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1 Introduction

In this paper we focus on isogeometric Galerkin discretizations of the weighted
curl-div operator

Lα,βu := α∇ ×∇ × u− β∇∇ · u, 0 < α, β. (1)

This parameter-dependent operator appears in several problems, including the
Stokes equation and Maxwell equations [2]. Moreover, containing a weighting of
the curl and div operators, it captures the essential features of the so-called Alfvén-
like operator [14], which is of interest in magnetohydrodynamics [15]. We note
that Lα,β can be seen as a weighted Laplacian for vector fields (equivalently, Hodge
Laplace for 1-forms). Indeed, when α = β = 1, it is equal to the standard (negative)
vector Laplace operator, i.e.,

∇ ×∇ × u− ∇∇ · u = −∇2u.

We assume that (1) is defined on a sufficiently smooth domain� ∈ R
2 that can be

described through a geometry map G : [0, 1]2 → �, and we consider homogeneous
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Dirichlet (no-slip) boundary conditions, i.e., u = 0 on ∂�. This leads us to the
following variational formulation

(Lα,βu, v) = α(∇ × u,∇ × v)+ β(∇ · u,∇ · v), u, v ∈ (H 1
0 (�)

)2
. (2)

We refer the reader to [3, 15] for a discussion about well-posedness.
To find an approximate solution of the problem Lα,βu = f , with the stated

boundary conditions, we consider the variational formulation (2) in a finite dimen-
sional vector space Vh ⊂

(
H 1

0 (�)
)2, i.e.,

(Lα,βuh, vh) = α(∇ × uh,∇ × vh)+ β(∇ · uh,∇ · vh), uh, vh ∈ Vh. (3)

We focus on isogeometric analysis (IgA) as discretization technique, where the
approximation space Vh is chosen to be composed of vector fields whose compo-
nents are linear combinations of tensor-product B-splines mapped according to G.

The discretization (3) leads to solving linear systems, which turn out to be
severely ill-conditioned and require ad hoc fast solvers for a proper treatment
[4, 6, 15]. This requires a deep understanding of the spectral properties of the related
matrices. They depend on many factors: the problem parameters α, β, the basic curl
and div operators, the mesh-size, the degree of the B-spline approximation, and the
map G used to describe the geometry of the computational domain.

In this paper we provide a spectral study of these matrices using the theory of
(multilevel block) Toeplitz [13, 17, 19] and generalized locally Toeplitz [10–12]
sequences. More precisely, we show that such matrices admit a spectral distribution
which can be described in terms of a so-called spectral symbol. We determine this
spectral symbol and we reveal its dependence on the characteristic parameters of
the problem listed above. The spectral analysis presented in this paper extends the
results of [15] to the case of non-trivial geometry and relies on the spectral theory
developed for isogeometric discretizations of elliptic problems in [7, 8]. We also
refer the reader to [16] for a spectral analysis of the curl-curl operator.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
notations and definitions relevant for our spectral analysis, and we recall the basics
of B-splines. In Sect. 3 we detail the IgA discretization matrices and we perform a
spectral analysis of them. We numerically illustrate those results in Sect. 4. Finally,
we conclude the paper in Sect. 5.

2 Preliminaries

In this section we collect some preliminary tools on spectral analysis and IgA
discretizations. In particular, we recall the formal definition of spectral distribution
for a general matrix-sequence and the definition of (cardinal) B-splines.
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2.1 Spectral Distribution

Throughout the paper, we follow the standard convention for operations with multi-
indices (see e.g. [9, 18]). Given a multi-index n := (n1, . . . , nd) ∈ N

d , we say
n → ∞ if ni → ∞, i = 1, . . . , d . Let C0(C) be the set of continuous functions
F : C→ C with compact support.

Definition 1 Let f : D → C
s×s be a measurable matrix-valued function, defined

on a measurable set D ⊂ R
q with q ≥ 1, 0 < μq(D) < ∞, where μq is the

Lebesgue measure. Let {An}n be a matrix-sequence with dim(An) =: dn and dn →
∞ as n → ∞. Then, {An}n is distributed like the pair (f,D) in the sense of the
eigenvalues, denoted by {An}n ∼λ (f,D), if the following limit relation holds for
all F ∈ C0(C):

lim
n→∞

1

dn

dn∑

j=1

F(λj (An)) = 1

μq(D)

∫

D

∑s
i=1 F(λi(f (t)))

s
dt, (4)

where λj (An), j = 1, . . . , dn are the eigenvalues of An and λi(f ), i = 1, . . . , s are
the eigenvalues of f . We say that f is the (spectral) symbol of the matrix-sequence
{An}n.

