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Abstract: Intriguing evidence is emerging in regard to the influence of gut microbiota composition
and function on host health from the very early stages of life. The development of the saprophytic
microflora is conditioned by several factors in infants, and peculiarities have been found for babies
born prematurely. This population is particularly exposed to a high risk of infection, postnatal antibi-
otic treatment, feeding difficulties and neurodevelopmental disabilities. To date, there is still a wide
gap in understanding all the determinants and the mechanism behind microbiota disruption and its
influence in the development of the most common complications of premature infants. A large body
of evidence has emerged during the last decades showing the existence of a bidirectional communi-
cation axis involving the gut microbiota, the gut and the brain, defined as the microbiota-gut-brain
axis. In this context, given that very few data are available to demonstrate the correlation between
microbiota dysbiosis and neurodevelopmental disorders in preterm infants, increasing interest has
arisen to better understand the impact of the microbiota-gut-brain axis on the clinical outcomes of
premature infants and to clarify how this may lead to alternative preventive, diagnostic and thera-
peutic strategies. In this review, we explored the current evidence regarding microbiota development
in premature infants, focusing on the effects of delivery mode, type of feeding, environmental factors
and possible influence of the microbiota-gut-brain axis on preterm clinical outcomes during their
hospital stay and on their health status later in life.
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1. Introduction

Preterm births are still associated with various types of adverse outcomes, despite
significant improvements in both maternal and postnatal care in the last decades. Although
survival rates without severe neuromotor or sensory disabilities are being increasingly
reported, children born at less than 34 weeks gestation remain at risk for developmental
delay [1,2].

Several factors contribute to infants’ neurodevelopment and health outcomes, and
recent research has focused on the role of the bidirectional communication axis between
the central nervous system and gastrointestinal tract, the so-called gut-brain axis [3]. In
premature infants, interesting data has emerged on the correlation between early gut
microbiota colonization and short- and long-term clinical outcomes [4–6]. It is now well-
established that the intestinal commensal microorganisms are involved in the regulation
of many signals between the gut and the brain, creating a more complex microbiota-gut-
brain axis [7,8]. Nonetheless, the gut microbiota impacts the preservation of body health
homeostasis by regulating several metabolic and cellular functions from the early phases
of life, such as the immune system and the defense against pathogenic microorganisms.
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Such modulation may extend from the gut to the central nervous system (CNS) and is
fundamental for brain development and homeostasis [8,9]. Any changes hampering the
symbiotic relationship between the microbiota and different cell types composing the
enteric microenvironment may have severe consequences, including the development of
gut disorders and of behavioral and cognitive diseases [10]. In this narrative review, we
aimed to explore the current evidence on the influence of the microbiota-gut-brain axis
focusing on preterm infants and their health status later in life.

2. Development of the Preterm Infant Gut Microbiota at a Glance

The colonization of an infant’s gut is a crucial step for the development and maturation
of the immune system and, consequently, on the well-being of the individual [11]. The tra-
ditional view that the fetus is sterile has been questioned by recent evidence demonstrating
the presence of microorganisms in amniotic fluid, umbilical cord blood, amniotic membrane
and the placenta [12–14]. However, this issue still remains greatly debated, since, even in
recent studies, the presence of microbiota could not be detected both in placenta samples of
either preterm and term deliveries and in fetal meconium [15–17]. In contrast, Rackaityte
and colleagues were able to detect and grow viable bacterial colonies from fetal meconium
and human fetal tissues [18]. Such discrepancies may depend upon the detection method
(16s rRNA vs. shotgun sequencing) and different tissues and samples that, overall, can lead
to great divergencies in the results. In addition, environmental contamination represents a
huge bias that can easily occur, hampering the result reliability.

A general consensus points to the principle that, although intrauterine life is char-
acterized by a restricted, if any, exposure to microbes, an infant’s gastrointestinal tract
colonization mostly occurs after birth after exposure to maternal colonic, vaginal and skin
microbiota [19–21]. However, the establishment of the gut microbiome in preterm neonates
still needs to be fully clarified. Although many controversial results have been found [22],
some studies have reported differences in gut microbiota composition and development
between term and preterm newborns [23,24].

Overall, in preterm infants, the microbial diversity is reduced, with an increased pres-
ence of potentially pathogenic bacteria [25–27], even if interindividual variations remain
elevated. Several studies have attempted to distribute bacterial patterns into five or six
more common clusters, also called preterm gut community type, each one characterized
by a specific genus of dominance [28,29]. A recurring pattern is featured by initial colo-
nizing facultative anaerobes bacteria, including Enterobacteria, Escherichia coli, lactobacilli
and streptococci, subsequently replaced by strict anaerobic genera such as Bifidobacterium,
Bacteroides, Clostridium and Eubacterium by the end of the first week of life [30]. Korpela and
colleagues proposed four subsequent phases characterized by the dominance of Staphylococ-
cus between 25 and 30 weeks post-menstrual age (PMA), Enterococcus from 30 to 35 weeks
PMA, Enterobacter at 35 weeks PMA and Bifidobacterium [31]. The predominant presence
of bifidobacteria is typical of healthy term infants and is, by far, less represented in preterm
neonates and not detected before 30 weeks PMA [31,32]. A prospective study revealed that
neonates born <33 weeks gestational age have impaired Bifidobacterium colonization and
are more predisposed to gut infection and diseases [33].

