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Patients who survive brain injuries may develop Disorders of Consciousness (DOC) such

as Coma, Vegetative State (VS) or Minimally Conscious State (MCS). Unfortunately, the

rate of misdiagnosis between VS and MCS due to clinical judgment is high. Therefore,

diagnostic decision support systems aiming to correct any differentiation between VS

and MCS are essential for the characterization of an adequate treatment and an effective

prognosis. In recent decades, there has been a growing interest in the new EEG

computational techniques. We have reviewed how resting-state EEG is computationally

analyzed to support differential diagnosis between VS and MCS in view of applicability

of these methods in clinical practice. The studies available so far have used different

techniques and analyses; it is therefore hard to draw general conclusions. Studies using

a discriminant analysis with a combination of various factors and reporting a cut-off are

among the most interesting ones for a future clinical application.

Keywords: computational methods, EEG, DOC, VS, MCS, machine learning, resting state analysis, deep learning

1. INTRODUCTION

Research on Disorders of Consciousness (DOC) is currently an important challenge for physicians
and neuro-scientists involved in differential diagnostics betweenMinimally Conscious State (MCS)
and Vegetative State (VS). In fact, due to the variability of the patient’s cognitive awareness, the
rate of misdiagnosis between VS and MCS is still high, being currently estimated around 40%,
although the use of a behavioral scale could ameliorate the diagnostic accuracy (Schnakers et al.,
2009). Moreover, MCS patients generally show greater responses to treatments, and thus better
prognosis results (Bai et al., 2017a). It follows that, the high risk of misdiagnosis affects both
the neuro-rehabilitation planning, and the caregiver’s roles and objectives (Estraneo et al., 2016a;
Bai et al., 2017a).

The application of new neuroimaging techniques opens up new diagnostic possibilities
(Gosseries et al., 2019; Jang et al., 2019; Tan et al., 2019). However, these methods are
not always readily available even at dedicated neurorehabilitation centers. In this context
electroencephalogram (EEG) is still one of the most popular approach for data acquisition on
cerebral activity (Fingelkurts et al., 2013). Its high temporal resolution, low cost and safety make
it effective for DOC to discriminate between VS and MCS patients (Bagnato et al., 2015; Bender
et al., 2015; Bai et al., 2017a; Estraneo et al., 2017). In these cases, a resting-state EEG analysis is
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applied to evaluate the brain electrical activity in absence of
tasks and instructions (Bai et al., 2017a). Other current EEG-
related techniques in DOC are Event-Related Potential (ERP)
(Signorino et al., 1995; Faugeras et al., 2011; Morlet and
Fischer, 2014), Transcranial Magnetic Stimulation (TMS)-EEG
(Casali et al., 2013) and EEG with transcranial direct current
stimulation (tDCS) (Bai et al., 2017b). Furthermore, resting-
state EEG, flanked by appropriate quantitative methods (i.e.,
QEEG), provides objective clinical assessment thus avoiding
subjective errors (Stefan et al., 2018) in the clinical practice for
diagnosis (Sitt et al., 2014), prognosis (Chennu et al., 2017), and
treatment evaluation (Bai et al., 2017b, 2018; Estraneo et al., 2017;
He et al., 2018).

In this paper, we assess the usefulness of QEEG analysis
of resting-state activity, enhanced by adequate computational
methods to disentangling VS from MCS patients. We review the
current scientific literature, and focus on the methodological
procedures applied for resting-state EEG pre-processing,
inference and (machine) learning techniques. Our purpose is to
magnify any possible applications of inferential analysis of EEG
data to diagnostic question, and how this process could reduce
errors correlated to clinician subjective assessment.

2. METHODS

Many authors have adopted various approaches to analyze
EEG features in DOC. By following the steps adopted for the
EEG analysis, we survey the current literature using Medical
Subject Headings (MSH) terms—Resting-state-EEG, DOC, VS,
MCS, and diagnosis, associated with clinical and computational
researches in pre-processing, feature extraction, and inferences.
In particular, unlike other reviews on DOC research (e.g., Bai
et al., 2017a), here the focus is on the following items.

