
International Journal of Information Security (2021) 20:695–713
https://doi.org/10.1007/s10207-020-00526-3

REGULAR CONTRIBUT ION

Attribute-based encryption and sticky policies for data access control
in a smart home scenario: a comparison on networked smart object
middleware

Sabrina Sicari1 · Alessandra Rizzardi1 · Gianluca Dini2 · Pericle Perazzo2 ·Michele La Manna3 ·
Alberto Coen-Porisini1

Published online: 23 November 2020
© The Author(s) 2020

Abstract
Regulating the access to the Internet of Things (IoT) network’s resources is a complex-prone task, which requires to pay a
great attention on how policies are defined, shared, and enforced. The present paper considers the specific context of a smart
home, which represents one of the main IoT application domains, and it focuses on two solutions proposed in the literature
to cope with the aforementioned issues. On the one side, approaches based on attribute-based encryption (ABE) allow one to
encrypt data for multiple recipients, in such a way that only those recipients whose attributes satisfy a given access policy can
decrypt afterward. ABE guarantees a high level of customization due to the variety of attributes which can be defined, and it
is also flexible enough to be adapted to different kinds of scenarios. On the other side, approaches based on sticky policies
allow to attach an access policy directly to the data itself, and to employ a trusted authority to evaluate and enforce the policy
itself. Sticky policies also guarantee a highly distributed and customizable enforcement of access control rules. In this paper,
we compare the advantages and the drawbacks in terms of performance and robustness of such two techniques by means
of their integration within the prototype of an IoT middleware, named networked smart object. Hence, the effectiveness of
the presented solutions is validated by means of a real test-bed in the smart home scenario, in terms of storage occupancy,
CPU load, and data retrieval delay. The final goal is to reveal the best approach to be used depending on the application’s
requirements.

Keywords Internet of Things · Security · Attribute-based encryption · Sticky policy · Access control · Middleware

B Sabrina Sicari
sabrina.sicari@uninsubria.it

Alessandra Rizzardi
alessandra.rizzardi@uninsubria.it

Gianluca Dini
gianluca.dini@ing.unipi.it

Pericle Perazzo
pericle.perazzo@ing.unipi.it

Michele La Manna
michele.lamanna@unifi.it

Alberto Coen-Porisini
alberto.coenporisini@uninsubria.it

1 Dipartimento di Scienze Teoriche e Applicate, Università
degli Studi dell’Insubria, Via O. Rossi 9, 21100 Varese, Italy

1 Introduction

The spreading and continuous development of Internet of
Things (IoT) technologies and services introduces a newway
of conceiving andmanaging the information transmitted over
the network [1]. The huge amount of data generated and
shared every second is in constant increment, thus raising
significant scalability issues. One reason for the success of
the IoT paradigm is certainly the introduction ofminiaturized
devices, which are able to interact and acquire information
from the environment where they are placed in. Besides
such a perk, those devices are often memory- and energy-

2 Dipartimento di Ingegneria dell’Informazione, Università
degli Studi di Pisa, Largo Lucio Lazzarino 1, 56122 Pisa,
Italy

3 Università di Firenze, Via Santa Marta 3, 50121 Florence,
Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00526-3&domain=pdf
http://orcid.org/0000-0002-6824-8075

696 S. Sicari et al.

constrained and, as such, they have a low capability to handle
complex data processing and heavy security tasks by them-
selves.

An important issue to be addressed is how the informa-
tion acquired by such devices, which act as producers, could
be shared with the interested consumers. In fact, in the IoT
context, multiple parties may be involved, thus requiring the
definition of strict rules for regulating the access to the IoT
resources. In particular, sensitive data must be disclosed only
to authorized parties. Infrastructures, both public and private,
thatmake use of IoT technologies could grow faster by ensur-
ing their customers the reliability and the trustworthiness of
their data management practices.

In such a direction, two different approaches seem to be
promising in providing an effective solution to the aforemen-
tioned issues. The first approach involves a cryptographic
technique called attribute-based encryption (ABE) [2]. ABE
is an encryption technique that allows only thosewho comply
with a given access policy to decrypt the desired information.
Such an access policy is defined in terms of attributes of the
decryptor or of the data itself. Thoughmore energy consump-
tive than traditional symmetric or asymmetric cryptography,
ABE is very powerful as it allows to make data safely rest
or travel over untrusted channels and platforms, and, at the
same time, enforce a fine-grained access control.

The second approach involves the use of sticky policies
[3], which can be defined by the producer, and can travel
along with the associated information through the whole
data life cycle. Recipients are allowed to retrieve the desired
information only according to the associated sticky policy,
which is evaluated by a trusted authority. Though sticky
policies require the trusted authority to be always online in
order to provide the required decryption keys, it can be very
lightweight as it can exclusively leverage symmetric cryp-
tography.

In this paper, ABE and sticky policies techniques are
compared, in order to reveal their advantages or drawbacks
in a smart home scenario, with respect to robustness in
terms of reliability and performance (e.g., storage occupancy,
CPU load, data retrieval delay). The main goal behind this
work is to establish the differences in choosing one of the
two approaches with respect to certain application domain’s
requirements. To this end, both the approaches have been
integratedwithin the same existing flexible and cross-domain
middleware, named networked smart object (NOS). NOS
is an IoT platform, originally conceived to manage data
generated by heterogeneous sources, and share them with
interested parties, adopting specific algorithms and protocols
[4]. Note that an enforcement framework based on sticky
policies is already available for the NOS architecture, as
presented in [5]. Instead, in this paper, a specific type of
ABE, named cipher-text-policy attribute-based encryption
(CP-ABE) [6], has been integrated within the NOS system

for comparison purpose. CP-ABE has been also considered
due to its similarities with the approach based on sticky poli-
cies, as clarified later in the paper. To give some preliminary
details, note that, in the CP-ABE paradigm, as for sticky
policies, the access rule resides within the encrypted data
itself, while the attributes, used for evaluating the policy, are
directly associated with decryptors.

Summarizing, the main contributions proposed in this
work are the following ones:

– CP-ABE scheme has been integrated within NOS archi-
tecture. Note that NOS platform has been chosen due to
its modular architecture, which enables to dynamically
adapt its behavior; thus, it is particularly suitable to be
extended with new functionalities. Moreover, an imple-
mentation of sticky policies in NOS platform already
exists [5].

– the behavior of CP-ABE and sticky policies approaches
has been compared, in order to reveal their potentialities
and weaknesses from a functional point of view, fol-
lowing the data flow management in a not-fully trusted
environment, as it happens in the typical IoT contexts.
The comparison is made in a smart home scenario, where
different IoT devices produce heterogeneous data, from
video streams to electrical data sets. Such a kind of sce-
nario also enables the presence of different kinds of users.
In this way, a simple yet accurate case study is provided,
which could be further expanded for future analysis.

– the performance of the employed CP-ABE scheme with
respect to the sticky policy method has been evaluated,
by means of a real test-bed. The aforementioned smart
home data set is considered, and the followingmetrics are
analyzed and measured: storage occupancy, CPU load,
and data retrieval delay. The main outcomes reveal that
the sticky policy approach is more efficient in terms of
CPU load, but its storage occupancy and data retrieval
delay are higher than those of the CP-ABE approach.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the preliminaries of the proposed work, which
include the sticky policy and CP-ABE paradigms, and the
basic NOS architecture. Then, Sect. 3 presents the integra-
tion of CP-ABE functionalities into the NOS middleware,
along with the comparison between the CP-ABE approach
and the one based on sticky policies. Section 4 presents the
threat model, the smart home application scenario, and the
performed experiments. In Sect. 5, the related work is pre-
sented, while Sect. 6 ends the paper, also drawing some hints
for future works.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 697

2 Preliminaries

In this section, the necessary preliminaries for clearly under-
standing the mechanisms related to the adoption of sticky
policies and CP-ABE for securing the access to the informa-
tion transmittedwithin an IoT system are detailed.Moreover,
a sketch of NOS architecture is presented.

2.1 Networked smart objects architecture

Two main entities compose a typical IoT system: (i) the data
producers, conceived as heterogeneous data sources (e.g.,
WSN, RFID, NFC, actuators, etc.) which generate data to be
sent to the IoT platform; (ii) the data consumers, who interact
with the IoT platform through services making use of such
IoT-generated data, typically accessing them by means of a
mobile device (e.g., smart phone, tablet) connected to the
Internet, through WiFi, 3G, or Bluetooth technologies.

