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Abstract: The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for
computing the asymptotic spectral distribution of matrices An arising from virtually any kind of
numerical discretization of differential equations (DEs). Indeed, when the mesh fineness parameter
n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be
a GLT sequence or one of its “relatives”, i.e., a block GLT sequence or a reduced GLT sequence.
In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as
in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the
applicative interest, a solid theory of block GLT sequences has been developed only recently, in 2018.
The purpose of the present paper is to illustrate the potential of this theory by presenting a few
noteworthy examples of applications in the context of DE discretizations.

Keywords: spectral (eigenvalue) and singular value distributions; generalized locally Toeplitz
sequences; discretization of systems of differential equations; higher-order finite element methods;
discontinuous Galerkin methods; finite difference methods; isogeometric analysis; B-splines; curl–curl
operator; time harmonic Maxwell’s equations and magnetostatic problems
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1. Introduction

The theory of generalized locally Toeplitz (GLT) sequences stems from Tilli’s work on locally
Toeplitz (LT) sequences [1] and from the spectral theory of Toeplitz matrices [2–12]. It was then carried
forward in [13–16], and was recently extended by Barbarino [17]. This theory is a powerful apparatus
for computing the asymptotic spectral distribution of matrices arising from the numerical discretization
of continuous problems, such as integral equations (IEs) and, especially, differential equations (DEs).
The experience reveals that virtually any kind of numerical methods for the discretization of DEs
gives rise to structured matrices An whose asymptotic spectral distribution, as the mesh fineness
parameter n tends to infinity, can be computed through the theory of GLT sequences. We refer the
reader to ([13] Section 10.5), ([14] Section 7.3), and [15,16,18] for applications of the theory of GLT
sequences in the context of finite difference (FD) discretizations of DEs; to ([13] Section 10.6), ([14]
Section 7.4), and [16,18,19] for the finite element (FE) case; to [20] for the finite volume (FV) case;
to ([13] Section 10.7), ([14] Sections 7.5–7.7), and [21–26] for the case of isogeometric analysis (IgA)
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discretizations, both in the collocation and Galerkin frameworks; and to [27] for a further recent
application to fractional DEs. We also refer the reader to ([13] Section 10.4) and [28,29] for a look at the
GLT approach for sequences of matrices arising from IE discretizations.

It is worth emphasizing that the asymptotic spectral distribution of DE discretization matrices,
whose computation is the main objective of the theory of GLT sequences, is not only interesting
from a theoretical viewpoint, but can also be used for practical purposes. For example, it is
known that the convergence properties of mainstream iterative solvers, such as multigrid and
preconditioned Krylov methods, strongly depend on the spectral features of the matrices to which
they are applied. The spectral distribution can then be exploited to design efficient solvers of this
kind and to analyze/predict their performance. In this regard, we recall that noteworthy estimates
on the superlinear convergence of the conjugate gradient method obtained by Beckermann and
Kuijlaars in [30] are closely related to the asymptotic spectral distribution of the considered matrices.
Furthermore, in the context of Galerkin and collocation IgA discretizations of elliptic DEs, the spectral
distribution computed through the theory of GLT sequences in a series of recent papers [21–25] was
exploited in [31–33] to devise and analyze optimal and robust multigrid solvers for IgA linear systems.

In the very recent work [34], starting from the original intuition by the third author ([16]
Section 3.3), the theory of block GLT sequences has been developed in a systematic way as an
extension of the theory of GLT sequences. Such an extension is of the utmost importance in
practical applications. In particular, it provides the necessary tools for computing the spectral
distribution of block structured matrices arising from the discretization of systems of DEs ([16]
Section 3.3) and from the higher-order finite element or discontinuous Galerkin approximation of
scalar/vectorial DEs [35–37]. The purpose of this paper is to illustrate the potential of the theory of
block GLT sequences [34] and of its multivariate version—which combines the results of [34] with
the “multivariate technicalities” from [14]—by presenting a few noteworthy examples of applications.
Actually, the present paper can be seen as a necessary completion of the purely theoretical work [34].

The paper is organized as follows. In Section 2, we report a summary of the theory of block
GLT sequences. In Section 3, we focus on the FD discretization of a model system of univariate
DEs; through the theory of block GLT sequences, we compute the spectral distribution of the related
discretization matrices. In Section 4, we focus on the higher-order FE approximation of the univariate
diffusion equation; again, we compute the spectral distribution of the associated discretization matrices
through the theory of block GLT sequences. In Section 5, we summarize the multivariate version
of the theory of block GLT sequences, also known as the theory of multilevel block GLT sequences.
In Section 6, we describe the general GLT approach for computing the spectral distribution of matrices
arising from the discretization of systems of partial differential equations (PDEs). In Section 7, we
focus on the B-spline IgA approximation of a bivariate variational problem for the curl–curl operator,
which is of interest in magnetostatics; through the theory of multilevel block GLT sequences, we
compute the spectral distribution of the related discretization matrices. Final considerations are
collected in Section 8.

2. The Theory of Block GLT Sequences

In this section, we summarize the theory of block GLT sequences, which was originally introduced
in ([16] Section 3.3) and has been recently revised and systematically developed in [34].

Sequences of Matrices and Block Matrix-Sequences. Throughout this paper, a sequence of matrices
is any sequence of the form {An}n, where An is a square matrix of size dn and dn → ∞ as n → ∞.
Let s ≥ 1 be a fixed positive integer independent of n; an s-block matrix-sequence (or simply a
matrix-sequence if s can be inferred from the context or we do not need/want to specify it) is a special
sequence of matrices {An}n in which the size of An is dn = sn.

Singular Value and Eigenvalue Distribution of a Sequence of Matrices. Let µk be the Lebesgue
measure in Rk. Throughout this paper, all the terminology from measure theory (such as “measurable
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set”, “measurable function”, “a.e.”, etc.) is referred to the Lebesgue measure. A matrix-valued function
f : D ⊆ Rk → Cr×r is said to be measurable (resp., continuous, Riemann-integrable, in Lp(D), etc.)
if its components fαβ : D → C, α, β = 1, . . . , r, are measurable (resp., continuous, Riemann-integrable,
in Lp(D), etc.). We denote by Cc(R) (resp., Cc(C)) the space of continuous complex-valued functions
with bounded support defined on R (resp., C). If A ∈ Cm×m, the singular values and the eigenvalues
of A are denoted by σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A), respectively.

Definition 1. Let {An}n be a sequence of matrices, with An of size dn, and let f : D ⊂ Rk → Cr×r be a
measurable function defined on a set D with 0 < µk(D) < ∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f , and we write
{An}n ∼σ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(σi(An)) =
1

µk(D)

∫
D

∑r
i=1 F(σi( f (x)))

r
dx, ∀ F ∈ Cc(R). (1)

In this case, f is referred to as a singular value symbol of {An}n.
• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described by f , and we write

{An}n ∼λ f , if

lim
n→∞

1
dn

dn

∑
i=1

F(λi(An)) =
1

µk(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C). (2)

In this case, f is referred to as a spectral (or eigenvalue) symbol of {An}n.

If {An}n has both a singular value and an eigenvalue distribution described by f , we write {An}n ∼σ,λ f .

We note that Definition 1 is well-posed because the functions x 7→ ∑r
i=1 F(σi( f (x))) and x 7→

∑r
i=1 F(λi( f (x))) are measurable ([34] Lemma 2.1). Whenever we write a relation such as {An}n ∼σ f

or {An}n ∼λ f , it is understood that f is as in Definition 1; that is, f is a measurable function defined
on a subset D of some Rk with 0 < µk(D) < ∞, and f takes values in Cr×r for some r ≥ 1.

Remark 1. The informal meaning behind the spectral distribution (2) is the following: assuming that f possesses
r Riemann-integrable eigenvalue functions λi( f (x)), i = 1, . . . , r, the eigenvalues of An, except possibly for
o(dn) outliers, can be subdivided into r different subsets of approximately the same cardinality; and, for n large
enough, the eigenvalues belonging to the ith subset are approximately equal to the samples of the ith eigenvalue
function λi( f (x)) over a uniform grid in the domain D. For instance, if k = 1, dn = nr, and D = [a, b], then,
assuming we have no outliers, the eigenvalues of An are approximately equal to

λi

(
f
(

a + j
b− a

n

))
, j = 1, . . . , n, i = 1, . . . , r,

for n large enough; similarly, if k = 2, dn = n2r, and D = [a1, b1]× [a2, b2], then, assuming we have no
outliers, the eigenvalues of An are approximately equal to

λi

(
f
(

a1 + j1
b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , r,

for n large enough; and so on for k ≥ 3. A completely analogous meaning can also be given for the singular
value distribution (1).
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Remark 2. Let D = [a1, b1]× · · · × [ak, bk] ⊂ Rk and let f : D → Cr×r be a measurable function possessing
r real-valued Riemann-integrable eigenvalue functions λi( f (x)), i = 1, . . . , r. Compute for each ρ ∈ N the
uniform samples

λi

(
f
(

a1 + j1
b1 − a1

ρ
, . . . , ak + jk

bk − ak
ρ

))
, j1, . . . , jk = 1, . . . , ρ, i = 1, . . . , r,

sort them in non-decreasing order and put them in a vector (ς1, ς2, . . . , ςrρk ). Let φρ : [0, 1] → R be the
piecewise linear non-decreasing function that interpolates the samples (ς0 = ς1, ς1, ς2, . . . , ςrρk ) over the nodes
(0, 1

rρk , 2
rρk , . . . , 1), i.e., 

φρ

( i
rρk

)
= ςi, i = 0, . . . , rρk,

φρ linear on
[

i
rρk ,

i + 1
rρk

]
for i = 0, . . . , rρk − 1.

