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Abstract. Let p be a prime. A continuous representation θ : G →
GL1(Zp) of a profinite group G is called a cyclotomic p-orientation
if for all open subgroups U ⊆ G and for all k, n ≥ 1 the natural
maps Hk(U,Zp(k)/p

n) → Hk(U,Zp(k)/p) are surjective. Here Zp(k)
denotes the Zp-module of rank 1 with U -action induced by θ|kU . By
the Rost-Voevodsky theorem, the cyclotomic character of the abso-
lute Galois group GK of a field K is, indeed, a cyclotomic p-orientation
of GK. We study profinite groups with a cyclotomic p-orientation. In
particular, we show that cyclotomicity is preserved by several oper-
ations on profinite groups, and that Bloch-Kato pro-p groups with
a cyclotomic p-orientation satisfy a strong form of Tits’ alternative
and decompose as semi-direct product over a canonical abelian closed
normal subgroup.
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1 Introduction

For a prime p let Zp denote the ring of p-adic integers. For a profinite group G,
we call a continuous representation θ : G → Z×

p = GL1(Zp) a p-orientation
of G and call the couple (G, θ) a p-oriented profinite group. Given a p-oriented
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profinite group (G, θ), for k ∈ Z let Zp(k) denote the left Zp[[G]]-module induced
by θk, namely, Zp(k) is equal to the additive group Zp and the left G-action is
given by

g · z = θ(g)k · z, g ∈ G, z ∈ Zp(k). (1.1)

Vice-versa, if M is a topological left Zp[[G]]-module which as an abelian pro-p
group is isomorphic to Zp, then there exists a unique p-orientation θ : G→ Z×

p

such that M ≃ Zp(1).
The Zp[[G]]-module Zp(1) and the representation θ : G → Z×

p are said to be
k-cyclotomic, for k ≥ 1, if for every open subgroup U of G and every n ≥ 1 the
natural maps

Hk(U,Zp(k)/p
n) // Hk(U,Zp(k)/p) , (1.2)

induced by the epimorphism of Zp[[U ]]-modules Zp(k)/p
n → Zp(k)/p, are sur-

jective. If Zp(1) (respectively θ) is k-cyclotomic for every k ≥ 1, then it is called
simply a cyclotomic Zp[[G]]-module (resp., cyclotomic p-orientation). Note that
Zp(1) is k-cyclotomic if, and only if, Hk+1

cts (U,Zp(k)) is a torsion free Zp-module
for every open subgroup U ⊆ G — here H∗

cts denotes continuous cochain coho-
mology as introduced by J. Tate in [34] (see § 2.1).
Cyclotomic modules of profinite groups have been introduced and studied by
C. De Clercq and M. Florence in [5]. Previously J.P. Labute, in [16], considered
surjectivity of (1.2) in the case k = 1 and U = G — note that demanding
surjectivity for U = G only is much weaker than demanding it for every open
subgroup U ⊆ G, and this is what makes the definition of cyclotomic modules
truly new.
Let K be a field, and let K̄/K be a separable closure of K. If char(K) 6= p, the
absolute Galois group GK = Gal(K̄/K) of K comes equipped with a canonical
p-orientation

θK,p : GK −→ Aut(µp∞(K̄)) ≃ Z×
p , (1.3)

where µp∞(K̄) ⊆ K̄× denotes the subgroup of roots of unity of K̄ of p-power
order. If p = char(K), we put θK,p = 1GK

, the function which is constantly 1 on
GK. The following result (cf. [5, Prop. 14.19]) is a consequence of the positive
solution of the Bloch-Kato Conjecture given by M. Rost and V. Voevodsky
with the “C. Weibel patch” (cf. [29, 36, 40]), which from now on we will refer
to as the Rost-Voevodsky Theorem.

Theorem 1.1. Let K be a field, and let p be prime number. The canonical
p-orientation θK,p : GK → Z×

p is cyclotomic.

Theorem 1.1 provides a fundamental class of examples of profinite groups en-
dowed with a cyclotomic p-orientation. Bearing in mind the exotic character
of absolute Galois groups, it also provides a strong motivation to the study
of cyclotomically p-oriented profinite groups — which is the main purpose of
this manuscript. In fact, one may recover several Galois-theoretic statements
already for profinite groups with a 1-cyclotomic p-orientation — e.g., the only
finite group endowed with a 1-cyclotomic p-orientation is the finite group C2

Documenta Mathematica 25 (2020) 1881–1916



Cyclotomic p-Orientations 1883

of order 2, with non-constant 2-orientation θ : C2 → {±1} (cf. [11, Ex. 3.5]),
and this implies the Artin-Schreier obstruction for absolute Galois groups. In
their paper, De Clercq and Florence formulated the “Smoothness Conjecture”,
which can be restated in this context as follows: for a p-oriented profinite group,
1-cyclotomicity implies k-cyclotomicity for all k ≥ 1 (cf. [5, Conj. 14.25]).

A p-oriented profinite group (G, θ) is said to be Bloch-Kato if the Fp-algebra

H•(U, θ̂|U ) =
∐

k≥0

Hk(U,Fp(k)), (1.4)

where Fp(k) = Zp(k)/p, with product given by cup-product, is quadratic for
every open subgroup U ofG. Note that if im(θ) ⊆ 1+pZp and p 6= 2 then G acts
trivially on Zp(k)/p. By the Rost-Voevodsky Theorem (GK, θK,p) is, indeed,
Bloch-Kato.

For a profinite group G, let Op(G) denote the maximal closed normal pro-p
subgroup of G. A p-oriented profinite group (G, θ) has two particular closed
normal subgroups: the kernel ker(θ) of θ, and the θ-center of (G, θ), given by

Zθ(G) =
{
x ∈ Op(ker(θ)) | gxg

−1 = xθ(g) for all g ∈ G
}
. (1.5)

As Zθ(G) is contained in the center Z(ker(θ)) of ker(θ), it is abelian. The p-
oriented profinite group (G, θ) will be said to be θ-abelian, if ker(θ) = Zθ(G)
and if Zθ(G) is torsion free. In particular, for such a p-oriented profinite group
(G, θ), G is a virtual pro-p group (i.e., G contains an open subgroup which is a
pro-p group). Moreover, a θ-abelian pro-p group (G, θ) will be said to be split

if G ≃ Zθ(G)⋊ im(θ).

As Zθ(G) is contained in ker(θ), by definition, the canonical quotient Ḡ =
G/Zθ(G) carries naturally a p-orientation θ̄ : Ḡ→ Z×

p , and one has the following
short exact sequence of p-oriented profinite groups.

{1} // Zθ(G) // G
π // Ḡ // {1} (1.6)

The following result can be seen as an analogue of the equal characteristic
transition theorem (cf. [31, §II.4, Exercise 1(b), p. 86]) for cyclotomically p-
oriented Bloch-Kato profinite groups.

Theorem 1.2. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato profinite
group. Then (1.6) splits, provided that cdp(G) < ∞, and one of the following
conditions hold:

(i) G is a pro-p group,

(ii) (G, θ) is an oriented virtual pro-p group (see §4 ),

(iii) (Ḡ, θ̄) is cyclotomically p-oriented and Bloch-Kato.
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In the case that (G, θ) is the maximal pro-p Galois group of a field K contain-
ing a primitive pth-root of unity endowed with the p-orientation induced by
θK,p, Zθ(G) is the inertia group of the maximal p-henselian valuation of K (cf.
Remark 7.8).
Note that the 2-oriented pro-2 group (C2 × Z2, θ) may be θ-abelian, but θ is
never 1-cyclotomic (cf. Proposition 6.5). As a consequence, in a cyclotomically
2-oriented pro-2 group every element of order 2 is self-centralizing.
For p odd it was shown in [25] that a Bloch-Kato pro-p group G satisfies a
strong form of Tits alternative, i.e., either G contains a closed non-abelian
free pro-p subgroup, or there exists a p-orientation θ : G → Z×

p such that G
is θ-abelian. In Subsection 7.1 we extend this result to pro-2 groups with a
cyclotomic orientation, i.e., one has the following analogue of R. Ware’s theorem
(cf. [38]) for cyclotomically oriented Bloch-Kato pro-p groups (cf. Fact 7.4).

Theorem 1.3. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p
group. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then one — and
only one — of the following cases hold:

(i) G contains a closed non-abelian free pro-p subgroup; or

(ii) G is θ-abelian.

It should be mentioned that for p = 2 the additional hypothesis is indeed
necessary (cf. Remark 5.8). The class of cyclotomically p-oriented Bloch-Kato
profinite groups is closed with respect to several constructions.

Theorem 1.4. (a) The inverse limit of an inverse system of cyclotomically
p-oriented Bloch-Kato profinite groups with surjective structure maps is
a cyclotomically p-oriented Bloch-Kato profinite group (cf. Corollary 3.3
and Corollary 3.6).

(b) The free profinite (resp. pro-p) product of two cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) groups is a cyclotomically p-oriented
Bloch-Kato profinite (resp. pro-p) group (cf. Theorem 3.14).

(c) The fibre product of a cyclotomically p-oriented Bloch-Kato profinite
group (G1, θ1) with a split θ2-abelian profinite group (G2, θ2) is a cyclo-
tomically p-oriented Bloch-Kato profinite group (cf. Theorem 3.11 and
Theorem 3.13).

(d) The quotient of a cyclotomically p-oriented Bloch-Kato profinite group
(G, θ) with respect to a closed normal subgroup N ⊆ G satisfying N ⊆
ker(θ) and N a p-perfect group is a cyclotomically p-oriented Bloch-Kato
profinite group (cf. Proposition 4.6).

Some time ago I. Efrat (cf. [7–9]) has formulated the so-called elementary type

conjecture concerning the structure of finitely generated pro-p groups occurring
as maximal pro-p quotients of an absolute Galois group. His conjecture can be
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reformulated in the class of cyclotomically p-oriented Bloch-Kato pro-p groups.
Such a p-oriented pro-p group (G, θ) is said to be indecomposable if Zθ(G) = {1}
and if G is not a proper free pro-p product. A positive answer to the following
question would settle the elementary type conjecture affirmatively.

Question 1.5. Let (G, θ) be a finitely generated, torsion free, indecomposable,
cyclotomically oriented Bloch-Kato pro-p group. Does this imply that G is a
Poincaré duality pro-p group of dimension cdp(G) ≤ 2?

The paper is organized as follows. In § 2 we give some equivalent definitions for
cyclotomic p-orientations. In § 3 we study some operations of profinite groups
(inverse limits, free products and fibre products) in relation with the properties
of cyclotomicity and Bloch-Kato-ness, and we prove Theorem 1.4(a)-(b)-(c). In
§ 4 we study the quotients of cyclotomically p-oriented profinite groups over
closed normal p-perfect subgroups — in particular, we introduce oriented vir-

tual pro-p groups and we prove Theorem 1.4(d). In § 5 we study p-oriented
profinite Poincaré duality groups. In § 6 we focus on the presence of torsion in
cyclotomically 2-oriented pro-2 groups, and we prove that in a 1-cyclotomically
2-oriented pro-2 group every element of order 2 is self-centralizing (see Propo-
sition 6.5). In § 7 we focus on the structure of cyclotomically p-oriented Bloch-
Kato pro-p groups: we prove Theorems 1.2 and 1.3, and show that in many
cases the θ-center is the maximal abelian closed normal subgroup (cf. Theo-
rem 7.7).

2 Absolute Galois groups and cyclotomic p-orientations

Throughout the paper, we study profinite groups with a cyclotomic module
Zp(1). In contrast to [5, § 14], we refer to the associated representation θ : G→
Z×
p , rather than to the module itself. As we study several subgroups of G

associated to this cyclotomic module Zp(1), like ker(θ) and Zθ(G), this choice of
notation turns out to be convenient for our purposes. We follow the convention
as established in [25,26] and call such representations “p-orientations”.1 In the
case that G is a pro-p group, the couple (G, θ) was called a cyclotomic pro-p
pair, in [9, § 3].

