Profinite Groups

with a Cyclotomic p-Orientation

To the Memory of Vladimir Voevodsky

Claudio Quadrelli and Thomas S. Weigel

Received: November 6, 2018
Revised: September 12, 2020

Communicated by Otmar Venjakob

Abstract

Let p be a prime. A continuous representation $\theta: G \rightarrow$ $\mathrm{GL}_{1}\left(\mathbb{Z}_{p}\right)$ of a profinite group G is called a cyclotomic p-orientation if for all open subgroups $U \subseteq G$ and for all $k, n \geq 1$ the natural maps $H^{k}\left(U, \mathbb{Z}_{p}(k) / p^{n}\right) \rightarrow H^{k}\left(U, \mathbb{Z}_{p}(k) / p\right)$ are surjective. Here $\mathbb{Z}_{p}(k)$ denotes the \mathbb{Z}_{p}-module of rank 1 with U-action induced by $\left.\theta\right|_{U} ^{k}$. By the Rost-Voevodsky theorem, the cyclotomic character of the absolute Galois group $G_{\mathbb{K}}$ of a field \mathbb{K} is, indeed, a cyclotomic p-orientation of $G_{\mathbb{K}}$. We study profinite groups with a cyclotomic p-orientation. In particular, we show that cyclotomicity is preserved by several operations on profinite groups, and that Bloch-Kato pro-p groups with a cyclotomic p-orientation satisfy a strong form of Tits' alternative and decompose as semi-direct product over a canonical abelian closed normal subgroup.

2020 Mathematics Subject Classification: Primary 12G05; Secondary 20E18, 12F10 Keywords and Phrases: Absolute Galois groups, Rost-Voevodsky theorem, elementary type conjecture

1 Introduction

For a prime p let \mathbb{Z}_{p} denote the ring of p-adic integers. For a profinite group G, we call a continuous representation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}=\mathrm{GL}_{1}\left(\mathbb{Z}_{p}\right)$ a p-orientation of G and call the couple (G, θ) a p-oriented profinite group. Given a p-oriented
profinite group (G, θ), for $k \in \mathbb{Z}$ let $\mathbb{Z}_{p}(k)$ denote the left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module induced by θ^{k}, namely, $\mathbb{Z}_{p}(k)$ is equal to the additive group \mathbb{Z}_{p} and the left G-action is given by

$$
\begin{equation*}
g \cdot z=\theta(g)^{k} \cdot z, \quad g \in G, z \in \mathbb{Z}_{p}(k) \tag{1.1}
\end{equation*}
$$

Vice-versa, if M is a topological left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module which as an abelian pro- p group is isomorphic to \mathbb{Z}_{p}, then there exists a unique p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$ such that $M \simeq \mathbb{Z}_{p}(1)$.
The $\mathbb{Z}_{p} \llbracket G \rrbracket$-module $\mathbb{Z}_{p}(1)$ and the representation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$are said to be k-cyclotomic, for $k \geq 1$, if for every open subgroup U of G and every $n \geq 1$ the natural maps

$$
\begin{equation*}
H^{k}\left(U, \mathbb{Z}_{p}(k) / p^{n}\right) \longrightarrow H^{k}\left(U, \mathbb{Z}_{p}(k) / p\right) \tag{1.2}
\end{equation*}
$$

induced by the epimorphism of $\mathbb{Z}_{p} \llbracket U \rrbracket$-modules $\mathbb{Z}_{p}(k) / p^{n} \rightarrow \mathbb{Z}_{p}(k) / p$, are surjective. If $\mathbb{Z}_{p}(1)$ (respectively θ) is k-cyclotomic for every $k \geq 1$, then it is called simply a cyclotomic $\mathbb{Z}_{p} \llbracket G \rrbracket$-module (resp., cyclotomic p-orientation). Note that $\mathbb{Z}_{p}(1)$ is k-cyclotomic if, and only if, $H_{\text {cts }}^{k+1}\left(U, \mathbb{Z}_{p}(k)\right)$ is a torsion free \mathbb{Z}_{p}-module for every open subgroup $U \subseteq G$ - here H_{cts}^{*} denotes continuous cochain cohomology as introduced by J. Tate in [34] (see § 2.1).
Cyclotomic modules of profinite groups have been introduced and studied by C. De Clercq and M. Florence in [5]. Previously J.P. Labute, in [16], considered surjectivity of (1.2) in the case $k=1$ and $U=G$ - note that demanding surjectivity for $U=G$ only is much weaker than demanding it for every open subgroup $U \subseteq G$, and this is what makes the definition of cyclotomic modules truly new.
Let \mathbb{K} be a field, and let $\overline{\mathbb{K}} / \mathbb{K}$ be a separable closure of \mathbb{K}. If $\operatorname{char}(\mathbb{K}) \neq p$, the absolute Galois group $G_{\mathbb{K}}=\operatorname{Gal}(\overline{\mathbb{K}} / \mathbb{K})$ of \mathbb{K} comes equipped with a canonical p-orientation

$$
\begin{equation*}
\theta_{\mathbb{K}, p}: G_{\mathbb{K}} \longrightarrow \operatorname{Aut}\left(\mu_{p^{\infty}}(\overline{\mathbb{K}})\right) \simeq \mathbb{Z}_{p}^{\times} \tag{1.3}
\end{equation*}
$$

where $\mu_{p \infty}(\overline{\mathbb{K}}) \subseteq \overline{\mathbb{K}}^{\times}$denotes the subgroup of roots of unity of $\overline{\mathbb{K}}$ of p-power order. If $p=\operatorname{char}(\mathbb{K})$, we put $\theta_{\mathbb{K}, p}=\mathbf{1}_{G_{\mathbb{K}}}$, the function which is constantly 1 on $G_{\mathbb{K}}$. The following result (cf. [5, Prop. 14.19]) is a consequence of the positive solution of the Bloch-Kato Conjecture given by M. Rost and V. Voevodsky with the "C. Weibel patch" (cf. [29, 36, 40]), which from now on we will refer to as the Rost-Voevodsky Theorem.

Theorem 1.1. Let \mathbb{K} be a field, and let p be prime number. The canonical p-orientation $\theta_{\mathbb{K}, p}: G_{\mathbb{K}} \rightarrow \mathbb{Z}_{p}^{\times}$is cyclotomic.
Theorem 1.1 provides a fundamental class of examples of profinite groups endowed with a cyclotomic p-orientation. Bearing in mind the exotic character of absolute Galois groups, it also provides a strong motivation to the study of cyclotomically p-oriented profinite groups - which is the main purpose of this manuscript. In fact, one may recover several Galois-theoretic statements already for profinite groups with a 1-cyclotomic p-orientation - e.g., the only finite group endowed with a 1-cyclotomic p-orientation is the finite group C_{2}
of order 2, with non-constant 2-orientation $\theta: C_{2} \rightarrow\{ \pm 1\}$ (cf. [11, Ex. 3.5]), and this implies the Artin-Schreier obstruction for absolute Galois groups. In their paper, De Clercq and Florence formulated the "Smoothness Conjecture", which can be restated in this context as follows: for a p-oriented profinite group, 1-cyclotomicity implies k-cyclotomicity for all $k \geq 1$ (cf. [5, Conj. 14.25]).
A p-oriented profinite group (G, θ) is said to be Bloch-Kato if the \mathbb{F}_{p}-algebra

$$
\begin{equation*}
H^{\bullet}\left(U,\left.\widehat{\theta}\right|_{U}\right)=\coprod_{k \geq 0} H^{k}\left(U, \mathbb{F}_{p}(k)\right) \tag{1.4}
\end{equation*}
$$

where $\mathbb{F}_{p}(k)=\mathbb{Z}_{p}(k) / p$, with product given by cup-product, is quadratic for every open subgroup U of G. Note that if $\operatorname{im}(\theta) \subseteq 1+p \mathbb{Z}_{p}$ and $p \neq 2$ then G acts trivially on $\mathbb{Z}_{p}(k) / p$. By the Rost-Voevodsky Theorem $\left(G_{\mathbb{K}}, \theta_{\mathbb{K}, p}\right)$ is, indeed, Bloch-Kato.
For a profinite group G, let $O_{p}(G)$ denote the maximal closed normal pro-p subgroup of G. A p-oriented profinite group (G, θ) has two particular closed normal subgroups: the $\operatorname{kernel} \operatorname{ker}(\theta)$ of θ, and the θ-center of (G, θ), given by

$$
\begin{equation*}
\mathrm{Z}_{\theta}(G)=\left\{x \in O_{p}(\operatorname{ker}(\theta)) \mid g x g^{-1}=x^{\theta(g)} \text { for all } g \in G\right\} \tag{1.5}
\end{equation*}
$$

As $\mathrm{Z}_{\theta}(G)$ is contained in the center $\mathrm{Z}(\operatorname{ker}(\theta))$ of $\operatorname{ker}(\theta)$, it is abelian. The p oriented profinite group (G, θ) will be said to be θ-abelian, if $\operatorname{ker}(\theta)=\mathrm{Z}_{\theta}(G)$ and if $\mathrm{Z}_{\theta}(G)$ is torsion free. In particular, for such a p-oriented profinite group $(G, \theta), G$ is a virtual pro- p group (i.e., G contains an open subgroup which is a pro- p group). Moreover, a θ-abelian pro- p group (G, θ) will be said to be split if $G \simeq \mathrm{Z}_{\theta}(G) \rtimes \operatorname{im}(\theta)$.
As $\mathrm{Z}_{\theta}(G)$ is contained in $\operatorname{ker}(\theta)$, by definition, the canonical quotient $\bar{G}=$ $G / \mathrm{Z}_{\theta}(G)$ carries naturally a p-orientation $\bar{\theta}: \bar{G} \rightarrow \mathbb{Z}_{p}^{\times}$, and one has the following short exact sequence of p-oriented profinite groups.

$$
\begin{equation*}
\{1\} \longrightarrow \mathrm{Z}_{\theta}(G) \longrightarrow G \xrightarrow{\pi} \bar{G} \longrightarrow\{1\} \tag{1.6}
\end{equation*}
$$

The following result can be seen as an analogue of the equal characteristic transition theorem (cf. [31, §II.4, Exercise 1(b), p. 86]) for cyclotomically poriented Bloch-Kato profinite groups.

Theorem 1.2. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato profinite group. Then (1.6) splits, provided that $\operatorname{cd}_{p}(G)<\infty$, and one of the following conditions hold:
(i) G is a pro-p group,
(ii) (G, θ) is an oriented virtual pro-p group (see §4),
(iii) $(\bar{G}, \bar{\theta})$ is cyclotomically p-oriented and Bloch-Kato.

In the case that (G, θ) is the maximal pro- p Galois group of a field \mathbb{K} containing a primitive $p^{t h}$-root of unity endowed with the p-orientation induced by $\theta_{\mathbb{K}, p}, \mathrm{Z}_{\theta}(G)$ is the inertia group of the maximal p-henselian valuation of \mathbb{K} (cf. Remark 7.8).
Note that the 2-oriented pro-2 group $\left(C_{2} \times \mathbb{Z}_{2}, \theta\right)$ may be θ-abelian, but θ is never 1-cyclotomic (cf. Proposition 6.5). As a consequence, in a cyclotomically 2-oriented pro-2 group every element of order 2 is self-centralizing.
For p odd it was shown in [25] that a Bloch-Kato pro- p group G satisfies a strong form of Tits alternative, i.e., either G contains a closed non-abelian free pro-p subgroup, or there exists a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$such that G is θ-abelian. In Subsection 7.1 we extend this result to pro-2 groups with a cyclotomic orientation, i.e., one has the following analogue of R. Ware's theorem (cf. [38]) for cyclotomically oriented Bloch-Kato pro-p groups (cf. Fact 7.4).

Theorem 1.3. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p group. If $p=2$ assume further that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then one - and only one - of the following cases hold:
(i) G contains a closed non-abelian free pro-p subgroup; or
(ii) G is θ-abelian.

It should be mentioned that for $p=2$ the additional hypothesis is indeed necessary (cf. Remark 5.8). The class of cyclotomically p-oriented Bloch-Kato profinite groups is closed with respect to several constructions.

Theorem 1.4. (a) The inverse limit of an inverse system of cyclotomically p-oriented Bloch-Kato profinite groups with surjective structure maps is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Corollary 3.3 and Corollary 3.6).
(b) The free profinite (resp. pro-p) product of two cyclotomically p-oriented Bloch-Kato profinite (resp. pro-p) groups is a cyclotomically p-oriented Bloch-Kato profinite (resp. pro-p) group (cf. Theorem 3.14).
(c) The fibre product of a cyclotomically p-oriented Bloch-Kato profinite group $\left(G_{1}, \theta_{1}\right)$ with a split θ_{2}-abelian profinite group $\left(G_{2}, \theta_{2}\right)$ is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Theorem 3.11 and Theorem 3.13).
(d) The quotient of a cyclotomically p-oriented Bloch-Kato profinite group (G, θ) with respect to a closed normal subgroup $N \subseteq G$ satisfying $N \subseteq$ $\operatorname{ker}(\theta)$ and N a p-perfect group is a cyclotomically p-oriented Bloch-Kato profinite group (cf. Proposition 4.6).

Some time ago I. Efrat (cf. [7-9]) has formulated the so-called elementary type conjecture concerning the structure of finitely generated pro-p groups occurring as maximal pro- p quotients of an absolute Galois group. His conjecture can be
reformulated in the class of cyclotomically p-oriented Bloch-Kato pro- p groups. Such a p-oriented pro- p group (G, θ) is said to be indecomposable if $\mathrm{Z}_{\theta}(G)=\{1\}$ and if G is not a proper free pro-p product. A positive answer to the following question would settle the elementary type conjecture affirmatively.

Question 1.5. Let (G, θ) be a finitely generated, torsion free, indecomposable, cyclotomically oriented Bloch-Kato pro-p group. Does this imply that G is a Poincaré duality pro-p group of dimension $\operatorname{cd}_{p}(G) \leq 2$?

The paper is organized as follows. In $\S 2$ we give some equivalent definitions for cyclotomic p-orientations. In $\S 3$ we study some operations of profinite groups (inverse limits, free products and fibre products) in relation with the properties of cyclotomicity and Bloch-Kato-ness, and we prove Theorem 1.4(a)-(b)-(c). In $\S 4$ we study the quotients of cyclotomically p-oriented profinite groups over closed normal p-perfect subgroups - in particular, we introduce oriented virtual pro-p groups and we prove Theorem 1.4(d). In § 5 we study p-oriented profinite Poincaré duality groups. In $\S 6$ we focus on the presence of torsion in cyclotomically 2 -oriented pro-2 groups, and we prove that in a 1-cyclotomically 2-oriented pro-2 group every element of order 2 is self-centralizing (see Proposition 6.5). In § 7 we focus on the structure of cyclotomically p-oriented BlochKato pro- p groups: we prove Theorems 1.2 and 1.3 , and show that in many cases the θ-center is the maximal abelian closed normal subgroup (cf. Theorem 7.7).

2 Absolute Galois groups and cyclotomic p-ORIEntations

Throughout the paper, we study profinite groups with a cyclotomic module $\mathbb{Z}_{p}(1)$. In contrast to [5, § 14], we refer to the associated representation $\theta: G \rightarrow$ \mathbb{Z}_{p}^{\times}, rather than to the module itself. As we study several subgroups of G associated to this cyclotomic module $\mathbb{Z}_{p}(1)$, like $\operatorname{ker}(\theta)$ and $\mathrm{Z}_{\theta}(G)$, this choice of notation turns out to be convenient for our purposes. We follow the convention as established in $[25,26]$ and call such representations " p-orientations". ${ }^{1}$ In the case that G is a pro-p group, the couple (G, θ) was called a cyclotomic pro-p pair, in [9, § 3].

2.1 The connecting homomorphism δ^{k}

Let G be a profinite group, and let $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$be a p-orientation of G. For every $k \geq 0$ one has the short exact sequence of left $\mathbb{Z}_{p} \llbracket G \rrbracket$-modules

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z}_{p}(k) \xrightarrow{p \cdot} \mathbb{Z}_{p}(k) \longrightarrow \mathbb{F}_{p}(k) \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

[^0]which induces the long exact sequence in cohomology
\[

$$
\begin{align*}
\cdots & \xrightarrow{\delta^{k-1}} H_{\mathrm{cts}}^{k}\left(G, \mathbb{Z}_{p}(k)\right) \xrightarrow{p \cdot} H_{\mathrm{cts}}^{k}\left(G, \mathbb{Z}_{p}(k)\right) \xrightarrow{\pi^{k}} H_{\mathrm{cts}}^{k}\left(G, \mathbb{F}_{p}(k)\right) \\
& \delta^{k} \xrightarrow{k+1}\left(G, \mathbb{Z}_{p}(k)\right) \xrightarrow{p \cdot} H_{\mathrm{cts}}^{k+1}\left(G, \mathbb{Z}_{p}(k)\right) \xrightarrow{\pi^{k+1}} \cdots \tag{2.2}
\end{align*}
$$
\]

with connecting homomorphism δ^{k} (cf. [34, §2]). In particular, δ^{k} is trivial if, and only if, multiplication by p on $H_{\mathrm{cts}}^{k+1}\left(G, \mathbb{Z}_{p}(k)\right)$ is a monomorphism. This is equivalent to $H_{\mathrm{cts}}^{k+1}\left(G, \mathbb{Z}_{p}(k)\right)$ being torsion free. Therefore, one concludes the following:

Proposition 2.1. Let (G, θ) be a p-oriented profinite group. For $k \geq 1$ and $U \subseteq G$ an open subgroup the following are equivalent.
(i) The map (1.2) is surjective for every $n \geq 1$.
(ii) The map $\pi^{k}: H_{\mathrm{cts}}^{k}\left(U, \mathbb{Z}_{p}(k)\right) \rightarrow H^{k}\left(U, \mathbb{F}_{p}(k)\right)$ is surjective.
(iii) The connecting homomorphism $\delta^{k}: H^{k}\left(U, \mathbb{F}_{p}(k)\right) \rightarrow H_{\mathrm{cts}}^{k+1}\left(U, \mathbb{Z}_{p}(k)\right)$ is trivial.
(iv) The \mathbb{Z}_{p}-module $H_{\mathrm{cts}}^{k+1}\left(U, \mathbb{Z}_{p}(k)\right)$ is torsion free.

