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1 Introduction

One of the most fascinating phenomena appearing when a large amount of Baryon charge
is present within a finite volume (which has been confirmed both phenomenologically and
with numerical simulations) is the appearance of ordered structures called nuclear pasta
phase (see [1–11] and the nice up to date review [12]). Two of the most studied shapes are
nuclear spaghetti (in which most of the Baryonic charge lies within tube-shaped region) and
nuclear lasagna (in which most of the Baryonic charge lies within layers of finite width).
In the present paper we will analyze in details these two types of nuclear pasta phase.

The properties of nuclear pasta attracted a lot of attention recently (see [6–8, 13–15]
and references therein), but, due to both the very large Baryon number typical of this phase
as well as to the strong interactions between them, only numerical results are available.
Moreover, to obtain meaningful numerical results is extremely challenging in these complex
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systems and a very high computing power is required (as it can be deduced from the
references mentioned above). Needless to say, it is usually assumed that any analytic
approach is out of question. More in general, analytic tools (different from perturbation
theory) to analyze the phase diagram of the low energy limit of Quantum Chromodynamics
(QCD) at finite density and low temperatures are extremely rare (especially due to the non-
perturbative nature of low energy QCD). This explains why the interesting but complex
phase diagram of QCD at finite density and low temperature is assumed to be out of reach
of analytic techniques (see [16–20] and references therein).

Nevertheless, the main aim of the present paper is to present an analytic tool suitable
for the study of both, the nuclear spaghetti and nuclear lasagna phases, within the Skyrme
model [21–23], which describes the low energy limit of QCD at the leading order in the ’t
Hooft expansion [24–29] (see also [30, 31] and references therein). The Skyrme model is a
non-linear field theory for a scalar field U taking values in the SU(N) Lie group, being N
the flavor number. Despite the scalar nature of U , the solitons of the theory are interpreted
as Baryons.

Of course, one may ask: why should one insist so stubbornly in finding analytic solutions
if these equations can be solved numerically? In fact, the numerical tools in the references
on nuclear pasta mentioned above are powerful enough to shed new light on this phase.
However, there are indisputable reasons which compel us, whenever it is possible, to strive
for analytic solutions nevertheless.

First of all, it could be enough to remind all the fundamental ideas that the
Schwarzschild and Kerr solutions in General Relativity and the non-Abelian monopoles and
instantons in Yang-Mills-Higgs theory disclosed. Consequently, an analytic tool to study
the nuclear pasta phase can greatly enlarge our understanding of this complex phase. Sec-
ondly and most importantly, our analysis discloses relevant differences in the nuclear pasta
phase arising from the competition between nuclear spaghetti and nuclear lasagna (which
would have been hard to discover without the present analytic tools).

The methods introduced in [32–46] and [47] allowed the construction of several analytic
and topologically non-trivial solutions of the Skyrme model at finite Baryon density. As
far as the present paper is concerned, there are two relevant configurations analyzed in
those references. The first family corresponds to ordered Baryonic arrays in which (most
of) the topological charge and total energy are concentrated within tube-shaped regions.1

The second family corresponds to configurations in which (most of) the topological charge
and total energy are concentrated within layers of finite width. Thus, the first family is
suitable to describe nuclear spaghetti while the second family to describe nuclear lasagna.
Indeed, on the nuclear spaghetti side, the similarity of the contour plots in [40] with the
spaghetti-like configurations found (numerically) in the nuclear pasta phase (see the plots
in [1–5] and [12]) is quite remarkable. On the nuclear lasagna side, the contour plots of
the energy density and Baryon density, which can be found using the results in [39], are

1In [48, 49] and [50], numerical string shaped solutions in the Skyrme model with mass term have been
constructed. However, those configurations have a zero topological density (and they are expected to decay
into Pions). The configurations analyzed in the present paper are topologically non-trivial and therefore
can not decay into those of [48, 49] and [50].
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very close to the numerical plots in [1–5], for the lasagna case. Moreover, in [47] the shear
modulus of lasagna configurations has been estimated analytically, the result being close to
recent numerical studies in [7] and [11]. These results clearly show that the Skyrme model
is suitable to describe the nuclear pasta phase both qualitatively and quantitatively. With
only two exceptions in the lasagna case (namely, [38] and [47]), all the analytic results
useful for the nuclear pasta phase (namely [33–37, 39–41, 43–46]) have been obtained in
the case of the SU(2)-Skyrme model.

In the present manuscript we will extend the results of all the above references to
the case of the SU(N)-Skyrme model for generic N . This is quite important from the
viewpoint of the applications of the Skyrme model since in many concrete situations (such
as the nuclear pasta phase) it could be relevant the inclusion of more flavors beyond Pions,
Neutrons and Protons: in particular, the most relevant cases (beyond N = 2) are N = 3
and N = 4. Moreover, this generalization to generic N also allows to use the concept of
non-embedded solutions (introduced in [26] and [27, 28]) which are solutions of the SU(N)-
Skyrme model which cannot be written as trivial embeddings of SU(2) in SU(N). Thus,
combining the strategy of [40–42, 44, 45, 47], with the generalization of the Euler angles
to SU(N) of [51–53], we will construct non-embedded multi-Baryonic solutions of nuclear
spaghetti and nuclear lasagna.

The present analytic framework allows to write the explicit analytic formulas for the
energy density and the total energy of these configurations for generic N , for large values
of the Baryonic charge B and for each value of the size of the spatial volume within these
configurations are living. One can compare the energy (seen as a function of the volume)
of nuclear spaghetti with the energy of nuclear lasagna for fixed values of the Baryonic
charge and fixed N : the result is that in the high density regime (but still well within
the range of validity of the Skyrme model) the lasagna configurations are favored while
at low density the spaghetti configurations are favored. In fact, the comparison between
the magnetic field decay of neutron stars and their corresponding spin evolution obtained
by numerical methods in references [54] and [55], suggests that such structures exist. In
the light of the fact that lasagna and spaghetti phases are expected to have quite different
physical properties (see [12] and references therein).

A possible criticism to the present analytic results is the following: all these configu-
rations have been constructed with a careful choice of the ansatz for lasagna and spaghetti
in the Skyrme case. In the ’t Hooft expansion, one should expect subleading corrections
to the Skyrme model (see, for instance, [56–60] and [61]) which may spoil the present con-
struction at subleading orders. However, the results in [42] strongly suggest that the same
ansatz used in the present manuscript allows to construct these configurations at any order
in the ’t Hooft expansion analytically, no matter how many subleading terms are included.