In such a scenario, networked smart objects’ (NOS) mid-
dleware [4] has been conceived as a layered architecture,
providing lightweight and flexible functionalities; it really
represents a comprehensive approach for managing data
gathered from heterogeneous sources in a distributed way,
and for providing customized services to users, assessing
security as well as data quality requirements. It is worth to
remark that NOS, according to authors’ knowledge, still rep-
resents the unique architecture, available in the literature,
able to address both security and data quality issues.

Proper interfaces for the communications of NOSs with
the data producers and consumers have been defined. HTTP
protocol is usually adopted for collecting data from the IoT
devices. For each incoming data, the following pieces of
information are gathered:

– the kind of data producer, which describes the type of
IoT source;

– the communication mode, that is, the way in which the
data is collected (e.g., discrete or streaming communica-
tion);

– the data schema, which represents the type (e.g., number,
text) and the format of the received data;

– the data content;
– the reception timestamp.

Since the received data are of different types and for-
mats, NOSs initially put it in the Raw Data storage unit.
Data in such a collection are periodically processed, in a
batch way, in the Data Normalization and Security and
Data Quality Analysis phases, in order to obtain a uniform
representation and add useful metadata regarding security
(i.e., level of confidentiality, integrity, privacy and robust-
ness of the authentication mechanism) and data quality (i.e.,
level of accuracy, precision, timeliness and completeness)

assessment. Such an assessment is performed followingwell-
defined algorithms, which are detailed in [4]. It allows the
consumers, who access the IoT data, to be aware of the lev-
els of reliability and trustworthiness of the services gathered
byNOSs themselves. Hence, consumers can directly filter by
themselves the data processed by NOSs, according to their
personal preferences, in terms of security and quality.

Instead, message queue telemetry transport (MQTT) pro-
tocol [7] is used for disseminating the information to the
interested data consumers. To this end, a topic is assigned
by NOSs to each processed data. NOSs also provide a
lightweight and secure information exchange process, based
on an authenticated publish and subscribe mechanism [8],
integrated with the aforementioned MQTT protocol.

Finally, it is worth to remark that NOSs modules inter-
act among themselves through RESTful interfaces; they have
been implemented in a real prototype [4]. Node.JS platform
[9] has been used for developing NOSs’ core operations,
MongoDB [10] has been adopted for the data manage-
ment, and Mosquitto [11] has been chosen for realizing the
open-sourceMQTTbroker. Formore details about the imple-
mentation, please refer to [4].

A scheme of NOS architecture is sketched in Fig. 1, along
with its current integration with sticky policy enforcement
framework [5], which is described in the following section.

2.2 Sticky policies

The sticky policy paradigm was first proposed by Karjoth,
Schunter, and Waidner [12]. Sticky policies are transmitted
along the data they refer to throughout the entire data life
cycle. Specifically, sticky policies allow us to define the fol-
lowing aspects:

– the owner of the data;
– the data content, possibly encrypted;
– the scope of the data;
– where and when data will be available;
– specific obligations and restrictions.

In detail, the concept of sticky policy is to attach security
and privacy policies to owners’ data and drive access con-
trol decisions and policy enforcement. Sticky policies allow
specifying access rules in an extremely fine-grained manner:
in principle, every data unit could have its own, unique, pol-
icy. Furthermore, as policies ‘travel’ with the data across the
entire system, they could provide protection over the entire
data life cycle. Such an approach has beenmainly introduced
for security and privacy enforcement: when submitting data
to a consumer, a user consents to the applicable policies
selecting the proper preferences.

Such features are particularly interesting in some scenar-
ios, as that of IoT, where users’ or business’ confidential

123

698 S. Sicari et al.

Fig. 1 NOS data flow with
sticky policies

information may flow across organizational boundaries [3].
For example, social networks may share some information
withmarketing companies; similarly, cloud applicationsmay
transfer data, depending on a need, among different realms.
Such situations represent well-known open issues in the field
of security and privacy enforcement.

The sticky policy concept has already been integrated in
the NOS platform, as presented in [5]. Note that NOSs own
no policies/credentials, because an external Trusted Author-
ity (TA) is responsible for their management. The owner of
the data sends them in an encrypted way along with the asso-

ciated sticky policy to NOS; clearly, data producers have an
in-depth control over the flow of their own information, since
they are responsible for the access rules on their own data.
Then, each NOS can contact the TA in order to obtain the
access permissions on the received data, when there is the
need to disclose them to interested consumers (i.e., the users
who interact with the IoT platform). In this way, no synchro-
nization or policy sharing is required among multiple NOSs,
since the access permissions are managed by the TA. Fig-
ure 1 summarizes the just described behavior, as anticipated
in Sect. 2.1. Instead, the CP-ABE approach, that up until

123

Attribute-based encryption and sticky policies for data access control in a smart home… 699

now has not been integrated within NOS platform, will be
introduced in the following section.

2.3 Cipher-text-policy attribute-based encryption

Attribute-based encryption (ABE) [2] is a cryptographic
technique which allows one to encrypt data in such a way
that only the parties compliant with a given access policy
can decrypt it afterward. Access policies are Boolean formu-
las, defined on some attributes, which describe the interested
consumer or the encrypted data itself.

TwoABE paradigms are available in the literature: cipher-
text-policy attribute-based encryption (CP-ABE) [6] and
key-policy attribute-based encryption (KP-ABE) [13]. With
CP-ABE, each party owns a decryption key generated with
a set of attributes which describes him/her. Who encrypts
the data determines the access policy to be used to decrypt
it. Decryption is possible if and only if the attribute set of a
decryption key satisfies the policy embedded in the encrypted
data, whereas with KP-ABE the mechanism is the opposite:
each party owns a decryption key generated from a policy
that determines which kind of data he/she can access. Data,
instead, are encrypted under a list of attributeswhich describe
the underlying information. As emerged, CP-ABE more
resembles the sticky policy principles because the access pol-
icy travels with the data. Hence, this work is focused on the
CP-ABE paradigm, instead of the KP-ABE one.

The first CP-ABE scheme was proposed by Bethencourt,
Sahai and Waters in [6]. It represents a public-key encryp-
tion scheme based on bilinear pairing. Basically, all CP-ABE
attributes can be intended as Boolean ones, in the sense that
the presence of a given attribute inside a decryption key
counts as a “true” in the policies that contain such an attribute,
and its absence counts as a “false.” In [6], a method to imple-
ment numerical attributes by means of multiple Boolean
attributes is introduced. A numerical attribute is realized by
means of its binary representation on a fixed number of bits.
Two Boolean attributes are used for each bit: one of them
mapping the condition that the relative bit is zero, and the
other that the relative bit is one. By doing so, it is possible to
efficiently realize access policies including comparison oper-
ators (e.g., =, �=, <, ≤, >, ≥) between a numerical attribute
and a constant. In order to ease the reading, in this paper the
choice is to abstract away from the mathematical details and
focus on the application programming interface. The inter-
ested reader can refer to [6] for more details. Hence, the
discussion reported hereby concerns the main functions of
the CP-ABE mechanism.

Note that, in general, the mechanisms based on ABE
needs a Trusted Authority (TA) to setup and managing some
functions of the system, as happened for sticky policies in
Sect. 2.2; in particular, the TA is in charge of:

– generating and distributing the key used for encryption,
called encryption key EK, which is unique for the whole
system;

– generating and assigning each data consumer a decryp-
tion key DK.

In the following, an attribute set is denoted by the symbol
γ , while a policy is denoted by the symbol T . The CP-ABE
scheme is modeled by the following black-box primitives:

(MK,EK) = Setup(κ) (1)

This primitive initializes the CP-ABE scheme. It takes as
input the security parameter κ , and it outputs a master key
MK,which is kept secret by theTA, and an associated encryp-
tion key EK, which is publicly divulged. The Setup primitive
is executed by the TA.

C = Encrypt(M, T ,EK) (2)

This primitive encrypts a plain-text M with the policy T .
It takes as input the encryption key, EK, and it outputs the
encrypted data C , which embeds the policy T . The Encrypt
primitive can be executed by any component of the IoT
network, because it does not require the knowledge of any
secret. It is worth to note that this primitive is computation-
ally demanding, so making its execution challenging for a
resource-constrained IoT device [14,15]. This is a reason for
adopting an architecture like the NOS one, as detailed in
Sect. 3.

DK = KeyGen(MK, γ) (3)

This primitive generates a decryption key DK for a data con-
sumer, described by the attribute set γ . It takes as input the
master key MK and a set of attributes γ , and it outputs a
decryption key DK, which embeds γ . The KeyGen primitive
is executed by the TA.