2.1 The connecting homomorphism δk

Let G be a profinite group, and let θ : G → Z×
p be a p-orientation of G. For

every k ≥ 0 one has the short exact sequence of left Zp[[G]]-modules

0 // Zp(k)
p· // Zp(k) // Fp(k) // 0 , (2.1)

1 For a Poincaré duality group G the representation associated to the dualizing module

— which coincides with the cyclotomic module in the case of a Poincaré duality pro-p group
of dimension 2 (cf. Theorem 5.7) — is sometimes also called the “orientation” of G.
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which induces the long exact sequence in cohomology

· · · Hk
cts(G,Zp(k)) Hk

cts(G,Zp(k)) Hk
cts(G,Fp(k))

Hk+1
cts (G,Zp(k)) Hk+1

cts (G,Zp(k)) · · ·

δk−1 p· πk

δk

p· πk+1

(2.2)

with connecting homomorphism δk (cf. [34, §2]). In particular, δk is trivial if,
and only if, multiplication by p on Hk+1

cts (G,Zp(k)) is a monomorphism. This
is equivalent to Hk+1

cts (G,Zp(k)) being torsion free. Therefore, one concludes
the following:

Proposition 2.1. Let (G, θ) be a p-oriented profinite group. For k ≥ 1 and
U ⊆ G an open subgroup the following are equivalent.

(i) The map (1.2) is surjective for every n ≥ 1.

(ii) The map πk : Hk
cts(U,Zp(k))→ Hk(U,Fp(k)) is surjective.

(iii) The connecting homomorphism δk : Hk(U,Fp(k)) → Hk+1
cts (U,Zp(k)) is

trivial.

(iv) The Zp-module Hk+1
cts (U,Zp(k)) is torsion free.

Proof. By the long exact sequence (2.2), the equivalences between (ii), (iii) and
(iv) are straightforward. For m ≥ n ≥ 1 let πk

m,n denote the natural maps

πk
m,n : H

k(U,Zp(k)/p
m) −→ Hk(U,Zp(k)/p

n)

(if m = ∞ we set p∞ = 0). If condition (i) holds then the system
(Hk(U,Zp/p

n), πk
m,n) satisfies the Mittag-Leffler property. In particular,

Hk(U,Zp(k)) ≃ lim
←−
n≥1

Hk(U,Zp(k)/p
n)

(cf. [28] and [23, Thm. 2.7.5]). Thus πk = πk
n,1 ◦ π

k
∞,n is surjective if, and

only if, πk
n,1 is surjective for every n ≥ 1. Conversely, if πk is surjective then

πk = πk
n,1 ◦ π

k
∞,n yields the surjectivity of πk

n,1 for every n.

2.2 Profinite groups of cohomological p-dimension at most 1

Let G be a profinite group, and let θ : G→ Z×
p be a p-orientation of G. Then

H1
cts(G,Zp(0)) = Homgrp(G,Zp) (2.3)

is a torsion free abelian group for every profinite groupG, i.e., θ is 0-cyclotomic.
If G is of cohomological p-dimension less or equal to 1, then Hm+1

cts (G,Zp(m)) =
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0 for all m ≥ 1 showing that θ is cyclotomic. Moreover, H•(G, θ̂) is a quadratic
Fp-algebra for every profinite group with cdp(G) ≤ 1 and for any p-orientation
θ : G → Z×

p . If G is of cohomological p-dimension less or equal to 1, one has
cdp(C) ≤ 1 for every closed subgroup C of G (cf. [31, §I.3.3, Proposition 14]).
Thus one has the following.

Fact 2.2. Let G be a profinite group with cdp(G) ≤ 1, and let θ : G → Z×
p be

a p-orientation for G. Then (G, θ) is Bloch-Kato and θ is cyclotomic.

2.3 The mth-norm residue symbol

Throughout this subsection we fix a field K and a separable closure K̄ of K.
For p 6= char(K), µp∞(K̄) is a divisible abelian group. By construction, one has
a canonical isomorphism

lim
←−k≥0

(µp∞(K̄), pk) ≃ Zp(1)⊗Z Qp = Qp(1) (2.4)

and a short exact sequence 0 → Zp(1) → Qp(1)→ µp∞(K̄)→ 0 of topological
left Zp[[GK]]-modules, where GK = Gal(K̄/K) is the absolute Galois group of
K.

Let KM
m (K), m ≥ 0, denote the mth-Milnor K-group of K (cf. [10, §24.3]). For

p 6= char(K), J. Tate constructed in [34] a homomorphism of abelian groups

hm(K) : KM
m (K) −→ Hm

cts(GK,Zp(m)), (2.5)

the so-called mth-norm residue symbol. Let KM
m (K)/p = KM

m (K)/pKM
m (K).

Around ten years later S. Bloch and K. Kato conjectured in [1] that the induced
map

hm(K)/p : K
M
m (K)/p −→ Hm(GK,Fp(m)) (2.6)

is an isomorphism for all fields K, char(K) 6= p, and for all m ≥ 0. This
conjecture has been proved by V. Voevodsky and M. Rost with a “patch” of
C. Weibel (cf. [29, 36, 40]). In particular, since KM

• (K)/p is a quadratic Fp-
algebra and as h•(K)/p is a homomorphism of algebras, this implies that the
absolute Galois group of a field K is Bloch-Kato (cf. [10, §23.4]). The Rost-
Voevodsky Theorem has also the following consequence.

Proposition 2.3. Let K be a field, let GK denote its absolute Galois group, and
let θK,p : GK → Z×

p denote its canonical p-orientation. Then θK,p is cyclotomic.

Although Proposition 2.3 might be well known to specialists, we add a short
proof of it. By Proposition 2.1, Proposition 2.3 in combination with Theo-
rem 1.4-(d) is equivalent to [5, Prop. 14.19].

Proof of Proposition 2.3. If char(K) = p, then cdp(GK) ≤ 1 (cf. [31, §II.2.2,
Proposition 3]), and the p-orientation θK,p is cyclotomic by Fact 2.2. So we
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may assume that char(K) 6= p. In the commutative diagram

KM
k (K)

p //

hk

��

KM
k (K)

hk

��

π // KM
k (K)/p //

(hk)/p

��

0

Hk
cts(GK,Zp(k))

p // Hk
cts(GK,Zp(k))

α // Hk(GK,Fp(k))
β // Hk+1

cts (GK,Zp(k))

(2.7)
the map π is surjective, and (hk)/p is an isomorphism. Hence α must be

surjective, and thus β = 0, i.e., p : Hk+1
cts (GK,Zp(k)) → Hk+1

cts (GK,Zp(k)) is
an injective homomorphism of Zp-modules. Thus Hk+1

cts (GK,Zp(k)) must be
p-torsion free. Any open subgroup U of GK is the absolute Galois group of K̄U .
Hence θK,p is cyclotomic, and this yields the claim.

Remark 2.4. Let K be a number field, let S be a set of places containing all
infinite places of K and all places lying above p, and let GS

K
be the Galois group

of K̄S/K, where K̄S/K is the maximal extension of K̄/K which is unramified
outside S. Then θK,p : GK → Z×

p induces a p-orientation θSk,p : G
S
K
→ Z×

p .
However, it is well known (cf. [23, Prop. 8.3.11(ii)]) that,

H1(GS
K
, Ip(1)) ≃ H

1(GS
K
,OS

K̄
)(p) ≃ cl(OS

K
)(p) (2.8)

(for the definition of Ip(1) see §3), where cl(O
S
K
) denotes the ideal class group of

the Dedekind domain OS
K
, and (p) denotes the p-primary component. Hence

(GS
K
, θS

K,p) is in general not cyclotomic (cf. Proposition 3.1).

3 Cohomology of p-oriented profinite groups

A homomorphism φ : (G1, θ1) → (G2, θ2) of two p-oriented profinite groups
(G1, θ1) and (G2, θ2) is a continuous group homomorphism φ : G1 → G2 satis-
fying θ1 = θ2 ◦ φ.
Let (G, θ) be a p-oriented profinite group. For k ∈ Z, put Qp(k) = Zp(k)⊗ZpQp,
and also Ip(k) = Qp(k)/Zp(k), i.e., Ip(k) is a discrete left G-module and — as
an abelian group — a divisible p-torsion module.
Let Ip = Qp/Zp, and let ∗ = HomZp( , Ip) denote the Pontryagin duality
functor. Then Ip(k)

∗ is a profinite left Zp[[G]]-module which is isomorphic to
Zp(−k).

3.1 Criteria for cyclotomicity

The following proposition relates the continuous co-chain cohomology groups,
Galois cohomology and the Galois homology groups as defined by A. Brumer
in [3].

Proposition 3.1. Let (G, θ) be a p-oriented profinite group, let k be an integer,
and let m be a non-negative integer. Then the following are equivalent:
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(i) Hm+1
cts (G,Zp(k)) is torsion free;

(ii) Hm(G, Ip(k)) is divisible;

(iii) Hm(G,Zp(−k)) is torsion free.

Proof. The equivalence (i)⇔(ii) is a direct consequence of [34, Prop. 2.3], and
(ii)⇔(iii) follows from [33, (3.4.5)].

The direct limit of divisible p-torsion modules is a divisible p-torsion module.
From this fact — and Proposition 3.1 — one concludes the following.

Corollary 3.2. Let (G, θ) be a cyclotomically p-oriented profinite group.
Then Hm(C, Ip(m)) is divisible for all m ≥ 0 and all C closed in G.

Proof. It suffices to show (ii)⇒(i). Let C be a closed subgroup of G. Then
Hm(C, Ip(m)) ≃ lim

−→U∈BC
Hm(U, Ip(m)), where BC denotes the set of all open

subgroups of G containing C (cf. [31, §I.2.2, Proposition 8]). Hence Proposi-
tion 3.1 yields the claim.

In combination with [3, Corollary 4.3(ii)], Proposition 3.1 implies the following.

Corollary 3.3. Let (I,�) be a directed set, let (G, θ) be a p-oriented profinite
group, and let (Ni)i∈I be a family of closed normal subgroups of G satisfying
Nj ⊆ Ni ⊆ ker(θ) for i � j such that

⋂
i∈I Ni = {1} and the induced p-

orientation θi : G/Ni → Z×
p is cyclotomic for all i ∈ I. Then θ : G → Z×

p is
cyclotomic.

Proof. Let U ⊆ G be a open subgroup of G. Hypothesis (iii) implies that the
group Hm(UNi/Ni,Zp(−m)) is torsion free for all i ∈ I (cf. Proposition 3.1).
Thus, by [3, Corollary 4.3(ii)], Hm(U,Zp(−m)) is torsion free, and hence, by
Proposition 3.1, θ : G→ Z×

p is a cyclotomic p-orientation.

