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Abstract. We are concerned with the study of di�erent notions of curvature
on graphs. We show that if a graph has stronger inner-outer curvature growth
than a model graph, then it has faster volume growth too. We also study
the relationships of volume growth with other kind of curvatures, such as the
Ollivier-Ricci curvature.
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1. Introduction and main results

In recent times there has been an increasing interest in the study of di�erent no-
tions of curvature on graphs (see, for example [1, 4, 5, 9, 10, 11, 12, 13, 15, 17, 18, 20])
in order to obtain analogues of well known results valid for Riemannian manifolds.
In many cases this study leads to results very di�erent from those obtained on man-
ifolds, unveiling intriguing di�erences between these two realms and con�rming the
intrinsic interest of the subject (see, for example, [15], Theorem 4.11). It is well
known that the volume growth of a Riemannian manifold can be controlled from
above in terms of its Ricci curvature: by way of example, if a Riemannian manifold
has a greater Ricci curvature than a model manifold, then it has smaller volume
growth (by contrast, a control from below is signi�cantly more delicate and involves
both the sectional curvature and topological properties of the space). It is natural
to ask if, using appropriate notions of curvature, such results have analogues in
the graph setting. The situation appears to be less straightforward than one may
think. On the one hand, an outcome of our investigation is that, using notation and
terminology as in [8], a stronger curvature growth in general implies faster volume
growth (the di�erence in the versus of the inequality is to be ascribed to a change
of sign in the de�nition of the curvature). On the other hand it turns out that,
contrary to what happens in the manifolds setting, a control of the Laplacian of
the distance function (which is implied by a control of the Ollivier Ricci curvature,
[15], and in turn allows to obtain gradient estimates) does not in general allow to
control volume growth, thus showing a signi�cant di�erence with what happens in
the manifold setting.
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The paper is organized as follows: in Section 2 we introduce the setting and
some basic notation on graphs with the di�erent notions of curvature considered.
In Section 3 we state and prove our main results. The following special case of
Theorem 3.5 below illustrates how controlling the inner/outer curvatures allows to
control volume growth.

Theorem A. Let G1 = (V1, b1,m1) and G2 = (V2, b2,m2) with roots oi ∈ Gi and
inner/outer curvatures ki±, i = 1, 2. If k1+(x1) ≥ k2+(x2) and k1−(x1) ≤ k2−(x2) for
all x1 ∈ Sr(o1), x2 ∈ Sr(o2) and all r ≥ 0 then m1(Sr(o1)) ≥ m2(Sr(o2)).

While the conclusion of the theorem does not hold if it is only assumed that the
curvatures inequalities are satis�ed for large enough r, we are able to show that an
asymptotic control on the curvature allows to control the volume growth up to a
constant, see Theorem 3.13.

We next study the relationships between the Ollivier curvature of a graph (for
some useful results on the subject see, for example, [15]) and its inner and outer
curvatures, showing that, in general, this notion is not strong enough to determine
the behaviour of the volume growth of the graph for comparison theorems, not even
in the case of model graphs, or simpler birth-death chains.

By contrast, the positivity of the Ollivier Ricci curvature implies bounds on the
diameter of a graph and therefore of its volume under assumptions on the degree
([2, 15, 19]). In addition, the Ollivier curvature has shown to have a role in obtaining
spectral estimates ([1, 2]).

2. Set up and notation

A graph is a quadruple G = (V, b, c,m), where V is a countable set, m : V →
(0,∞) is a measure of full support on V, b : V ×V → [0,∞) is a symmetric function
which vanishes on the diagonal and represents the edge weight and c : V → [0,∞)
is the potential, or killing term, of the graph. We say that two vertices x and y
are neighbors, and write x ∼ y, if b(x, y) > 0; in this case we denote by (x, y)
the edge connecting x and y. A path in V is a sequence of vertices · · · ∼ xi−1 ∼
xi ∼ xi+1 ∼ . . . , and a graph is connected if for every x, y ∈ V there exists a path
x0 = x ∼ x1 ∼ ... ∼ xn = y joining x and y. In this case, the number n of edges in
the path is the (combinatorial) length of the path and the distance d(x, y) between
x and y is the length of the shortest path connecting x and y. Further, we say
that a graph is locally �nite if every x ∈ V has �nitely many neighbors, that is
if |{y : b(x, y) > 0}| < ∞. Note that in particular this condition implies that the
degree

