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Abstract: We report on the synthesis and the characterization of a novel cobalt trimesate metal-organic
framework, designated as KCL-102. Powder X-ray diffraction pattern of KCL-102 is dominated by a
reflection at 10.2◦ (d-spacing = 8.7 Å), while diffuse reflectance UV-Vis spectroscopy indicates that
the divalent cobalt centers are in two different coordination geometries: tetrahedral and octahedral.
Further, the material shows low stability in humid air, and it transforms into the well-known phase
of hydrous cobalt trimesate, Co3(BTC)2·12H2O. We associated this transition with the conversion of
the tetrahedral cobalt to octahedral cobalt.

Keywords: MOFs; solvothermal synthesis; cobalt trimesate; Co3(BTC)2·12H2O

1. Introduction

In the past 25 years of research on metal-organic frameworks (MOFs) [1], MOFs
set a benchmark as a highly porous class of materials with characteristic physical and
chemical properties. MOFs were extensively studied for gas adsorption [2–4], gas separa-
tion [3,5], gas storage [6], gas sensing [7], heterogeneous catalysis [8,9], luminescence [10],
and drug delivery [11,12]. In recent studies, MOFs were widely studied and regarded
as active materials for supercapacitors owing to their flexible structure and outstand-
ing porosity, which also includes electrochemical applications [13] drawing attention to
electronic properties and dielectric response [14]. Cobalt-based MOFs were studied for
various applications, such as for removal of Pb ions from aqueous solution [15] to ma-
terials for post-combustion CO2 capture [16]. Nevertheless, among the most intriguing
applications for Co-MOFs, there is the low-dimensional magnetism. Divalent cobalt cen-
ters in MOFs offer the opportunity to realize low dimensional magnetism studies [17,18].
In fact, the different arrangements that cobalt ions can have in the MOFs metal nodes
(chains [19], single atoms [20], paddle wheel [21]) allows one to obtain materials with
very peculiar magnetic properties. The possibility to design the materials with such pre-
cision at the atomic scale is unprecedented for magnetic materials. Cobalt oxides are
among the most studied materials for water splitting [22]. Co-O species in MOFs were
exploited for the same aim; in fact, cobalt MOFs were reported to be active catalysts
for hydrogen evolution reactions [23] and oxygen evolution and reduction reactions [24].
Co-MOFs started to gain attention in energy sectors as electrode materials for supercapac-
itors, and they can be classified into two main groups: (i) MOFs as excellent precursors
for synthesis of porous transition metal oxides, carbon, or metal oxides embedded in
porous carbon matrices [25,26]; (ii) MOFs directly used as electrode materials for super-
capacitors due to their porosity and metal cations providing the accommodation space of
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electrolytes and the redox active sites [27,28]. Nevertheless, relatively few cobalt MOFs are
reported to date, e.g., ZIF-67 (cobalt-2methylimidazoate framework, [20]), Co-ZIF-9 (cobalt-
benzimidazolate framework, [29]), DUT-8 (Co2(NDC)2DABCO, NDC = 2,6-napththalene
dicarboxylate, DABCO = 1,4-diazabicyclo[2.2.2]octane, [30]), Co-MOF-74 and CPO-27-Co
(cobalt-2,5 dihydroxyterephthate framework, [31]), Co-UTSA-16 (K2Co3(cit)2, cit = fully
dehydroxylated citrate anion, [32,33]), Co-BDP (cobalt-1,4-benzenedipyrazolate frame-
work, [34]), Co2(BDC)2(DABCO) (BDC = benzenedicarboxylate, [30]), and Co2Cl2(BTDD)
(BTDD = bis(1H-1,2,3- triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin, [19]).

Cobalt trimesates (Co-BTC, BTC = benzene-1,3,5-tricarboxylate) were reported previ-
ously. A search on the Cambridge Structural Database (CSD) indicates the presence of
27 deposited structures with cobalt and trimesate [35]. The first material reported as a
metal-organic framework by Yaghi et al. in 1995 was a cobalt trimesate [36]. Other cobalt
trimesates were reported since then for very different applications [37–45]. Among them,
Co3(BTC)2·12H2O [46] is particularly interesting for energy related applications. Tan et al. [47]
suggested Co3(BTC)2·12H2O as a catalyst for CO oxidation, and Yaqoob et al. [48] proved
Co3(BTC)2·12H2O and its nanocomposites with rGO to be promising for oxygen evolu-
tion reaction. This material showed also a very high thermal stability, reported to be
up 450 ◦C [47]. On the other hand, a mixed nickel and cobalt 1,3,5-benzenetricarboxylate
(Ni-Co-BTC) was proposed as anode material for lithium-ion batteries [49].