The paper is organized as follows. In section 2 we give a brief review of the SU(N)-
Skyrme model together with the general parameterization for the fundamental fields. In
section 3 we construct analytical solutions describing the nuclear spaghetti phase for generic
values of N and we study its main features as the energy density distribution in terms of
the Baryonic charge, the flavor number and density. In section 4 we first review the
nuclear lasagna phase and then we compare both configurations. Also we briefly discuss
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the large N limit of our configurations, the subleading corrections and the inlcusion of
a Isospin chemical potential. In the final section some conclusions and perspectives will
be presented.

2 The theory

In this section we briefly review the SU(N)-Skyrme model that describes the low energy
limit of QCD at the leading order in the ’t Hooft expansion (see [21–28], [29–31] and
references therein) and we present the general parameterization for the fields that will be
used to construct topological soliton solutions.

2.1 The SU(N)-Skyrme model

The action of the SU(N)-Skyrme model in (3 + 1) dimensions is

I =
∫
d4x
√
−g
[
K

4 Tr
(
RµR

µ + λ

8FµνF
µν
)]

, (2.1)

Rµ = U−1∇µU , Fµν = [Rµ, Rν ] , U(x) ∈ SU(N) ,

where ∇µ is the Levi-Civita covariant derivative, K and λ are positive coupling con-
stants and g is the metric determinant. In our convention c = ~ = 1 and Greek indices
{µ, ν, ρ, . . .} run over the four dimensional space-time with mostly plus signature. Latin
indices {i, j, k, . . .} are reserved for those of the internal space.

The Skyrme field U is a map over the space-time taking values in the SU(N) Lie group
(being N the flavor number), so that

Rµ = Riµti ,

is in the su(N) Lie algebra, where ti are the infinitesimal generators of the SU(N) group.
We will see below that, for a given irreducible representation of the group, it is possi-
ble to construct analytic Baryonic configurations by deformations of embeddings of three
dimensional Lie groups into SU(N).

The field equations of the model are obtained varying the action in eq. (2.1) w.r.t. the
U field,

∇µ
(
Rµ + λ

4 [Rν , Fµν ]
)

= 0 , (2.2)

being these (N2 − 1) non-linear coupled second order differential equations.
The energy-momentum tensor, which is obtained using the standard formula

Tµν = −2 ∂L
∂gµν

+ gµνL ,

turns out to be

Tµν = −K2 Tr
(
RµRν −

1
2gµνRαR

α + λ

4

(
gαβFµαFνβ −

1
4gµνFαβF

αβ
))

. (2.3)
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The topological charge is defined by

B = 1
24π2

∫
Σ
ρB , ρB = εabcTr

[(
U−1∂aU

) (
U−1∂bU

) (
U−1∂cU

) ]
, (2.4)

where {a, b, c} are spatial indices. When the topological charge density ρB in eq. (2.4) is
integrated on a space-like surface, B turns out to be the Baryonic number.2 Since we are
interested in describing states of Baryons, we need to impose that ρB 6= 0.

2.2 General parameterization

As one of our aims is the analysis of the finite density effects on the multi-solitons, we need
to put the system within a box of finite volume. The simplest way to achieve this goal is
to use the following flat metric

ds2 = −dt2 + L2
rdr

2 + L2
θdθ

2 + L2
φdφ

2 , (2.5)

where the adimensional spatial coordinates have the ranges

0 ≤ r ≤ 2π , 0 ≤ θ ≤ 2π , 0 ≤ φ ≤ 2π , (2.6)

so that the solitons are confined in a box of volume V = (2π)3LrLθLφ. It is worth to
emphasize here a relevant point: the ranges in eq. (2.6) are enforced by the theory of Euler
angles for SU(N) [51–53]. On the other hand, the constants Lr, Lθ and Lφ have dimensions
of length. If one chooses physical unities such that K = 1 and λ = 1, then one would be
measuring lengths in Fermi, fm. The natural units of density is ρ ∼ 1/(volume).

A remark is in order. While more or less everybody agrees on the value of the coupling
constant K, the value of λ is still under discussion. A typical way to fix λ is analyzing the
properties of nucleons, as in [29]. However, the size of the Skyrme coupling can change
depending on whether one focuses on the properties of a single nucleon or of nuclear matter;
see the discussion in [31].

For the Skyrme field U(x) ∈ SU(N) we use a parameterization in terms of the gener-
alized Euler angles [51–53], that is

U = eχ(x) (~n·~T ) , (2.7)
~n = (sin Θ sin Φ, sin Θ cos Φ, cos Θ) , (2.8)

where ~T = (T1, T2, T3) are three matrices of a given representation of the Lie algebra su(N),
which will be chosen in order to satisfy (see appendix A for more details) the following
relations

[Tj , Tk] = εjkmTm , Tr(TjTk) = −N(N2 − 1)
12 δjk .

In principle the functions χ, Θ, Φ that appear in the ansatz in eqs. (2.7) and (2.8) can
depend on all the coordinates, but (in the next section) we will choose these functions in

2We will see below that the Baryonic number for both nuclear pasta phases depends explicitly on the
flavor number N .
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such a way to obtain analytical solutions with high topological charge. Then χ will be
identified as the soliton profile.

From eqs. (2.4), (2.7) and (2.8) it follows that the topological charge density goes as

ρB ∼
(

sin2
(
χ

2

)
sin Θ

)
dχ ∧ dΘ ∧ dΦ , (2.9)

and therefore, as we want to consider only topologically non-trivial configurations, we must
demand that

dχ ∧ dΘ ∧ dΦ 6= 0 . (2.10)

It is important to note that eq. (2.10) is a necessary but, in general, not sufficient condition.
In the next section we will show the convenient form that the functions χ, Θ and Φ should
take and the appropriate boundary conditions that lead to a non-vanishing topological
charge identified as the Baryonic number.

3 Nuclear spaghetti phase

In this section we will show that the SU(N)-Skyrme model admits analytical solutions
describing crystals of Baryonic tubes (nuclear spaghetti phase) at finite volume.

3.1 The ansatz

We need a good ansatz that respect the condition in eq. (2.10) to have a non-vanishing
topological charge and also simplifies as much as possible the field equations in eq. (2.2) in
order to have analytic solutions describing Baryonic states. According to eq. (2.2), a good
set of conditions that allows to considerably simplify the field equations are

∇µΦ∇µχ = ∇µχ∇µΘ = ∇µΦ∇µΦ = ∇µΘ∇µΦ = 2Θ = 2Φ = 0 . (3.1)

Following the analysis in [40] and [41] one can see that a suitable choice that satisfies both
of the above criteria (specified in eqs. (2.10) and (3.1)) is the following:

χ = χ (r) , Θ = qθ , Φ = p

(
t

Lφ
− φ

)
, (3.2)

q = 1
2(2v + 1) , v ∈ N , p 6= 0 .

