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This study examines Darcy-Forchheimer 3D nanoliquid flow caused by a rotating disk

with heat generation/absorption. The impacts of Brownian motion and thermophoretic

are considered. Velocity, concentration, and thermal slips at the surface of the rotating

disk are considered. The change from the non-linear partial differential framework to

the non-linear ordinary differential framework is accomplished by utilizing appropriate

variables. A shooting technique is utilized to develop a numerical solution of the

resulting framework. Graphs have been sketched to examine how the concentration

and temperature fields are affected by several pertinent flow parameters. Skin friction

and local Sherwood and Nusselt numbers are additionally plotted and analyzed.

Furthermore, the concentration and temperature fields are enhanced for larger values

of the thermophoresis parameter.

Keywords: rotating disk, Darcy-Forchheimer flow, nanoparticles, heat absorption/generation, slip conditions,

numerical solution

1. INTRODUCTION

Flow due to a rotating disk plays an indispensable role in numerous modern items encompassing
rotating machinery, apparatuses, rotors, and flywheels. As of late, rotating disks have become
a significant component of many pieces of machinery, for example, thermal power-creation
frameworks, rotor-stator turning circle reactors, electrical controls, stopping mechanisms, pivoting
sawing machines, and rotational air cleaning systems. Close investigations of laminar boundary
layer flow were carried out by Von Karman [1]. Turkyilmazoglu and Senel [2] examined the
linked features of heat and mass exchange arising from the revolution of a hard and permeable
disk. Entropy generation in slip flow by the turning of a permeable disk with MHD and variable
properties was clarified by Rashidi et al. [3]. Nanofluid flow because of the revolution of a disk
was explored by Turkyilmazoglu [4]. Hatami et al. [5] investigated the impacts of the contraction,
turning, and heat of disks on the movement of nanofluids. They utilized a least-square strategy
for solution development. Mustafa et al. [6] deciphered the three-dimensional rotating flow of
nanofluids over a stationary disk. Sheikholeslami et al. [7] created numerical models of nanofluid
splashing on a slanted turning disk. Transient thermophoretic molecule deposition through the
constrained convective flow of micropolar liquid over a pivoting disk was examined by Doh and
Muthtamilselvan [8]. Hayat et al. [9] discussed Darcy-Forchheimer flow of carbon nanotubes in
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response to a turning disk. Aziz et al. [10] gave a numerical
report on nanofluid flow from the pivoting of a disk, looking at
the impacts of slip and heat absorption/generation. Synthetically
responsive flow of third-grade nanofluid over a stretchable
turning disk with heat generation was broken down by Hayat
et al. [11]. The radiative flow of a suspension of nanoparticles
and gyrotactic microorganisms by the variably thick surface
of a turning disk was clarified by Qayyum et al. [12]. Hayat
et al. [13] presented a numerical simulation of the radiative
flow of carbon nanotubes due to the revolution of a disk with
partial slip.

The low thermal productivity of working fluids is a guideline
problem for several heat transport components in engineering
applications. For this reason, some researchers are making
efforts to develop an innovative course for the improvement
of the thermal efficiency of working fluids. Various measures
have been proposed by experts to improve the thermal efficiency
of fluids. Accordingly, the incorporation of nanomaterial
into the working fluid, making what is termed a nanofluid,
is extremely promising. Recent assessments of nanofluids
reveal that working fluid has totally different features with
the addition of nanomaterial. This is because the thermal
efficiency of the working liquid is lower than that of the
nanomaterial. Nanofluid is suspension of fluids containing
standard fluid with the particles of nano-measure. Such
nanomaterials are utilized in materials, MHD control generators,
oil stores, cooling of nuclear reactors, vehicle transformers,
and various others [14–18]. Choi and Eastman [19] coined
the term nanofluid. They proposed that nanomaterials are
a groundbreaking contender for the development of heat
transport via the customary fluids. Buongiorno proposed a
numerical model of convective transport by nanofluid [20].
Here, thermophoresis and Brownian motion are viewed
as the most important slip mechanisms. Heat transfer
increase by nanofluids in a two-sided top-driven heated
square hole was considered by Tiwari and Das [21]. The
significance of a CuO-water nanomaterial on the outside of
heat exchangers was tentatively examined by Pantzali et al. [22].
Few ongoing studies on nanofluid flow can be found in the
literature [23–45].