Evidence from several studies has highlighted the relevance of postnatal age rather
than gestational age at birth [26,31,32]. Claud and colleagues also confirmed an age-
dependent maturation of the preterm microbiome [27]. They described a shift of preterm
microbiome to full-term patterns starting from six weeks of age. In a recent article by Kamal
and colleagues, using preterm piglets as a preclinical model, gut microbiota composition
and metabolism were affected by preterm birth, especially during the first four weeks of
life [34]. On the contrary, after preterm birth, a delayed administration of enteral feeding
induced only transitory effects on the gut microbial population and metabolism, suggesting
that the early establishment of gut microbiota is influenced by the primary feeding strategy
and gestational age at birth, but only the latter yields a clear effect beyond the first week
of age.
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Among the multiple external determinants that might affect gut colonization, the impact
of the mode of delivery is hampered by the low rate of spontaneous vaginal delivery in preterm
neonates and, by contrast, by the high rate of antibiotic exposure and possible other confounding
factors [35]. A few studies with a small sample size have shown no significant influence of
the mode of delivery on the gut microbiota in this population [23,36,37] in contrast with other
reports both of preterm and term infants [38–40]. Early data showed that, by vaginal delivery,
an infant’s gut is colonized with bacteria similar to the mother’s vaginal flora [41,42].
Conversely, in infants born by c-section, the gut microbiota seemed similar to that found
on maternal skin and, eventually, on healthcare providers or caregivers and also influenced
by the environment [41,42]. Despite this, according to a more recent large cohort study,
differences in the gut microbiome could not be significantly attributed to the mode of
delivery [43].

Preterm infants often spend the first weeks of life in the Neonatal Intensive Care Unit
(NICU), where they often undergo invasive procedures, prolonged antibiotic therapies,
delayed enteral feeding and extended parenteral nutrition. All these factors, besides gesta-
tional and postnatal age, might influence the gut microbiota development. Noteworthy, the
type of feeding (human milk vs. formula) has also been considered, but no firm conclusion
has been drawn because of small populations recruited and possible different contribut-
ing variables [26,44]. Gregory and colleagues studied three groups of 10 preterm infants
<32 weeks gestation fed predominantly with maternal breast milk, donor human milk or
infant formula [44]. Their gut microbiome was significantly influenced by birth weight,
postnatal age and types of feeding. Infants fed with breast milk presented a greater initial
bacterial diversity and a more gradual acquisition of variety than formula-fed infants. The
microbiome in the group of infants fed with breast milk were more similar regardless of
birth weight in contrast to the microbiome of the formula group, which clustered differently
based on birth weight. By adjusting for differences in gut maturity, an ordered succession of
microbial phylotypes was observed in breast milk-fed infants, while, in those formula-fed,
this succession seemed to be disrupted. In maternal breast milk-fed infants, a consecutive
appearance of Bacillales, Lactobacillales, Enterobacteriales, Clostridiales and Bifidobacteriales
was found, whilst formula-fed infants had a longer persistence of Bacillales and Lactobacil-
lales. Moreover, Clostridiales were ten times more present in very low birth weight (VLBW)
compared to extremely low birth weight (ELBW) infants. Noteworthy, supplementation
with pasteurized donor human milk tended to promote a more similar microbiome to
breast milk-fed infants and a more rapid increase in bacterial diversity. A study by La
Rosa and colleagues involving 58 preterm infants of different degrees of prematurity found
that breast milk was associated with an increased proportion of Gammaproteobacteria but
limited to 28 weeks gestation [32]. In addition, Quigley and colleagues found that preterm
infants fed with human donor milk were at a lower risk of developing NEC as compared
to preterm formula-fed newborns [45]. This beneficial effect was probably based on the
relationship between bacterial populations in the human milk and the microbiota harboring
the host gut. This observation suggests that the regulation of milk components may be a
strategically important approach to ameliorate preterm newborn health conditions, which
may be pursued by changing the maternal diet [46].

The composition of the neonatal gut microbiota is also affected by the timing, duration
and type of antibiotic exposure. Intrapartum antibiotic prophylaxis is associated with a
decreased diversity and lower lactobacilli and bifidobacteria in the neonatal gut [42]. Lower
Bifidobacterium has also been shown after postnatal antibiotics use in preterm infants [40,47].
Different antibiotics were found to influence the species variety of the gut microbiota. Gib-
son and colleagues demonstrated that meropenem, cefotaxime and ticarcillin-clavulanate
were significantly associated with reduced gut microbiota diversity, whereas ampicillin,
vancomycin and gentamicin were not. They also found an increased risk for opportunistic
pathogenic bacteria dominance after antibiotic treatment [48].

