2k+1 (z) .

As c(z) is a polynomial of degree 2p+ 1, it can be defined by its 2p+ 1 roots, where

one of them is z = 0 corresponding to θ = π.

Theorem 4. Let b(θ) be such that it vanishes in the set{
2j0π

2n0 + 1
,

2j1π

2n0 + 3
, . . . ,

2jp−1π

2n0 + 2p− 1

}
, n0, p ∈ N∗, (3.56)

for some integers js ∈ {0, . . . , 2n0 + 2s+ 1} and s = 0, . . . , p− 1. Then we have for the

symbol b(θ) = 2e
iθ
2 c
(
cos
(
θ
2

))
that the associated matrices M2n0 ,M2n0+1, . . . ,M2n0+2p−1

are all singular. Besides, for any symbol b(θ) in (3.10) the associated matrix M2n is
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3.2. Hermite interpolation problem

singular.

The proof is analogous to that of the previous theorem for the primal case.

3.2 Hermite interpolation problem

As a natural extension, we are ready to take into account the interpolation problem

with a subdivision curve of n points with associated derivatives up to the d − 1-th

order, where the 0 derivative in a point is the point itself.

Let

U(d) = [V 0
0 , V

1
0 , . . . , V

d−1
0 , V 0

1 , V
1

1 , . . . , V
d−1

1 , . . . , V 0
n−1, V

1
n−1, . . . , V

d−1
n−1 ]>

be the data that we want to interpolate.

We can suppose that there exists a parameter sequence {tj, j = 0, . . . , n− 1} such

that the subdivision curve c(t) interpolates the data information in U(d), i.e.,

c(l)(tj) = V l
j , for l = 0, . . . , d− 1, j = 0, . . . , n. (3.57)

If the curve c(t) is defined by n control points as in (2.27), then we compute a

solution for the point interpolation problem (2.27), which may contradict the values of

higher order derivatives.

Thus, in order to be able to interpolate all the information in U(d), we need to

use nd control points P0 = {P 0
j ∈ Rm, j = 0, . . . , dn − 1} with the periodization

P 0
j = P 0

j+nd, j ∈ Z. A natural choice is to consider the parameters in (3.57) to be

tj = dj, j = 0, . . . , n− 1. Then, from (2.28) we can express the following nd equations

c(l)(di) = V l
di =

∑
j∈Z

P 0
j β

l
di−j, i = 0, . . . , n− 1, l = 0, . . . , d− 1. (3.58)

These equations can be represented in a compact matrix form as

MnP
0 =


B0 B−1 B−2 . . . B2 B1

B1 B0 B−1 . . . B3 B2

...
...

...
. . .

...
...

B−1 B−2 B−3 . . . B1 B0



P 0

0

P 0
1
...

P 0
dn−1

 = U(d), (3.59)
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3. Interpolating with scalar subdivision schemes

where the d× d blocks of the matrix Mn ∈ Rnd×nd satisfy Bj = Bj−n for j = 1, . . . , n

and

Bj =


β0
dj β0

dj−1 β0
dj−2 . . . β0

d(j−1)+1

β1
dj β1

dj−1 β1
dj−2 . . . β1

d(j−1)+1
...

...
...

. . .
...

βd−1
dj βd−1

dj−1 βd−1
dj−2 . . . βd−1

d(j−1)+1

 . (3.60)

Example:

Let us consider the cubic B-spline scheme, whose first limit stencil is {1
6
, 4

6
, 1

6
} and

the second limit stencil is {−1
2
, 0, 1

2
}. Then we write the matrix

4
6

1
6

0 1
2

0 0

0 0
. . .

0 0

0 0

0 1
6

0 −1
2

0 1
6

0 −1
2

4
6

1
6

0 1
2

. . .
0 0

0 0

0 0

0 0
...

. . . . . . . . .
...

0 0

0 0

0 0

0 0
. . .

0 1
6

0 −1
2

4
6

1
6

0 1
2


(3.61)

which is singular with a kernel of dimension 1.

Since the resulting structure is a block-circulant matrix, we infer that:

Mn = (Fn ⊗ Id) Ln (F∗n ⊗ Id) (3.62)

with Ln as defined in (2.76). As the limit stencils have compact support on [−p, q],
there are at least dp

d
e + d q

d
e not null blocks in the set {Bj, j = 0, . . . ,−n+ 1}. As a

consequence, we find the representation

(Ln)s,s =

d p
d
e∑

j=0

B−je
−2(s−1)jiπ/n +

d q
d
e∑

j=1

Bje
2(s−1)jiπ/n, s = 1, . . . , n. (3.63)

Lemma 12. For an odd-symmetric subdivision scheme and d = 2, it holds that the

matrix Mn is singular.

Proof. From (2.34), (2.33), and β1
0 = 0 for odd-symmetric schemes, we have that the
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3.2. Hermite interpolation problem

first block of the matrix Ln satisfies

(Ln)1,1 =

d p
2
e∑

j=0

[
β0
−2j β0

−2j−1

β1
−2j β1

−2j−1

]
+

d q
2
e∑

j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]
(3.64)

=

[
β0

0 β0
1

−β1
0 −β1

1

]
+

d p
2
e∑

j=1

[
β0

2j β0
2j+1

−β1
2j −β1

2j+1

]
+

d q
2
e∑

j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]

=

β0
0 + 2

d p
2
e∑

j=1

β0
2j 2

d p
2
e∑

j=1

β0
2j−1

0 0

 .
Because there is a null row in (3.64), it follows that the first block (Ln)1,1 is singular

and then also the matrices Ln and Mn, by virtue of (3.62).

Instead, for even-symmetric subdivision schemes, due to (2.34) and (2.33), the first

block is equal to

(Ln)1,1 =

d p
2
e∑

j=0

[
β0
−2j β0

−2j−1

β1
−2j β1

−2j−1

]
+

d q
2
e∑

j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]

=



d q
2
e∑

j=−d p
2
e

β0
2j

d q
2
e∑

j=−d p
2
e

β0
2j−1

d q
2
e∑

j=−d p
2
e

β1
2j

d q
2
e∑

j=−d p
2
e

β1
2j−1

 =

[
Σ1 Σ1

Σ2 −Σ2

]
, (3.65)

with

Σ1 =

d q
2
e∑

j=−d p
2
e

β0
2j and Σ2 =

d q
2
e∑

j=−d p
2
e

β1
2j.

Therefore, (Ln)1,1 is not singular in general, but for some particular stencils with

Σ1 = 0 or Σ2 = 0.

The previous Lemma suggests to consider pseudo-inverse matrices for the solution

of the interpolation problem (3.59).

Proposition 5. Given the vector U(d), the interpolation problem MnP
0 = U(d) in
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3. Interpolating with scalar subdivision schemes

(3.59) has solution P0 = M†
nU

(d), where:

(M†
n)s,t =

1

n
(Ln)†1,1 +

1

n

n∑
j=2

(Ln)†j,j e
2(t−s)(j−1)iπ/n, for s, t = 1, . . . , n. (3.66)

Proof. Given the block-circulant matrix in (3.59) Mn = (Fn ⊗ Id)Ln(F∗n ⊗ Id) we can

write

P0 = M†
nU

(d) = [(Fn ⊗ Id)Ln(F∗n ⊗ Id)]
†U(d)

= (Fn ⊗ Id) L†n (F∗n ⊗ Id)U
(d). (3.67)

Since
(Ln)1,1 0 . . . 0

0 (Ln)2,2
. . . 0

...
. . . . . .

...

0 0 . . . (Ln)n,n


†

=


(Ln)†1,1 0 . . . 0

0 (Ln)†2,2
. . . 0

...
. . . . . .

...

0 0 . . . (Ln)†n,n

 , (3.68)

the d× d block (M†
n)s,t is such that

(M†
n)s,t =

1

n

n∑
j=1

e−(s−1)(j−1)iπ/ne(t−1)(j−1)iπ/n(Ln)†j,j

= 1
n
(Ln)†1,1 + 1

n

n∑
j=2

e2(t−s)(j−1)iπ/n(Ln)†j,j.

Remark 14. Even though the representation in (3.66) provides a way to compute M†
n,

it is more efficient in the implementation to compute M†
nU

(d) by benefiting from the

Fourier factorization in (3.62). In this way, the computational cost of that operation

reduces to O(dn log(n)).

The proof of Lemma 12 leads to a characterization of a vector in the kernel of the

matrix Mn as follows.

Proposition 6. Let us consider an odd-symmetric subdivision scheme with first limit
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3.3. Solving the interpolation problem

stencil β0 and second limit stencil β1. The vector w with components

w2j+s =

Σ2 if s = 1

−Σ1 if s = 2
j = 0, . . . , n− 1, (3.69)

where

Σ1 =

d p
2
e∑

j=−d p
2
e

β0
2j and Σ2 =

d p
2
e∑

j=−d p
2
e

β0
2j−1,

belongs to the kernel of the interpolating matrix Mn for the Hermite problem with d = 2.

Proof. Let w be a vector defined like in (3.69). Then, we have that (F∗ ⊗ I2)w =
1√
n
[Σ2,−Σ1,01×(2n−2)]

>.

If we compute Mn w with (3.62), then we verified that

Mn w = (Fn ⊗ I2) Ln (F∗n ⊗ I2) w

= 1√
n
(Fn ⊗ I2) Ln [Σ2,−Σ1,01×(2n−2)]

> = 1√
n
(Fn ⊗ I2) 02n×1

= 01×2n,

because the first block of Ln is equal to

[
Σ1 Σ2

0 0

]
.

If dim Ker(Mn) = 1, then w is a basis of the kernel. Otherwise, we consider it as a

vector in the basis for one of the proposed solutions in the next section (see Algorithm

3).

For higher derivatives interpolation the blocks (3.60) composing Mn in (3.59) do

not present the symmetry that leads to singular matrix independently on the mask as

in (3.64). Hence, the possibility for a singular operator with Hermite interpolation of

order 2 or higher depends on the mask and not on the amount of points.

3.3 Solving the interpolation problem

The previous sections provide the characterization for the singularity of the interpola-

tion operator Mn in (3.59). The matrix Mn is a block-circulant matrix with blocks of

dimension d× d, with d− 1 the maximum order of derivatives interpolated as Hermite

problem. The results are summarized in the following Table 3.3.
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3. Interpolating with scalar subdivision schemes

Mask
Symmetry

Point (d = 1)
Points and tangents

(d = 2)
Points and higher
derivatives (d ≥ 3)

Odd Depend on mask Always singular Depend on mask

Even odd n
Depend on

mask

even n
Always
singular

Depend on mask Depend on mask

Table 3.3: Singularity of the interpolation operator Mn

When Mn is non-singular it is possible to provide an exact solution, as in the case

of odd-symmetric subdivision scheme for d = 1.

Corollary 2. Let β0 be the first limit stencil of an odd-symmetric subdivision scheme.

The subdivision curve that interpolates a given set of points V0 has the set P0 as control

points, defined by the rule

P0 = M−1
n U(1), (3.70)

where the elements of matrix M−1
n are given by

(M−1
n )s,t =


1
n

+ cos((s−t)π)

n(β0
0+2

∑p
j=1 β

0
j cos(jπ))

+ 2
n

n
2
−1∑
r=1

cos(2r(s−t)π/n)

β0
0+2

∑p
j=1 β

0
j cos(2jrπ/n)

, n mod 2 = 0,

1
n

+ 2
n

bn
2
c∑

r=1

cos(2r(s−t)π/n)

β0
0+2

∑p
j=1 β

0
j cos(2jrπ/n)

, n mod 2 = 1,

with s, t = 1, . . . , n.