M = Decrypt(C,DK) (4)

This primitive takes an encrypted dataC and a decryption key
DK as input, and it outputs the plain-text message content if
the interested consumer can access the data; otherwise, the
decryption is unsuccessful and the primitive outputs noth-
ing. Inside C , there is the policy T . By the mathematical
properties of CP-ABE scheme, decryption is successful only
if the attribute set γ embedded in DK satisfies the policy T
embedded inC . It isworth to remark that a policy is aBoolean
formula, composed by certain attributes. If an attribute men-
tioned inside a policy belongs to γ , it is considered as “true”
for the policy evaluation. So, a policy T is satisfied by an
attribute set γ if the Boolean formula represented by T ,

123

700 S. Sicari et al.

Table 1 Acronyms

Acronym Meaning

EK The encryption key

DK A decryption key

γ An attribute set

T A policy

MK The master key

M A plain-text

C A cipher-text

AVL Attribute version list

CAL Consumers attribute list

TA Trusted authority

evaluated with the attributes γ , returns “true.” The Decrypt
primitive is executed by a data consumer holding the proper
decryption key. It isworth to note that this primitive is, in gen-
eral, computationally demanding for resource-constrained
devices, but it can be easily executed by modern mobile
devices such as smart phones and tablets, as proven in [16].

Table 1 summarizes the acronyms just presented and oth-
ers, which will be used later.

3 Integration of CP-ABE into NOS
architecture and comparison with sticky
policies

Generally, an enforcement framework is composed by the
following main standard elements: (i) a Policy Enforcement
Point (PEP), which intercepts the access requests and queries
the PDP about its acceptance; (ii) a Policy Decision Point
(PDP), which evaluates the access requests against the autho-
rization policies and takes the authorization decisions; (iii) a
PolicyAdministrationPoint (PAP), which contains the full set
of authorization policies established by the system’s admin-
istrators. In a previous NOS’s version, such components are
all located into NOS [17].

By introducing the sticky policies (Sect. 2.2), only the
PEP is located into NOSs, while the PDP is located within
the TA, as the PAP. As a consequence, the role of NOSs
in the enforcement process is softened, and NOSs can be no
longer considered as a single point of failure in the security of
the information transmitted within the whole IoT system. By
delegating some operations and controls to the TA, the over-
all efficiency of the NOSs middleware has been improved,
as demonstrated in [5], with respect to the more traditional
solution, presented in [17].

However, the main drawback emerged from the approach
based on sticky policies is the need of an always-on-line TA,
responsible of trustworthy evaluating the policies in rela-

tion to the subscribing data consumer. In order to overcome
such an issue and, at the same time, to provide a flexible and
efficient data access control framework, CP-ABE scheme is
introduced. It includes a mechanism for access control able
to embed PEP and PDP just inside the cipher-text (hence,
the policy is not separated from the encrypted data itself,
as it is for sticky policies). In order to include the new
components/functionalities requiredby theCP-ABEscheme,
presented in Sect. 2.3, the actual NOS architecture, described
in Sect. 2.1, must be revised.

In Fig. 2, the modified NOS architecture is shown, includ-
ing theCP-ABEprimitives, which are integrated into the data
flow. More in detail, with respect to Fig. 1, it worth to note
that the policy associated with the data now depends on the
CP-ABE encryption (the Encrypt primitive is executed by
the new introduced CP-ABE Data Encryption module). The
CP-ABE Data Encryption module has three main goals: (i)
it performs the encryption in place of data producers, thus
lightening the memory- and energy-constrained IoT devices
from such a complex and expensive task; (ii) it defines and
properly associates the access policies with the processed
data; (iii) it stores normalized data in the Normalized Data
storage unit in an encrypted form, so such data are protected
also in the case of NOS compromised by unauthorized par-
ties. The CP-ABE Data Encryption module combines the
policies defined by NOS and the encryption keys defined by
the TA, which executes the Setup and KeyGen primitives. In
this sense, data owners have less control on the disclosure of
their own information, but the IoT platform has more con-
trol on them. Another fundamental remark is that the TA now
needs to communicate with bothNOS, in order to provide the
required encryption key for performing the encryption task,
and users, to disclose the decryption key to authorize them
to access the NOS’s resources; hence, the Decrypt primitive
is executed by the data consumer. After that, the TA can go
offline.

Goingmore deeply into the differences between the NOS’
data flow with the sticky policies approach and with the
CP-ABE scheme, a further overview of the two systems is
provided in Figs. 3 and 4, respectively.

Figure 3 highlights that, in the sticky policies approach,
for each subscription to a certain topic by an interested con-
sumer (step 10), the TA must be contacted by NOS in order
to achieve the access decision (steps 11-13); then, if the TA
agrees to the subscription, the data consumer will be noti-
fied of the data belonging to the requested topic (step 14).
The credentials used for exchanging such data between NOS
and the consumer are established a priori by an agreement
between them (steps 1–2). Hence, a sort of double agreement
should be done: one for the encryption key and another one
for the topic’s subscription. The normal NOS’s processing
activity is independent from such tasks (steps 3-9).

123

Attribute-based encryption and sticky policies for data access control in a smart home… 701

Fig. 2 New proposed NOS
architecture

Instead, in a scenario which adopts CP-ABE (Fig. 4), the
TA is no longer required to be online during subscription and
data transmission (steps 8–9). NOS is not required to know
the decryption keys needed by the consumers to decrypt the
information (step 10). This lightens the keys’ management
from the NOS’s viewpoint. In fact, with CP-ABE, the access
policy is just embedded in the encrypted data on the basis of

the assigned attributes (steps 1–7). Such an aspect represents
the crucial difference between the two approaches, which
clearly reveals the effectiveness of the CP-ABE approach
in facilitating, from a performance perspective, the whole
management of data encryption/decryption in relation to the
established policies. In that sense, sticky policies seem more

123

702 S. Sicari et al.

Fig. 3 Scheme of sticky
policies-based data flow within
the NOS system

difficult to manage because encryption/decryption are not so
related to access policies with respect to CP-ABE paradigm.

In case of policies’ update, addition, or revocation, the
sticky policy approach requires an update of the scopes and
constraints of the TA; hence, the related decryption keysmust
be revoked and re-assigned to the consumers involved in that
policies. On the other hand, CP-ABE mechanism simply
requires that NOSs change the policy used for encrypting
data, which can be done without involving the TA.

Summarizing, the CP-ABE Encrypt, Setup and KeyGen
primitives are not so complex to be integrated into the NOS
platform, due to its modular design. In fact, the introduction
of the new module CP-ABE Data Encryption does not affect
the behavior of the existing ones, as it emerges in Fig. 4;
moreover, communications with the TA were already avail-
able in the previous versionwith sticky policies [5]. Themain
difficulty is represented by the management of the decryp-
tion keys in relation to the consumers subscribed to NOS.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 703

Fig. 4 Scheme of
CP-ABE-based data flow within
the NOS system

The next section focuses on the key management mecha-
nism, in order to clarify how decryption keys are distributed
and assigned, and how decryption is enabled.

3.1 Keymanagement

In a system adopting CP-ABE, the decryption keys must be
distributed to the data consumers and revoked if they get
compromised somehow. Themechanisms of distribution and
revocation of decryption keys are often critical and complex.

To implement such mechanisms, some additions to the basic
Bethencourt’s scheme have been introduced in NOS.

A version number is associated with each attribute, and
inside theTAanAttributeVersionList (AVL) is implemented,
which is a list of all the attributes used in the system together
with their latest version number. The AVL is created by the
TA just after the execution of the Setup procedure, and all
the version numbers are initialized to 1. From now on, an
attribute is intended as including its version number. For
example, the attribute “attr” will become “attr_vn” where

123

704 S. Sicari et al.

n is the version number and “attr_v1” and “attr_v2” are
considered two distinct attributes. Furthermore, the TA also
detains a table of the unique identifiers of all the data con-
sumers (Cons I D) and their attribute sets, namedConsumers
Attribute List (CAL). This table is updated every time a
new data consumer joins the system, by means of a sub-
scription to a certain topic, since the IoT platform run on a
publish&subscribed sharing, as described in Sect. 2.1.

It is supposed that each data consumer and the TA have
their own pair of asymmetric keys (e.g., RSA or ECC)
used for digital signature and encryption. Furthermore, it is
assumed that the TA’s public key is well known to all NOSs
and data consumers, possibly obtained offline. Hence, the
following procedures for key management are defined:

– System initialization In the system initialization proce-
dure, the TA runs the CP-ABE primitive Setup, thus
generating the couple (MK, EK). The TA has the respon-
sibility to keep MK secret. Then, the TA creates the AVL
by inserting all the attributes used in the system along
with their version. Finally, the TA creates also the CAL,
which is empty at the system initialization.