It is worth to note here that p needs not to be an integer (as what is important is that
both n and np should be integer where n is defined in eq. (3.11) here below since n is related
to the number of spaghetti in the box while np is related to the Baryon charge). As the
analysis in the following sections will show, the energy-momentum tensor and the Baryon
density do not depend on the cooordinate φ while they do depend on r and θ (that’s why
these configurations describe nuclear spaghetti). Thus, p represents the Baryon number
per unit of Lφ. Hence, intuitively, values of p less than 1 represents low Baryon density
per unit of length while values greater than 1 represents high Baryon density per unit of
length of spaghetti configurations.
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The above ansatz has allowed the construction of crystals of Baryonic tubes as well
as superconducting tubes in the SU(2)-Skyrme model [40], [41, 42, 44]. Furthermore, the
ansatz in eq. (3.2) has a sort of universal character since it allows to construct this kind
of solutions also in the low energy limit of QCD [42], making it clear that no matter how
many subleading terms in the ’t Hooft expansion are additionally considered in the Skyrme
action, the good properties of the above ansatz remain intact. That is the reason why we
will use the ansatz in eqs. (2.5), (2.7), (2.8) and (3.2) as a starting point for the construction
of topological solitons in the SU(N) case.

On the other hand, the matrices Ti define a three dimensional subalgebra of su(N)
(see for example appendix D of [47]) and are given explicitly as

T1 = − i2

N∑
2

√
(j − 1)(N − j + 1)(Ej−1,j + Ej,j−1) , (3.3)

T2 = 1
2

N∑
2

√
(j − 1)(N − j + 1)(Ej−1,j + Ej,j−1) , (3.4)

T3 = i
N∑
1

(
N + 1

2 − j
)
Ej,j , (3.5)

with
(Ei,j)mn = δimδjn ,

being δij the Kronecker delta (see appendix A for more mathematical details).

3.2 Solving the system analytically

It is a direct computation to verify that, according to the ansatz defined in
eqs. (2.5), (2.7), (2.8) and (3.2), the components of the tensor Rµ are

Rt = p

Lφ
(sinχτ3 + (1− cosχ)τ2) sin(qθ) ,

Rr = χ′τ1 ,

Rθ = q(sinχτ2 − (1− cosχ)τ3) ,

Rφ = − LφRt ,

while the non-vanishing components of Fµν turns out to be

Ftr = p

Lφ
(sinχτ2 − (1− cosχ)τ3)χ′ sin(qθ) ,

Ftθ = − 2pq
Lφ

(1− cosχ) sin(qθ)τ1 ,

Frθ = q(sinχτ3 + (1− cosχ)τ2)χ′ ,

Frφ = LφFtr ,

Fθφ = LφFtφ ,

– 7 –
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where

τ1 = ~n · ~T , τ2 = ∂Θτ1 , τ3 = 1
sin Θ∂Φτ1 , [τi, τj ] = εij

kτk .

From the above, the (N2−1) coupled field equations of the Skyrme model in eq. (2.2) with
the ansatz defined in eqs. (2.5), (2.7) and (3.2) are reduced to just one single ODE for the
profile χ, namely(

1 + λq2

L2
θ

sin2
(
χ

2

))
χ′′ − q2L2

r

L2
θ

(
1− λ

4L2
r

χ′2
)

sin(χ) = 0 . (3.6)

Note that eq. (3.6) does not depend on N , so that the Skyrme equation is independent of
the Lie group under consideration.3 Futhermore, the above equation can be reduced to the
following first order ODE(

1 + q2λ

L2
θ

sin2
(
χ

2

))
χ′2 + 2L2

rq
2

L2
θ

cos(χ) = E0 , (3.7)

where E0 is an integration constant. Eq. (3.7) is explicitly solvable in terms of generalized
Elliptic Integrals [62–64] and it is reducible to the following quadrature

dχ

η(χ,E0) = ±dr , η(χ,E0) = ±
[
E0L

2
θ − 2L2

rq
2 cos(χ)

L2
θ + q2λ sin2(χ2 )

] 1
2
. (3.8)

The integration constant E0 plays a fundamental role in determining the Baryonic charge,
as we will see here below.

3.3 A constraint from stability

When the field equations reduce to a single equation for the profile in a topologically non-
trivial sector (as in the present case) one says that “the hedgehog property holds”. Often
(although not always, see [65, 66] and references therein) the most dangerous perturbations4

are those perturbations of the profile which keep the hedgehog property.
In the present case, these dangerous perturbations are of the following form:

χ→ χ+ εξ (r) , |ε| � 1 , (3.9)

which do not change the SU(N) Isospin degrees of freedom but only the profile. It is a
direct computation to show that the linearized field equations under the perturbation in
eq. (3.9) always has the following zero-mode: ξ (r) = ∂rχ (r), where χ is the solution of
the field equations (satisfying the boundary conditions defined here below). From this we
can deduce a constraint (which is a necessary condition for stability) on the integration
constant E0 in eqs. (3.7) and (3.8), namely

E0 >
2L2

rq
2

L2
θ

.

If the above condition is satisfied the zero mode ξ (r) = ∂rχ (r) has no node (since ∂rχ (r)
does not vanish in this case) and so the system is stable under these perturbations.

3We will see below that, although the profile does not depend on N , both the energy and the Baryonic
charge are functions of N , as expected.