Proof. Given the first limit stencil β0, the matrix Mn is circulant with the first row

equal to [β0
0 , β

0
−1, . . . , β

0
1 ] as setted in (3.59) for the case d = 1. Then, following Lemma

6 we obtain the factorization Mn = FLnF
∗ with Ln = diag(F β0), which is equivalent

to write

(Ln)s,s = β0
0 + 2

n−1∑
j=1

β0
j cos(2jsπ/n) = (Ln)n+1−s,n+1−s. (3.71)

Therefore, the inverse M−1
n can be computed as M−1

n = FL−1
n F∗ and then for the

(s, t) entry we have

(M−1
n )s,t = 1

n

n−1∑
j=0

e−(s−1)jiπ/ne(t−1)jiπ/n

(Ln)j,j
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3.3. Solving the interpolation problem

= 1
n

+ 1
n

n−1∑
j=1

e(t−s)jiπ/n(Ln)−1
j,j .

From the symmetry of the values in the diagonal of Ln and the fact that eai + e−ai =

2 cos(a) we deduce the final expression.

Remark 15. Even when we have a way to construct (Mn)−1, it is not efficient to

compute the inverse and then multiply it by U(1). In that sense, it is better to look at

(Mn)−1U(1) = FLnF
∗U(1) as the sequence of operations:

� compute the inverse Fourier transform of U(1): F∗U(1),

� filter the result with the diagonal of L−1
n : L−1

n F∗U(1),

� compute the Fourier transform of the filtered vector: FLnF
∗U(1).

In that way the computational cost is just related with the Fourier transformation,

which can be done with a Fast Fourier implementation that is O(n log n), as the filter

in the second step is just O(n).

The Hermite interpolation follows the same approach, where (F ⊗ Id)U(d) is com-

puted by the Fourier transform of the d vectors
[
U

(j)
0 , . . . U

(j)
n−1

]
, with j = 0, . . . , d− 1.

Therefore, the computational cost is O( n log n), because the values of d are small.

Algorithm 2 Computing the control points to interpolate the data points and asso-
ciated tangents

/* Interpolation operator Mn is not singular */

/* circshift(arg,s): shift circularly rows of vector/matrix in argument

by s positions, if positive ->, if negative <- */

Input: subdivision mask a, data points U(d)

Output: control points to interpolate data points

1: Compute limit stencils βs, s = 0, . . . , d− 1

2: Define β =


β0
q . . . β0

0 . . . βd−1
−p

...
...

...
...

...

βd−1
q . . . βd−1

0 . . . βd−1
−p


d×(q+p+1)

3: Compute bn = circshift
(

[β,0d×(dn−(q+p+1))],−d (q+p+1)
2
e
)

4: Compute Ln = diag((F∗ ⊗ Id)b
>
n )

5: Compute L−1
n = diag((Ln)−1

1 , . . . , (Ln)−1
n ) // block inverse in (3.63)

6: return P0 = real((F⊗ Id)L
−1
n (F∗ ⊗ Id)) U(d))
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3. Interpolating with scalar subdivision schemes

The Algorithm 2 for non-singular operator Mn does not construct the matrix, in-

stead it uses the Fourier transform of vectors. Such an approach save computational

cost and memory.

Nevertheless, if we use that algorithm for a singular operator, then from the aes-

thetic point of view3 the solution in the least square sense of (3.66) (i.e., for the pseudo-

inverse definition) may not be the desired one (see Fig. 3.1).

Figure 3.1: Interpolating points and tangents directions with a cubic-Bpline
curve, considering the Least Square solution.

The next section covers a perturbation strategy proposed.

3.3.1 Regularization as a potential alternative

When the interpolation matrix Mn is singular, the interpolation problem in (3.59)

may have no solution or the solution is not unique. In this case we do not fulfill the

Hadamard’s definition of well-posedness and we can consider different known methods

to solve this problem. An alternative is considering a regularization, which is an ap-

proximation of the ill-posed problem by a family of neighbouring well-posed problems

[52].

One known choice as regularization method is Tikhonov regularization

argminx ‖Ax− b‖
2 + λ ‖Lx‖2 , (3.72)

3We can call that null space artifacts!
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3.3. Solving the interpolation problem

with the family of solutions depending on the regularization parameter λ. The latter

controls the weight given to the residual norm and the regularization term. The optimal

value for λ can be chosen by discrepancy principle, generalized cross-validation, or the

L-curve method [63].

The operator L, which can be taken as the identity operator or a differential

operator4, looks for altering the least square solution to enforce special features of

the regularized approximations [63, 52]. As a necessary condition is required that

Ker(A) ∩ Ker(L) = {0}.

This problem is equivalent to solve the normal equations (A>A + λL>L)x = A> b

for each λ.

Our problem involves the square matrix Mn and that fact motivates us to explore

the regularization (Mn + λI)P0 = U(d) instead. In this case the spectrum of Mn is

shifted by λ. Therefore, with a suitable λ each matrix Mn +λI is non singular and the

problem is well-posed.

We can analyze another alternative that consists of solving another regularized

problem Mn,ωP
0 = V0, exchanging the circulant matrix by a ω-circulant matrix [36].

To define our matrix Mn,ω we will use the complex number ω = eiψ. Then, by

Remark 8, the spectrum of our matrix Mn,ω is given by the symbol b(θ + ψ
n

). In this

way, the eigenvalues of Mn are shifted. As a consequence, the matrices Mn and Mn,ω

are both singular only if there at least two roots of b(θ) in the grid 2πN
n
∩ [0, 2π] with

distance ψ
n

among them.

If Mn,ω is not singular, then the system of equations Mn,ωP
0 = V0 is a perturbation

of the initial problem MnP
0 = V0, that has a unique solution when the former does

not. The question is then the existence of a complex solution when the original problem

is set in the real domain. By choosing ψ small in modulus the perturbed system is

close to the original one. Furthermore, since the imaginary part is then small enough,

taking the real part of the solution provides a good approximation.

We can illustrate the performance in the Hermite interpolation scenario by con-

sidering the particular case of point and tangent interpolation. If we consider the

4For instance, the first or second derivative operator.

71



3. Interpolating with scalar subdivision schemes

corresponding ω-circulant matrix Mn,ω we obtain that the block in (3.64) becomes

(Ln,ω)1,1 =

d p
2
e∑

j=0

Bj ω
j/n +

d p
2
e∑

j=1

B−j ω
(n−j)/n

=

[
β0

0 β0
1

β1
0 −β1

1

]
+

d p
2
e∑

j=1

[
β0

2j β0
2j−1

β1
2j β1

2j−1

]
ωj/n +

d p
2
e∑

j=1

[
β0

2j β0
2j+1

−β1
2j −β1

2j+1

]
ω(n−j)/n

=


β0

0 +

d p
2
e∑

j=1

β0
2j

(
ωj/n + ω(n−j)/n) β0

1

(
1 + ω(n−1)/n

)
+

d p
2
e∑

j=2

β0
2j−1

(
ωj/n + ω(n−j)/n)

d p
2
e∑

j=1

β1
2j

(
ωj/n − ω(n−j)/n) β1

1

(
ω1/n − 1

)
+

d p
2
e∑

j=2

β1
2j−1

(
ωj/n − ω(n−j)/n)

.

Then, the singularity of Mn does not imply the singularity of Mn,ω (as in Lemma

12) and the system Mn,ωP
0 = U(d) can be solved instead of (3.59).

It is worth noting that in this general case, the symbol does not follow the same

structure as in (3.9) and (3.10), rather, it follows a more complex one.

The regularization strategy present as a drawback the need to solve many equations

to tune properly the regularization parameter. The tuning for the Tikhonov method

is independent of the symbol b(θ). Meanwhile, for the other two strategies perturbing

the spectrum of Mn, the parameter can be chosen by a residual criterion taking into

account the roots of the symbol b(θ).

In what follows, other strategies are proposed avoiding the tuning required by the

regularization.

3.3.2 A proposed functional strategy

The previous section showed that the interpolation problem (2.27) is not well defined in

general for linear subdivision schemes. If the matrix Mn which defines the interpolation

MnP
0 = U(d) is singular, then we have two possibilities regarding the possible solutions.

According to the Rouché-Capelli Theorem, a solution does not exist at all or there are

an infinite number of them. The second case could be solved by choosing a suitable

energy functional which selects the best solution in terms of its energy.

The first case is undesirable for the designer who would like to have a curve through

those control points. In this case the proposed strategy is based on what follows. As

noted earlier, the singularity of Mn depends on the limit stencils and the amount of
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3.3. Solving the interpolation problem

control points n ∈ N. Once the roots of the symbol b(θ) are known, it is possible to

increase the amount of control points so that the symbol does not vanish in the grid
2π
n

Z ∩ [0, π].

In this section we propose a strategy to perturb the least square solution with

vectors in the nullspace of Mn, by using the energies proposed in [116].

Let W be the matrix with columns {wi, i = 1, . . . , dim(Ker(Mn))} a basis of the

kernel of Mn, i.e.

Ker(Mn) = span {wi, i = 1, . . . , dim(Ker(Mn))} . (3.73)

If P̂0 is a solution in the least square sense of (3.66), then we deduce that

P0 = P̂0 + Ws = M†
nU

(d) + Ws, s ∈ Rdim(Ker(Mn))×d, (3.74)

is also a solution of the interpolation problem in (3.58).

Recalling the combined energy in (2.80)

E(c) = α1 Ẽstretch(c) + α2 Ẽbend(c) + α3 Ẽtwist(c),

if we consider P0 = P̂0 + Ws, then we obtain the following expression

E(c) =
m∑
`=1

[
s(:, `)> W> D W s(:, `) + 2 P̂0(:, `)> D W s(:, `)

+ P̂0(:, `)> D P̂0(:, `)
]
,

where

D :=
3∑
r=1

αr D>r Gr Dr, (3.75)

with Dr and Gr, r = 1, 2, 3, defined in (2.82), (2.87), (2.83), and (2.89), respectively.

Thus E(c) is a component-wise quadratic functional and we can easily find the s

that minimizes it as

s(:, `) = − ( W> D W )−1 W> D> P̂0(:, `), (3.76)

for ` = 1, . . . ,m.
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3. Interpolating with scalar subdivision schemes

With (3.76), the solution (3.74) can be written as

P0 = P̂0 + Ws = P̂0 −W(W> D W )−1 W> D>P̂0

=
(
Ind −W(W> D W )−1 W> D>

)
(Fn ⊗ Id)L†n(F∗n ⊗ Id) U(d). (3.77)

Remark 16. The matrix D in (3.75) is a circulant matrix, because D1, D2, and D3

are circulant matrices. Therefore, D can be factorized by the Fast Fourier transform

and the computations in (3.76) can be performed by using the Fast Fourier transform

analogous to Remark 15.

A family of control points can be provided by perturbing the particular solution

with vectors in the Ker(Mn) (see Fig. 3.2).

(a) Least Square solution (b) Perturbed solution

Figure 3.2: Interpolating points and tangents directions with a cubic-Bpline
curve. The least square solution is perturbed with a vector in the nullspace.

Considering the fact that the stretch energy (based on arc-length) could dominate

over the bend energy (based on curvature) and the twist energy (based on torsion), we

propose to normalize the first by the arc-length of the polygon with vertices in U(1).

