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Abstract: Introduction: The aims of this study were to assess the concordance of different tools and to
describe the accuracy of a multimodal approach to predict unfavorable neurological outcome (UO)
in cardiac arrest patients. Methods: Retrospective study of adult (>18 years) cardiac arrest patients
who underwent multimodal monitoring; UO was defined as cerebral performance category 3–5 at
3 months. Predictors of UO were neurological pupillary index (NPi) ≤ 2 at 24 h; highly malignant
patterns on EEG (HMp) within 48 h; bilateral absence of N20 waves on somato-sensory evoked
potentials; and neuron-specific enolase (NSE) > 75 µg/L. Time-dependent decisional tree (i.e., NPi on
day 1; HMp on day 1–2; absent N20 on day 2–3; highest NSE) and classification and regression tree
(CART) analysis were used to assess the prediction of UO. Results: Of 137 patients, 104 (73%) had UO.
Abnormal NPi, HMp on day 1 or 2, the bilateral absence of N20 or NSE >75 mcg/L had a specificity of
100% to predict UO. The presence of abnormal NPi was highly concordant with HMp and high NSE,
and absence of N20 or high NSE with HMp. However, HMp had weak to moderate concordance with
other predictors. The time-dependent decisional tree approach identified 73/103 patients (70%) with
UO, showing a sensitivity of 71% and a specificity of 100%. Using the CART approach, HMp on EEG
was the only variable significantly associated with UO. Conclusions: This study suggests that patients
with UO had often at least two predictors of UO, except for HMp. A multimodal time-dependent
approach may be helpful in the prediction of UO after CA. EEG should be included in all multimodal
prognostic models.

Keywords: electroencephalography; post-anoxic; pupillometry; evoked potentials; neuroprognosti-
cation; NSE

1. Introduction

Sudden cardiac arrest (CA) is a common disease [1]; despite all the advances in
cardiopulmonary resuscitation (CPR), survival of CA victims is around 10% [2,3]. After
the return of spontaneous circulation (ROSC), the global ischemia/reperfusion injury, (i.e.,
post cardiac arrest syndrome) including brain injury, myocardial dysfunction, systemic
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inflammatory response [4], is responsible for a large proportion of in-hospital mortality [5].
Moreover, most deaths will occur because of severe post-anoxic brain injury [6].

Severe post-anoxic brain injury is characterized by persistent coma or even associated
with the absence of brainstem reflexes. The use of targeted temperature management
(TTM) as a neuroprotective strategy [7] requires the need for sedative and analgesic drugs,
which would limit the accuracy of clinical neurological examination to predict neurological
outcomes in CA patients [8]. As such, additional prognostic tools are needed. In 2021, Inter-
national Guidelines recommended assessing neurological prognosis among comatose CA
survivors using a combination of different tests; in particular, poor outcome would likely
occur when two or more predictors, including highly malignant electroencephalography
(EEG, considered as suppressed background or burst-suppression) at >24 h, neuron-specific
enolase (NSE) >60 mcg/L at 48 h and/or 72 h, absence of pupillary and/or corneal reflex at
>72 h, absence of cortical response (N20) to short-latency somatosensory evoked potentials
(SSEPs) at >24 h, onset of status myoclonus ≤72 h, extensive brain injury at MRI/CT scan,
were present [3].

Quantifying post-anoxic brain injury is essential to avoid inappropriate intensive
care for patients with irreversible damage and to delay the awakening for patients with
a chance of recovery. In recent years, several studies have provided new insights into
the prognostic values of all these tools, in particular early EEG findings and pupillary
assessment using automated pupillometry [9–12]. Moreover, it remains unclear which is
the optimal combination of prognostic tools, as some could provide the same information
and therefore be considered as redundant. Finally, as the different prognostic tools have the
best predictive value at different time-points, the evaluation of a combination of different
prognostic tools based on a multimodal decision would provide accurate information on
how to predict UO in this setting.

The aims of this study were therefore to: (a) evaluate the prognostic value of different
predictive tools in CA patients; (b) assess the concordance of different tools to identify UO;
and (c) describe the accuracy of a multimodal approach to predict neurological prognosis.

2. Materials and Methods
2.1. Study Design

This study was a monocentric retrospective study using data prospectively collected
that was performed between January 2016 and March 2019. The study was approved by
the Ethics Committee of Erasme Hospital (reference: P2019/211), which waived the need
for an informed consent because its retrospective design.