3.2 The mod-p cohomology ring

An N0-graded Fp-algebra A =
∐

k≥0 Ak is said to be anti-commutative if for

x ∈ As and y ∈ At one has y · x = (−1)st · x · y. E.g., if V is an Fp-
vector space, the exterior algebra Λ•(V ) (cf. [18, Chapter 4]) is an N0-graded
anti-commutative Fp-algebra. Moreover, if G is a profinite group, then its
cohomology ring H•(G,Fp) is an N0-graded anti-commutative Fp-algebra (cf.
[23, Prop. 1.4.4]).
Let T(V ) =

∐
k≥0 V

⊗k denote the tensor algebra generated by the Fp-vector
space V . A N0-graded associative Fp-algebra A is said to be quadratic if the
canonical homomorphism ηA : T(A1)→ A is surjective, and

ker(ηA) = T(A1)⊗ ker(ηA2 )⊗T(A1) (3.1)

(cf. [24, § 1.2]). E.g., A = Λ•(V ) is quadratic.
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If A and B are anti-commutative N0-graded Fp-algebras, then A⊗B is again
an anti-commutative N0-graded Fp-algebra, where

(x1 ⊗ y1) · (x2 ⊗ y2) = (−1)s2t1 · (x1 · x2)⊗ (y1 · y2), (3.2)

for x1 ∈ As1 , x2 ∈ As2 y1 ∈ Bt1 , y2 ∈ Bt2 . In particular, if A and B are
quadratic, then A⊗B is quadratic as well.
A direct set (I,�) maybe considered as a small category with objects given by
the set I and precisely one morphism ιi,j for all i � j, i, j ∈ I, i.e., ιi,i = idi.
One has the following.

Fact 3.4. Let F be a field, let (I,�) be a direct system, and let A : (I,�) →

Fqalg be a covariant functor with values in the category of quadratic F-algebras.
Then B = lim

−→i∈A
A(i) is a quadratic F-algebra.

Let (G, θ) be a p-oriented profinite group, and let θ̂ : G → F×
p be the map

induced by θ. If θ̂ = 1G, then the mod-p cohomology ring of H•(G, θ̂) coincides
with H•(G,Fp) (see (1.4)), and hence it is anti-commutative. Furthermore, if

θ̂ 6= 1G and G◦ = ker(θ̂), restriction

res•G,G◦ : H•(G, θ̂) −→ H•(G◦,Fp) (3.3)

is an injective homomorphism of N0-graded algebras. Hence the mod-p coho-
mology ring H•(G, θ) is anti-commutative. In particular, if M(k) denotes the
homogeneous component of the left Fp[G/G

◦]-module M , on which G/G◦ acts

by θ̂k, the Hochschild-Serre spectral sequence (cf. [23, § II.4, Exercise 4(ii)])
shows that

Hk(G, θ̂) = Hk(G◦,Fp)(−k). (3.4)

From [31, §I.2.2, Prop. 8] and Fact 3.4 one concludes the following.

Corollary 3.5. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato.

Then H•(C, θ̂|C) is quadratic for all C closed in G.

Corollary 3.6. Let (I,�) be a directed set, let (G, θ) be a p-oriented profinite
group, and let (Ni)i∈I be a family of closed normal subgroups of G, Nj ⊆ Ni ⊆

ker(θ) for i � j, such that
⋂

i∈I Ni = {1} and (G/Ni, θ̂Ni) is Bloch-Kato. Then
(G, θ) is Bloch-Kato.

Remark 3.7. Let G be a pro-p group with minimal presentation

G = 〈x1, . . . , xd | [x1, x2][[x3, x4], x5] = 1 〉 ,

with d ≥ 5. In [22, Ex. 7.3] and [21, § 4.3] it is shown that G does not occur as
maximal pro-p Galois group of a field containing a primitive pth-root of unity,
relying on the properties of Massey products. It would be interesting to know
whether G admits a cyclotomic p-orientation θ : G → Z×

p such that (G, θ) is
Bloch-Kato. By Theorem 1.1, a negative answer would provide a “Massey-free”
proof of the aforementioned fact.
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3.3 Fibre products

Let (G1, θ1), (G2, θ2) be p-oriented profinite groups. The fibre product (G, θ) =
(G1, θ1)⊠ (G2, θ2) denotes the pull-back of the diagram

G1
θ1 // Z×

p

G

OO✤
✤

✤

//❴❴❴

θ
>>

G2

θ2

OO
(3.5)

Remark 3.8. By restricting to the suitable subgroups if necessary, for the analy-
sis of a fibre product (G, θ) = (G1, θ1)⊠(G2, θ2) one may assume that im(θ1) =
im(θ2). In particular, if (G2, θ2) is split θ2-abelian and G2 ≃ A ⋊ im(θ2) for
some free abelian pro-p group A, then G ≃ A⋊G1 with gag−1 = aθ1(g) for all
a ∈ A and g ∈ G1.

Fact 3.9. Let (G, θ) be a p-oriented profinite group, and let N be a finitely
generated non-trivial torsion free closed subgroup of Zθ(G), i.e., N ≃ Zp(1)

r

as left Zp[[G]]-modules for some r ≥ 1. Then for k ≥ 0 one has

H1(N, Ip(k)) ≃ Ip(k − 1)r (3.6)

as left Zp[[G]]-module.

The following property will be useful for the analysis of fibre products.

Lemma 3.10. Let (G1, θ), (G2, θ2) be cyclotomically p-oriented profinite groups,
with (G2, θ2) split θ2-abelian and Z = Zθ2(G2), and set

(G, θ) = (G1, θ1)⊠ (G2, θ2).

Let π : G→ G1 be the canonical projection, and let U ⊆ G be an open subgroup.
Then U ≃ (Z ∩ U)⋊ π(U).

Proof. Without loss of generality we may assume that Z ≃ Zp, so that Z∩U =

Zpk

for some k ≥ 0. It suffices to show that there exists an open subgroup U1

of U satisfying Z ∩ U1 = {1} and π(U1) = π(U).
By choosing a section σ : G1 → G (see Remark 3.8), one has a continuous
homomorphism τ = σ ◦ π : G→ G1 and a continuous function η : G→ Z such
that each g ∈ G can be uniquely written as g = η(g) · τ(g). In particular, for

h, h1, h2 ∈ U and z ∈ Z ∩ U = Zpk

one has

η(z · h) = z · η(h) and η(h1 · h2) = η(h1) ·
h1η(h2). (3.7)

Let ηU = χ ◦ η|U , where χ : Z → Z/Zpk

is the canonical projection. By (3.7),

ηU defines a crossed-homomorphism η̃U : Ū → Z/Zpk

, where Ū = U/Zpk

. As Ū
is canonically isomorphic to an open subgroup of G1, (Ū , θ1|Ū ) is cyclotomically
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p-oriented. (Note that Z ≃ Zp(1) as Zp[[U ]]-modules.) Hence, H1
cts(Ū ,Zp(1))→

H1(Ū ,Zp(1)/p
k) is surjective by Proposition 2.1, and the snake lemma applied

to the commutative diagram

0 // B1(Ū , Z) //

����

Z1(Ū , Z) //

��

H1(Ū ,Zp(1)) //

����

0

0 // B1(Ū , Z/Zpk

) // Z1(Ū , Z/Zpk

) // H1(Ū ,Zp(1)/p
k) // 0

(3.8)

where the left-side and right-side vertical arrows are surjective, shows that

Z1(Ū , Z)→ Z1(Ū , Z/Zpk

) is surjective. Thus there exists η◦ ∈ Z
1(Ū , Z) such

that η̃U = χ◦η◦. It is straightforward to verify that U1 = {η◦(h̄) ·σ(h̄) | h̄ ∈ Ū}
is an open subgroup of G1 satisfying the requirements.

Theorem 3.11. Let (G1, θ1) be a cyclotomically p-oriented profinite group,
and let (G2, θ2) be split θ2-abelian. Then (G1, θ1) ⊠ (G2, θ2) is cyclotomically
p-oriented.

Remark 3.12. (a) If p is odd, then every θ-abelian profinite group (G, θ) is split.
However, a 2-oriented θ-abelian profinite group (G, θ) is split if, and only if, it
is cyclotomically 2-oriented (cf. Proposition 6.7).

(b) If (G, θ) is θ-abelian and H ⊆ G is a closed subgroup, then (H, θ|H) is also
θ-abelian.

Proof of Theorem 3.11. Put (G, θ) = (G1, θ1)⊠ (G2, θ2) and Z = Zθ2(G2). We
may also assume that im(θ1) = im(θ2). As (G2, θ2) is split θ2-abelian, one has
G = Z ⋊G1.

We first show the claim for Z ≃ Zp. Let U be an open subgroup of G. By
Lemma 3.10, (U, θ|U ) ≃ (U1, θ̄1) ⊠ (U2, θ̄2) where U1 is isomorphic to an open
subgroup of G1 and (U2, θ̄2) is split θ̄2-abelian with N = ker(θ̄2) open in Z.
As cdp(N) = 1, one has Hm(N, Ip(k)) = 0 for m ≥ 2 and k ≥ 0. Therefore,
the E2-term of the Hochschild-Serre spectral sequence associated to the short
exact sequence of profinite groups

{1} // N // U // U1
// {1} (3.9)

and evaluated on the discrete Zp[[U ]]-module Ip(k), is concentrated on the first
and the second row. In particular, ds,tr = 0 for r ≥ 3. As (3.9) splits, and as
Ip(k) is inflated from U1, one has Es,0

2 (Ip(k)) = Es,0
∞ (Ip(k)) for s ≥ 0 (cf. [23,

Prop. 2.4.5]). Hence ds,t2 = 0 for all s, t ≥ 0, i.e., Es,t
2 (Ip(k)) = Es,t

∞ (Ip(k)), and
the spectral sequence collapses. Thus, using the isomorphism (3.6), for every
k ≥ 1 one has a short exact sequence

0 // Hk(U1, Ip(k))
inf // Hk(U, Ip(k)) // Hk−1(U1, Ip(k − 1)) // 0, (3.10)
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where the right- and left-hand side are divisible p-torsion modules. As such
Zp-modules are injective, (3.10) splits showing that Hk(U, Ip(k)) is p-divisible.
Therefore, by Proposition 3.1, (G, θ) is cyclotomic.

Thus, by induction the claim holds for all split θ2-abelian groups (G2, θ2) sat-
isfying rk(Zθ2(G2)) <∞. In general, as Z is a torsion free abelian pro-p group,
there exists an inverse system (Zi)i∈I of closed subgroups of Z such that Z/Zi

is torsion free, of finite rank, and Z = lim
←−i∈I

Z/Zi. Since Zi is normal in G

and

(G/Zi, θ̄) ≃ (G1, θ1)⊠ (G2/Zi, θ̄2)

is cyclotomically p-oriented, Corollary 3.3 yields the claim.

The following theorem can be seen as a generalization of a result of
A. Wadsworth [37, Thm. 3.6].

Theorem 3.13. Let (Gi, θi), i = 1, 2, be p-oriented profinite groups satisfying
im(θ1) = im(θ2). Assume further that (G2, θ2) is split θ2-abelian. Then for
(G, θ) = (G1, θ1)⊠ (G2, θ2) one has that

H•(G, θ̂) ≃ H•(G1, θ̂1)⊗ Λ• ((ker(θ2)/ker(θ2)
p)∗) . (3.11)

Moreover, if (G1, θ1) is Bloch-Kato, then (G, θ) is Bloch-Kato.

Proof. Assume first that d(Zθ2(G2)) is finite. If d(Zθ2(G2)) = 1 then one ob-
tains the isomorphism (3.11) from [37, Thm. 3.1], which uses the Hochschild-
Serre spectral sequence associated to the short exact sequence of profinite
groups

{1} // Zθ2(G2) // G // G/Zθ2(G2) // {1}

and evaluated on the discrete Zp[[G]]-module Fp(k), to compute H•(G, θ̂). If
d(Zθ2(G2)) > 1, then applying induction on d(Zθ2(G2)) yields the isomorphism
(3.11). Finally, if Zθ2(G2) is not finitely generated, then a limit argument
similar to the one used in the proof Theorem 3.11 and Corollary 3.6 yield the
claim.