Proof. By the long exact sequence (2.2), the equivalences between (ii), (iii) and (iv) are straightforward. For $m \geq n \geq 1$ let $\pi_{m, n}^{k}$ denote the natural maps

$$
\pi_{m, n}^{k}: H^{k}\left(U, \mathbb{Z}_{p}(k) / p^{m}\right) \longrightarrow H^{k}\left(U, \mathbb{Z}_{p}(k) / p^{n}\right)
$$

(if $m=\infty$ we set $p^{\infty}=0$). If condition (i) holds then the system $\left(H^{k}\left(U, \mathbb{Z}_{p} / p^{n}\right), \pi_{m, n}^{k}\right)$ satisfies the Mittag-Leffler property. In particular,

$$
H^{k}\left(U, \mathbb{Z}_{p}(k)\right) \simeq \lim _{\substack{ \\\geq 1}} H^{k}\left(U, \mathbb{Z}_{p}(k) / p^{n}\right)
$$

(cf. [28] and [23, Thm. 2.7.5]). Thus $\pi^{k}=\pi_{n, 1}^{k} \circ \pi_{\infty, n}^{k}$ is surjective if, and only if, $\pi_{n, 1}^{k}$ is surjective for every $n \geq 1$. Conversely, if π^{k} is surjective then $\pi^{k}=\pi_{n, 1}^{k} \circ \pi_{\infty, n}^{k}$ yields the surjectivity of $\pi_{n, 1}^{k}$ for every n.

2.2 Profinite groups of cohomological p-Dimension at most 1

Let G be a profinite group, and let $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$be a p-orientation of G. Then

$$
\begin{equation*}
H_{\mathrm{cts}}^{1}\left(G, \mathbb{Z}_{p}(0)\right)=\operatorname{Hom}_{\operatorname{grp}}\left(G, \mathbb{Z}_{p}\right) \tag{2.3}
\end{equation*}
$$

is a torsion free abelian group for every profinite group G, i.e., θ is 0 -cyclotomic. If G is of cohomological p-dimension less or equal to 1 , then $H_{\mathrm{cts}}^{m+1}\left(G, \mathbb{Z}_{p}(m)\right)=$

0 for all $m \geq 1$ showing that θ is cyclotomic. Moreover, $H^{\bullet}(G, \hat{\theta})$ is a quadratic \mathbb{F}_{p}-algebra for every profinite group with $\operatorname{cd}_{p}(G) \leq 1$ and for any p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$. If G is of cohomological p-dimension less or equal to 1 , one has $\operatorname{cd}_{p}(C) \leq 1$ for every closed subgroup C of G (cf. [31, §I.3.3, Proposition 14]). Thus one has the following.

FACT 2.2. Let G be a profinite group with $\operatorname{cd}_{p}(G) \leq 1$, and let $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$be a p-orientation for G. Then (G, θ) is Bloch-Kato and θ is cyclotomic.

2.3 The $m^{\text {th }}$-NORM RESIDUE SYMBOL

Throughout this subsection we fix a field \mathbb{K} and a separable closure $\overline{\mathbb{K}}$ of \mathbb{K}. For $p \neq \operatorname{char}(\mathbb{K}), \mu_{p \infty}(\overline{\mathbb{K}})$ is a divisible abelian group. By construction, one has a canonical isomorphism

$$
\begin{equation*}
\lim _{k \geq 0}\left(\mu_{p \infty}(\overline{\mathbb{K}}), p^{k}\right) \simeq \mathbb{Z}_{p}(1) \otimes_{\mathbb{Z}} \mathbb{Q}_{p}=\mathbb{Q}_{p}(1) \tag{2.4}
\end{equation*}
$$

and a short exact sequence $0 \rightarrow \mathbb{Z}_{p}(1) \rightarrow \mathbb{Q}_{p}(1) \rightarrow \mu_{p \infty}(\overline{\mathbb{K}}) \rightarrow 0$ of topological left $\mathbb{Z}_{p} \llbracket G_{\mathbb{K}} \rrbracket$-modules, where $G_{\mathbb{K}}=\operatorname{Gal}(\overline{\mathbb{K}} / \mathbb{K})$ is the absolute Galois group of \mathbb{K}.
Let $K_{m}^{M}(\mathbb{K}), m \geq 0$, denote the $m^{t h}$-Milnor K-group of $\mathbb{K}(c f .[10, \S 24.3])$. For $p \neq \operatorname{char}(\mathbb{K})$, J. Tate constructed in [34] a homomorphism of abelian groups

$$
\begin{equation*}
h_{m}(\mathbb{K}): K_{m}^{M}(\mathbb{K}) \longrightarrow H_{\mathrm{cts}}^{m}\left(G_{\mathbb{K}}, \mathbb{Z}_{p}(m)\right) \tag{2.5}
\end{equation*}
$$

the so-called $m^{\text {th }}$-norm residue symbol. Let $K_{m}^{M}(\mathbb{K})_{/ p}=K_{m}^{M}(\mathbb{K}) / p K_{m}^{M}(\mathbb{K})$. Around ten years later S. Bloch and K. Kato conjectured in [1] that the induced map

$$
\begin{equation*}
h_{m}(\mathbb{K})_{/ p}: K_{m}^{M}(\mathbb{K})_{/ p} \longrightarrow H^{m}\left(G_{\mathbb{K}}, \mathbb{F}_{p}(m)\right) \tag{2.6}
\end{equation*}
$$

is an isomorphism for all fields $\mathbb{K}, \operatorname{char}(\mathbb{K}) \neq p$, and for all $m \geq 0$. This conjecture has been proved by V. Voevodsky and M. Rost with a "patch" of C. Weibel (cf. $[29,36,40]$). In particular, since $K_{\bullet}^{M}(\mathbb{K})_{/ p}$ is a quadratic $\mathbb{F}_{p^{-}}$ algebra and as $h_{\bullet}(\mathbb{K})_{/ p}$ is a homomorphism of algebras, this implies that the absolute Galois group of a field \mathbb{K} is Bloch-Kato (cf. [10, §23.4]). The RostVoevodsky Theorem has also the following consequence.

Proposition 2.3. Let \mathbb{K} be a field, let $G_{\mathbb{K}}$ denote its absolute Galois group, and let $\theta_{\mathbb{K}, p}: G_{\mathbb{K}} \rightarrow \mathbb{Z}_{p}^{\times}$denote its canonical p-orientation. Then $\theta_{\mathbb{K}, p}$ is cyclotomic.

Although Proposition 2.3 might be well known to specialists, we add a short proof of it. By Proposition 2.1, Proposition 2.3 in combination with Theorem 1.4-(d) is equivalent to [5, Prop. 14.19].

Proof of Proposition 2.3. If $\operatorname{char}(\mathbb{K})=p$, then $\operatorname{cd}_{p}\left(G_{\mathbb{K}}\right) \leq 1$ (cf. [31, §II.2.2, Proposition 3]), and the p-orientation $\theta_{\mathbb{K}, p}$ is cyclotomic by Fact 2.2. So we
may assume that $\operatorname{char}(\mathbb{K}) \neq p$. In the commutative diagram

the map π is surjective, and $\left(h_{k}\right)_{/ p}$ is an isomorphism. Hence α must be surjective, and thus $\beta=0$, i.e., $p: H_{\mathrm{cts}}^{k+1}\left(G_{\mathbb{K}}, \mathbb{Z}_{p}(k)\right) \rightarrow H_{\mathrm{cts}}^{k+1}\left(G_{\mathbb{K}}, \mathbb{Z}_{p}(k)\right)$ is an injective homomorphism of \mathbb{Z}_{p}-modules. Thus $H_{\text {cts }}^{k+1}\left(G_{\mathbb{K}}, \mathbb{Z}_{p}(k)\right)$ must be p-torsion free. Any open subgroup U of $G_{\mathbb{K}}$ is the absolute Galois group of \mathbb{K}^{U}. Hence $\theta_{\mathbb{K}, p}$ is cyclotomic, and this yields the claim.

Remark 2.4. Let \mathbb{K} be a number field, let S be a set of places containing all infinite places of \mathbb{K} and all places lying above p, and let $G_{\mathbb{K}}^{S}$ be the Galois group of $\overline{\mathbb{K}}^{S} / \mathbb{K}$, where $\overline{\mathbb{K}}^{S} / \mathbb{K}$ is the maximal extension of $\overline{\mathbb{K}} / \mathbb{K}$ which is unramified outside S. Then $\theta_{\mathbb{K}, p}: G_{\mathbb{K}} \rightarrow \mathbb{Z}_{p}^{\times}$induces a p-orientation $\theta_{k, p}^{S}: G_{\mathbb{K}}^{S} \rightarrow \mathbb{Z}_{p}^{\times}$. However, it is well known (cf. [23, Prop. 8.3.11(ii)]) that,

$$
\begin{equation*}
H^{1}\left(G_{\mathbb{K}}^{S}, \mathbb{I}_{p}(1)\right) \simeq H^{1}\left(G_{\mathbb{K}}^{S}, \mathcal{O}_{\mathbb{K}}^{S}\right)_{(p)} \simeq \operatorname{cl}\left(\mathcal{O}_{\mathbb{K}}^{S}\right)_{(p)} \tag{2.8}
\end{equation*}
$$

(for the definition of $\mathbb{I}_{p}(1)$ see $\S 3$), where $\operatorname{cl}\left(\mathcal{O}_{\mathbb{K}}^{S}\right)$ denotes the ideal class group of the Dedekind domain $\mathcal{O}_{\mathbb{K}}^{S}$, and $-(p)$ denotes the p-primary component. Hence $\left(G_{\mathbb{K}}^{S}, \theta_{\mathbb{K}, p}^{S}\right)$ is in general not cyclotomic (cf. Proposition 3.1).

3 Cohomology of p-ORIENTED PROFINITE GROUPS

A homomorphism $\phi:\left(G_{1}, \theta_{1}\right) \rightarrow\left(G_{2}, \theta_{2}\right)$ of two p-oriented profinite groups $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ is a continuous group homomorphism $\phi: G_{1} \rightarrow G_{2}$ satisfying $\theta_{1}=\theta_{2} \circ \phi$.
Let (G, θ) be a p-oriented profinite group. For $k \in \mathbb{Z}$, put $\mathbb{Q}_{p}(k)=\mathbb{Z}_{p}(k) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$, and also $\mathbb{I}_{p}(k)=\mathbb{Q}_{p}(k) / \mathbb{Z}_{p}(k)$, i.e., $\mathbb{I}_{p}(k)$ is a discrete left G-module and - as an abelian group - a divisible p-torsion module.
Let $\mathbb{I}_{p}=\mathbb{Q}_{p} / \mathbb{Z}_{p}$, and let $-^{*}=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(-, \mathbb{I}_{p}\right)$ denote the Pontryagin duality functor. Then $\mathbb{I}_{p}(k)^{*}$ is a profinite left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module which is isomorphic to $\mathbb{Z}_{p}(-k)$.

3.1 Criteria for cyclotomicity

The following proposition relates the continuous co-chain cohomology groups, Galois cohomology and the Galois homology groups as defined by A. Brumer in [3].

Proposition 3.1. Let (G, θ) be a p-oriented profinite group, let k be an integer, and let m be a non-negative integer. Then the following are equivalent:
(i) $H_{\mathrm{cts}}^{m+1}\left(G, \mathbb{Z}_{p}(k)\right)$ is torsion free;
(ii) $H^{m}\left(G, \mathbb{I}_{p}(k)\right)$ is divisible;
(iii) $H_{m}\left(G, \mathbb{Z}_{p}(-k)\right)$ is torsion free.

Proof. The equivalence (i) \Leftrightarrow (ii) is a direct consequence of [34, Prop. 2.3], and $($ ii) \Leftrightarrow (iii) follows from [33, (3.4.5)].

The direct limit of divisible p-torsion modules is a divisible p-torsion module. From this fact - and Proposition 3.1 - one concludes the following.

Corollary 3.2. Let (G, θ) be a cyclotomically p-oriented profinite group. Then $H^{m}\left(C, \mathbb{I}_{p}(m)\right)$ is divisible for all $m \geq 0$ and all C closed in G.

Proof. It suffices to show $(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Let C be a closed subgroup of G. Then $H^{m}\left(C, \mathbb{I}_{p}(m)\right) \simeq \lim _{U \in \mathfrak{B}_{C}} H^{m}\left(U, \mathbb{I}_{p}(m)\right)$, where \mathfrak{B}_{C} denotes the set of all open subgroups of G containing C (cf. [31, §I.2.2, Proposition 8]). Hence Proposition 3.1 yields the claim.

In combination with [3, Corollary 4.3(ii)], Proposition 3.1 implies the following.
Corollary 3.3. Let (I, \preceq) be a directed set, let (G, θ) be a p-oriented profinite group, and let $\left(N_{i}\right)_{i \in I}$ be a family of closed normal subgroups of G satisfying $N_{j} \subseteq N_{i} \subseteq \operatorname{ker}(\theta)$ for $i \preceq j$ such that $\bigcap_{i \in I} N_{i}=\{1\}$ and the induced p orientation $\theta_{i}: G / N_{i} \rightarrow \mathbb{Z}_{p}^{\times}$is cyclotomic for all $i \in I$. Then $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$is cyclotomic.

Proof. Let $U \subseteq G$ be a open subgroup of G. Hypothesis (iii) implies that the group $H_{m}\left(U N_{i} / N_{i}, \mathbb{Z}_{p}(-m)\right)$ is torsion free for all $i \in I$ (cf. Proposition 3.1). Thus, by [3, Corollary $4.3(\mathrm{ii})$], $H_{m}\left(U, \mathbb{Z}_{p}(-m)\right)$ is torsion free, and hence, by Proposition 3.1, $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$is a cyclotomic p-orientation.

3.2 The mod- p COHOMOLOGY RING

An \mathbb{N}_{0}-graded \mathbb{F}_{p}-algebra $\mathbf{A}=\coprod_{k \geq 0} \mathbf{A}_{k}$ is said to be anti-commutative if for $x \in \mathbf{A}_{s}$ and $y \in \mathbf{A}_{t}$ one has $y \cdot x=(-1)^{s t} \cdot x \cdot y$. E.g., if V is an $\mathbb{F}_{p^{-}}$ vector space, the exterior algebra $\Lambda_{\bullet}(V)($ cf. $[18$, Chapter 4$])$ is an \mathbb{N}_{0}-graded anti-commutative \mathbb{F}_{p}-algebra. Moreover, if G is a profinite group, then its cohomology ring $H^{\bullet}\left(G, \mathbb{F}_{p}\right)$ is an \mathbb{N}_{0}-graded anti-commutative \mathbb{F}_{p}-algebra (cf. [23, Prop. 1.4.4]).
Let $\mathbf{T}(V)=\coprod_{k \geq 0} V^{\otimes k}$ denote the tensor algebra generated by the \mathbb{F}_{p}-vector space V. A \mathbb{N}_{0}-graded associative \mathbb{F}_{p}-algebra \mathbf{A} is said to be quadratic if the canonical homomorphism $\eta^{\mathbf{A}}: \mathbf{T}\left(\mathbf{A}_{1}\right) \rightarrow \mathbf{A}$ is surjective, and

$$
\begin{equation*}
\operatorname{ker}\left(\eta^{\mathbf{A}}\right)=\mathbf{T}\left(\mathbf{A}_{1}\right) \otimes \operatorname{ker}\left(\eta_{2}^{\mathbf{A}}\right) \otimes \mathbf{T}\left(\mathbf{A}_{1}\right) \tag{3.1}
\end{equation*}
$$

(cf. [24, § 1.2]). E.g., $\mathbf{A}=\Lambda_{\bullet}(V)$ is quadratic.

If \mathbf{A} and \mathbf{B} are anti-commutative \mathbb{N}_{0}-graded \mathbb{F}_{p}-algebras, then $\mathbf{A} \otimes \mathbf{B}$ is again an anti-commutative \mathbb{N}_{0}-graded \mathbb{F}_{p}-algebra, where

$$
\begin{equation*}
\left(x_{1} \otimes y_{1}\right) \cdot\left(x_{2} \otimes y_{2}\right)=(-1)^{s_{2} t_{1}} \cdot\left(x_{1} \cdot x_{2}\right) \otimes\left(y_{1} \cdot y_{2}\right) \tag{3.2}
\end{equation*}
$$

for $x_{1} \in \mathbf{A}_{s_{1}}, x_{2} \in \mathbf{A}_{s_{2}} y_{1} \in \mathbf{B}_{t_{1}}, y_{2} \in \mathbf{B}_{t_{2}}$. In particular, if \mathbf{A} and \mathbf{B} are quadratic, then $\mathbf{A} \otimes \mathbf{B}$ is quadratic as well.
A direct set (I, \preceq) maybe considered as a small category with objects given by the set I and precisely one morphism $\iota_{i, j}$ for all $i \preceq j, i, j \in I$, i.e., $\iota_{i, i}=\operatorname{id}_{i}$. One has the following.