1. Diagnosis: We focused on studies aiming to disentangle VS
and MCS patients. Although the number of corresponding
works are still relatively lacking, several authors have begun
to document the application of effective features.

2. Computational methods: We surveyed structured approaches
for (relational) learning, and inferential analysis. These studies
are mainly delivered frommachine learning communities and
graph theory concepts. In this case, only a low number of
studies oriented to our main diagnostic question (i.e., VS and
MCS differentiation) were found. Therefore, we extended the
research to the whole class of DOC literature.

Eventually, we excluded the studies on sleep recordings.

3. RESULTS

To the best our knowledge, 17 articles have been published
in which resting-state EEG analysis is used to disentangle the
diagnosis of VS from MCS. Next sections report how these
authors approach the analysis of raw resting-state EEG data
in pre-processing, feature construction and inference. More
information about these studies are summarized in Tables 1, 2.

3.1. Pre-processing
We did not find any common approach into the pre-processing
phase of resting state EEG data, neither a common way to report
the information about the followed steps. In the majority of
the studies, EEG raw data were visually inspected by expert
physicians. Most of the authors applied software libraries or
environment (e.g., Brain Vision Analyzer, Matlab FASST toolbox,
or Matlab fieldtrip toolbox) to target and easily identify potential
noisy pieces of data and artifacts. In two studies (Chennu et al.,
2017; Naro et al., 2018) authors applied Independent Component
Analysis (ICA) algorithms, in one case (Gosseries et al., 2011a)
procedures were fully automated with a particular device used for
monitoring the level of the general anesthesia through entropy
analysis. In Table 2 the pre-processing applied to raw data and
the strategies adopted to remove noise are reported for each of
the 17 considered articles.

3.2. Computational Methods for Feature
and Inference Analysis
Relevant feature-based approaches are grouped here into
three different categories, focused on Spectral Power Analysis,
Functional connectivity, and Complexity Measures. A summary
of the considered studies is reported in Table 1, while in Table 2

information about sampling frequency, number of electrodes,
filtering and noise removal approaches are summarized. Further
structured approaches, based on both inference and machine
learning techniques are grouped into two categories: Complex
Network Analysis and Approaches for Inference and Learning.

3.2.1. Spectral Power Analysis
Spectral analysis is a well-established method for the analysis
of EEG signals. The spectral profile (power spectrum) reflects
the “frequency content” of the signal or, in other terms, the
distribution of signal power over the frequency values. Several
parameters derived from the spectrum have been applied for EEG
quantification, including total power, spectral band power, and
median and spectral edge frequency.

Well-known relationships between specific spectral power
frequencies and awareness (i.e., alpha, delta and theta
frequencies), are useful for supporting the diagnosis of DOC
patients. For example, this method with its numerous variations
showed that patients with DOC exhibit reduced power in the
alpha range and increased power in the delta and theta range,
with a more consistent difference presented in VS than MCS
patients (Bai et al., 2017a; Stefan et al., 2018). In Table 2 rhythms
and frequency bands studied by the analyzed bibliography are
reported together with the results obtained.

3.2.2. Functional Connectivity
Analysis of functional connectivity is the study of the
synchronization of EEG rhythms in different areas of the brain
observing specific EEG electrode groups in regions of interest
(Varotto et al., 2014). From a statistical point of view, functional
connectivity can be estimated by measuring the dependence
among time series usually evaluated in terms of correlations or
mutual information. In literature, there are many variants of
such (dependency) estimation, which are in general defined to
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TABLE 1 | Studies characteristics and results.

