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Abstract

Security and privacy of information transmitted among the devices involved in an

Internet of Things (IoT) network represent relevant issues in IoT contexts. Guaran-

teeing effective control and supervising access permissions to IoT applications is a

complex task, mainly due to resources’ heterogeneity and scalability requirements. The

design and development of highly customizable access control policies, along with an

efficient mechanism for ensuring that the rules applied by the IoT platform are not

tampered with or violated, will undoubtedly have a significant impact on the diffu-

sion of IoT-based solutions. In such a direction, the article proposes the integration

of a permissioned blockchain within an honest-but-curious (i.e., not trusted) IoT dis-

tributed middleware layer, which aims to guarantee the correct management of access

to resources by the interested parties. The result is a robust and lightweight system,

able to manage the data produced by IoT devices, support relevant security features,

such as integrity and confidentiality, and resist different kinds of attacks. The use of

blockchain will ensure the tamper-resistance and synchronization of the distributed

system, where various stakeholders own applications and IoT platforms. The method-

ology and the proposed architecture are validated employing a test-bed.
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1 INTRODUCTION

Security and privacy, along with scalability and interoperability, are the main critical issues, which can potentially be an obstacle to the widespread

adoption of the Internet of Things (IoT) paradigm. Proper solutions for security and privacy management can be modeled, exploiting various

mechanisms,1 such as access-control policies’ enforcement, policy life cycle management, encryption techniques, and so on.2 However, such

approaches must deal with a huge amount of data producers and consumers, which exchange heterogeneous data among each other, sometimes

across different IoT applications, possibly owned by various stakeholders. The involved parties could not trust each other. Seamlessly, the IoT plat-

form itself, which is responsible for managing IoT resources, could not be considered trusted, as is usually done. Hence, the possibility of tampering

or violation of the IoT platform itself should be considered in defining a robust IoT network infrastructure.

Given the emerging issues related to security, privacy, scalability, and interoperability, a first viable research direction to cope with them consists

in the adoption of fog computing principles.3 Fog computing aims to operate as an intermediate layer among data consumers and producers, moving

most of the computing tasks, which are typically performed by resource-constrained IoT devices or by a cloud, towards the edge of the network,

bringing the services’ provision closer to where data are effectively acquired, elaborated, and shared.4 At the same time, complex tasks do not burden
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IoT devices. Beyond the advantages in terms of reduced network’s latency, consumption, and service response times (thus improving scalability and

service availability), also security and privacy benefits can be obtained, since the fog layer does not represent a single point of failure, as, for example,

cloud storage, which must also be considered trusted.5 In fact, following a fog computing fashion, security and privacy functionalities and policies

should also follow a similar approach if the information and network resources are managed at the network’s edges. Also, the IoT platform could be

treated as an honest-but-curious party since it does not directly handle third parties’ applications.

The scope of this article is the definition of a fog-based IoT network infrastructure, where involved parties can cooperate securely without trust-

ing each other. Blockchain technology is integrated to guarantee that IoT network components enforce the correct policies before disclosing data.

The blockchain approach has been chosen because it allows services to operate in a decentralized or peer-to-peer fashion, without the need for a

central authority or other trusted intermediaries.6 Moreover, the adoption of blockchain, instead, for example, of multiple non-colluding authorities,

appears the better choice because fewer entities are involved in the network, which should, in turn, be considered trusted (e.g., trust authorities,

certification authorities).

Summarizing, the contributions of the article are the followings:

• The integration of permissioned blockchain mechanisms into security and privacy-aware IoT middleware is proposed, following a fog comput-

ing perspective. In fact, blockchain management is delegated neither to a central authority nor to end-devices, but it is in charge of the IoT

management layer.

• The goal of adopting the blockchain is twofold: on the one hand, it let the IoT platform not be trusted; on the other hand, it helps in protecting

policies, which regulate the access to IoT resources against tampering and violation. In this way, a malicious component of the IoT platform is

prevented from changing the established rules without the consensus of the other components belonging to the network.

• A test-bed contributes to the validation and evaluation of the proposed approach in order to demonstrate its feasibility and reliability in the real

world.

The article is organized as follows. Section 2 investigates the available solutions adopting blockchain in the IoT; Section 3 outlines the back-

ground of the presented work, detailing the considered IoT platform and pointing out the current weaknesses. Section 4 proposes the integration

of the IoT platform with the blockchain technology, clarifying how the emerged issues are overcome; in Section 5 concrete experiments are

described in order to validate the proposed approach and evaluate its performance. Section 6 ends the article, giving some hints for future

developments.

2 RELATED WORKS

Many researchers are attracted by the adoption of blockchain technology within IoT applications; such an approach is a consequence of decen-

tralization, which means that efficiency, security, and privacy are perceived as pillars for a wide growth and diffusion of IoT scenarios in people’s

everyday life. For such reasons, many studies towards integrating blockchain and IoT are related to smart home use cases or, more in general, to

smart cities.

For example, the work described in Reference 7 starts from the premise that blockchain techniques are computationally expensive and usu-

ally involve high bandwidth overhead and delays, not suitable for constrained IoT devices. Hence, the authors propose a new secure, private, and

lightweight architecture for IoT, which exploits blockchain functionalities, but eliminates the overhead. Such a goal is obtained with a hierarchical

architect consisting of a set of smart homes (the domain application considered in the le paper), an overlay network, and cloud storage, coordinating

data transactions with blockchain to provide privacy and security. The approach proposed in such a paper pole apart from the one presented in our

work, since we pursued the fog computing principles, replacing the use of the cloud in favor of a totally decentralized system.

Also focused on the smart home case study, the works in Reference 8, and Reference 9 exploit blockchain functionalities to realize an

architecture,10 which can guarantee security and privacy in an IoT fashion. Such a solution is similar to the one presented in Reference 7, where

the following network’s components are considered: a smart home, cloud storage, and an overlay. Note that only qualitative analysis is proposed as

performance evaluation, except,10 where quantitative analysis is conducted via simulations.