– NOS join The NOS join procedure is executed whenever
a newNOS joins the system. The TA signs and communi-
cates EK and the AVL to the NOS. The NOS can encrypt
data using only attributes contained in the AVL.

– Consumer join The consumer join procedure is executed
whenever a new data consumer joins the system. The data
consumer requests a decryption key to the TA, declar-
ing an attribute set γ that describes him/her. The TA has
the responsibility to verify that the declared γ actually
describes the consumer. Such attribute verification pro-
cedures are application-specific and fall outside the scope
of the present paper. Every attribute inside γ must belong
to the AVL maintained by the TA. Then, the TA executes
the CP-ABE primitive KeyGen, generating a decryption
keybasedon the previouslymentionedγ . TheTAupdates
the CAL by adding a tuple including the Cons I D of
the consumer and its associated attribute set. Then, the
TA signs the decryption key with its private key, and it
encrypts the signed decryption key with the consumer’s
public key, which may have been acquired offline. The
TA sends such signed and encrypted decryption key to
the new consumer, which decrypts and authenticates it.
If both operations are successful, the consumer accepts
the decryption key and starts using it to decrypt data.

– Data producer deployment The data producer deploy-
ment procedure is executed whenever a new data pro-
ducer is installed in the system. The data producer agrees
with the associated NOS on a symmetric key, with which
all the subsequent messages will be encrypted. Such a
key agreement could be done in several ways, depend-
ing on the capabilities of the specific data producer. For

AVL

A_v1

B_v1

C_v1

D_v1

compromised DK2

{A_v1, D_v1}

AVL

A_v2

B_v1

C_v1

D_v2

Fig. 5 Example of AVL update during a key revocation procedure. On
the left, the AVL before the procedure of key revocation. In the middle,
the key that has been compromised. On the right, the updated AVL

example, NOS can transmit the symmetric key in clear to
the data producer with a low-power wireless signal. This
is a lightweight technique recommended by some IETF’s
RFCs [18] for smart home applications. It assumes that
no eavesdropper is present at deployment time. If this
assumption does not hold, more advanced key agree-
ment protocols can be used, for example, anonymous or
authenticated Diffie–Hellman.

– Key revocation The key revocation procedure is exe-
cuted whenever a decryption key is compromised. This
procedure drastically reduces the risk of data leakage,
by invalidating and making useless the compromised
decryption key. In order to ease the reading, the key revo-
cation procedure is explained through an example in the
following.

Suppose that the decryption key DK2 of a consumer
identified by Cons2 has been compromised and must be
revoked. The attribute set γ2 associated with the decryption
key includes the attributes A_v1, D_v1. To revoke DK2, the
TA updates the AVL by an increment in the version num-
ber of all these attributes, thus updating A_v1 to A_v2, and
D_v1 to D_v2 (Fig. 5).

Then, the TA proceeds with re-generating the decryption
keys of the affected consumers by executing the CP-ABE
primitive KeyGen. The affected consumers are those con-
sumers that have at least one attribute in common with the
revoked decryption key. Let us suppose that the decryption
key of the consumer identified by Cons1 has one attribute
(A_v1) in common with DK2. Such a consumer is thus an
affected one, and the TA re-generates his/her decryption key.
The TA also updates the CAL table (see Fig. 6) by remov-
ing Cons2, whose decryption key has been revoked, and by
upgrading A_v1 to A_v2 in the attribute set of the affected
consumer Cons1.

Then, the TA proceeds to sign, encrypt (with the con-
sumers public keys), and send the re-generated decryption
key to each of the affected data consumer. Such an operation
guarantees correct future decryption for affected data con-

123

Attribute-based encryption and sticky policies for data access control in a smart home… 705

Consumer Attribute List

Attribute setCons ID

{A_v1, C_v1}Cons1

{A_v1, D_v1}Cons2

{B_v1, C_v1}Cons3

{B_v1}Cons4

Consumer Attribute List

Attribute setCons ID

{A_v2, C_v1}Cons1

{B_v1, C_v1}Cons3

{B_v1}Cons4

compromised DK2

{A_v1, D_v1}

Fig. 6 Example of CAL update during a key revocation procedure. On
the left, the table before the key revocation. On the right, the table after
the key revocation

sumers, otherwise their old decryption keys will not decrypt
new cipher-texts. Since the decryption key is encrypted, the
TA can send it through an insecure channel (e.g., a simple
email). Finally, the TA signs the updated AVL and sends it
to the joined NOSs. From this moment, NOSs will encrypt
with the new versions of the attributes. Such an operation
makes useless the compromised decryption key, because the
old version A_v1 and D_v1 are no longer used to encrypt
data. To send the updated AVL, NOSs can do an MQTT sub-
scription to the broker on a special-purpose topic dedicated
to AVL updates from the TA, as just done in [19]. In this way,
the TA can send a single AVL update to the broker, and the
broker will eventually distribute it to all the NOSs.

For each key revocation, supposing n consumers and m
NOSs in the system, the TA must send a single AVL update
and a · n emails, where a ∈ [0, 1] is the ratio of affected
consumers. Such a ratio highly depends on the policy com-
plexity. The authors in [20] computed that, in a large IoT
system, the affected consumers of the average key revoca-
tion can be about a = 12% of the total consumers. Sending
such quantity of emails should not be a problem with state-
of-the-art bulk email software, given that key revocations
should be rare events.

Note that while data encrypted after the key revocation
procedure will not be decryptable by the revoked key, data
encrypted before may still be accessible. This is because the
CP-ABE scheme we employed in this paper provides no effi-
cient re-encryption method [21], to transform a cipher-text
labeled with an old-version attribute (e.g., A_v1) to another
one labeled with a new-version attribute (A_v2). Of course,
trivial (and inefficient) re-encryption methods are always
possible, for example, by sending the old cipher-text to theTA

to be re-encrypted with the new attribute version. We chose
not to implement such methods to keep the system simple.
However, this is surely an advantage point of the sticky poli-
cies approach, since it can protect old data without needing
expensive re-encryption mechanisms.

4 Validation and experiments

For evaluating the approaches, just compared in Sect. 3, a
threatmodel, an application scenario related to a smart home,
and a test-bed for simulations are firstly presented. Then,
numerical results are provided, with respect to the follow-
ing metrics: storage occupancy, CPU load, and data retrieval
delay.

4.1 Threat model and security analysis

Weassume that eachNOShas a copy of a trusted certification
authority’s public key. The TA owns a certificate released by
such a CA. We then assume that each NOS knows the public
key of the TA. which is used for digital signature, through
the use of certificates.

The first threat considered is related to the violation
attempts performed by malicious external parties. An exter-
nal party is someone who acts from the outside of the IoT
system, and he does not own any decryption key. His intent
is to access encrypted information. In order to do so, he
can try to eavesdrop a decryption key during a consumer
join/subscription procedure or a key revocation procedure.
Such an attack is avoided because, in both procedures, the
decryption keys are encrypted with the consumer’s public
key. Alternatively, he can try to carry out an activeMan In the
Middle (MITM) attack. For CP-ABE, during the NOS join
procedure, when the TA communicates the encryption key
to the new joined NOS, the attacker can try to impersonate
the TA and communicate to the NOS a malicious encryption
key, so that he can decrypt all the cipher-texts produced by
that NOS. Such an attack is avoided because the encryption
key is digitally signed by the TA. Similar is the case of sticky
policy paradigm, where, instead, the TA only communicates
with NOSs, thus reducing the vulnerabilities. Hence, with
respect to such a kind of attack, both the approaches (i.e.,
CP-ABE and sticky policies) are robust.

The second threat considers an external party that compro-
mises aNOS.The effects of such an attack aremany. First and
foremost, the attacker has access to all the data that the smart
objects will produce (and consequently send to the NOS)
from that moment on. Past data encrypted with CP-ABE and
stored in the NOS cannot be accessed by the attacker. How-
ever, the same cannot be said for past data encrypted with
sticky policies and stored in the NOS, since it is symmet-
rically encrypted and thus the decryption key is known to

123

706 S. Sicari et al.

the NOS. Secondly, the compromised NOS is able to manip-
ulate the data it receives from the smart objects. Now we
analyze the response of the system once the compromise has
been solved, and the security hole that allowed it has been
patched. In both approaches, the symmetric key used by each
sensor managed by the NOS must be renewed, since they
are also stored inside the NOS and they must be considered
compromised. If the sticky policy approach is used, all the
subscribers associated with the attacked NOS have to renew
their credential. Since the subscriber credentials are stored
in the NOS, they must be considered as compromised by the
attacker. Instead, if the CP-ABE approach is used, no further
cryptographic value has to be considered compromised. As
a matter of fact, the NOS possesses only the encryption key,
which is public, and therefore it is of no use for the attacker.