Suppose φρ converges in measure over [0, 1] to some function φ as ρ→ ∞ (this is always the case in real-world
applications). Then,

∫ 1

0
F(φ(t))dt =

1
µk(D)

∫
D

∑r
i=1 F(λi( f (x)))

r
dx, ∀ F ∈ Cc(C). (3)

This result can be proved by adapting the argument used in ([13] solution of Exercise 3.1). The function φ is
referred to as the canonical rearranged version of f . What is interesting about φ is that, by (3), if {An}n ∼λ f
then {An}n ∼λ φ, i.e., if f is a spectral symbol of {An}n then the same is true for φ. Moreover, φ is a
univariate scalar function and hence it is much easier to handle than f . According to Remark 1, assuming that
φ is Riemann-integrable, if we have {An}n ∼λ f (and hence also {An}n ∼λ φ), then, for n large enough,
the eigenvalues of An, with the possible exception of o(dn) outliers, are approximately equal to the samples of φ

over a uniform grid in [0, 1].

The next two theorems are useful tools for computing the spectral distribution of sequences
formed by Hermitian or perturbed Hermitian matrices. For the related proofs, we refer the reader
to ([38] Theorem 4.3) and ([39] Theorem 1.1). In the following, the conjugate transpose of the matrix
A is denoted by A∗. If A ∈ Cm×m and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A,
i.e., the p-norm of the vector (σ1(A), . . . , σm(A)). The Schatten ∞-norm ‖A‖∞ is the largest singular
value of A and coincides with the spectral norm ‖A‖. The Schatten 1-norm ‖A‖1 is the sum of the
singular values of A and is often referred to as the trace-norm of A. The Schatten 2-norm ‖A‖2

coincides with the Frobenius norm of A. For more on Schatten p-norms, see [40].

Theorem 1. Let {Xn}n be a sequence of matrices, with Xn Hermitian of size dn, and let {Pn}n be a sequence
such that Pn ∈ Cdn×δn , P∗n Pn = Iδn , δn ≤ dn and δn/dn → 1 as n → ∞. Then, {Xn}n ∼σ,λ κ if and only if
{P∗n XnPn}n ∼σ,λ κ.

Theorem 2. Let {Xn}n and {Yn}n be sequences of matrices, with Xn and Yn of size dn. Assume that:

• the matrices Xn are Hermitian and {Xn}n ∼λ κ;
• ‖Yn‖2 = o(

√
dn);

then {Xn + Yn}n ∼λ κ.

Block Toeplitz Matrices. Given a function f : [−π, π]→ Cs×s in L1([−π, π]), its Fourier coefficients
are denoted by

fk =
1

2π

∫ π

−π
f (θ)e−ikθdθ ∈ Cs×s, k ∈ Z,
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where the integrals are computed componentwise. The nth block Toeplitz matrix generated by f is
defined as

Tn( f ) = [ fi−j]
n
i,j=1 ∈ Csn×sn.

It is not difficult to see that all the matrices Tn( f ) are Hermitian when f is Hermitian a.e.

Block Diagonal Sampling Matrices. For n ∈ N and a : [0, 1] → Cs×s, we define the block diagonal
sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
=


a( 1

n )

a( 2
n )

. . .
a(1)

 ∈ Csn×sn.

Zero-Distributed Sequences. A sequence of matrices {Zn}n such that {Zn}n ∼σ 0 is referred to as
a zero-distributed sequence. Note that, for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or

(throughout this paper, Om and Im denote the m × m zero matrix and the m × m identity matrix,
respectively). Proposition 1 provides an important characterization of zero-distributed sequences
together with a useful sufficient condition for detecting such sequences. Throughout this paper, we
use the natural convention 1/∞ = 0.

Proposition 1. Let {Zn}n be a sequence of matrices, with Zn of size dn.

• {Zn}n is zero-distributed if and only if Zn = Rn + Nn with rank(Rn)/dn → 0 and ‖Nn‖ → 0.
• {Zn}n is zero-distributed if there exists a p ∈ [1, ∞] such that ‖Zn‖p/(dn)1/p → 0.

Approximating Classes of Sequences. The notion of approximating classes of sequences (a.c.s.) is the
fundamental concept on which the theory of block GLT sequences is based.

Definition 2. Let {An}n be a sequence of matrices, with An of size dn, and let {{Bn,m}n}m be a sequence of
sequences of matrices, with Bn,m of size dn. We say that {{Bn,m}n}m is an approximating class of sequences
(a.c.s.) for {An}n if the following condition is met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m + Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for large m, the sequence {Bn,m}n

approximates {An}n in the sense that An is eventually equal to Bn,m plus a small-rank matrix
(with respect to the matrix size dn) plus a small-norm matrix. It turns out that, for each fixed sequence
of positive integers dn such that dn → ∞, the notion of a.c.s. is a notion of convergence in the space

E = {{An}n : An ∈ Cdn×dn}.

More precisely, there exists a pseudometric da.c.s. in E such that {{Bn,m}n}m is an a.c.s. for {An}n

if and only if da.c.s.({Bn,m}n, {An}n) → 0 as m → ∞. We therefore use the convergence notation
{Bn,m}n

a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. A useful criterion to identify an
a.c.s. is provided in the next proposition ([13] Corollary 5.3).

Proposition 2. Let {An}n be a sequence of matrices, with An of size dn, let {{Bn,m}n}m be a sequence of
sequences of matrices, with Bn,m of size dn, and let p ∈ [1, ∞]. Suppose that for every m there exists nm such
that, for n ≥ nm,

‖An − Bn,m‖p ≤ ε(m, n)(dn)
1/p,
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where lim
m→∞

lim sup
n→∞

ε(m, n) = 0. Then, {Bn,m}n
a.c.s.−→ {An}n.

If X ∈ Cm1×m2 and Y ∈ C`1×`2 are any two matrices, the tensor (Kronecker) product of X and Y is
the m1`1 ×m2`2 matrix defined as follows:

X⊗Y = [xijY]i=1,...,m1
j=1,...,m2

=

 x11Y · · · x1m2Y
...

...
xm11Y · · · xm1m2Y

 .

We recall that the tensor product operation ⊗ is associative and bilinear. Moreover,

‖X⊗Y‖ = ‖X‖ ‖Y‖, (4)

rank(X⊗Y) = rank(X)rank(Y), (5)

(X⊗Y)T = XT ⊗YT . (6)

Finally, if X1, X2 can be multiplied and Y1, Y2 can be multiplied, then

(X1 ⊗Y1)(X2 ⊗Y2) = (X1X2)⊗ (Y1Y2). (7)

Lemma 1. For i, j = 1, . . . , s, let {An,ij}n be a sequence of matrices and suppose that {B(m)
n,ij }n

a.c.s.−→
{An,ij}n. Then,

[B(m)
n,ij ]

s
i,j=1

a.c.s.−→ [An,ij]
s
i,j=1.

Proof. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Note that

[An,ij]
s
i,j=1 =

s

∑
i,j=1

Eij ⊗ An,ij, [B(m)
n,ij ]

s
i,j=1 =

s

∑
i,j=1

Eij ⊗ B(m)
n,ij . (8)

Since {B(m)
n,ij }n

a.c.s.−→ {An,ij}n, it is clear from (4), (5) and the definition of a.c.s. that

Eij ⊗ B(m)
n,ij

a.c.s.−→ Eij ⊗ An,ij, i, j = 1, . . . , s. (9)

Now, if {B[k]
n,m}n

a.c.s.−→ {A[k]
n }n for k = 1, . . . , K then {∑K

k=1 B[k]
n,m}n

a.c.s.−→ {∑K
k=1 A[k]

n }n (this is an obvious
consequence of the definition of a.c.s.). Thus, the thesis follows from (8) and (9).

Block GLT Sequences. Let s ≥ 1 be a fixed positive integer. An s-block GLT sequence (or simply a GLT
sequence if s can be inferred from the context or we do not need/want to specify it) is a special s-block
matrix-sequence {An}n equipped with a measurable function κ : [0, 1]× [−π, π]→ Cs×s, the so-called
symbol. We use the notation {An}n ∼GLT κ to indicate that {An}n is a GLT sequence with symbol κ.
The symbol of a GLT sequence is unique in the sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then
κ = ς a.e. in [0, 1]× [−π, π]. The main properties of s-block GLT sequences proved in [34] are listed
below. If A is a matrix, we denote by A† the Moore–Penrose pseudoinverse of A (recall that A† = A−1

whenever A is invertible). If fm, f : D ⊆ Rk → Cr×r are measurable matrix-valued functions, we say
that fm converges to f in measure (resp., a.e., in Lp(D), etc.) if ( fm)αβ converges to fαβ in measure
(resp., a.e., in Lp(D), etc.) for all α, β = 1, . . . , r.
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GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If, moreover, each An is Hermitian, then {An}n ∼λ κ.
GLT 2. We have:

• {Tn( f )}n ∼GLT κ(x, θ) = f (θ) if f : [−π, π]→ Cs×s is in L1([−π, π]);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]→ Cs×s is Riemann-integrable;
• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς, then:
• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT 4. {An}n ∼GLT κ if and only if there exist s-block GLT sequences {Bn,m}n ∼GLT κm such that
{Bn,m}n

a.c.s.−→ {An}n and κm → κ in measure.