The work presented in Reference 11 is oriented towards the smart city context; the authors point out the need to put in action the blockchain

mechanisms among smart devices at the communication level, which can include Bluetooth, 6LoWPAN, WiFi, Ethernet, 3G, and 4G as commu-

nication protocols. Obviously, the integration of existing communication protocols with blockchain reveals to be a significant challenge, since

requirements vary from application to application. A potential solution envisioned by authors can be the implementation of multiple blockchains

with the help of a blockchain access layer, in order to provide application-specific functionalities.

In such a direction, a possible solution is the hybrid blockchain architecture targeted to the IoT, presented in Reference 12, where the authors

propose to split the IoT devices into subgroups, to further form sub-blockchains and achieve a distributed consensus. Relevant dimensions, such
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as scalability, security, decentralization, efficiency, and network bandwidth, have been considered as guidelines in the subgroups definition, in

order to achieve an optimal blockchain implementation, exploiting both Proof of Work (PoW) and Byzantine Fault Tolerant (BFT) mechanisms, as

demonstrated by the conducted simulations.

The works proposed in References 13 and 14 are, instead, focused on a fully distributed access control system for IoT applications, based on

blockchain technology. More in detail, Reference 13 proposes to exclude resource-constrained IoT devices from the blockchain, as we also suppose

in our proposed solution. However, the approach pursued in Reference 13 operates only with a single smart contract. In contrast, in our approach,

we make use of sticky policies (as detailed in Section 3) to manage access permissions for resources’ disclosure, which are both lightweight and

highly customizable. The main contribution of Reference 14 is that its framework introduces new types of transactions, which are used to grant, get,

delegate, and revoke access. But, by adopting sticky policies, it is easy to update the access permission, since access’s grants are contained in the

policy itself, which travels along with the related data (for further details, please refer to Section 3.3).

The authors of Reference 15 propose a blockchain-based access control framework, called Policychain, which is responsible for enforcing

Attribute-based Access Control (ABAC) policies, while the responsibility of ABAC policy administration and decision-making are offloaded to

blockchain nodes. The envisioned scheme translates ABAC policies into blockchain transactions, hence the authors extended the blockchain

inherent scripting instructions to support attribute acquisition of ABAC entities. Such an approach is based on a different policy manage-

ment strategy, with respect to the adoption of sticky policies; they both seem valuable solutions to secure information within a blockchain-IoT

network.

Another solution, again targeted to policy definition, is that presented in Reference 16, where policies are based on smart contracts, thus putting

in act a self-enforcing agreement, embedded in computer code, managed by a blockchain. Three different policies are proposed: hardware and device

security policies, access and authentication policies, and application security for the IoT network.

Wider envisioned research works are the ones proposed in References 17-22, which are detailed in the following.

The review proposed in Reference 17 identifies 18 use cases related to the adoption of blockchain technology in the IoT. Starting from such

use cases, the main goal of such a work is to understand whether the blockchain along with peer-to-peer approaches can be employed to foster a

decentralized and private-by-design IoT. Some open issues have been pointed out, such as adaptability, integrity, and anonymity. To cope with such

emerging open challenges, the authors envision a layered architecture, as proposed in our article.

Similarly, the work described in Reference 18 aims to examine advantages in the use of blockchain technology and smart contracts for the IoT,

which can be summarized as follows: robustness, failure-tolerance, transparency, verifiability, auditability of network’s activity. Note that smart

contracts are conceived as self-executing scripts that reside on the blockchain, containing contractual clauses into the code itself, to self-enforce

them and minimize the need for trusted intermediaries between transacting parties, as well as the occurrence of malicious or accidental exceptions.

In our proposed work, no smart contract is needed because sticky policies should not be executed along with a transaction, but they should only be

stored inside the blockchain, to keep track of the access permission to the resources managed by the IoT network. The main reason for such a choice

is that sticky policies are usually conceived to be directly attached to data, not to the blockchain. Hence, we can suppose that data can be detached

from the blockchain, maintaining, at the same time, the link with the corresponding sticky policy. Further details on such a point can be found in

Section 4. It is worth remarking that the scope of the article is also focused on how guaranteeing the reliability of the IoT platform, thus ensuring

the correct application of policies on data disclosure.

The survey presented in Reference 19 examines the state-of-the-art of blockchain technologies. It proposes relevant scenarios for the so-called

BIoT (Blockchain Internet of Things) applications in fields like healthcare, logistics, smart cities, and energy management. Such scenarios must face

specific technical requirements, which must be addressed in order to obtain efficient and secure systems, such as security and privacy issues, energy

consumption, network throughput, latency, bandwidth consumption, and so on.

A similar approach can be found in Reference 20, where, beyond possible integration between IoT and blockchain, also available blockchain

platforms are described. Such a discussion is very interesting since each of the detailed platforms has peculiarities, which help understand the

importance of modules required in a system using blockchain. However, such platforms result too complex with respect to our proposed solution;

hence we decided not to adopt them but to directly integrate the blockchain primitives in our system, as detailed in Section 4. The main reason

behind such a choice is that the target of our solution is IoT-constrained environments, which naturally require lightweight mechanisms to run

efficiently.

A complete vision about the integration of IoT and blockchain is provided in Reference 21: here, the focus is on architectural aspects and indus-

trial applications. Instead, the work in Reference 22 presents an in-depth description of blockchain technologies, in terms of applicability to IoT

scenarios.

3 SYSTEM’S BACKGROUND AND MOTIVATIONS

This section presents the background related to the proposed solution. First of all, the section explains the adopted IoT middleware plat-

form, along with its main features; then, the sticky policy approach, used for the definition of a proper enforcement framework is described,
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pointing out the drawbacks of the current approach, to motivate the introduction of the blockchain technology as a solution to the emerged

weaknesses.