Motivated by the above-mentioned articles, the objective here
is to examine the impacts of heat absorption/generation inDarcy-
Forchheimer 3D nanofluid flow caused by a rotating disk and
the impacts of slip. Both Brownian diffusion and thermophoretic
phenomena occur in view of the existence of nanoparticles.
Velocity, concentration, and thermal slips are accounted
for. The obtained framework is solved numerically by the
shooting technique. Concentration, temperature, skin friction,
and local Sherwood and Nusselt numbers are also analyzed
through plots.

2. MATHEMATICAL MODELING

Let us examine steady Darcy-Forchheimer 3D nanoliquid
flow caused by a rotating disk with slip and heat
absorption/generation. A disk at z = 0 rotates with constant

FIGURE 1 | Flow model and coordinate system.

angular velocity � (see Figure 1). The impacts of Brownian
motion and thermophoretis are accounted for. The velocities are
(u, v, w) in the directions of increase in (r, ϕ, z), respectively. The
resulting boundary layer expressions are [45, 46]:
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It is subject to the boundary conditions [10] :

u = L1
∂u

∂z
, v = r� + L1

∂v

∂z
, w = 0, T = Tw + L2

∂T

∂z
,
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C = Cw + L3
∂C

∂z
at z = 0, (7)

u → 0, v → 0, T → T∞, C → C∞ as z → ∞. (8)

Here u, v, and w represent the velocity components in the
directions r, ϕ, and z while ρf , µ and, ν

(

= µ/ρf
)

depict the
fluid density, dynamic, and kinematic viscosities respectively,
Cb the drag factor, L1 the velocity slip factor, L2 the thermal
slip factor (ρc)p, the effective heat capacity of nanoparticles, T
the fluid temperature, k∗ the permeability of porous space, C
the concentration (ρc)f , the heat capacity of the liquid, L3 the
concentration slip factor, C∞ the ambient concentration, DT the

thermophoretic factor, F = Cb/rk
∗
1/2
the non-uniform inertia

factor, k and α∗
= k/(ρc)f the thermal conductivity and thermal

diffusivity, respectively, DB the Brownian factor, Q the heat

FIGURE 2 | Variations of θ (ζ ) for Fr.

FIGURE 3 | Variations of θ (ζ ) for β.

generation/absorption factor and T∞ the ambient temperature.
Selecting [10]:

u = r�f ′(ζ ), w = −(2�ν)1/2f (ζ ), v = r�g(ζ ),

φ(ζ ) = C−C∞

Cw−C∞
, ζ =

(

2�
ν

)1/2
z, θ(ζ ) = T−T∞

Tw−T∞
.

}

(9)

Continuity Equation (1) is trivially verified, while Equations (2)−

(8) yield
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FIGURE 4 | Variations of θ (ζ ) for Nt.

FIGURE 5 | Variations of θ (ζ ) for Nb.
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1
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f (0) = 0, f ′(0) = αf ′′(0), g(0) = 1+ αg′(0),

θ(0) = 1+ βθ ′ (0) , φ(0) = 1+ γφ′ (0) , (14)

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0. (15)

Here, Fr stands for the Forchheimer number, α for the velocity
slip parameter, λ for the porosity parameter, Nt for the
thermophoresis parameter, β for the thermal slip parameter, Pr
for the Prandtl number, Nb for Brownian motion, δ for the heat
absorption/generation parameter, γ for the concentration slip

FIGURE 6 | Variations of θ (ζ ) for δ.

FIGURE 7 | Variations of φ(ζ ) for Fr.

parameter, and Sc for the Schmidt number. Non-dimensional
variables are defined by
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FIGURE 8 | Variations of φ(ζ ) for γ .

FIGURE 9 | Variations of φ(ζ ) for Nt.
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The coefficients of skin friction and the Nusselt and Sherwood
numbers are

Re1/2r Cf = f ′′(0), Re1/2r Cg = g′(0), Re−1/2
r Nu = −θ ′(0),

Re−1/2
r Sh = −φ′(0), (17)

where Rer = 2(�r)r/ν represents the local rotational
Reynolds number.