Articles Sample Etiology Duration Scale Methods and features Results

Stefan et al. (2018) 51 VS,

11 MCS

14 T, 48 NT CRS-R FC, CM, MS, ApEn, PeEn,

Coh, wSMI, STE

Duration of MS d alpha AUC 74%

Naro et al. (2018) 17 VS,

15 MCS

10 T, 22 NT 12,56 months CRS-R SA, FC, SPO, dWPLI Delta, alpha, dWPLI P ≤ 0.05

Chennu et al. (2017) 23 VS,

66 MCS

51 T, 53 NT CRS-R FC, dWPLI, others seven

measures

PC alpha 79% accuracy, SVM

classifier 74% accuracy

Schorr et al. (2016) 58 VS,

15 MCS

18 T, 55 NT 585,1 days CRS-R SA, FC, SPO, Coh No positive results

Estraneo et al. (2016b) 37 VS,

36 MCS

21 T, 52 NT >3 months CRS-R SA, PB Pattern LV sensibility 95%,

specificity 38.95%

Piarulli et al. (2016) 6 VS,

6 MCS

7 T, 5 NT 69 days CRS-R SA, CM, SPO, SpE, WD Alpha, beta1, theta, delta, SpE

P ≤ 0.05, WD specific MCS

component

Engemann et al. (2018) 21 VS,

57 MCS

37 T, 41 NT 1040,6 days CRS-R SA, FC, CM, 28 biomarkers DOC Forest AUC 0.75

Höller et al. (2013) 27 VS,

22 MCS

13 T, 41 NT 10,33 months CRS-R FC, CM, 12 measures (mostly

from biosig toolbox)

Partial Coh 0.96 accuracy

Fingelkurts et al. (2013) 14 VS,

7 MCS

9 T, 12 NT 57 days LCF SA, Spectral oscillation P ≤ 0.05

Lechinger et al. (2013) 8 VS,

9 MCS

8 T, 9 NT 75,63 months CRS-R SA, SPO No positive results

Lehembre et al. (2012) 10 VS,

18 MCS

13 T, 15 NT <3 months CRS-R SA, FC,SPO, Coh, IC, PLI SPO delta and alpha, IC and PLI

front—post theta P ≤ 0.05

Fingelkurts et al. (2012) 14 VS,

7 MCS

9 T, 12 NT <3 months LCF SA, Spectral oscillation Alpha SP 26% VS, 37% MCS

Gosseries et al. (2011b) 24 VS,

26 MCS

23 T, 33 NT CRS-R CM,State entropy, Response

entropy

Specificity and sensibility 77% (only

acutes)

Wu et al. (2011a) 21 VS,

16 MCS

<6 months GCS,

RCC,

CRS-R

SA, CM, SPO, LZC, ApEn,

C-ApEn

No positive results

Wu et al. (2011b) 30 VS,

20 MCS

25 T, 25 NT VS 112.2 MS

139,2 days

GCS, RCC CM, ApEn, C-ApEn C-ApEn P ≤ 0.05

Schnakers et al. (2008) 13 VS,

30 MCS

16 T, 27 NT CRS-R,

GCS

SA, BIS, three derived

measures

BIS P ≤ 0.05

Khanmohammadi et al.

(2018)

54 patients

GCS < 8

GCS FC, INRI others Groups based on GCS P ≤ 0.05

VS, Vegetative State; MCS, Minimally Conscious State; T, Traumatic; NT, Non-traumatic; CRS-R, Coma Recovery Scale-revised; GCS, Glasgow Coma Scale; LCF, Level of Cognitive

Functioning; RCC, Rappaport Coma/Near coma Scale; SA, Spectral analysis; FC, Functional connectivity; CM, Complexity measures; MS, Microstate analysis; LV, Low Voltage; ApEn,

Approximate Entropy; C-ApEn, Cross-Approximate Entropy; PeEn, Permutation Entropy; SPO, Spectral Power; SpE, Spectral Entropy; Coh, Coherence; IC, Imaginary Coherence; STE,