2.2. Patients

This cohort study included adult patients (>18 years) who remained with a Glasgow
coma scale (GCS) <9 after hospital admission and were admitted into the intensive care
unit (ICU) of Erasme Hospital. We excluded patients with early deaths or awakening
(<24 h) who did not have at least two prognostic tools assessed. Patients’ management is
described elsewhere [13]. Unfavorable neurological outcome at 3 months was defined as
cerebral performance category score (CPC) 3–5.

2.3. Neurological Outcome Assessment

Neurological examination (at minimum, motor response and PLR using a manual
flash lamp) was performed on admission and then at least twice daily thereafter. “Poor
motor response” was defined as absent motor response or posturing (GCS-M < 3) on
day 3. EEG recording was initiated as soon as possible after ICU admission and continued
for at least 48 h; the presence at EEG of highly malignant patterns (HMp, considered
as persistent suppression, suppression-burst and its variants suppression-seizure and
suppression-generalized periodic discharges/generalized spike and wave) and lack of
reactivity, considered as absence of EEG changes to external stimulation were recorded
during the first 24 h (day 1) and at day 2. For this study, all EEG traces were reviewed by an
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experienced neurophysiologist, who was blinded to the neurological status of the patient.
Repeated pupillary assessment using an automated pupillometry (Neuroptics, Irvine, CA,
USA) was performed every 6 h; the neurological pupil index (NPi) was recorded and
the worst measurement on day 1 and day 2 was collected; an NPi ≤ 2 was defined as
“abnormal” [11]. The highest NSE values over the first 3 days was collected; high NSE
was defined for values above 75 mcg/L [14]. The results of SSEPs and timing of SSEPs
assessment were also recorded, whenever available.

Life-support therapies were maintained for at least 72 h after CA; the decision process
for withdrawal of life-support therapies was interdisciplinary and based on the existing
guidelines at the moment of the study, in combination with clinical evaluation (i.e., status
myoclonus) and EEG findings (i.e., presence of non-convulsive status epilepticus refractory
to three anti-epileptic drugs and continuous sedation).

2.4. Data Collection

We collected demographic characteristics, data on CA (i.e., location, initial rhythm,
cause of CA, bystander CPR, time to ROSC, drugs administered), lactate and creatinine
on admission, as well as the use of different interventions (i.e., vasopressors, TTM, renal
replacement therapy) during the ICU stay. Shock was defined as the use of vasopressors
for more than 6 consecutive hours during the first 2 days after admission.

2.5. Statistical Methods

Data were tested for normality using the Kolmogorov–Smirnov test and were pre-
sented as median (interquartile range) or mean ± standard deviation, as appropriate.
Categorical variables are presented as counts (%). Categorical variables were compared
using the Fisher exact test or Chi-square test, as appropriate, and Student t-test or Mann–
Whitney U test was used to compare continuous variables, as appropriate. We analyzed the
distribution of different prognostic tools in patients with FO and UO; sensitivity, specificity,
positive and negative predictive values (PPV and NPV) for UO were calculated for all of the
different tools. False positive rate (FPR) for each tool was calculated as: false positive/FO.
Concordance between the different tools to predict UO was defined as the presence of two
or more tools suggesting UO and expressed as percentage. “High” concordance between
two or more predictors was arbitrarily defined if >75%; “moderate” concordance was
defined if 50–74% and “weak” concordance if <50%.

To assess the best multimodal approach, we first used a time-dependent decisional
tree (i.e., NPi on day 1; HMp on day 1–2; absent N20 on day 2–3; highest NSE value over
the first 3 days); this approach was based on the time of assessment, i.e., the first tool being
NPI on day 1, followed by HMp on day 1 or 2, absence of N20 on day 2–3 and, finally,
the highest NSE value within the first 72 h. Thereafter, we analyzed the most significant
predictors associated with UO by classification and regression tree (CART) analysis, which
allows partitions observations in a matched data set, consisting of a categorical dependent
variable (i.e., UO) and one or more independent explanatory variables (i.e., predictors), into
progressively smaller groups. Each potential binary splits are examined and the split that
maximizes the discrimination of the two resulting groups (i.e., UO vs. others) is chosen.
The analysis is therefore continued into the remaining patients to reassess the possibility to
maximize discrimination again [15]. A p value < 0.05 was considered statistically significant.
Statistical analyses were performed using SPSS (IBM SPSS Statistics 25.0 for Macintosh).