FACT 3.4. Let \mathbb{F} be a field, let (I, \preceq) be a direct system, and let $\mathbf{A}:(I, \preceq) \rightarrow$ ${ }_{\mathbb{F}} \mathbf{q}$ alg be a covariant functor with values in the category of quadratic \mathbb{F}-algebras. Then $\mathbf{B}=\underline{l i m}_{i \in \mathbf{A}} \mathbf{A}(i)$ is a quadratic \mathbb{F}-algebra.
Let (G, θ) be a p-oriented profinite group, and let $\widehat{\theta}: G \rightarrow \mathbb{F}_{p}^{\times}$be the map induced by θ. If $\widehat{\theta}=\mathbf{1}_{G}$, then the mod-p cohomology ring of $H^{\bullet}(G, \widehat{\theta})$ coincides with $H^{\bullet}\left(G, \mathbb{F}_{p}\right)$ (see (1.4)), and hence it is anti-commutative. Furthermore, if $\widehat{\theta} \neq \mathbf{1}_{G}$ and $G^{\circ}=\operatorname{ker}(\widehat{\theta})$, restriction

$$
\begin{equation*}
\operatorname{res}_{G, G^{\circ}}^{\bullet}: H^{\bullet}(G, \hat{\theta}) \longrightarrow H^{\bullet}\left(G^{\circ}, \mathbb{F}_{p}\right) \tag{3.3}
\end{equation*}
$$

is an injective homomorphism of \mathbb{N}_{0}-graded algebras. Hence the mod- p cohomology ring $H^{\bullet}(G, \theta)$ is anti-commutative. In particular, if $M_{(k)}$ denotes the homogeneous component of the left $\mathbb{F}_{p}\left[G / G^{\circ}\right]$-module M, on which G / G° acts by $\widehat{\theta}^{k}$, the Hochschild-Serre spectral sequence (cf. [23, § II.4, Exercise 4(ii)]) shows that

$$
\begin{equation*}
H^{k}(G, \widehat{\theta})=H^{k}\left(G^{\circ}, \mathbb{F}_{p}\right)_{(-k)} \tag{3.4}
\end{equation*}
$$

From [31, §I.2.2, Prop. 8] and Fact 3.4 one concludes the following.
Corollary 3.5. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato. Then $H^{\bullet}\left(C,\left.\widehat{\theta}\right|_{C}\right)$ is quadratic for all C closed in G.
Corollary 3.6. Let (I, \preceq) be a directed set, let (G, θ) be a p-oriented profinite group, and let $\left(N_{i}\right)_{i \in I}$ be a family of closed normal subgroups of $G, N_{j} \subseteq N_{i} \subseteq$ $\operatorname{ker}(\theta)$ for $i \preceq j$, such that $\bigcap_{i \in I} N_{i}=\{1\}$ and $\left(G / N_{i}, \widehat{\theta}_{N_{i}}\right)$ is Bloch-Kato. Then (G, θ) is Bloch-Kato.

Remark 3.7. Let G be a pro- p group with minimal presentation

$$
G=\left\langle x_{1}, \ldots, x_{d} \mid\left[x_{1}, x_{2}\right]\left[\left[x_{3}, x_{4}\right], x_{5}\right]=1\right\rangle
$$

with $d \geq 5$. In [22, Ex. 7.3] and [21, §4.3] it is shown that G does not occur as maximal pro- p Galois group of a field containing a primitive $p^{t h}$-root of unity, relying on the properties of Massey products. It would be interesting to know whether G admits a cyclotomic p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$such that (G, θ) is Bloch-Kato. By Theorem 1.1, a negative answer would provide a "Massey-free" proof of the aforementioned fact.

3.3 Fibre products

Let $\left(G_{1}, \theta_{1}\right),\left(G_{2}, \theta_{2}\right)$ be p-oriented profinite groups. The fibre product $(G, \theta)=$ $\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)$ denotes the pull-back of the diagram

Remark 3.8. By restricting to the suitable subgroups if necessary, for the analysis of a fibre product $(G, \theta)=\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)$ one may assume that $\operatorname{im}\left(\theta_{1}\right)=$ $\operatorname{im}\left(\theta_{2}\right)$. In particular, if $\left(G_{2}, \theta_{2}\right)$ is split θ_{2}-abelian and $G_{2} \simeq A \rtimes \operatorname{im}\left(\theta_{2}\right)$ for some free abelian pro-p group A, then $G \simeq A \rtimes G_{1}$ with $g a g^{-1}=a^{\theta_{1}(g)}$ for all $a \in A$ and $g \in G_{1}$.

FACT 3.9. Let (G, θ) be a p-oriented profinite group, and let N be a finitely generated non-trivial torsion free closed subgroup of $\mathrm{Z}_{\theta}(G)$, i.e., $N \simeq \mathbb{Z}_{p}(1)^{r}$ as left $\mathbb{Z}_{p} \llbracket G \rrbracket$-modules for some $r \geq 1$. Then for $k \geq 0$ one has

$$
\begin{equation*}
H^{1}\left(N, \mathbb{I}_{p}(k)\right) \simeq \mathbb{I}_{p}(k-1)^{r} \tag{3.6}
\end{equation*}
$$

as left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module.
The following property will be useful for the analysis of fibre products.
Lemma 3.10. Let $\left(G_{1}, \theta\right),\left(G_{2}, \theta_{2}\right)$ be cyclotomically p-oriented profinite groups, with $\left(G_{2}, \theta_{2}\right)$ split θ_{2}-abelian and $Z=\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)$, and set

$$
(G, \theta)=\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)
$$

Let $\pi: G \rightarrow G_{1}$ be the canonical projection, and let $U \subseteq G$ be an open subgroup. Then $U \simeq(Z \cap U) \rtimes \pi(U)$.

Proof. Without loss of generality we may assume that $Z \simeq \mathbb{Z}_{p}$, so that $Z \cap U=$ $Z^{p^{k}}$ for some $k \geq 0$. It suffices to show that there exists an open subgroup U_{1} of U satisfying $Z \cap U_{1}=\{1\}$ and $\pi\left(U_{1}\right)=\pi(U)$.
By choosing a section $\sigma: G_{1} \rightarrow G$ (see Remark 3.8), one has a continuous homomorphism $\tau=\sigma \circ \pi: G \rightarrow G_{1}$ and a continuous function $\eta: G \rightarrow Z$ such that each $g \in G$ can be uniquely written as $g=\eta(g) \cdot \tau(g)$. In particular, for $h, h_{1}, h_{2} \in U$ and $z \in Z \cap U=Z^{p^{k}}$ one has

$$
\begin{equation*}
\eta(z \cdot h)=z \cdot \eta(h) \quad \text { and } \quad \eta\left(h_{1} \cdot h_{2}\right)=\eta\left(h_{1}\right) \cdot h_{1} \eta\left(h_{2}\right) \tag{3.7}
\end{equation*}
$$

Let $\eta_{U}=\left.\chi \circ \eta\right|_{U}$, where $\chi: Z \rightarrow Z / Z^{p^{k}}$ is the canonical projection. By (3.7), η_{U} defines a crossed-homomorphism $\tilde{\eta}_{U}: \bar{U} \rightarrow Z / Z^{p^{k}}$, where $\bar{U}=U / Z^{p^{k}}$. As \bar{U} is canonically isomorphic to an open subgroup of $G_{1},\left(\bar{U},\left.\theta_{1}\right|_{\bar{U}}\right)$ is cyclotomically
p-oriented. (Note that $Z \simeq \mathbb{Z}_{p}(1)$ as $\mathbb{Z}_{p} \llbracket U \rrbracket$-modules.) Hence, $H_{\text {cts }}^{1}\left(\bar{U}, \mathbb{Z}_{p}(1)\right) \rightarrow$ $H^{1}\left(\bar{U}, \mathbb{Z}_{p}(1) / p^{k}\right)$ is surjective by Proposition 2.1, and the snake lemma applied to the commutative diagram

where the left-side and right-side vertical arrows are surjective, shows that $\mathcal{Z}^{1}(\bar{U}, Z) \rightarrow \mathcal{Z}^{1}\left(\bar{U}, Z / Z^{p^{k}}\right)$ is surjective. Thus there exists $\eta_{\circ} \in \mathcal{Z}^{1}(\bar{U}, Z)$ such that $\tilde{\eta}_{U}=\chi \circ \eta_{\circ}$. It is straightforward to verify that $U_{1}=\left\{\eta_{\circ}(\bar{h}) \cdot \sigma(\bar{h}) \mid \bar{h} \in \bar{U}\right\}$ is an open subgroup of G_{1} satisfying the requirements.

Theorem 3.11. Let $\left(G_{1}, \theta_{1}\right)$ be a cyclotomically p-oriented profinite group, and let $\left(G_{2}, \theta_{2}\right)$ be split θ_{2}-abelian. Then $\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)$ is cyclotomically p-oriented.

Remark 3.12. (a) If p is odd, then every θ-abelian profinite group (G, θ) is split. However, a 2-oriented θ-abelian profinite group (G, θ) is split if, and only if, it is cyclotomically 2 -oriented (cf. Proposition 6.7).
(b) If (G, θ) is θ-abelian and $H \subseteq G$ is a closed subgroup, then $\left(H,\left.\theta\right|_{H}\right)$ is also θ-abelian.

Proof of Theorem 3.11. Put $(G, \theta)=\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)$ and $Z=\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)$. We may also assume that $\operatorname{im}\left(\theta_{1}\right)=\operatorname{im}\left(\theta_{2}\right)$. As $\left(G_{2}, \theta_{2}\right)$ is split θ_{2}-abelian, one has $G=Z \rtimes G_{1}$.
We first show the claim for $Z \simeq \mathbb{Z}_{p}$. Let U be an open subgroup of G. By Lemma $3.10,\left(U,\left.\theta\right|_{U}\right) \simeq\left(U_{1}, \bar{\theta}_{1}\right) \boxtimes\left(U_{2}, \bar{\theta}_{2}\right)$ where U_{1} is isomorphic to an open subgroup of G_{1} and $\left(U_{2}, \bar{\theta}_{2}\right)$ is split $\bar{\theta}_{2}$-abelian with $N=\operatorname{ker}\left(\bar{\theta}_{2}\right)$ open in Z. As $\operatorname{cd}_{p}(N)=1$, one has $H^{m}\left(N, \mathbb{I}_{p}(k)\right)=0$ for $m \geq 2$ and $k \geq 0$. Therefore, the E_{2}-term of the Hochschild-Serre spectral sequence associated to the short exact sequence of profinite groups

$$
\begin{equation*}
\{1\} \longrightarrow N \longrightarrow U \longrightarrow U_{1} \longrightarrow\{1\} \tag{3.9}
\end{equation*}
$$

and evaluated on the discrete $\mathbb{Z}_{p} \llbracket U \rrbracket$-module $\mathbb{I}_{p}(k)$, is concentrated on the first and the second row. In particular, $d_{r}^{s, t}=0$ for $r \geq 3$. As (3.9) splits, and as $\mathbb{I}_{p}(k)$ is inflated from U_{1}, one has $E_{2}^{s, 0}\left(\mathbb{I}_{p}(k)\right)=E_{\infty}^{s, 0}\left(\mathbb{I}_{p}(k)\right)$ for $s \geq 0$ (cf. [23, Prop. 2.4.5]). Hence $d_{2}^{s, t}=0$ for all $s, t \geq 0$, i.e., $E_{2}^{s, t}\left(\mathbb{I}_{p}(k)\right)=E_{\infty}^{s, t}\left(\mathbb{I}_{p}(k)\right)$, and the spectral sequence collapses. Thus, using the isomorphism (3.6), for every $k \geq 1$ one has a short exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{k}\left(U_{1}, \mathbb{I}_{p}(k)\right) \xrightarrow{\inf } H^{k}\left(U, \mathbb{I}_{p}(k)\right) \longrightarrow H^{k-1}\left(U_{1}, \mathbb{I}_{p}(k-1)\right) \longrightarrow 0 \tag{3.10}
\end{equation*}
$$

where the right- and left-hand side are divisible p-torsion modules. As such \mathbb{Z}_{p}-modules are injective, (3.10) splits showing that $H^{k}\left(U, \mathbb{I}_{p}(k)\right)$ is p-divisible. Therefore, by Proposition 3.1, (G, θ) is cyclotomic.
Thus, by induction the claim holds for all split θ_{2}-abelian groups $\left(G_{2}, \theta_{2}\right)$ satisfying $\operatorname{rk}\left(\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)\right)<\infty$. In general, as Z is a torsion free abelian pro- p group, there exists an inverse system $\left(Z_{i}\right)_{i \in I}$ of closed subgroups of Z such that Z / Z_{i} is torsion free, of finite rank, and $Z=\lim _{i \in I} Z / Z_{i}$. Since Z_{i} is normal in G and

$$
\left(G / Z_{i}, \bar{\theta}\right) \simeq\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2} / Z_{i}, \bar{\theta}_{2}\right)
$$

is cyclotomically p-oriented, Corollary 3.3 yields the claim.
The following theorem can be seen as a generalization of a result of A. Wadsworth [37, Thm. 3.6].

Theorem 3.13. Let $\left(G_{i}, \theta_{i}\right), i=1,2$, be p-oriented profinite groups satisfying $\operatorname{im}\left(\theta_{1}\right)=\operatorname{im}\left(\theta_{2}\right)$. Assume further that $\left(G_{2}, \theta_{2}\right)$ is split θ_{2}-abelian. Then for $(G, \theta)=\left(G_{1}, \theta_{1}\right) \boxtimes\left(G_{2}, \theta_{2}\right)$ one has that

$$
\begin{equation*}
H^{\bullet}(G, \widehat{\theta}) \simeq H^{\bullet}\left(G_{1}, \widehat{\theta}_{1}\right) \otimes \Lambda_{\bullet}\left(\left(\operatorname{ker}\left(\theta_{2}\right) / \operatorname{ker}\left(\theta_{2}\right)^{p}\right)^{*}\right) \tag{3.11}
\end{equation*}
$$

Moreover, if $\left(G_{1}, \theta_{1}\right)$ is Bloch-Kato, then (G, θ) is Bloch-Kato.
Proof. Assume first that $\mathrm{d}\left(\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)\right)$ is finite. If $\mathrm{d}\left(\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)\right)=1$ then one obtains the isomorphism (3.11) from [37, Thm. 3.1], which uses the HochschildSerre spectral sequence associated to the short exact sequence of profinite groups

$$
\{1\} \longrightarrow \mathrm{Z}_{\theta_{2}}\left(G_{2}\right) \longrightarrow G \longrightarrow G / \mathrm{Z}_{\theta_{2}}\left(G_{2}\right) \longrightarrow\{1\}
$$

and evaluated on the discrete $\mathbb{Z}_{p} \llbracket G \rrbracket$-module $\mathbb{F}_{p}(k)$, to compute $H^{\bullet}(G, \widehat{\theta})$. If $\mathrm{d}\left(\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)\right)>1$, then applying induction on $\mathrm{d}\left(\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)\right)$ yields the isomorphism (3.11). Finally, if $\mathrm{Z}_{\theta_{2}}\left(G_{2}\right)$ is not finitely generated, then a limit argument similar to the one used in the proof Theorem 3.11 and Corollary 3.6 yield the claim.

3.4 Coproducts

For two profinite groups G_{1} and G_{2} let $G=G_{1} \amalg G_{2}$ denote the coproduct (or free product) in the category of profinite groups (cf. [27, § 9.1]). In particular, if $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are two p-oriented profinite groups, the p-orientations θ_{1} and θ_{2} induce a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$via the universal property of of the free product. Thus, we may interpret \amalg as the coproduct in the category of p oriented profinite groups (cf. [9, §3]). The same applies to \amalg^{p} - the coproduct in the category of pro- p groups.

Theorem 3.14. Let $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ be two cyclotomically p-oriented profinite groups. Then their coproduct $(G, \theta)=\left(G_{1}, \theta_{1}\right) \amalg\left(G_{2}, \theta_{2}\right)$ is cyclotomically oriented. Moreover, if $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are Bloch-Kato, then (G, θ) is Bloch-Kato.
Proof. Let $\left(U,\left.\theta\right|_{U}\right)$ be an open subgroup of (G, θ). Then, by the Kurosh subgroup theorem (cf. [27, Thm. 9.1.9]),

$$
\begin{equation*}
U \simeq \coprod_{s \in \mathcal{S}_{1}}\left({ }^{s} G_{1} \cap U\right) \amalg \coprod_{t \in \mathcal{S}_{2}}\left({ }^{t} G_{2} \cap U\right) \amalg F, \tag{3.12}
\end{equation*}
$$

where ${ }^{y} G_{i}=y G_{i} y^{-1}$ for $y \in G$. The sets \mathcal{S}_{1} and \mathcal{S}_{2} are sets of representatives of the double cosets $U \backslash G / G_{1}$ and $U \backslash G / G_{2}$, respectively. In particular, the sets \mathcal{S}_{1} and \mathcal{S}_{2} are finite, and F is a free profinite subgroup of finite rank.
Put $U_{s}={ }^{s} G_{1} \cap U$ for all $s \in \mathcal{S}_{1}$, and $V_{t}={ }^{t} G_{2} \cap U$ for all $t \in \mathcal{S}_{2}$. By [23, Thm. 4.1.4], one has an isomorphism

$$
\begin{equation*}
H^{k}\left(U, \mathbb{I}_{p}(k)\right) \simeq \bigoplus_{s \in \mathcal{S}_{1}} H^{k}\left(U_{s}, \mathbb{I}_{p}(k)\right) \oplus \bigoplus_{t \in \mathcal{S}_{2}} H^{k}\left(V_{t}, \mathbb{I}_{p}(k)\right) \tag{3.13}
\end{equation*}
$$

for $k \geq 2$, and an exact sequence

$$
\begin{equation*}
M \xrightarrow{\alpha} H^{1}\left(U, \mathbb{I}_{p}(1)\right) \longrightarrow M^{\prime} \longrightarrow 0 \tag{3.14}
\end{equation*}
$$

If $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are cyclotomically p-oriented, then, by hypothesis and (3.13), $H^{k}\left(U, \mathbb{I}_{p}(k)\right)$ is a divisible p-torsion module for $k \geq 2$. In (3.14), the module M is a homomorphic image of a p-divisible p-torsion module, and the module M^{\prime} is the direct sum of p-divisible p-torsion modules, showing that $H^{1}\left(U, \mathbb{I}_{p}(1)\right)$ is divisible. Hence, by Proposition 3.1 and Corollary 3.3, (G, θ) is cyclotomically p-oriented.
Assume that $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are Bloch-Kato. Then - for U as in (3.12) - one has by (3.13) and (3.14) that

$$
\begin{equation*}
H^{\bullet}\left(U,\left.\widehat{\theta}\right|_{U}\right) \simeq \mathbf{A} \oplus \bigoplus_{s \in \mathcal{S}_{1}} H^{\bullet}\left(U_{s},\left.\widehat{\theta}\right|_{U_{s}}\right) \oplus \bigoplus_{t \in \mathcal{S}_{2}} H^{\bullet}\left(V_{t},\left.\widehat{\theta}\right|_{V_{t}}\right) \oplus H^{\bullet}\left(F,\left.\widehat{\theta}\right|_{F}\right) \tag{3.15}
\end{equation*}
$$

where \mathbf{A} is a quadratic algebra, and \oplus denotes the direct sum in the category of quadratic algebras (cf. [24, p. 55]). In particular, $H^{\bullet}\left(U,\left.\widehat{\theta}\right|_{U}\right)$ is quadratic.
For pro- p groups one has also the following.
THEOREM 3.15. Let $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ be two cyclotomically oriented pro-p groups. Then their coproduct $(G, \theta)=\left(G_{1}, \theta_{1}\right) \amalg^{p}\left(G_{2}, \theta_{2}\right)$ is cyclotomically oriented. Moreover, if $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are Bloch-Kato, then (G, θ) is Bloch-Kato.
Proof. The Kurosh subgroup theorem is also valid in the category of pro-p groups with \amalg^{p} replacing \amalg (cf. [27, Thm. 9.1.9]), and (3.13) and (3.14) hold also in this context (cf. [23, Thm. 4.1.4]). Hence the proof for cyclotomicity can be transferred verbatim. The Bloch-Kato property was already shown in [25, Thm. 5.2].