Remark 3. The reader might be astonished by the fact that we have talked so far about block GLT sequences
without defining them. Actually, we intentionally avoided giving a definition for two reasons. First, the definition
is rather cumbersome as it requires introducing other related (and complicated) concepts such as “block LT
operators” and “block LT sequences”. Second, from a practical viewpoint, the definition is completely useless
because everything that can be derived from it can also be derived from GLT 1–GLT 4 (and in a much easier
way). The reader who is interested in the formal definition of block GLT sequences can find it in ([34] Section 5)
along with the proofs of properties GLT 1–GLT 4.

3. FD Discretization of a System of DEs

Consider the following system of DEs:

−a11(x)u′′1 (x) + a12(x)u′2(x) = f1(x), x ∈ (0, 1),

a21(x)u′1(x) + a22(x)u2(x) = f2(x), x ∈ (0, 1),

u1(0) = 0, u1(1) = 0,

u2(0) = 0, u2(1) = 0.

(10)

In this section, we consider the classical central FD discretization of (10). Through the theory of block
GLT sequences, we show that the corresponding sequence of (normalized) FD discretization matrices
enjoys a spectral distribution described by a 2× 2 matrix-valued function. We remark that the number 2,
which identifies the matrix space C2×2 where the spectral symbol takes values, coincides with the
number of equations that compose the system (10). In what follows, we use the following notation:

tridiag
j=1,...,n

[
β j αj γj

]
=


α1 γ1

β2 α2 γ2
. . . . . . . . .

βn−1 αn−1 γn−1

βn αn

 .

The parameters αj, β j, γj may be either scalars or s× s blocks for some s > 1, in which case the previous
matrix is a block tridiagonal matrix.
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3.1. FD Discretization

Let n ≥ 1, and set h = 1
n+1 and xj = jh for j = 0, . . . , n + 1. Using the classical central FD schemes

(−1, 2,−1) and 1
2 (−1, 0, 1) for the discretization of, respectively, the (negative) second derivative and

the first derivative, for each j = 1, . . . , n we obtain the following approximations:

[−a11(x)u′′1 (x) + a12(x)u′2(x)]
∣∣
x=xj
≈ a11(xj)

−u1(xj+1) + 2u1(xj)− u1(xj−1)

h2

+ a12(xj)
u2(xj+1)− u2(xj−1)

2h
,

[a21(x)u′1(x) + a22(x)u2(x)]
∣∣
x=xj
≈ a21(xj)

u1(xj+1)− u1(xj−1)

2h
+ a22(xj)u2(xj).

This means that the nodal values of the solutions u1, u2 of (10) satisfy approximately the equations

a11(xj)
[
−u1(xj+1) + 2u1(xj)− u1(xj−1)

]
+

h
2

a12(xj)
[
u2(xj+1)− u2(xj−1)

]
= h2 f1(xj),

1
2

a21(xj)
[
u1(xj+1)− u1(xj−1)

]
+ ha22(xj)u2(xj) = h f2(xj),

for j = 1, . . . , n. We then approximate the solution u1 (resp., u2) by the piecewise linear function that
takes the value u1,j (resp., u2,j) at xj for all j = 0, . . . , n + 1, where u1,0 = u1,n+1 = u2,0 = u2,n+1 = 0
and the vectors u1 = (u1,1, . . . , u1,n)

T and u2 = (u2,1, . . . , u2,n)
T solve the linear system

a11(xj)
[
−u1,j+1 + 2u1,j − u1,j−1

]
+

h
2

a12(xj)
[
u2,j+1 − u2,j−1

]
= h2 f1(xj), j = 1, . . . , n,

1
2

a21(xj)
[
u1,j+1 − u1,j−1

]
+ ha22(xj)u2,j = h f2(xj), j = 1, . . . , n.

(11)

This linear system can be rewritten in matrix form as follows:

An

[
u1

u2

]
=

[
h2f1

hf2

]
, (12)

where f1 = [ f1(xj)]
n
j=1, f2 = [ f2(xj)]

n
j=1,

An =

[
Kn(a11) hHn(a12)

Hn(a21) hMn(a22)

]
=

[
Kn(a11) Hn(a12)

Hn(a21) Mn(a22)

] [
In On

On hIn

]
, (13)

and

Kn(a11) = tridiag
j=1,...,n

[
−a11(xj) 2a11(xj) −a11(xj)

]
=

(
diag

j=1,...,n
a11(xj)

)
Tn(2− 2 cos θ),

Hn(a12) = tridiag
j=1,...,n

[
− 1

2 a12(xj) 0 1
2 a12(xj)

]
=

(
diag

j=1,...,n
a12(xj)

)
Tn(−i sin θ),

Hn(a21) = tridiag
j=1,...,n

[
− 1

2 a21(xj) 0 1
2 a21(xj)

]
=

(
diag

j=1,...,n
a21(xj)

)
Tn(−i sin θ),

Mn(a22) = diag
j=1,...,n

a22(xj).

In view of (13), the linear system (12) is equivalent to

Bn

[
v1

v2

]
=

[
h2f1

hf2

]
, (14)
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where v1 = u1, v2 = hu2, and

Bn =

[
Kn(a11) Hn(a12)

Hn(a21) Mn(a22)

]
. (15)

Let v1,1, . . . , v1,n and v2,1, . . . , v2,n be the components of v1 and v2, respectively. When writing the linear
system (11) in the form (14), we are implicitly assuming the following.

• The unknowns are sorted as follows:

[
[v1,j]j=1,...,n

[v2,j]j=1,...,n

]
=



v1,1

v1,2
...

v1,n

v2,1

v2,2
...

v2,n


. (16)

• The equations are sorted as follows, in accordance with the ordering (16) for the unknowns:
[

a11(xj)
[
−v1,j+1 + 2v1,j − v1,j−1

]
+ 1

2 a12(xj)
[
v2,j+1 − v2,j−1

]
= h2 f1(xj)

]
j=1,...,n[

1
2 a21(xj)

[
u1,j+1 − u1,j−1

]
+ a22(xj)v2,j = h f2(xj)

]
j=1,...,n

 . (17)

Suppose we decide to change the ordering for both the unknowns and the equations. More precisely,
suppose we opt for the following orderings.

• The unknowns are sorted as follows:

[
v1,j
v2,j

]
j=1,...,n

=



v1,1

v2,1

v1,2

v2,2
...

v1,n
v2,n


. (18)

• The equations are sorted as follows, in accordance with the ordering (18) for the unknowns: a11(xj)
[
−v1,j+1 + 2v1,j − v1,j−1

]
+ 1

2 a12(xj)
[
v2,j+1 − v2,j−1

]
= h2 f1(xj)

1
2 a21(xj)

[
v1,j+1 − v1,j−1

]
+ a22(xj)v2,j = h f2(xj)


j=1,...,n

. (19)

The matrix Cn associated with the linear system (11) assuming the new orderings (18) and (19) is the
2× 2 block tridiagonal matrix given by

Cn = tridiag
j=1,...,n

[
−a11(xj) − 1

2 a12(xj) 2a11(xj) 0 −a11(xj)
1
2 a12(xj)

− 1
2 a21(xj) 0 0 a22(xj)

1
2 a21(xj) 0

]
. (20)

The matrix Cn is similar to Bn. Indeed, by permuting both rows and columns of Bn according to the
permutation 1, n + 1, 2, n + 2, . . . , n, 2n we obtain Cn. More precisely, let e1, . . . , en and ẽ1, . . . , ẽ2n be
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the vectors of the canonical basis of Rn and R2n, respectively, and let Πn be the permutation matrix
associated with the permutation 1, n + 1, 2, n + 2, . . . , n, 2n, that is,

Πn =



ẽT
1

ẽT
n+1

ẽT
2

ẽT
n+2
...

ẽT
n

ẽT
2n


=


I2 ⊗ eT

1

I2 ⊗ eT
2

...

I2 ⊗ eT
n

 . (21)

Then, Cn = ΠnBnΠT
n .

3.2. GLT Analysis of the FD Discretization Matrices

The main result of this section (Theorem 3) shows that {Cn}n is a block GLT sequence whose
spectral distribution is described by a 2× 2 matrix-valued symbol, which is obtained by replacing the
matrix-sequences {Kn(a11)}n, {Hn(a12)}n, {Hn(a21)}n, {Mn(a22)}n appearing in the expression (15)
of Bn with the corresponding symbols a11(x)(2− 2 cos θ), −ia12(x) sin θ, −ia21(x) sin θ, a22(x). In this
regard, we note that, assuming for instance a11, a12, a21, a22 ∈ C([0, 1]), we have

{Kn(a11)}n ∼GLT a11(x)(2− 2 cos θ), (22)

{Hn(a12)}n ∼GLT −ia12(x) sin θ, (23)

{Hn(a21)}n ∼GLT −ia21(x) sin θ, (24)

{Mn(a22)}n ∼GLT a22(x). (25)

To prove (22), it suffices to observe that

‖Kn(a11)− Dn(a11)Tn(2− 2 cos θ)‖ ≤
∥∥∥∥ diag

j=1,...,n
a11(xj)− Dn(a11)

∥∥∥∥‖Tn(2− 2 cos θ)‖

= max
j=1,...,n

∣∣∣a11(xj)− a11

( j
n

)∣∣∣‖Tn(2− 2 cos θ)‖ ≤ 4ωa11(h),

where ωa11(·) is the modulus of continuity of a11. Since ωa11(h) → 0 as n → ∞, it follows from
Proposition 1 that {Kn(a11)− Dn(a11)Tn(2− 2 cos θ)}n ∼σ 0, and so GLT 2 and GLT 3 immediately
yield (22). The relations (23)–(25) are proved in the same way.