Figure 3.2b shows the output for the parameters α1 = 0.5, α2 = 0.5, and α3 = 0

in (3.75). In this case the twisting energy is not considered as we deal with a planar

curve. For 3D curves we invite the reader to experiment with the codes provided in

[35].

The procedure is performed as shown in Algorithm 3.
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3.3. Solving the interpolation problem

Algorithm 3 Perturbing the least square solution

/* Interpolation operator Mn is singular */

/* circshift(arg,s): shift circularly rows of vector/matrix in argument

by s positions, if positive ->, if negative <- */

Input: subdivision mask a, data points U(d)

Output: control points to interpolate data points

1: Compute limit stencils βs, s = 0, . . . , d− 1

2: Define β =

 β0
q . . . β0

0 . . . βd−1
−p

...
...

...
...

...

βd−1
q . . . βd−1

0 . . . βd−1
−p


d×(q+p+1)

3: Compute bn = circshift
(

[β,0d×(dn−(q+p+1))],−d (q+p+1)
2
e
)

4: Compute Ln = diag((F∗ ⊗ Id)b>n )

5: Compute L†n = diag((Ln)†1, . . . , (Ln)†n) // block pseudo-inverse in (3.63)

6: Compute W = [w1|w2| . . . |ws] // {wj , j = 1, . . . , s} a basis of Ker(Mn),

independent of U(d)

/* Alternatively, it can be used only W = w in (3.69) */

7: Compute D in (3.75) // independent of U(d)

8: return P0 = real(
(
Ind −W(W> D W )−1 W> D>

)
(Fn ⊗ Id)L†n(F∗n ⊗ Id) U(d))

3.3.3 Shifting interpolation parameters: an alternative solu-

tion

The previous discussion is based on the supposition that the interpolated points V0

should be interpolated at integer parameters c(j) = V 0
j , for j ∈ {0, . . . , n − 1}, as it

was stated in (2.27). However, if we change that assumption, then we have a different

scenario. This subsection explores that idea and shows how it is possible to find a

solution to the interpolation problem with a non-singular operator, so that the solution

is unique. The idea is inspired in the works for B-splines in [93].

Let us reconsider the dual subdivision schemes case. Previously, with the interpo-

lation at the parameters tj = j, j = 0, . . . , n− 1, we obtained the first limit stencil as

coefficients

V 0
j = c(j) =

∑
s∈Z

ϕ(j − s)P 0
s =

ν∑
s=µ

ϕ(s)P 0
j−s, with suppϕ = [µ, ν], (3.78)
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3. Interpolating with scalar subdivision schemes

but we can also consider that

V 0
j = c(j + σ) =

∑
s∈Z

ϕ(j − s+ σ)P 0
s =

ν−1∑
s=µ

ϕ(s+ σ)P 0
j−s (3.79)

with σ ∈ (0, 1). In particular, we explore the choice σ ∈ 1
q
Z∩(0, 1) for a certain positive

integer q. The evaluation of the basic function at those parameters is done as in (2.46).

Examples:

Let us analyze the quadratic uniform B-spline scheme for σ = 1
2
. In this case, for

the interpolation at integer parameter values and from (2.38), we obtain that

V 0
j = c(j) = ϕ(−1)P 0

j+1 + ϕ(0)P 0
j + ϕ(1)P 0

j−1 + ϕ(2)P 0
j−2 = 1

2
P 0
j + 1

2
P 0
j−1, (3.80)

and the interpolation operator Mn is singular for even n (see Proposition 3). On the

other hand, with the values obtained using (2.46) for 1
2
Z, we have

V 0
j = c(j + 1

2
) = ϕ(−1 + 1

2
)P 0

j+1 + ϕ(0 + 1
2
)P 0

j + ϕ(1 + 1
2
)P 0

j−1 (3.81)

=
1

8
P 0
j+1 +

3

4
P 0
j +

1

8
P 0
j−1.

In this way, the interpolation operator is not singular, because its symbol 3
4

+ 1
4

cos(θ)

never vanishes in the grid 2π
n

Z ∩ [0, π]. Therefore, it is possible to interpolate any

amount of given points.

In Figure 3.3 an even number of points is interpolated with the dual scheme pro-

posed in [43]. In a first try, the least square solution (with red line) is computed by

applying the interpolation at integer parameters. This solution does not interpolate

the points, but the one obtained with the interpolation at the parameters Z + 1
2

(with

blue line).

For dual schemes, the strategy shown allows us to obtain an interpolation operator

with a symbol as in the primal case (3.13). Thus, the singularity analysis occurs as it

did in the section concerning primal schemes. In addition, we recover the advantage of

dealing with a symmetric circulant matrix, whose eigenvalues are represented as real

trigonometric polynomials in cosines.

The use of shifted parameters for interpolation becomes in this way a degree of

freedom for the geometry of the interpolation curve (see Fig. 3.4). However, it is
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Initial data
with shifted parameters
LS with integer parameters

Figure 3.3: Point interpolation with a dual subdivision scheme [43] considering
shifted parameters.

possible that we miss the symmetry provided by the subdivision scheme. As pointed out

before, if the scheme is symmetric, then the basic function satisfies ϕ(µ+ t) = ϕ(ν− t),
with suppϕ = [µ, ν]. In case of odd-symmetry with µ = −ν then the set

{ϕ(−ν), . . . , ϕ(0), . . . , ϕ(ν)}

is odd-symmetric, but the set

{
ϕ(−ν + 1

2
), . . . , ϕ(1

2
), . . . , ϕ(ν − 1

2
)
}

is even-symmetric. On the other hand, for even-symmetric schemes with µ = −ν + 1,

the former has even-symmetry while the latter has odd-symmetry.

In general, the sets

{ϕ(−ν + σ), ϕ(−ν + 1 + σ), . . . , ϕ(σ), . . . , ϕ(ν − 1 + σ)} (3.82)

for odd-symmetric schemes and

{ϕ(−ν + σ), ϕ(−ν + 1 + σ), . . . , ϕ(σ), . . . , ϕ(ν + σ)} (3.83)

for even-symmetric schemes do not possess symmetry for all σ. Therefore, the sub-

division curve interpolating the points at those parameters does not reproduce the

symmetry of the data. That is to say, the obtained control points do not show sym-
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3. Interpolating with scalar subdivision schemes

metry, even with symmetric interpolated data (see Fig. 3.4).

(a) Interpolation at c(Z) (b) Interpolation at c
({

Z + 1
5

})
Figure 3.4: Interpolation with quintic uniform B-spline at different parameter

values.

As a general approach, when the primal case has a singular interpolation operator,

we can consider V 0
j = c(j+ σ), with σ ∈ (0, 1). The given choice leads to an interpola-

tion operator without the odd and even symmetries as the former cases. Consequently,

the related symbol is a complex trigonometric polynomial. This fact has to be consid-

ered in the numerical implementations when manipulating the matrix Mn, taking into

account that the solutions represent points in Rm.

Extension to the Hermite interpolation at shifted parameters

In the point interpolation case with even-symmetric subdivision schemes, we propose

shifting the interpolation parameter from integers to half integer parameters (i.e., 1
2
+Z)

to obtain a non singular interpolation operator. In other words, we shift the case from

the symbol in the form (3.10) to (3.9). For Hermite interpolation we proceed in an

analogous way only for odd-symmetric subdivision schemes, due to the fact that Lemma

12 leads to a singular case but (3.65) does not.

The general formula for the first block of the matrix Ln in (3.62) is

(Ln)1,1 =

d q
2
e∑

j=−d p−1
2
e

[
ϕ(2j + σ) ϕ(2j − 1 + σ)

ϕ′(2j + σ) ϕ′(2j − 1 + σ)

]
(3.84)
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=


ϕ(σ) +

d p−1
2
e∑

j=1

(ϕ(2j − σ) + ϕ(2j + σ)) ϕ(1− σ) +

d p−1
2
e∑

j=1

(ϕ(2j − 1 + σ) + ϕ(2j + 1− σ))

ϕ′(σ) +

d p−1
2
e∑

j=1

(ϕ′(2j + σ)− ϕ′(2j − σ)) −ϕ′(1− σ) +

d p−1
2
e∑

j=1

(ϕ′(2j − 1 + σ)− ϕ′(2j + 1− σ))

,

because of the symmetry relation ϕ(t + σ) = ϕ(−t− σ) and ϕ′(−t− σ) = −ϕ′(t + σ)

for t ≥ 0.

With σ = 0 and the symmetry relations in (2.34) and (2.33) the cases (3.64) and

(3.65) are obtained. However, we swap the properties by considering σ = 1
2
. Indeed,

the first block for odd-symmetric schemes is then:

(Ln)1,1 =

d q
2
e∑

j=−d p−1
2
e

[
ϕ(2j + 1

2
) ϕ(2j − 1

2
)

ϕ′(2j + 1
2
) ϕ′(2j − 1

2
)

]
(3.85)

=


ϕ(1

2
) +

d p−1
2
e∑

j=1

(ϕ(2j − 1
2
) + ϕ(2j + 1

2
)) ϕ(1

2
) +

d p−1
2
e∑

j=1

(ϕ(2j − 1
2
) + ϕ(2j + 1

2
))

ϕ′(1
2
) +

d p−1
2
e∑

j=1

(ϕ′(2j + 1
2
)− ϕ′(2j − 1

2
)) −ϕ′(1

2
) +

d p−1
2
e∑

j=1

(ϕ′(2j − 1
2
)− ϕ′(2j + 1

2
))


=

[
Σ1 Σ1

Σ2 −Σ2

]
. (3.86)

with

Σ1 =

d q
2
e∑

j=−d p−1
2
e

ϕ
(
2j + 1

2

)
and Σ2 =

d q
2
e∑

j=−d p−1
2
e

ϕ′
(
2j + 1

2

)
. (3.87)

This block is not singular for all stencils b0 and b1, as was the case when σ = 0 in

Lemma 12. Therefore, we propose the parameter value σ = 1
2

as strategy for interpolat-

ing points and tangent vectors with odd-symmetric schemes. It is possible to use other

choices for the parameter σ, although the symmetry of the stencils is lost.

For even-symmetric schemes we stick to the choice σ = 0, following what it was

said in (3.65). Once more, it is a free choice for the user to consider another parameter

value.

It is worth noting that Algorithm 5 becomes Algorithm 2 for σ = 0.
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3. Interpolating with scalar subdivision schemes

Algorithm 4 Proposed values for σ

Input: subdivision mask a,

Output: parameter σ for shifting the interpolation parameters

1: if σ not provided then

2: if d = 1 and a even-symmetric then

3: σ = 1
2

4: else if d = 1 and a odd-symmetric then

5: σ = 0

6: else if d = 2 and a even-symmetric then

7: σ = 0 // see Algorithm 2, 3

8: else if d = 2 and a odd-symmetric then

9: σ = 1
2

10: end if

11: end if

Algorithm 5 Computing control points to interpolate data points c(σ + Z) and asso-
ciated derivatives c(d)(σ + Z)

Input: subdivision mask a, data points U(d), σ ∈ (0, 1)

Output: control points to interpolate data points

1: Compute βσ =


ϕ(−ν + σ) . . . ϕ(µ− 1 + σ)

...
...

...