4Namely, a perturbation which could lead to a decrease in the energy of the system.
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3.4 Boundary conditions and Baryonic charge

From eq. (2.4) and using eqs. (2.7), (2.8) and (3.2) we can compute the topological charge
density of the configurations presented above, which turns out to be

ρB = N(N2 − 1) pq sin(qθ) sin2
(
χ

2

)
χ′ . (3.10)

We see that, in fact, the topological charge density depends on the Lie group through the
factor N(N2−1). Integrating the above over a space-like hypersurface in the ranges defined
in eq. (2.6), we arrive to the following expression for the topological charge

B = 2npN(N2 − 1)
12 , (3.11)

where we have used the following boundary conditions

χ(0) = 0 , χ(2π) =2nπ , (3.12)

with n an integer and q specified in eq. (3.2). These conditions arises if we require the U
field to cover an entire cycle in the range of the coordinates in eq. (2.6). As shown in [52],
this is accomplished imposing that the variables explicitly appearing in the “measure” in
eq. (3.10) must run in a range where the measure is non-vanishing. This fact immediately
implies that θ ∈ [0, π/q] (for a fundamental solution) and χ ∈ [0, 2π]. Therefore the
topological charge for the spaghetti phase depends on N and it is labeled by the integer n
that appears in the boundary conditions in eq. (3.12) and the value of p in the ansatz in
eq. (3.2). Note that the integration constant E0 in eq. (3.8) is fixed in terms of n through
the equation

n

∫ 2π

0

1
η(χ,E0)dχ = 2π , (3.13)

that will always have a real solution.
We want to remark here that, despite our choice of the ranges may look to define periodic
boundary conditions, it is not the case. The boundary condition are chosen so that the map
embedding the spatial rectangle into the SU(N) exactly wraps a cycle in H3(SU(N),Z).
This is a topological condition necessary to have a non vanishing Baryon number, while it
is easy to see that periodic boundary conditions in all variables would lead to a vanishing
Baryon number (see [51, 52]).

3.5 Characterizing the SU(N) nuclear spaghetti phase

At this point it is important to emphasize that using the ansatz introduced in section 3.1 we
have reduced the complete set of Skyrme equations to just one equation in eq. (3.6) for the
profile χ. Even more, this equation can be solved analytically and does not depends on N .

In what follows we will set the values of the coupling constants as K = 2 and λ = 1 for
the numerical computations. We will also define the density in the case Lr = Lθ = Lφ ≡ L,
as ρ = 1/(2πL)3.

Figure 1 shows the behavior of the profile of the soliton configurations as a function
of the parameter n, which determines different values of the Baryonic charge according to
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Figure 1. Soliton profile χ = χ(r) for different values of n, with q = 9
2 and L = 1.

eq. (3.11). Now, even though the Skyme equation does not depend on N explicitly (see
eq. (3.6)), the energy density does. In fact, according to eq. (2.3) and using eqs. (2.5), (2.7)
and (3.2), the energy density of these configurations is

E = K

4
N(N2 − 1)p
12LrLθL2

φ

(
ρ0 + 2 sin2(qθ)ρ1

)
, (3.14)

where the functions ρ0 and ρ1 are given respectively by

ρ0 =
L2
φ

p

[
4L2

rq
2 sin2

(
χ

2

)
+
(
L2
θ + q2λ sin2

(
χ

2

))
χ′2
]
,

ρ1 = p sin2
(
χ

2

)[
4L2

r

(
L2
θ + q2λ sin2

(
χ

2

))
+L2

θλχ
′2
]
.

In figure 2 we show plots of the energy density for some of the allowed spaghetti config-
urations with B = 4, which is the lowest value of the topological charge in both N = 2
and N = 3 cases according to eq. (3.11) (see table 1 in appendix B for the explicit values
of B = B(N)) when both, the value of the parameters q and n increase. We see that the
number of peaks in the r direction increases as n increases, while the value of the parameter
q repeats the pattern in the θ direction of the lattice in which the solitons are confined.

In figure 3, in the left side, we have plotted the total energy as a function of the
Baryonic charge for different fixed values of the flavor number. In the right side we show
the behavior of the total energy in terms of the flavor number once fixed the topological
charge. From here we can see two interesting facts: when the value of N is fixed the energy
is an increasing function of B. In the opposite way, when a particular value of B is chosen,
the energy decreases with N . This means that if we consider a fixed volume box, as we add
more Baryons to the box the energy of the system increases, which is the expected result
due to the repulsion energy between Baryons. Now, if we compare the same fixed volume
box containing the same Baryonic number but for different values of the group dimension,
as we increase N the energy of the configuration will be lower. According to the above,
for example, the 4-Baryon state for the SU(3) group in figure 2 (up-right) is less energetic
than the four independent Baryons state for the SU(2) group in figure 2 (up-left). The
amount of energy per Baryon has the same behavior.
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Figure 2. Energy density for some of the allowed configurations with B = 4 for different values of
q and with p = 1 and L = 1.
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Figure 3. Left: energy versus Baryonic charge for different values of N . Right: energy versus N
for different values of B. Here p = 1, q = 1

2 and L = 1.

In figure 4 we show the behavior of the energy as the density changes; this for fixed
values of B and N and considering a cubic box in which the soltions are confined. We can
see that in the high density sector the energy of the system increases, being the divergence
at the end expected since at low scales the Skyrme model (which is an effective model of
Baryons and Pions) should be replaced by QCD. However, there is a critical point from
which the behavior reverses in such a way that at low density the energy of the system
becomes a decreasing function of the density. This “u-shaped” behavior of the energy
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Figure 4. Energy per Baryonic charge as a function of the density with q = 1
2 . We show all the

allowed configurations with B = 20 and p = 1. One can see that the behavior of the curves has the
characteristic “u-shape” of nuclear pasta shown in [12].

versus density that we can see from figure 4 is in accordance with what has been obtained
in numerical simulations of nuclear pasta (see [12]). In fact, the above is one of the main
goals of the present work: relevant features of the nuclear pasta state, that until now has
only been possible to study numerically, can be characterized from analytical solutions of
the SU(N)-Skyrme model.

Figure 5 shows that, for different configurations of nuclear spaghetti with the same
Baryonic charge, there are transitions that depend on the values of the constants p and n
that define the topological charge according to eq. (3.11). In particular, from the left plot
we see that at low densities the energetically preferable spaghetti configuration is the one
with two flavors, whereas at larger densities the configuration with three flavors has the
lowest energy. Also, from the right plot and for larger densities we can see a transition
between spaghetti configurations within the same internal group (N = 2), for different
values of p and n.

The following comment is in order. Traditionally (see, for instance, [29]) the Skyrme
coupling constant is fixed by requiring the best possible agreement with the static properties
of the Neutron and ∆++. However (while everybody agrees on the Pions coupling constant
K) there is no common agreement yet on the value of the Skyrme coupling constant λ. In
the plot in figure 5 we have used the “traditional value” for the Skyrme coupling constant
λ. On the other hand, it could be convenient to fix λ in order to get an excellent description
of nuclear pasta. We think that the present results strongly support this point of view.