4 Oriented virtual pro- p Groups

We say that a p-oriented profinite group (G, θ) is an oriented virtual pro-p group if $\operatorname{ker}(\theta)$ is a pro-p group. In particular, G is a virtual pro-p group. Since \mathbb{Z}_{2}^{\times}is a pro-2 group, every oriented virtual pro-2 group is in fact a pro-2 group. For $p \neq 2$ let $\hat{\theta}: G \rightarrow \mathbb{F}_{p} \times$ be the homomorphism induced by θ, and put $G^{\circ}=\operatorname{ker}(\hat{\theta})$. Then $G / G^{\circ} \simeq \operatorname{im}(\hat{\theta})$ is a finite cyclic group of order co-prime to p. The profinite version of the Schur-Zassenhaus theorem (cf. [14, Lemma 22.10.1]) implies that the short exact sequence of profinite groups

splits. Indeed, if $C \subseteq G$ is a p^{\prime}-Hall subgroup of G, then $\left.\pi\right|_{C}: C \rightarrow \operatorname{im}(\hat{\theta})$ is an isomorphism, and $\sigma=\left(\left.\pi\right|_{C}\right)^{-1}$ is a canonical section for $\hat{\theta}$.
Note that $\mathbb{Z}_{p}^{\times}=\mathbb{F}_{p}^{\times} \times \Xi_{p}$, where $\Xi_{p}=O_{p}\left(\mathbb{Z}_{p}^{\times}\right)$is the pro- p Sylow subgroup of \mathbb{Z}_{p}^{\times}, and where we denoted by \mathbb{F}_{p}^{\times}also the image of the Teichmüller section $\tau: \mathbb{F}_{p}^{\times} \rightarrow \mathbb{Z}_{p}^{\times}$. Hence a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$on G defines a homomorphism $\hat{\theta}: G \rightarrow \mathbb{F}_{p}^{\times}$and also a homomorphism $\theta^{\vee}: G \rightarrow \Xi_{p}$. On the contrary a pair of continuous homomorphisms $\left(\hat{\theta}, \theta^{\vee}\right)$, where $\hat{\theta}: G \rightarrow \mathbb{F}_{p}^{\times}$and $\theta^{\vee}: G \rightarrow \Xi_{p}$, defines a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$given by $\theta(g)=\hat{\theta}(g) \cdot \theta^{\vee}(g)$ for $g \in G$.

FACT 4.1. Let $\hat{\theta}: G \rightarrow \mathbb{F}_{p}^{\times}, \sigma: \operatorname{im}(\hat{\theta}) \rightarrow G$ be homomorphisms of groups satisfying (4.1). A homomorphism $\theta^{\circ}: G^{\circ} \rightarrow \Xi_{p}$ defines a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$, provided for all $c \in \operatorname{im}(\hat{\theta})$ and for all $g \in G^{\circ}$ one has

$$
\begin{equation*}
\theta^{\circ}\left(\sigma(c) \cdot g \cdot \sigma(c)^{-1}\right)=\theta^{\circ}(g) \tag{4.2}
\end{equation*}
$$

Proof. By (4.1), one has $G=G^{\circ} \rtimes_{\beta} \bar{\Sigma}$, where $\bar{\Sigma}=\operatorname{im}(\hat{\theta}), \beta: \bar{\Sigma} \rightarrow \operatorname{Aut}\left(G^{\circ}\right)$ and $\beta(c)$ is left conjugation by $\sigma(c)$ for $c \in \bar{\Sigma}$. Thus, by (4.2), the map $\theta^{\vee}: G \rightarrow \Xi_{p}$ given by $\theta^{\vee}(g, c)=\theta^{\circ}(g)$ is a continuous homomorphism of groups, and $\left(\iota, \theta^{\vee}\right)$, where $\iota: \bar{\Sigma} \rightarrow \mathbb{F}_{p}^{\times}$is the canonical inclusion, defines a p-orientation of G.

Let (G, θ) be an oriented virtual pro- p group satisfying (4.1). As $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$ is a homomorphism onto an abelian group one has

$$
\begin{equation*}
\theta\left(c \cdot g \cdot c^{-1}\right)=\theta(g) \tag{4.3}
\end{equation*}
$$

for all $c \in C=\operatorname{im}(\sigma)$ and $g \in G$. Thus, if $i_{c} \in \operatorname{Aut}(G)$ denotes left conjugation by $c \in C$, one has

$$
\begin{equation*}
\theta=\theta \circ i_{c} \tag{4.4}
\end{equation*}
$$

for all $c \in C$.

4.1 Oriented $\bar{\Sigma}$-virtual Pro- p groups

From now on let p be odd, and fix a subgroup $\bar{\Sigma}$ of \mathbb{F}_{p}^{\times}. An oriented virtual pro- p group (G, θ) is said to be an oriented $\bar{\Sigma}$-virtual pro- p group, if $\operatorname{im}(\hat{\theta})=\bar{\Sigma}$. Hence, by the previous subsection, for such a group one has a split short exact sequence

By abuse of notation, we consider from now on (G, θ, σ) as an oriented $\bar{\Sigma}$-virtual pro- p group. As the following fact shows there is also an alternative form of a $\bar{\Sigma}$-virtual pro- p group.

FACT 4.2. Let $\bar{\Sigma}$ be a subgroup of \mathbb{F}_{p}^{\times}. Let Q be a pro-p group, let $\theta^{\circ}: Q \rightarrow \Xi_{p}$ be a continuous homomorphism, and let $\gamma_{Q}: \bar{\Sigma} \rightarrow \operatorname{Aut}_{c}(Q)$ be a homomorphism of groups, where $\operatorname{Aut}_{c}(-)$ is the group of continuous automorphisms, satisfying

$$
\begin{equation*}
\theta^{\circ}\left(\gamma_{Q}(c)(q)\right)=\theta^{\circ}(q) \tag{4.6}
\end{equation*}
$$

for all $q \in Q$ and $c \in \bar{\Sigma}$, then $\left(Q \rtimes_{\gamma_{Q}} \bar{\Sigma}, \theta, \iota\right)$ is an oriented $\bar{\Sigma}$-virtual pro-p group, where $\iota: \bar{\Sigma} \rightarrow Q \rtimes_{\gamma_{Q}} \bar{\Sigma}$ is the canonical map, and $\theta: Q \rtimes_{\gamma_{Q}} \bar{\Sigma} \rightarrow \mathbb{Z}_{p}^{\times}$is the homomorphism induced by θ° (cf. Fact 4.1).

If $\left(G_{1}, \theta_{1}, \sigma_{1}\right)$ and $\left(G_{2}, \theta_{2}, \sigma_{2}\right)$ are oriented $\bar{\Sigma}$-virtual pro- p groups, a continuous group homomorphism $\phi: G_{1} \rightarrow G_{2}$ is said to be a morphism of $\bar{\Sigma}$-virtual pro-p groups, if $\sigma_{2}=\phi \circ \sigma_{1}$ and $\theta_{1}=\theta_{2} \circ \phi$. Similarly, if $\left(Q, \theta_{Q}^{\circ}, \gamma_{Q}\right)$ and $\left(R, \theta_{R}^{\circ}, \gamma_{R}\right)$ are $\bar{\Sigma}$-virtual pro-p groups in alternative form (cf. Fact 4.2), the continuous group homomorphism $\phi: Q \rightarrow R$ is a homomorphims of $\bar{\Sigma}$-virtual pro- p groups provided $\theta_{R} \circ \phi=\theta_{Q}$ and if for all $c \in \bar{\Sigma}$ and for all $q \in Q$ one has that

$$
\begin{equation*}
\gamma_{R}(c)(\phi(q))=\phi\left(\gamma_{Q}(c)(q)\right) . \tag{4.7}
\end{equation*}
$$

With this slightly more sophisticated set-up the category of $\bar{\Sigma}$-virtual pro-p groups admits coproducts. In more detail, let $\left(Q, \theta_{Q}^{\circ}, \gamma_{Q}\right)$ and $\left(R, \theta_{R}^{\circ}, \gamma_{R}\right)$ be $\bar{\Sigma}$-virtual pro- p groups in alternative form. Put $X=Q \amalg^{\mathrm{p}} R$. Then for every element $c \in \bar{\Sigma}$ there exists an element $\delta(c) \in \operatorname{Aut}(X)$ making the diagram

commute. Since Ξ_{p} is a pro- p group, there exists a continuous group homo-
morphism $\theta^{\circ}: X \rightarrow \Xi_{p}$ making the lower two rows of the diagram

commute. Since $\theta_{Q / R}^{\circ}=\theta_{Q / R}^{\circ} \circ \gamma_{Q / R}(c)$ for all $c \in \bar{\Sigma}$, one has $\theta^{\circ}=\theta^{\circ} \circ \delta(c)$ for all $c \in \bar{\Sigma}$. The commutativity of the diagram (4.9) yields that the group homomorphisms $j_{Q}:\left(Q, \theta_{Q}^{\circ}, \gamma_{Q}\right) \rightarrow\left(X, \theta^{\circ}, \delta\right)$ and $j_{R}:\left(R, \theta_{R}^{\circ}, \gamma_{R}\right) \rightarrow\left(X, \theta^{\circ}, \delta\right)$ are homomorphisms of oriented $\bar{\Sigma}$-virtual pro- p groups in alternative form. Moreover, one has the following.

Proposition 4.3. The oriented $\bar{\Sigma}$-virtual pro-p group $\left(X, \theta^{\circ}, \delta\right)$ together with the homomorphisms $j_{Q}: Q \rightarrow X$, and $j_{R}: R \rightarrow X$ is a coproduct in the category of oriented $\bar{\Sigma}$-virtual pro-p groups.

Proof. Let $\left(H, \theta_{H}, \gamma_{H}\right)$ be an oriented $\bar{\Sigma}$-virtual pro- p group in alternative form, and let $\phi_{Q}: Q \rightarrow H$ and $\phi_{R}: R \rightarrow H$ be homomorphisms of oriented $\bar{\Sigma}$-virtual pro- p groups in alternative form. Then there exists a unique homomorphism of pro- p groups $\phi: X \rightarrow H$ making the diagram concentrated on the second and third row of

commute. Since $\phi_{Q / R} \circ \gamma_{Q / R}(c)=\gamma_{H}(c) \circ \phi_{Q / R}$ for all $c \in \bar{\Sigma}$, the uniqueness of ϕ implies that $\phi \circ \delta(c)=\gamma_{H}(c) \circ \phi$ for all $c \in \Sigma$. As $\phi_{Q}: Q \rightarrow H$ and $\phi_{R}: R \rightarrow H$ are homomorphisms of $\bar{\Sigma}$-virtual pro- p groups, one has that $\theta_{Q / R}^{\circ}=\theta_{H}^{\circ} \circ \phi_{Q / R}$. This implies that $\left(\theta_{H}^{\circ} \circ \phi\right) \circ j_{Q / R}=\theta_{Q / R}^{\circ}$, and from the construction of $\theta^{\circ}: X \rightarrow$ Ξ_{p} one concludes that $\theta^{\circ}=\theta_{H}^{\circ} \circ \phi$. This implies that ϕ is a homomorphism of oriented $\bar{\Sigma}$-virtual pro- p groups.

Example 4.4. For $p=3$ set $\bar{\Sigma}=\mathbb{F}_{3}^{\times}=\{1, s\}$. Then $\left(\mathbb{Z}_{3}^{\times}, \mathrm{id}\right) \amalg^{\bar{\Sigma}}\left(\mathbb{Z}_{3}^{\times}, \mathrm{id}\right)$ is
isomorphic to $F \rtimes \bar{\Sigma}$, where $F=\langle x, y\rangle$ is a free pro-3 group of rank 2 and the induced isomorphism $s: F \rightarrow F$ satisfies $s(x)=x^{-1}, s(y)=y^{-1}$.

Proposition 4.5. Let $\left(Q, \theta_{Q}, \gamma_{Q}\right)$ be an oriented $\bar{\Sigma}$-virtual pro-p group, and let Z be a normal $\bar{\Sigma}$-invariant subgroup of Q isomorphic to \mathbb{Z}_{p}, which is not contained in the Frattini subgroup $\Phi(Q)=\operatorname{cl}\left([Q, Q] Q^{p}\right)$ of Q. Then there exists a maximal closed subgroup M of Q which is $\bar{\Sigma}$-invariant, such that $M \cdot \mathrm{Z}=Q$ and $M \cap \mathrm{Z}=\mathrm{Z}^{p}$.

Proof. Let $\bar{Q}=Q / \Phi(Q)$. Then γ_{Q} induces a homomorphism $\bar{\gamma}_{\bar{Q}}: \bar{\Sigma} \rightarrow \operatorname{Aut}_{c}(\bar{Q})$ making \bar{Q} a compact $\mathbb{F}_{p}[\bar{\Sigma}]$-module. Let $\Omega=\operatorname{Hom}_{\bar{\Sigma}}^{c}\left(\bar{Q}, \mathbb{F}_{p}\right)$, where \mathbb{F}_{p} denotes the finite field \mathbb{F}_{p} with canonical left $\bar{\Sigma}$-action. By Pontryagin duality, one has $\bigcap_{\omega \in \Omega} \operatorname{ker}(\omega)=\{0\}$. Thus, by hypothesis, there exists $\psi \in \Omega$ such that $\left.\psi\right|_{\mathrm{z}} \neq 0$. Hence $M=\operatorname{ker}(\psi)$ has the desired properties.

4.2 The maximal oriented virtual pro- p QUotient

For a prime p and a profinite group G we denote by $O^{p}(G)$ the closed subgroup of G generated by all Sylow pro- ℓ subgroups of $G, \ell \neq p$. In particular, $O^{p}(G)$ is p-perfect, i.e., $H^{1}\left(O^{p}(G), \mathbb{F}_{p}\right)=0$, and one has the short exact sequence

$$
\{1\} \longrightarrow O^{p}(G) \longrightarrow G \longrightarrow G(p) \longrightarrow\{1\}
$$

where $G(p)$ denotes the maximal pro-p quotient of G.
For a p-oriented profinite group (G, θ), we denote by

$$
G(\theta)=G / O^{p}\left(G^{\circ}\right)
$$

the maximal p-oriented virtual pro-p quotient of G (for the definition of G° see the beginning of $\S 4$). By construction, it carries naturally a p-orientation $\theta: G(\theta) \rightarrow \mathbb{Z}_{p}^{\times}$inherited by G.
Note that if $\operatorname{im}(\theta)$ is a pro- p group, then $G^{\circ}=G$, and $G(\theta)=G(p)$.
Proposition 4.6. Let (G, θ) be a p-oriented Bloch-Kato profinite group, and let $O \subseteq G$ be a p-perfect subgroup such that $O \subseteq \operatorname{ker}(\theta)$. Then the inflation map

$$
\begin{equation*}
\inf ^{k}(M): H_{\mathrm{cts}}^{k}(G / O, M) \longrightarrow H_{\mathrm{cts}}^{k}(G, M) \tag{4.11}
\end{equation*}
$$

is an isomorphism for all $k \geq 0$ and all $M \in \operatorname{ob}\left(\mathbb{Z}_{p} \llbracket G / O \rrbracket \mathbf{p r f}\right)$, where $\mathbb{Z}_{p} \llbracket G / O \rrbracket \mathbf{p r f}$ denotes the abelian category of profinite left $\mathbb{Z}_{p} \llbracket G / O \rrbracket$-modules.

Proof. As $O \subseteq \operatorname{ker}(\theta), \mathbb{Z}_{p}(k)$ is a trivial $\mathbb{Z}_{p} \llbracket O \rrbracket$-module for every $k \in \mathbb{Z}$. Since O is p-perfect, and as the $\mathbb{F}_{p^{-} \text {-algebra } H^{\bullet}\left(O, \mathbb{F}_{p}\right) \text { is quadratic, } H^{\bullet}\left(O, \mathbb{F}_{p}\right) \text { is 1- }{ }^{\text {- }} \text { - }}$ dimensional concentrated in degree 0 . By Pontryagin duality, this is equivalent to $H_{k}\left(O, \mathbb{F}_{p}\right)=0$ for all $k>0$, where $H_{k}(O,-)$ denotes Galois homology as defined by A. Brumer in [3]. Thus, the long exact sequence in Galois homology implies that $H_{k}\left(O, \mathbb{Z}_{p}\right)=0$ for all $k>0$.