ϕ(d−1)(−ν + σ) . . . ϕ(d−1)(µ− 1 + σ)


d×(ν+µ)

2: Compute bn = circshift
(

[βσ,0d×(dn−(ν+µ))],−d (ν+µ)
2
e
)

3: Compute Ln = diag((F∗ ⊗ Id)b>n )

4: Compute L−1
n = diag((Ln)−1

1 , . . . , (Ln)−1
n ) // block inverse

5: return P0 = real
(
(Fn ⊗ Id) L−1

n (F∗ ⊗ Id) U(d)
)
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3.4. Existing strategies comparison

(a) Minimal-norm solution (b) Shifted-parameters solution

Figure 3.5: Interpolating points and tangents directions with a cubic-Bpline
curve by shifting parameters.

3.4 Existing strategies comparison

In this section we show two iterative methods proposed in the literature to solve the

interpolation problem, each one for different scalar subdivision schemes, the J-spline

family and the cubic uniform B-splines. We compare their solutions with the one

obtained with the direct method proposed in this thesis.

On the other hand, some examples comparing Hermite subdivision schemes with

the Hermite interpolation strategy proposed are shown.

3.4.1 Recovery of retrofitting via J-splines

Let us consider the J-spline family of subdivision schemes [101] with subdivision rules

already presented in (3.1). In the case of point interpolation, instead of solving the

global system of equations (3.59), in [101] the authors proposed to use an iterative

retrofitting scheme which converges rapidly to the solution of these equations. When

a proof of convergence is not provided, it converges only for values of ν ∈ (−0.86, 2).

The proposed retrofitting strategy can be posed as the solution with an iterative

method to the problem MnP
0 = U(1) in (3.59) for point interpolation that is

Qk+1 = Qk +
(
U(1) −MnQ

k
)

= (In −Mn)Qk + U(1), k ∈ N (3.88)
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3. Interpolating with scalar subdivision schemes

with Q0 = U(1) and where Qk converges to P0 as k runs to infinity. Then the conver-

gence depends on the spectral radius of the iteration matrix In −Mn, where Mn is a

circulant matrix with first row defined by β0 in (3.2) as in (3.59). Then, the factoriza-

tion in (3.62) gives us the convergence that depends on the spectral radius of In −Ln,

with Ln defined in (3.63).

This formulation can be extended to the interpolation of higher-order derivatives,

changing the matrix Mn similar to (3.59). Also in the present setting, the spectral

radius should be controlled to ensure convergence.

Comparison with direct method

The first point to consider regarding the retrofitting method is the amount of operations

to be done in relation to the amount n of control points. At each iteration (3.88) there

is only a matrix-vector product with a sparse matrix, whose rows have only 5 non zero

entries, and one addition. The computational cost is O(n), multiplied by the amount

of required iterations for the convergence. However, the amount of iterations grows

fast as the parameter ν grows towards 2 and beyond, while the spectral radius ρ of

the iteration matrix I −Mn grows and eventually is greater than 1 for ν = 2 (see

Table 3.4). Even for ν ≥ 2 the J-spline schemes can generate C3 limit curves, but this

strategy fails.

In Table 3.4 we compare, for a test case, how many iterations of the retrofitting

method are needed to have the same relative residual error (RRE)

RRE := max
j=1,...,n

‖(MnP
0 −U(1))j‖
‖U(1)

j ‖
,

as the direct method in (3.66).

ν 0 0.5 1.0 1.5 1.9 1.99 2.0 2.2

RRE 1.18e-15 1.47e-15 1.55e-15 1.44e-15 2.17e-15 1.29e-14 7.89e-2 1.92e-15

iter 1 34 78 222 1411 14117 19 19283

ρ 1.13e-15 0.38 0.67 0.87 0.98 0.99 1.0 1.04

Table 3.4: Retrofitting method with the threshold equals to the RRE of the
direct method in (3.89).

In case of using the solution in Algorithm 3 with the least square solution in (3.70),
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3.4. Existing strategies comparison

we have

P0 = M †
nU

(1) −W
(
W>DW

)−1
(
W>D>P̂0

)
=
(
In −W

(
W>DW

)−1
W>D>

)
FL†nF

∗ P̂0. (3.89)

When the matrix Mn is not singular, the filter
(
In −W

(
W>DW

)−1
W>D>

)
reduces

to the identity matrix and the solution is obtained after three Fourier transformations

with computational cost O(n log n).

Otherwise, being W a vector computed in (3.69), the Fourier factorization of matrix

D implies that the computational cost of (3.89) is O(n log n). As the values of n

considered in real application are not greater than 100, when ν start growing the cost

of the retrofitting method O(iter·n) becomes greater than the cost of the direct method

in (3.89).

The use of Algorithm 5 leads to a similar computational cost with respect to Algo-

rithm 3.
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Figure 3.6: Comparing computational cost among the retrofitting method and
the direct method proposed: O(n ·#iterations) vs O(n log n).

On the other hand, we can provide the solution for values of the parameter which

defines the J-spline subdivision rules, for which the retrofitting strategy fails.

Regarding to the singularity of Mn, we can invoke Corollary 2 with the solution
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3. Interpolating with scalar subdivision schemes

(3.70) whenever it exists. Thus, all the eigenvalues of Mn

β0
0 + 2

n−1∑
j=1

β0
j cos(2jsπ/n), for s = 0, . . . , n− 1, (3.90)

should be non-zero. In the case ν = 2, we have β0 = {1/48, 1/4, 11/24, 1/4, 1/48}
and for s = 3 we note that Mn has one eigenvalue equals to zero.

Finally, we can use this family of subdivision schemes to interpolate associated

derivatives to the set of given points. That was not considered in the original contri-

bution [101] and it is an advantage for the Hermite interpolation problem, because of

the smoothness provided by some schemes in this family.

3.4.2 Recovery of Okaniwa’s results via cubic B-splines

In [89] there are proposed solutions for the problems of points interpolation and also

tangent interpolation at those points as well. Both approaches make use of the rules

provided in (2.28), transforming them into an iterative method for solving a linear

system of equations.

Points interpolation

For the problem of point interpolation the proposed rules are

Qk+1
j = 6

4
V 0
j − 1

4
Qk
j−1 − 1

4
Qk
j+1, with Q0

j = V 0
j , j = 1, . . . , n, (3.91)

where Qk
j → P 0

j as k →∞ for all j ∈ Z.

That expression can be written as the iterative method

Qk+1 =
(
In − 3

2
Mn

)
Qk + 3

2
U(1), with Q0 = U(1), (3.92)

for the solution of the system of equations MnP
0 = U(1). The iteration matrix In− 3

2
Mn

leads to a better convergence than In −Mn in (3.88), as it can be verified with the

respective spectral radii

ρ(In − 3
2
Mn) = 1

2
< ρ(In −Mn) = 2

3
. (3.93)
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3.4. Existing strategies comparison

Points and tangent directions interpolation

The problem of point and tangent vectors interpolation deals with the difficulty to

be overdetermined, as n points P 0
j uniquely determine by (2.26) another n points V 0

i

and their respective tangent vectors V 1
i . Consequently, providing different values for V 1

i

gives different solutions to (3.91). Then the approach is to solve the point interpolation

problem and then to generate more control points through one subdivision iteration

(2.12) in order to increase the degrees of freedom of the curve, setting k = 1 in (2.13).

In this case, the rules (2.28) lead to

c(j) = V 0
j = 1

6
P 1

2j−1 + 4
6
P 1

2j + 1
6
P 1

2j+1 and c′(j) = V 1
i = −P 1

2j−1 + P 1
2j+1, (3.94)

for j ∈ Z.

Therefore, setting Tj =
V 1
j

‖V 1
j ‖

as unitary vectors for all j ∈ Z, the rules in (3.95)

yield to the iterationsQk+1
2j = 6

4
V 0
j − 1

4
Qk

2j−1 − 1
4
Qk

2j+1,

Qk+1
2j+1 = Qk

2j−1 + ‖Qk
2j+1 −Qk

2j−1‖Tj,
j ∈ Z, k ∈ N, (3.95)

where Qk
j → P 1

j as k →∞ for all j ∈ Z.

As initial values, we define Q0 = {Q0
j = P 1

j , j ∈ Z}, where the set P 1 is computed

from P 0 obtained previously in (3.91). In other words, we solve the point interpolation

problem and the solution P0 provides the initial values Q0 = P1 (by a subdivision

step) for the iterations in (3.95).

The formulation in (3.95) cannot be written as in (3.92) in terms of a linear iterative

operator because the non-linear nature of (3.95). Nevertheless, the solution obtained

by (3.95) can be obtained as solution of MnP
0 = U(2) for Mn as in (3.59) for d = 2

(i.e., point and tangent interpolation) and U(2) = [V 0
0 , V

1
0 , V

0
1 , V

1
1 , . . . , V

0
n−1, V

1
n−1]> with

V 1
j = λjTj and λj ∈ R unknown values, which can affect the geometry of the limit curve

(see Fig. 1.7).

Remark 17. The idea in [89] to perform a subdivision step in order to have enough

information supposes that there is a curve with an initial polygon of n points. This

is not always true when we are interpolating tangents, as the initial points determine

uniquely the tangents vectors of the subdivision curve. In this case, the iterations in

(3.95) are taking those points as initial approximations.
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3. Interpolating with scalar subdivision schemes

Remark 18. How can we obtain the same results as the Okaniwa et al. algorithm?
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Figure 3.7: Comparing computational cost among the iterative methods related
and the direct method proposed: O(n ·#iterations) vs O(n log n).

3.4.3 Selected Hermite subdivision schemes comparisons

Let us consider as a first example the cubic Hermite subdivision scheme proposed by

[84], compared to the scalar scheme generating cubic B-spline curves. In the first case,

only two points with their tangents are used each time for the Hermite subdivision rule

and three in the scalar case. However, the Hermite scheme generates a spline curve

with only C1 continuity on the control points, while it is C2 for each segment as a

cubic curve. Meanwhile the scalar scheme is C2 everywhere.

The curvature plot (see Fig. 3.8) makes evident the discontinuity jumps in curva-

ture for the Merrien’s interpolant at the control points, as expected from a C1 spline

curve. On the other hand, the scalar subdivision scheme with the same degree as a

piecewise polynomial curve exhibit a smoother variation of the curvature. Considering

the support, the subdivision rules for the Hermite scheme use only two control points,

whereas the B-spline scheme uses three.

A possible drawback for scalar subdivision schemes is the need to compute control

points to interpolate the data (points and associated derivatives). An interpolatory

Hermite scheme has the advantage to generate in each iteration a denser sampling of

the curve and its derivatives. Nevertheless, the Fourier factorization of the interpolating

block-circulant matrix pays off the trade-off of smoothness versus computational cost,

which is O(n) in the Hermite case and O(n log n) in the scalar case.
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3.4. Existing strategies comparison

(a) Cubic B-spline Hermite interpolant (b) Merrien’s cubic Hermite scheme

Figure 3.8: Curvature comb comparison between a scalar subdivision scheme
(cubic B-spline) and an Hermite subdivision scheme (Merrien’s cubic spline).

Limit curves with C2 continuity can be produced interpolating higher derivatives

or with masks of larger support. However, in [95, 99] they generate spline curves of

only C2 continuity on the interpolated points even though locally the continuity is C4

as quintic polynomials. The proposals in [73, 87] increase the support which is greater

than the support for the one-parameter J-spline family, which can generate limit curves

C4 everywhere.

