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We investigate the theoretical predictions for thrust distribution in the electron positron annihi-
lation to three-jets process at NNLO for different values of the number of flavors, Nf . To determine
the distribution along the entire renormalization group flow from the highest energies to zero energy
we consider the number of flavors near the upper boundary of the conformal window. In this regime
of number of flavors the theory develops a perturbative infrared interacting fixed point. We then
consider also the QED thrust obtained as the limit Nc → 0 of the number of colors. In this case the
low energy limit is governed by an infrared free theory. Using these quantum field theories limits as
theoretical laboratories we arrive at an interesting comparison between the Conventional Scale Set-
ting - (CSS) and the Principle of Maximum Conformality (PMC∞) methods. We show that within
the perturbative regime of the conformal window and also out of the conformal window the PMC∞
leads to a higher precision, and that reducing the number of flavors, from the upper boundary to the
lower boundary, through the phase transition the curves given by the PMC∞ method preserve with
continuity the position of the peak, showing perfect agreement with the experimental data already
at NNLO.

PACS numbers: 11.15.Bt, 11.10.Gh,11.10.Jj,12.38.Bx,13.66.De,13.66.Bc,13.66.Jn

I. INTRODUCTION

We employ, for the first time, the perturbative regime
of the quantum chromodynamics (pQCD) infrared con-
formal window as a laboratory to investigate in a con-
trollable manner (near) conformal properties of physi-
cally relevant quantities such as the thrust distribution
in electron positron annihilation processes.

The conformal window of pQCD has a long and noble
history conveniently summarised and generalised to arbi-
trary representations in Ref. [1]. This work led to renew
interest in the subject and to a substantial number of
lattice papers whose results and efforts that spanned a
decade have been summarised in a recent report on the
subject in Ref. [2].

When all quark masses are set to zero two physical
parameters dictate the dynamic of the theory and these
are the number of flavors Nf and colors Nc. Already at
the one loop level one can distinguish two regimes of the
theory. For the number of flavors larger than 11Nc/2 the
theory possesses an infrared non-interacting fixed point
and at low energies the theory is known as non-abelian
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quantum electrodynamics (non-abelian QED). The high
energy behavior of the theory is uncertain, it depends
on the number of active flavors and there is the possi-
bility that it could develop a critical number of flavors
above which the theory reaches an UV fixed point [3]
and therefore becomes safe. When the number of flavors
is below 11Nc/2 the non-interacting fixed point becomes
UV in nature and then we say that the theory is asymp-
totically free. Lowering the number of flavors just below
the point when asymptotic freedom is restored the the-
ory develops a trustable infrared interacting fixed point
discovered by Banks and Zaks [4] at two-loop level. The
analysis at higher loops has been performed in [5–7]. As
the number of flavors are further dropped it is widely
expected that a quantum phase transition occurs. The
nature, the dynamics and the potential universal behav-
ior of this phase transition is still unknown [2]. At lower
scales, we substantially lower the number of matter fields
and we observe chiral symmetry breaking. A dynamical
scale is then spontaneously generated yielding the bulk
of all the known hadron masses. The two-dimensional
region in the number of flavors and colors where asymp-
totically free QCD develops an IR interacting fixed point
is colloquially known as the conformal window of pQCD.
In this work we will consider the region of flavors and
colors near the upper bound of the conformal window
where the IR fixed point can be reliably accessed in per-
turbation theory.
The thrust distribution and the Event Shape variables
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are a fundamental tool in order to probe the geometrical
structure of a given process at colliders. Being observ-
ables that are exclusive enough with respect to the final
state, they allow for a deeper geometrical analysis of the
process and they are also particularly suitable for the
measurement of the strong coupling αs[8].
Given the high precision data collected at LEP and SLAC
[9–13], refined calculations are crucial in order to extract
information to the highest possible precision. Though
extensive studies on these observables have been released
during the last decades including higher order corrections
from next-to-leading order (NLO) calculations [14–19]
to the next-to-next-to-leading order(NNLO) [20–24] and
including resummation of the large logarithms [25, 26],
the theoretical predictions are still affected by significant
theoretical uncertainties that are related to large renor-
malization energy scale ambiguities. In the particular
case of the three-jet event shape distributions the conven-
tional practice (Conventional Scale Setting - CSS) of fix-
ing the renormalization scale to the center-of-mass energy
µr =