3.1 Networked smart object middleware platform

The authors in Reference 23 defined the architecture considered in this article, which represents a flexible and cross-domain middleware, named

Networked smart object (NOS), tailored to the IoT environment.

NOSs are able to manage, in a distributed manner, the data provided by heterogeneous sources and evaluate, by means of proper algorithms,24

the security and data quality of the information, in order to allow the users to be aware of the levels of reliability and trustworthiness of the

services gathered by NOSs themselves. NOSs also provide a lightweight, and secure information exchange process, based on an authenticated

publish&subscribe mechanism,25 adopting the MQTT protocol. Finally, an enforcement framework, which is integrated within NOSs, monitors the

correct application of the established sticky policies.23

Note that the need for middleware is motivated by the fact that IoT networks usually generate a huge amount of information, which cannot

be efficiently handled in a centralized way (i.e., employing a single server or cloud); the introduction of an intermediate “edge” layer aims to process

data closer to the sources, exploiting distributed and more powerful gateways, and reducing the amount of traffic to be delivered to the central

server/cloud part. Hence, the middleware improves the usage of resources, thus providing a way better support to applications/services with tight

latency constraints.

The following sections will describe the architectural components of NOSs, along with some details about their design and implementation.

Moreover, the weaknesses, mainly in terms of security, of the current platform will be clearly put in the light.

3.2 NOS’s components

Two main entities compose a typical IoT system: (i) the nodes, conceived as heterogeneous data sources (e.g., RFID, NFC, actuators, sensors, social

networks, etc.) which generate data for the IoT platform; (ii) the users, who interact with the IoT system through services making use of such

IoT-generated data, typically accessing them by means of a mobile device (e.g., smartphone, tablet) connected to the Internet (e.g., through WiFi,

3G, or Bluetooth technologies).

Therefore, proper interfaces for the communications of NOSs with the data sources (i.e., the nodes) and with the users have been defined. More

in detail, protocols based on HTTP or CoAP are adopted to collect the data from the IoT devices and allow sources’ registration. In fact, NOSs deal

both with registered and non-registered sources. The registration is not mandatory, but it provides various advantages in terms of security, since

registered sources may specify an encryption scheme for their interactions with NOSs, thus increasing the level of protection of their communica-

tions (encryption keys’ distribution is made by the algorithms presented in Reference 26). The information related to the registered sources is put

in the storage unit, named Sources. Instead, for each incoming data, both from registered and non-registered sources, the following information is

gathered: (i) the kind of data source, which describes the type of node; (ii) the communication mode, that is, how the data are collected (e.g., discrete

or streaming communication); (iii) the data schema, which represents the content type (e.g., number, text) and the format of the received data; (iv)

the data itself; (v) the reception timestamp.

Since the received data are of different types and formats, NOSs initially put them in the Raw Datastorage unit. In such a collection, data are

periodically processed in batches by the Normalization and Analysis phases, in order to obtain a uniform representation and add useful metadata

regarding the security (i.e., level of confidentiality, integrity, privacy, and robustness of the authentication mechanism) and data quality (i.e., level of

accuracy, precision, timeliness, and completeness) assessment. Such an assessment is based on a set of rules stored in a proper format in another

storage unit, named Config, and are detailed in Reference 24; it allows users who access the IoT data to directly filter by themselves the data

processed by NOSs, according to their personal preferences.

Instead, Message Queue Telemetry Transport (MQTT) protocol*is used for disseminating the information to the interested users. To this end, a

topic is assigned by NOSs to each processed data. In order to manage the access to resources based on the assigned topics and the active policies,

the original MQTT protocol has been further extended with AUPS (AUthenticated Publish&Subscribe system),25 and integrated with the enforcement

framework based on sticky policies.23 Figure 1 summarizes the NOS’s components just introduced.

NOSs modules interact among themselves through RESTful interfaces; this allows the NOSs’ administrators to add new modules or modify

the existing ones at runtime since they are able to work in parallel and non-blocking manner. Moreover, the non-relational nature of the adopted

MongoDB database also allows the data model to evolve over time dynamically. NOS interfaces have been implemented in a real prototype, which

is openly accessible under a permissive license Apache v.2 at https://bitbucket.org/alessandrarizzardi/nos.git. Node.JS†platform has been used

for developing NOSs’ core operations, MongoDB‡ has been adopted for the data management, and Mosquitto§has been chosen for realizing the

open-source MQTT broker. To know more details about the implementation, please refer to Reference 24.

https://bitbucket.org/alessandrarizzardi/nos.git
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F I G U R E 1 NOS architecture

3.3 Sticky policies and drawbacks

NOSs are based upon the sticky policy paradigm, which enforces access control rules on producers’ behalf. Note that multiple NOSs can naturally

form a fog layer, which has direct contact with data sources and also with data consumers. Hence, a fully distributed and synchronized system is

achieved.27 The adoption of sticky policies is motivated by the fact that they are directly attached to the data. Consequently, they can flow with the

data themselves across one or more application domains, being effectively enforced in a distributed manner. Sticky policies also enable access based

on data owners’ preferences and, thus, closer to the producers, with respect to an external central entity (e.g., a server or a cloud). Essentially, a sticky

policy consists of an executable script containing the access permission to the resource contained in the transmitted information.28 Its importance,

in the IoT context, is related to the fact that different stakeholders may participate in the data provision and sharing of the resources; therefore,

by directly attaching the policy to data, the co-existence of unrelated parties do not imply that the IoT platform manages the access control rules

among heterogeneous information.

Karjoth et al.29 first proposed a sticky policy paradigm, in order to provide a method for driving access control decisions and policy enforcement

on a data-driven basis. In fact, sticky policies are transmitted along with data they refer to and “travel” with data across the entire system, thus

protecting the whole data life cycle. Specifically, sticky policies usually include the following useful information:

sticky policy = {dataow , setsc, dataval, setrule}, (1)

where:

• dataow is the owner of data;

• setsc represents one or more purposes for which data can be used;
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• dataval is a timestamp that points out the validity (i.e., the lifetime) of data within the IoT system; once this time has elapsed, then data must be

discarded and no longer transmitted;

• setrule includes one or more constraints that represent the rules to be applied to data (e.g., with whom the data may be shared if data must be

shared in an aggregated form or not, and so on).