Finally, there is also a transition that appears when the value of the q parameter varies.
In fact, from figure 6 we can see that as the density decreases the configurations with higher
values of q becomes the energetically favored ones.
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Figure 5. Energy per Baryonic charge as a function of the density with q = 1
2 . For B = 4 we see

(when N , p and n varies) left: at low densities the energetically preferable spaghetti configuration
in N = 2, whereas at larger densities the configuration with N = 3 has the lowest energy. Right:
we see a transition that occurs between configurations with N = 2, for different values of n and p.
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Figure 6. Energy per Baryonic charge as function of the density with B = 4 in SU(2) and
for different values of q. We see that, at high density, configurations with lower values of q are
energetically favoured while, in the low density sector, the configurations with higher values of q
are the favoured ones.

4 Nuclear spaghetti versus nuclear lasagna

In this section we will compare the nuclear spaghetti and nuclear lasagna phases.

4.1 Review of the SU(N) nuclear lasagna phase

Here we will summarize the most important features of the nuclear lasagna solutions that
were previously constructed in [47], in order to compare these solutions with the new
nuclear spaghetti phase presented in the previous section of this manuscript.
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The ansatz for the Skyrme field that allows to construct the analytic nuclear lasagna
phase, as a solution of the SU(N)-Skyrme model in eqs. (2.1) and (2.2), is given by

UL = eσΦkeh(r)emθk , (4.1)

where

σ = 2−
(−1)N +1

2 , Φ = t

Lφ
− φ , k =

N−1∑
j=1

(
cjEj,j+1 − c∗jEj+1,j

)
. (4.2)

Here m is a non-vanishing integer number and cj are arbitrary complex numbers with the
constraint that eθk must be periodic with period 2π. The last is indeed a highly nontrivial
constraint, which has been solved in [47]. We will consider again the metric of a box in
eq. (2.5) with the same ranges in the coordinates.

It is worth to remark that in [47] it has been shown that the solutions of such constraints
define a moduli space (the set of allowed cj) which becomes larger and larger with N . For a
generic choice of cj , and thus of k, in such moduli space, the linear space generated by the
matrices h(r), k and [h(r), k] is not a tridimensional subalgebra of su(N). This happens
only by choosing the parameters cj in a subset of vanishing measure of the moduli space.
This means that for a generic choice of the parameters, despite expression (4.1) has the
form of an Euler parametrization of SU(2), it does not define a subgroup of SU(N), but
just a submanifold. In this sense the Euler construction is not an embedding of SU(2) into
SU(N) as Lie groups, but only as manifolds. Remarkably, the very specific choices that give
rise to embeddings of SU(2) in SU(N) (and other simple Lie groups) have been determined
by E. Dynkin in [72]. In the very particular cases (which are instead the general case for
the spagetti construction) when the choice of the parameters defines a subgroup, then we
have an embedding which is called non-trivial if the image contains sub representations of
spin different from 0 and 1/2, and trivial otherwise. In the non trivial case, one usually says
that the corresponding solutions of the Skyrme equations are of true SU(N) type (see [47]
and references therein).

It can be directly checked that the configurations described by the ansatz in eqs. (2.5)
and (4.1) reduce the complete set of Skyrme field equation (see [47] for details) to the
following ODE:

h′′ = λq2

4L2
γ

(
[k, [k, h′′]]− [k, [h′, [h′, k]]]

)
. (4.3)

Eq. (4.3) can be directly solved, and its solution is given by

h(r) = 1
2rvε , vε =

∑
j,k

C−1
AN−1j,k

εkJj , (4.4)

where εj are signs, with ε1 = 1 and CAN−1 is the Cartan matrix for SU(N) (see [47],
Proposition 2). Here, Jj form a basis of the Cartan subalgebra of SU(N) defined as

Jj = i (Ej,j − Ej+1,j+1) .

– 14 –



J
H
E
P
1
2
(
2
0
2
1
)
1
5
0

π 2π
r

500

1000

1500

2000

2500

3000

Er

Er for N=2

B=1

B=2

B=3

B=4

B=5

B=6

B=7

π 2π
r

500

1000

1500

2000

Er

Er for N=3

B=2

B=4

B=6

B=8

B=10

B=12

Figure 7. Energy density in r for the lasagna phase for N = 2, 3 and different values of B. Here
L = 1 and q = 1

2 .

It follows that the energy density for the nuclear lasagna phase is given by

T00 = − K

2 L
2
φTr

[
R2
t + 1

2

(
R2
r

L2
r

+ R2
θ

L2
θ

)
+λ

4

(
F 2
tr

L2
r

+ F 2
tθ

L2
θ

+ 1
2
F 2
rθ

L2
r L

2
θ

)]

= K

2 ‖c‖
2L2

φ

(
m2

L2
θ

+ 1
8L2

r

‖vε‖2

‖c‖2
+ 2 σ

2

L2
φ

+ λm2

16L2
rL

2
θ

+ λσ2

8L2
φL

2
r

)

+ Kλm2σ2

L2
θ

sin2
(
r

2

)N−1∑
j=1
|cj |4 +

N−2∑
j=1
|cj |2|cj+1|2

(1
2 −

3
2εjεj+1

) , (4.5)

where we have denoted

‖c‖2 =
N−1∑
j=1
|cj |2 , ‖vε‖2 = −Tr v2

ε .

On the other hand the topological charge is

BL = 2mσ‖c‖2 . (4.6)

In particular, we are interested in the case when εj = 1 for all j, so that

‖c‖2 = Λ‖vε‖2 = Λ
12N(N2 − 1) ,

N−1∑
j=1
|cj |4 −

N−2∑
j=1
|cj |2|cj+1|2 = Λ

2 ‖c‖
2 ,

where Λ = 1
2 for odd N and Λ = 2 for even N (see appendix B for the allowed values of

the Baryonic charge as function of N).
Figure 7 shows how the energy density changes for different values of the topological

charge and for fixed values of N . Although the behavior of the energy density per Baryon
is similar, the quotient E/B does not depend on N .

In figure 8 one can see that the lasagna phase has the same behavior as the spaghetti
phase; its energy is an increasing quantity in B, and that lasagna configurations belonging
to theories with lower N are more energetic than those with larger N values.
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Figure 8. Energy per Baryonic charge versus B and energy versus N for the lasagna phase and
for different values of N and B, respectively. Here L = 1 and q = 1

2 .

4.2 Comparing nuclear spaghetti and lasagna at finite Baryon density

In this subsection, we will compare the energy densities of the lasagna and spaghetti
configurations.

First of all, it is important to note a key difference between the expressions for the topo-
logical charge of the lasagna and the spaghetti phases. Even though both configurations
depends on the group dimension N (see appendix B), the spaghetti phase also depends on
two more integers, namely n and p (see eq. (3.11)), while the lasagna depends only on the
integer m (see eq. (4.6)). Since we must compare configurations with the same Baryonic
charge, for a given value of N , in the case of the spaghetti there will be many configurations
that satisfy this requirement, while for the lasagna phase there will be only one.