√
s, and of evaluating the uncertainties by varying

the scale within an arbitrary range, e.g. µr ∈ [
√
s/2, 2

√
s]

lead to results that do not match the experimental data
and the extracted values of αs deviate from the world
average [27]. Additionally, the CSS procedure is not con-
sistent with the Gell-Mann-Low scheme [28] in Quantum
Electrodynamics (QED), the pQCD predictions are af-
fected by scheme dependence and the resulting perturba-
tive QCD series is also factorially divergent like n!βn

0 α
n
s ,

i.e. the ”renormalon” problem [29]. Given the factorial
growth, the hope to suppress scale uncertainties by in-
cluding higher-order corrections is compromised.
A solution to the scale ambiguity problem is offered by
the Principle of Maximum Conformality (PMC) [30–
35]. This method provides a systematic way to elimi-
nate renormalization scheme-and-scale ambiguities from
first principles by absorbing the β terms that govern the
behavior of the running coupling via the renormaliza-
tion group equation. Thus, the divergent renormalon
terms cancel, which improves the convergence of the
perturbative QCD series. Furthermore, the resulting
PMC predictions do not depend on the particular scheme
used, thereby preserving the principles of renormalization
group invariance [36, 37]. The PMC procedure is also
consistent with the standard Gell-Mann-Low method in
the Abelian limit, Nc → 0 [38]. Besides, in a theory of
unification of all forces, electromagnetic, weak and strong
interactions, such as the Standard Model, or Grand Unifi-
cation theories, one cannot simply apply a different scale-
setting or analytic procedure to different sectors of the
theory. The PMC offers the possibility to apply the same
method in all sectors of a theory, starting from first prin-
ciples, eliminating the renormalon growth, the scheme
dependence, the scale ambiguity, and satisfying the QED
Gell-Mann-Low scheme in the zero-color limit Nc → 0.
In particular, recent applications of the PMC and of the
Infinite-Order Scale-Setting using the Principle of Maxi-
mum Conformality (PMC∞) have shown to significantly

reduce the theoretical errors in Event Shape Variable dis-
tributions highly improving also the fit with the experi-
mental data[39] and to improve the theoretical prediction
on αs with respect to the world average [40][41].
It would be highly desirable to compare the PMC and
CSS methods along the entire renormalization group flow
from the highest energies down to zero energy. This is
precluded in standard QCD with a number of active fla-
vors less than six because the theory becomes strongly
coupled at low energies. We therefore employ the per-
turbative regime of the conformal window which allows
us to arrive at arbitrary low energies and obtain the cor-
responding results for the SU(3) case at the cost of in-
creasing the number of active flavors. Here we are able
to deduce the full solution at NNLO in the strong cou-
pling. We consider also the U(1) abelian QED thrust
distribution which rather than being infrared interacting
is infrared free. We conclude by presenting the compari-
son between two renormalization scale methods, the CSS
and the PMC∞.

A. The Strong Coupling at NNLO

The value of the QCD strong coupling αs at different
energies µ can be computed via its β-function:

µ2 d

dµ2

(αs

2π

)
= −1

2
β0

(αs

2π

)2

− 1

4
β1

(αs

2π

)3

+O
(
α4
s

)
(1)

with

β0 =
11

3
CA−

4

3
TRNf ,

β1 =
34

3
C2

A−4

(
5

3
CA+CF

)
TRNf

and CF =
(N2

c−1)
2Nc

, CA = Nc and TR = 1/2 [42–46]).
Being this a first order differential equation we need an
initial value of αs at a given energy scale. This value is
determined phenomenologically. In QCD the number of
colors Nc is set to 3, while the Nf , i.e. the number of
active flavors, varies across the quark mass thresholds.
In this work we determine the evolution of the strong
coupling keeping the number of colors fixed and varying
the number of flavors within the perturbative regime of
the conformal window.

B. Two-loop results

In order to determine the solution for the strong cou-
pling αs evolution we first introduce the following no-

tation: x(µ) ≡ αs(µ)
2π , t = log(µ2/µ2

0), B = 1
2β0 and

C = 1
2
β1

β0
, x∗ ≡ − 1

C . The truncated NNLO approxima-

tion of the Eq. 1 leads to the differential equation:

dx

dt
= −Bx2(1 + Cx) (2)
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An implicit solution of Eq. 2 is given by the Lambert
W (z) function:

WeW = z (3)

with: W =
(

x∗

x − 1
)
. The general solution for the cou-

pling is:

x =
x∗

1 +W
, (4)

z = e
x∗
x0

−1

(
x∗

x0
− 1

)(
µ2

µ2
0

)x∗B

. (5)