Let $\left(P_{\bullet}, \partial_{\bullet}, \varepsilon\right)$ be a projective resolution of the trivial left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module in the category $\mathbb{Z}_{p} \llbracket G \rrbracket$ prf. For a projective left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module $P \in \mathrm{ob}\left(\mathbb{Z}_{p} \llbracket G \rrbracket \mathbf{p r f}\right)$ define

$$
\begin{equation*}
\operatorname{def}(P)=\operatorname{def}_{G / O}^{G}(P)=\mathbb{Z}_{p} \llbracket G / O \rrbracket \widehat{\otimes}_{G} P \tag{4.12}
\end{equation*}
$$

where $\widehat{\otimes}$ denotes the completed tensor product as defined in [3]. Then, by the Eckmann-Shapiro lemma in homology, one has that

$$
\begin{equation*}
H_{k}\left(\operatorname{def}\left(P_{\bullet}\right), \operatorname{def}\left(\partial_{\bullet}\right)\right) \simeq H_{k}\left(O, \mathbb{Z}_{p}\right) \tag{4.13}
\end{equation*}
$$

Hence, by the previously mentioned remark, $\left(\operatorname{def}\left(P_{\bullet}\right), \operatorname{def}\left(\partial_{\bullet}\right)\right)$ is a projective resolution of \mathbb{Z}_{p} in the category $\mathbb{Z}_{p} \llbracket G / O \rrbracket$ prf.
Let $M \in \mathrm{ob}\left(\mathbb{Z}_{p} \llbracket G / O \rrbracket \mathbf{p r f}\right)$. Then for every projective profinite left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module P, one has a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{G / O}(\operatorname{def}(P), M) \simeq \operatorname{Hom}_{G}(P, M) \tag{4.14}
\end{equation*}
$$

Hence $\operatorname{Hom}_{G / O}\left(\operatorname{def}\left(P_{\bullet}\right), M\right)$ and $\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)$ are isomorphic co-chain complexes, and the induced maps in cohomology - which coincide with $\inf ^{\bullet}(M)$ - are isomorphisms.

Corollary 4.7. Let (G, θ) be a p-oriented profinite group which is Bloch-Kato, respectively cyclotomically oriented. Then the maximal oriented virtual pro-p quotient $(G(\theta), \theta)$ is Bloch-Kato, respectively cyclotomically oriented.

5 Profinite Poincaré duality groups and p-orientations

5.1 Profinite Poincaré duality groups

Let G be a profinite group, and let p be a prime number. Then G is called a p-Poincaré duality group of dimension d, if
$\left(\mathrm{PD}_{1}\right) \operatorname{cd}_{p}(G)=d ;$
$\left(\mathrm{PD}_{2}\right)\left|H_{\mathrm{cts}}^{k}(G, A)\right|<\infty$ for every finite discrete left G-module A of p-power order;
$\left(\mathrm{PD}_{3}\right) H_{\mathrm{cts}}^{k}\left(G, \mathbb{Z}_{p} \llbracket G \rrbracket\right)=0$ for $k \neq d$, and $H_{\mathrm{cts}}^{d}\left(G, \mathbb{Z}_{p} \llbracket G \rrbracket\right) \simeq \mathbb{Z}_{p}$.
Although quite different at first glance, for a pro-p group our definition of p Poincaré duality coincides with the definition given by J-P. Serre in [31, §I.4.5]. However, some authors prefer to omit the condition $\left(\mathrm{PD}_{2}\right)$ in the definition of a p-Poincaré duality group (cf. [23, Chap. III, $\S 7$, Definition 3.7.1]).
For a profinite p-Poincaré duality group G of dimension d the profinite right $\mathbb{Z}_{p} \llbracket G \rrbracket$-module $D_{G}=H_{\text {cts }}^{d}\left(G, \mathbb{Z}_{p} \llbracket G \rrbracket\right)$ is called the dualizing module. Since D_{G} is isomorphic to \mathbb{Z}_{p} as a pro- p group, there exists a unique p-orientation $\partial_{G}: G \rightarrow \mathbb{Z}_{p}^{\times}$such that for $g \in G$ and $z \in D_{G}$ one has

$$
z \cdot g=z \cdot \varnothing_{G}(g)=ð_{G}(g) \cdot z
$$

We call $\check{\partial}_{G}$ the dualizing p-orientation.
Let ${ }^{\times} D_{G}$ denote the associated profinite left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module, i.e., setwise ${ }^{\times} D_{G}$ coincides with D_{G} and for $g \in G$ and $z \in{ }^{\times} D_{G}$ one has

$$
g \cdot z=z \cdot g^{-1}=\partial_{G}\left(g^{-1}\right) \cdot z
$$

For a profinite p-Poincaré duality group of dimension d the usual standard arguments (cf. [2, §VIII.10] for the discrete case) provide natural isomorphisms

$$
\begin{align*}
\operatorname{Tor}_{k}^{G}\left(D_{G},-\right) & \simeq H_{\mathrm{cts}}^{d-k}(G,-), \\
\operatorname{Ext}_{G}^{k}\left({ }^{\times} D_{G},-\right) & \simeq H_{d-k}(G,-), \tag{5.1}
\end{align*}
$$

 denotes the right derived functors of $\operatorname{Hom}_{G}(-,-)$ in the category $\mathbb{Z}_{p} \llbracket G \rrbracket \mathbf{p r f}$ (cf. [3]).
If A is a discrete left G-module which is also a p-torsion module, then A^{*} carries naturally the structure of a left (profinite) $\mathbb{Z}_{p} \llbracket G \rrbracket$-module (cf. [27, p. 171]). Then, by [31, § I.3.5, Proposition 17], Pontryagin duality and [33, (3.4.5)], one obtains for every finite discrete left $\mathbb{Z}_{p} \llbracket G \rrbracket$-module A of p-power order that

$$
\begin{equation*}
H_{\mathrm{cts}}^{d}(G, A) \simeq \operatorname{Hom}_{G}\left(A, I_{G}\right)^{*} \simeq \operatorname{Hom}_{G}\left(I_{G}^{*}, A^{*}\right)^{*} \simeq\left(I_{G}^{*}\right)^{\times} \widehat{\otimes}_{G} A, \tag{5.2}
\end{equation*}
$$

where I_{G} denotes the discrete left dualizing module of G (cf. [31, §I.3.5]). In particular, by (5.1), $D_{G} \simeq\left(I_{G}^{*}\right)^{\times}$.
Example 5.1. Let $G_{\mathbb{K}}$ be the absolute Galois group of an ℓ-adic field \mathbb{K}. Then $G_{\mathbb{K}}$ satisfies p-Poincaré duality of dimension 2 for all prime numbers p. One has $I_{G} \simeq \mu_{p^{\infty}}(\overline{\mathbb{K}})\left(\right.$ cf. [31, §II.5.2, Theorem 1]). Hence ${ }^{\times} D_{G_{\mathbb{K}}} \simeq \mathbb{Z}_{p}(-1)$ with respect to the cyclotomic p-orientation $\theta_{\mathbb{K}, p}: G_{\mathbb{K}} \rightarrow \mathbb{Z}_{p}^{\times}$, i.e., $\check{\delta}_{G_{\mathbb{K}}}=\theta_{\mathbb{K}, p}$.
As we will see in the next proposition, the final conclusion in Example 5.1 is a consequence of a general property of Poincaré duality groups.

Proposition 5.2. Let G be a p-Poincaré duality group of dimension d, and let $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$be a cyclotomic p-orientation of G. Then $\theta^{d-1}=\partial_{G}$ and ${ }^{\times} D_{G} \simeq \mathbb{Z}_{p}(1-d)$.
Proof. By (5.1) and the hypothesis, $H_{\mathrm{cts}}^{d}\left(G, \mathbb{Z}_{p}(d-1)\right) \simeq D_{G} \widehat{\otimes} \mathbb{Z}_{p}(d-1)$ is torsion free, and hence isomorphic to \mathbb{Z}_{p}. This implies $\check{ठ}_{G}=\theta^{d-1}$.

5.2 Finitely generated θ-ABELIAN Pro- p GROUPS

Recall that (G, θ) is said to be θ-abelian if $\operatorname{ker}(\theta)=\mathrm{Z}_{\theta}(G)$ and $\mathrm{Z}_{\theta}(G)$ is p-torsion free - in particular $\operatorname{ker}(\theta)$ is an abelian pro- p group. If G is finitely generated then one has an isomorphism of left $\mathbb{Z}_{p} \llbracket G \rrbracket$-modules $N \simeq \mathbb{Z}_{p}(1)^{r}$ for some nonnegative integer r, and either $\Gamma=\operatorname{im}(\theta)$ is a finite group of order coprime to p, or Γ is a p-Poincaré duality group of dimension 1 satisfying $\partial_{\Gamma}=\mathbf{1}_{\Gamma}$ (cf. [23, Prop. 3.7.6]). Moreover, one has isomorphisms of left $\mathbb{Z}_{p} \llbracket G \rrbracket$-modules

$$
\begin{equation*}
H_{k}\left(N, \mathbb{Z}_{p}\right) \simeq \Lambda_{k}(N) \simeq \mathbb{Z}_{p}(k)^{\binom{r}{k}}, \tag{5.3}
\end{equation*}
$$

where $\Lambda_{\bullet}(-)$ denotes the exterior algebra over the ring \mathbb{Z}_{p}. Since $\operatorname{cd}_{p}(\Gamma) \leq 1$, the Hochschild-Serre spectral sequence for homology (cf. [39, § 6.8])

$$
\begin{equation*}
E_{s, t}^{2}=H_{s}\left(\Gamma, H_{t}\left(N, \mathbb{Z}_{p}(-m)\right)\right) \Longrightarrow H_{s+t}\left(G, \mathbb{Z}_{p}(-m)\right) \tag{5.4}
\end{equation*}
$$

is concentrated in the first two columns. Hence, the spectral sequence collapses at the E^{2}-term, i.e., $E_{s, t}^{2}=E_{s, t}^{\infty}$. Thus, for $n \geq 1$ one has a short exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{n-1}\left(N, \mathbb{Z}_{p}(-m)\right)^{\Gamma} \longrightarrow H_{n}\left(G, \mathbb{Z}_{p}(-m)\right) \longrightarrow H_{n}\left(N, \mathbb{Z}_{p}(-m)\right)_{\Gamma} \longrightarrow 0 \tag{5.5}
\end{equation*}
$$

if $\operatorname{cd}_{p}(\Gamma)=1$, and isomorphisms

$$
\begin{equation*}
H^{n}\left(G, \mathbb{Z}_{p}(-m)\right) \simeq H_{n}\left(N, \mathbb{Z}_{p}(-m)\right)_{\Gamma} \tag{5.6}
\end{equation*}
$$

if Γ is a finite group of order coprime p. Here we used the fact that $H_{0}(\Gamma, ⿻)=$ $-\Gamma$ coincides with the coinvariants of Γ, and that $H_{1}(\Gamma,-)=-\Gamma$ coincides with the invariants of Γ if Γ is a p-Poincare duality group of dimension 1 with $\partial_{\Gamma}=\mathbf{1}_{\Gamma}$. Since $H_{m-1}\left(N, \mathbb{Z}_{p}(-m)\right)^{\Gamma}$ is a torsion free abelian pro- p group, and as

$$
\begin{equation*}
H_{m}\left(N, \mathbb{Z}_{p}(-m)\right)_{\Gamma}=\left(H_{m}\left(N, \mathbb{Z}_{p}\right) \otimes \mathbb{Z}_{p}(-m)\right)_{\Gamma} \simeq \Lambda_{m}(N) \tag{5.7}
\end{equation*}
$$

by (5.3), one concludes from (5.5) and (5.6) that $H_{m}\left(G, \mathbb{Z}_{p}(-m)\right)$ is torsion free.

Proposition 5.3. Let (G, θ) be a θ-abelian p-oriented virtual pro-p group such that $N=\operatorname{ker}(\theta)$ is a finitely generated torsion free abelian pro-p group, and that $\Gamma=\operatorname{im}(\theta)$ is p-torsion free. Then G is a p-Poincaré duality group of dimension $d=\operatorname{cd}(G)$, and θ is cyclotomic.

Proof. By hypothesis, G is a p-torsion free p-adic analytic group. Hence the former assertion is a direct consequence of M. Lazard's theorem (cf. [33, Thm. 5.1.5]). The latter follows from Proposition 3.1.

From Proposition 5.2 one concludes the following:
Corollary 5.4. Let (G, θ) be a θ-abelian pro-p group. If $p=2$ assume further that $\operatorname{im}(\theta)$ is torsion free.
(a) The orientation θ is cyclotomic.
(b) Suppose that G is finitely generated with minimun number of generators $d=d(G)<\infty$. If $p=2$ assume further that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then G is a Poincaré duality pro-p group of dimension d. Moreover, $\check{\partial}_{G}=\theta^{d-1}$.
(c) If G satisfies the hypothesis of (b) and $d(G) \geq 2$, then for p odd, any cyclotomic orientation $\theta^{\prime}: G \rightarrow \mathbb{Z}_{p}^{\times}$of G must coincide with θ, i.e., $\theta^{\prime}=\theta$. For $p=2$ any cyclotomic orientation $\theta^{\prime}: G \rightarrow \mathbb{Z}_{2}^{\times}$satisfying $\operatorname{im}\left(\theta^{\prime}\right) \subseteq$ $1+4 \mathbb{Z}_{2}$ must coincide with θ.

Proof. (a) follows from Proposition 5.3.
(b) By hypothesis, G is uniformly powerful (cf. [6, Ch. 4]), or equi- p-value, as it is called in [17]. Hence the claim follows from Proposition 5.3. By Proposition 5.2, $\partial_{G}=\theta^{d-1}$.
(c) An element $\phi \in \operatorname{Hom}_{\operatorname{grp}}\left(G, \mathbb{Z}_{p}^{\times}\right)$has finite order if, and only if, $\operatorname{im}(\phi)$ is finite. Proposition 5.2 and part (b) imply that

$$
\theta^{d-1}=\partial_{G}=\left(\theta^{\prime}\right)^{d-1}
$$

Hence $\left(\theta^{-1} \theta^{\prime}\right)^{d-1}=\mathbf{1}_{G}$. For p odd, $\operatorname{Hom}_{\text {grp }}\left(G, \mathbb{Z}_{p}^{\times}\right)$does not contain non-trivial elements of finite order. Hence $\theta^{\prime}=\theta$. For $p=2$ the hypothesis implies that $\operatorname{im}\left(\theta^{-1} \theta^{\prime}\right) \subseteq 1+4 \mathbb{Z}_{2}$. Hence $\left(\theta^{-1} \theta^{\prime}\right)^{d-1}=\mathbf{1}_{G}$ implies that $\theta^{\prime}=\theta$.

Note that, by Fact 2.2, Corollary 5.4(c) cannot hold if $d(G)=1$.

5.3 Profinite p-Poincaré duality groups of dimension 2

As the following theorem shows, for a profinite p-Poincaré duality group G of dimension 2, the dualizing p-orientation $\check{\partial}_{G}: G \rightarrow \mathbb{Z}_{p}^{\times}$is always cyclotomic.

Theorem 5.5. Let G be a profinite p-Poincaré duality group of dimension 2. Then $\check{\partial}_{G}: G \rightarrow \mathbb{Z}_{p}^{\times}$is a cyclotomic p-orientation.

Proof. As every p-oriented profinite group is 0-cyclotomic, it suffices to show that $H_{\mathrm{cts}}^{2}\left(U, \mathbb{Z}_{p}(1)\right)$ is torsion free for every open subgroup $U \subseteq G$. By Proposition 5.2, $\mathbb{Z}_{p}(-1) \simeq{ }^{\times} D_{G}$. Hence, from the Eckmann-Shapiro lemma in homology and (5.1), one concludes that

$$
\begin{align*}
H_{1}\left(U, \mathbb{Z}_{p}(-1)\right) & =\operatorname{Tor}_{1}^{U}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}(-1)\right) \simeq \operatorname{Tor}_{1}^{U}\left(\mathbb{Z}_{p}(-1)^{\times}, \mathbb{Z}_{p}\right) \\
& \simeq \operatorname{Tor}_{1}^{G}\left(D_{G}, \mathbb{Z}_{p} \llbracket G / U \rrbracket\right) \simeq H_{\mathrm{cts}}^{1}\left(G, \mathbb{Z}_{p} \llbracket G / U \rrbracket\right) \tag{5.8}\\
& \simeq \operatorname{Hom}_{\mathrm{grp}}\left(U, \mathbb{Z}_{p}\right)
\end{align*}
$$

Hence $H_{1}\left(U, \mathbb{Z}_{p}(-1)\right)$ is a torsion free \mathbb{Z}_{p}-module, and, by Proposition 3.1, $H_{\mathrm{cts}}^{2}\left(U, \mathbb{Z}_{p}(1)\right)$ is torsion free as well.

Remark 5.6. Let G be a profinite p-Poincaré duality group of dimension 2, and let $\partial_{G}: G \rightarrow \mathbb{Z}_{p}^{\times}$be the dualizing p-orientation. Then $\left(G, \partial_{G}\right)$ is not necessarily Bloch-Kato, as the following example shows.
Let $p=2$ and let $A=\operatorname{PSL}_{2}(q)$ where $q \equiv 3 \bmod 4$. Then there exists a p-Frattini extension $\pi: G \rightarrow A$ of A such that G is a 2-Poincaré duality group of dimension 2, i.e., $\operatorname{ker}(\pi)$ is a pro-2 group contained in the Frattini subgroup of G (cf. [41]). In particular, G is perfect, and thus $\partial_{G}=\mathbf{1}_{G}$. Hence $\mathbb{F}_{2}(1)=$ $\mathbb{F}_{2}(0)$ is the trivial $\mathbb{F}_{2} \llbracket G \rrbracket$-module, and - as G is perfect - $H^{1}\left(G, \mathbb{F}_{2}(1)\right)=0$. Moreover, $H^{2}\left(G, \mathbb{F}_{2}(2)\right) \simeq \mathbb{F}_{2}$, as G is a profinite 2-Poincaré duality group of dimension 2 with $\partial_{G}=\mathbf{1}_{G}$. Therefore, $H^{\bullet}\left(G, \mathbf{1}_{G}\right)$ is not quadratic.