Theorem 3. Suppose that a11, a12, a21, a22 ∈ C([0, 1]). Then,

{Cn}n ∼GLT κ(x, θ) =

[
a11(x)(2− 2 cos θ) −ia12(x) sin θ

−ia21(x) sin θ a22(x)

]
(26)

and
{Cn}n ∼σ κ(x, θ). (27)

If, moreover, a21 = −a12, then we also have

{Cn}n ∼λ κ(x, θ). (28)
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Proof. From (20), we have

Cn = tridiag
j=1,...,n

[
−a11(xj) − 1

2 a12(xj) 2a11(xj) 0 −a11(xj)
1
2 a12(xj)

− 1
2 a21(xj) 0 0 a22(xj)

1
2 a21(xj) 0

]

= tridiag
j=1,...,n

[
−a11(xj) 0 2a11(xj) 0 −a11(xj) 0

0 0 0 0 0 0

]

+ tridiag
j=1,...,n

[
0 − 1

2 a12(xj) 0 0 0 1
2 a12(xj)

0 0 0 0 0 0

]

+ tridiag
j=1,...,n

[
0 0 0 0 0 0

− 1
2 a21(xj) 0 0 0 1

2 a21(xj) 0

]

+ tridiag
j=1,...,n

[
0 0 0 0 0 0

0 0 0 a22(xj) 0 0

]

= diag
j=1,...,n

a11(xj)I2 · tridiag
j=1,...,n

[
−1 0 2 0 −1 0

0 0 0 0 0 0

]

+ diag
j=1,...,n

a12(xj)I2 · tridiag
j=1,...,n

[
0 − 1

2 0 0 0 1
2

0 0 0 0 0 0

]

+ diag
j=1,...,n

a21(xj)I2 · tridiag
j=1,...,n

[
0 0 0 0 0 0

− 1
2 0 0 0 1

2 0

]

+ diag
j=1,...,n

a22(xj)I2 · tridiag
j=1,...,n

[
0 0 0 0 0 0

0 0 0 1 0 0

]
= diag

j=1,...,n
a11(xj)I2 · Tn((2− 2 cos θ)E11)

+ diag
j=1,...,n

a12(xj)I2 · Tn((−i sin θ)E12)

+ diag
j=1,...,n

a21(xj)I2 · Tn((−i sin θ)E21)

+ diag
j=1,...,n

a22(xj)I2 · Tn(E22), (29)

where Epq is the 2× 2 matrix having 1 in position (p, q) and 0 elsewhere. It is clear that, for every
p, q = 1, 2, ∥∥∥∥ diag

j=1,...,n
apq(xj)I2 − Dn(apq I2)

∥∥∥∥ ≤ ωapq(h)→ 0

as n→ ∞; hence, by Proposition 1, GLT 2 and GLT 3,{
diag

j=1,...,n
apq(xj)I2

}
n
∼GLT a(x)I2, p, q = 1, 2.

Consequently, the decomposition (29), GLT 2 and GLT 3 imply (26), which in turn implies (27)
by GLT 1. It only remains to prove (28) in the case where a21 = −a12. In this case, we have

Cn = tridiag
j=1,...,n

[
−a11(xj) − 1

2 a12(xj) 2a11(xj) 0 −a11(xj)
1
2 a12(xj)

1
2 a12(xj) 0 0 a22(xj) − 1

2 a12(xj) 0

]
.
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Consider the symmetric approximation of Cn given by

C̃n = tridiag
j=1,...,n

[
−a11(xj−1) − 1

2 a12(xj−1) 2a11(xj) 0 −a11(xj)
1
2 a12(xj)

1
2 a12(xj−1) 0 0 a22(xj) − 1

2 a12(xj) 0

]
.

It is not difficult to see that ‖Cn − C̃n‖ → 0 as n→ ∞ by invoking the inequality

‖X‖ ≤

√√√√( max
i=1,...,n

n

∑
j=1
|xij|

)(
max

j=1,...,n

n

∑
i=1
|xij|

)
, X ∈ Cn×n; (30)

see, e.g., ([13] Section 2.4.1). Therefore:

• in view of the decomposition C̃n = Cn + (C̃n − Cn), we have {C̃n}n ∼GLT κ(x, θ) by (26),
Proposition 1, GLT 2 and GLT 3, so in particular {C̃n}n ∼λ κ(x, θ) by GLT 1 as C̃n is symmetric;

• ‖Cn − C̃n‖2 ≤
√

n‖Cn − C̃n‖ = o(
√

2n) as n→ ∞.

Thus, (28) follows from Theorem 2.

Example 1. Suppose that a11, a12, a21, a22 ∈ C([0, 1]) and a21 = −a12, so that {Cn}n ∼λ κ(x, θ) by
Theorem 3. The eigenvalue functions of κ(x, θ) are given by

λ1,2(κ(x, θ)) =
a11(x)(2− 2 cos θ) + a22(x)±

√
(a11(x)(2− 2 cos θ)− a22(x))2 + 4(a12(x) sin θ)2

2

and are continuous on [0, 1]× [−π, π]. Let φ be the canonical rearranged version of κ(x, θ) obtained as the
limit of the piecewise linear functions φρ, according to the construction in Remark 2. Figure 1 shows the graph
of φ and the eigenvalues λ1, . . . , λ2n of Cn for a11(x) = 2 + cos(πx), a12(x) = −a21(x) = e−x sin(πx),
a22(x) = 2x + sin(πx) and n = 40. The graph of φ has been obtained by plotting the graph of φρ corresponding
to a large value of ρ. The eigenvalues of Cn, which turn out to be real, although Cn is not symmetric, have been
sorted in non-decreasing order and placed at the points (tq, λq) with tq = q

2n , q = 1, . . . , 2n. We clearly see from
the figure an excellent agreement between φ and the eigenvalues of Cn, as predicted by Remark 2. In particular,
we observe no outliers in this case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
graph of φ

eigenvalues of Cn

Figure 1. Comparison between the spectrum of Cn and the rearranged version φ of the symbol κ(x, θ)

for a11(x) = 2 + cos(πx), a12(x) = −a21(x) = e−x sin(πx), a22(x) = 2x + sin(πx) and n = 40.
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4. Higher-Order FE Discretization of the Diffusion Equation

Consider the diffusion equation{
−(a(x)u′(x))′ = f (x), x ∈ (0, 1),
u(0) = u(1) = 0.

(31)

In this section, we consider the higher-order FE discretization of (31). Through the theory of block
GLT sequences, we show that the corresponding sequence of (normalized) FE discretization matrices
enjoys a spectral distribution described by a (p− k)× (p− k) matrix-valued function, where p and
k represent, respectively, the degree and the smoothness of the piecewise polynomial functions
involved in the FE approximation. Note that this result represents a remarkable argument in support
of ([35] Conjecture 2).

4.1. FE Discretization

The weak form of (31) reads as follows: find u ∈ H1
0([0, 1]) such that

∫ 1

0
a(x)u′(x)w′(x)dx =

∫ 1

0
f (x)w(x)dx, ∀w ∈ H1

0([0, 1]).

In the FE method, we fix a set of basis functions {ϕ1, . . . , ϕN} ⊂ H1
0([0, 1]) and we look for an

approximation of the exact solution in the space W = span(ϕ1, . . . , ϕN) by solving the following
discrete problem: find uW ∈ W such that

∫ 1

0
a(x)u′W (x)w′(x)dx =

∫ 1

0
f (x)w(x)dx, ∀w ∈ W .

Since {ϕ1, . . . , ϕN} is a basis of W , we can write uW = ∑N
j=1 uj ϕj for a unique vector u = (u1, . . . , uN)

T .
By linearity, the computation of uW (i.e., of u) reduces to solving the linear system

Au = f,

where f =
(∫ 1

0 f (x)ϕ1(x)dx, . . . ,
∫ 1

0 f (x)ϕN(x)dx
)T and A is the stiffness matrix,

A =

[∫ 1

0
a(x)ϕ′j(x)ϕ′i(x)dx

]N

i,j=1
. (32)

4.2. p-Degree Ck B-spline Basis Functions

Following the higher-order FE approach, the basis functions ϕ1, . . . , ϕN will be chosen as
piecewise polynomials of degree p ≥ 1. More precisely, for p, n ≥ 1 and 0 ≤ k ≤ p − 1,
let B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] : R → R be the B-splines of degree p and smoothness Ck defined
on the knot sequence

{τ1, . . . , τn(p−k)+p+k+2} =
{

0, . . . , 0︸ ︷︷ ︸
p+1

,
1
n

, . . . ,
1
n︸ ︷︷ ︸

p−k

,
2
n

, . . . ,
2
n︸ ︷︷ ︸

p−k

, . . . ,
n− 1

n
, . . . ,

n− 1
n︸ ︷︷ ︸

p−k

, 1, . . . , 1︸ ︷︷ ︸
p+1

}
. (33)

We collect here a few properties of B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] that we shall use in this paper. For the
formal definition of B-splines, as well as for the proof of the properties listed below, see [41,42].