Deg(x) =
1

m(x)

∑
y∈V

b(x, y)

is �nite for every x ∈ V .
In this paper we will consider locally �nite graphs with no killing term. We will
then denote a generic graph by the triple (V, b,m).
We let C(V ) = {f : V → R} denote the space of real-valued functions on V and
de�ne the formal Laplacian ∆ : C(V )→ C(V ) by the formula

∆f(x) =
1

m(x)

∑
y∈V

b(x, y) (f(x)− f(y)) ,
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for all x ∈ V .
Note that, because of the assumption of local �niteness, the formal Laplacian is
well-de�ned for every function f ∈ C(V ) and for every x ∈ V .
Let x0 ∈ V be a �xed vertex. For every nonnegative integer r ∈ N0, we write
Sr := Sr(x0) := {x : d(x, x0) = r} and Br := Br(x0) := {x : d(x, x0) ≤ r} and
de�ne the inner and outer curvatures at x ∈ Sr as

k±(x) =
1

m(x)

∑
y∈Sr±1

b(x, y), k−(x0) = 0.

We say that a graph is weakly spherically symmetric, or that it is a model, if for
some vertex o (which we will refer to as the root of the graph) the correspond-
ing inner and outer curvatures k± are spherically symmetric functions, that is if
k±(x) = k±(x′) for every x, x′ ∈ Sr(o), for every r ≥ 0. Moreover, if V = N0 and
b(x, y) = 0 whenever |x− y| 6= 1 we say that G is a birth-death chain.

In the context of metric measure spaces, other useful notions of curvature have
been de�ned in terms of transport theory, see [13, 16, 17, 18, 20]. In the setting of
graph theory a particularly fruitful choice is the Ricci curvature introduced in [10],
and later extended in [15], where it is referred to as Ollivier (Ricci) curvature and
de�ned by

k(x, y) = lim
ε→0

(
1−

W (mε
x,m

ε
y)

d(x, y)

)
,

for every couple of vertices x, y ∈ V , with x 6= y, where W denotes the L1-
Wasserstein distance and

mε
x(y) =

{
1− εDeg(x) : y = x

εb(x, y)/m(x) : otherwise.

A crucial result in [15] is that the Ollivier curvature can be equivalently de�ned in
terms of the Laplacian, namely,

(1) k(x, y) = inf
f∈Lip(1),∇xyf=1

∇xy∆f,

where

∇xyf =
f(y)− f(x)

d(x, y)

and Lip(1) = {f ∈ C(V ) : |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ V }.
Bounds on the Ollivier Ricci curvature have been used in [15] to obtain estimates

for the Laplacian of the distance function, to describe optimal conditions for the
stochastic completeness of a weighted graph and to deduce diameter bounds. On
the other hand, we will show in Subsection 3.1 that in general the Ollivier curvature
does not allow to control the volume growth.

3. Curvatures and Volume on graphs

In this section we study the relationships between inner and outer curvatures and
volume for model graphs and general graphs. We begin by de�ning what it means
for a graph to have stronger/weaker curvature growth than that of a model (see
[8, 21], where this notion is used to obtain comparison results concerning stochastic
properties, such as the Feller property and stochastic completeness). Moreover, we
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recall the de�nition of a birth-death chain associated to a graph, see [15], where
such graphs are used to obtain Laplacian comparison results.

De�nition 3.1. Let G = (V, b,m) be a graph and G̃ = (Ṽ , b̃, m̃) be a model graph
with root o. Let x0 ∈ V be a �xed vertex. We say that G has stronger (respectively,

weaker) curvature growth than G̃ if

(i) m(x0) = m̃(o),
(ii) for all r ≥ 0 and x ∈ Sr(x0),

k+(x) ≥ k̃+(r) and k−(x) ≤ k̃−(r)

(respectively, k+(x) ≤ k̃+(r) and k−(x) ≥ k̃−(r)),

where we recall that, by de�nition, k−(x0) = k̃−(o) = 0.