Herein, we report a solvothermal process to obtain a Co-BTC MOF (KCL-102) which
has a quite different powder X-ray diffraction (PXRD) pattern than the reported Co-BTCs.
We investigated the stability of this novel Co-BTC after contact with air and water by
using PXRD, scanning electron microscopy (SEM), thermogravimetry (TG), and diffuse
ultraviolet-visible spectroscopy (DRUV-Vis). KCL-102 is not stable in moisture. Never-
theless, unlike most parts of MOFs that become amorphous upon contact with water, it
undergoes a phase transformation to another crystalline phase, non-porous Co-BTC, the
previously reported Co3(BTC)2·12H2O [46].

2. Materials and Methods

All the chemicals were purchased from Sigma Aldrich and were used without any
further purification. Table 1 lists three different synthesis parameters for the preparation
of KCL-102. KCL-102 was synthesized using benzene-1,3,5-tricarboxylic acid (BTC) and
cobalt nitrate hexahydrate in 1:2 (molar ratio). At first, BTC was dissolved in 100 mL DMF
and 50 mL Millipore water mixture. The cobalt source was then added to the solution
and stirred until it completely dissolved (~15 min). The solution was transferred to a
250 mL Teflon lined autoclave and kept in preheated oven at 140 ◦C for 1–2 h. The resulting
precipitate was filtered and dried at 50 ◦C for 2 h, washed with DMF, and dried again at
50 ◦C for 2 h.

Table 1. Experimental conditions used for the synthesis of KCL-102 (BTC = 1,3,5-benzenetricarboxylic acid, DMF = dimethyl-
formide, T = temperature).

Item Co(NO3)2·6H2O (g) BTC (g) DMF (mL) H2O (mL) T (◦C) Reaction Time (min)

Batch 1 1.4551 0.5250 100 50 140 120
Batch 2 2.9102 1.0508 100 50 140 120
Batch 3 1.4551 0.5250 100 50 140 80

PXRD patterns were recorded using a Rigaku Miniflex tabletop diffractometer equipped
with a Cu X-ray tube (Kα1 = 1.540562 Å) with fixed tube voltage of 30 kV and output current
of 15 mA; it was also equipped with a graphite monochromator. The diffraction patterns
were collected in Bragg Brentano geometry in the 3–70◦ 2θ range with step size of 0.02◦.
The simulated powder diffraction pattern of Co3(BTC)2·12H2O was obtained by using
the structure reported in Ref. [46] by employing the program Mercury 2020.2.0 [50]. SEM
images were obtained with an FEI 400 instrument operated at 30 kV. TGA was carried out
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on a TAQ600 (TA Instruments) with a ramp rate of 10 ◦C/min from room temperature to
700 ◦C in nitrogen or in dry air flow using an alumina pan.

Infrared (IR) spectra were recorded on JASCO spectrometer in transmittance mode
in the range of 4000 to 400 cm−1 using a deuterated triglycine sulfate detector on self-
supported pellets obtained by diluting the MOF powder in KBr. DRUV-Vis spectra were
recorded on a JASCO 650 spectrometer. BaSO4 was used as the reference standard. The
spectra were acquired in air with loose powders diluted in pure BaSO4 placed inside the
standard powder cell of the instrument.