• The support of the ith B-spline is given by

supp(Bi,[p,k]) = [τi, τi+p+1], i = 1, . . . , n(p− k) + k + 1. (34)
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• Except for the first and the last one, all the other B-splines vanish on the boundary of [0, 1], i.e.,

Bi,[p,k](0) = Bi,[p,k](1) = 0, i = 2, . . . , n(p− k) + k. (35)

• {B1,[p,k], . . . , Bn(p−k)+k+1,[p,k]} is a basis for the space of piecewise polynomial functions of degree
p and smoothness Ck, that is,

Vn,[p,k] =
{

v ∈ Ck([0, 1]) : v|[ i
n , i+1

n ] ∈ Pp for all i = 0, . . . , n− 1
}

,

where Pp is the space of polynomials of degree ≤ p. Moreover, {B2,[p,k], . . . , Bn(p−k)+k,[p,k]} is a
basis for the space

Wn,[p,k] = {w ∈ Vn,[p,k] : w(0) = w(1) = 0}.

• The B-splines form a non-negative partition of unity over [0, 1]:

Bi,[p,k] ≥ 0 over R, i = 1, . . . , n(p− k) + k + 1, (36)

n(p−k)+k+1

∑
i=1

Bi,[p,k] = 1 over [0, 1]. (37)

• The derivatives of the B-splines satisfy

n(p−k)+k+1

∑
i=1

|B′i,[p,k]| ≤ cpn over [0, 1], (38)

where cp is a constant depending only on p. Note that the derivatives B′i,[p,k] may not be defined

at some of the grid points 0, 1
n , 2

n , . . . , n−1
n , 1 in the case of C0 smoothness (k = 0). In (38), it is

assumed that the undefined values are excluded from the summation.
• All the B-splines, except for the first k + 1 and the last k + 1, are uniformly shifted-scaled versions

of p− k fixed reference functions β1,[p,k], . . . , βp−k,[p,k], namely the first p− k B-splines defined on
the reference knot sequence

0, . . . , 0︸ ︷︷ ︸
p−k

, 1, . . . , 1︸ ︷︷ ︸
p−k

, . . . , η, . . . , η︸ ︷︷ ︸
p−k

, η =

⌈
p + 1
p− k

⌉
.

In formulas, setting

ν =

⌈
k + 1
p− k

⌉
, (39)

for the B-splines Bk+2,[p,k], . . . , Bk+1+(n−ν)(p−k),[p,k], we have

Bk+1+(p−k)(r−1)+q,[p,k](x) = βq,[p,k](nx− r + 1), r = 1, . . . , n− ν, q = 1, . . . , p− k. (40)

We point out that the supports of the reference B-splines βq,[p,k] satisfy

supp(β1,[p,k]) ⊆ supp(β2,[p,k]) ⊆ . . . ⊆ supp(βp−k,[p,k]) = [0, η].

Figures 2 and 3 show the graphs of the B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for the degree p = 3
and the smoothness k = 1, and the graphs of the associated reference B-splines β1,[p,k], β2,[p,k].
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Figure 2. B-splines B1,[p,k], . . . , Bn(p−k)+k+1,[p,k] for p = 3 and k = 1, with n = 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Figure 3. Reference B-splines β1,[p,k], β2,[p,k] for p = 3 and k = 1.

The basis functions ϕ1, . . . , ϕN are defined as follows:

ϕi = Bi+1,[p,k], i = 1, . . . , n(p− k) + k− 1. (41)

In particular, with the notations of Section 4.1, we have N = n(p− k) + k− 1 and W = Wn,[p,k].

4.3. GLT Analysis of the Higher-Order FE Discretization Matrices

The stiffness matrix (32) resulting from the choice of the basis functions as in (41) will be denoted
by An,[p,k](a),

An,[p,k](a) =
[∫ 1

0
a(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1
. (42)

The main result of this section (Theorem 4) gives the spectral distribution of the normalized sequence
{n−1 An,[p,k](a)}n. The proof of Theorem 4 is entirely based on the theory of block GLT sequences and
it is therefore referred to as “GLT analysis”. It also requires the following lemma, which provides an
approximate construction of the matrix An,[p,k](1) corresponding to the constant-coefficient case where
a(x) = 1 identically. In view of what follows, define the (p− k)× (p− k) blocks

K[`]
[p,k] =

[∫
R

β′j,[p,k](t)β′i,[p,k](t− `)dt
]p−k

i,j=1
, ` ∈ Z, (43)

and the (p− k)× (p− k) matrix-valued function κ[p,k] : [−π, π]→ C(p−k)×(p−k),

κ[p,k](θ) = ∑
`∈Z

K[`]
[p,k]e

i`θ = K[0]
[p,k] + ∑

`>0

(
K[`]
[p,k]e

i`θ + (K[`]
[p,k])

Te−i`θ
)

. (44)

Due to the compact support of the reference functions β1,[p,k], . . . , βp−k,[p,k], there is only a finite number

of nonzero blocks K[`]
[p,k] and, consequently, the series in (44) is actually a finite sum.
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Lemma 2. Let p, n ≥ 1 and 0 ≤ k ≤ p− 1. Define Ãn,[p,k](1) as the principal submatrix of An,[p,k](1) of size
(n− ν)(p− k) corresponding to the indices k + 1, . . . , k + (n− ν)(p− k), where ν = d(k + 1)/(p− k)e as
in (39). Then, Ãn,[p,k](1) = nTn−ν(κ[p,k]).

Proof. By (34) and (40), for all r, R = 1, . . . , n− ν and q, Q = 1, . . . , p− k we have

(Ãn,[p,k](1))(p−k)(r−1)+q,(p−k)(R−1)+Q =
∫ 1

0
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

=
∫
R

B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

= n2
∫
R

β′Q,[p,k](nx− R + 1)β′q,[p,k](nx− r + 1)dx

= n
∫
R

β′Q,[p,k](y)β′q,[p,k](y− r + R)dy

and

(Tn−ν(κ[p,k]))(p−k)(r−1)+q,(p−k)(R−1)+Q = (K[r−R]
[p,k] )q,Q =

∫
R

β′Q,[p,k](y)β′q,[p,k](y− r + R)dy,

which completes the proof.

Theorem 4. Let a ∈ L1([0, 1]), p ≥ 1 and 0 ≤ k ≤ p− 1. Then, {n−1 An,[p,k](a)}n ∼σ,λ a(x)κ[p,k](θ).

Proof. The proof consists of four steps. Throughout this proof, we use the following notation.

• ν = d(k + 1)/(p− k)e as in (39).
• For every square matrix A of size n(p− k) + k− 1, we denote by Ã the principal submatrix of A

corresponding to the row and column indices i, j = k + 1, . . . , k + (n− ν)(p− k).
• Pn,[p,k] is the (n(p − k) + k − 1) × (n − ν)(p − k) matrix having I(n−ν)(p−k) as the principal

submatrix corresponding to the row and column indices i, j = k + 1, . . . , k + (n − ν)(p − k)
and zeros elsewhere. Note that PT

n,[p,k]Pn,[p,k] = I(n−ν)(p−k) and PT
n,[p,k]APn,[p,k] = Ã for every

square matrix A of size n(p− k) + k− 1.

Step 1. Consider the linear operator An,[p,k](·) : L1([0, 1])→ R(n(p−k)+k−1)×(n(p−k)+k−1),

An,[p,k](g) =
[∫ 1

0
g(x)B′j+1,[p,k](x)B′i+1,[p,k](x)dx

]n(p−k)+k−1

i,j=1
.

The next three steps are devoted to show that

{PT
n,[p,k](n

−1 An,[p,k](g))Pn,[p,k]}n = {n−1 Ãn,[p,k](g)}n ∼GLT g(x)κ[p,k](θ), ∀ g ∈ L1([0, 1]). (45)

Once this is done, the theorem is proven. Indeed, from (45), we immediately obtain the relation
{PT

n,[p,k](n
−1 An,[p,k](a))Pn,[p,k]}n ∼GLT a(x)κ[p,k](θ). We infer that {PT

n,[p,k](n
−1 An,[p,k](a))Pn,[p,k]}n ∼σ,λ

a(x)κ[p,k](θ) by GLT 1 and {n−1 An,[p,k](a)}n ∼σ,λ a(x)κ[p,k](θ) by Theorem 1.

Step 2. We first prove (45) in the constant-coefficient case where g(x) = 1 identically. In this case,
by Lemma 2, we have n−1 Ãn,[p,k](1) = Tn−ν(κ[p,k]). Hence, the desired relation {n−1 Ãn,[p,k](1)}n ∼GLT
κ[p,k](θ) follows from GLT 2.

