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Multireference Methods are Realistic and Useful Tools for
Modeling Catalysis
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Abstract: Highly correlated systems, in particular those that
include transition metals, are ubiquitous in catalysis. The
significant static correlation found in such systems is often
poorly accounted for using Kohn Sham density functional
theory methods, as they are single determinantal in nature.
Applications to catalysis of more rigorous and appropriate

multiconfigurational methods have been reported in select
instances, but their use remains rare. We discuss obstacles that
hinder the routine application of multireference (MR) wave
function theoretical calculations to catalytic systems and the
current state of the art with respect to removing those
obstacles.
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1. Introduction

Computational chemistry methods are an indispensable tool
for the rational design of catalysts, offering a far more efficient
alternative to “trial and error”-based heuristic approaches.[1]
By identifying the reaction mechanism(s) as well as structure-
activity and property-activity relationships involving computed
descriptors, they can be employed to screen, in silico, large
sets of chemical systems for new catalysts candidates.[2] The
results of the screening can then be used to direct synthetic
efforts, saving both time and physical and chemical
resources.[3] We assert that we have reached an era in which
computational catalysis does not run behind experiment, but
rather it works in close partnership to drive design.

Properties of reaction intermediates that are quantitatively
correlated with a property of the transition state (e.g., the free
energy of activation) are called descriptors. Descriptors them-
selves can vary widely in character: they may be associated with
structural features, distributions of charge, or energetics along the
reaction pathway(s). In the final category, while it is a given that
computed free energies of activation associated with a set of
related rate- or stereo-determining reaction steps will directly
correlate with activity, it may also be the case that the relative
energies of related reaction intermediates will correlate with those
free energies of activation, and hence with activity. Finding and
optimizing reaction intermediates is typically much less time-
consuming than the analogous task for transition-state structures,
so recourse to property-activity relationships involving the former
can make the discovery of new catalysts faster and more cost-
effective.

2. DFT Methods

Among computational methods today, Kohn-Sham density
functional theory (KS-DFT) remains the most commonly

employed for catalytic studies. This is due to three key
advantages it often enjoys compared to other methods: (1) it is
user-friendly to apply (albeit perhaps misleadingly);[4] (2) it is
relatively undemanding of computational resources; (3) mod-
ern functionals have evolved to achieve near chemical
accuracy[5] in systems amenable to characterization by a single
Kohn-Sham determinant.[6]

Although the potential of DFT (in the following we will
use DFT as a shorthand for KS-DFT, noting that the vast
majority of DFT applications adopt the Kohn-Sham formal-
ism) remains far from having been fully exploited, the
approximations on which DFT methods rely (because the
exact exchange-correlation functional is unknown) make DFT
for systems containing unpaired electrons (open-shell systems)
at least problematic.[6c,7] These systems often have multi-
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configurational character, i. e., more than a single electronic
configuration is important for the accurate description of their
electronic structure. Such multiconfigurational character is
common when there is a narrow separation in energies of
nominally frontier orbitals, which is typically the case for
transition-metal-containing species lacking a complete set of
frontier d electrons. Indeed, it is this very feature of flexibility
in electronic structure that makes transition metals so readily
tuned for catalysis, but it also complicates the accurate
representation of their electronic structure,[8] and this becomes
particularly acute in the case of transition-state structures,
which by their nature include partial bonds and substantial
charge delocalization.[9]

As noted above, KS-DFT represents a system’s electron
density using only a single Slater determinant (sometimes call
the KS “wave function”, although this is somewhat sloppy and
misleading since the energy is computed from the density and
a particular functional, not from application of the Hamiltonian
operator to the KS determinant). For systems characterized by
significant multiconfigurational character, the suitability of
DFT modeling needs to be evaluated case-by-case through
comparisons among different functionals (which often show
enormous variation for the most challenging cases) and/or
through benchmarks with experiment or higher-level
computations.[1,10]