3.4 Coproducts

For two profinite groups G1 and G2 let G = G1 ∐G2 denote the coproduct (or
free product) in the category of profinite groups (cf. [27, § 9.1]). In particular,
if (G1, θ1) and (G2, θ2) are two p-oriented profinite groups, the p-orientations
θ1 and θ2 induce a p-orientation θ : G→ Z×

p via the universal property of of the
free product. Thus, we may interpret ∐ as the coproduct in the category of p-
oriented profinite groups (cf. [9, §3]). The same applies to ∐p — the coproduct
in the category of pro-p groups.
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Theorem 3.14. Let (G1, θ1) and (G2, θ2) be two cyclotomically p-oriented
profinite groups. Then their coproduct (G, θ) = (G1, θ1) ∐ (G2, θ2) is cyclo-
tomically oriented. Moreover, if (G1, θ1) and (G2, θ2) are Bloch-Kato, then
(G, θ) is Bloch-Kato.

Proof. Let (U, θ|U ) be an open subgroup of (G, θ). Then, by the Kurosh sub-
group theorem (cf. [27, Thm. 9.1.9]),

U ≃
∐

s∈S1

(sG1 ∩ U) ∐
∐

t∈S2

(tG2 ∩ U)∐ F, (3.12)

where yGi = yGiy
−1 for y ∈ G. The sets S1 and S2 are sets of representatives

of the double cosets U\G/G1 and U\G/G2, respectively. In particular, the sets
S1 and S2 are finite, and F is a free profinite subgroup of finite rank.
Put Us = sG1 ∩ U for all s ∈ S1, and Vt = tG2 ∩ U for all t ∈ S2. By [23,
Thm. 4.1.4], one has an isomorphism

Hk(U, Ip(k)) ≃
⊕

s∈S1

Hk(Us, Ip(k))⊕
⊕

t∈S2

Hk(Vt, Ip(k)), (3.13)

for k ≥ 2, and an exact sequence

M
α // H1(U, Ip(1)) // M ′ // 0. (3.14)

If (G1, θ1) and (G2, θ2) are cyclotomically p-oriented, then, by hypothesis and
(3.13), Hk(U, Ip(k)) is a divisible p-torsion module for k ≥ 2. In (3.14), the
module M is a homomorphic image of a p-divisible p-torsion module, and the
module M ′ is the direct sum of p-divisible p-torsion modules, showing that
H1(U, Ip(1)) is divisible. Hence, by Proposition 3.1 and Corollary 3.3, (G, θ) is
cyclotomically p-oriented.
Assume that (G1, θ1) and (G2, θ2) are Bloch-Kato. Then — for U as in (3.12)
— one has by (3.13) and (3.14) that

H•(U, θ̂|U ) ≃ A⊕
⊕

s∈S1

H•(Us, θ̂|Us)⊕
⊕

t∈S2

H•(Vt, θ̂|Vt)⊕H
•(F, θ̂|F ) (3.15)

where A is a quadratic algebra, and ⊕ denotes the direct sum in the category of
quadratic algebras (cf. [24, p. 55]). In particular, H•(U, θ̂|U ) is quadratic.

For pro-p groups one has also the following.

Theorem 3.15. Let (G1, θ1) and (G2, θ2) be two cyclotomically oriented pro-p
groups. Then their coproduct (G, θ) = (G1, θ1) ∐

p (G2, θ2) is cyclotomically
oriented. Moreover, if (G1, θ1) and (G2, θ2) are Bloch-Kato, then (G, θ) is
Bloch-Kato.

Proof. The Kurosh subgroup theorem is also valid in the category of pro-p
groups with ∐p replacing ∐ (cf. [27, Thm. 9.1.9]), and (3.13) and (3.14) hold
also in this context (cf. [23, Thm. 4.1.4]). Hence the proof for cyclotomicity
can be transferred verbatim. The Bloch-Kato property was already shown
in [25, Thm. 5.2].
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4 Oriented virtual pro-p groups

We say that a p-oriented profinite group (G, θ) is an oriented virtual pro-p
group if ker(θ) is a pro-p group. In particular, G is a virtual pro-p group.
Since Z×

2 is a pro-2 group, every oriented virtual pro-2 group is in fact a pro-2

group. For p 6= 2 let θ̂ : G→ Fp
× be the homomorphism induced by θ, and put

G◦ = ker(θ̂). Then G/G◦ ≃ im(θ̂) is a finite cyclic group of order co-prime to p.
The profinite version of the Schur-Zassenhaus theorem (cf. [14, Lemma 22.10.1])
implies that the short exact sequence of profinite groups

{1} // G◦ // G
θ̂ // im(θ̂) //

σ

dd {1} (4.1)

splits. Indeed, if C ⊆ G is a p′-Hall subgroup of G, then π|C : C → im(θ̂) is an

isomorphism, and σ = (π|C)
−1 is a canonical section for θ̂.

Note that Z×
p = F×

p × Ξp, where Ξp = Op(Z
×
p ) is the pro-p Sylow subgroup

of Z×
p , and where we denoted by F×

p also the image of the Teichmüller section
τ : F×

p → Z×
p . Hence a p-orientation θ : G→ Z×

p on G defines a homomorphism

θ̂ : G → F×
p and also a homomorphism θ∨ : G → Ξp. On the contrary a pair

of continuous homomorphisms (θ̂, θ∨), where θ̂ : G → F×
p and θ∨ : G → Ξp,

defines a p-orientation θ : G→ Z×
p given by θ(g) = θ̂(g) · θ∨(g) for g ∈ G.

Fact 4.1. Let θ̂ : G→ F×
p , σ : im(θ̂)→ G be homomorphisms of groups satisfy-

ing (4.1). A homomorphism θ◦ : G◦ → Ξp defines a p-orientation θ : G→ Z×
p ,

provided for all c ∈ im(θ̂) and for all g ∈ G◦ one has

θ◦(σ(c) · g · σ(c)−1) = θ◦(g) (4.2)

Proof. By (4.1), one has G = G◦⋊β Σ̄, where Σ̄ = im(θ̂), β : Σ̄→ Aut(G◦) and
β(c) is left conjugation by σ(c) for c ∈ Σ̄. Thus, by (4.2), the map θ∨ : G→ Ξp

given by θ∨(g, c) = θ◦(g) is a continuous homomorphism of groups, and (ι, θ∨),
where ι : Σ̄→ F×

p is the canonical inclusion, defines a p-orientation of G.

Let (G, θ) be an oriented virtual pro-p group satisfying (4.1). As θ : G → Z×
p

is a homomorphism onto an abelian group one has

θ(c · g · c−1) = θ(g) (4.3)

for all c ∈ C = im(σ) and g ∈ G. Thus, if ic ∈ Aut(G) denotes left conjugation
by c ∈ C, one has

θ = θ ◦ ic (4.4)

for all c ∈ C.

Documenta Mathematica 25 (2020) 1881–1916



1896 C. Quadrelli, T. S. Weigel

4.1 Oriented Σ̄-virtual pro-p groups

From now on let p be odd, and fix a subgroup Σ̄ of F×
p . An oriented virtual

pro-p group (G, θ) is said to be an oriented Σ̄-virtual pro-p group, if im(θ̂) = Σ̄.
Hence, by the previous subsection, for such a group one has a split short exact
sequence

{1} // G◦ // G
θ̂ // Σ̄ //

σ

__ {1} . (4.5)

By abuse of notation, we consider from now on (G, θ, σ) as an oriented Σ̄-virtual
pro-p group. As the following fact shows there is also an alternative form of a
Σ̄-virtual pro-p group.

Fact 4.2. Let Σ̄ be a subgroup of F×
p . Let Q be a pro-p group, let θ◦ : Q→ Ξp

be a continuous homomorphism, and let γQ : Σ̄→ Autc(Q) be a homomorphism
of groups, where Autc( ) is the group of continuous automorphisms, satisfying

θ◦(γQ(c)(q)) = θ◦(q), (4.6)

for all q ∈ Q and c ∈ Σ̄, then (Q ⋊γQ Σ̄, θ, ι) is an oriented Σ̄-virtual pro-p
group, where ι : Σ̄→ Q⋊γQ Σ̄ is the canonical map, and θ : Q ⋊γQ Σ̄→ Z×

p is
the homomorphism induced by θ◦ (cf. Fact 4.1).

If (G1, θ1, σ1) and (G2, θ2, σ2) are oriented Σ̄-virtual pro-p groups, a continuous
group homomorphism φ : G1 → G2 is said to be a morphism of Σ̄-virtual pro-p
groups, if σ2 = φ ◦ σ1 and θ1 = θ2 ◦ φ. Similarly, if (Q, θ◦Q, γQ) and (R, θ◦R, γR)

are Σ̄-virtual pro-p groups in alternative form (cf. Fact 4.2), the continuous
group homomorphism φ : Q→ R is a homomorphims of Σ̄-virtual pro-p groups
provided θR ◦ φ = θQ and if for all c ∈ Σ̄ and for all q ∈ Q one has that

γR(c)(φ(q)) = φ(γQ(c)(q)). (4.7)

With this slightly more sophisticated set-up the category of Σ̄-virtual pro-p
groups admits coproducts. In more detail, let (Q, θ◦Q, γQ) and (R, θ◦R, γR) be

Σ̄-virtual pro-p groups in alternative form. Put X = Q ∐p R. Then for every
element c ∈ Σ̄ there exists an element δ(c) ∈ Aut(X) making the diagram

Q
ι1 //

γQ(c)

��

X

δ(c)

��

R
ι2oo

γR(c)

��
Q

ι1 // X R
ι2oo

(4.8)

commute. Since Ξp is a pro-p group, there exists a continuous group homo-
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morphism θ◦ : X → Ξp making the lower two rows of the diagram

Q
jQ //

γQ(c)

��

X

δ(c)

��

R
jRoo

γR(c)

��
Q

jQ //

θ◦

Q ��❄
❄❄

❄❄
❄❄

❄
X

θ◦

��

R
jRoo

θ◦

R��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Ξp

(4.9)

commute. Since θ◦Q/R = θ◦Q/R ◦ γQ/R(c) for all c ∈ Σ̄, one has θ◦ = θ◦ ◦ δ(c)

for all c ∈ Σ̄. The commutativity of the diagram (4.9) yields that the group
homomorphisms jQ : (Q, θ◦Q, γQ) → (X, θ◦, δ) and jR : (R, θ◦R, γR) → (X, θ◦, δ)

are homomorphisms of oriented Σ̄-virtual pro-p groups in alternative form.
Moreover, one has the following.

Proposition 4.3. The oriented Σ̄-virtual pro-p group (X, θ◦, δ) together with
the homomorphisms jQ : Q→ X, and jR : R→ X is a coproduct in the category
of oriented Σ̄-virtual pro-p groups.

Proof. Let (H, θH , γH) be an oriented Σ̄-virtual pro-p group in alternative form,
and let φQ : Q→ H and φR : R→ H be homomorphisms of oriented Σ̄-virtual
pro-p groups in alternative form. Then there exists a unique homomorphism of
pro-p groups φ : X → H making the diagram concentrated on the second and
third row of

Q
jQ //

γQ(c)

��

X

δ(c)

��

R
jRoo

γR(c)

��
Q

θ◦

Q

""

jQ //

φQ   ❅
❅❅

❅❅
❅❅

X

φ

��

R

θ◦

R

||

jRoo

φR~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

H

θ◦

H

��
Ξp

(4.10)

commute. Since φQ/R◦γQ/R(c) = γH(c)◦φQ/R for all c ∈ Σ̄, the uniqueness of φ
implies that φ ◦ δ(c) = γH(c) ◦φ for all c ∈ Σ̄. As φQ : Q→ H and φR : R→ H
are homomorphisms of Σ̄-virtual pro-p groups, one has that θ◦Q/R = θ◦H ◦φQ/R.