If f is smooth enough and the matrix-size of An is sufficiently large, then the
limit relation (4) has the following informal meaning: a first set of dn/s eigenvalues
of An is approximated by a sampling of λ1(f ) on a uniform equispaced grid of the
domain D, a second set of dn/s eigenvalues of An is approximated by a sampling of
λ2(f ) on a uniform equispaced grid of the domain D, and so on, up to few outliers.

In general, understanding whether a matrix-sequence admits a symbol and how
to compute it is not an easy task. On the other hand, any “reasonable” approximation
of partial differential equations by local methods leads to matrix-sequences that are
in the so-called generalized locally Toeplitz (GLT) algebra, and so admit a symbol
[10–12]. The IgA discretization of our curl-div problem (3) fits in this frame.

2.2 B-Splines

For p ≥ 0 and n ≥ 1, consider the uniform knot sequence

ξ1 = · · · = ξp+1 := 0 < ξp+2 < · · · < ξp+n < 1 =: ξp+n+1 = · · · = ξ2p+n+1,

where ξi+p+1 := i
n

, i = 0, . . . , n. This knot sequence allows us to define n + p

B-splines of degree p. Let χI denote the characteristic function on the interval I .

Definition 2 The B-splines of degree p over a uniform mesh of [0, 1], consisting
of n intervals, are denoted by N

p

i : [0, 1] → R, i = 1, . . . , n + p, and defined
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recursively as follows: for 1 ≤ i ≤ n+ 2p,

N0
i (x) := χ[ξi ,ξi+1)(x);

for 1 ≤ k ≤ p and 1 ≤ i ≤ n+ 2p − k,

Nk
i (x) :=

x − ξi

ξi+k − ξi
Nk−1

i (x)+ ξi+k+1 − x

ξi+k+1 − ξi+1
Nk−1

i+1 (x),

where a fraction with zero denominator is assumed to be zero.

It is well known (see e.g. [1]) that the B-splines N
p
i , i = 1, . . . , n + p, form a

basis, and

N
p
i (0) = N

p
i (1) = 0, i = 2, . . . , n+ p − 1. (5)

The central B-splines N
p

i , i = p + 1, . . . , n, are uniformly shifted and scaled
versions of a single shape function, the so-called cardinal B-spline φp : R→ R,

φ0(t) := χ[0,1)(t), φp(t) := t

p
φp−1(t)+ p + 1− t

p
φp−1(t − 1), p ≥ 1.

More precisely, we have

N
p
i (x) = φp(nx − i + p + 1), i = p + 1, . . . , n.

The cardinal B-spline φp is a Cp−1 function which is locally supported on the
interval [0, p + 1].

Finally, we recall the definition of tensor-product B-splines.

Definition 3 The tensor-product B-splines of bi-degree p := (p1, p2) over a
uniform mesh of [0, 1]2, consisting of n := (n1, n2) intervals in each direction,
are denoted by N

p
i : [0, 1]2 → R, i = 1, . . . ,n + p, and defined as

N
p
i := N

p1
i1
⊗N

p2
i2

,

where 1 := (1, 1) and i := (i1, i2) ∈ N
2.

We define the tensor-product spline space Sp
n as

S
p
n := span

{
N

p
i : i = 2, . . . ,n + p − 1

}
. (6)

Note that all the elements of this space vanish at the boundary of [0, 1]2; see (5).
Hence, the space incorporates homogeneous Dirichlet boundary conditions.
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3 Spectral Analysis of Isogeometric Discretizations in 2D

Suppose that the physical domain � can be described by a global geometry map,
G := [G1,G2]T , G : �̂ → �, which is invertible in the parametric domain �̂ :=
[0, 1]2 and satisfies G(∂�̂) = ∂�. Let

Vh = span
{
φ
p,1
i1,i2

, φ
p,2
j1,j2
: il , jl = 2, . . . , n+ p − 1; l = 1, 2

}
, (7)

where

φ
p,1
i1,i2
:=

[
ϕi1,i2

0

]
, φ

p,2
j1,j2
:=

[
0

ϕj1,j2

]
,

and for kl ∈ {il, jl}, l = 1, 2,

ϕk1,k2(x1, x2) := ϕ̂k1,k2(G
−1(x1, x2)) = ϕ̂k1,k2(x̂1, x̂2), (x1, x2) = G(x̂1, x̂2).