Much has been learned about this situation from many
years of studies. Many compounds incorporating one or more
transition metals are characterized by two or more unpaired
electrons. Single-determinantal solutions, as from KS-DFT,
are usually not eigenfunctions of the S2 operator for spin
multiplicities (2S+1) lower than the maximum multiplicity.[1]
As a result, DFT methods can behave poorly when used to
compute spin ladder energetics for open shell systems,[7] and
indeed such analysis can be one means to assess the suitability
of a given DFT functional for a particular chemical problem
where such a spin ladder exists.[4]

Reasonable energetics for open-shell systems can some-
times be calculated from KS-DFT using so called “broken
symmetry” solutions, although these are neither spin eigen-
functions nor do they generally produce correct spin
densities.[1,10e,11] In such situations, even though electronic
energies may be computed with surprisingly good accuracy,
other features of the system may not be physically meaningful.
Other approximate strategies include adoption of an ad hoc
percentage of Hartree-Fock exchange[12] or of a Hubbard
term[13] tuned to reproduce reference values.[11a] For many
open-shell systems, then – as noted above – DFT is only
seemingly a user-friendly method: while it will straightfor-
wardly optimize a KS determinant for a given structure,
considerable experience is required to assess whether the
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results from that functional are adequate for the chemistry
under examination.

That said, DFT methods can be quite successfully
applied across a broad range of systems, and DFT is used
routinely for the production of large training data sets for
machine learning in catalysis. In particular, meta-GGA
functionals[14] have been shown generally to offer a good
compromise for many systems, offering good accuracy not
only for reaction barriers[11b,15] but also for more subtle
features like the vibrational shift of molecular probes.[16]
And, even if the “right answer for the wrong reason“ rule
applies to the particular application,[17] it may be offset by
the robust character of catalyst descriptors when looking for
correlations between computed properties and experimental
activities.[18] Thus, DFT methods will certainly continue to
play an important role in the design of new catalysts
(directly or in combination with machine learning) and in
the interpretation of experiments.

However, in this article we are especially interested in
those multiconfigurational systems that prove pathological
to DFT, and for which recourse to a multireference (MR)
treatment is essentially required. With that as a focus, we
will briefly review the most important MR methods adopted
in catalytic studies (i. e., active-space-based and excitation-
based truncation),[1] highlighting those factors that hinder
their routine application. We will also summarize current
strategies to overcome these obstacles, and we will explore
the feasibility of the routinely use of MR methods for
catalysis.

3. MR Methods

The most accurate wave function for a general chemical
system, in a given basis set, and neglecting relativistic
effects, is the full configuration interaction (FCI) wave
function. In an FCI wave function, one includes all the
configuration state functions that can be formed within a
given spin symmetry considering all of the electrons
distributed across all of the orbitals. As is routinely noted in
textbooks, FCI calculations are not computationally feasible
except for systems having a very small number of electrons,
so approximations are employed. A useful definition of
electron correlation energy is the difference between the
FCI energy (even if it is not known) and the single-reference
Hartree-Fock energy.[19] For pedagogical reasons, electron
correlation is typically classified as deriving from two
contributions, “dynamic” and “nondynamic” (also com-
monly referred to as “static”), although a practical division
may not be straightforward.[20] Static correlation is associ-
ated with the multireference character of an electronic
system. It is called “static” because it is not directly
associated with the dynamical character of electron-electron
interaction dynamics (which are ignored in mean-field
approximations), but instead relates to the inadequacy of
using only a single Slater determinant to describe the wave

function. In the expansion of the MR wave function as a
sum of configurational states, the relative weights of
alternative configuration state functions as they contribute
to the overall wave function are a measure of the importance
of static correlation. Jiang et al.[21] have studies other
diagnostics as well that quantify the importance of static
correlation relative to a single-reference description for 3d
transition-metal compounds, including spin contamination,
as alluded to in the DFT discussion above.

Dynamic correlation, by contrast, accounts for the
difference between approximate (mean-field, in the case of
Hartree-Fock) and accurate electron-electron interactions,
encompassing such important effects as short-range ex-
change repulsion and long-range dispersion interactions.
This pedagogical distinction will prove useful in further
discussion.