Hence, sticky policies allow specifying access rules in a highly fine-grained manner. Emerged features are particularly interesting in some sce-

narios, like those related to IoT, where users’ or business’ confidential information may flow across organizational boundaries,28 but also when

heterogeneous actors are involved within a highly distributed architecture.

Note that the sticky policy concept has already been integrated into the NOS platform, as presented in Reference 23. NOSs own no poli-

cies/credentials, because a Trusted Authority (TA) is responsible for: (i) the definition and management of a dictionary of valid scopes and constraints;

(ii) providing NOSs (upon reception of a query) with access decisions related to the current sticky policy as well as decryption keys for accessing the

data of interest. Moreover, no synchronization or policy sharing is required among multiple NOSs, since the TA manages access permissions. The

behavior of the current system can be summarized as follows (see also Figure 1 for an overview of involved entities and interactions):

1. Data sources/IoT devices, owned by users, can agree with NOSs on an encryption scheme and on encryption keys to cipher the data transmitted,

as specified in Section 3.2. Such a feature represents the first level of protection, basically covering the communication path. Further levels of

security are provided by the enforcement mechanism realized by means of sticky policies. With data, the relevant policy is also sent, which is

properly encrypted. The policy specifies how NOSs should manage the data;

2. The owner of data sends it in an encrypted way along with the associated sticky policy towards the nearest NOS;

3. When a NOS receives data from a source with the associated sticky policy, it first stores it in Raw Data storage unit; then, once data has been

analyzed by NOS, following the procedure described in Section 3.2, a topic is assigned, and data is notified to interested subscribers;

4. Access to topics is regulated on-demand by NOSs through proper requests to TA, by means of the associated sticky policy; hence, NOS can

contact the TA in order to obtain the access permissions for guaranteeing access to data.

Despite the resulting enforcement framework is highly customizable, it is not so efficient in large scale systems and imposes certain strict

security requirements; in fact, the following weaknesses can be pointed out:

• Data sources/users must trust the IoT platform (composed by NOSs and TA) that their policies are correctly stored, applied, and transmitted

along with the associated data under specific topics, during the time; in other words, a security mechanism, to protect the rules (i.e., the policies)

themselves, still lacks;

• The presence of a single TA may present scalability issues as well as it could represent a single point of failure in the system.

Hence, the goal of our article is to overcome such issues, introducing blockchain technology, coupled with sticky policies, as explained in the

next section. More in detail, the TA is removed from the system, and policy regulation is managed through a permissioned blockchain handled by the

network of NOSs.

4 INTEGRATION OF BLOCKCHAIN TECHNOLOGY IN NOS MIDDLEWARE PLATFORM

Blockchains have recently attracted the interest of stakeholders across different industrial activities, ranging from finance (the first and most famous

use is in cryptocurrency), healthcare, product traceability, real estate, smart cities, smart homes, and so on,30 thus paving the way for their adoption

in the various application context and, more specifically, in IoT.31 But, which are the real advantages of blockchain for IoT? They can be summarized

as follows:

• Decentralization: there is no need for a centralized authority in charge of supervising the system’s behavior and dictating rules or policies to be

applied at each time; moreover, transactions are validated by all network’s components (in our case, NOSs), thus avoiding to delegate such a task

to a central entity;

• Distribution of information: since each network’s components (in our case, NOSs) keep a copy of the blockchain, there is (again) no need for a

centralized authority that keeps the information private;

• Data transparency and auditability: since a full copy of every transaction added to the system is stored in the blockchain and is public to all peers,

then it is always possible to trace and monitor what happens in the network, guaranteeing that operations are legitimate;
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• Robustness: blockchain is tamper-proof, so it cannot be manipulated by malicious parties (a discussion about attacks and vulnerabilities can be

found in Section 4.2).

Hence, by adopting a blockchain, applications that usually run only through a trusted intermediary can now operate in a decentralized fashion,

without the need for a central authority, and achieve the same functionalities. In order to understand how to pursue such an integration in the NOS

middleware platform, some notions regarding the security mechanisms put in the act by blockchains must be clarified.

A block in a blockchain contains, in general, the following information:

block = {id, settrans, ts, hashcurr, hashpre, sm}, (2)

where:

• id is the identifier or block number;

• settrans is a set of transactions (i.e., the data content);

• The ts registers the timestamp when the block is created;

• hashcurr is an authenticated data structure (e.g., a cryptographic hash) in charge of ensuring block integrity;

• hashpre is a reference to the hash of the preceding block, to identify the current block’s place in the blockchain; note that, since each block

references the hash of the block that came before it, a link between the blocks is established, thus creating a chain of blocks, named blockchain;

• sm (optional) are the so-called smart contracts, which are scripts that allow the coding and execution of computing programs on the blockchain

itself; note that such scripts may contain access policies, which can be specified and enforced by the blockchain itself, preventing unauthorized

operations on data.

Currently, NOSs must contact the TA to decide if a requesting consumer is entitled or not to access a certain kind of information (i.e., note that

data sharing is managed based on a topic, as explained in Section 3.2. Such communications flow across an HTTP/SSL channel, as shown in Figure 1.