Then, we set ϕ̂k1,k2 = N
p
k1
⊗ N

p
k2

, i.e., the tensor-product B-splines in (6). For
simplicity of notation, we have taken n1 = n2 = n and p1 = p2 = p. Also note
that

∇ϕk1,k2 = (JG)−T∇(Np
k1
⊗N

p
k2
)

= 1

det(JG)

⎡

⎣
∂G2
∂x̂2

(N
p
k1
)′ ⊗N

p
k2
− ∂G2

∂x̂1
N

p
k1
⊗ (N

p
k2
)′

− ∂G1
∂x̂2

(N
p

k1
)′ ⊗N

p

k2
+ ∂G1

∂x̂1
N

p

k1
⊗ (N

p

k2
)′

⎤

⎦ ,

where

JG :=
⎡

⎣
∂G1
∂x̂1

∂G1
∂x̂2

∂G2
∂x̂1

∂G2
∂x̂2

⎤

⎦ .

In the following, we start by discussing the coefficient matrices arising from
the IgA discretization of a generalized Poisson problem. Then, we construct the
coefficient matrices related to the IgA discretization of our curl-div problem (3)
using (7), and we perform a spectral analysis.

3.1 Matrices Related to a Generalized Poisson Problem

Let us focus on the following bivariate generalized Poisson operator:

LKu := −∇ ·K∇u, (8)
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where K : � → R
2×2, and consider homogeneous Dirichlet boundary conditions,

i.e., u = 0 on ∂�. From [8] we know that the Galerkin discretization of (8) using
one component of the space (7) leads to the coefficient matrix Ap,K

n,G defined by

[
Ap,K

n,G

]

i,j
:=

∫

�̂

[
∇(Np

j1+1 ⊗N
p

j2+1)
T KG ∇(Np

i1+1 ⊗N
p

i2+1)
]
| det(JG)|,

where

KG := (JG)−1K(G)(JG)−T .

It has been proved in [8] that such matrices admit a spectral distribution according
to Definition 1. To this end, let us define

Hp :=
[
sp ⊗mp ap ⊗ ap
ap ⊗ ap mp ⊗ sp

]
,

with

mp(θ) := φ2p+1(p + 1)+ 2
p∑

k=1

φ2p+1(p + 1− k) cos(kθ),

ap(θ) := −2
p∑

k=1

φ′2p+1(p + 1− k) sin(kθ),

sp(θ) := −φ′′2p+1(p + 1)− 2
p∑

k=1

φ′′2p+1(p + 1− k) cos(kθ).

Theorem 1 Let G be a regular geometry map, i.e., G ∈ C1([0, 1]2) and det(JG) �=
0 in [0, 1]2, and let K be a symmetric matrix. Then, the matrix-sequence {Ap,K

n,G }n
with n = (n, n) is distributed, in the sense of the eigenvalues, like the function

f
p,K

G (x̂, θ ) := [1 1] (| det(JG(x̂))|KG(x̂) ◦Hp(θ)
) [1 1]T , (9)

where x̂ ∈ [0, 1]2, θ ∈ [−π, π]2, and ◦ is the Hadamard matrix product.

We refer the reader to [8, 9] for a detailed discussion about the symbol (9).
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3.2 Matrices Related to Our Curl-Div Problem

We can reformulate (1) in 2D as

Lα,βu = α

⎡

⎢⎣
∂2u2
∂x1x2

− ∂2u1
∂x2

2
∂2u1
∂x1x2

− ∂2u2
∂x2

1

⎤

⎥⎦− β

⎡

⎢⎣
∂2u2
∂x1x2

+ ∂2u1
∂x2

1
∂2u1
∂x1x2

+ ∂2u2
∂x2

2

⎤

⎥⎦ , (10)

where u(x1, x2) := [u1(x1, x2), u2(x1, x2)]T . When discretizing the weak form (3)
using the space (7) we arrive at the 2× 2 block matrix

Ap,α,β

n,G := α

[
Ap,curl

n,11 Ap,curl
n,12

Ap,curl
n,21 Ap,curl

n,22

]
+ β

[
Ap,div

n,11 Ap,div
n,12

Ap,div
n,21 Ap,div

n,22

]
.