3. Results
3.1. Study Population

During the study period, 175 patients were admitted after a CA; of those, 8 died
within a few hours after admission and 30 patients had incomplete data on multimodal
monitoring. A total of 137 patients (median age 65; male 95/137) was then included in
the final analysis; 103 (75%) of those had UO. Most of the patients had an OHCA (72%);
median time to ROSC was 21 min and 37% of patients had an initial shockable rhythm
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(Table 1). Patients with UO were older, less frequently had a witnessed CA and initial
shockable rhythm but had a longer time to ROSC, more often a non-cardiac origin of the
arrest, received higher dose of epinephrine during CPR, and presented with higher lactate
levels on admission than those with FO (Table 1).

Table 1. Clinical characteristics of the study population according to the neurological outcome (FO = favourable;
UO = unfavourable).

All Patients
(n = 137)

FO
(n = 34)

UO
(n = 103) p Value

Male gender, n (%) 95 (69) 26 (77) 69 (67) 0.39
Age, years 65 (54–72) 60 (50–67) 67 (55–73) <0.01

CARDIAC ARREST
Witnessed, n (%) 116 (85) 33 (97) 83 (81) 0.03

Bystander CPR, n (%) 84 (61) 23 (68) 61 (59) 0.42
Out-of-Hospital Cardiac arrest, n (%) 98 (72) 28 (82) 70 (68) 0.13

Time to ROSC, min 21 (15–32) 15 (10–21) 25 (18–35) <0.01
Epinephrine, mg 3 (2–6) 2 (1–5) 4 (2–7) <0.01

Non-cardiac Origin, n (%) 68 (50) 8 (24) 60 (58) <0.01
Shockable Rhythm, n (%) 50 (37) 21 (62) 29 (28) <0.01

COMORBID DISEASES
Chronic Heart Failure, n (%) 21 (15) 6 (18) 15 (15) 0.78

Hypertension, n (%) 53 (39) 11 (32) 42 (41) 0.42
Coronary Artery Disease, n (%) 43 (31) 14 (41) 29 (28) 0.20

Diabetes, n (%) 33 (24) 7 (21) 26 (25) 0.65
COPD/Asthma, n (%) 23 (17) 6 (18) 17 (17) 0.99

Previous neurological disease, n (%) 13 (10) 3 (9) 10 (10) 0.99
Chronic Renal Failure, n (%) 10 (7) 2 (6) 8 (8) 0.99

Liver Cirrhosis, n (%) 3 (2) 0 3 (3) 0.57
Others immunosuppressive agents, n (%) 2 (2) 0 2 (2) 0.99

DURING ICU STAY
Arterial Lactate on admission (mEq/L) 6.8 (4.4–9.4) 4.8 (3.5–6.5) 7.3 (5.1–10.7) <0.01

Creatinine on admission (mg/dL) 1.3 (1.0–1.7) 1.2 (0.9–1.4) 1.3 (1.1–1.8) 0.04
TTM, n (%) 116 (85) 29 (85) 87 (84) 0.99
MV, n (%) 137 (100) 34 (100) 103 (100) 1.00
RRT, n (%) 16 (12) 3 (9) 13 (13) 0.76

Vasopressor any time, n (%) 117 (85) 27 (79) 90 (87) 0.27
Dobutamine any time, n (%) 71 (52) 15 (44) 56 (54) 0.33

Shock, n (%) 62 (45) 12 (35) 50 (49) 0.23
Corticosteroids, n (%) 21 (15) 3 (9) 18 (18) 0.28

IABP, n (%) 4 (3) 2 (6) 2 (2) 0.26
ECMO, n (%) 18 (13) 4 (12) 14 (14) 1.00

OUTCOMES
ICU Stay, days 4 (3–8) 10 (6–13) 4 (2–5) <0.01

ICU Mortality, n (%) 96 (70) - 96 (93) <0.001

ICU, intensive care unit; CPR, cardiopulmonary resuscitation; ROSC, return to spontaneous circulation; IABP, iIntra-aortic balloon pump;
ECMO, extra corporeal membrane oxygenation; COPD, chronic obstructive pulmonary disease; MV, mechanical ventilation; TTM, targeted
temperature management; RRT, renal replacement therapy.