We say that G has faster volume growth than G̃ if, for all r ≥ 0,

m (Sr(x0)) ≥ m̃ (Sr(o))

De�nition 3.2. Let G = (V, b,m) be a graph and let x0 ∈ V be a �xed vertex. Its
associated birth-death chain Ḡ = (N0, b̄, m̄) is de�ned by setting

m̄(r) := m (Sr) for all r ≥ 0,

b̄(r, r + 1) :=
∑
x∈Sr

y∈Sr+1

b(x, y) for all r ≥ 0.

We remark that the summation on the right hand side in the above formula is
precisely the quantity denoted by ∂B(r) in [8].

Note that, if A : C(V )→ C(V ) denotes the averaging operator which acts as

Af(x) =
1

m (Sr)

∑
y∈Sr

f(y)m(y)

for all x ∈ Sr, then

k̄±(r) =
1

m̄(r)
b̄(r, r ± 1)

=
1

m (Sr)

∑
y∈Sr

z∈Sr±1

b(y, z)

=
1

m (Sr)

∑
y∈Sr

 1

m(y)

∑
z∈Sr±1

b(y, z)

m(y)

= Ak±(x).

This shows that the birth-death chain associated with G has the same volume
growth and its inner and outer curvatures are the averages of those of G. Since we
are interested in volume growth comparisons and estimates, the above discussion
motivates the following de�nition of stronger average curvature growth, which will
be used to prove one of the main results of this section.

De�nition 3.3. Let G1 = (V1, b1,m1), G2 = (V2, b2,m2) be two graphs. Let x1 ∈ V1
and x2 ∈ V2 be �xed vertices. We say that G1 has stronger average curvature growth
than G2 if the birth-death chain Ḡ1 associated with G1 has stronger curvature growth
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than the birth-death chain Ḡ2 associated with G2. Namely, denoting by Ai the
averaging operator on Gi,

(i) m1(x1) = m2(x2),
(ii) for all r ≥ 0 and x′ ∈ Sr(x1), x′′ ∈ Sr(x2),

A1k
1
+(x′) ≥ A2k

2
+(x′′) and A1k

1
−(x′) ≤ A2k

2
−(x′′),

where, by de�nition, k1−(x1) = k2−(x2) = 0.

Remark 3.4. It is clear that, if two graphs satisfy De�nition 3.1 then they also
satisfy De�nition 3.3. We want to underline that the validity of De�nition 3.3 is
not enough to obtain comparison theorems for the usual stochastic properties. By
way of example, in [7] the author constructed an example of a graph G such that

(2)

∞∑
r=0

m(Br)∑
x∈Sr,y∈Sr+1

b(x, y)
=∞,

but fails to satisfy the weak Omori-Yau maximum principle, and therefore it is
stochastically incomplete. On the other hand, the birth-death chain G associated
to G is stochastically complete since it clearly satis�es (2), which is a necessary
and su�cient condition for the stochastic completeness of model graphs (see [8],
Theorem 5), while the condition in De�nition 3.3 trivially holds with equality.

We are now ready to state and prove the main result of this section.

Theorem 3.5. Let G1 = (V1, b1,m1) and G2 = (V2, b2,m2) be two graphs such
that G1 has stronger average curvature growth than G2. Then G1 has faster volume
growth than G2.

Proof. By the above discussion, without loss of generality we may assume that G1

and G2 are birth-death chains.
We proceed by induction: for r = 0, by the normalization assumption, we have
m1(0) = m2(0).
For the induction argument we now assume that m1(r) ≥ m2(r) and prove that
m1(r + 1) ≥ m2(r + 1).
By assumption

b1(r, r + 1)

m1(r)
= k1+(r) ≥ k2+(r) =

b2(r, r + 1)

m2(r)
,

whence, rearranging,

(3) 1 ≤ m1(r)

m2(r)
≤ b1(r, r + 1)

b2(r, r + 1)
.