Symbolic Transfer Entropy; wSMI, weighted Symbolic Mutual Information; dWPLI, Debiased Weighted Phase Lag Index; CNA, Complex Network Analysis; PLI, Phase Lag Index; LZC,

Lempel-Ziv Complexity; BIS, Bispectral. Index; PB, Predominant background activity; WD, Wavelet decomposition; INRI, Intrinsic Network Reactivity Index.

reveal in DOC patients, spatial links and potential disconnections
related to the clinical state of the cases (Bai et al., 2017a; Stefan
et al., 2018). Different functional connectivity indices can clearly
give different results, as they are based on different underlying
mathematical assumptions. It may therefore be difficult to select
the most suitable method for identifying the appropriate strength
of association. There are twomain approaches to apply functional
connectivity. One is generally known as “undirected” which
infers whether two brain regions A and B are communicating
in some general fashion, as typically revealed by the Pearson’s
correlation computed between their activity time series. For
DOC patients specific coherence–based measures have been
also applied (phase locking index, partial directed coherence,
dWPLI, wSMI, imaginary part of coherence). On the other hand,

“directed” functional connectivity (or “effective” connectivity)
methods clarify asymmetries in activity flow that determine
whether region A is communicating downstream to region B
(or, respectively, B is communicating downstream to region
A). In this case, indices, such as transfer entropy, symbolic
transfer entropy, mutual information, and Granger casuality
have similarly been applied to evaluate the corresponding signals
information content.

3.2.3. Complexity Measures
Mainly based on the definition of entropy, “complexitymeasures”
characterize all those approaches used to evaluate the amount of
information recorded by the system and represented, in this case,
through the recorded EEG traces.
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TABLE 2 | Acquisition and preprocessing.

Articles Number of

electrodes

FC Filtering Artifact removal Rythms

Stefan et al. (2018) HDE 256 1,000 Hz 0.1 Hz Channel removal, statistic

thresholding

Delta (0–4 Hz), theta (4–8 Hz), alpha (8–13Hz),

2–20 Hz

Naro et al. (2018) 32 512 Hz 0.1–45 Hz Epoch removal, visual

inspection and ICA

Delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),

Beta (14–29 Hz), gamma (25–40 Hz)

Chennu et al. (2017) HDE (256) 500 Hz 0.5–45 Hz N/A Delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz)

Schorr et al. (2016) HDE (256) 250 Hz 1–100 Hz,

notch 50

Hz

Epoch removal, thresholding

and visual inspection

Delta (1–4 Hz), theta (5–8 Hz), alpha (9–13 Hz),

Beta (14–30Hz), gamma (30–100 Hz)

Estraneo et al. (2016b) 19 N/A 1–70 Hz,

notch

Synchronous video to remove

artifacts due to subjects’

movements

Delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz)

Piarulli et al. (2016) 12 500 Hz 1–45 Hz Epoch removal, thresholding

on EMG and EOG and visual

inspection

Delta (1–3.75 Hz), theta (4–7.75 Hz), alpha

(8–11.75 Hz), beta1 (12–17.75 Hz), beta2

(18–24.75 Hz)

Engemann et al. (2018) 256 250 Hz 0.2–45 Hz Thresholding Delta (1–4 Hz), theta (4–8 Hz), Alpha (8–13 Hz)

Höller et al. (2013) 32 1,000 Hz 1–48 Hz ICA and visual inspection –

Fingelkurts et al. (2013) 21 200 Hz 1–30 Hz Visual inspection Delta (1–2.5 Hz), theta1 (3–4 Hz), theta2

(4.5–5.5 Hz), theta3 (6–7 Hz), alpha1 (7.5–8.5

Hz), alpha2 (9–13 Hz)

Lechinger et al. (2013) 19 1,000 Hz 1–40 Hz ICA and visual inspection Delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),

Beta (12–30 Hz), gamma (30–40 Hz)