3.2. Prediction of Unfavorable Outcome for Each Predictor

NPi was available for all patients; EEG findings were also available for all patients
(128, 90% on day 1 and 111, 78% on day 2), NSE values were measured in 113 (83%) patients
and SSEPs were performed in 60 (44%) patients. A total of 30 patients presented abnormal
NPi and all of them had UO; the sensitivity was 29% with a specificity of 100%, with a FPR
or 0%. The presence of HMp on day 1 and 2 was observed in 60/128 (47%) and 19/111
(17%) patients, respectively; all of them presented UO (FPR of 0% to predict UO). The
bilateral absence of N20 was observed in 24 patients; all of them presented UO, resulting
in a sensitivity of 45% and a specificity of 100, with a FPR of 0%. High NSE values was
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observed in 38 patients, all of them presenting UO; resulting in a sensitivity of 45% and a
specificity of 100%, with a FPR of 0% (Table 2).

Table 2. Different prognostic tools according to neurological outcome (FO, favourable; UO, unfavourable).

FO
(n = 34)

UO
(n = 103) p Value Sens

Spec
PPV
NPV FPR

CLINICAL

Bilateral Absence of PLR Day 3, n (%) 5 (15) 21 (20) 0.62 20%
85%

81%
26% 15%

Poor Motor Response Day 3, n (%) 16 (47) 98 (95) <0.01 95%
53%

86%
78% 47%

Myoclonus Any Time, n (%) 1 (3) 28 (27) <0.01 27%
97%

97%
31% 3%

AUTOMATED PUPILLOMETRY
NPi Day 1 4.5 (4.2–4.6) 3.9 (0–4.4) <0.01

NPi <2 Day 1, n (%) 0 30 (29) <0.01 29%
100%

100%
32% 0%

NPI Day 2 4.6 (4.2–4.7) 4.1 (0–4.5) <0.01

NPi <2 Day 2, n (%) 0 26 (25) <0.01 25%
100%

100%
31% 0%

EEG

HMp Day 1, n (%) 0 60/96 (63) <0.01 63%
100%

100%
47% 0%

HMp Day 2, n (%) 0 19/82 (23) <0.01 23%
100%

100%
32% 0%

Unreactive EEG Day 1, n (%) 9/32 (28) 76/96 (79) <0.01 79%
72%

89%
53% 28%

Unreactive EEG Day 2, n (%) 3/29 (10) 48/82 (59) <0.01 59%
90%

94%
43% 10%

OTHERS

Bilateral Absence of N20 Day 3, n (%) 0 24/53 (45) 0.04 45%
100%

100%
19% 0%

NSE value > 75 µg/L 0 38/85 (45) <0.01 45%
100%

100%
37% 0%

Highest NSE value over 3 days, mcg/L 26 (21–38) 59 (33–141) <0.01

PLR, pupillary light reflex; NPi, neurological pupillary index; NSE, neuron-specific enolase; EEG, electroencephalography; HM, highly ma-
lignant patterns; Sens, sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive value; FPR, false positive rate.

Among others clinical predictors, bilateral absence of PLR at day 3 was observed in
26 patients, 21 of them presented UO, showing a sensitivity of 20%, a specificity of 85%
with a false positive rate of 15%. Poor motor response at day 3 was observed in 114 patients
with a FPR of 47% and the presence of myoclonus at any time showed a sensitivity of 27%
with a specificity of 97% (FPR 3%).

3.3. Concordance of Different Prognostic Tools to Predict Unfavorable Outcome

Concordance among different prognostic tools is shown in Supplemental Table S1.
The presence of abnormal NPi at day 1 or 2 was highly concordant with the presence of
HMp on EEG. Abnormal NPi on day 2 was also highly concordant with high NSE. The
bilateral absence of N20 or high NSE were highly concordant with HMp on EEG on day
1 or 2. Conversely, HMp on EEG on day 1 or 2 had weak to moderate concordance with
other predictors. Moderate to weak concordance were observed also for the concordance
of at least 3 predictors. Three patients had isolated abnormal NPi on day 1 and 2 patients
on day 2; isolated HMp was observed in 16 patients on day 1 and 6 patients on day 2. No
patients showed isolated bilaterally absent N20, whereas isolated high NSE was observed
in 5 patients.

3.4. Time-Dependent Prognostic Model to Predict Unfavorable Outcome

Using the time-dependent decisional tree approach, 30/137 patients had abnormal
NPi on day 1 and all of them had a UO. Among the 107 remaining patients, 37 (35%) had
HMp on EEG on day 1 or 2 and all of them had UO. Of the 70 patients without abnormal
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NPi and HMp, 2 had bilaterally absent N20 on day 3 and all of them had UO. Of the
remaining 68 patients, 4 had high NSE and all of them had UO (Figure 1). As such, this
multimodal time-dependent approach identified 73 out of 103 patients (70%) with UO,
showing a sensitivity 71%, a specificity 100%, PPV 100% and NPV 53% to predict UO, with
a FPR 0%. Using the CART approach, HMp on EEG on day 1 or 2 was the only variable
significantly associated with UO (Figure 1).