Moreover, by assumption,

b1(r, r + 1)

m1(r + 1)
= k1−(r + 1) ≤ k2−(r + 1) =

b2(r, r + 1)

m2(r + 1)
,

so that, using (3),

m1(r + 1) ≥ b1(r, r + 1)

b2(r, r + 1)
m2(r + 1) ≥ m2(r + 1),

as required to complete the proof. �



6 ANDREA ADRIANI AND ALBERTO G. SETTI

In the case where one of the two graphs considered in Theorem 3.5 is a model,
we get the following immediate corollary.

Corollary 3.6. Let G = (V, b,m) be a graph and G̃ = (Ṽ , b̃, m̃) be a model graph.

Assume that G has stronger (respectively, weaker) curvature growth than G̃. Then

G has faster (respectively, slower) volume growth than G̃.

Remark 3.7. We want to underline the fact that, di�erently from what happens
in the setting of Riemannian manifolds, it is not su�cient to have a comparison
assumption on the Laplacian of the distance function to obtain a comparison result
concerning volume growth. Indeed, note that the assumption of stronger curvature
growth implies the weaker condition

k+(x)− k−(x) ≥ k̃+(r)− k̃−(r),

which is exactly equivalent to

∆d(x0, x) ≤ ∆̃d(0, r)

for all x ∈ Sr and r ≥ 0.
However, such a condition is not enough to guarantee the conclusion of Theorem
3.5 as the following example shows.

Example 3.8. Let G = (V, b,m) be the unweighted birth-death chain, that is V =
N0, m(r) = 1 and b(r, r + 1) = 1 for all r ≥ 0, and let G′ = (N0, b

′,m′) be a
birth-death chain such that m′(r) = r + 1 and b′(r, r + 1) = (r + 1)−2. It follows
that

k+(0)− k−(0) = 1,

k+(r)− k−(r) ≡ 0 ∀r > 0

while

k′+(0)− k′−(0) = 1,

k′+(r)− k′−(r) =
1

(r + 1)3
− 1

r2(r + 1)
=
−2r − 1

r2(r + 1)3
< 0 ∀r > 0,

so that k′+(r)− k′−(r) ≤ k+(r)− k−(r) for all r ≥ 0. On the other hand, it is clear
that G′ has faster volume growth than G.

Remark 3.9. We want to stress the fact that, exactly as in the manifold case,
in order to get a volume comparison the curvature inequality in the statement of
Theorem 3.5 must hold for every r ≥ 0 and not just for all r ≥ R > 0 (see De�nition
3.12 and [21]). This is shown in the following example.

Example 3.10. Let Ḡ be a birth-death chain and G̃ = (Z, b̃, m̃) be a model graph
such that

m̃(x) = m̄(r) if |x| = r

and

b̃(x, y) =

{
b̄(r, r + 1) if |x| = r, |y| = r + 1 and |x− y| = 1

0 otherwise.

It is clear that, for r ≥ 1, Ḡ and G̃ have the same curvature growth, but clearly G̃
has twice the volume.
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The above example shows that a volume comparison result cannot hold assuming
that the average inner and outer curvatures satisfy the appropriate inequalities only
for su�ciently large values of r. The last result of this section shows that this
assumption is enough to control the volume growth.

We begin with a lemma which relates the ratio of the volume of consecutive
spheres to that of the inner and outer average curvatures.

Lemma 3.11. Let G = (V, b,m) be a weighted graph and x0 ∈ V be a �xed vertex.
Denote, as usual Sr = Sr(x0). Then

m(Sr+1)Ak−(r + 1) = m(Sr)Ak+(r)

Proof. The identity m(Sr+1)k−(r + 1) = m(Sr)k+(r) is well known in the case of
model graphs and, therefore, of birth-death chains (see, [8]). The result follows by
simply considering the birth-death chain associated with G. �

De�nition 3.12. Given two graphs G1 and G2, we say that G1 has stronger average
curvature growth outside of a �nite set than G2 if inequalities in De�nition 3.3 are
satis�ed for every r ≥ R, R > 0.