This implies that (θ◦H ◦φ)◦jQ/R = θ◦Q/R, and from the construction of θ◦ : X →
Ξp one concludes that θ◦ = θ◦H ◦ φ. This implies that φ is a homomorphism of
oriented Σ̄-virtual pro-p groups.

Example 4.4. For p = 3 set Σ̄ = F×
3 = {1, s}. Then (Z×

3 , id) ∐
Σ̄ (Z×

3 , id) is
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isomorphic to F ⋊ Σ̄, where F = 〈x, y 〉 is a free pro-3 group of rank 2 and the
induced isomorphism s : F → F satisfies s(x) = x−1, s(y) = y−1.

Proposition 4.5. Let (Q, θQ, γQ) be an oriented Σ̄-virtual pro-p group, and
let Z be a normal Σ̄-invariant subgroup of Q isomorphic to Zp, which is not
contained in the Frattini subgroup Φ(Q) = cl([Q,Q]Qp) of Q. Then there exists
a maximal closed subgroup M of Q which is Σ̄-invariant, such that M · Z = Q
and M ∩ Z = Zp.

Proof. Let Q̄ = Q/Φ(Q). Then γQ induces a homomorphism γ̄Q̄ : Σ̄→ Autc(Q̄)
making Q̄ a compact Fp[Σ̄]-module. Let Ω = Homc

Σ̄(Q̄,Fp), where Fp denotes
the finite field Fp with canonical left Σ̄-action. By Pontryagin duality, one has⋂

ω∈Ω ker(ω) = {0}. Thus, by hypothesis, there exists ψ ∈ Ω such that ψ|Z 6= 0.
Hence M = ker(ψ) has the desired properties.

4.2 The maximal oriented virtual pro-p quotient

For a prime p and a profinite group G we denote by Op(G) the closed subgroup
of G generated by all Sylow pro-ℓ subgroups of G, ℓ 6= p. In particular, Op(G)
is p-perfect, i.e., H1(Op(G),Fp) = 0, and one has the short exact sequence

{1} // Op(G) // G // G(p) // {1} ,

where G(p) denotes the maximal pro-p quotient of G.
For a p-oriented profinite group (G, θ), we denote by

G(θ) = G/Op(G◦)

the maximal p-oriented virtual pro-p quotient of G (for the definition of G◦

see the beginning of § 4). By construction, it carries naturally a p-orientation
θ : G(θ)→ Z×

p inherited by G.
Note that if im(θ) is a pro-p group, then G◦ = G, and G(θ) = G(p).

Proposition 4.6. Let (G, θ) be a p-oriented Bloch-Kato profinite group, and
let O ⊆ G be a p-perfect subgroup such that O ⊆ ker(θ). Then the inflation
map

infk(M) : Hk
cts(G/O,M) −→ Hk

cts(G,M), (4.11)

is an isomorphism for all k ≥ 0 and all M ∈ ob(Zp[[G/O]]prf ), where Zp[[G/O]]prf

denotes the abelian category of profinite left Zp[[G/O]]-modules.

Proof. As O ⊆ ker(θ), Zp(k) is a trivial Zp[[O]]-module for every k ∈ Z. Since O
is p-perfect, and as the Fp-algebra H•(O,Fp) is quadratic, H•(O,Fp) is 1-
dimensional concentrated in degree 0. By Pontryagin duality, this is equivalent
to Hk(O,Fp) = 0 for all k > 0, where Hk(O, ) denotes Galois homology as
defined by A. Brumer in [3]. Thus, the long exact sequence in Galois homology
implies that Hk(O,Zp) = 0 for all k > 0.
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Let (P•, ∂•, ε) be a projective resolution of the trivial left Zp[[G]]-module in the
category Zp[[G]]prf . For a projective left Zp[[G]]-module P ∈ ob(Zp[[G]]prf ) define

def(P ) = defGG/O(P ) = Zp[[G/O]] ⊗̂G P, (4.12)

where ⊗̂ denotes the completed tensor product as defined in [3]. Then, by the
Eckmann-Shapiro lemma in homology, one has that

Hk(def(P•), def(∂•)) ≃ Hk(O,Zp). (4.13)

Hence, by the previously mentioned remark, (def(P•), def(∂•)) is a projective
resolution of Zp in the category Zp[[G/O]]prf .
LetM ∈ ob(Zp[[G/O]]prf ). Then for every projective profinite left Zp[[G]]-module
P , one has a natural isomorphism

HomG/O(def(P ),M) ≃ HomG(P,M). (4.14)

Hence HomG/O(def(P•),M) and HomG(P•,M) are isomorphic co-chain com-
plexes, and the induced maps in cohomology — which coincide with inf•(M)
— are isomorphisms.

Corollary 4.7. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato,
respectively cyclotomically oriented. Then the maximal oriented virtual pro-p
quotient (G(θ), θ) is Bloch-Kato, respectively cyclotomically oriented.

5 Profinite Poincaré duality groups and p-orientations

5.1 Profinite Poincaré duality groups

Let G be a profinite group, and let p be a prime number. Then G is called a
p-Poincaré duality group of dimension d, if

(PD1) cdp(G) = d;

(PD2) |H
k
cts(G,A)| < ∞ for every finite discrete left G-module A of p-power

order;

(PD3) H
k
cts(G,Zp[[G]]) = 0 for k 6= d, and Hd

cts(G,Zp[[G]]) ≃ Zp.

Although quite different at first glance, for a pro-p group our definition of p-
Poincaré duality coincides with the definition given by J-P. Serre in [31, §I.4.5].
However, some authors prefer to omit the condition (PD2) in the definition of
a p-Poincaré duality group (cf. [23, Chap. III, §7, Definition 3.7.1]).
For a profinite p-Poincaré duality group G of dimension d the profinite right
Zp[[G]]-module DG = Hd

cts(G,Zp[[G]]) is called the dualizing module. Since
DG is isomorphic to Zp as a pro-p group, there exists a unique p-orientation
ðG : G→ Z×

p such that for g ∈ G and z ∈ DG one has

z · g = z · ðG(g) = ðG(g) · z.
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We call ðG the dualizing p-orientation.
Let ×DG denote the associated profinite left Zp[[G]]-module, i.e., setwise ×DG

coincides with DG and for g ∈ G and z ∈ ×DG one has

g · z = z · g−1 = ðG(g
−1) · z.

For a profinite p-Poincaré duality group of dimension d the usual standard
arguments (cf. [2, §VIII.10] for the discrete case) provide natural isomorphisms

TorGk (DG, ) ≃ Hd−k
cts (G, ),

ExtkG(
×DG, ) ≃ Hd−k(G, ),

(5.1)

where TorG• ( , ) denotes the left derived functor of ⊗̂G , and Ext•G( , )
denotes the right derived functors of HomG( , ) in the category Zp[[G]]prf

(cf. [3]).
If A is a discrete left G-module which is also a p-torsion module, then A∗ carries
naturally the structure of a left (profinite) Zp[[G]]-module (cf. [27, p. 171]).
Then, by [31, § I.3.5, Proposition 17], Pontryagin duality and [33, (3.4.5)], one
obtains for every finite discrete left Zp[[G]]-module A of p-power order that

Hd
cts(G,A) ≃ HomG(A, IG)

∗ ≃ HomG(I
∗
G, A

∗)∗ ≃ (I∗G)
× ⊗̂GA, (5.2)

where IG denotes the discrete left dualizing module of G (cf. [31, §I.3.5]). In
particular, by (5.1), DG ≃ (I∗G)

×.

Example 5.1. Let GK be the absolute Galois group of an ℓ-adic field K. Then
GK satisfies p-Poincaré duality of dimension 2 for all prime numbers p. One
has IG ≃ µp∞(K̄) (cf. [31, §II.5.2, Theorem 1]). Hence ×DGK

≃ Zp(−1) with
respect to the cyclotomic p-orientation θK,p : GK → Z×

p , i.e., ðGK
= θK,p.

As we will see in the next proposition, the final conclusion in Example 5.1 is a
consequence of a general property of Poincaré duality groups.

Proposition 5.2. Let G be a p-Poincaré duality group of dimension d, and
let θ : G → Z×

p be a cyclotomic p-orientation of G. Then θd−1 = ðG and
×DG ≃ Zp(1− d).

Proof. By (5.1) and the hypothesis, Hd
cts(G,Zp(d − 1)) ≃ DG ⊗̂Zp(d − 1) is

torsion free, and hence isomorphic to Zp. This implies ðG = θd−1.

5.2 Finitely generated θ-abelian pro-p groups

Recall that (G, θ) is said to be θ-abelian if ker(θ) = Zθ(G) and Zθ(G) is p-torsion
free — in particular ker(θ) is an abelian pro-p group. If G is finitely generated
then one has an isomorphism of left Zp[[G]]-modules N ≃ Zp(1)

r for some non-
negative integer r, and either Γ = im(θ) is a finite group of order coprime
to p, or Γ is a p-Poincaré duality group of dimension 1 satisfying ðΓ = 1Γ

(cf. [23, Prop. 3.7.6]). Moreover, one has isomorphisms of left Zp[[G]]-modules

Hk(N,Zp) ≃ Λk(N) ≃ Zp(k)(
r
k), (5.3)
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where Λ•( ) denotes the exterior algebra over the ring Zp. Since cdp(Γ) ≤ 1,
the Hochschild-Serre spectral sequence for homology (cf. [39, § 6.8])

E2
s,t = Hs(Γ, Ht(N,Zp(−m))) =⇒ Hs+t(G,Zp(−m)) (5.4)

is concentrated in the first two columns. Hence, the spectral sequence collapses
at the E2-term, i.e., E2

s,t = E∞
s,t. Thus, for n ≥ 1 one has a short exact sequence

0 // Hn−1(N,Zp(−m))Γ // Hn(G,Zp(−m)) // Hn(N,Zp(−m))Γ // 0

(5.5)
if cdp(Γ) = 1, and isomorphisms

Hn(G,Zp(−m)) ≃ Hn(N,Zp(−m))Γ (5.6)

if Γ is a finite group of order coprime p. Here we used the fact that H0(Γ, ) =

Γ coincides with the coinvariants of Γ, and that H1(Γ, ) = Γ coincides
with the invariants of Γ if Γ is a p-Poincaré duality group of dimension 1 with
ðΓ = 1Γ. Since Hm−1(N,Zp(−m))Γ is a torsion free abelian pro-p group, and
as

Hm(N,Zp(−m))Γ = (Hm(N,Zp)⊗ Zp(−m))Γ ≃ Λm(N) (5.7)

by (5.3), one concludes from (5.5) and (5.6) that Hm(G,Zp(−m)) is torsion
free.

Proposition 5.3. Let (G, θ) be a θ-abelian p-oriented virtual pro-p group such
that N = ker(θ) is a finitely generated torsion free abelian pro-p group, and that
Γ = im(θ) is p-torsion free. Then G is a p-Poincaré duality group of dimension
d = cd(G), and θ is cyclotomic.

Proof. By hypothesis, G is a p-torsion free p-adic analytic group. Hence
the former assertion is a direct consequence of M. Lazard’s theorem (cf. [33,
Thm. 5.1.5]). The latter follows from Proposition 3.1.

From Proposition 5.2 one concludes the following:

Corollary 5.4. Let (G, θ) be a θ-abelian pro-p group. If p = 2 assume further
that im(θ) is torsion free.

(a) The orientation θ is cyclotomic.

(b) Suppose that G is finitely generated with minimun number of generators
d = d(G) < ∞. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then G
is a Poincaré duality pro-p group of dimension d. Moreover, ðG = θd−1.

(c) If G satisfies the hypothesis of (b) and d(G) ≥ 2, then for p odd, any
cyclotomic orientation θ′ : G→ Z×

p of G must coincide with θ, i.e., θ′ = θ.