According to the expressions for the energy of the spaghetti and lasagna phases in
eqs. (3.14) and (4.5), respectively, one can see that when the total energy (for fixed values
of the Baryonic charge and fixed flavor number) is computed as a function of the density,
at high density (but still well within the range of validity of the Skyrme model) the lasagna
configurations are energetically favored while at low density the spaghetti configurations
are favored (see figure 9).

It is also important to note that the q parameter present in the spaghetti-like configu-
rations plays a very important role as 2qn represents the number of spaghetti in the box.

From figure 9 it can be seen that the q parameter plays a very important role, as can
also be seen from the plots. Indeed, the plot in figure 9 confirms that at high density lasagna
configurations are energetically favoured while at low density spaghetti configurations are
energetically favoured (the density at which one type of configuration overcomes the other
depends on the parameter q).
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Figure 9. Energy per Baryonic charge of the nuclear pasta phases as a function of the density for
different values of q. Above: for p = 1, we can see that below a certain value of ρ the spaghetti phase
has a lower energy cost, while above this value the lasagna phase is the energetically desirable. Note
that the lasagna phase also exhibits the characteristic “u-shape” behavior shown in [12]. Below: for
p = 0.4 and q = 1

2 , we see that for low densities the lasagna phase has a lower energy cost, while
for high density the spaghetti phase is the energetically favored.

4.3 A comment on the large N limit

Although the large N limit of the SU(N)-Skyrme model is not directly relevant in the
phenomenology of nuclear pasta, it has a great theoretical interest since it is connected
with the Veneziano limit of the large Nc expansion of QCD, Nc being the number of colors,
in which also the flavor number N goes to infinity keeping constant N/Nc (see [67–69]
and [70]). Here below we present a result that is of interest in this context (in which it is
always an important achievement to show that physically meaningful quantities do possess
a smooth large N limit). The energy per Baryon, g(B,N,L) = E/B, for the spaghetti and
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lasagna phases are given respectively by

gS(B,N,L) =L3K(2π)2

8np

[
4ξ1(q2 + p2) + n2ξ4 + λ

L2

(
n2ξ3(q2 + p2) + 4ξ2q

2p2
)]

, (4.7)

gL(B,N,L) =L3K(2π)3

2σm

[
m2 + 1

8Λ + 2σ2 + λ

L2

(
m2

16 + σ2

8 + Λm2σ2

2

)]
, (4.8)

where we have defined the integrals

ξ1 =
∫ 2π

0
sin2

(
χ(r)

2

)
dr , (4.9)

ξ2 =
∫ 2π

0
sin4

(
χ(r)

2

)
dr , (4.10)

ξ3 = 1
n2

∫ 2π

0
sin2

(
χ(r)

2

)
η(r)2dr , (4.11)

ξ4 = 1
n2

∫ 2π

0
η(r)2dr , (4.12)

and η(r) is defined in eq. (3.8) (here, ξj do not scale with N). A fact that can be seen
explicitly from our analytical construction is that the above quantities do not depend on N
in a “significant way”. In particular, the energy per Baryon for the spaghetti case in eq. (4.7)
does not depends on N at all, while for the lasagna case in eq. (4.8) the dependence is
stored in the definition of Λ and σ and it takes different finite values depending on whether
N is even or odd. Consequently, we have shown that the energy per Baryon gS(B,N,L) in
the spaghetti case has a smooth well defined large N limit. In the lasagna case, gL(B,N,L)
also possesses a well defined large N limit provided we treat separately the case in which
N is large and even and the case in which N is large and odd.

4.4 Subleading corrections

In previous sections we mentioned that the configurations shown in this work are also
solutions of the generalized Skyrme model including higher order corrections in the ’t
Hooft limit. It is worth to emphasize that this claim could appear to be quite unrealistic
due to the extremely complex nature of the subleading corrections to the Skyrme model
arising in the ’t Hooft expansion [57–59]. Indeed, until very recently not only there was
no analytic and topologically non-trivial solution of the Skyrme field equations modified
by the corrections presented in [57–59], but such corrections were neglected also in the
numerical analysis due to their highly non-linear character.

In fact, in [42] it was shown explicitly how such corrections modify the analytic
spaghetti configurations for the SU(2) group. In order to expand these results, in this
subsection we will explicitly show a similar result for the lasagna phase in the cases of most
physical interest: namely, for the internal groups with N = 2 and N = 3.

In four dimensions, we have that the low energy limit of QCD at leading order in the
’t Hooft expansion can be described by the following action:

Î = I +
∫
d4x
√
−gLcorr , (4.13)
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where I corresponds to the Skyrme action defined above in eq. (2.1) and the terms Lcorr
represents the possible subleading corrections to the Skyrme model which can be computed,
in principle, using either Chiral Perturbation Theory (see [71] and references therein) or
the large N expansion [67, 68, 70]. The expected corrections have the following generic
form

L6 = c6
96Tr [FµνFνρFρµ] ,

L8 =− c8
256

(
Tr [FµνFνρFρσFσµ]− Tr [{Fµν , Fρσ}FνρFσµ]

)
, (4.14)

and so on [57–59], where the cp (p ≥ 6) are subleading with respect to K and λ.
The field equations of the model are obtained varying the action in eq. (4.13) w.r.t.

the U field. To perform this derivation it is useful to keep in mind the following relation

δURµ = [Rµ, U−1δU ] + ∂µ(U−1δU) ,

where δU denotes variation w.r.t. the U field. From the above, the field equations of the
generalized Skyrme model turns out to be

K

2

(
∂µRµ + λ

4∂
µ[Rν , Fµν ]

)
+3c6[Rµ, ∂ν [F ρν , Fρµ]]

+ 4c8

[
Rµ, ∂ν

(
F νρFρσF

σµ + FµρFρσF
νσ + {Fρσ, {Fµρ, F νσ}}

)]
= 0 . (4.15)

On the other hand the energy-momentum tensor of the theory including the subleading
corrections is

Tµν = T Sk
µν + T (6)

µν + T (8)
µν , (4.16)

where a direct computation reveals that

T (6)
µν =− c6

16Tr
(
gαγgβρFµαFνβFγρ −

1
6gµνFα

βFβ
ρFρ

α
)
,

T (8)
µν = c8

32Tr
(
gαρgβγgδλFαµFνβFγδFλρ + 1

2{Fµα, Fλρ}{Fβν , Fγδ}g
αγgβρgδλ

− 1
8gµν(FαβFβρFρσFσα − {Fαβ , Fρσ}FβρFσα)

)
.