Step 3. Now we prove (45) in the case where g ∈ C([0, 1]). Let

Zn,[p,k](g) = n−1 Ãn,[p,k](g)− n−1Dn−ν(gIp−k)Ãn,[p,k](1).
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By (33), (34) and (38), for all r, R = 1, . . . , n− ν and q, Q = 1, . . . , p− k, we have

|(nZn,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q|

=
∣∣∣(Ãn,[p,k](g))(p−k)(r−1)+q,(p−k)(R−1)+Q − (Dn−ν(gIp−k)Ãn,[p,k](1))(p−k)(r−1)+q,(p−k)(R−1)+Q

∣∣∣
=

∣∣∣∣∫ 1

0

[
g(x)− g

( r
n− ν

)]
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ τk+1+(p−k)(r−1)+q+p+1

τk+1+(p−k)(r−1)+q

[
g(x)− g

( r
n− ν

)]
B′k+1+(p−k)(R−1)+Q,[p,k](x)B′k+1+(p−k)(r−1)+q,[p,k](x)dx

∣∣∣∣∣
≤ c2

pn2
∫ (r+p)/n

(r−1)/n

∣∣∣∣g(x)− g
( r

n− ν

)∣∣∣∣dx ≤ c2
p(p + 1)nωg

(ν + p
n

)
,

where ωg(·) is the modulus of continuity of g and the last inequality is justified by the fact that the
distance of the point r/(n− ν) from the interval [(r− 1)/n, (r + p)/n] is not larger than (ν + p)/n.
It follows that each entry of Zn,[p,k](g) is bounded in modulus by Cpωg(1/n), where Cp is a constant
depending only on p. Moreover, by (34), the matrix Zn,[p,k](g) is banded with bandwidth bounded
by a constant wp depending only on p. Thus, by (30), ‖Zn,[p,k](g)‖ ≤ wpCpωg(1/n) → 0 as n → ∞,
and so {Zn,[p,k](g)}n is zero-distributed by Proposition 1. Since

n−1 Ãn,[p,k](g) = n−1Dn−ν(gIp−k)Ãn,[p,k](1) + Zn,[p,k](g),

we conclude that {n−1 Ãn,[p,k](g)}n ∼GLT g(x)κ[p,k](θ) by GLT 2, GLT 3 and Step 2.

Step 4. Finally, we prove (45) in the general case where g ∈ L1([0, 1]). By the density of C([0, 1]) in
L1([0, 1]), there exist functions gm ∈ C([0, 1]) such that gm → g in L1([0, 1]). By Step 3,

{n−1 Ãn,[p,k](gm)}n ∼GLT gm(x)κ[p,k](θ). (46)

Moreover,
gm(x)κ[p,k](θ)→ g(x)κ[p,k](θ) in measure. (47)

We show that
{n−1 Ãn,[p,k](gm)}n

a.c.s.−→ {n−1 Ãn,[p,k](g)}n. (48)

Once this is done, the thesis (45) follows immediately from GLT 4. To prove (48), we recall that

‖X‖1 ≤
N

∑
i,j=1
|xij|, X ∈ CN×N ; (49)

see, e.g., ([13] Section 2.4.3). By (38), we obtain

‖Ãn,[p,k](g)− Ãn,[p,k](gm)‖1 ≤
n(p−k)+k−1

∑
i,j=1

∣∣∣∣∫ 1

0

[
g(x)− gm(x)

]
B′j+1,[p,k](x)B′i+1,[p,k](x)dx

∣∣∣∣
≤
∫ 1

0

∣∣g(x)− gm(x)
∣∣ n(p−k)+k−1

∑
i,j=1

|B′j+1,[p,k](x)| |B′i+1,[p,k](x)|dx

≤ c2
pn2‖g− gm‖L1 .

Thus, the a.c.s. convergence (48) follows from Proposition 2.

Remark 4. By following step by step the proof of Theorem 4, we can give an alternative (much simpler) proof
of ([36] Theorem A.6) based on the theory of block GLT sequences.
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5. The Theory of Multilevel Block GLT Sequences

As illustrated in Sections 3 and 4, the theory of block GLT sequences allows the computation of the
singular value and eigenvalue distribution of block structured matrices arising from the discretization
of univariate DEs. In order to cope with multivariate DEs, i.e., PDEs, we need the multivariate version
of the theory of block GLT sequences, also known as the theory of multilevel block GLT sequences.
The present section is devoted to a careful presentation of this theory, which is obtained by combining
the results of [34] with the necessary technicalities for tackling multidimensional problems [14].

Multi-Index Notation. The multi-index notation is an essential tool for dealing with sequences of
matrices arising from the discretization of PDEs. A multi-index i ∈ Zd, also called a d-index, is simply
a (row) vector in Zd; its components are denoted by i1, . . . , id.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, etc. (their size will be clear from the context).
• For any d-index m, we set N(m) = ∏d

j=1 mj and we write m→ ∞ to indicate that min(m)→ ∞.
• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d.
• If h, k are d-indices such that h ≤ k, the multi-index range h, . . . , k is the set {j ∈ Zd : h ≤ j ≤ k}.

We assume for this set the standard lexicographic ordering:[
. . .
[
[ (j1, . . . , jd) ]jd=hd ,...,kd

]
jd−1=hd−1,...,kd−1

. . .
]

j1=h1,...,k1

. (50)

For instance, in the case d = 2, the ordering is the following: (h1, h2), (h1, h2 + 1), . . . , (h1, k2),
(h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2), . . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

• When a d-index j varies over a multi-index range h, . . . , k (this is sometimes written as j =

h, . . . , k), it is understood that j varies from h to k following the specific ordering (50). For instance,
if m ∈ Nd and if we write x = [xi]

m
i=1, then x is a vector of size N(m) whose components

xi, i = 1, . . . , m, are ordered in accordance with (50): the first component is x1 = x(1,...,1,1),
the second component is x(1,...,1,2), and so on until the last component, which is xm = x(m1,...,md)

.
Similarly, if X = [xij]

m
i,j=1, then X is a N(m)× N(m) matrix whose components are indexed by

two d-indices i, j, both varying from 1 to m according to the lexicographic ordering (50).
• Given h, k ∈ Zd with h ≤ k, the notation ∑k

j=h indicates the summation over all j in h, . . . , k.
• Operations involving d-indices that have no meaning in the vector space Zd must be interpreted

in the componentwise sense. For instance, ij = (i1 j1, . . . , id jd), i/j = (i1/j1, . . . , id/jd), etc.

Multilevel Block Matrix-Sequences. Given d, s ≥ 1, a d-level s-block matrix-sequence (or simply a
matrix-sequence if d and s can be inferred from the context or we do not need/want to specify them)
is a sequence of matrices of the form {An}n, where:

• n varies in some infinite subset of N;
• n = n(n) is a d-index in Nd which depends on n and satisfies n→ ∞ as n→ ∞;
• An is a square matrix of size N(n)s.

Multilevel Block Toeplitz Matrices. Given a function f : [−π, π]d → Cs×s in L1([−π, π]d), its Fourier
coefficients are denoted by

fk =
1

(2π)d

∫
[−π,π]d

f (θ)e−ik·θdθ ∈ Cs×s, k ∈ Zd,

where k · θ = k1θ1 + . . . + kdθd and the integrals are computed componentwise. For n ∈ Nd, the nth
multilevel block Toeplitz matrix generated by f is defined as

Tn( f ) = [ fi−j]
n
i,j=1 ∈ CN(n)s×N(n)s.
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It is not difficult to see that the map f 7→ Tn( f ) is linear. Moreover, it can be shown that

Tn( f ∗) = (Tn( f ))∗, (51)

where the transpose conjugate function f ∗ is defined by f ∗(θ) = ( f (θ))∗; in particular, all the matrices
Tn( f ) are Hermitian whenever f is Hermitian a.e. We also recall that, if n ∈ Nd and f1, f2, . . . , fd :
[−π, π]→ C belong to L1([−π, π]), then

Tn1( f1)⊗ Tn2( f2)⊗ · · · ⊗ Tnd( fd) = Tn( f ), (52)

where f : [−π, π]d → C is defined by f (θ) = f (θ1) f (θ2) · · · f (θd); see, e.g., ([14] Lemma 3.3).

Multilevel Block Diagonal Sampling Matrices. For n ∈ Nd and a : [0, 1]d → Cs×s, we define the
multilevel block diagonal sampling matrix Dn(a) as the block diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
∈ CN(n)s×N(n)s.

Multilevel Block GLT Sequences. Let d, s ≥ 1 be fixed positive integers. A d-level s-block GLT
sequence (or simply a GLT sequence if d and s can be inferred from the context or we do not need/want
to specify them) is a special d-level s-block matrix-sequence {An}n equipped with a measurable
function κ : [0, 1]d × [−π, π]d → Cs×s, the so-called symbol. We use the notation {An}n ∼GLT κ to
indicate that {An}n is a GLT sequence with symbol κ. The symbol of a GLT sequence is unique in the
sense that if {An}n ∼GLT κ and {An}n ∼GLT ς then κ = ς a.e. in [0, 1]d× [−π, π]d. The main properties
of d-level s-block GLT sequences are listed below.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If, moreover, each An is Hermitian then {An}n ∼λ κ.
GLT 2. We have:

• {Tn( f )}n ∼GLT κ(x, θ) = f (θ) if f : [−π, π]d → Cs×s is in L1([−π, π]d);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]d → Cs×s is Riemann-integrable;
• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT 3. If {An}n ∼GLT κ and {Bn}n ∼GLT ς then:
• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βς for all α, β ∈ C;
• {AnBn}n ∼GLT κς;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT 4. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm such that {Bn,m}n
a.c.s.−→

{An}n and κm → κ in measure.

6. Discretizations of Systems of PDEs: The General GLT Approach

In this section, we outline the main ideas of a multidimensional block GLT analysis for general
discretizations of PDE systems. What we are going to present here is then a generalization of what is
shown in Section 3. We begin by proving a series of auxiliary results. In the following, given n ∈ Nd

and s ≥ 1, we denote by Πn,s the permutation matrix given by

Πn,s =


Is ⊗ eT

1

Is ⊗ eT
2

...