Theorem 3.13. Let G1 and G2 be two graphs. If G1 has stronger average curvature
growth outside of a �nite set than G2, then there exists C > 0 such that Cm1(Sr) ≥
m2(Sr) for every r ≥ 0.

Proof. Clearly, there exists C > 0 such that Cm1(Sr) ≥ m2(Sr) for all 0 ≤ r ≤ R.
Using Lemma 3.11 and an easy inductive argument we have that, for every r ≥ R,

Cm1(Sr+1) = Cm1(Sr)
Ak1+(r)

Ak1−(r + 1)
≥ m2(Sr)

Ak2+(r)

Ak2−(r + 1)
= m2(Sr+1),

completing the proof. �

3.1. Ollivier curvature. In this section we study some relationships between Ol-
livier curvature, inner and outer curvatures and volume growth. To do so, we will
use expression (1) for the Ollivier curvature, which, as shown in [15], allows to
compute the Ollivier curvature for a birth-death chain. This result can be adapted
to the more general setting of model graphs using the notion of sphere curvatures
of a graph that we de�ne below following [15]. This is not surprising considering
that, as we have seen so far, when dealing with curvatures we were always able
to obtain comparison results by reducing the investigation to birth-death chains.
Signi�cant di�erences with respect to this situation will be considered at the end
of this subsection.
We start this subsection with a de�nition and a couple of results, which will be
useful in our discussion. They are taken from [15] to which we refer for the proofs.

De�nition 3.14. Let G = (V, b,m) be a graph and x0 ∈ V be a �xed vertex. With
the usual abuse of notation we write Sr = Sr(x0). For every r ≥ 1 we de�ne the
sphere curvatures k(r) with respect to x0 as

k(r) := min
y∈Sr

max
x∈Sr−1

x∼y

k(x, y),

where k(x, y) is the Ollivier curvature as de�ned in (1).
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Proposition 3.15. (Theorem 2.10 in [15]) Let G = (N0, b,m) be a birth-death
chain and let f(r) := d(0, r) = r. Then, for 0 ≤ r < R,

k(r,R) = ∇rR∆f =
∆f(R)−∆f(r)

R− r

=
b (R,R− 1)− b (R,R+ 1)

(R− r)m(R)
− b (r, r − 1)− b (r, r + 1)

(R− r)m(r)
,

where by convention we set b (r, r − 1) := 0 if r = 0.

Proposition 3.16. (Corollary 4.8 in [15]) Let G = (V, b,m) be a graph, x0 ∈ V be a
�xed vertex and k(r) be the sphere curvatures with respect to x0. Let Ḡ =

(
N0, b̄, m̄

)
be its associated birth-death chain with root vertex o and sphere curvatures k̄(r) =
k̄(r − 1, r). Then

R∑
r=1

k̄(r) ≥
R∑
r=1

k(r)

for all R ≥ 1.

Using these notation we have the following proposition. It is a convenient refor-
mulation of [15, Theorem 4.4] and we provide a direct proof.

Proposition 3.17. Let G̃ and G be two birth-death chain and k̃(r) = k̃(r − 1, r),
k(r) = k(r − 1, r) their respective sphere curvatures for all r ≥ 1. Suppose that

k+(0) = k̃+(0). Then the following are equivalent:

(i)
∑R
r=1 k̃(r) ≤

∑R
r=1 k(r) for all R ≥ 1,

(ii) k̃+(R)− k̃−(R) ≥ k+(R)− k−(R) for all R ≥ 1.

Proof. In order to prove the proposition, note that by Proposition 3.15 the Ollivier
sphere curvatures for a birth-death chain can be computed as

k(r) = k(r − 1, r) = ∆f(r)−∆f(r − 1) = k−(r)− k+(r) + k+(r − 1)− k−(r − 1)

for all r ≥ 1, with f(r) = d(0, r) = r and the convention that k−(0) = 0.

Case R = 1: the condition k̃(1) ≤ k(1) is equivalent to

k̃+(0)− k̃+(1) + k̃−(1) ≤ k+(0)− k+(1) + k−(1),

which in turn is equivalent to (ii) for R = 1.