Now, considering the very same ansatz for the lasagna phase given in eqs. (4.1) and (4.2) we
obtain that the complete set of coupled Skyrme field equations reduce the single integrable
ODE for the SU(2) and SU(3) cases, respectively(

16KL2
rL

2
θ(4L2

θ +m2λ)− 3c8m
4h′2

)
h′′ = 0 , (4.17)(

4KL2
rL

2
θ(4L2

θ +m2λ)− 3c8m
4h′2

)
h′′ = 0 . (4.18)

We write the field equations in this way in order to make clear that the inclusion of these
corrections keep intact the nice structure of the field equations. It is also quite manifest

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
1
5
0

that the lasagna solutions presented in this work, when the profile h(r) is a linear function
as in eq. (4.4), also satisfy the field equations of this generalized model. This is a quite
remarkable result in itself since, until very recently, such corrections were not even included
in numerical analysis while with the present approach can be studied analytically.

Now, despite the fact that the high order corrections do not affect the structure of the
field equations, these terms do play a rol in the physical properties of these configurations.
In particular, the energy density of this phase will be modified according to

T
(6)
00 = 1

128
c6m

2

L2
rL

2
θL

2
φ

sin2
(
r

2

)
,

T
(8)
00 = 1

214
c8m

2

L4
rL

4
θL

2
φ

(
8L2

θ + (8L2
r − L2

φ)m2 + 4(L2
θ − 2L2

rm
2) cos(r)

)
,

for SU(2) and

T
(6)
00 = 1

32
c6m

2

L2
rL

2
θL

2
φ

sin2
(
r

2

)
,

T
(8)
00 = 1

210
c8m

2

L4
rL

4
θL

2
φ

(
8L2

θ + (8L2
r − L2

φ)m2 + 4(L2
θ − 2L2

rm
2) cos(r)

)
,

for the SU(3) case.
It is worth to note that the fact that the N = 3 solution has lower energy in the ground

state than the N = 2 solution is an artifact of the model which can be taken into account
including subleading corrections in the ’t Hooft large-Nc expansion. However, although in
the present approach these subleading corrections do not spoil the integrability of the field
equations, such corrections certainly make the analytic formulas for the energy density and
other relevant physical quantities considerably more cumbersome (see also [42]). Therefore,
we decided to consider explicitly only the Skyrme model since it already captures a great
deal of novel physical information on the nuclear pasta phase keeping, at the same time, the
analytic formulas readable. We plan to work on the effects of these subleading corrections
in a future publication.

4.5 Isospin chemical potential

We have shown in previous sections that the inclusion of a suitable time-dependence in the
ansätze, both for lasagna and spaghetti phases (see eqs. (3.2) and (4.2)), is one of the key
ingredients that allows the field equations to be considerably reduced, leading to a single
integrable ODE equation for the profiles. This time-dependence offers a nice short-cut
to estimate the “classical Isospin” of the configurations analyzed in the present paper (a
relevant question is whether or not the classical Isospin is large when the Baryonic charge
is large). In particular, one may evaluate the “cost” of removing such time-dependence.
Such a cost is related to the internal Isospin symmetry of the theory. This is like trying
to estimate the angular momentum of a spinning top by evaluating the cost to make the
spinning top to stop spinning. In the present case, the time-dependence of the configura-
tions can be removed from the ansätze by introducing a Isospin chemical potential; then
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the isospin chemical potential needed to remove such time-dependence is a measure of the
classical Isospin of the present configurations. We will see how this works for the simplest
SU(2) case, where the generators are tj = iσj , being σj the Pauli matrices (higher SU(N)
behave in a similar way).

As it is well known, the effects of the Isospin chemical potential can be taken into
account by using the following covariant derivative

∇µ → Dµ = ∇µ + µ̄[t3, ·]δµ0 . (4.19)

Now, we will use exactly the same ansatz as before in the spaghetti SU(2) case, but this
time without the time dependence:

U = eχ(x) (~n·~t) ,

~n = (sin Θ sin Φ, sin Θ cos Φ, cos Θ) ,

where

χ = χ (r) , Θ = qθ , Φ = pφ ,

q = 1
2(2v + 1) , p, v ∈ N , p 6= 0 ,

together with the introduction of the Isospin chemical potential in eq. (4.19) in the theory.
One can check directly that the complete set of Skyrme equations can still be reduced to
the same ODE for the profile χ (r) in the case of the spaghetti phase in eq. (3.6) only
provided the Isospin chemical potential for the spaghetti phase is given by

µ̄S = p

Lφ
. (4.20)

In other word, the cost to eliminate the time-dependence is to introduce an Isospin chemical
potential which is large when the Baryonic charge of the spaghetti is large. Something
similar happens in the case of the lasagna phase. Let us consider the ansatz in terms of
the Euler angles but without the time-dependence for the SU(2) case:

UL = eΦt3eHt2eΘt3 ,

where
Φ = pφ , H = h(r) , Θ = mθ , p,m ∈ N .

Let us introduce the Isospin chemical potential, demanding that the profile h(r) should
be the same as before. Then, as in the spaghetti case, the Skyrme field equations with
chemical potential can still be satisfied by the very same profile h(r) provided we fix the
Isospin chemical potential as

µ̄L = pm

(p2L2
φ +m2L2

θ)
1
2
. (4.21)

At this point it is important to remember that in the SU(2) case the lasagna and spaghetti
type solutions have the following values for the topological charges

BS = np , BL = mp ,
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see [39] and [40] for more details. Therefore, from the above computations it can be seen
that the price to pay to eliminate the time-dependence from the configurations discussed
in the previous sections is to introduce an Isospin chemical potential which grows as the
Baryonic charge of these configurations grows. These arguments show that the “classical
Isospin” of configurations with high Baryonic charge is large. Finally, it is important to
point out that the large Isospin case corresponds to either neutron rich or proton rich
matter and due to Coulomb effects (not taken into account in this model), the neutron rich
solution is preferred. This is very nice for the physics relevant for neutron stars.5

5 Conclusions and perspectives

In this manuscript, by combining the strategy of [40–42, 44, 45] and [47] with the generaliza-
tion of the Euler angles to SU(N) of [51, 52] and [53], we have constructed multi-Baryonic
solutions living at finite Baryon density in the SU(N)-Skyrme model for generic values
of the number of flavors and with arbitrary values of the topological charge. The energy
density of these configurations is concentrated either in tube-shaped regions (suitable to
describe the nuclear spaghetti phase) or within Baryonic layers of finite width (suitable to
describe the nuclear lasagna phase). To the best of author’s knowledge, this is the first
systematic tool to construct analytic topologically non-trivial solutions of such complexity
in the SU(N)-Skyrme model for generic N . The physical interest of the present configu-
rations is confirmed, for instance, by the fact that our construction shows explicitly that,
at lower densities, configurations with N = 2 light flavors are favoured while, at higher
densities, configurations with N = 3 are favoured. This is a quite non-trivial test of the
present approach as a serious analytic candidate to describe the nuclear pasta phase.