3. Results and Discussion

Three batches of KCL-102 were synthesized (see Table 1), and all the samples showed
similar PXRD patterns (Figure 1a), indicating the good reproducibility of the synthesis. The
reaction yield was not dependent on the reaction conditions used, being 35–40% in all cases.
The reaction time was significantly shorter compared to the typical Co3(BTC)2·12H2O
synthesis (20–24 h, [46,47]). All the patterns reported in Figure 1a,b were equivalent, and they
were all different from the patterns reported for other metal trimesates. The structures used for
the comparison were obtained by search in articles collection databases [24,35–46,48,51–54]
and in the Cambridge Structural Database (CCSD, [55]) using as a query in ConQuest one
cobalt atom bound to one oxygen atom of a BTC linker and coordinated to two additional
oxygen atoms through a single bond. The most intense reflection of the pattern was
centered at 10.2◦, corresponding with a d-spacing of 8.7 Å. No variation was observed in
the diffraction patterns after DMF washing (blue line, Figure 1b).
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Figure 1. PXRD diffractograms of KCL-102. (a) Diffraction patterns of as-synthesized KCL-102
in various batches using different reaction conditions (see Table 1). (b) Diffraction patterns of the
as-synthesized KCL-102 before and after washing with DMF.

KCL-102 is not stable in air for a prolonged time. The material dried at 50 ◦C and
left in the air was found to undergo to a phase transformation that was completed in one
week, and the resulting sample was designated as KCL-102-air following. This structural
transformation was ascribable to moisture (see below), and the conversion was much
faster upon contacting KCL-102 with a droplet of water and drying it in the air (KCL-
102-H2O). A similar observation was previously noticed for MOFs in the presence of
protic solvents [56]. KCL-102-air and KCL-102-H2O were fully equivalent from their
characterization. In the following, only the results obtained for KCL-102-air are reported.
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The phase transformation was accompanied by a change in the color from violet (KCL-
102) to pale pink (KCL-102-air and KCL-102-H2O). Likewise, the color change was also
observed in the reaction mixture left in the air after a few days. A first attempt to measure
the surface area of KCL-102 was made, thermally treating the sample in vacuum at 100 ◦C
and 150 ◦C. Unfortunately, the desorption of a large amount of solvent (likely DMF) from
the sample to the measurement cell hindered the isotherm collection. Future studies should
be aimed at the determination of a washing procedure for the removal of DMF from the
sample, e.g., using low boiling solvents.

The diffraction patterns recorded for the as-made KCL-102 (blue line) and KCL-102-
air (light magenta) are presented in Figure 2a. It can be seen from this figure that the two
patterns were significantly different. Noteworthy, the diffraction pattern of KCL-102-air
corresponded to the Co3(BTC)2·12H2O pattern (see Figure 2a), a non-porous MOF reported
formerly by Yaghi et al. [46] that was suggested as a catalyst for CO oxidation [47] and a
promising candidate for oxygen evolution reaction [48]. The structure of Co3(BTC)2·12H2O
as in Ref. [46] is reported in Figure 2b. Nevertheless, some additional reflections were
identified in the KCL-102-air that were not present in the Co3(BTC)2·12H2O pattern at 9.3◦,
12.5◦, 23.2◦, and 23.5◦. Among them, the most intense were the reflections at 9.3◦ and 12.5◦.
These reflections could not be indexed as belonging to the expected products from KCL-102
decomposition (Co(OH)2, Co3O4, and trimesic acid) or to any other reported Co trimesates
(Refs. [35–46]). Although these peaks could be related to an additional Co trimesate phase,
we suggest that they were associated with the formation of mesopores due to framework
collapse, as already reported for other MOFs. Unfortunately, the presence of a significant
amount of DMF did not allow us to record the nitrogen isotherm for KCL-102-air or to
verify this hypothesis.
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Figure 2. (a) XRD patterns of DMF-washed KCL-102 (blue line) and after leaving KCL-102 in the air for one week (KCL-
102-air, light pink line). The calculated pattern of Co3(BTC)2·12H2O using the structure reported in Ref. [46] is also shown
for comparison (dark pink line). (b) View along [001] of Co3(BTC)2·12H2O structure as reported in Ref. [46]. Color code:
violet (Co), red (O), grey (C), white (H).