Lehembre et al. (2012) 10 500 Hz 0.5–48 Hz Visual inspection Delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12

Hz)

Fingelkurts et al. (2012) 21 500 Hz 1–30 Hz Epoch removal, visual

inspection

–

Gosseries et al. (2011b) 3 400 Hz 0.8–47 Hz N/A –

Wu et al. (2011a) 16 500 Hz 0.3–100

Hz

Visual inspection –

Wu et al. (2011b) 16 500 Hz 0.3–100

Hz

Visual inspection –

Schnakers et al. (2008) N/A 256 Hz 0.3–70 Hz Thresholding and visual

inspection

–

Khanmohammadi et al.

(2018)

19 500 Hz 1–45 Hz – –

The main reason of the application of entropy-related techniques
is based on the decreased complexity of EEG data in less aware
patients. Several authors evaluated the entropy feature, like for
example Gosseries et al. (2011a) who found that mean EEG
entropy values were higher in MCS than in VS patients. These
measure-based approaches can be applied in the time domain,
such as approximate entropy, permutation entropy, Lempel-Ziv
entropy, Kolmogorov-Chaitin complexity, and in the spectral
power domain like spectral entropy. Permutation entropy and
Kolmogorov-Chaitin complexity seems to be the most efficient
techniques among the previous ones (Bai et al., 2017a).

3.2.4. Complex Network Analysis
A particular way to study the structural–functional connectivity
of the brain can be based on applying main graph-theoretical
concepts and methodologies. Following this idea, a “Brain
Network” is most commonly modeled using the definition
of graph, which represents relationships between entities (i.e.,
objects broadly referred by an abstract set V), through a set of
edges (i.e., abstract set of entities E representing ties between
objects in V). Given a graph, represented as a pair G = (V ,E),

many typical problems, such as finding cohesive structures of
vertexes which are connected in specific way (Dondi et al.,
2016, 2017, 2018), or identifying the length of paths between
entities, constitute fundamental issues which have been applied
in several contexts. In these analysis, network connectivity can be
easily created by thresholding measures of “association” between
entities, e.g., in our cases electrodes, such that links in E are
said to exist between two electrodes (vertexes in V) whether the
corresponding correlation between the two electrodes exceed a
certain threshold (Stefan et al., 2018).

Complex networks applied to EEG analysis for DOC patients
constitute an emerging field which has already provided effective
results (Chennu et al., 2017). Toppi et al. (2017) assessed patterns
of connectivity and used graph theory to extract EEG indices
describing the topology of resting state networks in DOC.
They found that the main differences between VS/UWS and
MCS patients can be discriminated by 2 classes of indices: (i)
those describing the relationship between anterior and posterior
areas of the brain, and (ii) those describing global properties
of resting state networks, such as efficiency and tendency to
create clusters.
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3.2.5. Approaches for Inferences and Learning
One of the early review article (Noirhomme et al., 2015)
shows limitations and risks connected with using machine
learning methods. Authors discuss the problem in the context
of measurement paradigm, diagnostic protocol, limitation of
patients and data analysis. In particular, attention was payed
on the fact that the number of patients in the reviewed studies
was relatively small. All studies relied on a binary classification
between healthy controls and patients or betweenMCS and UWS
patients. Multi-class classification was not reported in any study.

The most typical and probably mentioned (kernel-based)
algorithm for classification is known as Support Vector Machine
(SVM) (Boser et al., 1992; Vapnik, 1995, 1998). An example of its
application for DOC analysis can be found in Engemann et al.
(2015), Chennu et al. (2017), and Kafashan et al. (2017).
Different approaches are given in Wielek et al. (2018) where
standard scoring rules developed by American Academy of
Sleep Medicine were applied. This model was evaluated on
the basis of long-term EEG of DOC patients by using two
machine learning methods: (i) a cluster analysis for a group-
wise analysis with the aim of testing for presence of sleep-
like clusters and (ii) a supervised classification. As an input
for the classifier they used permutation entropy index whose
robustness against environmental noise renders it more suitable
for DOC analyses as compared to features based on the frequency
spectrum. Moreover, they tested two classifiers (random forest
vs. feedforward neural networks) observing finally that random
forest provided slightly better results than neural networks.