But, what happens if a NOS becomes malicious and decides to follow no longer the rules imposed by the TA? In this case, IoT resources could be

released to non-authorized parties or not legitimate operations could be done on data without the necessary permissions. To solve such an issue, the

IoT platform must ensure to behave properly. However, data producers and consumers cannot be forced to trust NOSs (i.e., the IoT platform), and we

must suppose that NOSs could be tampered with or violated by external parties. Also, in this situation, we must ensure that the IoT system continues

to behave correctly, following the established policies. For such a reason, NOSs become responsible for managing the blockchain, which includes all

the access permissions to be put in the act on the IoT resources. The role of the TA is no longer needed. In fact, the scope of the integration of the

blockchain is that all NOSs follow the same rules; in this sense, the decentralized ledger guarantees the tamper-resistance and the synchronization

of the operations, thus obtaining a consistent behavior of the IoT distributed system.

To summarize, NOSs, which manages both data and policies, should be considered trusted; otherwise, the integrated enforcement frame-

work would be unreliable. In order to overcome such an issue, an integration of the existing NOS platform with blockchain technology is proposed

hereby. The reason for choosing the blockchain approach is that it allows applications to operate in a decentralized or peer-to-peer fashion, with-

out the need for a central authority or other trusted intermediaries.6 Hence, NOSs should no longer be considered trusted; they will be regarded

as honest-but-curious. Moreover, the adoption of blockchain, instead, for example, of multiple non-colluding authorities, appears the better choice,

due to the fact that less entities are involved in the network, which should, in turn, be considered trusted. The kind of blockchain chosen for carry-

ing out the integration is a permissioned (i.e., private or federated/consortium) blockchain, instead of a public (i.e., permissionless) one, due to the

following motivations:

• The network of distributed NOSs will manage the blockchain, and no other participant is required; as a consequence, there is no reason to use a

public blockchain; in fact, the middleware will be deployed for specific applications and domain context, which represent a sort of “close” system

(e.g., a smart home, a traffic control system, a healthcare application, etc.).

• Both permissioned and permissionless blockchains are distributed ledgers; this means that there will be multiple versions of the same data stored

in different places and connected through the NOSs’ network, which is the basic principle of blockchain technology.

• Permissioned blockchains offer better performance than those of permissionless ones, because a limited number of nodes (i.e., the NOSs)

participates in the blockchain itself; hence, they provide short latency for transactions’ confirmation and for verifying the validity of a block.30

• Permissioned blockchains guarantee more efficient governance, since the administrators require less time to update the rules over NOSs’

network.
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Once clarified that there is no need to make public the blockchains managed by NOSs, it is fundamental to understand that, although we suppose

that NOSs do not trust each other, each of them knows the entire set of its peer nodes participating in consensus for establishing the validity of a

block. The method for achieving the consensus adopted in the proposed solution is the Byzantine Fault Tolerant (BFT) replication approach, since it

better fits the requirements of the investigated scenario, such as a limited number of nodes (i.e., NOSs) involved in the blockchain management, low

latency, and power consumption.32

More in detail, the security of blockchain protocols is obtained by means of different methodologies, which may be employed to achieve con-

sensus on the newly added blocks. Robust consensus mechanisms are required to safeguard security for a self-regulating system such as blockchain,

where there is no central authority, but a peer-to-peer network for validating transactions. The main exploited approaches to consensus are PoW33

and BFT replication.34 In this work, due to the nature of envisioned IoT scenarios, BFT replication is the best choice, thanks to its good performance

(i.e., computational cost and latency) for a relatively small number of replicas; as just introduced in Section 1, only NOSs are involved in blockchain

management, while data sources are excluded, in order to prevent the occurrence of scalability issues in the IoT network, which may potentially

include a large number of data sources themselves. Note that PoW-based solutions sit the opposite end, since PoW-based blockchain offers good

scalability with poor performance, due to the fact that the so-called mining task is particularly computationally intensive. Moreover, we have to

consider that the mining of blocks is also time-consuming, while, in most IoT applications, low latency represents a fundamental requirement.

Summarizing, the proposed solution consists, on the one hand, in exploiting the secure blocks of blockchain to encapsulate the rules cre-

ation/update/revocation to protect them from tampering and violation by NOS’s network (which is no longer considered trusted), and avoiding the

presence of a central TA; on the other hand, to cope with computational and delay issues related to blockchain protocol, a fog layer of NOSs is added

to the IoT network, in order to support IoT devices in performing the heaviest security tasks. Instead, in the previous version of NOSs’ network, each

NOS was independent of each others without any control over their behavior. Technical details about the presented approach are provided in the

following.

4.1 Technical details

The integration of blockchain within the IoT network, originally including NOSs and the sticky policy-based enforcement framework, required some

changes, which are properly depicted in Figure 2, reporting the new version of the platform and its comparison with the one sketched in Figure 1.

The main changes concern the disappearance of the TA and the introduction of the permissioned blockchain, which is managed only by the NOSs

belonging to the IoT network.

More in detail, each NOSs can receive different kinds of data from a multitude of data sources/producers. As before, such information are

analyzed, normalized, and assigned to proper topics, as described in Section 3.2. The broker notified users/consumers interested in the various

topics when new data related to such topics were available. The end-users can decrypt the received information if the execution of the sticky policy

allows them to access the ciphered data, as detailed in Section 3.3. Access permission and authorized operations on data are regulated by proper

rules, as just explained. Such policies are the same for all NOSs belonging to the same IoT network. The scope of blockchain guarantees that one or

more malicious NOS cannot self-manipulate the policies within the IoT system. In fact, all changes in policies (i.e., creation of a new policy, update

of an existing one, or revocation) must receive the consensus of NOSs’ network. In this way, the IoT system is able to work even in the presence of

malicious parties. Moreover, the blockchain maintains a sort of log/monitoring of the system’s rules. In fact, being the blockchain unchangeable, we

automatically keep a trace of all changes happening within the IoT system. In this sense, new introduced sticky policies are stored as data in each

created transaction.