For p = 2 any cyclotomic orientation θ′ : G → Z×
2 satisfying im(θ′) ⊆

1 + 4Z2 must coincide with θ.
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Proof. (a) follows from Proposition 5.3.

(b) By hypothesis, G is uniformly powerful (cf. [6, Ch. 4]), or equi-p-value, as
it is called in [17]. Hence the claim follows from Proposition 5.3. By Proposi-
tion 5.2, ðG = θd−1.

(c) An element φ ∈ Homgrp(G,Z
×
p ) has finite order if, and only if, im(φ) is

finite. Proposition 5.2 and part (b) imply that

θd−1 = ðG = (θ′)d−1.

Hence (θ−1θ′)d−1 = 1G. For p odd, Homgrp(G,Z
×
p ) does not contain non-trivial

elements of finite order. Hence θ′ = θ. For p = 2 the hypothesis implies that
im(θ−1θ′) ⊆ 1 + 4Z2. Hence (θ−1θ′)d−1 = 1G implies that θ′ = θ.

Note that, by Fact 2.2, Corollary 5.4(c) cannot hold if d(G) = 1.

5.3 Profinite p-Poincaré duality groups of dimension 2

As the following theorem shows, for a profinite p-Poincaré duality group G of
dimension 2, the dualizing p-orientation ðG : G→ Z×

p is always cyclotomic.

Theorem 5.5. Let G be a profinite p-Poincaré duality group of dimension 2.
Then ðG : G→ Z×

p is a cyclotomic p-orientation.

Proof. As every p-oriented profinite group is 0-cyclotomic, it suffices to show
that H2

cts(U,Zp(1)) is torsion free for every open subgroup U ⊆ G. By Propo-
sition 5.2, Zp(−1) ≃

×DG. Hence, from the Eckmann-Shapiro lemma in ho-
mology and (5.1), one concludes that

H1(U,Zp(−1)) = TorU1 (Zp,Zp(−1)) ≃ TorU1 (Zp(−1)
×,Zp)

≃ TorG1 (DG,Zp[[G/U ]]) ≃ H1
cts(G,Zp[[G/U ]])

≃ Homgrp(U,Zp).

(5.8)

Hence H1(U,Zp(−1)) is a torsion free Zp-module, and, by Proposition 3.1,
H2

cts(U,Zp(1)) is torsion free as well.

Remark 5.6. Let G be a profinite p-Poincaré duality group of dimension 2, and
let ðG : G→ Z×

p be the dualizing p-orientation. Then (G, ðG) is not necessarily
Bloch-Kato, as the following example shows.

Let p = 2 and let A = PSL2(q) where q ≡ 3 mod 4. Then there exists a
p-Frattini extension π : G→ A of A such that G is a 2-Poincaré duality group
of dimension 2, i.e., ker(π) is a pro-2 group contained in the Frattini subgroup
of G (cf. [41]). In particular, G is perfect, and thus ðG = 1G. Hence F2(1) =
F2(0) is the trivial F2[[G]]-module, and — as G is perfect — H1(G,F2(1)) = 0.
Moreover, H2(G,F2(2)) ≃ F2, as G is a profinite 2-Poincaré duality group of
dimension 2 with ðG = 1G. Therefore, H

•(G,1G) is not quadratic.
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A pro-p group G which satisfies p-Poincaré duality in dimension 2 is also called
a Demuškin group (cf. [23, Def. 3.9.9]). For this class of groups one has the
following.

Corollary 5.7. Let G be a Demuškin pro-p group. Then G is a Bloch-Kato
pro-p group, and ðG : G→ Z×

p is a cyclotomic p-orientation.

Proof. By Theorem 5.5, it suffices to show that (G, ðG) is Bloch-Kato. It

is well known that H•(G, ð̂G) is quadratic (cf. [31, §I.4.5]). Moreover, every
open subgroup U of G is again a Demuškin group, with ðU = ðG|U (cf. [23,
Thm. 3.9.15]). Hence (G, ðG) is Bloch-Kato.

Remark 5.8. [The Klein bottle pro-2 group] Let G be the pro-2 group given by
the presentation

G = 〈x, y | xyx−1y = 1 〉 (5.9)

Then G is a Demuškin pro-2 group containing the free abelian pro-2 group
H = 〈x2, y 〉 of rank 2. Thus, by Corollary 5.7 (G, ðG) is cyclotomic. Since
H1(G, I2(0)) ≃ I2⊕Z/2Z, Proposition 3.1 implies that ðG 6= 1G is non-trivial.
In particular, since ðG|H = 1H , this implies that im(ðG) = {±1 }. Note that
H = ker(ðG) and that one has a canonical isomorphism

H = 〈x2 〉 ⊕ 〈 y 〉 ≃ Z2(0)⊕ Z2(1). (5.10)

In particular, (G, ðG) is not ðG-abelian.

Example 5.9. Let G be the pro-p group with presentation

G = 〈x, y, z | [x, y] = z−p 〉.

If p = 2 then G is a Demuškin group, and ðG : G → Z×
2 is given by

ðG(x) = ðG(y) = 1, ðG(z) = −1. On the other hand, if p 6= 2 then G is
not a Demuškin group, and any p-orientations θ : G→ Z×

p is not 1-cyclotomic

(cf. [11, Thm. 8.1]). However, H•(G, θ̂) is still quadratic.

6 Torsion

It is well known that a Bloch-Kato pro-p group may have non-trivial torsion
only if, p = 2. More precisely, a Bloch-Kato pro-2 group G is torsion if, and
only if, G is abelian and of exponent 2. Moreover, any such group is a Bloch-
Kato pro-2 group (cf. [25, §2]). The following result — which appeared first
in [26, Prop. 2.13] — holds for 1-cyclotomically oriented pro-p groups (see
also [11, Ex. 3.5] and [5, Ex. 14.27]).

Proposition 6.1. Let (G, θ) be a 1-cyclotomically oriented pro-p group.

(a) If im(θ) is torsion free, then G is torsion free.

(b) If G is non-trivial and torsion, then p = 2, G ≃ C2 and θ is injective.

Documenta Mathematica 25 (2020) 1881–1916



1904 C. Quadrelli, T. S. Weigel

Remark 6.2. Let θ : C2 → Z×
2 be an injective homomorphism of groups. Then

Z2(1) ≃ ωC2 is isomorphic to the augmentation ideal ωC2 = ker(Z2[C2]→ Z2).
Hence - by dimension shifting - H2(C2,Z2(1)) = H1(C2,Z2(0)) = 0. Thus - as
C2 has periodic cohomology of period 2 - one concludes that Hs(C2,Z2(t)) = 0
for s odd and t even, and also for s even and t odd. Hence (C2, θ) is cyclotomic.

From Proposition 6.1 and the profinite version of Sylow’s theorem one concludes
the following corollary, which can be seen as a version of the Artin-Schreier
theorem for 1-cyclotomically p-oriented profinite groups.

Corollary 6.3. Let p be a prime number, and let (G, θ) be a profinite group
with a 1-cyclotomic p-orientation.

(a) If p is odd, then G has no p-torsion.

(b) If p = 2, then every non-trivial 2-torsion subgroup is isomorphic to C2.
Moreover, if im(θ) has no 2-torsion, then G has no 2-torsion.

Remark 6.4. Let θ : Z2 → Z×
2 be the homomorphism of groups given by θ(1 +

λ) = −1 and θ(λ) = 1 for all λ ∈ 2Z2. Then θ is a 2-orientation of G = Z2

satisfying im(θ) = {±1}. As cd2(Z2) = 1, Fact 2.2 implies that (Z2, θ) is
Bloch-Kato and cyclotomically 2-oriented. However, im(θ) is not torsion free.

6.1 Orientations on C2 × Z2

As we have seen in Proposition 5.3, for p odd, every θ-abelian oriented pro-p
group is cyclotomically p-oriented. For p = 2, this is not true. Indeed, one has
the following.

Proposition 6.5. Any 2-orientation θ : G → Z×
2 on G ≃ C2 × Z2 is not

1-cyclotomic.

Proof. Suppose that (G, θ) is 1-cyclotomically 2-oriented. Let x, y be elements
of G such that x2 = 1 and ord(y) = 2∞, and that x, y generate G. Proposi-
tion 6.1 applied to the cyclic pro-2 group generated by x yields θ(x) = −1. Put
θ(y) = 1+2λ for some λ ∈ Z2. By [16, Prop. 6], if θ is 1-cyclotomic then for any
pair of elements cx, cy ∈ Z2(1) there exists a continuous crossed-homomorphism
c : G→ Z2(1) (i.e., a map satisfying c(g1g2) = c(g1)+θ(g1)c(g2), cf. [23, p. 15])
such that c(x) = cx, c(y) = cy. Set cx = cy = 1. Then one computes

c(xy) = cx + θ(x)cy = 1− 1 = 0, and

c(yx) = cy + θ(y)cx = 1 + 1 + 2λ,

which yields λ = −1. The element xy has the same properties as y. Hence
the previously mentioned argument applied to the element xy yields θ(xy) =
1− 2 = −1, whereas θ(xy) = θ(x)θ(y) = 1, a contradiction.

Remark 6.6. From Proposition 6.1 and Proposition 6.5 one deduces that in
a 1-cyclotomically 2-oriented pro-2 group, every element of order 2 is self-
centralizing, which is a remarkable property of absolute Galois groups (cf. [4,
Prop. 2.3] and [19, Cor. 2.3]).
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Proposition 6.7. Let (G, θ) be a θ-abelian oriented pro-2 group. Then θ is
cyclotomic if, and only if, either

(a) im(θ) is torsion free; or

(b) im(θ) has order 2.

In both these cases (G, θ) is split θ-abelian.

Proof. Assume first that im(θ) is torsion free. Then the short exact sequence
{1} → ker(θ) → G → im(θ) → {1} splits, as im(θ) ≃ Z2 is a projective pro-2
group. Moreover, (G, θ) is cyclotomic by Proposition 5.3.
Second assume that θ is cyclotomic, p = 2 and that im(θ) ⊇ {±1}. If g ∈ G
satisfies θ(g) = −1, then g2 ∈ ker(θ) = Zθ(G), and consequently

g2 = g · g2 · g−1 = (g2)θ(g) = g−2,

i.e., g4 = 1. Since (ker(θ),1) is cyclotomically 2-oriented, ker(θ) is torsion free,
and one deduces that g2 = 1. Therefore, the short exact sequence

{1} // H // G // C2
// {1}

splits (here H = ker(π◦θ), where π is the canonical epimorphism Z×
2 ։ {±1}).