Is ⊗ eT
n

 =
n

∑
k=1

ek ⊗ Is ⊗ eT
k , (53)
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where ei, i = 1, . . . , n, are the vectors of the canonical basis of RN(n), which, for convenience,
are indexed by a d-index i = 1, . . . , n instead of a linear index i = 1, . . . , N(n). Note that Πn,2

coincides with the matrix Πn in (21).

Lemma 3. Let n ∈ Nd, let fij : [−π, π]d → C be in L1([−π, π]d) for i, j = 1, . . . , s, and set f = [ fij]
s
i,j=1.

The block matrix Tn = [Tn( fij)]
s
i,j=1 is similar via the permutation (53) to the multilevel block Toeplitz matrix

Tn( f ), that is, Πn,sTnΠT
n,s = Tn( f ).

Proof. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Since Tn = ∑s
i,j=1 Eij ⊗

Tn( fij) and Tn( f ) = ∑s
i,j=1 Tn( fijEij) by the linearity of the map Tn(·), it is enough to show that

Πn,s(E⊗ Tn(g))ΠT
n,s = Tn(gE), ∀ g ∈ L1([−π, π]d), ∀ E ∈ Cs×s.

By (6) and (7),

Πn,s(E⊗ Tn(g))ΠT
n,s =

[
n

∑
k=1

ek ⊗ Is ⊗ eT
k

]
(E⊗ Tn(g))

[
n

∑
`=1

eT
` ⊗ Is ⊗ e`

]

=
n

∑
k,`=1

(ek ⊗ Is ⊗ eT
k )(E⊗ Tn(g))(eT

` ⊗ Is ⊗ e`)

=
n

∑
k,`=1

ekeT
` ⊗ E⊗ eT

k Tn(g)e` =
n

∑
k,`=1

ekeT
` ⊗ (Tn(g))k`E = Tn(gE),

as required.

Lemma 4. Let n ∈ Nd, let aij : [0, 1]d → C for i, j = 1, . . . , s, and set a = [aij]
s
i,j=1. The block matrix

Dn = [Dn(aij)]
s
i,j=1 is similar via the permutation (53) to the multilevel block diagonal sampling matrix Dn(a),

that is, Πn,sDnΠT
n,s = Dn(a).

Proof. With obvious adaptations, it is the same as the proof of Lemma 3.

We recall that a d-variate trigonometric polynomial is a finite linear combination of the d-variate
Fourier frequencies eik·θ, k ∈ Zd.

Theorem 5. For i, j = 1, . . . , s, let {An,ij}n be a d-level 1-block GLT sequence with symbol κij : [0, 1]d ×
[−π, π]d → C. Set An = [An,ij]

s
i,j=1 and κ = [κij]

s
i,j=1. Then, the matrix-sequence {Πn,s AnΠT

n,s}n is a
d-level s-block GLT sequence with symbol κ.

Proof. The proof consists of the following two steps.

Step 1. We first prove the theorem under the additional assumption that An,ij is of the form

An,ij =

Lij

∑
`=1

Dn(a`,ij)Tn( f`,ij), (54)

where Lij ∈ N, a`,ij : [0, 1]d → C is Riemann-integrable, and f`,ij : [−π, π]d → C belongs to
L1([−π, π]d). Note that the symbol of {An,ij}n is

κij(x, θ) =

Lij

∑
`=1

a`,ij(x) f`,ij(θ).
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By setting L = maxi,j=1,...,s Lij and by adding zero matrices of the form Dn(0)Tn(0) in the
summation (54) whenever Lij < L, we can assume, without loss of generality, that

An,ij =
L

∑
`=1

Dn(a`,ij)Tn( f`,ij),

κij(x, θ) =
L

∑
`=1

a`,ij(x) f`,ij(θ),

with L independent of i, j. Let Eij be the s× s matrix having 1 in position (i, j) and 0 elsewhere. Then,

Πn,s AnΠT
n,s =

L

∑
`=1

Πn,s

[
Dn(a`,ij)Tn( f`,ij)

]s

i,j=1
ΠT

n,s

=
L

∑
`=1

Πn,s

[
s

∑
i,j=1

(Eij ⊗ Dn(a`,ij))(Eij ⊗ Tn( f`,ij))

]
ΠT

n,s

=
L

∑
`=1

s

∑
i,j=1

Πn,s(Eij ⊗ Dn(a`,ij))Π
T
n,sΠn,s(Eij ⊗ Tn( f`,ij))Π

T
n,s.

By Lemmas 3 and 4,

Πn,s(Eij ⊗ Dn(a`,ij))Π
T
n,s = Dn(a`,ijEij),

Πn,s(Eij ⊗ Tn( f`,ij))Π
T
n,s = Tn( f`,ijEij).

It follows that

Πn,s AnΠT
n,s =

L

∑
`=1

s

∑
i,j=1

Dn(a`,ijEij)Tn( f`,ijEij).

Thus, by GLT 2 and GLT 3, {Πn,s AnΠT
n,s}n is a d-level s-block GLT sequence with symbol

κ(x, θ) =
L

∑
`=1

s

∑
i,j=1

a`,ij(x) f`,ij(θ)Eij = [κij(x, θ)]si,j=1.

Step 2. We now prove the theorem in its full generality. Since {An,ij}n ∼GLT κij, by ([14] Theorem 5.6)

there exist functions a(m)
`,ij , f (m)

`,ij , ` = 1, . . . , L(m)
ij , such that

• a(m)
`,ij ∈ C∞([0, 1]d) and f (m)

`,ij is a d-variate trigonometric polynomial,

• κ
(m)
ij (x, θ) = ∑

L(m)
ij

`=1 a(m)
`,ij (x) f (m)

`,ij (θ)→ κij(x, θ) a.e.;

•
{

A(m)
n,ij = ∑

L(m)
ij

`=1 Dn(a(m)
`,ij )Tn( f (m)

`,ij )
}

n
a.c.s.−→ {An,ij}n.

Set A(m)
n = [A(m)

n,ij ]
s
i,j=1 and κ(m)(x, θ) = [κ

(m)
ij (x, θ)]si,j=1. We have:

• {Πn,s A(m)
n ΠT

n,s}n ∼GLT κ(m) by Step 1;

• κ(m) → κ a.e. (and hence also in measure);

• {Πn,s A(m)
n ΠT

n,s}n
a.c.s.−→ {Πn,s AnΠT

n,s}n because {A(m)
n }n

a.c.s.−→ {An}n by Lemma 1.

We conclude that {Πn,s AnΠT
n,s}n ∼GLT κ by GLT 4.
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Now, suppose we have a system of linear PDEs of the form
∑s

j=1 L1juj(x) = f1(x),
∑s

j=1 L2juj(x) = f2(x),
...

∑s
j=1 Lsjuj(x) = fs(x),

(55)

where x ∈ (0, 1)d. The matrices An resulting from any standard discretization of (55) are parameterized
by a d-index n = (n1, . . . , nd), where ni is related to the discretization step hi in the ith direction,
and ni → ∞ if and only if hi → 0 (usually, hi ≈ 1/ni). By choosing each ni as a function of a
unique discretization parameter n ∈ N, as it normally happens in practice where the most natural
choice is ni = n for all i = 1, . . . , d, we see that n = n(n) and, consequently, {An}n is a (d-level)
matrix-sequence. Moreover, it turns out that, after a suitable normalization that we ignore in this
discussion—the normalization we are talking about is the analog of the normalization that we have
seen in Section 3, which allowed us to pass from the matrix An in (13) to the matrix Bn in (15)—, An

has the following block structure:
An = [An,ij]

s
i,j=1,

where An,ij is the (normalized) matrix arising from the discretization of the differential operator Lij.
In the simplest case where the operators Lij have constant coefficients and we use equispaced grids in
each direction, the matrix An,ij takes the form

An,ij = Tn( fij) + Zn,ij,

where fij is a d-variate trigonometric polynomial, while the perturbation Zn,ij is usually a low-rank
correction due to boundary conditions and, in any case, we have {Zn,ij}n ∼σ 0. Hence,

{An,ij}n ∼GLT fij

by GLT 2 and GLT 3, and it follows from Theorem 5 that

{Πn,s AnΠT
n,s}n ∼GLT [ fij]

s
i,j=1.

In the case where the operators Lij have variable coefficients, the matrix An,ij usually takes the form

An,ij =

Lij

∑
`=1

Dn(a`,ij)Tn( f`,ij) + Zn,ij,

where Lij ∈ N, f`,ij is a d-variate trigonometric polynomial, {Zn,ij}n ∼σ 0, and the functions
a`,ij : [0, 1]d → R, ` = 1, . . . , Lij, are related to the coefficients of Lij (for example, in Section 3,
while proving (22), we have seen that Kn(a11), which plays there the same role as the matrix An,11 here,
is equal to Dn(a11)Tn(2− 2 cos θ) + Zn for some zero-distributed sequence {Zn}n). Hence,

{An,ij}n ∼GLT κij(x, θ) =

Lij

∑
`=1

a`,ij(x) f`,ij(θ)

by GLT 2 and GLT 3, and it follows from Theorem 5 that

{Πn,s AnΠT
n,s}n ∼GLT [κij]

s
i,j=1.
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7. B-Spline IgA Discretization of a Variational Problem for the Curl–Curl Operator

For any function u(x1, x2) = [u1(x1, x2), u2(x1, x2)]
T , defined over some open set Ω ⊆ R2 and

taking values in R2, the curl operator is formally defined as follows:

(∇× u)(x1, x2) =
∂u2

∂x1
(x1, x2)−

∂u1

∂x2
(x1, x2), (x1, x2) ∈ Ω.