Figure 3a displays the SEM image of the KCL-102. It can be seen from this image
that the material exhibited a well-defined cuboid structure with size ranging from 15
to 20 µm. On the other hand, KCL-102-air (Figure 3b) showed a significantly altered
morphology after contact with moisture/air leading to distributed sizes predominantly
with needle-shaped particles.
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The thermal stability of KCL-102 and KCL-102-air in a flow of dry air or nitrogen was
compared by using thermogravimetry (TG). The data obtained for KCL-102 and KCL-102-
air are reported in parts a and b of Figure 4, respectively. Regarding KCL-102, it was not
possible to assign the different steps in the TG trace, as its chemical formula is unknown
(Figure 4a). We were limited to observing that KCL-102 TG trace was not dependent on
the reaction environment up to 350 ◦C (Figure 4a), with temperature corresponding to
about 10% weight loss. This result indicated a significant thermal stability of KCL-102.
The weight loss up to 350 ◦C was continuous without abrupt changes, and it was likely
associated with solvent (water and DMF) and unreacted linker desorption from the MOF
pores. Material decomposition started at 350 ◦C and 450 ◦C in air and nitrogen, respectively,
corresponding to structural water desorption and material decomposition.

The TG traces of the hydrated cobalt trimesate, KCL-102-air, in a flow of dry air
(dashed line) or nitrogen (solid line) are reported in Figure 4b. Regarding TG collected
under nitrogen atmosphere, it can be seen from this figure that a substantial weight loss
between 100–400 ◦C (~26 wt%) could be attributed to the removal of the coordinated water
molecules. This result was similar to that reported by Crane et al. [38]. The plateau extended
up to 450 ◦C, indicating the larger thermal stability of Co3(BTC)2·12H2O compared to
KCL-102. The second stage weight loss (~30 wt%) evidenced in the temperature range
450–525 ◦C could be associated with framework collapse leading to the formation of
Co(OH)2 (34.5 wt%) followed by a continuous weight loss to Co3O4 (29.8 wt%).

As expected, a similar behavior was observed for the sample heated in air (dashed
line in Figure 4b), however, with the onset temperatures shifted to lower values. In this
case, a plateau was reached at 420 ◦C, and that was maintained at least up to 700 ◦C. The
observed weight loss (64 wt%) was close to the one expected for the formation of Co3O4.

We investigated KCL-102 using infrared (FTIR) and UV-Vis spectroscopy in order to
gain some knowledge on details of KCL-102 structure. Figure 5 shows the vibration modes
of KCL-102 (blue line) and KCL-102-air (pink line) in comparison with the spectra of the
trimesic acid (black line) and of MIL-100(Fe), an iron trimesate [57] (brown line). MIL-
100(Fe) spectrum was used a standard for the quick identification of carboxylate band and
unreacted carboxylic acid groups in KCL-102 and KCL-102-air. The IR spectrum of KCL-
102-air matched well with the spectrum reported by Yaghi et al. for Co3(BTC)2·12H2O [46].
In the 3600–2800 cm−1 region, the spectra of KCL-102 and KCL-102-air were clearly dom-
inated by a large band due to the solvent molecules (water and DMF), both structural
and physisorbed solvent molecules. The relative intensity of these bands was larger in
KCL-102-air than in KCL-102 because of the larger hydration degree of the former. IR
absorption bands of the BTC linker were observed in the 1800–400 cm−1 range. For com-
parison, the spectra of a trimesate salt (MIL-100(Fe), brown line) and of trimesic acid (black
line) are also reported in Figure 5. The absorption bands in the ranges 1700–1500 cm−1
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and 1500–1300 cm−1 corresponded to νasym(COO) and νsym(COO). These bands were
remarkably similar to the ones observed in the iron trimesate. No signals were observed
that could be associated with unreacted carboxylic acid. The signal observed at 1681 cm−1

was likely associated with DMF [58]. The band centered at 758 cm−1 in KCL-102 spectrum
was previously assigned to ν(C-H) bending mode in HKUST-1, a copper trimesate [59].
Alves et al. [60] reported the FT-IR spectra of nanoparticles of Co3O4: they observed the
bands at 567 and 665 cm−1 which were related to the Co-O stretching vibrations. For
Co2O3 nanoparticles, the vibrational band was observed at 560 cm−1 owing to the Co–O
stretching vibration mode, and 668 cm−1 was the bridging vibration of the O–Co–O bond.
The higher band at 668 cm−1 was normal for Co2+–O vibration in a tetrahedral site, and
the lower band 560 cm−1 was accredited to the Co3+–O vibration at the octahedral site [61].
In case of Co-BTC, at a lower wavenumber region, two vibrational modes centered at 554
and 455 cm−1 were observed. The vibrational modes corresponding to cobalt oxides falls
at 554 cm−1 could be assigned to Co-O stretching vibrational modes. Co-O stretching
vibrational mode at 554 cm−1 in KCL-102 was highly perturbed in KCL-102-air, hinting at
the changes in coordination around Co2+.
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Figure 5. FT-IR spectrum of KCL-102 (blue line) recorded in air right after synthesis compared to the spectrum of KCL-102-
air (light pink), trimesic acid (black line), and of another trimesate based MOF (MIL-100(Fe), unpublished data, brown line).
For additional characterization of this MIL-100(Fe) sample, please refer to Ref. [57].