Several evidences in the literature have suggested that environmental factors may
play a role in preterm gut bacterial establishment [49,50]. Brooks and coworkers performed
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a metagenomic study of microbes present in 50 preterm newborns and in the environment
of the Neonatal Intensive Care Unit (NICU) where they were admitted [51]. The strains
present in both sites were Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas
aeruginosa and Klebsiella pneumoniae. These species were present in the environment after
and often before detection in the preterm gut, showing that a good part of the premature
gut population is acquired by microbial exchange between the room and the occupant. In a
later study by the same research group, they confirmed that hospitalized preterm infants,
in combination with their caregivers, shape the microbiome of NICU rooms [52]. Similar
results were presented in a recent multicenter prospective observational study [28] showing
that bacterial patterns of VLBW newborns at the fourth postnatal week are influenced by
NICU practices. Interestingly, they also pointed out a new promising association between
early microbiota composition and 2-year neurological outcomes that may lead to the
discovery of a noninvasive, microbiological biomarker.

Last, genetic factors may also be involved in neonatal intestinal microbiota shaping. In-
terestingly, it has been shown that related twins, although exposed to a NICU environment,
maintained a similar gut microbiota [32,53].

3. The Microbiota-Gut-Brain Axis in Early Life

The gut-brain axis is a complex network of interconnecting communication pathways
between the gut and the brain, encompassing the CNS, the autonomic nervous system (ANS),
the enteric nervous system (ENS) and the neuroendocrine and neuroimmune systems [8,54]. In
this bidirectional communication axis, the CNS is involved in the coordination and maintenance
of the digestive system supporting the control of motility, secretion, nutrient absorption and
immune responses [8]. Conversely, signals generated in the gut may affect CNS development,
influencing different aspects of behavior in normal and disease states. Different neuronal,
immune and hormonal signals take part in this gut-brain interplay, some of which are produced
by the commensal microbiota, which is now considered an effective component of the gut-brain
axis, defined as the microbiota-gut-brain axis [7,9,55].

The microbiota-gut-brain axis may be of great importance for preterm infants due
to their high susceptibility to dysbiosis; however, studies designed to explore the exact
pathway/s through which the microbiome specifically affects preterm infant gut and brain
development are lacking. To date, the relationship between the gut and brain is mainly
associative, based on data from preclinical studies, with the majority of the investigations
pointing to neural [56], hormonal and immunological basis mechanisms [3,57,58]. Indeed,
the possibility to clarify the neurobiological mechanisms along the microbiota-gut-brain
axis underlying the control of preterm infant homeostasis is fundamental, and different
molecular pathways may be explored. The correlation between alterations in the gut micro-
biota and brain function in early postnatal life was demonstrated by resorting to germ-free
mice (GF, animals demonstrably free from microbes throughout their lifetime) that dis-
played altered stress and anxiety responses and memory dysfunction [59–61]. If adult,
rather than young, GF animals are conventionalized with gut microbiota obtained from
specific pathogen-free (SPF) mice, anxiety-like behavior is still evident [59,61], indicating
that signals along the microbiota-gut-brain axis may play a role in critical time windows
during early postnatal brain development. ENS ontogenesis may also be regulated by
gut microbes, since GF mice, at postnatal day 3, displayed an abnormal myenteric plexus
compared to SPF mice [62]. The ENS is a complex network constituted of ganglia and inter-
connecting fiber strands regulating different functions, such as motility, gastric secretion,
transport of fluids across the epithelium, blood flow and nutrient absorption, and may
undergo significant adaptive changes during postnatal development that depend upon
several factors, including not only nutrient composition but also microbial flora composi-
tion [63]. It is intriguing to hypothesize that microbial-related changes in the developing
gut may also influence brain development via the microbiota-gut-brain axis connections. In
this context, attention may be given not only to neuroactive and immunoactive molecules
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but also to bacterial metabolites, which may represent key signaling pathways along the
microbiota-gut-brain axis [64].