Since (H, θ|H) is again cyclotomically 2-oriented and as im(θ|H) is torsion free,
(H, θ|H) is split θ|H -abelian by the previously mentioned argument. We claim
that H = ker(θ). Indeed, suppose there exists h ∈ H such that θ(h) 6= 1. Put
λ = (1 + θ(h))/2 and let z = ghgh−1 = [g, h−1] ∈ ker(θ). Then - as g = g−1

and θ(g) = −1 - one has

g(zλh2)g−1 = (gzg)λ · gh2g

= z−λ · (ghg)2 = z−λ · (ghgh−1 · h)2

= z−λ · (zhzh−1 · h2) = z−λ+1+θ(h)h2

= zλh2,

i.e., g and zλh2 commute which implies that 〈 g, zλh2 〉 ≃ C2×Zp contradicting
Proposition 6.5. Therefore, H = ker(θ) is a free abelian pro-2 group, and
G ≃ H ⋊ C2.
Finally, let p = 2 and assume that im(θ) = {±1}. By Remark 6.2, we may also
assume that ker(θ) is non-trivial. Then, either
Case I: θ−1({−1}) contains an element of order 2 and (G, θ) is split θ-abelian,
i.e., G ≃ ker(θ)⋊ C2 with ker(θ) a free abelian pro-2 group, or
Case II: all elements in x ∈ θ−1({−1}) are of infinite order. Then for y ∈ ker(θ),
the group K = 〈x, y 〉 must be isomorphic to the Klein bottle pro-2 group
which is impossible as G is θ-abelian and thus contains only θ-abelian closed
subgroups (cf. Remark 3.12(b)). Hence Case II is impossible.
By Lemma 3.10, if U ⊆ G is an open subgroup, then either U ⊆ ker(θ), or
U ≃ V ⋊ C2 for some open subgroup V of ker(θ). In the first case, (U,1) is
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cyclotomically 2-oriented by Proposition 5.3. For the second case, we claim
that Hk(U, I2(k)) is 2-divisibe for all k ≥ 1.
Recall that Z2[C2] has periodic cohomology (of period 2), and that one has the
equalities of Z2[[U ]]-modules I2(k) = I2(0) for k even and I2(k) = I2(−1) for k
odd. Moreover,

Ĥ0(C2, I2(0)) = I2(0)
C2/NC2I2(0) = I2(0)/2 · I2(0) = 0,

Ĥ−1(C2, I2(−1)) = ker(NC2)/ωC2I2(−1) = I2(−1)/2 · I2(−1) = 0,
(6.1)

where Ĥk denotes Tate cohomology, NC2 =
∑

x∈C2
x ∈ Z2[C2] is the norm

element, and ωC2 is the augmentation ideal of the group algebra Z2[C2] (cf. [23,
§ I.2]). Thus, by (6.1), one has

Hm(C2, I2(m)) = Ĥm(C2, I2(m)) ≃ Ĥk(C2, I2(k)) = 0, (6.2)

for all positive integers m > 0 and m ≡ k( mod 2).
Suppose first that V ≃ Z2. As in the proof of Theorem 3.11, the E2-term of
the Hochschild-Serre spectral sequence associated to the short exact sequence
{1} → V → U → C2 → {1} evaluated on I2(k) is concentrated in the first
and the second row. In particular, d•,•2 = 0 and thus Es,t

2 (I2(k)) = Es,t
∞ (I2(k)).

Thus, by Fact 3.9, for every k ≥ 1 one has a short exact sequence

0 // Hk(C2, I2(k)) // Hk(U, I2(k)) // Hk−1(C2, I2(k − 1)) // 0 ,

and Hk(C2, I2(k)) = 0 by (2.6). Hence, (U, θ|U ) is cyclotomically 2-oriented by
Proposition 3.1. If V ≃ Zn

2 with n > 1, then Hk(U, I2(k)) = 0 by induction
on n and the previously mentioned argument. Finally, Corollary 3.3 yields the
claim in case V not finitely generated.

7 Cyclotomically oriented pro-p groups

For a cyclotomically oriented pro-2 group (G, θ) satisfying im(θ) ⊆ 1+4Z2 one
has the following.

Fact 7.1. Let (G, θ) be a pro-2 group with a cyclotomic orientation satisfying
im(θ) ⊆ 1+4Z2. Then χ∪χ = 0 for all χ ∈ H1(G,F2), i.e., the first Bockstein
morphism β1 : H1(G,F2)→ H2(G,F2) vanishes.

Proof. Since im(θ) ⊆ 1 + 4Z2, the action of G on Z2(1)/4 is trivial. The
epimorphism of Z2[[G]]-modules Z2(1)/4→ F2 induces a long exact sequence

H1(G,F2) H1(G,Z2(1)/4) H1(G,F2)

H2(G,F2) H2(G,Z2(1)/4) · · ·

2· π1
2,1

β1

2· π2
2,1

(7.1)

where the connecting homomorphism is the first Bockstein morphism. Since θ
is cyclotomic, the map π1

2,1 is surjective, and thus β1 is the 0-map.
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Remark 7.2. As before for a finitely generated pro-p group G let d(G) denote
its minimum number of generators. If p is odd and G is a finitely generated
Bloch-Kato pro-p group, the cohomology ring (H•(G,Fp),∪) is a quotient of the
exterior Fp-algebra Λ• = Λ•(H

1(G,Fp)). In particular, cdp(G) ≤ d(G). More-
over, Λd(G) is the unique minimal ideal of Λ•. Hence equality of cdp(G) and
d(G) is equivalent to H•(G,Fp) being isomorphic to Λ•. It is well known that
this implies that G is uniformly powerful (cf. [33, Thm. 5.1.6]), and that there
exists a p-orientation θ : G→ Z×

p such that G is θ-abelian (cf. [25, Thm. 4.6]).
Let p = 2, and let (G, θ) be a cyclotomically oriented Bloch-Kato pro-2 group
satisfying im(θ) ⊆ 1 + 4Z2. Then Proposition 7.1 implies that the cohomology
ring (H•(G,F2),∪) is a quotient of the exterior F2-algebra Λ• = Λ•(H

1(G,F2)),
and hence cd2(G) ≤ d(G). If cd2(G) = d(G), the previously mentioned argu-
ment, Proposition 7.1 and [42] imply that G is uniformly powerful. Finally, [25,
Thm. 4.11] yields that G is θ′-abelian for some orientation θ′ : G→ Z×

2 . Thus,
if d(G) ≥ 2, one has θ = θ′ by Corollary 5.4(c).

From the above remark and J-P. Serre’s theorem (cf. [30]) one concludes the
following fact.

Fact 7.3. Let (G, θ) be a finitely generated cyclotomically oriented torsion free
Bloch-Kato pro-2 group. Then cd2(G) <∞.

7.1 Tits’ alternative

From Remark 7.2 one concludes the following.

Fact 7.4. (a) Let p be odd, and let G be a Bloch-Kato pro-p group satisfying
d(G) ≤ 2. Then G is either isomorphic to a free pro-p group, or G is θ-abelian
for some orientation θ : G→ Z×

p .
(b) Let p = 2, and let (G, θ) be a cyclotomically oriented Bloch-Kato pro-2
group satisfying im(θ) ⊆ 1 + 4Z2 and d(G) ≤ 2. Then G is either isomorphic
to a free pro-2 group, or G is θ-abelian.

In [25, Thm. 4.6] it was shown, that for p odd any Bloch-Kato pro-p group
satisfies a strong form of Tits’ alternative (cf. [35]), i.e., either G contains a
closed non-abelian free pro-p subgroup, or there exists a p-orientation θ : G→
Z×
p such that G is θ-abelian. Using the results from the previous subsection

and [25, Thm. 4.11], one obtains the following version of Tits’ alternative if p
is equal to 2.

Proposition 7.5. Let (G, θ) be a cyclotomically oriented virtual pro-2 group
which is also Bloch-Kato, such that im(θ) ⊆ 1 + 4Z2. Then either G contains
a closed non-abelian free pro-2 subgroup; or G is θ-abelian.

Proof. As im(θ) ⊆ 1 + 4Z2, Proposition 6.1-(a) implies that G is torsion free.
From Proposition 7.1 one concludes that the first Bockstein morphism β1 van-
ishes. Thus, the hypothesis of [25, Thm. 4.11] are satisfied (cf. Remark 7.2),
and this yields the claim.
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Remark 7.6. Note that Proposition 7.5 without the hypothesis im(θ) ⊆ 1+4Z2

does not remain true (cf. Remark 5.8).

7.2 The θ-center

One has the following characterization of the θ-center for a cyclotomically ori-
ented Bloch-Kato pro-p group (G, θ).

Theorem 7.7. Let (G, θ) be a cyclotomically oriented torsion free Bloch-Kato
pro-p group. If p = 2 assume further that im(θ) ⊆ 1 + 4Z2. Then Zθ(G) is the
unique maximal closed abelian normal subgroup of G contained in ker(θ).

Proof. Let A ⊆ ker(θ) be a closed abelian normal subgroup of G, let z ∈ A,
z 6= 1, and let x ∈ G be an arbitrary element. Put C = cl(〈x, z 〉) ⊆ G. Then
either C ≃ Zp or C is a 2-generated pro-p group. Thus, by Fact 7.4, one has
to distinguish three cases:

(i) d(C) = 1;

(ii) d(C) = 2 and C is isomorphic to a free pro-p group; or

(iii) d(C) = 2 and C is θ′-abelian for some p-orientation θ′ : C → Z×
p .

In case (i), x and z commute. If C is generated by z, then C ⊆ ker(θ) and θ(x) =
1. If C is generated by x, then z = xλ for some λ ∈ Zp, and 1 = θ(z) = θ(x)λ.
Hence θ(x) = 1, as im(θ) is torsion free. In both cases xzx−1 = z = zθ(x).
Case (ii) cannot hold: by hypothesis, A ∩ C 6= {1}, but free pro-p groups of
rank 2 do not contain non-trivial closed abelian normal subgroups.
Suppose that case (iii) holds. Then θ′ = θ|C by Corollary 5.4(c), and z ∈
ker(θ|C) = Zθ|C(C). Therefore, xzx

−1 = zθ|C(x) = zθ(x).
Hence we have shown that for all z ∈ A and all x ∈ G one has that xzx−1 =
zθ(x). This yields the claim.

The above result can be seen as the group theoretic generalization of [12, Corol-
lary 3.3] and [13, Thm. 4.6]. Note that in the case p = 2 the additional hy-
pothesis in Theorem 7.7 is necessary (cf. Remark 5.8). Indeed, if G is the
Klein bottle pro-2 group then 〈x2 〉 is another maximal closed abelian normal
subgroup of G contained in ker(ðG).

Remark 7.8. Let K be a field containing a primitive pth-root of unity. The-
orem 7.7, together with [12, Thm. 3.1] and [13, Thm. 4.6], implies that the
θK,p-center of the maximal pro-p Galois group GK(p) is the inertia group of the
maximal p-henselian valuation admitted by K.

7.3 Isolated subgroups

Let G be a pro-p group, and let S ⊆ G be a closed subgroup of G. Then S is

called isolated, if for all g ∈ G for which there exists k ≥ 1 such that gp
k

∈ S
follows that g ∈ S. Hence a closed normal subgroup N of G is isolated if, and
only if, G/N is torsion free.
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Proposition 7.9. Let (G, θ) be an oriented Bloch-Kato pro-p group. In the
case p = 2 assume further that im(θ) ⊆ 1 + 4Z2 and that θ is 1-cyclotomic.
Then Zθ(G) is an isolated subgroup of G.

Proof. Suppose there exists x ∈ GrZθ(G) and k ≥ 1 such that xp
k

∈ Zθ(G). By
changing the element x if necessary, we may assume that k = 1, i.e., xp ∈ Zθ(G).
As G is torsion free (cf. Corollary 6.3), one has that xp 6= 1.
For an arbitrary g ∈ G, the subgroup C(g) = cl(〈 g, x 〉) ⊆ G is not free,
as gxpg−1 = xpθ(g). Thus, from Fact 7.4 one concludes that C(g) is θ|C(g)-
abelian. Moreover, as im(θ) is torsion-free, θ(xp) = θ(x)p = 1 implies that
x ∈ ker(θ|C(g)) = Zθ|C(g)

(C(g)) . Thus, x ∈
⋂

g∈G ZθC(g)
(C(g)) ⊆ Zθ(G).

Proposition 7.9 generalises to profinite groups as follows.

Corollary 7.10. Let (G, θ) be a torsion free p-oriented Bloch-Kato profinite
group. For p = 2 assume also that im(θ) ⊆ 1+ 4Z2 and that θ is 1-cyclotomic.
Then Zθ(G) is an isolated subgroup of G.