A comparison with an Hermite interpolant generating cubic B-splines with double

knots [93], which are C1 curves, produces the same trade-off. The vector subdivision

scheme

V k+1
s =

∑
j∈Z

As−2jV
k
j , withA−1 =

[
1
8

0
5
16

1
16

]
, A0 =

[
3
8

1
8

1
8

3
8

]
, A1 =

[
1
16

5
16

0 1
8

]
, (3.96)

and Aj = 0 ∈ R2×2 ∀ j /∈ {−1, 0, 1}, also generates double-knot cubic B-spline [49]

which are C1 curves as well and does not interpolate the initial data. We conclude

that an inverse problem for the interpolation with that vector subdivision scheme does

not benefit with respect to the scalar cubic B-spline subdivision scheme.
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Chapter 4

Interpolation in real-world

applications

In the previous chapter a solution to the point interpolation and Hermite interpolation

problem was proposed with any scalar linear uniform subdivision scheme once the ex-

act evaluation of the basic function at certain parameters is known. For non stationary

schemes, if the limit basic function in (2.53) is known, then the same procedure ap-

plies to define the interpolation operator. Then the analysis of the spectrum and the

computation of the solution remain the same. With the choice of the parameters at

which the curve interpolates the required data, a degree of freedom is added, although

we lose the symmetry in the general case.

The following figures provide examples of free-form design with different schemes

and the Algorithm 5, covering the cases of point interpolation and Hermite interpo-

lation with primal and dual schemes. The same data points are used in each case

with the freedom for the designer to change the tangent vectors if the shape of the

point interpolant curve is not the desired one. The Fig. 4.0c shows an interpolant

generated by an interpolatory scheme (for points interpolation) [50]. That scheme is

not interpolatory for the Hermite problem as the rules in (1.11) do not consider the

tangent information. However, we can solve the Hermite interpolation problem with

the proposed algorithm.
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4. Interpolation in real-world applications

(a) Point interpolation with a primal
scheme: quintic B-spline

(b) Hermite interpolation with a primal
scheme: quintic B-spline

(c) Hermite interpolation with the inter-
polatory 4-point scheme in (1.11)

(d) Hermite interpolation with a dual
scheme: Dyn, Floater, Horman in (3.21)
for ν = 1

16

Figure 4.0: Free-form design of curve for given points and tangent vectors.

4.1 Offset curves

The computation of offset curves is one of the fundamental operations in CAD/CAM1,

numerical controlled (NC) machining, manufacturing, and designing in robotics. Speci-

fically, for laser cutting machining and 2.5D pocket machining, the cutting tool path

generation requires an offset (i.e., constant distance from the design contour) for the

definition of tolerance regions.

The offset of a curve c(t) is the set of all points that lie at constant perpendicular

distance ρ from c(t). We can represent this set by the curve Ω(ρ, c(t)) = c(t) + ρn(t)

1Computer Aided Design/Computer Aided Manufacturing
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4.1. Offset curves

with n(t) the unitary normal vector to the curve c(t) for all t. For example, for a curve

c : R→ R2, parameterized as c(t) = (x(t), y(t)) the offset curve is defined as

Ω(ρ, c(t)) = c(t) + ρ
(y′(t),−x′(t))√
(x′(t)2 + (y′(t)2)

. (4.1)

Traditional techniques of NC tool path description use the so-called G-code, which

uses piecewise linear (G1 instruction), circular (G2/G3 instructions) and cubic Bézier

curve segments (G5 instructions). The first two descriptions are inherit by their offsets.

On the contrary, the offset of any cubic Bézier curve is not a curve of the same class2,

the same happens for many classes of curves. To overcome this situation, Pythagorean

Hodograph (PH) curves have been proposed in the literature [57] as a closed class with

respect to the offset operator. They form a subset of odd-degree polynomial Bézier

curves.

Computing the offset for any curve is more challenging computational problem and

there is an extensive literature on numerical approximation techniques for the offset of

curves such as B-splines curves [91, 92, 51, 82, 109, 120]. Some of these methods aim

to approximate the offset with a curve of the same class, such as Bézier and B-spline

curves, with a different amount of control points. For subdivision schemes is not known

in general a parameterization of the generated curve3. Therefore, the offset has to be

computed from the generated set of points c
(

1
q
Z
)

, q ∈ N.

An advantage of subdivision schemes for geometric modeling systems is the possi-

bility to generate different levels of resolution of the subdivision curve (see Fig. 1.2).

That multiresolution representation benefits the rendering of the curve for specified

level-of-detail4. Even though the offset cannot be described by a set of control points,

similarly to the subdivision curve, its exact computation can be done once the values

c
(

1
q
Z
)

and c′
(

1
q
Z
)

are known.

Interpolatory Hermite subdivision schemes (see Fig. 1.6) benefit from their con-

struction for the offset computation. We must observe that the control polygon P̃0

with vertices at constant distance from an initial control polygon P0 does not provide

the offset of the subdivision curve obtained from P0. Instead, for scalar subdivision

2Tschirnhausen’s cubics, modulo rigid motions, scaling, and linear reparameterization, are the only
cases to have a cubic Bézier offset.

3Indeed, this thesis uses the quadratic, cubic and quintic B-splines as examples because the results
can be verified by using the known parametric representation in (1.2)

4This point is useful as well in the next section for image segmentation.
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4. Interpolation in real-world applications

schemes, if the sampling of the basic function ϕ
(

1
q
Z
)

is pre-computed, then the ren-

dering of a subdivision curve (2.2) is an O(n) operation, with n the amount of control

points. The offset computation is independent of the interpolatory or approximating

nature of the scheme.

Nonetheless, it is possible to compute the exact offset for curves designed inter-

polating points and associated tangents (see Fig. 4.1). The parameterization of the

offset curve is inherited from the subdivision curve. Even more, the computation of the

sampling of the basic function allows to compute the exact radius of curvature. This

information is useful for detecting singularities of the offset. For example, whether the

offset radius ρ is less than the minimum radius of curvature of the curve5.

Figure 4.1: Offset of a C3 subdivision curve generated with Tan-Zhuang-Zhang
scheme [112] for the parameters A = 1, B = 1

32
.

It is also possible to define an offset with variable distance ρ(t) from the curve.

In the cases of constant and variable distance, the outcome is not the same as to

interpolate the set of points{
c(tj) + ρ(tj)

(y′(tj),−x′(tj))√
(x′(tj)2 + (y′(tj)2)

, j = 0, . . . , n− 1

}
. (4.2)

5When this occurs in NC applications, the cutting tool performs unintended gouging.
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4.2. Snakes curves based on subdivision

(a) Constant offset (b) Variable offset

Figure 4.2: Constant and variable offset of a subdivision curve (Varese’s lake
shape).

4.2 Snakes curves based on subdivision

This section is devoted to show another application of subdivision curves, beyond the

free-form design of curves. The considered application is the image segmentation,

where the boundary of an object is represented by a curve. Therefore, the curves used

for that purpose are defined by using the already studied class of subdivision schemes.

The contour of an object in an image can be represented by a curve, instead of

merely a set of digital points (or pixels). There are different approaches to accomplish

this task. Among them, there are methods where a snake, that is a sequence of curves,

converges to that boundary. Each curve in the sequence can be represented as a

subdivision curve. The evolution of the snake is driven by its control points which are

computed minimizing an energy that pushes the snake towards the boundary of the

region of interest.

Active contours, or snakes, were introduced by Kass et al. in [74] as curves that

slither within an image from some initial position towards the contour of the object of

interest. Snakes have become popular in segmentation and tracking applications [8],

[30] since they are very flexible and efficient.

The evolution of the snake is formulated as a minimization problem and the corre-

sponding objective functions is usually known as snake energy. During the optimization

process, the snake is iteratively updated from a starting position until it reaches the

minimum of the energy function. This energy measures the distance between the snake
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and the boundary of the object. It also controls some desirable properties of the fi-

nal snake, such as the smoothness and the interpolation of distinguished points. The

quality of segmentation is determined by the choice of the energy terms.

Kass et al. [74] originally formulated the snake energy as a linear combination of

three terms: the image energy, which only depends on the image, the internal energy,

which ensures the smoothness of the snake, and the constraint energy, which allows that

the user interacts with the snake. The specific definition of these energies depends on

the application, on the nature of the image, and on the representation of the snake. The

image energy guides the snake to the boundary of the interest object and is the most

important energy. It is usually defined as a weighted sum of a gradient based energy

[74], [110], that provides a good approximation of the contour of the object, and a region

based energy [58], [113], that distinguishes different homogeneous regions within the

image. Gradient based energies have a narrow zone of attraction in comparison with

region based energies. Hence, the success of the segmentation depends on the selection

of the weight.

Snakes differ not only in the choice of the energy function, but also in the represen-

tation of the curve. According to the representation, snakes may be classified as point

snakes [74], geodesic snakes [10, 119, 2, 119], and parametric snakes [58, 7, 108, 28].

Point-snakes simply consist of an ordered collection of points. This representation de-

pends on a large number of parameters (the snake points) which makes the optimization

expensive. Geodesic snakes are described as the zero level set of a higher-dimensional

manifold. This type of active contours is very flexible topologically. As a result, it

is suitable for segmenting objects that have variable shapes. A drawback of geodesic

snakes is that they are expensive from a computational point of view. Parametric

snakes are smooth curves written as a linear combination of a basis of functions. The

coefficients in this representation, known as control points, are few. This speeds up the

optimization process. The downside of parametric snakes is that the parametrization

restricts the shapes that can be approximated.

In this section we focus on a particular class of parametric snakes: those generated

from a subdivision scheme. Subdivision curves describe a contour by an initial discrete

and finite set of control points which, by the iterative application of refinement rules,

becomes continuous in the limit. Depending on the choice of the subdivision mask, the

continuous limit curve may have different degrees of smoothness. The main advantages

of subdivision schemes are their simplicity of implementation, the possibility to con-
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trol their order of approximation, and their multiresolution property which provides

representations of the contour of a shape with varying resolutions.

4.2.1 Related work

The use of subdivision curves for segmentation was first proposed in [66], where the

so-called tamed snake is introduced. This snake is generated by the classical four-

point subdivision scheme [50]. The method incorporates image information considering

the control points of the subdivision curve as mass points attracted by edges of the

image. The four point subdivision scheme is also used in [108], in combination with

the gradient vector flow. After every step of subdivision, the region energy of the

subdivision polygon is reversely computed and a local adaptive compensation is carried

out in such a way that regions with high curvature are further subdivided, while flat

regions remain unrefined.

In the context of image segmentation the most common snakes based on subdivi-

sion schemes are those producing B-spline type curves [7], [58], [69], [31]. In [7] the

snake is represented by cubic B-spline basis functions. The initial B-spline is specified

choosing node points instead of the B-spline control points to provide a more intuitive

user-interaction. To improve optimization speed and robustness, a multiresolution ap-

proach is selected. This approach, based on an image pyramid, starts applying the

optimization procedure at the coarsest level on a small version of the image. After

convergence, this solution is then used as the starting condition for the next finer level.

In [83] a segmentation method called SketchSnakes is proposed. The method com-

bines a general subdivision curve snake with an initialization process based on a few

sketch lines drawn by the user across the width of the target object. External image

forces are computed at the points of the finer level curve and then distributed using

weights derived from the original subdivision rules among the points of the coarse level.

The positions of the control points are updated, new external forces are calculated, and

the process is repeated until an accurate solution is reached.