Microorganisms harboring the human gut produce a plethora of metabolites, includ-
ing short-chain fatty acids (SCFAs), tryptophan metabolites and biliary acids, which may
influence brain development and function [8,9]. SCFAs, for instance, have been shown to
improve gut health by modulating the epithelial barrier integrity, water absorption and
mucous production and gut motility [65–67]. SCFAs can also directly or indirectly impact
on the gut-brain axis by regulating different immune, endocrine, epigenetic and humoral
mechanisms [68,69], as well as by directly stimulating vagal and sympathetic nerve sig-
naling [70,71]. In addition to their systemic actions, SCFAs can, to a minimum extent,
cross the blood-brain barrier, playing a role as neuroactive substances. In fact, SCFA-free
fatty acid receptors 3 and 2 expression in the brain has already been demonstrated [72],
giving strength to the potential gut-brain crosstalk. Furthermore, the microbiota has been
proposed to impact on early brain development, since GF mice display increased BBB
permeability [73,74]. Preclinical studies on germ-free mice indicate that SCFAs may partici-
pate in the maintenance of brain homeostasis, influencing learning and cognition [75,76].
Indeed, the supplementation of SCFAs such as butyrate, acetate and propionate in drinking
water could ameliorate reward-seeking behaviors and stress responsivity in mice [77].
Tryptophan metabolites, mainly serotonin (5-hydroxytryptamine, 5-HT), kynurenine and
microbial-derived indole metabolites, are also recognized as important bioactive molecules
influencing gut-brain communication, as described later in this section [78]. Interestingly,
it has been demonstrated that GF mice show an increased level of plasmatic 5HT [79],
as well as of tryptophan, that was successfully restored to normal after postweaning gut
colonization [80]. These observations seem to suggest that the microbiota could both reduce
tryptophan availability by expressing tryptophanase or alter host enzymes activity, like
IDO or TDO. These alterations in enzymatic activity have already been associated with gas-
trointestinal disorders [81–83], suggesting again the importance of microbiota alterations in
disease development.

Noteworthy, the gut microbiota may participate to the production of neuroendocrine
and neuroactive molecules [8]. Indeed, the demonstration that bacteria could produce
noradrenaline and adrenaline, as proposed about 30 years ago, led to the hypothesis of the
existence of a gut-brain bidirectional communication system [84,85]. Since then, several
other neuroactive molecules have been recognized as also being of bacterial origin, includ-
ing a variety of amines such as 5-HT and kynurenine, deriving from tryptophan metabolism,
and neurotransmitters, such as glutamate, GABA, dopamine and acetylcholine [86]. There
have been reports suggesting that commensal bacteria modulate the 5HT gut levels in vivo
by controlling amine biosynthesis, metabolism and transport [78]. In GF mice colons,
the biogenic amine levels were significantly lower than in mice colonized with specific
pathogen-free or with fecal microbiota [87]. After recolonization, the concentration of free
unconjugated, biologically active 5-HT increased, suggesting that bacteria favor free lumi-
nal 5-HT accumulation. In GF mice, gut colonization with commensal bacterial normalized
plasma levels of tryptophan consequently increase the 5-HT hippocampal levels. Since
the biogenic amine cannot enter the BBB, the brain synthesis of 5-HT entirely depends
on free circulating tryptophan, suggesting that the microbiota ability to influence CNS
serotoninergic transmission relies upon a humoral route [80]. The diversion of tryptophan
metabolism from 5-HT towards the kynurenine pathway may favor the manifestation of
psychiatric disorders, such as anxiety and major depression [88]. In chronically stressed
mice displaying despair behavior, changes of the gut microbiota composition (i.e., reduced
Lactobacillus) and increased circulating kynurenine levels were restored after supplemen-
tation with Lactobacillus reuteri. This latter treatment was associated with an amelioration of
behavioral abnormalities, suggesting that microbiota manipulation may help to normalize
the metabolism, as well as to favor resilience during stress [89]. Interestingly, in a transgenic
mouse model of ASD/(BTBR T+ Itpr3tf/J mouse) 5-HT, the gut levels were significantly
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reduced, and this data significantly correlated with the relative abundance of Bifidobacterium
and Blautia [90].

As regards the immunological pathways along the microbiota-gut-brain axis, a few
studies have shown that both innate and adaptive immune systems are involved in
microbiota-gut-brain axis communication [91,92]. Since dysbiosis, an altered gut microbiota
composition and function, is often driven by infection and inflammation, innate and adap-
tive immunity seems to control the colonization niche of the intestinal microbiota through
mechanisms involving the production of antimicrobial peptides or IgA antibodies. In the
innate immune system, microbial sensing through pattern recognition receptors (PRRs) is
well known, and indeed, Toll-like receptor (TLR)-deficient mice have been shown to harbor
a different intestinal microbiota with respect to wild-type animals [93]. Interestingly, the
flagellin sensor TLR5 has been suggested to be involved in the prevention of dysbiosis. A
similar function is suggested to be carried out by NLR (NOD-like receptors), since NOD1
loss resulted in a general increase of commensal bacteria in mice [94]. In the adaptive
immune system, B cells are crucial players in the maintenance of intestinal homeostasis
through the production of secretory IgA that can be targeted to specific bacteria, preferen-
tially against those associated with mucosal-proximal colonization and with colitogenic
potential [95]. Furthermore, since IgA production is regulated by PD1 signaling, T-helper
follicular cells, which highly express PD1 receptors, may participate in microbial regula-
tion [96]. The above mechanisms are involved in the host regulation of the gut microbiota;
however, a dysbiotic microbial community, once established, may also substantially affect
immune cells both at the local and systemic level, thereby creating a feedback loop in
which the host immune system and its microbiota cross-influence each other. This interplay
particularly seems to rely on the production of microbial metabolites, such as tryptophan
in the case of innate lymphoid cells (ILCs) [97] and short-chain fatty acids in the case
of myeloid cells [98] and T-regulatory cells [99]. Of note, microbial metabolite crosstalk
with innate immunity starts already during pregnancy, when fetal antibodies mediate the
displacement of microbial molecules [100].