3. NUMERICAL RESULTS AND
DISCUSSION

This section depicts the contributions of various physical
variables like thermophoresis parameter Nt , Forchheimer

number Fr, thermal slip parameter β , heat generation/absorption
parameter δ, Brownian number Nb, and concentration slip
number γ on The concentration φ(ζ ) and temperature
θ (ζ ) distributions. The effect of Forchheimer variable Fr

FIGURE 10 | Variations of φ(ζ ) for Nb.

FIGURE 11 | Variations of Nu(Rer )
−1/2 for Nt.

on θ (ζ ) is portrayed in Figure 2. A larger value for Fr
shows expanding behavior of θ (ζ ) and the related thermal
layer. Figure 3 shows the impact of thermal slip β on
temperature θ (ζ ). Temperature is reduced by increasing
thermal slip β . Figure 4 demonstrates the effect of Nt

on the temperature field θ (ζ ). A larger thermophoresis
parameter Nt value leads to a higher temperature field
and thicker dynamically warm layer. The reason for
this conflict is that growth in Nt yields high grounded
thermophoresis control, which further allows movement of
the nanoparticles in the fluid zone. A long way from the
surface, a more grounded temperature scattering θ (ζ ) and
continuously warm layer is thus created. The impact of Nb

on the temperature profile θ (ζ ) is portrayed in Figure 5.
Physically, the irregularity of nanoparticle movement increases
by enhancing Brownian motion, due to which collision of
particles occurs. Thus, kinetic energy is converted into heat
energy, which produces an increase in the temperature field.
Figure 6 shows how heat generation/absorption δ influences

FIGURE 12 | Variations of Nu(Rer )
−1/2 for Nb.

FIGURE 13 | Variations of Sh(Rer )
−1/2 for Nt.
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FIGURE 14 | Variations of Sh(Rer )
−1/2 for Nb.

TABLE 1 | Comparative values of f ′′(0) and g′(0) for value of Fr when λ = 0.2 and

α =0.

Present results Naqvi et al. [45]

Fr f ′′(0) g′(0) f ′′(0) g′(0)

0.2 0.43478 −0.78139 0.4347813 −0.7813904

temperature dispersion θ (ζ ). Here, δ > 0 portrays heat
generation and δ < 0 for heat absorption. Both temperature
θ (ζ ) and the warm layer are upgraded with increasing
δ. Figure 7 shows that concentration φ(ζ ) is higher for
larger values of the Forchheimer variable Fr. Figure 8 shows
how concentration φ(ζ ) is influenced by concentration slip

γ . Concentration is reduced at higher estimations of γ .
Figure 9 demonstrates how the thermophoresis parameter Nt

influences the concentration φ(ζ ). By improving thermophoresis
parameter Nt , the concentration φ(ζ ) is increased. Figure 10
depicts the impact of Brownian motion Nb on concentration
φ(ζ ). It has been noted that a stronger concentration φ(ζ ) is
developed by utilizing greater Nb. Figures S1, S2 display the

impacts of Fr on CfRe
1/2
r and CgRe

1/2
r , respectively. It is noted

that CfRe
1/2
r is a decaying function of Fr, while the reverse

situation is observed for CgRe
1/2
r . The effects of Nt and Nb on

Nu(Rer)
−1/2 are highlighted in Figures 11, 12, respectively. Here,

Nu(Rer)
−1/2 reduces for Nt and Nb. The effects of Nt and Nb on

Sh(Rer)
−1/2 are portrayed in Figures 13, 14, respectively. Here,

Sh(Rer)
−1/2 is an increasing factor ofNt , while the opposite trend

is seen for Nb. The figures in Table 1 were computed to validate
the present results with previously published results in a limiting
sense. Here, we see that the present numerical solution is in good
agreement with the previous solution by Naqvi et al. [45] in a
limiting sense.

4. CONCLUSIONS

In this paper, Darcy-Forchheimer 3D nanofluid flow caused
by a rotating disk with heat generation/absorption is studied.
Brownian motion and thermophoretic phenomena occur with
the existence of nanoparticles. Velocity, concentration, and
thermal slips are accounted for. A higher Forchheimer number
Fr depicts similar behavior for concentration and temperature.
A larger β corresponds to a lower temperature field. Higher
γ depicts decreasing behavior for the concentration field.
A stronger temperature field is observed for Nb and Nt .
Concentration φ(ζ ) displays the reverse behavior for Nb and Nt .
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