Among multiconfiguration self-consistent-field
(MCSCF) methods, the complete active space self-consis-
tent field (CASSCF) method[22] involves a FCI of n
electrons within a limited number N of orbitals that form the
active space. By convention, CASSCF active spaces are
labeled as (n, N). Besides the active space in which the FCI
takes place, there are additional orbitals outside the active
space that are optimized under the constraint of fixed
occupancy (0 or 2) for all configurations included in the
CASSCF wave function. In general, active space orbitals
will be those spanning the frontier of the occupied/virtual
orbital space, while inactive occupied orbitals will be lower
in the energy manifold and inactive virtual orbitals will be
higher in the energy manifold.

CASSCF is designed mainly to capture static correla-
tion, although increasing amounts of dynamic correlation
are accounted for with growing size of the active space (as
must be the case, since having every orbital in the space is
the FCI limit, which captures all correlation). However,
recovery of the dynamic correlation (also called external
correlation)[23] converges slowly with respect to active space
size,[24] so it is generally more efficient to pursue post-
CASCCF treatments to address this quantity. One such
example is perturbation theory to second order, i. e.,
complete active space second-order perturbation theory
(CASPT2),[25] which is often used as a “gold-standard”
benchmark (although it has some flaws as well).[26] Second-
order n-electron valence state perturbation theory
(NEVPT2)[27] is the most common alternative to CASPT2
and it has a comparable computational cost.[28]

Computational cost currently limits the utilization of
CASSCF and CASPT2 methods, as it increases exponen-
tially with active space size. This is a special concern for
transition-metal-based catalysis because active spaces gen-
erally need to include at least the d orbital manifold of the
metal(s) as well as additional orbitals associated with
making and breaking bonds of substrates. To date, a (20,20)
active space appears to be the largest that has been
successfully employed, using massive parallelism.[29] On
conventional high-performance computers, active spaces
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tend not to exceed (14,15) and within the context of that
limit the size of the chemical model[30] and/or the basis
set[31] is sometimes reduced.

Some approximations to CASSCF and CASPT2 scale
more favorably with active space size (Section 3.1). Never-
theless, geometry optimization in particular is out of reach
for catalytic systems when using MR methods. Some
exceptions include Wang et al.[28b] reporting optimization at
the CASSCF level of a transition-state structure for CO
dissociation catalyzed by a dicopper cluster, but with a very
small (3,3) active space. More significantly, Ma et al.[32]
accomplished CASSCF geometry optimizations for all 12
excited states of a nickel bipyridine complex using (10,10)
and (10,11) active spaces.

More commonly, MR methods may be used to compute
the energetics of various points along reaction coordinates
that are defined by DFT calculations.[33] That is, MR
energies are computed as single-point calculations on
structures optimized at the DFT level (and MR spin ladders
may simultaneously be used to inform the choice of DFT
functional used to generate the reaction coordinate). This
approach has been applied to study catalysis by vanadium
oxide[34] and bimetallic cobalt oxide clusters,[35] iron
fluorides,[36] polyoxometalates,[37] transition metal organo-
metallic complexes (e. g. MnN4py,[28c]
[(Me2Py2TACN)FeN]2+,[38] porphyrins,[26a,33c,e,39] iron and
ruthenium imido[40] and aquo complexes,[41] ruthenium
diolefin diazadienes,[42] iridium-based systems,[43] and com-
plexes featuring short metal-metal bonds such as
Mn2(C6H6)2[44] and N,N,N-tri(2-(2-
pyridylamino)ethyl)amine complexes[45]), metal-organic
frameworks (MIL-100(Fe),[10b] Fe0.1Mg1.9(dobdc)2,[10a] ZIF-
8(Fe)[31]), and iron-based zeolites (Fe-BEA*,[46] Fe-CHA,[30]
Fe-FER,[46b] Fe-ZSM5).[46b]

For any given study, a significant complication is the
choice of orbitals to include in the active space. This is
often far from straightforward as experience and chemical
intuition is required to appreciate the full range of orbitals
whose partial occupation may be expected to lead to highly
weighted configuration state functions in the final MR wave
function; extensive testing of alternative choices is typically
required to be certain of accuracy. However, algorithms for
automated active space selections have begun to emerge and
offer considerable promise with respecting to ameliorating
this complication (Section 3.2).