Proof. Let x ∈ Zθ(G), y ∈ G and n ∈ N such that x = yn. Then Y = cl(〈 y 〉)
is pro-cyclic and virtually pro-p. Thus, as G is torsion free by hypothesis,
Y is a cyclic pro-p group, and n is a p-power. Let P ∈ Sylp(G) be a pro-p
Sylow subgroup of G containing Y . Then (P, θ|P ) satisfies the hypothesis of
Proposition 7.9, which yields the claim.

7.4 Split extensions

Proposition 7.11. Let (G, θ) be a p-oriented Bloch-Kato pro-p group of finite
cohomological dimension satisfying im(θ) ⊆ 1 + pZp (resp. im(θ) ⊆ 1 + 4Z2 if
p = 2), and let Z be a closed normal subgroup of G isomorphic to Zp such that
G/Z is torsion free. Then Z 6⊆ Gp[G,G].

Proof. Let d = cdp(G). As cd(Z) = 1, and as H1(Z,Fp) ≃ Fp, one has
vcdp(G/Z) = d−1 (cf. [43]). Thus, as G/Z is torsion free, J-P. Serre’s theorem
(cf. [30]) implies that cdp(G/Z) = d− 1.
Suppose that Z ⊆ Gp[G,G]. Then inf1G,Z : H1(G/Z,Fp)→ H1(G,Fp) is an iso-

morphism. For χ ∈ H1(G,Fp), set χ̄ ∈ H
1(G/Z,Fp) such that χ = inf1G,Z(χ̄).

Then, by [23, Prop. 1.5.3] one has

χ1 ∪ . . . ∪ χk = inf1G,Z(χ̄1) ∪ . . . ∪ inf1G,Z(χ̄k) = infkG,Z(χ̄1 ∪ . . . ∪ χ̄k)

for any χ1, . . . , χk ∈ H
1(G,Fp), i.e.,

infkG,Z : Hk(G/Z,Fp) −→ Hk(G,Fp) (7.2)

is surjective for all k ≥ 0. Let

(Est
r , dr)⇒ Hs+t(G,Fp), Est

2 = Hs
(
G/Z,Ht(Z,Fp)

)
(7.3)
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denote the Hochschild-Serre spectral sequence associated to the extension of
pro-p groups Z → G→ G/Z with coefficients in the discrete G-module Fp. We
claim that Est

∞ is concentrated on the buttom row, i.e., Est
∞ = 0 for all t ≥ 1.

Since cdp(Z) = 1 and cdp(G/Z) = d − 1, one has Est
2 = 0 for t ≥ 2 or s ≥ d.

Hence, dstr is the 0-map for every s, t ≥ 0 and r ≥ 3, i.e., Est
∞ ≃ E

st
3 . The total

complex tot•(E
••
∞ ) of the graded Fp-bialgebra E

••
∞ coincides with H•(G,Fp),

which is quadratic by hypothesis. Thus E••
∞ is generated by

tot1(E
••
∞ ) = E1,0

∞ = E1,0
2 .

Hence, Est
3 = 0 for t ≥ 1.

On the other hand, H1(Z,Fp) is a trivial G/Z-module isomorphic to Fp, and
thus, as cdp(G/Z) = d− 1, one has

Ed−1,1
2 = Hd−1

(
G/Z,H1(Z,Fp)

)
6= 0. (7.4)

Moreover, dd−1,1
2 is the 0-map, thus Ed−1,1

3 = ker(dd−1,1
2 ) = Ed−1,1

∞ 6= 0, a
contradiction, and this yields the claim.

Proposition 7.11 has the following consequence.

Proposition 7.12. Let (G, θ) be a p-oriented Bloch-Kato pro-p group (resp.
virtual pro-p group) of finite cohomological p-dimension, and let Z be a closed
normal subgroup of G isomorphic to Zp such that G/Z is torsion free. Then
there exists a Z-complement C in G, i.e., the extension of profinite groups

{1} // Z // G // G/Z // {1} (7.5)

splits.

Proof. Assume first that G is a pro-p group. By Proposition 7.11, one has
that Z 6⊆ Φ(G) = Gp[G,G]. Hence there exists a maximal closed subgroup C1

of G such that C1Z = G and Z1 = C1 ∩ Z = Zp. Moreover, Z1 is a closed
normal subgroup in C1 such that C1/Z1 is torsion free and Z1 ≃ Zp. From
Proposition 7.11 again, one concludes that Z1 6⊆ Φ(C1). Thus repeating this
process one finds open subgroup Ck of G of index pk such that Ck Z = G and

Zk = Ck ∩ Z = Zpk

. Hence C =
⋂

k≥1 Ck is a Z-complement in G.

If G is a p-oriented virtual pro-p group, then G is a Σ̄-virtual pro-p group for
Σ̄ = im(θ̂) (cf. 4.1), and thus corresponds to (Op(G), θ

◦, γ) in alternative form.
In particular, the maximal subgroup C1 and hence all closed subgroups Ck

can be chosen to be Σ̄-invariant (cf. Proposition 4.5). Hence C =
⋂

k∈N
Ck

carries canonically a left Σ̄-action, and thus defines a Z complement H = C⋊Σ̄
in G.

The proof of Theorem 1.2 can be deduced from Proposition 7.12 as follows.
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Proof of Theorem 1.2. Assume first that G is either pro-p, or virtually pro-p.
To prove statement (i) (and (ii)), we proceed by induction on d = cdp(G) =
cd(G). For d = 1, G is free (resp. virtually free) (cf. [23, Prop. 3.5.17]),
and thus Zθ(G) = {1}. So assume that d ≥ 1, and that the claim holds for
d − 1. Note that Zθ(G) is a finitely generated abelian pro-p group satisfying
d◦ = d(Zθ(G)) = cdp(Zθ(G)) ≤ d. If d◦ = 0, there is nothing to prove. If
d◦ ≥ 1, Zθ(G) contains an isolated closed subgroup Z satisfying d(Z) = 1. By
definition, Z is normal in G. Hence Proposition 7.12 implies that there exists a
subgroup C ⊆ G satisfying C ∩Z = {1} and C Z = G. As C ≃ G/Z, the main
result of [43] implies that cd(C) = vcd(C) = d − 1. Since Zθ|C (C)Z = Zθ(G),
the claim then follows by induction.

To prove statement (iii), let G◦ = ker(θ̂ : G→ F×
p ) and Ḡ

◦ = ker(ˆ̄θ : Ḡ→ F×
p ),

and put Ō = Op(Ḡ◦) and

O = { g ∈ G◦ | gZθ(G) ∈ Ō
p(Ḡ) }. (7.6)

Then, by construction, im(ˆ̄θ|Ō) is a pro-p group and hence trivial. In particular,
the left Fp[[Ō]]-module Fp(1) is the trivial module. Thus, as Ō is p-perfect, one
concludes that

H1(Ō,Fp(1)) = 0. (7.7)

By hypothesis, (Ḡ, θ̄) is Bloch-Kato, and therefore (Ō,1) is Bloch-Kato. Hence
(7.7) yields that

Hk(Ō,Fp(j)) = Hk(Ō,Fp(0)) = 0 (7.8)

for all positive integers k, j. Note that Zp(1) is the trivial Zp[[Ō]]-module
isomorphic to Zp as abelian pro-p group. The cyclotomicity of (Ō,1) implies
that H2(Ō,Zp(1)) is p-torsion free, and from the exact sequence

0 // H2(Ō,Zp(1))
·p // H2(Ō,Zp(1)) // H2(Ō,Fp(1)) // 0 (7.9)

one concludes that
H2(Ō,Zp(1)) = 0. (7.10)

By hypothesis, cdp(Zθ(G)) ≤ cdp(G) <∞, and thus Zθ(G) ≃ Zp(1)
r is a trivial

left Zp[[Ō]]-module and a finitely generated free (abelian pro-p group). Hence

H2(Ō,Zθ(G)) = 0, (7.11)

which implies that

{1} // Zθ(G) // O
π // Ō // {1} (7.12)

is a split short exact sequence of profinite groups. From this fact one concludes
that

O = Zθ(G) ·O
p(G◦) and Zθ(G) ∩O

p(G◦) = {1}. (7.13)
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Let G̃ = G/Op(G◦). Then for all abelian pro-p groups M with a continuous
left Zp[[G̃]]-action inflation induces an isomorphism in cohomology

infG
G̃
(−) : Hk

cts(G̃,M) −→ Hk
cts(G,M) (7.14)

(cf. Proposition 4.6). Moreover, as θ|O = 1 is the constant 1 function, θ induces
a p-orientation θ̃ : G̃→ Z×

p on G̃. In particular, from (7.14) one concludes that

cdp(G̃) <∞, and that (G̃, θ̃) is cyclotomic and Bloch-Kato. Thus, by part (i),
the exact sequence of virtual pro-p groups

{1} // Zθ(G)O
p(G◦)/Op(G◦) // G̃

π̃ // Ḡ/Ō // {1} (7.15)

splits. Let H̃ ⊂ G̃ be a complement for Zθ(G)O
p(G◦)/Op(G◦) in G̃, and let

H = { g ∈ G◦ | gOp(G◦) ∈ H̃ }. (7.16)

Then, by construction, H ∩ Zθ(G)O
p(G◦) ⊆ Op(G◦). Thus HOp(G◦) is a

complement of Zθ(G) in G.

Finally, we ask whether the converse of Theorem 3.13 holds true.

Question 7.13. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p
group, and suppose that

H•(G,Fp) ≃ H
•(C,Fp)⊗ Λ•(V ),

for some subgroup C ⊆ G and some nontrivial subspace V ⊆ H1(G,Fp). Does
there exist an isolated closed subgroup Z ⊆ Zθ(G) such that G = CZ and
Z/Zp ≃ V ∗ = Hom(V,Fp)?

7.5 The elementary type conjecture

In order to formulate a conjecture concerning the maximal pro-p Galois groups
of fields, I. Efrat introduced in [9] the class CFG of p-oriented pro-p groups
(resp. cyclotomic pro-p pairs) of elementary type.
This class consists of all finitely generated p-oriented pro-p groups which can be
constructed from Zp and Demuškin groups using coproducts and fibre products
(cf. [9, § 3]).
Efrat’s elementary type conjecture asks whether every pair (GK(p), θK,p) for
which K contains a primitive pth-root of unity and GK(p) is finitely generated,
belongs to CFG (see [7], and also [15] for the case p = 2). This conjecture
originates from the theory of quadratic forms (cf. [20], [10, p. 268]).
One may extend slightly Efrat’s class by defining the class ECO of cyclotomically

p-oriented Bloch-Kato pro-p groups of elementary type to be the smallest class
of cyclotomically p-oriented pro-p groups containing

(a) (F, θ), with F a finitely generated free pro-p group and θ : F → Z×
p any

p-orientation;
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(b) (G, ðG), with G a Demuškin pro-p group;

(c) (Z/2Z, θ), with im(θ) = {±1} in case that p = 2;

and which is closed under coproducts and under fibre products with respect to
finitely generated split θ-abelian pro-p groups, i.e., if (G1, θ1) and (G2, θ2) are
contained in ECO, then

(d) (G, θ) = (G1, θ1) ∐ (G2, θ2) ∈ ECO; and

(e) (G, θ) = Zp ⋊θ1 (G1, θ1) ∈ ECO.

Question 1.5 asks whether every finitely generated cyclotomically p-oriented
Bloch-Kato pro-p group belongs to the class ECO. By Theorem 1.1, Question 1.5
is stronger than Efrat’s elementary type conjecture. Nevertheless, it is stated
in purely group theoretic terms.

Remark 7.14. Recently, Question 1.5 has received a positive solution in the
class of trivially p-oriented right-angled Artin pro-p groups: I. Snopce and
P.A. Zalesskĭı proved that the only indecomposable right-angled Artin pro-p
group which is Bloch-Kato and cyclotomically p-oriented is (Zp,1) (cf. [32]).
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