Agglomerative hierarchical clustering is a bottom-up
method producing a tree of clusters (called a dendrogram)
whose hierarchy depends on the degree of similarity between
observations represented by n-dimensional feature vectors. It
was applied to check whether similar sleep-related patterns exist
across groups (i.e., healthy, MCS, and VS patients). Engemann
et al. (2015) describe a system that extracts statistically validated
EEG-measures quantifying biomarkers of consciousness and
statistical model that predict an incoming patient’s state
of consciousness. Their study is focused on evaluation of
predictive power of various EEG measures. SVM was used as
a classifier.

4. PROSPECTIVE DIRECTIONS

Deep learning is now used intensively in various domains, and
is receiving promising results in solving many problems. Two
kinds of networks are widely used—Convolutional Networks
(CNN) (LeCun and Bengio, 1998) and Recurrent Networks
which is dedicated to sequences processing. Currently, recurrent
neural networks are mainly based on Long Short-Term Memory
(LSTM) (Sepp Hochreiter and Schmidhuber, 1997) or Gated
Recurrent Unit (GRU) networks (Cho et al., 2014), that include
gates preventing vanishing or exploding gradient.

There are not many papers describing an application of
deep networks in DOC domain, probably because of a minimal
number of patients and EEG samples in comparison to the need
of deep networks training. The most relevant paper has been

already cited Craig et al. (2018) use Deep Graph Convolutional
Neural Networks.

In our opinion, it is worth noticing some trials that show
new research direction in EEG processing to build EEG
measures. Schirrmeister et al. (2017) showed that convolutional
network applied to EEG signal could reach accuracies at least
in the same range as a filter bank common spatial pattern
(FBCSP) for decoding task-related information from EEG.
Authors designed the visualizations to show how Convolutional
Nets use the amplitude of spectral band power features. One
straightforward extension would be to apply these visualizations
to show how Convolutional Nets use the amplitude of the
raw time-domain EEG signal. This visualization could give
insights into discriminative time-domain features, such as event-
related potentials.

Zafar et al. (2017) proposed hybrid algorithms. They applied
the Convolutional neural network with a t-test for the selection of
significant features. Then, likelihood ratio-based score fusion was
used for the prediction of brain activity. The proposed algorithm
takes input data frommultichannel EEG time series, which is also
known as multivariate pattern analysis.

Bashivan et al. (2015) proposed recurrent convolutional
network to preserve the spatial, spectral, and temporal structure
of EEG which leads to finding features that are less sensitive
to variations and distortions within each dimension. One of
the challenges in modeling cognitive events from EEG data is
finding representations that are invariant to inter- and intra-
subject differences, as well as to inherent noise associated with
EEG data collection. Authors propose a novel approach for
learning such representations from multichannel EEG time-
series, and demonstrate its advantages in the context of mental
load classification task.

5. CONCLUSIONS

EEG signals carry valuable information regarding the brain
system and it could also be used to provide different
representations of brain’s electrical activity that allow to define
new computational problems, and to face with the discrimination
between complex EEG signals.
As reported in this review, recent studies have shown that resting
state EEG analysis is a useful tool to evaluate and disentangle VS
from MCS patients. Some of these emerging ideas (e.g., based on
graph theory) have already provided effective results. Therefore,
in order to support clinicians in their daily diagnostic processes, it
will be necessary to improve the efficiency of existing approaches
by focusing on those translational researches aimed to apply
these different relevant paradigms. Studies that used discriminant
analysis, reporting a cut-off, with a combination of various factors
are the most interesting for future clinical application.
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