As of late, exponential B-spline have been introduced for constructing snakes that

reproduce circular and elliptical shapes [28], [29], [31]. In [3] subdivision snakes are

obtained in a generic way using a multiscale approach to speed up the optimization

process and improve robustness. Depending on the selected admissible subdivision

mask, the snake may be interpolatory or reproduce trigonometric or polynomial curves.

The multiscale approach facilitates the increase of the number of points describing the
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curve as the algorithm progresses to the solution and, at each step, the scale of the

image feature is matched to the density of the sample of the curve.

4.2.2 Snake Energies

In the literature, the evolution of the snake is driven by the minimization of several

energies. One measures the proximity between the snake and the boundary ∂Γ of a

bounded region Γ in a digital image. Others measure desirable properties of the final

curve including the smoothness and the interpolation of distinguished points.

Since our snake is a subdivision curve, the total energy Esnake, depends on the initial

control polygon P0. The control polygon P0
∗ of the optimal snake is computed as:

P0
∗ = arg min

P0
Esnake(P

0). (4.3)

In the current approach, we assume that the region of interest Γ to be segmented is

dark in comparison to the background. Hence, the energy functionals related with the

image are designed to detect dark objects on a brighter background. All the energies

are defined by integrals of functions which are computed approximately. To obtain

good approximations, we use a large sample of points on the subdivision curve. In the

following sections we develop the expressions for each energy.

Remark 19. The images are represented in system of coordinates defined by rows and

columns, like the indexing of a matrix. Thus, as a convention when we say (x, y), the

x-coordinate refers to the row and the y-coordinate refers to the column (see for example

Fig. 4.3). This does not affect the definition and use of the subdivision scheme, as each

coordinate in (2.2) works independently.

Gradient energy

Let I(x, y) denotes the image intensity at a pixel with coordinates (x, y). If r(t) =

(x(t), y(t)) with t ∈ [0, n] is a subdivision curve defined by n control points, then the

simplest image energy considered is the gradient magnitude energy Emag given by

Emag(r(t)) = −
∫ M

0

‖∇I(r(t))‖2 dt, (4.4)
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where ‖∇I(r(t))‖2 =
(
∂I
∂x

(x(t), y(t))
)2

+
(
∂I
∂y

(x(t), y(t))
)2

. Since the gradient magni-

tude energy only depends on the magnitude of the gradient vector, the minimization of

(4.4)) can misguide the snake to a neighboring object if the initial approximation is not

very close to the boundary of interest. To overcome this limitation, several alternatives

energies have been proposed, like balloon forces [16], gradient vector-fields [117, 68, 69],

or multiresolution approaches [7].

In the following we use the gradient-based image energy Egrad proposed in [68]. The

idea behind this approach is described in the subsequent lines. If we travel around the

ground truth boundary curve ∂Γ in a counterclockwise direction, then Γ is always on

the “left”, i.e in the direction of −∇I. Hence, we pull the snake in the direction of

∂Γ, requiring the normal to the snake at any point to be parallel to −∇I at the same

point. Specifically, if we denote by n(t) the inward unit normal to snake at the point

r(t), then the new energy Egrad, which takes into account not only the magnitude of

the image gradient but also its direction, is given by

Egrad(r(t)) = −
∫ M

0

〈∇I(r(t)),

∥∥∥∥dr(t)

dt

∥∥∥∥n(t)〉dt, (4.5)

where 〈·, ·〉 is the usual scalar product and dr(t)
dt

denotes the tangent to r(t). Expanding

(4.5) we obtain

Egrad(r(t)) = −
∫ M

0

(
∂I

∂x
(x(t), y(t))

dy(t)

dt
− ∂I

∂y
(x(t), y(t))

dx(t)

dt

)
dt. (4.6)

To compute good approximations of the energies (and their derivatives with respect

to the coordinates of control points), we use a large sample of points on the subdivision

curve. More precisely, given the initial polygon P0 = {P 0
0 , . . . , P

0
M−1}, we select q (in

our experiments we take q ∈ [24, 25]) and we use (2.2) to generate q M points r(j/q),

j = 0, . . . , q M − 1 on the subdivision curve. We apply bilinear interpolation on the

gradient of the image to compute ∇I(r(j/q)). Finally, we approximate the energy

substituting the integral in (4.6) by the average of values of the integrand over the

sample of q M points on the subdivision curve corresponding to parameter values j
q
,

i = 0, . . . , q M − 1.
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Considering (2.2), we obtain6 the following approximation of (4.6)

Egrad(P
0) ≈ 1

q M

q M−1∑
i=0

[
∂I

∂y

(∑
j∈Z

P 0
j ϕ( i

q
− j)

)
tx
q
i −

∂I

∂x

(∑
j∈Z

P 0
j ϕ( i

q
− j)

)
ty
q
i

]
,

(4.7)

where tx
q
i = dx

dt
(i/q) and ty

q
i = dy

dt
(i/q), so that (tx

q
i , ty

q
i ) = dr

dt
(i/q).

It should be noticed that the right-hand side of (4.7) is a function of the coordinates

of the initial control points P0. The sampling ϕ (Z/q) is precomputed, as well as the

sampling d
dt
ϕ (Z/q) used to computed the gradient for each energy.

Region energy

The main limitation of gradient based energy (4.5) is that its zone of attraction is

limited, since the gradient is small as long as we move away from ∂Γ. To address this

problem several region energies have been introduced in the literature [110, 13, 12, 113,

28]. Some use statistical information to identify different regions [68, 69, 113]. Inspired

by the energies proposed in [28] and [113], we introduce simple region energy Ereg in

our setting. The considered energy is designed to maximize the contrast between the

average intensity of the pixels within the snake and the average intensity in the region

outside the snake and inside a given bounding box.

Assuming that Ω, the region enclosed by the snake (x(t), y(t)), t ∈ [0,M ], is con-

tained in a rectangular region R, we denote by |R| the area of R (which is a constant)

and by |Ω| the area of Ω (which may vary, while the snake evolves). The new region

energy, Ereg, to be minimized is reported below

Ereg(P
0) := −

(∫ ∫
Ω
I(x, y)dxdy

|Ω|
−

∫ ∫
R\Ω I(x, y)dxdy

|R| − |Ω|

)2

. (4.8)

We observe that minimizing Ereg is equivalent to maximize the difference between

the average intensity inside Ω and the average intensity in the complement of Ω in R.

Let introduce the following notation

IΩ :=

∫ ∫
Ω

I(x, y)dxdy and IR :=

∫ ∫
R

I(x, y)dxdy.

6Recall that the indices of the inner summations depend on the choice of the subdivision scheme
and its support.
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In accordance with the definition of IΩ and IR, the region energy may be written as

Ereg(P
0) = −

(
IΩ

|Ω|
− IR − IΩ

|R|−|Ω|

)2

. (4.9)

Since region energies are usually expressed as integrals of a function over the domain

Ω enclosed by the snake, some authors propose the use of Green’s theorem to rewrite

the 2D integrals as a line integral along the snake [28, 31, 69]. If we apply it to the

function I(x, y), then we obtain

IΩ =

∫ ∫
Ω

I(x, y)dxdy =

∫
∂Ω

I1(x, y)dy = −
∫
∂Ω

I2(x, y)dx, (4.10)

where

I1(x, y) =

∫ x

−∞
I(τ, y)dτ and I2(x, y) =

∫ y

−∞
I(x, τ)dτ. (4.11)

Thus, if ∂Ω is parametrized by r(t) = (x(t), y(t)), 0 ≤ t ≤ M , then from (4.10) we

deduce

IΩ =

∫ M

0

I1(x(t), y(t))
dy(t)

dt
dt = −

∫ M

0

I2(x(t), y(t))
dx(t)

dt
dt. (4.12)

This approach reduces significantly the computational cost, but in our experiments

we have found that large errors may be introduced when we use it to compute the

integrals in (4.8), in the context of digital images.

In those works, the line integrals (4.11) are approximated using a sample of points

on the snake and sum up the contributions of column or row image pixel strips corre-

sponding to each point on the snake. However, even if the snake is parametrized by a

multiple of the arc length, the distribution on the image of the sample of points may

be very irregular. For instance, if the image has low resolution then some points may

belong to the same pixel overestimating the value of the integral. On the contrary, if

the image has high resolution then those rows or columns of Ω without any point of

the sample do not contribute to the computation and produce an underestimate of the

integral.

Nevertheless, we use (4.12) to compute later the partial derivatives (in Section

4.2.3).

Instead, we propose a sort of rasterization of ∂Ω to describe it and then we compute

(4.8) with the pixels in Ω and their values of intensity (see Fig. 4.7). It should

be noted that the subdivision curve r(t) is represented as a polygon with vertices
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in {r(i/q), i = 0, . . . , q M − 1} living on the image. Then, it can be observed that

r(i/q) = (xqi , y
q
i ) is represented on the image by the pixel with coordinates (dxqi e, dy

q
i e).

According to the previous analysis (detailed in Section 4.2.4), the integral of the

intensity may be computed approximately summing up (with sign) the contribution

of each horizontal image strip intersected by Ω, see Figure 4.3. The value lij is

the index of the column of the pixel that results from the intersection of the edge

[r (i/q) , r ((i+ 1)/q)] with the j-th row of the image. Therefore,

IΩ =

∫ ∫
Ω

I(x, y) dx dy ≈
q M−1∑
i=0

sign(xqi − x
q
i+1)

dxqi+1e∑
j=dxqie

lij∑
l=1

I(l, j). (4.13)

The values of

lij∑
l=1

I(l, j) can be pre-computed in a cumulative table for speeding up the

implementation.

r(0)

r(1)

r(2)

r(3)r(4)

r(5)

r(6)

r(7)

(a) Representing Ω

− (s, l5s)

+ (t, l0t )

r(0)

r(1)

r(2)

r(3)r(4)

r(5)

r(6)

r(7)

(b) The strips used to approximate the integral in Ereg

Figure 4.3: Pixels considered to compute the region-based energy. Observe that
pixel’s coordinates are in the coordinate system of the image (row, column).

In particular, the approximation of the area of Ω enclosed by the subdivision curve

is

|Ω| =
∫ ∫

Ω

dx dy ≈
q M−1∑
i=0

sign(xqi − x
q
i+1)

dxqi+1e∑
j=dxqie

lij. (4.14)

Finally, both approximations (4.13) and (4.14) are substituted in (4.9) in view of

providing the approximation of the region energy.
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Curvilinear parametrization energy

In the literature [74, 69], the so-called internal energy is introduced to guarantee the

smoothness of the snake. It usually combines the length of the snake and its curvature.

Since the curves generated by some schemes do have not continuous curvature, our

internal energy is reduced to the curvilinear parametrization energy defined as

Ecurv(r(t)) =

∫ M

0

(∥∥∥∥ d

dt
r(t)

∥∥∥∥2

− c

)2

dt (4.15)

where c = L2

M2 and L denotes the arc lengths of the snake for t ∈ [0,M ].

Recall that minimizing (4.15) is equivalent to requiring that the parametrization of

the snake is close to being a multiple of the arc length, but our snake is a subdivision

curve parametrized uniformly. Hence, when we are minimizing (4.15), we are in fact

looking for the control points of a subdivision curve for which the uniform parametriza-

tion is approximately a multiple of the arc length parametrization. In the optimum,

the arc length of the snake between any pair of consecutive points r(i), r(i+ 1) would

be constant. The same happen with points r(i/q), i = 0, . . . , q M−1, since these points

correspond to uniform parameters values i
q
. The uniform distribution of points r(i/q)

ensures that the polygonal curve defined by them is a good approximation of the sub-

division curve. This is very convenient, because points r(i/q) are used to approximate

the gradient and region energies, respectively, along with their partial derivatives. Fi-

nally, it is important to point out that the parametrization energy avoids that control

points P 0
j could be accumulated at some regions producing corners and other artifacts

on the subdivision curve.