The third threat concerns possible colluding consumers
wanting to acquire data that they cannot obtain singularly.
Concerning this attack, the original Bethencourt’s CP-ABE
scheme [6] is natively collusion-resistant. This means that
twoormore consumers cannot combine their decryption keys
in such a way to decrypt data that they cannot access singu-
larly. Please refer to [6] for a mathematical proof of this.

To cope with the threats described above and, there-
fore, to resist active adversaries, the CP-ABE scheme must
be indistinguishable under the adaptive chosen cipher-text
attack (IND-CCA). Moreover, the signature scheme must be
unforgeable under the chosen message attack (EUF-CMA).
As the signature scheme, we chose the ECDSA algorithm
which offers the needed security requirement. The original
CP-ABE scheme that we employed (taken from the work
of Bethencourt et al., [6]) is only proved to be indistinguish-
able under the chosen plaintext attack (IND-CPA). The proof
of that is given by Bethencourt et al., and it is supported
by the complexity of the bilinear Diffie–Hellman (BDH)
problem. For being suitable against active adversaries, we
converted the IND-CPA in an IND-CCA scheme, by apply-
ing the simple and efficient Fujisaki-Okamoto transformation
[22], which only requires the random oracle model assump-
tion. It is worth to note that, in this paper, the focus is on
data security only. IoT devices and the IoT network can be
attacked also on the control layer, for example, on the routing
mechanisms. Secure IoT routing protocols [23] can help in
this case, but they are outside the scope of the present paper.

4.2 Smart home scenario

An application scenario related to a typical smart home is
used for conducting the performance evaluation, presented
in Sect. 4.3. Data from real-world smart home test-bed have
been gathered1; such data regard some smart meters installed
in two houses, named A and B, which include, among the

1 http://traces.cs.umass.edu/index.php/Smart/Smart.

others, the electricity consumption related to: kitchen lights,
bedroom lights, duct heater HRV, and HRV furnace. Note
that the houses have a total of eight rooms and includes
three full-time occupants. Measures are acquired by means
of installed smart objects that collect electricity data every
minute. Detailed information about such a smart home data
set and on how information is thereby collected is available
in [24].

Each person, which interacts with the houses, can be
described by one or more of the following attributes:

– Landlord of the house X (LanX), who is the landlord of
the house, but it does not imply that he/she lives there.
The landlord might rent out the house. For example, the
landlord can be a youngman that has rent out an inherited
apartment.

– Tenant of house X (T enX), whomanages and lives in the
house. The tenant has access to all the data generated in
the house. The tenant and the landlord role may coincide.
For example, a young woman that has recently bought an
house and moved in, is both tenant and landlord of said
house. Such an attribute is intended as a numerical, while
it represents the date when the person was nominated
tenant. In fact, a date can be represented as a numerical
attribute equal to the number of days since a well-known
date, as typical happens in computer science.

– Guest of the house X (GueX), who has access to the
house, and he/she may not live there. For example, it
can be an old couple’s daughter that lives elsewhere, but
she has Guest rights to check on her parents. He/she has
access to a limited number of data. Such an attribute is
intended as T enX , and it represents the date when the
person was nominated guest.

– Expiring date for the tenant role of house X (ExT enX);
it is also intended as a numerical attribute, as for T enX
and GueX , and it represents the date when the role of
tenant will expire.

– Expiring date for the guest role of house X (ExGueX); it
is also intended as a numerical attribute, as for ExT enX ,
and it represents the date when the role of guest will
expire.

An example of attribute set γ for a person named Robert
(R) is the following:

γ (R) = {LanB,

T enA = 2/2/2000,

ExT enA = 2/2/2020,

T enB = 2/2/2015,

ExT enB = 2/2/2020}

(5)

123

http://traces.cs.umass.edu/index.php/Smart/Smart

Attribute-based encryption and sticky policies for data access control in a smart home… 707

The above statement must be intended as follows: (i)
Robert is the landlord of the house B; (ii) he is the ten-
ant of house A since February 2nd 2000 and of the house
B since February 2nd 2015; (iii) both his tenant roles will
expire on February 2nd 2020. In such a scenario, versioning
of attributes is not considered for readability.

Three possible data requests for each house are made
available, even obtained from the above-mentioned data set:

– Access to the electrical data set: this is a data set related
to the energy consumption of all the electronic and elec-
tric devices inside the house. Only the landlord and the
tenants can access these data. To access them, a viable
policy could be:

T (ElectricalDataset) = {LanX∨
(today ≥ T enX ∧ today ≤ ExT enX)}, (6)

where today is the date when data have been produced.
Note that, due to the way in which numerical attributes
are implemented in [6], the ≥ and ≤ operators return
“false” in the case the numerical attribute does not exist
in the decryption key.

– Video streaming: it provides live images from the inside
of the house. Only who has actual access to the house
can see video streaming from it. To request such a kind
of data, the consumer must be an authorized as an tenant
or a guest. Therefore, a viable policy could be:

T (VideoStream) = {(today ≥ T enX∧
today ≤ ExT enX)∨
(today ≥ GueX∧
today ≤ ExGueX)}.

(7)

– Remote monitoring of house’s current state: this implies
the monitoring of relevant parameters such as tempera-
ture, humidity, lights switched on/off. Only the tenant can
remotely monitor the status of the smart home. A viable
policy could be:

T (Monitoring) = {(today ≥ T enX∧
today ≤ ExT enX)}. (8)

The examples of policies just presented are derived from
the attributes defined above. They will be used for the per-
formance evaluation in Sect. 4.3.

4.3 Performance evaluation

In the experimental setup, NOS platform is deployed on a
Raspberry Pi, which is a device widely used in IoT appli-
cations. The behavior of a set of consumers subscribing to

Table 2 Configurations

Parameter Value

Number of data producers 6

Number of data consumers 3

Number of attributes per policy 5

Data-rate provision from producers 1 pck/min

Requests’ data-rate from consumers 1 request/min

Duration of the experiments 1 h

Time window of the data gathered from the data set 1 week

obtain information about the smart homes (see Sect. 4.2) is
emulated by means of a laptop, with the following features:
(i) Core i7-4710HQ 2,5 GHz; (ii) 16 gigabytes of RAM;
(iii) OS Ubuntu 16.04. The laptop uses WiFi IEEE 802.11
network to communicate with the Raspberry Pi. The same
WiFi connection is also used for the communications with
the MQTT broker and with the TA module, implemented as
separate components, which interact with NOS on demand
and run on separate laptops. A toolkit available online2 has
been used to implement the required CP-ABE primitives into
the IoT system, as presented in Sect. 3.

Sticky policy andCP-ABEapproaches are comparedw.r.t.
the following metrics: storage and CPU load overhead, and
data retrieval delay. The obtained results are compared on
the basis of the application scenario, defined in Sect. 4.2.
More in detail, 1 packet per minute is fetched from the
simulated data sources and 1 data request per minute is
simulated from the consumers. The number of data pro-
ducers and consumers is set to 6 and 3, respectively; such
values are derived from the simulation setups of two previ-
ous work on policy enforcement within the NOS architecture
[17] [5], in order to ease the results’ comparison and evalua-
tion. Table 2 summarizes the setup parameters, while Fig. 7
sketches the interactions among the participants to the smart
home scenario and the NOS platform. Note that bold text and
arrows denote the interactions valid for CP-ABE, while the
dashed arrow denotes the interactions valid for sticky poli-
cies; finally, thin arrows are common to both the approaches.

4.3.1 Storage, network, and CPU load

NOS components have the following storage requirements,
which are different in the two approaches, as explained
hereby:

– With regard to the approach based on sticky policies, the
data sources and the consumersmust store the credentials
for ciphering the data to be transmitted to NOS. When

2 http://acsc.cs.utexas.edu/cpabe/.

123

http://acsc.cs.utexas.edu/cpabe/

708 S. Sicari et al.

Fig. 7 Scheme of the
performance evaluation setup

producers transmit data to NOS, they may also send the
related sticky policy. Such an aspect unavoidably causes
an increase of the traffic into the network, since not only
the data are transmitted, but also the associated policy.
An average increase of 0.5 kilobytes is measured for
each transmitted data unit, considering the sticky pol-
icy format specified in [5], which approximately consists
of 500 bytes. Whereas, adopting an approach based on
CP-ABE, data sources have not to send a sticky policy
along with the data to NOS, therefore such an incre-
ment is negligible; certainly, such an aspect represents
a relevant advantage of adopting CP-ABE, because IoT
networks usually transmit a huge amount of data. Note
that in CP-ABE the packets’ dimension increases once
the encryption task has been performed by NOS.