Interestingly, preterm pigs at the same postnatal age of term pigs have shown dif-
ferences in their immune responses, such as much lower counts of erythrocytes, total
blood leukocytes and, especially, of neutrophils [101], as well as impaired responses to
inflammatory challenges [102]. These findings were also confirmed by clinical data show-
ing a significant deficiency in both innate and adaptive immune responses in preterm
infants [103]. These observations overall suggest that preterm neonates may undergo a
unique pattern of gut and immune maturation when attempting to adapt, ahead of time,
to an abrupt transition from a protected in utero environment to an ex utero environment
with independent respiration, enteral feeding and exposure to foreign antigens. In this
scenario, it is intriguing to evaluate if changes in the microbiota composition may take part
in such immune system adaptations.

Among the neuronal and hormonal pathways conveying signals along the microbiota-
gut-brain axis, the vagus nerve and the HPA axis play major roles [8]. In a recent study
resorting to transgenic mice Shank3B−/− exhibiting autism spectrum disorder (ASD)-
like behaviors, the administration of Lactobacillus reuteri ameliorated the animals’ social
interactions, supporting adaptive plasticity changes in the ventral tegmental area in a
vagus-dependent manner [104]. Lactobacillus rhamnosus reduced stress-induced corticos-
terone and anxiety- and depression-related behaviors through the regulation of GABA
receptor expression in the brain, while vagotomy blunted the anxiolytic and antidepressant
effects [105]. Besides parasympathetic vagal pathways, preclinical studies carried out on
GF rodents after antibiotic and probiotic treatments have shown that the hypothalamic-
pituitary-adrenal (HPA) axis and neuroendocrine and immune pathways take part in this
microbial-mediated modulation of stress responses [59,106,107].

Given this evidence, an exciting future scenario is represented by the possibility of
targeting signaling pathways along the microbiota-gut-brain for potential clinical strategies
in preterm infants. In the following sections, we give an overview of the most important



Cells 2022, 11, 379 7 of 18

studies correlating changes in the microbiota-gut-brain axis in prematurity and the onset
and progression of neurological development impairment, necrotizing enterocolitis (NEC)
and systemic sepsis.

4. Microbiota-Gut-Brain Axis: Implication in Neurodevelopmental Disorders

In the last decades, the number of studies showing the ability of gut commensal
microorganisms to modulate the gut-brain connecting pathways along the “microbiota-
gut-brain axis” during brain development has grown exponentially [108]. This topic is
of particular relevance in preterm infants [109], who are at a higher risk of developing
neurodevelopmental impairments [110,111], with an increased risk of cerebral palsy and
mental disorders. These adverse outcomes may especially involve those babies who are
small for gestational age and/or are associated with infection (Figure 1).
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Figure 1. Microbiota-gut-brain axis (MGBA) in healthy and preterm-associated ASD. After birth,
the gut microbiota undergoes changes in composition and function in preterm children as com-
pared to children born at term, as depicted in the graph above. The colors in the graph represent
the relevant bacterial dominance in the term and preterm groups. In preterm children developing
ASD, dysbiosis may influence MGBA communication via the enhanced production of neuroac-
tive molecules such as phenylalanine and GABA impacting early brain development. Abbrevia-
tions: 5HT: 5-hydroxitryptamine, serotonin; GABA: gamma aminobutyric acid; PHE: phenylalanine;
PMA = post-menstrual age; ASD = autism spectrum disease.

Preterm babies are exposed to increased stress levels that, in addition to an imma-
ture immune system, may contribute to a higher susceptibility to infections, leading to
therapeutic antibiotic treatments. These factors influence neurodevelopment either di-
rectly, by favoring inflammatory processes, or indirectly, by changing the composition
of the gut microbiome [112]. In this latter context, however, the demonstration of direct
effects of a reduced microbiota diversity on neurodevelopment has not yet been sufficiently
explored in order to establish a clear-cut correlation. Noteworthy, recent studies have
provided evidence that the gut microbiota-immune-brain axis may play a role in brain
injury in extremely premature infants [113] and correlate with neurodevelopment at 2 year
of age [28].