Case R > 1: We de�ne t(r) := k+(r) − k−(r) and similarly t̃(r) for all r ≥ 0.
Then we have

R∑
r=1

k̃(r) =

R∑
r=1

(t̃(r − 1)− t̃(r))

= t̃(0)− t̃(R)

= k̃+(0)− t̃(R)

and
R∑
r=1

k(r) = k+(0)− t(R),
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so that
R∑
r=1

k̃(r) ≤
R∑
r=1

k(r)

is equivalent to

t̃(R) = k̃+(R)− k̃−(R) ≥ k+(R)− k−(R) = t(R),

completing the proof. �

Remark 3.18. By the above proposition, under the normalization assumption
k̃+(0) = k+(0), we have that k̃(r) ≤ k(r) for all r ≥ 1 implies condition (ii) in
the statement. Further, the proposition tells us that condition (i) is not enough
to imply a volume comparison result for birth-death chains, and hence for general
graphs too (as we showed in Example 3.8).

We now use Proposition 3.16 and Proposition 3.17 to prove Theorem 3.19 below,
which extends Proposition 3.17 to the most general possible situation. Note that
the �rst half of the statement below generalizes [15, Corollary 4.8]. This, in turn,
will lead us to �nd an easy way to compute sphere curvatures on model graphs,
extending Theorem 2.10 of [15].

Theorem 3.19. Let G̃ be a birth-death chain and G a graph such that k̃+(0) =
k+(0).

i) If

(4) k̃+(R)− k̃−(R) ≤ k+(x)− k−(x) for all x ∈ SR, for all R,
then

R∑
r=1

k̃(r) ≥
R∑
r=1

k(r) for all R ≥ 1.

ii) If
R∑
r=1

k̃(r) ≤
R∑
r=1

k(r) for all R ≥ 1

then

k̃+(R)− k̃−(R) ≥ min
x∈SR

(k+(x)− k−(x)) for all R.

Proof. Let Ḡ be the birth-death chain associated to G and let k̄+ and k̄− denote
its outer and inner curvatures respectively.
By integrating over SR with respect to m inequality (4) and dividing by m(SR),
we get that

k̃+(R)− k̃−(R) ≤ k̄+(R)− k̄−(R) for all R.

Theorem 3.17 combined with Proposition 3.16 implies that

R∑
r=1

k̃(r) ≥
R∑
r=1

k̄(r) ≥
R∑
r=1

k(r),

which is the �rst part of the theorem.
For the second part, using the hypothesis and Proposition 3.16, we immediately get
that

R∑
r=1

k̃(r) ≤
R∑
r=1

k̄(r),
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which is equivalent, using Theorem 3.17, to

k̃+(R)− k̃−(R) ≥ k̄+(R)− k̄−(R),

yielding, clearly, the desired conclusion. �

Remark 3.20. We note that, if G is a model graph and G̃ is a birth-death chain,
since k+ and k− are spherically symmetric functions, using the above theorem, the

condition k+(R)−k−(R) ≤ k̃+(R)−k̃−(R) is equivalent to
∑R
r=1 k(r) ≥

∑R
r=1 k̃(r).

In particular, applying this consideration to the birth-death chain G̃ associated to
G we obtain the following result.

Theorem 3.21. Let G be a model graph and G̃ its associated birth-death chain.
Then

R∑
r=1

k(r) =

R∑
r=1

k̃(r),

for all R ≥ 1, so that

k(r) = min
y∈Sr

max
x∈Sr−1

x∼y

k(x, y) = k̃(r)

for all r ≥ 1.

Remark 3.22. Note that the previous result is trivial in the case of spherically
symmetric graphs, i.e. graphs such that, for every x, x′ ∈ Sr, there exists an auto-
morphism of weighted graphs which sends x to x′. Indeed, in this case, using the
symmetry of the graph and (1), it follows that k(x, y) = k(x′, y′) = k(r) for every
�xed x, x′ ∈ Sr−1 and y, y′ ∈ Sr with x ∼ y, x′ ∼ y′. However the last equality is
not true on general model graphs as we show in the following example. It would be
interesting to investigate if there are other situations in which this equality holds.