3.1 Reducing the Cost of MR Calculations

To reduce the cost of MR calculations applied to reaction
coordinates for catalysis one can pursue any or all of: (1) using
an approximation to the CASSCF wave function, (2) simplify-
ing the post-CASSCF step to compute dynamic correlation
energy, or (3) simplifying structure optimization.

3.1.1 Lowering the Computational Cost of Accounting for
Static Correlation

The cost of CASSCF calculations scales exponentially with
the active space size because that is how the number of
configurations in the CI expansion grows. Many of these
configurations contribute only minimally to the wave
function, or, as Ruedenberg said, “they are deadwood”.[47] In
order to reduce the number of configurations, one can use
the so-called restricted active space self-consistent field
(RASSCF) method.[48] In a RASSCF calculation, the active
space is divided into three subspaces, RAS1, RAS2, and
RAS3. The RAS1 subspace contains doubly occupied
orbitals from which excitations are allowed only up to a
user-defined level (e. g., singles, doubles, etc., but less than
would be the case for a full CAS). In RAS2, a FCI is
performed. Finally, the RAS3 subspace contains virtual
orbitals to which user-defined excitations are allowed (e. g.,
singles, doubles, etc., but again, less than would be allowed
in a CAS calculation).[1,48] The concept behind RASSCF is
taken still further with the generalized active space SCF
(GASSCF),[49] the occupation-restricted multiple active
space (ORMAS),[50] and the SplitGAS methods.[51] These are
all different flavors of truncated CI methods, as are the
separated pair (SP) approximation[52] and the generalized
valence bond (GVB)[53] method. Utilization of these
approaches is more limited than CASSCF because they tend
to be less general, and the quality of their results tends to
depend on expert choices of active subspaces and levels of
excitations. In addition, as they are truncated-CI methods,
they are not size extensive.

A separate large cost in wave-function calculations
compared to DFT in general is associated with computation
of the four-index two-electron integrals. This can be
reduced by using density fitting (DF) or resolution-of-the-
identity (RI) approximations,[54] in which product densities
are expanded in auxiliary basis sets.[55] For example,
Cholesky decomposition decreases the cost of CASSCF
calculations by one-to-two orders of magnitude, making it
possible to study systems of medium size with basis sets
including diffuse functions, for instance.[55] Nevertheless,
the active space size can remain a bottleneck.

One promising approach is the density matrix renormal-
ization group (DMRG) algorithm,[56] which is an approx-
imation to an FCI (or CASSCF) solver.[56e] A review of the
DMRG algorithm is reported in Refs. [57]. In the DMRG
approach, each orbital is treated as a ‘‘site’’ in a one-
dimensional lattice. In the guess, the orbitals are ordered
following various criteria, e. g. by their Hartree-Fock
energy.[56e] Once the orbitals are ordered, they are divided in
collections or “blocks”, based on one or more properties.
The possible states for the many-body blocks are sorted in
an optimal way by DMRG as the eigenstates of a many-
particle density matrix. During each step, two blocks are
considered. At each iteration, the orbitals from one block
are moved (or swept) to the other block one at a time,
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always from the right to the left block, until the right block
has only one orbital, and then reversing the direction.[56e]
The states defining each block are chosen after each
sweep.[56e] The cost of DMRG depends on the number of
states and on the number of electrons considered. DMRG
applied to CASSCF has a polynomial scaling with respect to
the size of the active space, as opposite to the exponential
scaling of standard CASSCF. As a result, DMRG-CASSCF
allows practical computation of numerically well-converged
solutions for active spaces up to four times larger than
standard CASSCF.[58] DMRG has been used for MR
calculations of the electronic structures of various enzyme
cofactors implicated in key biological processes.[59] Sim-
ilarly, DMRG has been used in conjunction with active
spaces of (30, 32) and (54, 36) by Sharma et al.[59a] to study
[2Fe� 2S] and [4Fe� 4S] clusters, respectively. The larger
dimensions of active spaces that can be handled by DMRG
reduce the responsibility of the user with respect to
selecting a balanced collection of orbitals. However, DMRG
itself is not yet a black-box method as selection of user-
defined parameters involving shapes and orders of orbitals
remain important, these being associated mainly with the
one-dimensional nature of the DMRG wavefunction
ansatz.[24,56f,58]