There is an increasing amount of evidence suggesting that dysbiosis may correlate to
the onset of attention deficit hyperactivity disorder (ADHD), autism spectrum disorders
(ASD) and other behavioral and psychiatric conditions [114].
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Among these neurodevelopmental disorders, ADHD is the most prevalent. Although
multiple studies have demonstrated a generally higher incidence of gastrointestinal symp-
toms in ADHD children compared to the controls, particularly constipation [115], very
limited research explicitly connects changes in gut microbiome function and composition
to ADHD. Changes in the composition of gut microbiome in early life was demonstrated in
children later diagnosed with ADHD [116]. In another study, Prehn-Kristensen [117] found
a lower level of alpha diversity in young ADHD patients’ gut commensal bacteria, many
of which were involved in GABA production. More interestingly, these authors observed
that mothers of ADHD patients showed a reduced gut commensal bacteria alpha diversity
as compared to the mothers of healthy controls. In another study, Actinobacteria—in
particular, the genus Bifidobacterium—were reported to increase at the expense of Firmicutes
compared to healthy controls [118]. Such an enhancement of Bifidobacterium was associated
with increased levels of cyclohexadienyl dehydratase, an enzyme involved in the produc-
tion of phenylalanine, a precursor of dopamine, as well as with reduced neuronal responses
to reward anticipation, which constitutes a hallmark of ADHD [118].

More controversial results have been found in regard to ASD. Cao and colleagues
did a systematic review concluding that an alteration in the gut microbiome is likely,
with no clear evidence with respect to the main phyla alterations [119]. Several, but
relatively small, studies have demonstrated altered intestinal microbiota composition
related to neurotypical ASD children [10]. However, such data should be interpreted
with caution, since individuals with ASD have a higher incidence of antibiotic usage and
often receive different diets than healthy children. Adams and colleagues [120] found
that children with autism had lower levels of bifidobacteria species (−43%, p = 0.002) and
higher levels of species of Lactobacillus (+100%, p = 0.00002) and also much lower levels of
total neuroactive SCFAs. On the contrary, Wang and colleagues found a 12% increase of
SCFAs [121]. Notably, the intracerebroventricular administration of relatively high doses of
the SCFA propionic acid to animals resulted in some autistic-like behaviors [122]. From
a mechanistic standpoint, SCFAs epigenetically modulate gene expression, promoting
histone hyperacetylation by inhibiting histone deacetylases (HDACs), which regulates the
brain physiology and disorders such as schizophrenia and stress responses [123].

Interestingly, the incidence of schizophrenia has been positively associated with
preterm birth and microbiota changes [124], suggesting the involvement of the early life
microbiome in the disease process [125]. The gut microbiota in First Episode Psychosis
patients were different from healthy controls. At the family level, Lactobacillaceae, Haloth-
iobacillaceae, Brucellaceae and Micrococcineae increased, whereas Veillonellaceae decreased. At
the genus level, Lactobacillus, Tropheryma, Halothiobacillus, Saccharophagus, Ochrobactrum, De-
ferribacter and Halorubrum increased, while Anabaena, Nitrosospira and Gallionella decreased.
With the limitation of a small sample size (32 patients), an increased abundance of Lacto-
bacillus, in addition to Bifidobacterium and Ascomycota, was also found in the oropharyngeal
microbiome of patients with schizophrenia compared to their healthy controls [126].

4.1. The Microbiota-Gut Axis and Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is a gastrointestinal complication that mainly affects
preterm infants and is a leading cause of morbidity and mortality in this population. NEC
is characterized by extensive intestinal tissue necrosis, intestinal villi damage and excessive
inflammatory processes in the context of a highly immunoreactive intestine. Since NEC is a
gastrointestinal disease, NEC survivors can have long-term health consequences that affect
distant organs, such as the brain [6,127,128]. In fact, almost 25% of NEC recovered babies
develop microcephaly and serious neurodevelopmental delays [129].

The etiology of NEC still needs to be clarified, although it appears as a multifactorial
disease, and enteral feeding, prematurity and altered microbiota represent the major causes
for its onset [130,131]. The possibility to clarify the pathophysiological causes of NEC is
also hampered by the limitations of the available preclinical models that prevalently rely
upon the induction in different animal species of a hypoxic ischemic injury associated with
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the release of high levels of proinflammatory mediators and/or the chemical excision of
Paneth cells and involving molecular pathways dissimilar from those involved in the early
onset of NEC in preterm infants.

The majority of infants developing NEC are fed prior to its onset, and feeding is known
to strongly influence the gut microbiota composition. The role of bacterial composition and
of inappropriate colonization of the gut is strengthened by the evidence that GF animals,
as well as preterm piglets administered with broad-spectrum antibiotics, do not develop
NEC [132–135].

A systematic review on intestinal dysbiosis in preterm infants preceding NEC showed
an increased relative abundance of Proteobacteria and decreased relative abundance of
Firmicutes and Bacteroidetes [136]. There was also evidence that changes in microbiota
composition were dependent upon the age of NEC onset. For example, a dominance of
Firmicutes within the Clostridia class, as well as a decrease in Gammaproteobacteria, were
associated with early-onset NEC occurring within ten days of life [97–99]. Late-onset NEC
was associated with an increase in Gammaproteobacteria and a decrease in Firmicutes (espe-
cially Negativicutes). This result has also been reported after antibiotics administration, thus
highlighting the role of antibiotic treatment on the gut colonization of preterm infants [136].