To compute approximately the parametrization energy Ecurv we use the tangent

vectors at the parameter values i
q
, i = 0, . . . , q M − 1. From (2.14) we obtain the

following approximate expressions for Ecurv as function of the control polygon P0

Ecurv(P
0) ≈

q M−1∑
i=0

((tx
q
i )

2 + (ty
q
i )

2 − c)2, (4.16)

where d
dt

r(i/q) = (tx
q
i , ty

q
i ).

101



4. Interpolation in real-world applications

4.2.3 Optimization

To obtain the optimal position of the control points of the snake, we minimize the total

energy given by

Esnake(P
0) = α1Egrad(P

0) +α2Ereg(P
0) +α3Ecurv(P

0), , αj ∈ R, j ∈ {1, 2, 3}. (4.17)

The optimization problem is solved using the BFGS Quasi-Newton method with

a cubic line search procedure. This method requires the gradient of the snake energy

with respect to the variables of our problem which are the coordinates (x0
j , y

0
j ) of the

control points P0
j , j = 0, . . . ,M − 1. In this section we give the expressions of the

approximations of partial derivatives of each energy with respect to each coordinate x0
j

and y0
j .

For further details see [37].

Derivatives of gradient energy

Deriving directly in (4.6) with respect to x0
j we obtain

∂Egrad
∂x0

j

= −
∫ M

0

((
∂2I

∂x2

∂x

∂x0
j

+
∂2I

∂x∂y

∂y

∂x0
j

)
dy(t)

dt
+
∂I

∂x

∂
(

dy
dt

)
∂x0

j

)
dt

+

∫ M

0

((
∂2I

∂x∂y

∂x

∂x0
j

+
∂2I

∂y2

∂y

∂x0
j

)
dx(t)

dt
+
∂I

∂y

∂
(

dx
dt

)
∂x0

j

)
dt. (4.18)

Taking into account that y(t) and dy(t)
dt

do not depend on x0
j , from (4.18), we obtain

∂Egrad
∂x0

j

=

∫ M

0

([
∂2I

∂x∂y

∂x

∂t
− ∂2I

∂x2

dy

dt

]
∂x

∂x0
j

+
∂I

∂y

∂
(

dx
dt

)
∂x0

j

)
dt. (4.19)

From (2.2) and (2.14) it follows that:

∂x(t)

∂x0
j

= ϕ(t− j), ∂y(t)

∂y0
j

= ϕ(t− j), (4.20)

dx(t)

dt
=
∑
j∈Z

x0
jϕ
′
(t− j), dy(t)

dt
=
∑
j∈Z

y0
jϕ
′
(t− j), (4.21)

where ϕ
′

denotes dϕ
dt

. Evaluating the last expressions at t = i
q
, i = 0, . . . , q M − 1, we
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deduce

∂x(t)

∂x0
j

∣∣∣∣
t= i

q

= ϕ
(
i
q
− j
)

=
∂y(t)

∂y0
j

∣∣∣∣
t= i

q

, (4.22)

∂
(
dx
dt

)
∂x0

j

∣∣∣∣∣
t= i

q

= ϕ
′
(
i
q
− j
)

=
∂
(
dy
dt

)
∂y0

j

∣∣∣∣∣
t= i

q

. (4.23)

Substituting the integral in (4.19) by the average of the integrand evaluated in the

parameter values i/q, i = 0, . . . , q M − 1 and using (4.22) and (4.23), we obtain the

following approximation for the partial derivative of gradient energy with respect to

x0
j , that is

∂Egrad
∂x0

j

≈ 1

q M

q M−1∑
i=0

(
∂2I

∂x∂y

(
r
(
i
q

))
tqix −

∂2I

∂x2

(
r
(
i
q

))
tqiy

)
ϕ
(
i
q
− j
)

+

1

qM

q M−1∑
i=0

∂I

∂y

(
r
(
i
q

))
ϕ
′
(
i
q
− j
)
. (4.24)

Proceeding in a similar way, if we derive (4.6) with respect to y0
j and we take into

account that x(t) and dx(t)
dt

do not depend on x0
j , then we obtain the expression for

∂Egrad
∂y0j

∂Egrad
∂y0

j

=

∫ M

0

((
∂2I

∂y2

∂x

∂t
− ∂2I

∂x∂y

dy

dt

)
∂y

∂yqj
+
∂I

∂x

∂
(
dy
dt

)
∂yqj

)
dt. (4.25)

Discretizing the integral with the same procedure, from (4.25), we obtain the fol-

lowing approximation for the partial derivative of gradient energy with respect to y0
j

∂Egrad
∂y0

j

≈ 1

q M

q M−1∑
i=0

(
∂2I

∂y2

(
r
(
i
q

))
tqix −

∂2I

∂x∂y

(
r
(
i
q

))
tqiy

)
ϕ
(
i
q
− j
)

+

1

qM

q M−1∑
i=0

∂I

∂x

(
r
(
i
q

))
ϕ
′
(
i
q
− j
)
. (4.26)

Derivatives of region energy

In order to find the optimal control polygon we have to compute the partial derivatives

of Ereg with respect to the coordinates (x0
j , y

0
j ) of the control points {P0

j , j = 0, . . . ,M−
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1}. Since IR is constant, from (4.9) we obtain

∂Ereg
∂x0

j

= −2D

(
∂A

∂x0
j

− ∂B

∂x0
j

)
, (4.27)

where

A :=
IΩ

|Ω|
, B :=

IR − IΩ

|R| − |Ω|
and D := A−B.

Recalling that
∂Ereg
∂x0

j

= −2D

(
∂A

∂x0
j

− ∂B

∂x0
j

)
, (4.28)

where

A :=
IΩ

|Ω|
, (4.29)

B :=
IR − IΩ

|R| − |Ω|
, (4.30)

D := A−B, (4.31)

and deriving directly in (4.29) and (4.30), we find

∂A

∂x0
j

=
1

|Ω|
∂IΩ

∂x0
j

− IΩ

|Ω|2
∂|Ω|
∂x0

j

, (4.32)

∂B

∂x0
j

=
−1

|R| − |Ω|
∂IΩ

∂x0
j

+
IR − IΩ

(|R| − ||Ω|)2

∂|Ω|
∂x0

j

. (4.33)

Substituting (4.32) and (4.33) in (4.28), we have

∂Ereg
∂x0

j

= −2D

[(
1

|Ω|
+

1

|R| − |Ω|

)
∂IΩ

∂x0
j

−
(
IΩ

|Ω|2
+

IR − IΩ

(|R| − |Ω|)2

)
∂|Ω|
∂x0

j

]
. (4.34)

Now we compute the partial derivatives involved in (4.34) using the Green Theorem

as stated in (4.10) and (4.11).

Deriving in the first equality of (4.10) it follows that

∂IΩ

∂x0
j

= −
∫ M

0

∂I1

∂x

∂x(t)

∂x0
j

y′(t)dt.

According to Leibniz’s rule in (4.11) (for differentiation under the integral sign), taking

into account that ∂I1
∂x

= I(x(t), y(t)) and ∂x(t)

∂x0j
= ϕ(t− j), from the previous expression
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we obtain
∂IΩ

∂x0
j

= −
∫ M

0

I(r(t))ϕ(t− j)y′(t) dt. (4.35)

Since |Ω| =
∫ ∫

Ω
dxdy from (4.35) it is clear that

∂|Ω|
∂x0

j

= −
∫ M

0

ϕ(t− j)y′(t) dt. (4.36)

Finally, substituting (4.35) and (4.36) in (4.34) and grouping similar terms, we

obtain
∂Ereg
∂x0

j

= −2D

∫ M

0

[G−H I(r(t))]ϕ(t− j)y′(t)dt,

where

G :=
IΩ

|Ω|2
+

IR − IΩ

(|R| − |Ω|)2
and H :=

1

|Ω|
+

1

|R| − |Ω|
.

Proceeding in a similar way and deriving in the second equality of (4.10), it is easy

to check that
∂Ereg
∂y0

j

= 2D

∫ M

0

(G−H I(r(t)))ϕ(t− j)x′(t)dt. (4.37)

In practice, we approximate (4.2.3) and (4.37) by

∂Ereg
∂x0

j

≈ − 2D̃

q M

q M−1∑
i=0

[
G̃− H̃I

(
r
(
i
q

))]
ϕ
(
i
q
− j
)
y′
(
i
q

)
,

∂Ereg
∂y0

j

≈ 2D̃

q M

q M−1∑
i=0

[
G̃− H̃I

(
r
(
i
q

))]
ϕ
(
i
q
− j
)
x′
(
i
q

)
,

where D̃, G̃, and H̃ denote the approximations of D,G, and H respectively, obtained

from the approximated values of IR, IΩ, |Ω|, and |R| in (4.13) and (4.14).

Derivatives of the curvilinear parametrization energy

Deriving (4.15) with respect to xqi , we obtain

∂Ecurv
∂xqj

= 4

∫ M

0

((
dx

dt

)2

+

(
dy

dt

)2

− c

)((
dx

dt

)
∂
(

dx
dt

)
∂xqj

+

(
dy

dt

)
∂
(
dy
dt

)
∂xqj

)
.

Taking into account that y(t) does not depend on xqj and consequently
∂(dy(t)

dt )
∂xqj

= 0,
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the previous expression is reduced to

∂Ecurv
∂xqj

= 4

∫ M

0

((
dx

dt

)2

+

(
dy

dt

)2

− c

)((
dx

dt

)
∂
(

dx
dt

)
∂xqj

)
. (4.38)

To approximate (4.38) we evaluate the integrand in the parameter values i/q, i =

0, . . . , q M − 1. Also taking into account (4.23) and (2.14), we obtain the following

approximation for the partial derivative of curvilinear parametrization energy with

respect to xqj , that is,

∂Ecurv
∂xqj

≈ 4

q M

q M−1∑
i=0

((tx
q
i )

2 + (ty
q
i )

2 − c)(txqiϕ
′
ω(i− j)). (4.39)

Proceeding in a similar way, it is straightforward to check that the following ap-

proximation of the partial derivative with respect to yqj is obtained

∂Ecurv
∂yqj

≈ 4

q M

q M−1∑
i=0

((tx
q
i )

2 + (ty
q
i )

2 − c)(tyqiϕ
′
ω(i− j)). (4.40)

4.2.4 Implementation

In this section we give some details concerning the computation of the energies previ-

ously introduced. Additionally, we describe the main features of the application Sub-

divisionSnake which to compute the subdivision snakes produced by linear subdivision

curves.

For the implementation of energies, it is necessary to define how to compute the

gradient of an image in a point in an image, the area enclosed by a curve, and other

details. In the following section we cover these topics.

Gradient energy

An image I is a discretization of the continuous space with integral coordinates. The

gradient ∇I(x, y), of the image in the point (x, y) ∈ R2 in (4.7), is approximated using

bilinear interpolation

∇I(x, y) := ∇I(bxc, byc) (1− {x})(1− {y}) +∇I(bx+ 1c, byc) {x}(1− {y})+

∇I(bxc, by + 1c) (1− {x}){y}+∇I(bx+ 1c, by + 1c){x}{y}, (4.41)
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4.2. Snakes curves based on subdivision

where {x} = x− bxc is known as fractional part of x.