An alternative strategy to DMRG to avoid the exponen-
tial scaling of the CASSCF cost on the active space size is
to combine[60] MC-SCF methods with Full Configuration
Interaction Quantum Monte Carlo (FCIQMC).[61] FCIQMC
uses a probabilistic approach to solve the CI problem while
accumulating one- and two-body reduced density
matrices.[60b] The method combining CASSCF with
FCIQMC is indicated in the literature as FCIQMC-CASSCF
or stochastic-CASSCF.[60a] Application of stochastic-
CASSCF to iron-sulfur dimer models has included active
spaces as large as (22,26),[62] which exceeds the current
limit of (24,24) achieved by CASSCF,[29] without the need
of massive parallel implementations.

As another alternative, density matrix embedding theory
(DMET),[63] is an efficient wave-function-based embedding
approach to treat strongly correlated systems.[64] In DMET,
a system is divided into fragments where each fragment is
treated using a different quantum mechanical level. This
means that a higher accuracy can be used for some specific
fragment (e. g., in a catalytic system, the metal center and
its first two coordination shells), while a significant
decrease in computational resources can be achieved by
treating the rest of the system with a much lower level
theory. In the simplest case, the structure is divided into two
parts, the “impurity” and the “environment”, where the
impurity is the most important fragment, i. e., the one to be
treated using the highest level of theory. Phan et al.[64] have
described CASSCF as a correlated impurity solver for
DMET (CAS-DMET), and CAS-DMET has been success-
fully used to describe single bond breaking in the H10 ring
model system as well as N=N double bond breaking in
azomethane and pentyldiazene. For the successful applica-

tion of CAS-DMET, a proper choice of the impurity and of
the environment must be accomplished, and that can be less
straightforward in arbitrary systems compared to those in
Ref. [64]. Applications to realistic chemical systems call for
improvements in the convergence rate of both the chemical
potential and correlation potential, which are key compo-
nents linking the DMET subsystems.[64]

3.1.2 Lowering the Computational Cost of Computing
External Correlation

A perennial challenge in quantum chemistry is the design of
methods that compute the external correlation energy
efficiently.[24,65] Second-order restricted active space pertur-
bation theory (RASPT2)[66] is more affordable than
CASPT2, but also less general. DMRG-CASPT2 and
DMRG-NEVPT2 have also been reported, although they are
not yet practical for large systems as the computational cost
remains mostly determined by the active space size as for
CASPT2 and RASPT2.[56f,57,58,67] This cost can be signifi-
cantly reduced by avoiding or reducing the cost of the
computation of the four-particle reduced density matrix (4-
RDM).[57,67f] This can be accomplished through different
strategies,[33d,56f,57,58,67b–h] including the employment of pseu-
do-canonical orbitals,[67f] or deriving the 4-RDM from 3-
RDM calculations.[57,68] Phung and Pierloot showed that the
latter approach is particularly promising in terms of both
accuracy of the results and computational cost in a study on
iron-oxo porphyrin.[69]

Overall, the cost of recovering external correlation remains
prohibitive in many cases. Multiconfiguration pair-density
functional theory (MC-PDFT)[65,70] has considerable promise,
since it is less expensive than CASPT2.[70b,71] Importantly, the
accuracy in the calculation of reaction energetics involving
small and medium-size organic molecules is similar to
CASPT2.[72] Considering spin-state energetics, MC-PDFT has
been used in combination with a DMRG wave function,
showing very promising results for singlet-triplet gaps in
polyacenes and polyacetylenes.[24]