Neither the mode of delivery nor the type of feeding (breast milk or formula) seemed
to affect the gut microbiota to such an extent as to correlate with NEC development [136].
The evidence that breastfed infants have a lower risk of NEC may be related to both the
maternal milk composition (lactoferrin, polyunsaturated fatty acids, immunoglobulins and
immune cells) and to the specific mother–infant microbial content, which is particular to
each pair [137].

Preclinical studies of NEC carried out on different animal species, including mice, rats
and piglets, have focused on an excessive TLR-mediated response to lipopolysaccharides
deriving from the gut bacteria, most often Gammaproteobacteria, as the basis of NEC de-
velopment [138,139]. TLR4 is typically more expressed in a preterm infant’s gut, which is
innately more inclined to inflammation, and its levels of expression in the gut immediately
fall prior to birth (Figure 2).

In a murine model of NEC, Hackam and colleagues showed that the activation of TLR4
by the dysbiotic bacteria in the premature gut is followed by intestinal epithelium injury
and a reduction in the self-repair capability of the intestinal mucosa [140,141]. Furthermore,
bacteria translocation across the damaged intestinal barrier into the bloodstream led to
the activation of TLR4 on the endothelial lining of premature blood vessels, subsequent
vasoconstriction caused by a TLR4-mediated decrease in nitric oxide release and intestinal
ischemia, eventually leading to NEC [141]. In line with this theory, the inhibition of TLR4
in the intestinal epithelium showed protection against the development of an experimental
NEC in a mouse model subjected to a combination of gavage formula feeds and intermittent
hypoxia, while the use of small molecule TLR4 inhibitors prevented NEC in mice, piglet
and human tissues ex vivo [141]. The pivotal importance of TLR4 in NEC development has
been confirmed by studies on probiotics [138,142], of which it is one of the main sites of
action. Specific strains of probiotics are known to promote barrier maturation and function
of the intestinal wall, restore altered permeability, regulate immune system, decrease
inflammation and impair the growth of pathogenic bacteria [139,143,144]. However, the
general administration of probiotic bacteria to prevent NEC in preterm neonates is still
debated [145]. According to Siggers and colleagues, probiotics beneficial effects may occur
mainly by providing only temporary competitive advantages for certain nonpathogenic
resident bacteria that may reduce the potential damaging effects of specific pathogens [130].
According to the last Cochrane review [146], there is an overall beneficial effect from
the use of probiotics to prevent NEC. The most commonly used preparations contained
Bifidobacterium spp., Lactobacillus spp., Saccharomyces spp. and Streptococcus spp. alone or
in combinations. The meta-analysis showed that probiotics may reduce the risk of NEC
and probably reduce mortality, even though this evidence was assessed as having low or
moderate certainty because of the trials’ design limitations. Additionally, probiotics may
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have little or no effect on severe neurodevelopmental impairment, but the imprecision of
accounting for the effect estimate and trial designs prevented a clear conclusion. Sharif
and colleagues also concluded that data regarding extremely premature infants are very
limited and did not provide evidence on NEC, mortality and infections in this subgroup
of preterms.
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Figure 2. TLR4’s role in pre- and postnatal age and in preterm NEC. (A) During the normal gestation
activation of TLR4 on epithelial intestinal cells by endogenous ligands, such as HSP class, fibrinogen,
fibronectin or hyaluronan, ISC proliferation and differentiation is favored via MyD88 and Notch
signaling. (B) At term, stimuli associated with vaginal delivery immediately downregulate TLR4
expression in epithelial cells, leading to bacterial tolerance. This protective mechanism is sustained
by the inhibitory effect of breast milk−contained EGF on TLR4 signaling. (C) In preterm delivery, the
tolerance to luminal microorganisms is not acquired, owing to the absence of vaginal delivery stimuli.
A high TLR4−mediated inflammatory response to microbial components ensues via MyD88−Puma
signaling, leading to the disruption of the epithelial barrier. Bacterial LPS−induced activation of TLR4
on vascular endothelial cells causes the inhibition of NO release and mesenteric vasoconstriction,
paving the way for intestinal ischemia and NEC. Abbreviations: ISC = intestinal stem cell; HSP = heat
shock protein; EGF = epidermal growth factor; LPS = lipopolysaccharide; NO = nitric oxide.