The gradient of the image in a pixel can be approximated using different filters

such as Prewitt and Sobel [61] (see Fig. 4.4). Since we evaluate the gradient in points

that belong to the snake, it is convenient to extend the width of the filter to increase

the region of attraction of gradient energy (see Fig. 4.5). Consequently, we use a

generalization of the Prewitt filter of 2q + 1× 2q + 1 to compute the gradient in those

pixels with distance greater or equal to q > 0 (see Fig. 4.6) to the boundary of the

image. For the rest of the pixels, we use Sobel filter to approximate the gradient. The

constant value q depends on the image dimensions.
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(a) Prewit: for ∂I
∂x (left) and ∂I

∂y

(right)
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∂x (left) and ∂I

∂y

(right)

Figure 4.4: Some filters known to compute approximations of the gradient in
a pixel.

The gradient of the image in each pixel is precomputed, so that the evaluations in

(4.7) and its derivatives [37] use the stored values.

Region energy

The first step to compute the integrals (4.8) defining the region energy is to obtain

a sequence of pixels that approximates the snake, that is represented by the polygon

with vertices {r(i/q) = (xqi , y
q
i ), i = 0, . . . , q M − 1}. The problem is reduced to the

rasterization of each edge of that polygon. Rasterization algorithms provide the pixels

that are intersected by a straight line (see Figure 4.7a). However, these are more pixels

than the ones needed to describe the region Ω enclosed by a closed polygon. We instead

select only one pixel per edge of the polygon for each horizontal line7. To obtain these

pixels, called boundary pixels, we determine for the horizontal line j the pixels (j, lij)

7We choose the horizontal direction without loss of generality, the same result is obtained if the
vertical direction is chosen.
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(a) Image I (b) Filter Sobel: ∂I
∂x (c) Filter Sobel: ∂I

∂y

(d) Filter 7× 7: ∂I
∂x (e) Filter 7× 7: ∂I

∂y

Figure 4.5: Comparison of different sizes of the proposed filter to compute the
gradient of an image: Sobel (3× 3) and the proposed for 7× 7.

which are simultaneously on the line and on the edge [r (i/q) , r ((i+ 1)/q)]. If the

result of the previous operation is more than one pixel, then we select the outer pixel

with respect to the region enclosed by the subdivision curve (see Fig. 4.7b). We explain

the reason why we proceed as follows.

We classify the edge [r (i/q) , r ((i+ 1)/q)] as downhill, horizontal, or uphill if the

sign of xqi−x
q
i+1 is negative, zero, or positive, respectively 8. To compute approximately

the integrals in (4.8) it is necessary to chose, for a given edge [r (i/q) , r ((i+ 1)/q)],

one pixel with coordinates (j, lij) for each image row j, with min{dxqi e, dx
q
i+1e} ≤ j ≤

max{dxqi e, dx
q
i+1e}. The value of lij depends on the previous edge classification as

follows. Let ri(x) be the equation of the line passing through the pixels (dxqi e, dy
q
i e)

and (dxqi+1e, dy
q
i+1e). Then

ri(x) = dyqi e+
dyqi+1e − dy

q
i e

dxqi+1e − dx
q
i e

(x− dxqi e).

If [r (i/q) , r ((i+ 1)/q)] is a downhill edge (see Figure 4.7b, left: edge [r (4) , r (5)]),

8Remember that we are using the system of coordinates defined by (row, column).
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Figure 4.6: Proposed filter to compute approximations of the gradient of an
image: for ∂I

∂x
(left) and ∂I

∂y
(right).

then

lij = min {dri(j)e , dri(j + 1)e} , j ∈
[
dxqi e ,

⌈
xqi+1

⌉]
. (4.42)

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

(a) Rasterization of straight lines

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

(b) Boundary pixels to describe the boundary

Figure 4.7: Pixel discretization of a straight line for a left edge and a right edge
describing the boundary of a region.

If [r (i/q) , r ((i+ 1)/q)] is a uphill edge (see Figure 4.7b, right: edge [r (1) , r (2)]),

then

lij = max {dri(j)e , dri(j + 1)e} , j ∈
[⌈
xqi+1

⌉
, dxqi e

]
. (4.43)

Finally, if [r (i/q) , r ((i+ 1)/q)] is a horizontal edge, then there is no need to define

the value of lij as sign(xqi − x
q
i+1) = 0 in (4.13) and (4.14). In this case, the description

of the boundary makes use of the neighbor edges.
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4. Interpolation in real-world applications

To describe the boundary of the region enclosed by the subdivision curve, we store

pairs of boundary pixels with respect to each horizontal. The amount of pairs on each

horizontal line depends on the convexity of the curve (see Fig. 4.8). It should be

noticed that may exist pixels that define left and right boundary at the same time9.

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

r(7)

Figure 4.8: Description of the boundary of a region with pairs of boundary
pixels.

Quantitative evaluation of results

When we work with synthetic images the ground-truth region, composed by pixels

belonging to the object Γ, is known. In some real images of Berkeley database, the

ground-truth is also given. In all these cases it is possible to validate quantitatively

the quality of the results using the Jaccard distance J between Γ and the region Ω

enclosed by the snake, given by

J = 1− |Ω ∩ Γ|
|Ω ∪ Γ|

,

where |G| denotes the area of region G. Observe that 0 ≤ J ≤ 1 and a value of J close

to 0 indicates a good segmentation. In [37] a table with few selected tests for the cubic

B-spline subdivision curves and the 4-points subdivision scheme is shown.

4.2.5 Final remarks

The experiments in [37] using synthetic and real images (see Fig. 4.9) confirm that the

proposed method is fast and robust. Our flexible computational framework facilitates

9For example, the pixel corresponding to r(7) in 4.8

110



4.2. Snakes curves based on subdivision

the interaction with the snake by letting the user directly move the control points with

the mouse and to control the weights associated to the combination of both energy

functionals. Different subdivision schemes may be selected, and the evaluation of the

subdivision curves and their derivatives can be computed as in the previous chapters.

(a) initial snake (b) optimal snake

Figure 4.9: Contour description of an intracerebral hemorrhage with a quintic
B-spline after a swap of color to make the background brighter than the object.

The choice of the parameter q for the sampling at q-adic values (i.e., c
(

1
q
Z
)

) could

be done in a non-uniform way for every parametric interval [j, j+1]. According to this

idea, the sampling of the curve c(t) becomes{
c

(
j +

s

qj

)
, s = 0, . . . , qj − 1, j = 0, . . . ,M − 1

}
. (4.44)

In this setting, each integral can be split into M separated definite integrals for the

quadrature of every energy. The advantage of this approach is to have a similar density

of samples along the arc-length for each parametric interval, as the Euclidean distance

between consecutive samples c( s
q
) and c( s+1

q
) is not uniform in every instance. The Fig.

1.2 illustrates this fact, where some segments of the curve have more points clustered

than others. In the free-form curve design, this feature is controlled by using arc-length

based subdivision rules, like chordal and centripetal parametrization in [44]. However,

that choice leads to non-linear and non-uniform subdivision schemes, which are more

difficult for analyzing theoretical convergence.

The main contribution of our approach is a new region energy designed to maximize

the contrast between the average intensity of the image within the snake and over the

complement of the snake in a bounding box. This energy is simpler and computation-
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ally cheaper than other similar energies proposed in the literature [12],[113],[28]. In our

region energy the bounding box containing the object to be segmented does not change

during the optimization process. Moreover, the average intensity inside and outside the

snake needs neither to be estimated a priori nor to be included among the optimiza-

tion parameters. Finally, in comparison with other methods, we can compute a better

and more robust approximation of the region energy using a method for obtaining a

pixel-level discretization of the snake. Our method produces good approximations of

the region energy for images of either low or high resolution.

The proposed method can be extended in several directions. In particular, the new

region energy may be generalized from one channel to three channels and different

approaches of multiresolution optimization may be applied.
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Chapter 5

Conclusions

Scalar linear subdivision schemes were the first ones treated in the literature. With

the evolution of the field, more complex schemes such as non-stationary schemes and

Hermite schemes along with their properties have been studied. The interpolation

problem is one of the topics that have been studied and improved on over time.

Interpolatory scalar schemes and interpolatory Hermite schemes provide the inter-

polation directly. On the other hand, approximating schemes require a preprocessing

for computing a suitable set of control points so that the subdivision curve interpolates

the data. This problem has been addressed partially for some primal schemes, such

as cubic B-splines curves and surfaces in the literature. However, we did not find a

general study regarding linear approximating schemes, while trying to use them for

some real-world applications, such as the ones analyzed in the last chapter.

Approximating subdivision schemes provides higher continuity degree than inter-

polatory schemes for the same support of the basic function. Hermite subdivision

schemes demand more complex and subtle tools for the study of convergence and some

of their properties. Meanwhile, approximating schemes are still used for curves and

surface generation in several applications. In addition, Hermite schemes generate a

spline curve that can present lower continuity than scalar schemes at the data points.

Hence, in this thesis, we covered some gaps concerning the use of scalar linear

subdivision schemes for solving the Hermite interpolation with point interpolation as

a particular case. Using our strategies, we showed an application to free-form curve

design, exact offset computation and image segmentation by using snake curves.

The use of Chebyshev series to analyze the spectrum of the defined interpolation

operator allowed us to distinguish the primal and dual cases, and to propose a proper
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solution for each one. Even when similar strategies can be found in the literature for

the primal case, we have not found in the literature such an approach for the dual case.

By dealing with a direct solution to the interpolation problem, we avoided some

problems encountered by other iterative solutions in the literature related to the spec-

tral radius of the iteration operator, which loses convergence even when the problem

is well defined.

The presence of singular interpolation operators was tackled by three approaches.

The first one is the possibility of using regularization methods. In particular, an ω-

circulants perturbation has been proposed, even if more work is needed in order to

solve the problem satisfactorily [36].

The second was a suitable perturbation with a filter for the pseudo-inverse operator

by using certain fairness energy functionals. Those fairness functionals are usually non

linear and in some cases even non convex. To deal with that situation without pre-

senting expensive computational cost, but also without losing quality, selected discrete

approximations are analyzed. In that way the chosen interpolating curves are solutions

of a quadratic optimization problem which translates into a linear system of equations.

The Fourier factorization of the matrices used simplified the solution of those equa-

tions. Moreover, the dimensions of such problems are not enough to consider them as

large problems.

The last one was a shifting of parameters for the interpolation. As a result, we were

able to add another degree of freedom for a family of curve interpolating points (see Fig.

3.4), by means of interpolating at shifted parameters from the uniform parameterization

of the subdivision curve. The solutions obtained in this way can be appealing for the

free-form design of curves.

Although this thesis has been written with a formulation based on binary schemes,

the model and results can be extended straightforward to higher arities. The use of a

greater dilation factor for the basic function definition scales the involved matrices, but

their structure remains unchanged. Therefore, the techniques used regarding circulant

and Toeplitz matrices are the same.

Additionally, it is possible to apply the same procedures for non stationary schemes

once the sampling of the limit basic function in (2.53) is computed.

Many open problems remain, for instance the extension to mesh interpolation. At

least, the interpolation of quad-meshes vertices with tensor-product bivariate linear

subdivision schemes should be straightforward as many similar proposal in the litera-
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ture. Some of the techniques used in this thesis are general cases of specific solutions

to that problem as shown in [62, 106].
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