– Starting for such premises, it is worth to note that the
described behavior also influences the network load. In
fact, for both the approaches, the information which is
transmitted over the network are: (i) the data from pro-
ducers; (ii) the consumers’ requests; (iii) the consumers’
responses (i.e., the data release). Figure 8 shows a reduced
network loadwhen adoptingCP-ABEand it ismainly due
to the fact that data sources do not transmit to NOS the
data along with the policy (as happens for the sticky pol-
icy approach). The network load still remains lower for
the CP-ABE approach with respect to the sticky policy
one, even if there is an increment in the packet dimension
when NOS performs the CP-ABE encryption.

– NOSs have to store different kinds of information. Yet, it
is worth remarking that NOSs do not support persistent
storage of IoT data for Raw Data and Normalized Data
collections. In fact, incoming data are only temporarily
cached on the NOSs’ memory while being processed
before being submitted to requesting consumers. Once
data are further pushed to or pulled from theMQTT client

(which handles the topics notification to subscribers), the
data can be safely removed from NOSs. In both sticky
policy and CP-ABE approaches, no further storage is
required for policies, because the policies themselves are
directly associated or embedded into the data. Hence,
NOSs have not to store all the policies managed by the
IoT system, as it happens in traditional approaches, as the
one presented in [17]. However, it is fundamental to eval-
uate if it takes up more memory a sticky policy attached
to the data or the same data encrypted with CP-ABE. The
average memory occupancy on NOS at runtime is 10.2
megabytes with sticky policies, whereas with CP-ABE
it slightly decreases to 8.4 megabytes. Note that such
results have been obtained by equally setting the follow-
ing factors for the two approaches: (i) the frequency of
data fetching from sources (i.e., 1 packet/minute); (ii) the
frequency of execution of the routines for removing data
from non-persistent collections (in the actual environ-
ment, such a task is executed every 5 minutes); (iii) the
number of sources (in the actual setup, 6 data producers
are introduced). Obviously, for CP-ABE, the attributes’
number highly influences the dimension of the encrypted
data; however, it is true also for sticky policies.As a future
work, a wider application context could be considered to
perform a further assessment.

– Concerning the sticky policy based approach, the TA
must store the whole set of the valid scopes and con-
straints used for sticky policies’ composition [5]. The
dimension of this storage obviously depends on the spe-
cific application domain. In the sample implementation,
this was negligible. On the other hand, in the CP-ABE-
based approach the TA has tomaintain the AVL and CAL
tables, whose sizes are also negligible as well in our sam-
ple implementation.

123

Attribute-based encryption and sticky policies for data access control in a smart home… 709

Fig. 8 Whiskers-box diagram of mean storage occupancy and CPU load comparison: sticky policies vs CP-ABE approach

The just presented analysis about memory occupancy
reveals that adopting an approach based on CP-ABE would
reduce the memory occupancy and the network load, thus
improving the system’s scalability in the presence of a
higher amount of data. However, CP-ABE approach more
affects the CPU load on NOS with respect to sticky policy
approach, which, on the other side, increases the compu-
tational load on data sources. In fact, following the sticky
policy approach, the data sources are in charge of com-
puting the sticky policies and transmitting them along with
the information to NOS, whereas, following the CP-ABE
approach, the computational load is moved to NOS, which
has to perform the encryption task on each incoming data.
Hence, NOS shows a mean CPU load of 15.4% by adopt-
ing sticky policies, while, when running CP-ABE, the mean
CPU load on NOS is 26.7%. Figure 8 sketches the compar-
ison just discussed about storage occupancy, network and
CPU load.

Taking into account such two perspectives, themost viable
solution appears to be the one based on CP-ABE, because
it brings the advantage of being more efficient for end-
devices, since more powerful and secure devices, as NOSs,
perform the heavier processing tasks. Such a point of view
perfectly fits the principles of the emerging fog computing
paradigm [25], which aims to: (i) reduce network’s latency;
(ii) prevent unnecessary network resources’ consumption;
(iii) enhance service availability; (iv) increase the robust-
ness of the whole IoT system thanks to the removal of
always-online points of failures into the security network
infrastructure. Note that the TA is a single point of failure in

the CP-ABE approach as well, but it has to be online only
when revoking a decryption key, so it is hardly exposed to
attacks.

4.3.2 Data retrieval delay

An important metric to be considered is the delay introduced
by the enforcement framework using sticky policies with
respect to CP-ABE. The main difference between the two
mechanisms resides in how data are disclosed and, therefore,
in how policies are evaluated. Note that “data retrieval delay”
means the time from when a consumer requests topic sub-
scription to when the same consumer receives and decrypts
the relative data. Moreover, as emerged in Sect. 4.3.1, the
packets transmitted by the data sources to NOS in case of
sticky policy approach are approximately 0.5 kilobytes larger
than the same packets sent with CP-ABE.

In the sticky policy approach, to obtain the access per-
mission, the recipients can subscribe to certain topics and
the subscription is accepted only if the request satisfies the
requirements established by the sticky policies associated
with the data. Access permissions are not locally evaluated
by NOSs, but they are delegated to the TA; a query to the
TA is sent for each occurring change and, in general, for
each incoming request, thus clearly spending time for trans-
missions and processing. Different is the approach based on
CP-ABE: once the subscribers obtained the decryption keys
needed for disclosing the authorized information, they have
no longer to make requests to the TA, which, as just said, can
be offline most of the time.

123

710 S. Sicari et al.

Fig. 9 Whiskers-box diagram of mean data retrieval delay comparison:
sticky policies vs CP-ABE approach

For such a reason, the data retrieval delays are different,
as shown in Fig. 9. Hence, CP-ABE allows to spend less
time from two perspectives: (i) the data transmission from
the source to NOS; (ii) the data disclosure. Figure 9 shows a
comparison of the mean distribution of the delays generated
by the two approaches, measured with the considered proto-
typical implementation over a period of one hour. Data rate
strictly depends on the fetching of data acquisition of the
used data set, which is every minute. The considered time
window concerns a week of measurements.

Going in depth into the analysis of delays, Fig. 10 presents
the encryption time required by CP-ABE for the three differ-
ent kinds of data, managedwithin the smart home, which are:
the electrical data set, the streaming video, and the remote
monitoring, as explained in Sect. 4.2.

Finally, Fig. 11 shows the time required for decryption in
CP-ABE, by varying the kind of data requested.

Summarizing, CP-ABE approach demonstrates to have
several advantages, with respect to the adoption of sticky
policies, in terms of memory occupancy on the IoT platform
and delay.

5 Related work

Typically, current proposals, addressing security and pri-
vacy issues in the IoT, focus on data communications by
enforcing data exchanges according to strict protection con-
straints, considering, at the same time, the heterogeneity of
devices and communication technologies. In fact, devices
can be characterized by different protocols. For example,

Fig. 10 Whiskers-box diagram of mean encryption time required by
CP-ABE

Fig. 11 Whiskers-box diagram of mean decryption time required by
CP-ABE

many smart devices can natively support IPv6 communica-
tions [26] [27], while other existing deployments might not
support the IP protocol within the local area scope and this
requires the design of ad-hoc gateways and middleware [28].
This is the reason for introducing NOS middleware in the
envisioned solution.

Relevant contributions on security-oriented IoT middle-
ware include: VIRTUS [29], which relies on the open
eXtensibleMessaging andPresence Protocol (XMPP) to pro-
vide secure event-driven communications;Otsopack [30] and

123

Attribute-based encryption and sticky policies for data access control in a smart home… 711

Naming, Addressing and Profile Server (NAPS) [31], which
are data-centric frameworks based on the usage of HTA
andREpresentational State Transfer (REST) interfaces.With
respect to such frameworks, NOS is more recent and adopts a
lightweight technology, based on Node.js in an event-driven
fashion, which perfectly fits the requirements of IoT applica-
tions. Also various projects have the final purpose of deliv-
ering a framework able to dynamically integrate user data
(e.g., location, behavior) in privacy and security protocols,
as reported in [32].As an example,within theEUFP7project,
the RERUM middleware is based on the open-source Ope-
nIoT that was selected as the most efficient solution, mainly
due to its open-source nature and the fact that it was devel-
oped under the concepts of the broadly accepted Architec-
tural Reference Model (ARM) of the EU lighthouse project
Internet of Things Architecture (IoT-A) [33]. RERUM added
a service manager and a security server, acting all security-
and privacy-related functionalities; such a server can be
developed as a standalone component talking to the RERUM
middleware via pre-defined interfaces or as an integrated
component of the RERUMmiddleware. Then, the communi-
cations among theRERUMmiddleware and the IoTgateways
take place though a virtual private network (VPN), in order
to ensure that only authorized gateways are sending data to
the RERUM middleware in a secure way. An access control
mechanism, integrated with the RERUMmiddleware, is also
in place. As previously stated, NOS middleware is adopted
in this work due to its lightweight nature, which differs from
the complexity of the solution proposed by RERUM project.
Other solutions make also use of cloud computing [34], but
the role of cloud is out of the scope of the present work.