The importance of these analytic results arises from the fact that they allow to compare
explicitly a relevant physical properties of nuclear lasagna and nuclear spaghetti. For
instance, one can see that for high density (but still well within the range of validity
of the Skyrme model) the lasagna configurations are favored while at low density the
spaghetti configurations are favored. Since the physical properties (such as thermal and
electric conductivities) of lasagna and spaghetti phases are very different (see [12] and
references therein), our results can have interesting phenomenological implications in high
density particles physics, neutron stars and so on. We have also discussed relevant physical
quantities (such as the energy per Baryon) which have a smooth large N limit. We hope
to come back on the intriguing observable effects related to the present results in a future
publication.
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A Mathematical tools

In this appendix we want to recall some main facts about the groups SU(N). Recall that
SU(N) is the compact simply connected real group consisting on the set of N ×N complex
matrices U satisfying the relations

U †U = I , (A.1)
detU = 1 , (A.2)

where I is the N ×N identity matrix. Its corresponding Lie algebra is the real vector space
of traceless anti-Hermitian matrices

A = −A† . (A.3)

To see this, consider a curve U(t) ∈ SU(N), such that U(0) = I. By definition, the element
of the Lie algebra are the matrices of the form

A = dU

dt
(0) .

Deriving the relation
U(t)†U(t) = I ,

we get to
dU †

dt
(t)U(t) + U(t)†dU

dt
(t) = O ,

where O is the zero N × N matrix. Setting t = 0 gives A† + A = O, which show anti-
Hermitian-ness. Reality follows from the fact that linear combinations of anti-Hermitian
matrices is anti-Hermitian if and only if the coefficients are real. The traceless condi-
tion follows from the speciality condition in eq. (A.2). Indeed, recall that developing the
determinant of a matrix X with respect to the j-th row one has

detX =
∑
k

xjkcofjk(X) ,

where xij are the matrix elements and cofjk(X) is (−1)j+k times the determinant of the
reduced matrix after eliminating the j-th row and the k-th column. From this we get to

d

dxjk
detX = cofjk(X) .

Therefore, deriving eq. (A.2) w.r.t. t in t = 0 gives (for ujk the matrix elements of U)

0 = d

dt
detU

∣∣∣∣
t=0

=
∑
j,k

d(detU(t))
dujk(t)

dujk
dt

∣∣∣∣∣∣
t=0

=
∑
j,k

cofjk(U(0))Ajk . (A.4)

On the other hand, using that U(0) = I and cofjk(I) = δjk, we lead to

0 =
∑
j,k

δjkAjk =
∑
j

Ajj = Trace(A) . (A.5)

In particular, Lie(SU(N)) ≡ su(N) has dimension (N2 − 1).
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Recall that one can back from the algebra to the group by mean of the exponential map

exp : Lie(G) −→ G , A 7−→ expA , (A.6)

which for a matrix group is

expA = I +
∞∑
n=1

1
n!A

n .

In particular, for a compact Lie group exp is surjective, so any group element can be written
as an exponential. Therefore, fixing a basis tj for the algebra, any element of the group
can be written as

g = exp
(∑

j

xjtj

)
, xj ∈ R .

For SU(N) a convenient basis is given by the anti-Hermitian Gell-Mann matrices con-
structed as follows (see [51]):

ta2−1 =
√

2
a(a− 1)

(
a−1∑
j=1

Ej,j − (a− 1)Ea,a

)
, a = 2, . . . , N, (A.7)

t1 = −i(E1,2 + E2,1) , t2 = E1,2 − E2,1, (A.8)

ta2−1+2j = Ej,a+1 − Ea+1,j , j = 1, . . . , a,
a = 2, . . . , N − 1, (A.9)

ta2−2+2j = −i(Ej,a+1 + Ea+1,j) , j = 1, . . . , a,
a = 2, . . . , N − 1. (A.10)

Here Ej,k is the N×N matrix whose only non zero element is (Ej,k)jk = 1. The Gell-Mann
matrices tA, A = 1, . . . , (N2 − 1), are normalized, so that

−1
2Tr(tAtB) = δAB .

There are (N − 1) diagonal matrices according to the fact that SU(N) has rank (N − 1).
We can also determine the maximal embedding of SU(2) inside SU(N). This is obtained
by identifying N as the dimension of an irreducible representation of SU(2). This means
that we have to consider the representation of spin j = (N − 1)/2. This is standard and
given by the matrices in eqs. (3.3), (3.4) and (3.5). In particular, we see that we get a
Bosonic representation for N odd and a Fermionic representation for N even.

B Topological charge for the nuclear phases

The allowed values of the topological charge for the spaghetti and lasagna phases depends
on the flavor number N , that are explicitly shown in eqs. (3.11) and (4.6). This determines
that for a given value of N the topological charge cannot take arbitrary values. In table 1,
we show the allowed values of the topological charge from N = 2 to N = 10.
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Baryonic charge as B = B(N)
N Spaghetti Lasagna

2 np = {1, 2, 3, 4, . . .} m = {1, 2, 3, 4, . . .}
3 4np = {4, 8, 12, 16, . . .} 2m = {2, 4, 6, 8, . . .}
4 10np = {10, 20, 30, 40, . . .} 10m = {10, 20, 30, 40, . . .}
5 20np = {20, 40, 60, 80, . . .} 10m = {10, 20, 30, 40, . . .}
6 35np = {35, 70, 105, 140, . . .} 35m = {35, 70, 105, 140, . . .}
7 56np = {56, 112, 168, 280, . . .} 28m = {28, 56, 84, 112, . . .}
8 84np = {84, 168, 252, 336, . . .} 84m = {84, 168, 252, 336, . . .}
9 120np = {120, 240, 360, 480, . . .} 60m = {60, 120, 180, 240, . . .}
10 165np = {165, 330, 495, 660, . . .} 165m = {165, 330, 495, 660, . . .}

Table 1. Baryonic charge of the nuclear spaghetti and lasagna phases for different values of N .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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