A pro- p group G which satisfies p-Poincaré duality in dimension 2 is also called a Demuškin group (cf. [23, Def. 3.9.9]). For this class of groups one has the following.

Corollary 5.7. Let G be a Demuškin pro-p group. Then G is a Bloch-Kato pro-p group, and $\partial_{G}: G \rightarrow \mathbb{Z}_{p}^{\times}$is a cyclotomic p-orientation.

Proof. By Theorem 5.5, it suffices to show that $\left(G, \partial_{G}\right)$ is Bloch-Kato. It is well known that $H^{\bullet}\left(G, \hat{\delta}_{G}\right)$ is quadratic (cf. [31, §I.4.5]). Moreover, every open subgroup U of G is again a Demuškin group, with $\partial_{U}=\left.ذ_{G}\right|_{U}$ (cf. [23, Thm. 3.9.15]). Hence $\left(G, \partial_{G}\right)$ is Bloch-Kato.

Remark 5.8. [The Klein bottle pro-2 group] Let G be the pro- 2 group given by the presentation

$$
\begin{equation*}
G=\left\langle x, y \mid x y x^{-1} y=1\right\rangle \tag{5.9}
\end{equation*}
$$

Then G is a Demuškin pro-2 group containing the free abelian pro-2 group $H=\left\langle x^{2}, y\right\rangle$ of rank 2. Thus, by Corollary $5.7\left(G, \partial_{G}\right)$ is cyclotomic. Since $H^{1}\left(G, \mathbb{I}_{2}(0)\right) \simeq \mathbb{I}_{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$, Proposition 3.1 implies that $\check{\partial}_{G} \neq \mathbf{1}_{G}$ is non-trivial. In particular, since $\left.\partial_{G}\right|_{H}=\mathbf{1}_{H}$, this implies that $\operatorname{im}\left(\partial_{G}\right)=\{ \pm 1\}$. Note that $H=\operatorname{ker}\left(\partial_{G}\right)$ and that one has a canonical isomorphism

$$
\begin{equation*}
H=\left\langle x^{2}\right\rangle \oplus\langle y\rangle \simeq \mathbb{Z}_{2}(0) \oplus \mathbb{Z}_{2}(1) \tag{5.10}
\end{equation*}
$$

In particular, $\left(G, \partial_{G}\right)$ is not ∂_{G}-abelian.
Example 5.9. Let G be the pro- p group with presentation

$$
G=\left\langle x, y, z \mid[x, y]=z^{-p}\right\rangle
$$

If $p=2$ then G is a Demuškin group, and $\partial_{G}: G \rightarrow \mathbb{Z}_{2}^{\times}$is given by $ð_{G}(x)=\partial_{G}(y)=1, \partial_{G}(z)=-1$. On the other hand, if $p \neq 2$ then G is not a Demuškin group, and any p-orientations $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$is not 1 -cyclotomic (cf. [11, Thm. 8.1]). However, $H^{\bullet}(G, \hat{\theta})$ is still quadratic.

6 Torsion

It is well known that a Bloch-Kato pro-p group may have non-trivial torsion only if, $p=2$. More precisely, a Bloch-Kato pro-2 group G is torsion if, and only if, G is abelian and of exponent 2. Moreover, any such group is a BlochKato pro-2 group (cf. [25, §2]). The following result - which appeared first in [26, Prop. 2.13] - holds for 1-cyclotomically oriented pro-p groups (see also [11, Ex. 3.5] and [5, Ex. 14.27]).

Proposition 6.1. Let (G, θ) be a 1-cyclotomically oriented pro-p group.
(a) If $\operatorname{im}(\theta)$ is torsion free, then G is torsion free.
(b) If G is non-trivial and torsion, then $p=2, G \simeq C_{2}$ and θ is injective.

Remark 6.2. Let $\theta: C_{2} \rightarrow \mathbb{Z}_{2}^{\times}$be an injective homomorphism of groups. Then $\mathbb{Z}_{2}(1) \simeq \omega_{C_{2}}$ is isomorphic to the augmentation ideal $\omega_{C_{2}}=\operatorname{ker}\left(\mathbb{Z}_{2}\left[C_{2}\right] \rightarrow \mathbb{Z}_{2}\right)$. Hence - by dimension shifting - $H^{2}\left(C_{2}, \mathbb{Z}_{2}(1)\right)=H^{1}\left(C_{2}, \mathbb{Z}_{2}(0)\right)=0$. Thus - as C_{2} has periodic cohomology of period 2 - one concludes that $H^{s}\left(C_{2}, \mathbb{Z}_{2}(t)\right)=0$ for s odd and t even, and also for s even and t odd. Hence $\left(C_{2}, \theta\right)$ is cyclotomic. From Proposition 6.1 and the profinite version of Sylow's theorem one concludes the following corollary, which can be seen as a version of the Artin-Schreier theorem for 1-cyclotomically p-oriented profinite groups.
Corollary 6.3. Let p be a prime number, and let (G, θ) be a profinite group with a 1-cyclotomic p-orientation.
(a) If p is odd, then G has no p-torsion.
(b) If $p=2$, then every non-trivial 2-torsion subgroup is isomorphic to C_{2}. Moreover, if $\operatorname{im}(\theta)$ has no 2-torsion, then G has no 2-torsion.
Remark 6.4. Let $\theta: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}^{\times}$be the homomorphism of groups given by $\theta(1+$ $\lambda)=-1$ and $\theta(\lambda)=1$ for all $\lambda \in \mathbb{Z}_{2}$. Then θ is a 2 -orientation of $G=\mathbb{Z}_{2}$ satisfying $\operatorname{im}(\theta)=\{ \pm 1\}$. As $\operatorname{cd}_{2}\left(\mathbb{Z}_{2}\right)=1$, Fact 2.2 implies that $\left(\mathbb{Z}_{2}, \theta\right)$ is Bloch-Kato and cyclotomically 2-oriented. However, $\operatorname{im}(\theta)$ is not torsion free.

6.1 Orientations on $C_{2} \times \mathbb{Z}_{2}$

As we have seen in Proposition 5.3, for p odd, every θ-abelian oriented pro- p group is cyclotomically p-oriented. For $p=2$, this is not true. Indeed, one has the following.
Proposition 6.5. Any 2-orientation $\theta: G \rightarrow \mathbb{Z}_{2}^{\times}$on $G \simeq C_{2} \times \mathbb{Z}_{2}$ is not 1-cyclotomic.
Proof. Suppose that (G, θ) is 1-cyclotomically 2-oriented. Let x, y be elements of G such that $x^{2}=1$ and $\operatorname{ord}(y)=2^{\infty}$, and that x, y generate G. Proposition 6.1 applied to the cyclic pro-2 group generated by x yields $\theta(x)=-1$. Put $\theta(y)=1+2 \lambda$ for some $\lambda \in \mathbb{Z}_{2}$. By [16, Prop. 6], if θ is 1 -cyclotomic then for any pair of elements $c_{x}, c_{y} \in \mathbb{Z}_{2}(1)$ there exists a continuous crossed-homomorphism $c: G \rightarrow \mathbb{Z}_{2}(1)$ (i.e., a map satisfying $c\left(g_{1} g_{2}\right)=c\left(g_{1}\right)+\theta\left(g_{1}\right) c\left(g_{2}\right)$, cf. [23, p. 15]) such that $c(x)=c_{x}, c(y)=c_{y}$. Set $c_{x}=c_{y}=1$. Then one computes

$$
\begin{aligned}
& c(x y)=c_{x}+\theta(x) c_{y}=1-1=0, \quad \text { and } \\
& c(y x)=c_{y}+\theta(y) c_{x}=1+1+2 \lambda,
\end{aligned}
$$

which yields $\lambda=-1$. The element $x y$ has the same properties as y. Hence the previously mentioned argument applied to the element $x y$ yields $\theta(x y)=$ $1-2=-1$, whereas $\theta(x y)=\theta(x) \theta(y)=1$, a contradiction.

Remark 6.6. From Proposition 6.1 and Proposition 6.5 one deduces that in a 1 -cyclotomically 2 -oriented pro- 2 group, every element of order 2 is selfcentralizing, which is a remarkable property of absolute Galois groups (cf. [4, Prop. 2.3] and [19, Cor. 2.3]).

Proposition 6.7. Let (G, θ) be a θ-abelian oriented pro-2 group. Then θ is cyclotomic if, and only if, either
(a) $\operatorname{im}(\theta)$ is torsion free; or
(b) $\operatorname{im}(\theta)$ has order 2 .

In both these cases (G, θ) is split θ-abelian.
Proof. Assume first that $\operatorname{im}(\theta)$ is torsion free. Then the short exact sequence $\{1\} \rightarrow \operatorname{ker}(\theta) \rightarrow G \rightarrow \operatorname{im}(\theta) \rightarrow\{1\}$ splits, as $\operatorname{im}(\theta) \simeq \mathbb{Z}_{2}$ is a projective pro- 2 group. Moreover, (G, θ) is cyclotomic by Proposition 5.3.
Second assume that θ is cyclotomic, $p=2$ and that $\operatorname{im}(\theta) \supseteq\{ \pm 1\}$. If $g \in G$ satisfies $\theta(g)=-1$, then $g^{2} \in \operatorname{ker}(\theta)=\mathrm{Z}_{\theta}(G)$, and consequently

$$
g^{2}=g \cdot g^{2} \cdot g^{-1}=\left(g^{2}\right)^{\theta(g)}=g^{-2},
$$

i.e., $g^{4}=1$. Since $(\operatorname{ker}(\theta), \mathbf{1})$ is cyclotomically 2 -oriented, $\operatorname{ker}(\theta)$ is torsion free, and one deduces that $g^{2}=1$. Therefore, the short exact sequence

$$
\{1\} \longrightarrow H \longrightarrow G \longrightarrow C_{2} \longrightarrow\{1\}
$$

splits (here $H=\operatorname{ker}(\pi \circ \theta)$, where π is the canonical epimorphism $\left.\mathbb{Z}_{2}^{\times} \rightarrow\{ \pm 1\}\right)$. Since $\left(H,\left.\theta\right|_{H}\right)$ is again cyclotomically 2-oriented and as $\operatorname{im}\left(\left.\theta\right|_{H}\right)$ is torsion free, $\left(H,\left.\theta\right|_{H}\right)$ is split $\left.\theta\right|_{H}$-abelian by the previously mentioned argument. We claim that $H=\operatorname{ker}(\theta)$. Indeed, suppose there exists $h \in H$ such that $\theta(h) \neq 1$. Put $\lambda=(1+\theta(h)) / 2$ and let $z=g h g h^{-1}=\left[g, h^{-1}\right] \in \operatorname{ker}(\theta)$. Then - as $g=g^{-1}$ and $\theta(g)=-1$ - one has

$$
\begin{aligned}
g\left(z^{\lambda} h^{2}\right) g^{-1} & =(g z g)^{\lambda} \cdot g h^{2} g \\
& =z^{-\lambda} \cdot(g h g)^{2}=z^{-\lambda} \cdot\left(g h g h^{-1} \cdot h\right)^{2} \\
& =z^{-\lambda} \cdot\left(z h z h^{-1} \cdot h^{2}\right)=z^{-\lambda+1+\theta(h)} h^{2} \\
& =z^{\lambda} h^{2},
\end{aligned}
$$

i.e., g and $z^{\lambda} h^{2}$ commute which implies that $\left\langle g, z^{\lambda} h^{2}\right\rangle \simeq C_{2} \times \mathbb{Z}_{p}$ contradicting Proposition 6.5. Therefore, $H=\operatorname{ker}(\theta)$ is a free abelian pro-2 group, and $G \simeq H \rtimes C_{2}$.
Finally, let $p=2$ and assume that $\operatorname{im}(\theta)=\{ \pm 1\}$. By Remark 6.2, we may also assume that $\operatorname{ker}(\theta)$ is non-trivial. Then, either
Case I: $\theta^{-1}(\{-1\})$ contains an element of order 2 and (G, θ) is split θ-abelian, i.e., $G \simeq \operatorname{ker}(\theta) \rtimes C_{2}$ with $\operatorname{ker}(\theta)$ a free abelian pro-2 group, or

Case II: all elements in $x \in \theta^{-1}(\{-1\})$ are of infinite order. Then for $y \in \operatorname{ker}(\theta)$, the group $K=\langle x, y\rangle$ must be isomorphic to the Klein bottle pro-2 group which is impossible as G is θ-abelian and thus contains only θ-abelian closed subgroups (cf. Remark 3.12(b)). Hence Case II is impossible.
By Lemma 3.10, if $U \subseteq G$ is an open subgroup, then either $U \subseteq \operatorname{ker}(\theta)$, or $U \simeq V \rtimes C_{2}$ for some open subgroup V of $\operatorname{ker}(\theta)$. In the first case, $(U, \mathbf{1})$ is
cyclotomically 2-oriented by Proposition 5.3. For the second case, we claim that $H^{k}\left(U, \mathbb{I}_{2}(k)\right)$ is 2-divisibe for all $k \geq 1$.
Recall that $\mathbb{Z}_{2}\left[C_{2}\right]$ has periodic cohomology (of period 2), and that one has the equalities of $\mathbb{Z}_{2} \llbracket U \rrbracket$-modules $\mathbb{I}_{2}(k)=\mathbb{I}_{2}(0)$ for k even and $\mathbb{I}_{2}(k)=\mathbb{I}_{2}(-1)$ for k odd. Moreover,

$$
\begin{align*}
& \hat{H}^{0}\left(C_{2}, \mathbb{I}_{2}(0)\right)=\mathbb{I}_{2}(0)^{C_{2}} / N_{C_{2}} \mathbb{I}_{2}(0)=\mathbb{I}_{2}(0) / 2 \cdot \mathbb{I}_{2}(0)=0 \\
& \hat{H}^{-1}\left(C_{2}, \mathbb{I}_{2}(-1)\right)=\operatorname{ker}\left(N_{C_{2}}\right) / \omega_{C_{2}} \mathbb{I}_{2}(-1)=\mathbb{I}_{2}(-1) / 2 \cdot \mathbb{I}_{2}(-1)=0 \tag{6.1}
\end{align*}
$$

where \hat{H}^{k} denotes Tate cohomology, $N_{C_{2}}=\sum_{x \in C_{2}} x \in \mathbb{Z}_{2}\left[C_{2}\right]$ is the norm element, and $\omega_{C_{2}}$ is the augmentation ideal of the group algebra $\mathbb{Z}_{2}\left[C_{2}\right]$ (cf. [23, § I.2]). Thus, by (6.1), one has

$$
\begin{equation*}
H^{m}\left(C_{2}, \mathbb{I}_{2}(m)\right)=\hat{H}^{m}\left(C_{2}, \mathbb{I}_{2}(m)\right) \simeq \hat{H}^{k}\left(C_{2}, \mathbb{I}_{2}(k)\right)=0 \tag{6.2}
\end{equation*}
$$

for all positive integers $m>0$ and $m \equiv k(\bmod 2)$.
Suppose first that $V \simeq \mathbb{Z}_{2}$. As in the proof of Theorem 3.11, the E_{2}-term of the Hochschild-Serre spectral sequence associated to the short exact sequence $\{1\} \rightarrow V \rightarrow U \rightarrow C_{2} \rightarrow\{1\}$ evaluated on $\mathbb{I}_{2}(k)$ is concentrated in the first and the second row. In particular, $d_{2}^{\bullet \bullet \bullet}=0$ and thus $E_{2}^{s, t}\left(\mathbb{I}_{2}(k)\right)=E_{\infty}^{s, t}\left(\mathbb{I}_{2}(k)\right)$. Thus, by Fact 3.9 , for every $k \geq 1$ one has a short exact sequence

$$
0 \longrightarrow H^{k}\left(C_{2}, \mathbb{I}_{2}(k)\right) \longrightarrow H^{k}\left(U, \mathbb{I}_{2}(k)\right) \longrightarrow H^{k-1}\left(C_{2}, \mathbb{I}_{2}(k-1)\right) \longrightarrow 0
$$

and $H^{k}\left(C_{2}, \mathbb{I}_{2}(k)\right)=0$ by (2.6). Hence, $\left(U,\left.\theta\right|_{U}\right)$ is cyclotomically 2-oriented by Proposition 3.1. If $V \simeq \mathbb{Z}_{2}^{n}$ with $n>1$, then $H^{k}\left(U, \mathbb{I}_{2}(k)\right)=0$ by induction on n and the previously mentioned argument. Finally, Corollary 3.3 yields the claim in case V not finitely generated.

7 Cyclotomically oriented Pro- p Groups

For a cyclotomically oriented pro-2 group (G, θ) satisfying $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ one has the following.
FACT 7.1. Let (G, θ) be a pro-2 group with a cyclotomic orientation satisfying $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then $\chi \cup \chi=0$ for all $\chi \in H^{1}\left(G, \mathbb{F}_{2}\right)$, i.e., the first Bockstein morphism $\beta^{1}: H^{1}\left(G, \mathbb{F}_{2}\right) \rightarrow H^{2}\left(G, \mathbb{F}_{2}\right)$ vanishes.
Proof. Since $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$, the action of G on $\mathbb{Z}_{2}(1) / 4$ is trivial. The epimorphism of $\mathbb{Z}_{2} \llbracket G \rrbracket$-modules $\mathbb{Z}_{2}(1) / 4 \rightarrow \mathbb{F}_{2}$ induces a long exact sequence

$$
\begin{align*}
& H^{1}\left(G, \mathbb{F}_{2}\right) \xrightarrow{2 \cdot} H^{1}\left(G, \mathbb{Z}_{2}(1) / 4\right) \xrightarrow{\pi_{2,1}^{1}} H^{1}\left(G, \mathbb{F}_{2}\right) \\
\leftrightarrow & H^{2}\left(G, \mathbb{F}_{2}\right) \xrightarrow{2} \beta^{1} \xrightarrow{2}\left(G, \mathbb{Z}_{2}(1) / 4\right) \xrightarrow{\pi_{2,1}^{2}} \cdots
\end{align*}
$$

where the connecting homomorphism is the first Bockstein morphism. Since θ is cyclotomic, the map $\pi_{2,1}^{1}$ is surjective, and thus β^{1} is the 0 -map.