The blocks related to the curl-curl operator (∇ × ·,∇ × ·) are given by

[
Ap,curl

n,11

]

i,j
=
∫

�̂

[
− ∂G1

∂x̂2
(N

p
j1+1)

′ ⊗N
p
j2+1 + ∂G1

∂x̂1
N

p
j1+1 ⊗ (N

p
j2+1)

′
]

[
− ∂G1

∂x̂2
(N

p
i1+1)

′ ⊗N
p
i2+1 + ∂G1

∂x̂1
N

p
i1+1 ⊗ (N

p
i2+1)

′
] 1

| det(JG)| ,
[
Ap,curl

n,12

]

i,j
= −

∫

�̂

[
∂G2
∂x̂2

(N
p

j1+1)
′ ⊗N

p

j2+1 − ∂G2
∂x̂1

N
p

j1+1 ⊗ (N
p

j2+1)
′
]

[
− ∂G1

∂x̂2
(N

p

i1+1)
′ ⊗N

p

i2+1 + ∂G1
∂x̂1

N
p

i1+1 ⊗ (N
p

i2+1)
′
] 1

| det(JG)| ,
[
Ap,curl

n,22

]

i,j
=
∫

�̂

[
∂G2
∂x̂2

(N
p
j1+1)

′ ⊗N
p
j2+1 − ∂G2

∂x̂1
N

p
j1+1 ⊗ (N

p
j2+1)

′
]

[
∂G2
∂x̂2

(N
p
i1+1)

′ ⊗N
p
i2+1 − ∂G2

∂x̂1
N

p
i1+1 ⊗ (N

p
i2+1)

′
] 1

| det(JG)| ,

and Ap,curl
n,21 = Ap,curl

n,12 . Note that all those blocks are symmetric matrices. Similarly,
the blocks related to the div-div operator (∇·,∇·) are given by (see also (10))

Ap,div
n,11 = Ap,curl

n,22 , Ap,div
n,12 = Ap,div

n,21 = −Ap,curl
n,12 , Ap,div

n,22 = Ap,curl
n,11 .

In the next subsection we compute the symbol of the matrix-sequence {Ap,α,β

n,G }n.
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3.3 Spectral Symbol of Curl-Div Matrices Ap,α,β

n,G

We are now ready for the main contribution of the paper: we show that the matrix-
sequence {Ap,α,β

n,G }n admits a spectral distribution according to Definition 1. This
extends the symbol computation in [15] to the case of non-trivial geometry.

Theorem 2 Let G be a regular geometry map, i.e., G ∈ C1([0, 1]2) and det(JG) �=
0 in [0, 1]2. Then, the matrix-sequence {Ap,α,β

n,G }n with n = (n, n) is distributed, in
the sense of the eigenvalues, like the 2× 2 matrix-valued function

f
p,α,β

G (x̂, θ) := αf
p,curl
G (x̂, θ)+ βf

p,div
G (x̂, θ), (11)

where x̂ ∈ [0, 1]2, θ ∈ [−π, π]2, and

f
p,curl
G (x̂, θ) := 1

| det(JG(x̂))| JG(x̂) P Hp(θ) P
T (JG(x̂))T , P :=

[
0 1
−1 0

]
,

f
p,div
G (x̂, θ) := | det(JG(x̂))| (JG(x̂))−T Hp(θ) (JG(x̂))−1.