3.1.3 Lowering the Computational Cost of a Structure
Optimization

MR methods are often employed to perform single-point
energy calculations on KS-DFT optimized geometries. In
many cases, KS-DFT predicts reliable ground-state equili-
brium structures. Non-equilibrium geometries and excited-
state structures can be more challenging, as they may need
an accurate accounting of spin localization(s), which are not
necessarily well predicted by single-reference methods.[73]
By contrast, while optimization with MR methods can avoid
such deficiencies, a new challenge is posed in so far as the
important frontier orbitals may change along a reaction
coordinate, rendering the active space choice decidedly non-
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trivial. In fact, an important challenge in the use of MR
methods to model chemical reactions in general (and
catalytic reactions in particular) is to define a common
active space for the reactant(s), transition state(s), and
product(s). In addition, the computational cost associated
with gradient calculations is usually an order of magnitude
greater than for a single point calculation, creating a
resource burden. Unsurprisingly, most structures optimized
at MR levels tend to contain only light elements, with a few
exceptions.[74]

In recent years, however, a significant improvement in
the efficiency of minimization algorithms has been
attained, in part because of the implementation of
analytical gradients for many MR methods (e. g.
CASSCF,[74b] CASPT2,[75] DMRG-CASSCF,[67a] MC-
PDFT[76]). The most efficient algorithms combine analyt-
ical gradients with density fitting techniques for two-
electron integrals.[74b,76c] However, the calculation of
second derivatives (to compute thermochemical quantities
or vibrational frequencies of molecular probes in catal-
ysis) remains a challenge.

As already alluded to above, one simplifying approach
that can be used irrespective of quantum methodology
involves the application of less complete levels of theory to
regions well separated from the active site. For this purpose,
QM/MM methods can be quite powerful.[77] QM/MM
methods in which the QM level is a MR model have been
used to study the nature of Fe� O2 bonding in oxy-
myoglobin[78] and in non-heme iron enzymes.[79] An em-
bedded MR/DFT approach has been recently adopted by
Carter and co-workers to study adsorbates on surfaces[80]
and heterogeneous catalysis,[33a] in particular plasmon-
induced catalysis in metal nanoparticles[81] including
methane dry reforming[82] and plasmon-induced ammonia
decomposition on copper nanoparticles.[83]

3.2 Towards the Automatic Selection of the Active Space

What constitutes a good active space? In a nutshell, a good
active space generates a qualitatively correct wave function
that can be used in subsequent post-SCF calculations to
predict quantitatively accurate energetics. Having at hand
infinite computational resources, and time, one would test
more and more active spaces of increasing size and
composed of different sets of orbitals. One could also
compare the different wave functions and the energetics
obtained by PT2 or PDFT treatments on top of the MR
wave functions. Of course, such a procedure is not practical
with finite resources, except for very small systems. A more
efficient approach typically relies on user experience, with
criteria for confirming the quality of the optimized active
orbitals often strongly system dependent. While this makes
it difficult to generalize rules for active space selection
across all chemical systems, one can still define some
transferable rules for systems having certain chemical

similarities. For example, for systems based on transition
metals, the 3d orbitals should be active, especially those
that are only partially occupied because of the large static
correlation among the electrons in these orbitals. It is
generally advisable to include another shell of correlating d
orbitals, 3d’ (unless the metal has very few d electrons to
begin). Some relevant methods designed to standardize the
(non-automatic) active orbitals selection for multiconfigura-
tional calculations can be found in Refs. [84], and a
discussion and comparison among them can be found in
Refs. [85]. Obviously, it would be helpful to minimize
human intervention and develop automated schemes that
make these decisions.