Diffuse reflectance UV-vis (DR-UV-vis) provides information on the oxidation state
and on the coordination of the cobalt, that is, the number of the ligands, their symmetry,
and their chemical nature. Moreover, oxidation states different than 2+ cannot be excluded
a priori for cobalt. As mentioned above, the phase transition caused a change in the color
of the powder from violet of KCL-102 (Figure 6c) to pink of KCL-102-air (Figure 6d). A
synthetized Co3(BTC)2·12H2O was a pink powder [44]. A violet color was, in general,
associated with the copresence in cobalt-based materials of Co centers in both octahedral
and tetrahedral coordination [32]. This was, for example, the case of UTSA-16, the spectra of
which were characterized by two peaks at 527 and 566 nm due to d-d transitions in Co(II) in
octahedral and tetrahedral geometry (see black line in Figure 6b and discussion in Ref. [32]).
In Figure 6b (green curve), another Co(II) based MOF, ZIF-67, having all the cobalt centers
in tetrahedral coordination is reported as a reference. The spectra of KCL-102 samples
before and after the exposure to air confirmed the divalent state of the cobalt centers. KCL-
102 spectrum (blue curve in Figure 6a) showed two bands at 520 and 578 nm that were
then assigned to d-d transitions of Co(II) centers in octahedral and tetrahedral geometry
in analogy to UTSA-16. KCL-102 peaks were less defined than UTSA-16, suggesting a
heterogeneous nature of the two families of cobalt centers. The Co3(BTC)2·12H2O structure
is known [46]. Cobalt ions in the materials were all in octahedral coordination, although of
two different kinds: one coordinated with four H2O molecules and two O belonging to the
same COO- group, while the other one coordinated with four H2O molecules and two O
belonging to two different COO- groups (Figure 6e). Accordingly, KCL-102-air spectrum
(pink spectrum in Figure 6a) was characterized by a complex broad band centered at
540 nm. The low intensity signal at 578 nm could be associated with residual KCL-102.
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4. Conclusions

We report here a novel cobalt trimesate, KCL-102, and we verified the high repro-
ducibility of its synthesis protocol. KCL-102 is characterized by a large thermal stability in
nitrogen and dry air (up to 350 ◦C), as verified by thermogravimetry. Nevertheless, KCL-
102 is unstable in air, and it undergoes a slow phase transformation (for about a week) to its
hydrated form, Co3(BTC)2·12H2O. This transformation is very quick in direct contact with
water. Furthermore, unlike several other MOFs, KCL-102 does not become amorphous
upon hydration, but it is converted to a well-known crystalline phase, Co3(BTC)2·12H2O.
Various physico-chemical characterization results indicate the presence of tetrahedrally and
octahedrally coordinated Co(II) in the KCL-102 framework, while in Co3(BTC)2·12H2O,
only octahedrally coordinated Co(II) are present, suggesting a water-induced phase trans-
formation that causes the conversion of the tetrahedral Co(II) to octahedral Co(II). At this
juncture, it is to be noted here that the main difference between the synthesis protocols
of KCL-102 and Co3(BTC)2·12H2O is the shorter reaction time of the former, being 2 h
for KCL-102 and 20–24 h for Co3(BTC)2·12H2O. The presence of cobalt centers having an
oxidation state different than 2+ was excluded in this study based on the UV-Vis mea-
surements, although these results should be confirmed also by means of other techniques
such as X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy
(XANES), or superconducting quantum interference device (SQUID).

Future investigations should be aimed at the determination of the KCL-102 structure
and surface area and to its testing for the several energy-related applications where cobalt-
based MOFs are known to be excellent in regard to water harvesting, heat exchangers,
oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and CO and other
oxidation reactions [54].
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