The IoTmiddleware namedNOS, firstly implemented and
presented in [4], tried to definitely fill the gap by provid-
ing an efficient processing and assessment of the IoT data.
Such functionalities have been further coupled with a pol-
icy enforcement framework based on sticky policies [5],
and relevant security requirements have been addressed, as
detailed in Sect. 2.1. The novelty introduced in this paper
is the ABE paradigm’s integration into NOS and its com-
parison with the sticky policy based approach. It is worth to
remark that the presented solutions based on sticky policies
and CP-ABE mechanisms are both conceived to include the
presence of multiple NOSs. They can easily and securely
share data, acting as intermediaries with each other. A mech-
anism for policies’ synchronization could be required by a
specific application domain. With this regard, a solution able
to synchronize the policies among different NOSs has been
already provided in [19].

RegardingABE, some IoT-focused cryptographic schemes
[35–37] and architectures [20,38–41] can be found in the
literature. In [35], the first KP-ABE scheme for wireless sen-
sor networks (WSNs) is presented. The proposed scheme is
composed by one trusted network controller, several users,

and several sensor nodes. Each user owns a secret key gen-
erated by the network controller, according to a policy that
describes the type of data he/she can access. Each sensor
node is pre-loaded with a set of attributes and their rela-
tive public quantities, generated by the network controller. In
[36], a lightweight KP-ABE scheme for the IoT is presented.
The math behind the proposed scheme is based on elliptic-
curve cryptography, rather than pairing-based cryptography
as the majority of the other ABE schemes. This makes the
scheme more efficient from the point of view of encryption
and decryption times. In [37], aCP-ABE scheme allowing for
constant-size keys and cipher-texts is presented. This makes
the scheme more scalable, especially in case of battery-
limited devices and bit-rate-limited channels, as in the typical
IoT application. The scheme allows only AND operators to
be used in the Boolean formulas of the policies, so it provides
for limited expressiveness. The above cryptographic schemes
are unsuitable to be used in the present paper, which aims at
comparing CP-ABE and sticky policy approaches. This is
either because they follow a KP-ABE approach instead of a
CP-ABE one ([35,36]), or because they provide for too little
policy expressiveness compared to sticky policies ([37]).

In [38], a secure publish-subscribe protocol for medical
wireless body area network (WBANs) using ABE is pro-
posed. The conceived architecture follows a star-topology
network, where a smart phone (or a similar device) manages
the communication among various nodes placed over/inside
the user’s body, monitoring his/her health conditions. Each
node can publish its data and subscribe to data generated from
other nodes. In [39], a secure MQTT for IoT is introduced,
along with the possibility of using ABE. The proposed archi-
tecture is composed by one public key generator (PKG), one
broker and several devices, which can act both as subscribers
and publishers. Each device owns the public key and a secret
key associated with some attributes that describes its fea-
tures. Then, each device subscribes to certain topics in order
to receive the data of interest. In [20], a system for smart
cities using ABE is presented. The application offers a ser-
vice of real-time road monitoring in a smart city scenario.
Smart objects (e.g., cameras) are placed along the roads and
store their sensed data on a cloud storage service. Users can
pay a subscription and obtain an ABE decryption key, in
order to retrieve and decrypt the video streams of the city
traffic in real time. In [40], a system for protecting location
data in smart buildings using CP-ABE is presented. Their
approach is based on the concept of “bubbles,” which are
coalitions of smart objects defined according to relationships
between their owners. As emerged, ABE schemes are not
widely adopted in IoT scenarios yet. For such a reason, the
analysis conducted in such a paper contributes in assessing
ABE capabilities, feasibility, and potentialities within an IoT
middleware in an IoT typical scenario.

123

712 S. Sicari et al.

6 Discussion and conclusions

The paper has presented a comparison between CP-ABE
and sticky policy approaches in a smart home environment.
The analysis, conducted by means of a prototypical imple-
mentation of the two solutions, revealed the potentialities of
CP-ABE in guaranteeing a secure-aware and efficient data
flowmanagement with respect to approaches based on sticky
policies. In fact, with CP-ABE, the dimension of the packets
sent from the data sources to the IoT platform is reduced;
also, the memory occupancy on the IoT platform itself is
lower than the one obtained by adopting the sticky policies
approach. Furthermore, the mechanisms provided by means
of CP-ABE limits the delay of packets’ transmission from the
producer to the consumer. One main drawback of CP-ABE
is the CPU load required for performing the encryption task.
Concerning robustness toward different possible attacks, CP-
ABE appears to be more resilient. Based on the analysis
performed throughout the paper and based on the results
obtained in Sect. 4.3, we suggest some scenarios in which
CP-ABE is recommended over sticky policy and vice versa,
to help developers in choosing the right technique based
on their needs. The experimental results show us that the
sticky policy approach strains less the CPU compared to the
CP-ABE approach, therefore suggesting us that a NOS is
able to manage more smart objects when the sticky policy
approach is used. Due to this, the sticky policy approach is
recommended if the developerswant tomaximize the amount
of smart objects managed by a single NOS. Furthermore,
after a revocation happens, data stored on NOSs are readily
encrypted under new credentials, a feature that is not avail-
able when using CP-ABE. These characteristics make sticky
policy ideal in environments with an high density of smart
objects, like a smart building, and/or for applications that
needs secrecy of past data. Instead, the CP-ABE approach
leverages the fact that usually the NOSs are notably more
resourceful than the IoT smart objects, and it offers lim-
ited interactions with the TA. These characteristics make
CP-ABE ideal in environments with a low density of smart
objects, in which the NOS(s) can easily manage the encryp-
tion of the data generated by smart objects. The CP-ABE
approach suits both small-scale scenarios andwide-area low-
density scenarios. Small-scale scenarios are, for example, the
smart home presented in this work, or a small factory like
the one presented in [42]. Wide-area low-density scenarios
are, for example, a smart city with many smart objects (e.g.,
cameras, smart street-light) scattered throughout the city, in
which each NOS can manage a small cluster of them. This
is because CP-ABE is inherently more scalable than sticky
policies w.r.t. the TA interactions, as just said. If the sticky
policy approach is used in the last scenario, the TAcould have
been a bottleneck. With regard to the future work, we plan to
evaluate the presented solution in presence of more than one

NOS and considering the TA as a fog- or cloud-based solu-
tion, in order to prevent it from representing a single point of
failure and a bottleneck for the IoT system. Another goal is
trying to analyze the correlation among the number of NOSs
and data sources/users to manage. More in detail, the authors
would investigate howmany NOSs are required to efficiently
manage a certain distribution of IoT entities. Moreover, the
mechanism of key revocation will be deeper studied, evalu-
ating the time and the cost required to secure the IoT system
in case of keys’ or policies’ revocation. Finally, power con-
sumption on real IoT devices will be investigated.

Funding Open access funding provided by Universitá degli Studi
dell’Insubria within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest Sabrina Sicari declares that she has no conflict of
interest. Alessandra Rizzardi declares that she has no conflict of inter-
est. Michele La Manna declares that he has no conflict of interest.
Pericle Perazzo declares that he has no conflict of interest. Gianluca
Dini declares that he has no conflict of interest. Alberto Coen-Porisini
declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey.
Comput. Netw. 54(15), 2787–2805 (2010)

2. Sahai, A., Waters, B.: Fuzzy identity-based encryption. Eurocrypt
3494, 457–473 (2005)

3. Pearson, S.,Mont,M.C.: Sticky policies: an approach formanaging
privacy across multiple parties. Computer 44(9), 60–68 (2011)

4. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini,
A.: A secure and quality-aware prototypical architecture for the
internet of things. Inf. Syst. 58, 43–55 (2016)

5. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Security
towards the edge: sticky policy enforcement for networked smart
objects. Inf. Syst. 71, 78–89 (2017)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-
based encryption. In: IEEE Symposium on Security and Privacy,
2007. SP’07. pp. 321–334 (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Attribute-based encryption and sticky policies for data access control in a smart home… 713