Remark 7.2. As before for a finitely generated pro- p group G let $d(G)$ denote its minimum number of generators. If p is odd and G is a finitely generated Bloch-Kato pro-p group, the cohomology $\operatorname{ring}\left(H^{\bullet}\left(G, \mathbb{F}_{p}\right), \cup\right)$ is a quotient of the exterior \mathbb{F}_{p}-algebra $\Lambda_{\bullet}=\Lambda_{\bullet}\left(H^{1}\left(G, \mathbb{F}_{p}\right)\right)$. In particular, $\operatorname{cd}_{p}(G) \leq d(G)$. Moreover, $\Lambda_{d(G)}$ is the unique minimal ideal of $\Lambda_{\text {。 }}$. Hence equality of $\operatorname{cd}_{p}(G)$ and $d(G)$ is equivalent to $H^{\bullet}\left(G, \mathbb{F}_{p}\right)$ being isomorphic to Λ_{\bullet}. It is well known that this implies that G is uniformly powerful (cf. [33, Thm. 5.1.6]), and that there exists a p-orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$such that G is θ-abelian (cf. [25, Thm. 4.6]). Let $p=2$, and let (G, θ) be a cyclotomically oriented Bloch-Kato pro-2 group satisfying $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then Proposition 7.1 implies that the cohomology ring $\left(H^{\bullet}\left(G, \mathbb{F}_{2}\right), \cup\right)$ is a quotient of the exterior \mathbb{F}_{2}-algebra $\Lambda_{\bullet}=\Lambda_{\bullet}\left(H^{1}\left(G, \mathbb{F}_{2}\right)\right)$, and hence $\operatorname{cd}_{2}(G) \leq d(G)$. If $\operatorname{cd}_{2}(G)=d(G)$, the previously mentioned argument, Proposition 7.1 and [42] imply that G is uniformly powerful. Finally, [25, Thm. 4.11] yields that G is θ^{\prime}-abelian for some orientation $\theta^{\prime}: G \rightarrow \mathbb{Z}_{2}^{\times}$. Thus, if $d(G) \geq 2$, one has $\theta=\theta^{\prime}$ by Corollary 5.4(c).
From the above remark and J-P. Serre's theorem (cf. [30]) one concludes the following fact.

FACT 7.3. Let (G, θ) be a finitely generated cyclotomically oriented torsion free Bloch-Kato pro-2 group. Then $\operatorname{cd}_{2}(G)<\infty$.

7.1 Tits' alternative

From Remark 7.2 one concludes the following.
FACt 7.4. (a) Let p be odd, and let G be a Bloch-Kato pro-p group satisfying $d(G) \leq 2$. Then G is either isomorphic to a free pro-p group, or G is θ-abelian for some orientation $\theta: G \rightarrow \mathbb{Z}_{p}^{\times}$.
(b) Let $p=2$, and let (G, θ) be a cyclotomically oriented Bloch-Kato pro-2 group satisfying $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ and $d(G) \leq 2$. Then G is either isomorphic to a free pro-2 group, or G is θ-abelian.

In [25, Thm. 4.6] it was shown, that for p odd any Bloch-Kato pro- p group satisfies a strong form of Tits' alternative (cf. [35]), i.e., either G contains a closed non-abelian free pro- p subgroup, or there exists a p-orientation $\theta: G \rightarrow$ \mathbb{Z}_{p}^{\times}such that G is θ-abelian. Using the results from the previous subsection and [25, Thm. 4.11], one obtains the following version of Tits' alternative if p is equal to 2 .

Proposition 7.5. Let (G, θ) be a cyclotomically oriented virtual pro-2 group which is also Bloch-Kato, such that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then either G contains a closed non-abelian free pro-2 subgroup; or G is θ-abelian.

Proof. As $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$, Proposition 6.1-(a) implies that G is torsion free. From Proposition 7.1 one concludes that the first Bockstein morphism β^{1} vanishes. Thus, the hypothesis of [25, Thm. 4.11] are satisfied (cf. Remark 7.2), and this yields the claim.

Remark 7.6. Note that Proposition 7.5 without the hypothesis $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ does not remain true (cf. Remark 5.8).

7.2 The θ-Center

One has the following characterization of the θ-center for a cyclotomically oriented Bloch-Kato pro- p group (G, θ).

Theorem 7.7. Let (G, θ) be a cyclotomically oriented torsion free Bloch-Kato pro-p group. If $p=2$ assume further that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$. Then $\mathrm{Z}_{\theta}(G)$ is the unique maximal closed abelian normal subgroup of G contained in $\operatorname{ker}(\theta)$.
Proof. Let $A \subseteq \operatorname{ker}(\theta)$ be a closed abelian normal subgroup of G, let $z \in A$, $z \neq 1$, and let $x \in G$ be an arbitrary element. Put $C=\operatorname{cl}(\langle x, z\rangle) \subseteq G$. Then either $C \simeq \mathbb{Z}_{p}$ or C is a 2 -generated pro- p group. Thus, by Fact 7.4 , one has to distinguish three cases:
(i) $d(C)=1$;
(ii) $d(C)=2$ and C is isomorphic to a free pro- p group; or
(iii) $d(C)=2$ and C is θ^{\prime}-abelian for some p-orientation $\theta^{\prime}: C \rightarrow \mathbb{Z}_{p}^{\times}$.

In case (i), x and z commute. If C is generated by z, then $C \subseteq \operatorname{ker}(\theta)$ and $\theta(x)=$ 1. If C is generated by x, then $z=x^{\lambda}$ for some $\lambda \in \mathbb{Z}_{p}$, and $1=\theta(z)=\theta(x)^{\lambda}$. Hence $\theta(x)=1$, as $\operatorname{im}(\theta)$ is torsion free. In both cases $x z x^{-1}=z=z^{\theta(x)}$.
Case (ii) cannot hold: by hypothesis, $A \cap C \neq\{1\}$, but free pro- p groups of rank 2 do not contain non-trivial closed abelian normal subgroups.
Suppose that case (iii) holds. Then $\theta^{\prime}=\left.\theta\right|_{C}$ by Corollary 5.4(c), and $z \in$ $\operatorname{ker}\left(\left.\theta\right|_{C}\right)=\mathrm{Z}_{\left.\theta\right|_{C}}(C)$. Therefore, $x z x^{-1}=z^{\left.\theta\right|_{C}(x)}=z^{\theta(x)}$.
Hence we have shown that for all $z \in A$ and all $x \in G$ one has that $x z x^{-1}=$ $z^{\theta(x)}$. This yields the claim.

The above result can be seen as the group theoretic generalization of [12, Corollary 3.3] and [13, Thm. 4.6]. Note that in the case $p=2$ the additional hypothesis in Theorem 7.7 is necessary (cf. Remark 5.8). Indeed, if G is the Klein bottle pro-2 group then $\left\langle x^{2}\right\rangle$ is another maximal closed abelian normal subgroup of G contained in $\operatorname{ker}\left(\partial_{G}\right)$.
Remark 7.8. Let \mathbb{K} be a field containing a primitive $p^{\text {th }}$-root of unity. Theorem 7.7, together with [12, Thm. 3.1] and [13, Thm. 4.6], implies that the $\theta_{\mathbb{K}, p^{-}}$-center of the maximal pro- p Galois group $G_{\mathbb{K}}(p)$ is the inertia group of the maximal p-henselian valuation admitted by \mathbb{K}.

7.3 Isolated subgroups

Let G be a pro- p group, and let $S \subseteq G$ be a closed subgroup of G. Then S is called isolated, if for all $g \in G$ for which there exists $k \geq 1$ such that $g^{p^{k}} \in S$ follows that $g \in S$. Hence a closed normal subgroup N of G is isolated if, and only if, G / N is torsion free.

Proposition 7.9. Let (G, θ) be an oriented Bloch-Kato pro-p group. In the case $p=2$ assume further that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ and that θ is 1 -cyclotomic. Then $\mathrm{Z}_{\theta}(G)$ is an isolated subgroup of G.

Proof. Suppose there exists $x \in G \backslash \mathrm{Z}_{\theta}(G)$ and $k \geq 1$ such that $x^{p^{k}} \in \mathrm{Z}_{\theta}(G)$. By changing the element x if necessary, we may assume that $k=1$, i.e., $x^{p} \in \mathrm{Z}_{\theta}(G)$. As G is torsion free (cf. Corollary 6.3), one has that $x^{p} \neq 1$.
For an arbitrary $g \in G$, the subgroup $C(g)=\operatorname{cl}(\langle g, x\rangle) \subseteq G$ is not free, as $g x^{p} g^{-1}=x^{p \theta(g)}$. Thus, from Fact 7.4 one concludes that $C(g)$ is $\left.\theta\right|_{C(g)^{-}}$ abelian. Moreover, as $\operatorname{im}(\theta)$ is torsion-free, $\theta\left(x^{p}\right)=\theta(x)^{p}=1$ implies that $x \in \operatorname{ker}\left(\left.\theta\right|_{C(g)}\right)=\mathrm{Z}_{\left.\theta\right|_{C(g)}}(C(g))$. Thus, $x \in \bigcap_{g \in G} \mathrm{Z}_{\theta_{C(g)}}(C(g)) \subseteq \mathrm{Z}_{\theta}(G)$.

Proposition 7.9 generalises to profinite groups as follows.
Corollary 7.10. Let (G, θ) be a torsion free p-oriented Bloch-Kato profinite group. For $p=2$ assume also that $\operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ and that θ is 1 -cyclotomic. Then $\mathrm{Z}_{\theta}(G)$ is an isolated subgroup of G.

Proof. Let $x \in \mathrm{Z}_{\theta}(G), y \in G$ and $n \in \mathbb{N}$ such that $x=y^{n}$. Then $Y=\operatorname{cl}(\langle y\rangle)$ is pro-cyclic and virtually pro- p. Thus, as G is torsion free by hypothesis, Y is a cyclic pro- p group, and n is a p-power. Let $P \in \operatorname{Syl}_{p}(G)$ be a pro- p Sylow subgroup of G containing Y. Then $\left(P,\left.\theta\right|_{P}\right)$ satisfies the hypothesis of Proposition 7.9, which yields the claim.

7.4 Split extensions

Proposition 7.11. Let (G, θ) be a p-oriented Bloch-Kato pro-p group of finite cohomological dimension satisfying $\operatorname{im}(\theta) \subseteq 1+p \mathbb{Z}_{p}\left(\right.$ resp $. \operatorname{im}(\theta) \subseteq 1+4 \mathbb{Z}_{2}$ if $p=2$), and let Z be a closed normal subgroup of G isomorphic to \mathbb{Z}_{p} such that G / Z is torsion free. Then $Z \nsubseteq G^{p}[G, G]$.

Proof. Let $d=\operatorname{cd}_{p}(G)$. As $\operatorname{cd}(Z)=1$, and as $H^{1}\left(Z, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}$, one has $\operatorname{vcd}_{p}(G / Z)=d-1(c f$. [43]). Thus, as G / Z is torsion free, J-P. Serre's theorem (cf. [30]) implies that $\operatorname{cd}_{p}(G / Z)=d-1$.
Suppose that $Z \subseteq G^{p}[G, G]$. Then $\inf _{G, Z}^{1}: H^{1}\left(G / Z, \mathbb{F}_{p}\right) \rightarrow H^{1}\left(G, \mathbb{F}_{p}\right)$ is an isomorphism. For $\chi \in H^{1}\left(G, \mathbb{F}_{p}\right)$, set $\bar{\chi} \in H^{1}\left(G / Z, \mathbb{F}_{p}\right)$ such that $\chi=\inf _{G, Z}^{1}(\bar{\chi})$. Then, by [23, Prop. 1.5.3] one has

$$
\chi_{1} \cup \ldots \cup \chi_{k}=\inf _{G, Z}^{1}\left(\bar{\chi}_{1}\right) \cup \ldots \cup \inf _{G, Z}^{1}\left(\bar{\chi}_{k}\right)=\inf _{G, Z}^{k}\left(\bar{\chi}_{1} \cup \ldots \cup \bar{\chi}_{k}\right)
$$

for any $\chi_{1}, \ldots, \chi_{k} \in H^{1}\left(G, \mathbb{F}_{p}\right)$, i.e.,

$$
\begin{equation*}
\inf _{G, Z}^{k}: H^{k}\left(G / Z, \mathbb{F}_{p}\right) \longrightarrow H^{k}\left(G, \mathbb{F}_{p}\right) \tag{7.2}
\end{equation*}
$$

is surjective for all $k \geq 0$. Let

$$
\begin{equation*}
\left(E_{r}^{s t}, d_{r}\right) \Rightarrow H^{s+t}\left(G, \mathbb{F}_{p}\right), \quad E_{2}^{s t}=H^{s}\left(G / Z, H^{t}\left(Z, \mathbb{F}_{p}\right)\right) \tag{7.3}
\end{equation*}
$$

denote the Hochschild-Serre spectral sequence associated to the extension of pro- p groups $Z \rightarrow G \rightarrow G / Z$ with coefficients in the discrete G-module \mathbb{F}_{p}. We claim that $E_{\infty}^{s t}$ is concentrated on the buttom row, i.e., $E_{\infty}^{s t}=0$ for all $t \geq 1$. Since $\operatorname{cd}_{p}(Z)=1$ and $\operatorname{cd}_{p}(G / Z)=d-1$, one has $E_{2}^{s t}=0$ for $t \geq 2$ or $s \geq d$. Hence, $d_{r}^{s t}$ is the 0-map for every $s, t \geq 0$ and $r \geq 3$, i.e., $E_{\infty}^{s t} \simeq E_{3}^{s t}$. The total complex tot. $\left(E_{\infty}^{\bullet \bullet}\right)$ of the graded \mathbb{F}_{p}-bialgebra $E_{\infty}^{\bullet \bullet}$ coincides with $H^{\bullet}\left(G, \mathbb{F}_{p}\right)$, which is quadratic by hypothesis. Thus $E_{\infty}^{\bullet \bullet \bullet}$ is generated by

$$
\operatorname{tot}_{1}\left(E_{\infty}^{\bullet \bullet}\right)=E_{\infty}^{1,0}=E_{2}^{1,0}
$$

Hence, $E_{3}^{s t}=0$ for $t \geq 1$.
On the other hand, $H^{1}\left(Z, \mathbb{F}_{p}\right)$ is a trivial G / Z-module isomorphic to \mathbb{F}_{p}, and thus, as $\operatorname{cd}_{p}(G / Z)=d-1$, one has

$$
\begin{equation*}
E_{2}^{d-1,1}=H^{d-1}\left(G / Z, H^{1}\left(Z, \mathbb{F}_{p}\right)\right) \neq 0 \tag{7.4}
\end{equation*}
$$

Moreover, $d_{2}^{d-1,1}$ is the $0-\mathrm{map}$, thus $E_{3}^{d-1,1}=\operatorname{ker}\left(d_{2}^{d-1,1}\right)=E_{\infty}^{d-1,1} \neq 0$, a contradiction, and this yields the claim.

Proposition 7.11 has the following consequence.
Proposition 7.12. Let (G, θ) be a p-oriented Bloch-Kato pro-p group (resp. virtual pro-p group) of finite cohomological p-dimension, and let Z be a closed normal subgroup of G isomorphic to \mathbb{Z}_{p} such that G / Z is torsion free. Then there exists a Z-complement C in G, i.e., the extension of profinite groups

$$
\begin{equation*}
\{1\} \longrightarrow Z \longrightarrow G \longrightarrow G / Z \longrightarrow\{1\} \tag{7.5}
\end{equation*}
$$

splits.
Proof. Assume first that G is a pro-p group. By Proposition 7.11, one has that $Z \nsubseteq \Phi(G)=G^{p}[G, G]$. Hence there exists a maximal closed subgroup C_{1} of G such that $C_{1} Z=G$ and $Z_{1}=C_{1} \cap Z=Z^{p}$. Moreover, Z_{1} is a closed normal subgroup in C_{1} such that C_{1} / Z_{1} is torsion free and $Z_{1} \simeq \mathbb{Z}_{p}$. From Proposition 7.11 again, one concludes that $Z_{1} \nsubseteq \Phi\left(C_{1}\right)$. Thus repeating this process one finds open subgroup C_{k} of G of index p^{k} such that $C_{k} Z=G$ and $Z_{k}=C_{k} \cap Z=Z^{p^{k}}$. Hence $C=\bigcap_{k \geq 1} C_{k}$ is a Z-complement in G.
If G is a p-oriented virtual pro- p group, then G is a $\bar{\Sigma}$-virtual pro-p group for $\bar{\Sigma}=\operatorname{im}(\hat{\theta})\left(\right.$ cf. 4.1), and thus corresponds to $\left(O_{p}(G), \theta^{\circ}, \gamma\right)$ in alternative form. In particular, the maximal subgroup C_{1} and hence all closed subgroups C_{k} can be chosen to be $\bar{\Sigma}$-invariant (cf. Proposition 4.5). Hence $C=\bigcap_{k \in \mathbb{N}} C_{k}$ carries canonically a left $\bar{\Sigma}$-action, and thus defines a Z complement $H=C \rtimes \bar{\Sigma}$ in G.

The proof of Theorem 1.2 can be deduced from Proposition 7.12 as follows.