Proof From (10) it follows that the block Ap,curl
n,11 corresponds to the isogeometric

discretization of − ∂2u1
∂x2

2
. By means of a direct computation we can verify that

Theorem 1, with

K =
[

0 0
0 1

]
,

ensures that the matrix-sequence {Ap,curl
n,11 }n is distributed in the sense of the

eigenvalues like the entry (1, 1) of the matrix f
p,curl
G . The same argument (using

a suitable matrix K) can also be applied to the remaining blocks. Then, it can be
checked that all the considered blocks satisfy the hypotheses of [10, Theorem 5],
which implies that Ap,α,β

n,G is similar, via a proper permutation matrix, to a matrix

Tp,α,β

n,G such that the matrix-sequence {Tp,α,β

n,G }n has its symbol given by (11). %&
In the context of IgA, the geometry map G is expressed in terms of the same

B-spline basis as used for the discretization space. However, as can be seen from
the proof, the spectral result in the above theorem holds for any (smooth enough)
geometry map.

Finally, we remark that the p-dependence of the symbol in (11) is completely
captured by the matrix Hp(θ). As described in Sect. 3.1 this matrix also appears in
the symbol expression of a generalized Poisson problem; its properties have been
discussed in [5, 8].
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4 Numerical Example

In this section we numerically illustrate the spectral results obtained in Sect. 3.3,
using the same test problem as in [15, Sect. 5]. More precisely, we consider (3)
defined on a quarter of an annulus,

� = {(x1, x2) ∈ R
2 : r2 < x2

1 + x2
2 < R2, x1 > 0, x2 > 0}, r = 1, R = 4,

with

G(x̂1, x̂2) =

⎧
⎪⎨

⎪⎩

x1 = [r + x̂1(R − r)] cos
(
π
2 x̂2

)

x2 = [r + x̂1(R − r)] sin
(
π
2 x̂2

) , (x̂1, x̂2) ∈ [0, 1]2.

Let us fix n := (n, n) ∈ N
2, p := (p, p) ∈ N

2 and m ∈ N
2 such that m2 =

n+ p − 2. We start by defining two equispaced grids on [0, 1]2 and [0, π]2:

xj := j

m− 1
, θk := kπ

m− 1
, j , k = 0, . . . ,m− 1.

Then, we denote by *i the set of all evaluations of λi(f
p,α,β

G ) on � := {(xj , θk),
j , k = 0, . . . ,m − 1} for a fixed i ∈ {1, 2}. Note that it suffices to consider
only [0, π]2 because the symbol (11) is symmetric on [−π, π]2, and hence also
its eigenvalue functions.

In Fig. 1 we numerically check relation (11) by comparing the eigenvalues of
Ap,α,β

n,G with the values collected in * = {*1,*2}, ordered in ascending way, for
α = 1 and β = 0.1. We observe that, in a complete agreement with the theory,
the considered sampling of λi(f

p,α,β

G ), i = 1, 2, describes quite accurately the

behavior of the eigenvalues of Ap,α,β

n,G , also for relatively small matrix-sizes, up to
few outliers.

5 Conclusions

We have analyzed the spectral properties of matrix-sequences arising from isogeo-
metric Galerkin methods for weighted curl-div operators on general planar domains,
considering a non-trivial geometry map. More precisely, we have shown that an
(asymptotic) spectral distribution exists and it is compactly described by a 2 × 2
spectral symbol. In other words, the eigenvalues of the matrices we are dealing
with can be approximated accurately by a uniform sampling of the two eigenvalue
functions of the 2 × 2 symbol matrix. The symbol depends on the characteristic
parameters of the problem and on the geometry of the physical domain. Its formal
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Fig. 1 Comparison of the eigenvalues of Ap,α,β

n,G (open circle) with * = {*1,*2} collecting

uniform samples of λi(f
p,α,β

G ), i = 1, 2 (asterisk), ordered in ascending way, varying both n and
p, and fixing α = 1 and β = 0.1. (a) p = 3, n = 15. (b) p = 3, n = 35. (c) p = 4, n = 14. (d)
p = 4, n = 34. (e) p = 5, n = 13. (f) p = 5, n = 33
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structure nicely mimics the structure of the differential problem. The numerical
results show a very good matching between the true eigenvalues and the estimates
provided by the symbol, already for relatively small matrix-sizes.

The convergence of iterative solvers for linear systems strongly depends on the
spectral behavior of the corresponding coefficient matrices. Since the symbol gives a
precise description of the spectrum of the curl-div matrix Ap,α,β

n,G , it could be helpful
in the design of good preconditioners that lead to better performance than current
solution strategies, like the one in [15, Sect. 5].
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