We will discuss here the solutions to the Eq. 2 with
respect to the particular initial phenomenological value
x0 ≡ αs(MZ0)/(2π) = 0.01876 ± 0.00016 given by the
coupling determined at the Z0 mass scale [47]. In the

range Nf <
34N3

c

13N2
c−3 and Nf > 11

2 Nc we have that the

solution is given by the W−1 branch, while for
34N3

c

13N2
c−3 <

Nf < 11
2 Nc the solution for the strong coupling is given

by the W0 branch. By introducing the phenomenological
value x0, we define a restricted range for the IR fixed
point discussed by Banks and Zaks [4]. Given the value
N̄f = x∗−1(x0) = 15.222 ± 0.009, we have that in the

range
34N3

c

13N2
c−3 < Nf < N̄f the β-function has both a

UV and an IR fixed point, while for Nf > N̄f we no
longer have the correct UV behavior. Thus the actual
physical range of a conformal window for pQCD is given

by
34N3

c

13N2
c−3 < Nf < N̄f . The behavior of the coupling is

shown in Fig. 1. In the IR region the strong coupling
approaches the IR finite limit, x∗, in the case of values
of Nf within the conformal window (e.g. Black Dashed
curve of Fig. 1), while it diverges at

Λ = µ0

(
1 +

|x∗|
x0

) 1
2B|x∗|

e−
1

2Bx0 (6)

outside the conformal window given the solution for the
coupling with W−1 (e.g. Solid Red curve of Fig. 1). The
solution of the NNLO equation for the case B > 0, C > 0,

i.e. Nf <
34N3

c

13N2
c−3 , can also be given using the standard

QCD scale parameter Λ of Eq. 6,

x =
x∗

1 +W−1
, (7)

z = −1

e

(
µ2

Λ2

)x∗B

. (8)

This solution can be related to the one obtained in Ref.
[48] by a redefinition of the Λ scale. We underline that
the presence of a Landau ”ghost” pole in the strong cou-
pling is only an effect of the breaking of the perturba-
tive regime, including non-perturbative contributions, or
using non-perturbative QCD, a finite limit is expected
at any Nf [49]. Both solutions have the correct UV

asymptotic free behavior. In particular, for the case
N̄f < Nf < 11

2 Nc, we have a negative z, a negative C
and a multi-valued solution, one real and the other imag-
inary, actually only one (the real) is acceptable given the
initial conditions, but this solution is not asymptotically
free. Thus we restrict our analysis to the range Nf < N̄f

where we have the correct UV behavior. In general IR
and UV fixed points of the β-function can also be de-
termined at different values of the number of colors Nc

(different gauge group SU(N)) and Nf extending this
analysis also to other gauge theories [50].
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FIG. 1: The strong running coupling αs(µ) for Nf = 12
(Black Dashed) and for Nf = 5 (Solid Red).

C. Thrust at NNLO

The thrust (T ) variable is defined as

T =

max
n⃗

∑
i

|p⃗i · n⃗|∑
i

|p⃗i|
, (9)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of
particle i. The unit vector n⃗ is varied to maximize thrust
T , and the corresponding n⃗ is called the thrust axis and
denoted by n⃗T . It is often used the variable (1 − T ),
which for the LO of the 3 jet production is restricted to
the range (0 < 1− T < 1/3). We have a back-to-back or
a spherically symmetric event respectively at T = 1 and
at T = 2/3 respectively.
In general a normalized IR safe single variable observable,
such as the thrust distribution for the e+e− → 3jets
[51, 52], is the sum of pQCD contributions calculated up
to NNLO at the initial renormalization scale µ0 =

√
s =

MZ0 :

1

σtot

Odσ(µ0)

dO
=

{
x0 ·

OdĀO(µ0)

dO
+ x2

0 ·
OdB̄O(µ0)

dO

+ x3
0 ·

OdC̄O(µ0)

dO
+O(α4

s)

}
, (10)
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where O is the selected Event Shape variable, σ the
cross section of the process,

σtot = σ0

(
1 + x0Atot + x2

0Btot +O
(
α3
s

))
is the total hadronic cross section and ĀO, B̄O, C̄O are
respectively the normalized LO, NLO and NNLO coeffi-
cients:

ĀO = AO

B̄O = BO −AtotAO (11)

C̄O = CO −AtotBO −
(
Btot −A2

tot

)
AO,

where AO, BO, CO are the coefficients normalized to the
tree level cross section σ0 calculated by MonteCarlo (see
e.g. EERAD and Event2 codes [20–24]) and Atot , Btot

are:

Atot =
3

2
CF ;

Btot =
CF

4
Nc +

3

4
CF

β0

2
(11− 8ζ(3))− 3

8
C2

F , (12)

where ζ is the Riemann zeta function.
According to the PMC∞ (for an introduction on the