Example 3.23. Consider the graph

w

x′

x

y′

y z

z′

1

1

2

1 1

3

1

Figure 1. A non-spherically symmetric model graph.

with edge weight b as in �gure and measure m de�ned as

m(t) =

{
3 if t = y′, z′

1 otherwise.
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By direct computation we see that the graph is model and that k(x, y) = −1. Indeed,
a function which minimizes ∆f(y) −∆f(x), subject to the conditions that f is Z-
valued, Lip(1) and f(y)− f(x) = 1, is given by

f(w) = f(y′) = −1, f(x) = 0, f(y) = 1, f(z) = 2.

This actually also follows from Example 2.3 in [15]. On the other hand, k(x′, y′) = 1
since, for every Z-valued function g ∈ Lip(1) with g(y′) = 1, g(x′) = 0, we have

∆g(y′)−∆g(x′) = 4− g(z′) + g(w)− 1

3
g(x),

which is minimized by choosing

g(w) = −1, g(x) = 0, g(z′) = 2.

We end this subsection showing that, in general, even if two graphs have the
same Ollivier curvature k(r) for every r it is not possible to conclude that they
have the same volume growth. This is somehow interesting, being a sign that,
even for birth-death chains, the Ollivier curvature is not capable of controlling the
volume of spheres (see Proposition 3.5 and Remark 3.6 in [6] for similar results).

Example 3.24. We consider again the unweighted birth-death chain G of Example
3.8. We want to construct a birth-death chain G′ with k′+(0) = 1, m′(0) = 1 and
such that k′(r) = k(r) and m′(r) ≥ m(r) for every r.

k′(1) = k(1)

is equivalent to

k′+(0)− k′+(1) + k′−(1) = 1,

that is

k′−(1) = k′+(1).

On the other hand we want m′(1) ≥ m(1), which is equivalent, using Lemma 3.11,
to

k′+(0)

k′−(1)
≥ 1,

that is

k′+(0) ≥ k′−(1).

m′(2) ≥ m(2) is equivalent to

m′(1) ·
k′+(1)

k′−(2)
≥ 1,

which is implied, since m′(1) ≥ 1, by k′+(1) ≥ k′−(2). Now

k′(2) = k(2)

is equivalent to

k′+(1)− k′−(1) + k′−(2)− k′+(2) = 0.

Since k′−(1) = k′+(1) it is obvious that k′−(2)− k′+(2) = k′−(1)− k′+(1) = 0. So far
we then have

1 = k′+(0) ≥ k′−(1) = k′+(1) ≥ k′−(2) = k′+(2).

We then de�ne k′+(r) and k′−(r) such that

1 = k′+(0) ≥ k′−(1) = k′+(1) ≥ k′−(2) = k′+(2) ≥ ...
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and the graph G′ with k′+(r) and k′−(r) as inner and outer curvatures andm′(0) = 1,
which clearly exists. By the above discussion we have that G′ has the same Ollivier
curvatures as G and faster volume growth.

We conclude the paper remarking that, while we found a satisfactory relationship
between inner/outer curvature and volume growth, there seem to be no connection
between volume growth and the Ollivier Ricci curvature alone. It would be inter-
esting to investigate under which additional conditions, assumptions on the Ollivier
curvature lead to comparison results for volumes. Probably something can be said
on �nite volume graphs with positive Ollivier curvature, see [19] and [15, Theo-
rem 4.19]. There is yet another widely used notion of curvature, the Bakry-Emery
curvature, which is not considered in this paper and it would be interesting to in-
vestigate its connections with volume growth. We note, in this respect, that in [5]
the authors obtain volume comparison and volume doubling results for a class of
linear graphs under Bakry-Emery curvature condition. Using parabolic methods,
volume doubling results under Bakry-Emery curvature conditions are also obtained
for general graphs in the very recent [3] and [14]. We plan to explore these and
other related questions in a forthcoming paper.
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