Figure 1. Time-dependent decision tree (left) and classification and regression tree (CART) analysis (right) to assess the
prognostic accuracy of a multimodal approach. NPi, neurological pupil index; HMp, highly malignant patterns on the EEG;
N20, cortical response on somato-sensory evoked potentials testing; NSE, neuron specific enolase.

Among the 64 patients without any of the predictors of UO, 34 had FO and 30 UO; we
found no significant differences in proportion of reactive EEG, SSEPs at day 3 and NSE
values between these two groups; however, lower NPi values were observed in patients
with UO when compared with others (4.2 (3.8–4.4) vs. 4.5 (4.2–4.6); p < 0.01—Table 3).

Table 3. Characteristics of patients (n = 64) without predictors of unfavorable neurological outcome
(i.e., abnormal NPi, highly malignant EEG patterns, high NSE and bilaterally absent N20). Data are
presented as count (%) or median [IQRs].

FO
n = 34

UO
n = 30

NPi on day 1
Total of measurements, n

Median [IQR]
34

4.5 [4.2–4.6]
30

4.2 [3.8–4.4] *

EEG on day 2
Total of measurements, n

Reactive, n (%)
29

26 (90)
29

22 (76)

SSEP on day 2–3
Total of measurements, n (%)
N20 bilaterally present, n (%)

7
7 (100)

13
13 (100)

Highest values of NSE, mg/L
Total of measurements, (%)

Median [IQR]
28

26 [16–27,33–38]
25

32 [19–27,33–38]
* p < 0.05. Legend: FO, favorable outcome; UO, unfavorable outcome; NPi, neurologic pupil index; EEG,
electroencephalography; SSEP, somatosensory evoked potentials.
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4. Discussion

In this study, we observed that: (a) abnormal NPi, HMp on EEG, bilaterally absent
N20 and high NSE had a high specificity and PPV to predict UO in CA patients; (b) the
presence of abnormal NPi, absent N20 and high NSE were highly concordant with HMp on
EEG, while HMp had moderate concordance with other predictors; (c) only a minority of
patients had several concomitantly present predictors of UO, but isolated HMp or absent
N20 was observed in some patients; (d) a time-dependent multimodal approach identified
70% of patients with UO, showing a specificity 100% and a FPR of 0%, while the CART
analysis identified HMp on EEG at the best predictor for UO.

Since 2014, recommendations on prognostication of post-anoxic brain injury are
based on the European Society of Intensive Care Medicine (ESICM) and the European
Resuscitation Council (ERC) guidelines, which were founded on a systematic review of
literature and grading of the existing evidence [28]. Despite some relevant statements, these
guidelines also presented several limitations: (a) no early prognostic tool was indicated,
while some findings are extremely relevant when identified in the first 24 h after arrest
(i.e., HMp on EEG) [14]; (b) no specific indications for the selection of specific tools for the
multimodal approach was proposed; (c) significant publications have been released in this
field in the last years which have resulted in some outdated statements. A more recent
systematic review and revision of these guidelines also identified clinical, biochemical,
neurophysiological, and radiological tests that have a potential to predict UO with no
false-positive predictions within the first week after CA [29].

In particular, the role of EEG as a predictor of neurological outcome after CA has been
evaluated in several publications and should probably be reconsidered [30–32]. The main
findings on EEG are: (a) the use of a standardized nomenclature can avoid overestimation
of highly malignant patterns (i.e., discontinuous EEG classified as BS) [16,17]; (b) EEG
recordings suggesting UO are more frequent in the 12–24 h after ICU admission [31];
(c) in case of burst-suppression background, sedation with propofol might be a significant
limitation on the accuracy of EEG [18]; (d) post-anoxic seizures might be associated with
neurological recovery if associated with an early continuous EEG background and prompt
therapy [19]; (e) EEG findings may identify patients with post-anoxic myoclonus and
without potential recovery [20]. In our study, we focused on HMp as the most robust
predictor of UO in CA patients [29]. We reported three interesting findings: (a) HMp
may occur in the absence of other predictors of UO (i.e., weak to moderate concordance);
(b) some patients with UO could be identified using only HMp on EEG; (c) HMp had the
highest predictive value among all other predictors in the CART analysis. As such, in
a multimodal approach, EEG should always be included into the prognostic algorithm.
Moreover, in settings of limited available prognostic tools, EEG should probably be the one
to implement. We observed a lower accuracy to predict outcome for EEG reactivity, which
might be due to the relatively low inter-rater agreement, the lack of standardized test to
assess it [16] and to the confounder effects of concomitant sedation.