Such behavior is obtained in the following way: (i) when an administrator of the IoT system requires a command of policy’s cre-

ation/update/revocation, NOS creates a new block; (ii) NOS registers each new added block and other NOSs, belonging to the same IoT network,

must reply on the consensus; (iii) NOS’s database stores the blocks (i.e., Policy storage unit in Figure 2. It is worth remarking that, exploiting the

fact that NOS has a modular architecture (as detailed in Section 3.2), the adding of new modules, responsible for the tasks related to blockchain

technology, does not compromise the existing functionalities.

New modules mainly consist in the integration of crypto-js library ¶, which contains proper cryptographic functions, compliant with the Node.js

based implementation of NOS, and in the definition of a new library, including novel functions for putting in act the blockchain mechanisms. With

respect to the cryptographic functions, we choose SHA256, due to its wide use in Bitcoin context35 and to its intrinsic robustness. Instead, regarding

the blockchain library, the following main constructors and functions have been defined:

• Transaction: it is the constructor of object of type transaction (i.e., trans), characterized by an identifier id, a source (i.e., src, which is the NOS which

initiates the transaction itself), a destination (i.e., dest, which is the network of NOSs belonging to the IoT system), a timestamp ts, and the policy

pl, as the transaction’s content;

trans = {id, src, dest, ts, pl}. (3)
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F I G U R E 2 NOS architecture with the blockchain integration

• Block: it is the constructor of more complex object of type block, characterized by an identifier id, a set of transactions (i.e., settrans), a timestamp ts

(which may be different from that of the transactions), a cryptographic hash (i.e., hashcurr), calculated, as just said, by means of SHA256 algorithm,

the cryptographic hash of the previous block in the blockchain (i.e., hashpre), and a nonce; note that the field hashpre is added to the block after the

block is linked to blockchain (i.e., after verifying its validity-see isChainValid function);

block = {id, settrans, ts, hashcurr, hashpre, nonce}. (4)

• Blockchain: it is the constructor of the object of type blockchain, which is responsible for the creation of the blockchain itself and for keeping track

of pending transactions;

blockchain =
creation +
pending transactions’ tracing

• consensusBlock: it is the function responsible for keeping track of the consensus related to a block; note that such a task is delegated to NOSs,

which represents the more powerful entities in the proposed IoT scenario;

consensusBlock =
hash calculation + obtain consensus

• isChainValid: it is the function responsible for validating the transactions, until reaching the BFT consensus

isChainValid =
blocks’ validation after consensus

It is worth remarking that the network of NOSs executes such operations in a parallel manner: Algorithm 1 summarizes the operations exe-

cuted by a NOS; in fact, NOSs cooperate in maintaining valid and robust blockchain, while they acquire and process data coming from the IoT

connected devices (Steps 1–3 in Figure 3). When a NOS receives a notification of policy creation, update, or revocation, it setups the correspond-

ing transaction, by associating the information shown above (Steps 4 and 5 in Figure 3). Then, it notifies other NOSs of the newly generated block,
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Algorithm 1. Policy creation, update, or revocation

1: Upon a policy pl creation/update/revocation

2: NOS calculates trans(id, src, dest, ts, pl)
3: block(id, trans, ts, hashcurr, hashpre, nonce) generation

4: for all NOSs belonging to the IoT network do

5: execute consensusBlock(block)
6: compute hash(block)
7: wait for reaching consensus

8: isChainValid(block)
9: if reached consensus then

10: add block to blockchain

11: else

12: discard block

13: end if

14: end for

F I G U R E 3 IoT system’s interactions—data source and policy management perspective

requesting consensus for adding it to the blockchain (steps 6–11 in Figure 3). In detail, in order to reach the consensus, each NOS computes the

hash. Note that the consensus is reached when the hash computed by each NOS is the same. Once reached the consensus, each NOS calculates

the new hash value (i.e., hashcurr) to be associated to the new block, before adding it to the blockchain (Steps 12–15 in Figure 3), by executing the

isChainValid function. Note that, if the consensus is reached, the block is valid, and the new defined/modified policy is added to the blockchain and

becomes active in the IoT system; otherwise, the block must be discarded (Steps 16 and 17 in Figure 3).
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4.2 Security analysis

An IoT network can suffer from different kinds of attacks. In this section, we discuss how the NOS middleware platform can react or prevent possible

threats, as follows:

• Attacks towards data integrity and confidentiality: data are secured by means of encryption techniques and by clever management of the access

to resources by means of sticky policies. Moreover, NOSs are responsible for reliably handling the access permissions. Such an aspect is guaran-

teed by the adoption of the blockchain paradigm, because blockchain is inherently resistant to the modification of its content (since blocks, once

added to the blockchain, are immutable);

• Violation of the access control system: the robustness of the access control is both ensured by the adoption of sticky policies and by the

introduction of blockchain, for preventing misbehavior of some NOSs, which are not considered trusted;

• Denial of Service: NOSs are able to cope with such a kind of attack, thanks to a proper mechanism defined in Reference 36.

• 51% or majority attack: security of the blockchain is granted if the majority of the network correctly validates the blockchain itself. However, if

almost the 51% of the IoT network is compromised, then invalid blocks may be propagated, thus causing serious damages, such as the diffusion

of false information. It is worth remarking that this is a very expensive attack, mainly in large-scale environments; hence, small networks are the

most vulnerable. Since NOSs put in act proper mechanisms for continuously assessing the reputation of connected entities,24 we expect that the

system is able to recognize the majority attack at an early stage, thus promptly blocking it.

Concerning the last point, there is an important consideration to be made. In fact, we can suppose the existence of two different situations, in

response to the presence of a malicious NOS:

1. If a NOS is tampered or violated, there is no way of blocking it; hence, it will continue to misbehave, but without affecting other NOSs (i.e., this

is the advantage provided by the blockchain);

2. Each NOS is forced to follow the rules dictated by the administrator; hence, if a NOS is recognized as malicious, it can be blocked or restored.

However, to actuate such a solution, a Trusted Platform Module (TPM) must be introduced. The TPM has the role of monitoring NOSs activity and

recognizing any issues in their behavior.