One algorithm for a transition-metal system could
launch the initial guess of the SCF cycle with an active
space containing the 3d metal orbitals and force them to
remain in the active space for some number of iterations,
considering also the energetic ranking expected based on
crystal field theory or natural bond occupations.[86] This
would involve an alternation of CASSCF and configuration
interaction (CI) steps. The constraint on the active space
would be removed after a certain number of iterations,
permitting energy-based updates. Several schemes for
automated active space selection have been reported in the
literature,[84a,c,87] based on imposed[86,88] and ranked
orbital[85b] approaches. While these schemes show promise,
they lack generality, i. e., they work only for specific sets of
systems, with limited transferable prescriptions.[89]

Stein and Reiher[90] have taken another approach to this
challenge. Instead of imposing a set of rules, their AutoCAS
exploits the use of DMRG for the approximate CI solver in
order to use very large active spaces. Smaller active spaces
are then selected based on orbital entropy information and
used to perform calculations at an increased level of
accuracy. In this way, the selection of the active space is
automated. Nevertheless, this approach is only seemingly
black box because, as noted in Section 3.1.1., the DMRG
calculations require substantial practitioner oversight.
Moreover, they come with a significant computational
cost.[90d]

It is intriguing to consider the application of artificial
intelligence to this problem. Machine-learning algorithms
should be able to learn the same chemical principles that
permit a human to choose a proper active space depending
on the system. Acquisition of “chemical knowledge” by
machine learning algorithms has been demonstrated by
Jablonka et al. in a study designed to assign automatically
the correct oxidation states of atoms.[91] More recently,
Jeong et al.[92] have reported a proof-of-concept study using
machine learning for automated active space selection.
Their results, although limited to small chemical spaces,
demonstrate the feasibility of an automated procedure for
active space selection that can in principle be enlarged by
increasing the dimensions and variability of the training set.
Golub et al.[93] in another recent study developed an
alternative machine learning algorithm for the automatic
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selection of active spaces, verifying its transferability to
systems outside the training set. In particular they success-
fully tested it for Fe(II)-porphyrin, a model system for the
active site of several enzymes.

4. Outlook

Many strategies are now actively pursued to reduce the cost
of MR computational methods and to make them more
black-box-like in character. While selection of the active
space has historically been considered a step requiring
human intervention, it is encouraging that promising
automated procedures have started to appear, particularly
those exploiting powerful machine learning techniques.[92–93]
This should lead to MR methods becoming more routine,
particularly for single point calculations. Future studies
should target enlarging the set of systems to which these
approaches can be systematically applied. A further devel-
opment of these methods that would be particularly
rewarding would be the selection of active spaces that can
be used all along a reaction pathway.

With respect to routine application of MR methods to
catalysis, some problems will likely remain intractable for a
longer time. For example, MR geometry optimizations are
likely to require human supervision more than single-point
calculations because of how the active space can change
along an optimization (or reaction) coordinate. Of course, as
machine learning becomes more robust, improved recogni-
tion of such variation will be possible. To date, optimiza-
tions of copper,[74a] NiFe,[94] iron,[74c] and ruthenium
complexes[74b] have been reported, but the resources
required are too high to make them routine. As noted above,
multiscalar methods that combine KS-DFT geometry opti-
mizations with single-point DMRG-PDFT steps remain an
interim option, and these are certainly amenable to
automation.

With respect to avoiding the computation of wave
functions altogether, machine learning methods have al-
ready been used to avoid DFT SCF calculations for very
large systems[95] either by directly training on energies[17,96]
or by developing interatomic potentials to replace the DFT
calculation.[1,97] By analogy, machine learning could replace
MR calculations as well, but appropriate, large MR data sets
that would be required for training are not presently
available.

Finally, advances in quantum computing offer the
potential to speed dramatically MR calculations. Recently
Tilly et al.[98] reported the optimization of CO using
CASSCF on a 4-qubit system. Although current “noisy
intermediate-scale quantum” technologies are plagued by
random error,[99] Tilly et al. achieved convergence of the
active space orbitals through a light-touch mitigation
strategy that compensated for gate errors. While a single CO
molecule is hardly a catalyst surface, continued progress on
the development of algorithms and theory suitable to the

quantum computing technologies of today and tomorrow
has the potential for transformational impact.
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