Concerning other tools, a NPi ≤2 was associated with a PPV of 100% already at
24 h after arrest to predict UO [11]. Moreover, NPi was more accurate than standard or
quantitative PLR to predict UO. Additionally, two recent studies showed that a cut-off of
NSE >60 mcg/L and 80 mcg/L was associated with a FPR of 2% [10,20]; we used a cut-off
of 75 mcg/L, which has been proposed as an accurate threshold to predict UO in previous
studies [21,22]. Although isolated measurements have some limitations, NSE correlated
well with other parameters, suggesting extended post-anoxic brain injury and can better
quantify as a continuous variable (i.e., rather than a dichotomous variable) the severity of
brain injury in CA patients.

Few studies have evaluated the role of a multimodal approach to predict neurological
outcome after CA. In one study, the combination of SSEPs, cerebral CT-scan, and EEG
increased the sensitivity of UO prediction from 30–54% to 61% [23]. In another study, a
prognostic model including brain CT-scan, NSE, EEG, SSEPs, and PLR predicted UO with
a 0% FPR [24], significantly higher than each prognostic modality alone. A combination
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of clinical examination, EEG reactivity, and NSE yielded the best predictive accuracy to
predict UO in this setting [22]. Finally, Youn et al. reported combining brain CT-scan with
clinical examination and EEG was superior to any individual test for predicting mortality
and neurologic outcome [32]. However, the addition of high NSE cut-offs and accurate EEG
classification had minor effects on the sensitivity of a multimodal approach including PLR
and SSEPs, as suggested by 2015 Guidelines [25]. Although the CART analysis suggests that
EEG would be sufficient to adequately predict neurological outcome in these patients, the
combination of several parameters would provide more robustness to the prognostication
process and should not be discarded.

Very limited data are available on the concordance of several predictors in this setting.
In one study focusing on NSE, all patients with NSE >33 mcg/L had extensive brain injury
on magnetic resonance imaging and most of them also lacked cortical responses on SSEP
bilaterally; however, NSE poorly correlated with EEG patterns [26]. In a second study,
NSE values and EEG findings were strongly correlated; also, median NSE peak values
were higher in patients with unreactive background and discontinuous patterns than
others [21]. From our findings, several patients had at least two concomitant predictors of
UO; although this could be considered as a “redundant” information, physicians would be
more comfortable to consider life-sustaining therapies if two or more predictors of UO are
present, as this suggests an extensive hypoxic brain damage. Moreover, if a comatose CA
patient undergoing a multimodal prognostic approach would present isolated abnormal
NPi, high NSE or bilaterally absent N20, which was a very rare finding in our cohort, the
physician might consider repeating some of these examinations to exclude technical issues
or sampling inaccuracy. However, discordance between predictive tools should not be
considered as a sign of imprecision or inaccuracy, as they evaluate different anatomical
areas of the brain (i.e., NPi, the brainstem; SSEPs, the spinothalamic tract; NSE, the neuronal
damage; EEG, the presence of cortical ischemia), which have different sensitivity to the
anoxic injury.

Our study had several limitations. First, this was a retrospective study. Second, the
study was single-center and local practices on limitation of life-sustaining therapies might
limit their generalizability to other ICUs. Third, the risk of self-fulfilling prophecy could
have influenced some results, as clinicians were unblinded to results of the prognostic tests.
Fourth, as this study focused only on comatose patients requiring the whole prognostication
model, around 20% of patients were excluded. Fifth, all predictors were not available for all
patients and this has limited the possibility to test different combinations to determine the
optimal prognostic algorithm in this setting, in particular because data was missing due to
random factors (i.e., lack of reported data) and lack of necessity (i.e., patients who regained
consciousness), which may have led to significant bias. Sixth, we did not include brain
imaging (i.e., CT-scan or magnetic resonance imaging, MRI) in this multimodal approach.
Finally, the number of patients with favorable neurological outcome was quite limited and
further analyses on this issue, as reported in another study [27], were not performed.

5. Conclusions

This study suggests that patients with UO had often at least two predictors of UO;
isolated predictors are observed mainly with EEG. A multimodal time-dependent approach,
including NPi, HMp, SSEPs, and NSE, may be helpful in the prediction of UO after CA.
EEG should be included in all multimodal prognostic models.
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