4.2. The Microbiota-Gut-Brain Axis and Sepsis in Premature Infants

Sepsis remains a severe complication of prematurity. Sepsis may occur either in the
first seven days of life or later and is defined as “early”-onset sepsis (EOS) or “late”-onset
sepsis (LOS), respectively. Despite the recent efforts to implement antibiotic stewardship
in NICU, empiric antibiotics are given to pregnant women or preterm infants to reduce
the risk of EOS. Thus, paradoxically, a preterm infant’s gut microbiome is disrupted due
to the antibiotic therapy, leading to the expansion and dominance of the opportunistic
population, then favoring the occurrence of LOS [147]. A few studies have shown a change
in the gut microbiome composition before LOS. Mai and colleagues [148] performed a case–
control study on preterm ≤32 weeks with LOS. The authors concluded that a distortion
in the normal microbiota composition, and not an enrichment of the potential pathogens,
is associated with LOS in preterm infants. Carl and coworkers [148] analyzed VLBW
neonates. They found that, since birth, invasive E. coli were present in all pre-sepsis
stools, but gut colonization with GBS and Serratia marcescens was detected closer to sepsis.
Shaw et al. [149] collected daily fecal samples of preterm neonates <32 weeks gestation,
with 22 LOS and 44 matched controls. From the week prior to diagnosis, infants with LOS
had higher proportions of fecal aerobes/facultative anaerobes compared to the controls.
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In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of
the fecal microbiota in the samples collected closest to diagnosis. Taft and coworkers [150]
studied preterm neonates <29 weeks with LOS and their controls in two NICUs. The
gut microbiome disruption occurred before the LOS, but the distortion depended on the
postnatal age and the site. The sepsis-causative organism was detected in the stool in 82%
of LOS.

According to these findings, it seems evident that several Gram-positive and Gram-
negative enteric bacteria have been identified as the major causatives for LOS in preterm
infants. Notably, these microorganisms were shown to have intestinal origins rather
than translocation from the skin, as demonstrated by stool sampling from LOS cases.
Thus, LOS has also been associated with anomalies in the preterm gut microbiome, with
reduced bacterial diversity and a higher abundance of Proteobacteria and Firmicutes but a
low bifidobacteria presence.

Early life brain development is known to be affected by systemic infection and inflam-
mation, as shown by long-term neurologic impairments among surviving infants [151,152].
At the same time, although this association between premature infection and brain injury
has been established, the degree, timing and the underlying mechanism/s are still under
investigation. In addition, infection without direct bacterial invasion of the CNS can also
lead to brain injury, probably driven by the immaturity of the blood–brain barrier and the
inflammation generated by pathogens that activate a local inflammatory response and/or
cause direct cytotoxic injury [153]. In addition, infection associated hypoxia/ischemia may
lead to proinflammatory microglial activation, which causes the release of inflammatory
cytokines such as TNF-α and IL-1β, reactive oxygen and nitrogen species and an increase
in the glutamate levels, with subsequent excitotoxicity. The combination of these factors
would result in oligodendroglial injury and/or the subsequent inhibition of maturation and
myelination, axonal damage and neuronal loss [154]. In a 10-year prospective cohort study
on infants born at less than 28 weeks gestational age, investigators found higher adjusted
odds for cerebral palsy, autism and epilepsy among infants with histologic chorioamnioni-
tis [155]. In a 5-year follow-up study of 2665 infants born at less than 28 weeks gestation,
the investigators found an increased risk of cerebral palsy in survivors of EOS without
an increased risk for impaired cognitive outcomes [156]. Mukhopadhyay and colleagues’
results demonstrated that the risk of death/neurodevelopmental impairment for infants
with culture-confirmed early-onset sepsis was higher compared with infants without this
diagnosis [157].

Even though sepsis pathophysiology in preterm infants is pretty well-understood, its
high pathogenic variability and difficulty in pathogenic agent identification still represent
important obstacles to the reduction of the mortality rate in preterm infants (around
22%) [158]. From this view, some studies have been directed toward the identification of
preventive approaches, such as the DEVANI (Design a Vaccine against Neonatal Infections)
project, which was founded by the European Union to identify a maternal immunization
program as an effective tool for decreasing the sepsis disease burden [159]. Similarly,
a metanalysis study was developed by Kaiser Permanente North California to assess a
prediction model for managing neonates at risk of EOS [160]. It incorporates two linked
predictive models using a Bayesian approach: the first one considers the probability of EOS
development based on gestation, maternal GBS status, duration of membrane rupture, high
antepartum maternal temperature and timing and type of intrapartum antibiotics, while the
second one evaluates how the baseline risk is modified after neonate medical examination.

5. Conclusions

The preterm infant intestinal microbiome is influenced by several factors, beginning
from prenatal life. Postnatal changes in the microbiota composition may affect the preterm
neonatal course, as well as long-term outcomes. There is still a wide gap in understanding
all the contributing factors and the mechanism behind microbiota dysbiosis and its influence
in the development of the most common diseases of premature infants and their later
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consequences. The interplay between the gut and brain warrants further exploration, since
it might lead to alternative preventive, diagnostic and therapeutic strategies. In this latter
context, future studies are needed to evaluate the efficacy of microbiome−based adjuvant
therapies for preterm infants based on the administration of prebiotics, probiotics or even
postbiotics, i.e., bacterial−derived metabolites.
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