5 VALIDATION AND EXPERIMENTS

This section demonstrates the feasibility of the proposed solution through a real test-bed; four instances of NOS, running on four Raspberry Pi

platforms, and a variable number of data sources, which virtually run on a personal computer, constitutes the test-bed. Such sources, for validation

purposes, use data from real-world smart home test-bed#. In particular, we use data from smart meter number 2 of Home A, which include, among

the others, electricity consumption data of kitchen lights, bedroom lights, duct heater HRV, and HRV furnace. Note that the home has eight rooms

and includes three full-time occupants. Measures are acquired by means of installed sensors that collect electricity data every minute for the entire

home. To obtain more details about the deployment and data, please refer to Reference 37. Wi-Fi connections are adopted for communications

among the personal computer and the Raspberry Pi platforms (i.e., the NOSs). The same Wi-Fi connection is used for communications with the

MQTT broker. Figure 4 sketches the simulation setup.

In order to demonstrate the effectiveness of the proposed solution, a comparison in terms of computing effort, storage overhead, and

latency has been carried out. Table 1 summarizes the parameters setup in the test-bed. More in detail, NOS fetches data at 10 or 20 pack-

ets per second, corresponding to data acquisition time from sources. The data rate changes, in order to basically infer about the scalability of

the system. The testing scenario has: (i) 14 data sources; (ii) the dimension of a block containing a single transaction is approximately equal to

580 bytes (calculated considering the blocks’ and transactions’ fields, shown in Section 4.1). Moreover, simulations have been measured over a

period of 24 h.

In order to evaluate the efficiency of the proposed solution, a policy change is requested every 0.5 s; while, in reality, policy changes are not so

frequent. Such a frequency, along with the number of connected data sources, obviously influences the memory occupancy as well as the computa-

tional effort. Note that the policy changes’ frequency strictly depends on the application domain. Hence, it can range from a few times a year, as in a

smart home scenario, where access control policies (e.g., remote monitoring of house’s current state, access to the electrical data-set) could change

when new people start or end to live in the house, or in case of absence for vacation, to few minutes or seconds in real-time systems, as in the case

of hierarchical environments/companies (e.g., military applications), where, for example, sudden changes could happen and, as a consequence, the

current policies could depend on the people currently present at a certain moment (e.g., higher authorizations could be disclosed to people owing a

lower grade, for a limited period, in case of emergency).38
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F I G U R E 4 Test-bed

TA B L E 1 Test-bed parameters

Parameter Value

NOSs 4

Data sources 14

Data rate 10 and 20 packets/second

Policy change rate 0.5 requests/second

Block generation time 1 and 2 block/minute

Block dimension 580 byte

Observation time 24 hours

5.1 Storage overhead

As regards storage capacity, the different components of the IoT system have the following storage requirements:

• Data sources have to store credentials for ciphering the data to be transmitted to NOS, as agreed during the registration phase (i.e., only in case

of registered source). Then, they normally send the acquired data to NOS, along with the attached sticky policy. Such a kind of behavior does not

differ from that performed in the NOSs’ system version without the integration with blockchain. Hence, no storage or bandwidth overhead is

recognized on IoT devices/producers. Hence, resource-constrained IoT devices do not have disadvantages from the adoption of the new solution;
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• NOSs do not support the persistent storage of IoT data and related sticky policies for Raw Dataand Normalized Data collections. Still, they have to

maintain the blockchain’s structure. Note that the size of the blockchain increases with each transaction. Since NOSs run on Raspberry Pi plat-

forms, the maximum storage capacity with the actual technology corresponds to 1 gigabyte (i.e., the RAM provided by Raspberry Pi 2 and 3). With

the integration with blockchain, the memory occupancy at runtime increased up to 835 KB on average compared to the previous version. Note

that such results, shown in Figures 5 and 6, do not depend on the frequency of data fetching from sources, but only from the frequency of policies’

F I G U R E 5 Average storage occupancy on NOSs: Whiskers-box diagram with and without blockchain

F I G U R E 6 Average storage occupancy on NOSs: Line graph with and without blockchain
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F I G U R E 7 Time required for NOSs’ storage depletion

change. In particular, from Figure 6, it emerges that a scenario without the blockchain integration and 20 packets/second as the frequency of data

fetching requires more memory than a scenario with the blockchain integration and 10 packets/second as the frequency of data fetching. Hence,

we can conclude that the integration of blockchain does not affect in a relevant way the storage occupancy on NOSs. In this regard, a certain rel-

evance is assumed by analyzing NOS’s storage depletion. To assess such a metric, we tried to stress the system in order to deplete the storage on

one NOS totally; to this end, we run the proposed solution in a network composed of a single NOS, with and without the blockchain-related func-

tionalities. The investigated NOS has 512 MB of RAM (i.e., which corresponds to that provided by the Raspberry Pi 2 model), and Figure 7 shows

the storage occupancy trend during the time. The outcome reveals that the storage is exhausted after almost 24 h in the heaviest scenario (i.e.,

data rate equals to 20 packets/second in the presence of blockchain functionalities). Note that such a result is obtained when the considered IoT

platform is composed of only one NOS, instead of a network of four NOS (as presented at the beginning of Section 5), thus greatly reducing the

distribution of the tasks. Moreover, the policy change rate set to 0.5 requests/second is overstressed in a real scenario. We can conclude that the

system is mostly resilient in normal conditions for such a reason. At the beginning of this section, a realistic view of policies changes’ frequency

is pointed out. A comparison between Figures 6 and 7 further helps in understanding the evolution of memory occupancy during the time in a

normal and in an overstressed situation, respectively.

Finally, in case of running out of storage, supposing that we cannot easily replace NOSs, the solution could be the triggering of a blockchain reset

procedure on the whole NOSs’ network. A trusted administrator should be responsible for initiating the new blockchain. Otherwise, a hierarchical

blockchain storage structure, supported by a cloud, could be adopted,39 in order to keep stored on NOS only the more recent blocks of the blockchain,

while less current blocks reside on the cloud.