7. (1999) IBM and eurotech, ”mqtt v3.1 protocol specifi-
cation”. http://public.dhe.ibm.com/software/dw/webservices/ws-
mqtt/mqtt-v3r1.html

8. Rizzardi, A., Sicari, S., Miorandi, D., Coen-Porisini, A.: AUPS:
an open source AUthenticated publish/subscribe system for the
internet of things. Inf. Syst. 62, 29–41 (2016)

9. Node.JS (2009). http://nodejs.org/
10. MongoDB. (2009). http://www.mongodb.org/
11. Mosquitto ”an open sourcemqtt v3.1/v3.1.1 broker”. (2009). http://

mosquitto.org
12. Karjoth, G., Schunter, M., Waidner, M.: Privacy-enabled services

for enterprises. In: 13th International Workshop on Database and
Expert Systems Applications, 2002. Proceedings, IEEE, pp. 483–
487 (2002)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based
encryption for fine-grained access control of encrypted data. In:
Proceedings of the 13th ACM conference on Computer and Com-
munications Security, pp. 89–98 (2006)

14. Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi,
S.R., Rahmani, A.M., Liljeberg, P.: On the feasibility of attribute-
based encryption on Internet of Things devices. IEEEMicro 36(6),
25–35 (2016)

15. Girgenti, B., Perazzo, P., Vallati, C., Righetti, F., Dini, G., Anastasi,
G.: On the feasibility of attribute-based encryption on constrained
IoT devices for smart systems. In: 2019 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), IEEE, pp. 225–232
(2019)

16. Ambrosin, M., Conti, M., Dargahi, T.: On the feasibility of
attribute-based encryption on smartphone devices. In: Proceedings
of the 2015 Workshop on IoT challenges in Mobile and Industrial
Systems, ACM, pp. 49–54 (2015)

17. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini,
A.: Security policy enforcement for networked smart objects. Com-
put. Netw. 108, 133–147 (2016)

18. Baccelli, E., Cragie, R., Der Stok, P., Brandt, A.: Applicability
Statement: The Use of the Routing Protocol for Low-Power and
Lossy Networks (RPL) Protocol Suite in Home Automation and
BuildingControl. RFC 7733, RFCEditor, (2016). https://www.rfc-
editor.org/rfc/rfc7733.txt

19. Sicari, S., Rizzardi, A., Miorandi, D., Coen-Porisini, A.: Dynamic
policies in internet of things: enforcement and synchronization.
IEEE Internet Things J. 4, 2228–2238 (2017)

20. Rasori, M., Perazzo, P., Dini, G.: ABE-Cities: an attribute-based
encryption system for smart cities. In: Proceedings of IEEE
SMARTCOMP 2018 (to appear), pp. 1–8 (2018)

21. Yu, S.,Wang, C., Ren, K., Lou,W.: Achieving secure, scalable, and
fine-grained data access control in cloud computing. In: Infocom,
2010 Proceedings IEEE, pp. 1–9 (2010)

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and
symmetric encryption schemes. In: Annual International Cryptol-
ogy Conference, Springer, pp. 537–554 (1999)

23. Perazzo, P., Vallati, C., Arena, A., Anastasi, G., Dini, G.: An
implementation and evaluation of the security features of RPL.
In: International Conference on Ad-Hoc Networks and Wireless,
Springer, pp. 63–76 (2017)

24. Barker, S., Mishra, A., Irwin, D., Cecchet, E., Shenoy, P., Albrecht,
J.: Smart*: an open data set and tools for enabling research in
sustainable homes. SustKDD 111, 112 (2012)

25. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applica-
tions and issues. In: Proceedings of the 2015 Workshop on Mobile
Big Data, ACM, pp. 37–42 (2015)

26. Palattella, M., Accettura, N., Vilajosana, X., Watteyne, T., Grieco,
L., Boggia, G., Dohler, M.: Standardized protocol stack for the
internet of (important) things. Commun. Surv. Tutor. IEEE 15(3),
1389–1406 (2013)

27. Bagci, I., Raza, S., Chung, T., Roedig, U., Voigt, T.: Combined
secure storage and communication for the Internet of Things. In:
2013 IEEE International Conference on Sensing, Communications
and Networking, SECON 2013, New Orleans, LA, United States,
pp. 523–631 (2013)

28. Boswarthick,D., Elloumi,O.,Hersent, O.:M2MCommunications:
A Systems Approach, 1st edn. Wiley, Hoboken (2012)

29. Conzon, D., Bolognesi, T., Brizzi, P., Lotito, A., Tomasi, R., Spir-
ito, M.: The VIRTUSmiddleware: an XMPP based architecture for
secure IoT communications. In: 2012 21st International Confer-
ence on Computer Communications and Networks, ICCCN 2012,
Munich, Germany, pp. 1–6 (2012)

30. Gòmez-Goiri, A., Orduna, P., Diego, J., de Ipina, D.L.: Otsopack:
lightweight semantic framework for interoperable ambient intelli-
gence applications. Comput. Hum. Behav. 30, 460–467 (2014)

31. Liu, C.H., Yang, B., Liu, T.: Efficient naming, addressing and pro-
file services in Internet-of-Things sensory environments. Ad Hoc
Netw. 18, 85–101 (2013)

32. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security,
privacy and trust in internet of things: the road ahead. Comput.
Netw. 76, 146–164 (2015)

33. Moldovan, G., Tragos, E.Z., Fragkiadakis, A., Pohls, H.C., Calvo,
D.: An IoT middleware for enhanced security and privacy: the
RERUM approach. In: 8th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), IEEE, pp. 1–5
(2016)

34. Mukherjee, B., Wang, S., Lu, W., Neupane, R., Dunn, D., Ren, Y.,
Su, Q., Calyam, P.: Flexible IoT security middleware for end-to-
end cloud-fog communication. Future Gener. Comput. Syst. 87,
688–703 (2018)

35. Yu, S., Ren, K., Lou, W.: FDAC: toward fine-grained distributed
data access control in wireless sensor networks. IEEE Trans. Par-
allel Distrib. Syst. 22(4), 673–686 (2011)

36. Yao, X., Chen, Z., Tian, Y.: A lightweight attribute-based encryp-
tion scheme for the Internet of Things. FutureGener. Comput. Syst.
49, 104–112 (2015). https://doi.org/10.1016/j.future.2014.10.010

37. Odelu, V., Das, A.K., Khan, M.K., Choo, K.K.R., Jo, M.: Expres-
siveCP-ABE scheme formobile devices in IoT satisfying constant-
size keys and ciphertexts. IEEE Access 5, 3273–3283 (2017)

38. Picazo-Sanchez, P., Tapiador, J.E., Peris-Lopez, P., Suarez-Tangil,
G.: Secure publish-subscribe protocols for heterogeneous medical
wireless body area networks. Sensors 14(12), 22619–22642 (2014)

39. Singh, M., Rajan, M., Shivraj, V., Balamuralidhar, P.: Secure
MQTT for Internet of Things (IoT). In: 2015 Fifth International
Conference on Communication Systems and Network Technolo-
gies (CSNT), IEEE, pp. 746–751 (2015)

40. Hernández-Ramos, J.L., Pérez, S., Hennebert, C., Bernabé, J.B.,
Denis, B., Macabies, A., Skarmeta, A.F.: Protecting personal data
in IoT platform scenarios through encryption-based selective dis-
closure. Comput. Commun. 130, 20–37 (2018)

41. Rasori, M., Perazzo, P., Dini, G.: A lightweight and scalable
attribute-based encryption system for smart cities. Comput. Com-
mun. 149, 78–89 (2020)

42. La Manna, M., Perazzo, P., Rasori, M., Dini, G.: Fabelous: an
attribute-based scheme for industrial internet of things. In: 2019
IEEE International Conference on Smart Computing (SMART-
COMP), IEEE, pp. 33–38 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://nodejs.org/
http://www.mongodb.org/
http://mosquitto.org
http://mosquitto.org
https://www.rfc-editor.org/rfc/rfc7733.txt
https://www.rfc-editor.org/rfc/rfc7733.txt
https://doi.org/10.1016/j.future.2014.10.010

	Attribute-based encryption and sticky policies for data access control in a smart home scenario: a comparison on networked smart object middleware
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Networked smart objects architecture
	2.2 Sticky policies
	2.3 Cipher-text-policy attribute-based encryption

	3 Integration of CP-ABE into NOS architecture and comparison with sticky policies
	3.1 Key management

	4 Validation and experiments
	4.1 Threat model and security analysis
	4.2 Smart home scenario
	4.3 Performance evaluation
	4.3.1 Storage, network, and CPU load
	4.3.2 Data retrieval delay

	5 Related work
	6 Discussion and conclusions
	References