PMC∞ see Ref. [39]) Eq.10 becomes:

1

σtot

Odσ(µI , µ̃II , µ0)

dO
=

{
σI + σII + σIII +O(α4

s)
}
,

(13)
where the σN are normalized subsets that are given by:

σI = AConf · xI

σII = (BConf + ηAtotAConf ) · x2
II − ηAtotAConf · x2

0

−AtotAConf · x0xI

σIII =
(
CConf −AtotBConf −(Btot −A2

tot)AConf

)
· x3

0,

(14)

AConf , BConf , CConf are the scale invariant conformal co-
efficients (i.e. the coefficients of each perturbative or-
der not depending on the scale µR) while xI , xII , x0 are
the couplings determined at the µI , µ̃II , µ0 scales respec-
tively. The PMC∞ scales, µN , are given by:

µI =
√
s · efsc− 1

2Bβ0 , (1−T )<0.33

µ̃II =


√
s · efsc−

1
2Cβ0

·
BConf

BConf +η·AtotAConf ,
(1−T )<0.33√

s · efsc− 1
2Cβ0 ,

(1−T )>0.33

(15)

and µ0 = MZ0
. The renormalization scheme factor

for the QCD results is set to fsc ≡ 0. The coefficients
Bβ0

, Cβ0
are the coefficients related to the β0-terms of

the NLO and NNLO perturbative order of the thrust
distribution respectively. They are determined from the

calculated AO, BO, CO coefficients by using the iCF (the
intrinsic conformality [39]).
The η parameter is a regularization term in order to

cancel the singularities of the NLO scale, µII , in the
range (1−T ) < 0.33, depending on non-matching zeroes
between numerator and denominator in the Cβ0 . In gen-
eral this term is not mandatory for applying the PMC∞,
it is necessary only in case one is interested to apply the
method all over the entire range covered by the thrust,
or any other observable. Its value has been determined
to η = 3.51 for the thrust distribution and it introduces
no bias effects up to the accuracy of the calculations and
the related errors are totally negligible up to this stage.

II. THE THRUST DISTRIBUTION
ACCORDING TO Nf

Results for the thrust distribution calculated using the
NNLO solution for the coupling αs(µ), at different values
of the number of flavors, Nf , is shown in Fig. 2.
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FIG. 2: Thrust distributions for different values of Nf , using
the PMC∞ (Solid line) and the CSS (Dashed line). The Yel-
low shaded area is the results for the values of Nf taken in the
conformal window. The experimental data points are taken
from the ALEPH, DELPHI,OPAL, L3, SLD experiments [9–
13].

A direct comparison between PMC∞ (Solid line) and
CSS (Dashed line) is shown at different values of the
number of flavors. We notice that, despite the phase
transition (i.e. the transition from an infrared finite cou-
pling to an infrared diverging coupling), the curves given
by the PMC∞ at different Nf , preserve with continu-
ity the same characteristics of the conformal distribution
setting Nf out of the conformal window of pQCD. In
fact, the position of the peak of the thrust distribution
is well preserved varying the Nf in and out of the con-
formal window using the PMC∞, while there is constant
shift towards lower values using the CSS. These trends
are shown in Fig. 3. We notice that in the central range,
2 < Nf < 15, the position of the peak is exactly pre-
served using the PMC∞ and overlaps with the position
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of the peak shown by the experimental data. According
to our analysis for the case PMC∞, in the range, Nf < 2
the number of bins is not enough to resolve the peak,
though the behavior of the curve is consistent with the
presence of a peak in the same position, while for Nf → 0
the peak is no longer visible. Theoretical uncertainties
on the position of the peak have been calculated using
standard criteria, i.e. varying the remaining initial scale
value in the range MZ0/2 ≤ µ0 ≤ 2MZ0 , and considering
the lowest uncertainty given by the half of the spacing
between two adjacent bins.
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FIG. 3: Comparison of the position of the peak for the thrust
distribution using the CSS and the PMC∞ vs the number of
flavors, Nf . Dashed Lines indicate the particular trend in
each graph.