5.2 Computing effort

The average CPU load on NOSs is measured in two different situations: (i) the IoT system adopting sticky policies only, as presented in Reference 23;

(ii) the newly proposed solution with blockchain’s integration and policies changes. Figure 8 shows the distribution of the CPU load on the analyzed

NOSs, with a variable data rate, while Figure 9 presents the same results in a line graph representation. As expected, the CPU load slightly increases
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F I G U R E 8 Average CPU load on NOSs: Whiskers-box diagram with and without blockchain

F I G U R E 9 Average CPU load on NOSs: Line graph with and without blockchain
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in the scenarios with the blockchain integration due to the effort required by the execution of isChainValid function (presented in Section 4.1), which

is needed to reach the consensus. However, such an increment is not so high because some energy is saved due to the fact that no information

exchanges are required with TA, as in the previous version of the platform. In fact, in the new system, TA is no longer needed.

While additional studies, covering larger deployments, are needed, the results suggest that the proposed blockchain approach can actually scale

rather well: with a data rate equal to 10 transactions/second, CPU load is below 31.5%, with respect to the 28% of the system without integra-

tion with blockchain; increasing data rate to 20 transactions/second, CPU load is still below 36%, with respect to the 32% without the integration

with blockchain. Despite the required CPU load increase, the proposed solution provides a high level of security, as previously demonstrated in

Section 4.2. Concerning this kind of architecture, there are two approaches to tackling overhead: (i) introducing more NOSs into the network, to bet-

ter balance the effort spent for data analysis, normalization, topic assignment, and resources’ management, in general; (ii) making each NOS more

powerful, by incrementing its computational resources.

5.3 Latency

An important metric to consider is the additional delay introduced by the blockchain mechanism with respect to the previous NOSs’ system inte-

grated with sticky policies.23 The main difference between the two approaches regards the communications among the involved entities. In fact, in

the new version of the network, TA no longer exists, and, therefore, the interactions between NOS and TA do not affect the delay of data transmis-

sion from their reception to the sharing with the subscribers. However, a new delay is introduced by the blockchain mechanism, which consist of: (i)

the generation of the blocks (constructor Block in Section 4.1); (ii) the consensus request (function consensusBlock in Section 4.1); (iii) the validation

of the blockchain (function isChainValid in Section 4.1). Moreover, NOSs must exchange information with each other to correctly validate the block,

thus generating a new traffic overhead, since the previous version of the architecture did not require communication among NOSs.

In both the solutions, NOSs store sticky policies, and transmit them along with data so that recipients can independently determine if they can

access the information or not, based on the assigned permissions; to obtain the access permissions, recipients can subscribe to certain topics and

the subscription is accepted only if the request satisfies the requirements established by the policies associated with the data (and established by

the NOSs’ administrator). If a sticky policy changes for a certain topic, the subscription may become not valid, thus requiring a new subscription.

However, such a mechanism is the same in both approaches. Figures 10 and 11 show the comparison of the distribution and the line graph, respec-

tively, of the generated delays. The graphs demonstrate that the new approach presents an increment in the latency, which can be acceptable in this

F I G U R E 10 Average latency on NOSs: Whiskers-box diagram with and without blockchain
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F I G U R E 11 Average latency on NOSs: Line graph with and without blockchain

scenario, but should be better analyzed in wider environments, including more NOSs. More in detail, by adopting blockchain, with data rates equal

to 10 and 20 transactions/second, latency is below 8 and 11 s, respectively; while, without adopting blockchain, with data rates equal to 10 and 20

transactions/second, latency is below 5 and 7 s, respectively. To cope with the latency issue, we need to lighten communications by reducing the

packets’ size and the information exchanges. The previous section has just pointed out a partial solution concerning the CPU resources. In fact, by

introducing more NOSs or making each NOS more powerful, we can optimize and balance the load on the network, thus reducing the delays.

6 CONCLUSIONS

The article presented the integration of blockchain technology, and an honest-but-curious distributed IoT platform. The work started from the need

to find a solution able to guarantee the confidentiality, integrity, and access control of the data transmitted within the IoT network, without the

need of any central authority and without considering trusted the IoT platform itself. The need for a trusted authority to release access permissions

certainly represents a possible bottleneck, and the vulnerability of policies themselves towards tampering and violations (i.e., in case of malicious

components of the IoT platform) is a serious problem. Such issues have been overcome with the introduction of permissioned blockchains, which

allow transactions to be managed without considering reliable the IoT platform itself and without requiring any centralization. In this way, the dis-

tributed IoT platform is now responsible for the management of the blockchain, thus gaining an important benefit: (i) preserving the resources of

the constrained IoT devices, since a fog layer performs the heaviest security tasks; (ii) protecting the policies; (iii) identifying malicious components

belonging to the IoT distributed platform.

The designed solution has been validated by means of a simple yet real test-bed, composed of four NOSs’ prototypes installed on Raspberry

Pi devices. Note that NOS architecture has been chosen for testing purposes. Performance indices like computing effort, storage overhead, and

latency have been evaluated. Concerning possible threats, we recognized the robustness of the proposed IoT system with respect to integrity,

confidentiality, denial of service, access control, and majority attacks.

As a future development of the presented work, we aim to test the described scenario in a more complex environment, composed a wider num-

ber of data sources, and, possibly, simulating malicious behaviors, in order to carry out further experiments about the performance of the proposed

approach. Moreover, it would be interesting to integrate the envisioned solution in one of the well-known permissioned blockchain frameworks, such
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as Hyperledger Fabric|| or Corda**. Furthermore, we would like to investigate other blockchain techniques (e.g., consensus algorithms) and evaluate

a possible integration in the presented system. Hence, an in-depth analysis of anonymity requirements will also be taken into account in the future.

DATA AVAILABILITY STATEMENT
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