Proof of Theorem 1.2. Assume first that G is either pro- p, or virtually pro- p. To prove statement (i) (and (ii)), we proceed by induction on $d=\operatorname{cd}_{p}(G)=$ $\operatorname{cd}(G)$. For $d=1, G$ is free (resp. virtually free) (cf. [23, Prop. 3.5.17]), and thus $\mathrm{Z}_{\theta}(G)=\{1\}$. So assume that $d \geq 1$, and that the claim holds for $d-1$. Note that $\mathrm{Z}_{\theta}(G)$ is a finitely generated abelian pro- p group satisfying $d_{\circ}=d\left(\mathrm{Z}_{\theta}(G)\right)=\operatorname{cd}_{p}\left(\mathrm{Z}_{\theta}(G)\right) \leq d$. If $d_{\circ}=0$, there is nothing to prove. If $d_{\circ} \geq 1, \mathrm{Z}_{\theta}(G)$ contains an isolated closed subgroup Z satisfying $d(Z)=1$. By definition, Z is normal in G. Hence Proposition 7.12 implies that there exists a subgroup $C \subseteq G$ satisfying $C \cap Z=\{1\}$ and $C Z=G$. As $C \simeq G / Z$, the main result of [43] implies that $\operatorname{cd}(C)=\operatorname{vcd}(C)=d-1$. Since $\mathrm{Z}_{\left.\theta\right|_{C}}(C) Z=\mathrm{Z}_{\theta}(G)$, the claim then follows by induction.
To prove statement (iii), let $G^{\circ}=\operatorname{ker}\left(\hat{\theta}: G \rightarrow \mathbb{F}_{p}^{\times}\right)$and $\bar{G}^{\circ}=\operatorname{ker}\left(\hat{\bar{\theta}}: \bar{G} \rightarrow \mathbb{F}_{p}^{\times}\right)$, and put $\bar{O}=O^{p}\left(\bar{G}^{\circ}\right)$ and

$$
\begin{equation*}
O=\left\{g \in G^{\circ} \mid g \mathrm{Z}_{\theta}(G) \in \bar{O}^{p}(\bar{G})\right\} \tag{7.6}
\end{equation*}
$$

Then, by construction, $\operatorname{im}\left(\left.\hat{\bar{\theta}}\right|_{\bar{O}}\right)$ is a pro- p group and hence trivial. In particular, the left $\mathbb{F}_{p} \llbracket \bar{O} \rrbracket$-module $\mathbb{F}_{p}(1)$ is the trivial module. Thus, as \bar{O} is p-perfect, one concludes that

$$
\begin{equation*}
H^{1}\left(\bar{O}, \mathbb{F}_{p}(1)\right)=0 \tag{7.7}
\end{equation*}
$$

By hypothesis, $(\bar{G}, \bar{\theta})$ is Bloch-Kato, and therefore $(\bar{O}, \mathbf{1})$ is Bloch-Kato. Hence (7.7) yields that

$$
\begin{equation*}
H^{k}\left(\bar{O}, \mathbb{F}_{p}(j)\right)=H^{k}\left(\bar{O}, \mathbb{F}_{p}(0)\right)=0 \tag{7.8}
\end{equation*}
$$

for all positive integers k, j. Note that $\mathbb{Z}_{p}(1)$ is the trivial $\mathbb{Z}_{p} \llbracket \bar{O} \rrbracket$-module isomorphic to \mathbb{Z}_{p} as abelian pro- p group. The cyclotomicity of $(\bar{O}, \mathbf{1})$ implies that $H^{2}\left(\bar{O}, \mathbb{Z}_{p}(1)\right)$ is p-torsion free, and from the exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{2}\left(\bar{O}, \mathbb{Z}_{p}(1)\right) \xrightarrow{\cdot p} H^{2}\left(\bar{O}, \mathbb{Z}_{p}(1)\right) \longrightarrow H^{2}\left(\bar{O}, \mathbb{F}_{p}(1)\right) \longrightarrow 0 \tag{7.9}
\end{equation*}
$$

one concludes that

$$
\begin{equation*}
H^{2}\left(\bar{O}, \mathbb{Z}_{p}(1)\right)=0 \tag{7.10}
\end{equation*}
$$

By hypothesis, $\operatorname{cd}_{p}\left(\mathrm{Z}_{\theta}(G)\right) \leq \operatorname{cd}_{p}(G)<\infty$, and thus $\mathrm{Z}_{\theta}(G) \simeq \mathbb{Z}_{p}(1)^{r}$ is a trivial left $\mathbb{Z}_{p} \llbracket \bar{O} \rrbracket$-module and a finitely generated free (abelian pro-p group). Hence

$$
\begin{equation*}
H^{2}\left(\bar{O}, \mathrm{Z}_{\theta}(G)\right)=0 \tag{7.11}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\{1\} \longrightarrow \mathrm{Z}_{\theta}(G) \longrightarrow O \xrightarrow{\pi} \bar{O} \longrightarrow\{1\} \tag{7.12}
\end{equation*}
$$

is a split short exact sequence of profinite groups. From this fact one concludes that

$$
\begin{equation*}
O=\mathrm{Z}_{\theta}(G) \cdot O^{p}\left(G^{\circ}\right) \quad \text { and } \quad \mathrm{Z}_{\theta}(G) \cap O^{p}\left(G^{\circ}\right)=\{1\} \tag{7.13}
\end{equation*}
$$

Let $\tilde{G}=G / O^{p}\left(G^{\circ}\right)$. Then for all abelian pro-p groups M with a continuous left $\mathbb{Z}_{p} \llbracket \tilde{G} \rrbracket$-action inflation induces an isomorphism in cohomology

$$
\begin{equation*}
\inf _{\tilde{G}}^{G}(-): H_{\mathrm{cts}}^{k}(\tilde{G}, M) \longrightarrow H_{\mathrm{cts}}^{k}(G, M) \tag{7.14}
\end{equation*}
$$

(cf. Proposition 4.6). Moreover, as $\left.\theta\right|_{O}=\mathbf{1}$ is the constant 1 function, θ induces a p-orientation $\tilde{\theta}: \tilde{G} \rightarrow \mathbb{Z}_{p}^{\times}$on \tilde{G}. In particular, from (7.14) one concludes that $\operatorname{cd}_{p}(\tilde{G})<\infty$, and that $(\tilde{G}, \tilde{\theta})$ is cyclotomic and Bloch-Kato. Thus, by part (i), the exact sequence of virtual pro- p groups

$$
\begin{equation*}
\{1\} \longrightarrow \mathrm{Z}_{\theta}(G) O^{p}\left(G^{\circ}\right) / O^{p}\left(G^{\circ}\right) \longrightarrow \tilde{G} \longrightarrow \tilde{\pi} \bar{G} / \bar{O} \longrightarrow\{1\} \tag{7.15}
\end{equation*}
$$

splits. Let $\tilde{H} \subset \tilde{G}$ be a complement for $\mathrm{Z}_{\theta}(G) O^{p}\left(G^{\circ}\right) / O^{p}\left(G^{\circ}\right)$ in \tilde{G}, and let

$$
\begin{equation*}
H=\left\{g \in G^{\circ} \mid g O^{p}\left(G^{\circ}\right) \in \tilde{H}\right\} \tag{7.16}
\end{equation*}
$$

Then, by construction, $H \cap \mathrm{Z}_{\theta}(G) O^{p}\left(G^{\circ}\right) \subseteq O^{p}\left(G^{\circ}\right)$. Thus $H O^{p}\left(G^{\circ}\right)$ is a complement of $\mathrm{Z}_{\theta}(G)$ in G.

Finally, we ask whether the converse of Theorem 3.13 holds true.
Question 7.13. Let (G, θ) be a cyclotomically p-oriented Bloch-Kato pro-p group, and suppose that

$$
H^{\bullet}\left(G, \mathbb{F}_{p}\right) \simeq H^{\bullet}\left(C, \mathbb{F}_{p}\right) \otimes \Lambda_{\bullet}(V)
$$

for some subgroup $C \subseteq G$ and some nontrivial subspace $V \subseteq H^{1}\left(G, \mathbb{F}_{p}\right)$. Does there exist an isolated closed subgroup $\mathrm{Z} \subseteq \mathrm{Z}_{\theta}(G)$ such that $G=C \mathrm{Z}$ and $\mathrm{Z} / \mathrm{Z}^{p} \simeq V^{*}=\operatorname{Hom}\left(V, \mathbb{F}_{p}\right)$?

7.5 The elementary type conjecture

In order to formulate a conjecture concerning the maximal pro- p Galois groups of fields, I. Efrat introduced in [9] the class $\mathcal{C}_{\mathrm{FG}}$ of p-oriented pro-p groups (resp. cyclotomic pro-p pairs) of elementary type.
This class consists of all finitely generated p-oriented pro- p groups which can be constructed from \mathbb{Z}_{p} and Demuškin groups using coproducts and fibre products (cf. [9, § 3]).
Efrat's elementary type conjecture asks whether every pair $\left(G_{\mathbb{K}}(p), \theta_{\mathbb{K}, p}\right)$ for which \mathbb{K} contains a primitive $p^{t h}$-root of unity and $G_{\mathbb{K}}(p)$ is finitely generated, belongs to $\mathcal{C}_{\mathrm{FG}}$ (see [7], and also [15] for the case $p=2$). This conjecture originates from the theory of quadratic forms (cf. [20], [10, p. 268]).
One may extend slightly Efrat's class by defining the class $\mathcal{E}_{\mathrm{CO}}$ of cyclotomically p-oriented Bloch-Kato pro-p groups of elementary type to be the smallest class of cyclotomically p-oriented pro- p groups containing
(a) (F, θ), with F a finitely generated free pro-p group and $\theta: F \rightarrow \mathbb{Z}_{p}^{\times}$any p-orientation;
(b) $\left(G, \partial_{G}\right)$, with G a Demuškin pro- p group;
(c) $(\mathbb{Z} / 2 \mathbb{Z}, \theta)$, with $\operatorname{im}(\theta)=\{ \pm 1\}$ in case that $p=2$;
and which is closed under coproducts and under fibre products with respect to finitely generated split θ-abelian pro- p groups, i.e., if $\left(G_{1}, \theta_{1}\right)$ and $\left(G_{2}, \theta_{2}\right)$ are contained in $\mathcal{E}_{\mathrm{CO}}$, then
(d) $(G, \theta)=\left(G_{1}, \theta_{1}\right) \amalg\left(G_{2}, \theta_{2}\right) \in \mathcal{E}_{\mathrm{CO}}$; and
(e) $(G, \theta)=\mathbb{Z}_{p} \rtimes_{\theta_{1}}\left(G_{1}, \theta_{1}\right) \in \mathcal{E}_{\mathrm{CO}}$.

Question 1.5 asks whether every finitely generated cyclotomically p-oriented Bloch-Kato pro- p group belongs to the class $\mathcal{E}_{\mathrm{CO}}$. By Theorem 1.1, Question 1.5 is stronger than Efrat's elementary type conjecture. Nevertheless, it is stated in purely group theoretic terms.
Remark 7.14. Recently, Question 1.5 has received a positive solution in the class of trivially p-oriented right-angled Artin pro-p groups: I. Snopce and P.A. Zalesskiĭ proved that the only indecomposable right-angled Artin pro-p group which is Bloch-Kato and cyclotomically p-oriented is ($\left.\mathbb{Z}_{p}, \mathbf{1}\right)$ (cf. [32]).

Acknowledgements

The authors are grateful to: the anonymous referee, for her/his valuable suggestions; to I. Efrat, for the interesting discussion they had together at the Ben-Gurion University of the Negev in 2016; and to D. Neftin and I. Snopce, for their interest. Also, the first-named author wishes to thank M. Florence and P. Guillot for the discussions on the preprint [5].
Both authors were partially supported by the PRIN 2015 "Group Theory and Applications". The first-named author was also partially supported by the Israel Science Fundation (grant No. 152/13).

References

[1] S. Bloch and K. Kato. p-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math., 63:107-152, 1986.
[2] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
[3] A. Brumer. Pseudocompact algebras, profinite groups and class formations. J. Algebra, 4:442-470, 1966.
[4] T. C. Craven and T. L. Smith. Formally real fields from a Galois-theoretic perspective. J. Pure Appl. Algebra, 145(1):19-36, 2000.
[5] C. De Clercq and M. Florence. Lifting theorems and smooth profinite groups. preprint, available at arxiv:1710.10631, 2017.
[6] J.D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal. Analytic pro-p groups, volume 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1999.
[7] I. Efrat. Orderings, valuations, and free products of Galois groups. Sem. Structure Algébriques Ordonnées, Univ. Paris VII, 1995.
[8] I. Efrat. Pro-p Galois groups of algebraic extensions of Q. J. Number Theory, 64(1):84-99, 1997.
[9] I. Efrat. Small maximal pro-p Galois groups. Manuscripta Math., 95(2):237-249, 1998.
[10] I. Efrat. Valuations, orderings, and Milnor K-theory, volume 124 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006.
[11] I. Efrat and C. Quadrelli. The Kummerian property and maximal pro-p Galois groups. J. Algebra, 525:284-310, 2019.
[12] A. J. Engler and J. Koenigsmann. Abelian subgroups of pro-p Galois groups. Trans. Amer. Math. Soc., 350(6):2473-2485, 1998.
[13] A. J. Engler and J. B. Nogueira. Maximal abelian normal subgroups of Galois pro-2-groups. J. Algebra, 166(3):481-505, 1994.
[14] M. Fried and M. Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, third edition, 2008. Revised by Jarden.
[15] B. Jacob and R. Ware. A recursive description of the maximal pro-2 Galois group via Witt rings. Math. Z., 200(3):379-396, 1989.
[16] J.P. Labute. Classification of Demushkin groups. Canad. J. Math., 19:106-132, 1967.
[17] M. Lazard. Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math., 26:389-603, 1965.
[18] S. Mac Lane. Homology. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition.
[19] L. Mahé, J. Mináč, and T. L. Smith. Additive structure of multiplicative subgroups of fields and Galois theory. Doc. Math., 9:301-355, 2004.
[20] M. Marshall. The elementary type conjecture in quadratic form theory. In Algebraic and arithmetic theory of quadratic forms, volume 344 of Contemp. Math., pages 275-293. Amer. Math. Soc., Providence, RI, 2004.
[21] J. Mináč and N. D. Tân. Triple Massey products vanish over all fields. J. Lond. Math. Soc. (2), 94(3):909-932, 2016.
[22] J. Mináč and N. D. Tân. Triple Massey products and Galois theory. J. Eur. Math. Soc. (JEMS), 19(1):255-284, 2017.
[23] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.
[24] A. Polishchuk and L. Positselski. Quadratic algebras, volume 37 of University Lecture Series. American Mathematical Society, Providence, RI, 2005.
[25] C. Quadrelli. Bloch-Kato pro-p groups and locally powerful groups. Forum Math., 26(3):793-814, 2014.
[26] C. Quadrelli. Cohomology of Absolute Galois Groups. PhD thesis, University of Western Ontario, 2015.
[27] L. Ribes and P. A. Zalesskii.. Profinite groups, volume 40. Springer-Verlag, Berlin, 2000.
[28] J-E. Roos. Sur les foncteurs dérivés de lim. Applications. C. R. Acad. Sci. Paris, 252:3702-3704, 1961.
[29] M. Rost. Norm varieties and algebraic cobordism. In Proceedings of the International Congress of Mathematicians. Vol. II (Beijing, 2002), pages 77-85. Higher Ed. Press, Beijing, 2002.
[30] J.-P. Serre. Sur la dimension cohomologique des groupes profinis. Topology, 3:413-420, 1965.
[31] J.-P. Serre. Galois cohomology. Springer-Verlag, Berlin, 1997.
[32] I. Snopce and P. A. Zalesskiĭ. Right-angled artin pro-p groups. preprint, available at arXiv:2005.01685, 2020.
[33] P. Symonds and T. Weigel. Cohomology of p-adic analytic groups. In New horizons in pro-p groups, volume 184 of Progr. Math., pages 349-410. Birkhäuser Boston, Boston, MA, 2000.
[34] J. Tate. Relations between K_{2} and Galois cohomology. Invent. Math., 36:257-274, 1976.
[35] J. Tits. Free subgroups in linear groups. J. Algebra, 20:250-270, 1972.
[36] V. Voevodsky. On motivic cohomology with Z/l-coefficients. Ann. of Math. (2), 174(1):401-438, 2011.
[37] A. R. Wadsworth. p-Henselian field: K-theory, Galois cohomology, and graded Witt rings. Pacific J. Math., 105(2):473-496, 1983.
[38] R. Ware. Galois groups of maximal p-extensions. Trans. Amer. Math. Soc., 333(2):721-728, 1992.
[39] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.
[40] C. A. Weibel. The norm residue isomorphism theorem. J. Topol., 2(2):346-372, 2009.
[41] T. Weigel. Frattini extensions and class field theory. In Groups St. Andrews 2005. Vol. 2, volume 340 of London Math. Soc. Lecture Note Ser., pages 661-684. Cambridge Univ. Press, Cambridge, 2007.
[42] T. Weigel. A characterization of powerful pro-2 groups by their cohomology. preprint, 2016.
[43] T. Weigel and P. A. Zalesskiĭ. Profinite groups of finite cohomological dimension. C. R., Math., Acad. Sci. Paris, 338(5):353-358, 2004.

Claudio Quadrelli	Thomas S. Weigel Department of Mathematics and Department of Mathematics and Applications
Applications	Università di Milano-Bicocca
Università di Milano-Bicocca	Via R.Cozzi 55-ed. U5
Via R.Cozzi 55-ed. U5	20125 Milan
20125 Milan	Italy
Italy	thomas.weigel@unimib.it
claudio.quadrelli@unimib.it	

[^0]: ${ }^{1}$ For a Poincaré duality group G the representation associated to the dualizing module - which coincides with the cyclotomic module in the case of a Poincaré duality pro- p group of dimension 2 (cf. Theorem 5.7) - is sometimes also called the "orientation" of G.