Using the definition given in Ref. [20] of the parameter

δ =
maxµ(σ(µ))−minµ(σ(µ))

2σ(µ = MZ0
)

, (16)

with the renormalization scale varying µ ∈
[MZ0/2; 2MZ0 ], we have determined the average er-
ror, δ̄, calculated in the interval 0.005 < (1− T ) < 0.4 of
the thrust and results for CSS and PMC∞ are shown in
Fig. 4. We notice that the PMC∞ in the perturbative
and IR conformal window, i.e. 12 < Nf < N̄f , which is
the region where αs(µ) < 1 in the whole range of the
renormalization scale values, from 0 up to ∞, the average
error given by PMC∞ tends to zero (∼ 0.23 − 0.26%)
while the error given by the CSS tends to remain
constant (0.85 − 0.89%). The comparison of the two
methods shows that, out of the conformal window,

Nf <
34N3

c

13N2
c−3 , the PMC∞ leads to a higher precision.
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FIG. 4: Comparison of the average theoretical error, δ̄, calcu-
lated using standard criteria in the range: 0.005 < (1− T ) <
0.4, using the CSS and the PMC∞ for the thrust distribution
vs the number of flavors, Nf .

III. THE THRUST DISTRIBUTION IN THE
ABELIAN LIMIT Nc → 0

We obtain the QED thrust distribution performing the
Nc → 0 limit of the QCD thrust at NNLO according to
[38, 53]. In the zero number of colors limit the gauge
group color factors are fixed by NA = 1, CF = 1, TR =
1, CA = 0, Nc = 0, Nf = Nl, where Nl is the number of
active leptons, while the β-terms and the coupling rescale
as βn/C

n+1
F and αs ·CF respectively. In particular β0 =

− 4
3Nl and β1 = −4Nl using the normalization of Eq. 1.

According to these rescaling of the color factors we have
determined the QED thrust and the QED PMC∞ scales.
For the QED coupling , we have used the analytic formula
for the effective fine structure constant in the MS-scheme:

α(Q2) =
α(

1−ℜeΠMS(Q2)
) , (17)

with α−1 ≡ α(0)−1 = 137.036 and the vacuum polariza-
tion function (Π) calculated perturbatively at two loops
including contributions from leptons, quarks and W bo-
son. The QED PMC∞ scales have the same form of Eq.
15 with the factor for the MS-scheme set to fsc ≡ 5/6
and the η regularization parameter introduced to cancel
singularities in the NLO PMC∞ scale µII in the Nc → 0
limit tends to the same QCD value, η = 3.51. A di-
rect comparison between QED and QCD PMC∞ scales
is shown in Fig. 5.
We notice that in the QED limit the PMC∞ scales

have analogous dynamical behavior as those calculated
in QCD, differences arise mainly by the MS scheme fac-
tor reabsorption, the effects of the Nc number of col-
ors at NLO are very small. Thus we notice that per-
fect consistency is shown from QCD to QED using the
PMC∞ method. The normalized QED thrust distribu-
tion is shown in Fig. 6. We notice that the curve is
peaked at the origin, T = 1, which suggests that the
three jet event in QED occurs with a rather back-to-back
symmetry. Results for the CSS and the PMC∞ methods
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FIG. 5: PMC∞ scales for the thrust distribution: LO-QCD
scale (Solid Red); LO-QED scale (Solid Black);NLO-QCD
scale (Dashed Red); NLO-QED scale (Dashed Black).

in QED are of the order of O(α) and given the good con-
vergence of the theory the results for the two methods
show very small differences.
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FIG. 6: Thrust distributions in the QED limit at NNLO using
the PMC∞ (Solid Red) and the CSS (Dashed Black).

IV. CONCLUSIONS

We have investigated, for the first time, the thrust dis-
tribution in the conformal window of pQCD. Assuming,
for phenomenological reasons, the physical value of the
strong coupling to be the one at the Z0 mass scale it re-
stricts the conformal window range, at two loops, to be

within
34N3

c

13N2
c−3 < Nf < N̄f with N̄f ≃ 15.22. The closer

Nf to the higher value the more perturbative and confor-
mal the system is. In this region, we have shown that the
PMC∞ leads to a higher precision with a theoretical error
which tends to zero. Besides results for the thrust dis-
tribution in the conformal window have similar shapes
to those of the physical values of Nf and the position
of the peak is preserved when one applies the PMC∞
method. Comparison with the experimental data indi-
cates also that PMC∞ agrees with the expected number
of flavors. A good fit with experimental data is shown
by the PMC∞ results for the range 5 < Nf < 6, which
agrees with the active number of flavors of the Standard
Model. Outside the pQCD conformal window the PMC∞
leads to a higher precision with respect to the CSS. In
addition, calculations for the QED thrust reveal a per-
fect consistency of the PMC∞ with QED when taking
the QED limit of QCD for both the PMC∞ scale and for
the regularization η parameter which tends to the same
QCD value.
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