Clearly, this definition has meaning when the components u1, u2 belong to H1(Ω), so that their partial
derivatives exist in the Sobolev sense. Now, let Ω = (0, 1)2, set

(L2(Ω))2 = {u : Ω→ R2 : u1, u2 ∈ L2(Ω)},
H(curl, Ω) = {u ∈ (L2(Ω))2 : ∇× u exists in the Sobolev sense, ∇× u ∈ L2(Ω)},

and consider the following variational problem: find u ∈ H(curl, Ω) such that

(∇× u,∇× v) = (f, v), ∀ v ∈ H(curl, Ω), (56)

where f(x1, x2) = [ f1(x1, x2), f2(x1, x2)]
T is a vector field in (L2(Ω))2 and

(∇× u,∇× v) =
∫

Ω
(∇× u)(x1, x2) (∇× v)(x1, x2)dx1dx2,

(f, v) =
∫

Ω
[ f1(x1, x2)v1(x1, x2) + f2(x1, x2)v2(x1, x2)]dx1dx2.

Variational problems of the form of (56) arise in important applications, such as time harmonic
Maxwell’s equations and magnetostatic problems. In this section, we consider a so-called compatible
B-spline IgA discretization of (56); see [43] for details. We show that the corresponding sequence
of discretization matrices enjoys a spectral distribution described by a 2× 2 matrix-valued function
whose determinant is zero everywhere. The results of this section have already been obtained in [38],
but the derivation presented here is entirely based on the theory of multilevel block GLT sequences
and turns out to be simpler and more lucid than that in [38]. For simplicity, throughout this section,
the B-splines Bi,[p,p−1], i = 1, . . . , n + p, and the associated reference B-spline β1,[p,p−1], are denoted
by Bi,[p], i = 1, . . . , n + p, and β[p], respectively. The function β[p] is the so-called cardinal B-spline
of degree p over the knot sequence {0, 1, . . . , p + 1}. In view of the following, we recall from [42]
and ([23] Lemma 4) that the cardinal B-spline β[q] is defined for all degrees q ≥ 0, belongs to Cq−1(R),
and satisfies the following properties:

supp(β[q]) = [0, q + 1] (57)

for q ≥ 1,
β′[q](t) = β[q−1](t)− β[q−1](t− 1), (58)

for t ∈ R and q ≥ 1, and∫
R

β
(r1)
[q1]

(τ)β
(r2)
[q2]

(τ + t)dτ = (−1)r1 β
(r1+r2)
[q1+q2+1](q1 + 1 + t) = (−1)r2 β

(r1+r2)
[q1+q2+1](q2 + 1− t) (59)

for t ∈ R and q1, q2, r1, r2 ≥ 0. Moreover, property (40) in the case k = p− 1 simplifies to

Bi,[p](x) = β[p](nx− i + p + 1), i = p + 1, . . . , n. (60)
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7.1. Compatible B-Spline IgA Discretization

Let n = (n1, n2) ∈ N2, let p ≥ 2, and define the space

Vn,[p](curl, Ω) = span

{[
Bi1,[p−1](x1)Bi2,[p](x2)

Bj1,[p](x1)Bj2,[p−1](x2)

]
: i1 = 1, . . . , n1 + p− 1, i2 = 1, . . . , n2 + p,

j1 = 1, . . . , n1 + p, j2 = 1, . . . , n2 + p− 1

}
.

(61)

Following a compatible B-spline approach [43], we look for an approximation of the solution in the
space Vn,[p](curl, Ω) by solving the following discrete problem: find uV ∈ Vn,[p](curl, Ω) such that

(∇× uV ,∇× v) = (f, v), ∀ v ∈ Vn,[p](curl, Ω).

After choosing a suitable ordering on the basis functions of Vn,[p](curl, Ω) displayed in (61), by linearity
the computation of uV reduces to solving a linear system whose coefficient matrix is given by

An,[p] =

[
An,[p],11 An,[p],12

An,[p],21 An,[p],22

]
=

[
Mn1,[p−1] ⊗ Kn2,[p] −Hn1,[p] ⊗ (Hn2,[p])

T

−(Hn1,[p])
T ⊗ Hn2,[p] Kn1,[p] ⊗Mn2,[p−1]

]
,

where

(Mn,[p−1])ij =
∫ 1

0
Bj,[p−1](x)Bi,[p−1](x)dx, i, j = 1, . . . , n + p− 1,

(Kn,[p])ij =
∫ 1

0
B′j,[p](x)B′i,[p](x)dx, i, j = 1, . . . , n + p,

(Hn,[p])ij =
∫ 1

0
B′j,[p](x)Bi,[p−1](x)dx, i = 1, . . . , n + p− 1, j = 1, . . . , n + p.

Note that Mn,[p−1] is a square matrix of size n+ p− 1, Kn,[p] is a square matrix of size n+ p, while Hn,[p]
is a rectangular matrix of size (n + p− 1)× (n + p).

7.2. GLT Analysis of the B-Spline IgA Discretization Matrices

In the main result of this section (Theorem 6), assuming that n = nν for a fixed vector ν, we show
that the spectral distribution of the sequence {An,[p]}n is described by a 2× 2 matrix-valued function
whose determinant is zero everywhere (Remark 5). To prove Theorem 6, some preliminary work
is necessary. We first note that, in view of the application of Theorem 5, the matrix An,[p] has an
unpleasant feature: the anti-diagonal blocks An,[p],12 and An,[p],21 are not square and the square
diagonal blocks An,[p],11 and An,[p],22 do not have the same size whenever n1 6= n2. Let us then
introduce the nicer matrix

Ãn,[p] =

[
Ãn,[p],11 Ãn,[p],12

Ãn,[p],21 Ãn,[p],22

]
=

[
M̃n1,[p−1] ⊗ Kn2,[p] −H̃n1,[p] ⊗ (H̃n2,[p])

T

−(H̃n1,[p])
T ⊗ H̃n2,[p] Kn1,[p] ⊗ M̃n2,[p−1]

]
,

where M̃n,[p−1] and H̃n,[p] are square matrices of size n + p given by

M̃n,[p−1] =


0

Mn,[p−1]
...
0

0 · · · 0 0

 , H̃n,[p] =

 Hn,[p]

0 · · · 0

 .
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Each block Ãn,[p],ij of the matrix Ãn,[p] is now a square block of size (n1 + p)(n2 + p). Moreover,

Mn,[p−1] = Pn,[p]M̃n,[p−1](Pn,[p])
T , Hn,[p] = Pn,[p]H̃n,[p],

where the matrix

Pn,[p] =

 0

In+p−1
...
0


satisfies Pn,[p](Pn,[p])

T = In+p−1. By (6) and (7),

An,[p],11 = (Pn1,[p] ⊗ In2+p)Ãn,[p],11(Pn1,[p] ⊗ In2+p)
T ,

An,[p],12 = (Pn1,[p] ⊗ In2+p)Ãn,[p],12(In1+p ⊗ Pn2,[p])
T ,

An,[p],21 = (In1+p ⊗ Pn2,[p])Ãn,[p],21(Pn1,[p] ⊗ In2+p)
T ,

An,[p],22 = (In1+p ⊗ Pn2,[p])Ãn,[p],22(In1+p ⊗ Pn2,[p])
T ,

and so

An,[p] = Pn,[p] Ãn,[p](Pn,[p])
T , Pn,[p] =

[
Pn1,[p] ⊗ In2+p

In1+p ⊗ Pn2,[p]

]
. (62)

In view of the application of Theorem 1, we note that

Pn,[p] ∈ R[(n1+p−1)(n2+p)+(n1+p)(n2+p−1)]×2(n1+p)(n2+p), (63)

Pn,[p](Pn,[p])
T = I(n1+p−1)(n2+p)+(n1+p)(n2+p−1), (64)

lim
n→∞

(n1 + p− 1)(n2 + p) + (n1 + p)(n2 + p− 1)
2(n1 + p)(n2 + p)

= lim
n→∞

[
n1 + p− 1
2(n1 + p)

+
n2 + p− 1
2(n2 + p)

]
= 1. (65)

Lemma 5. Let p ≥ 2 and n ≥ 1. Then,

n−1Kn,[p] = Tn+p( fp) + Qn,[p], rank(Qn,[p]) ≤ 4p, (66)

H̃n,[p] = Tn+p(gp) + Rn,[p], rank(Rn,[p]) ≤ 4p, (67)

nM̃n,[p−1] = Tn+p(hp) + Sn,[p], rank(Sn,[p]) ≤ 4p, (68)

where

fp(θ) = ∑
k∈Z
−β′′[2p+1](p + 1− k)eikθ , (69)

gp(θ) = ∑
k∈Z
−β′[2p](p− k)eikθ , (70)

hp(θ) = ∑
k∈Z

β[2p−1](p− k)eikθ , (71)

and we note that the three series are actually finite sums because of (57).

Proof. For every i, j = p + 1, . . . , n, since [−i + p + 1, n − i + p + 1] ⊇ [0, p + 1] = supp(β[p]) and
[−i + p, n− i + p] ⊇ [0, p] = supp(β[p−1]), by (59) and (60) we obtain

(Kn,[p])ij =
∫ 1

0
B′j,[p](x)B′i,[p](x)dx = n2

∫ 1

0
β′[p](nx− j + p + 1)β′[p](nx− i + p + 1)dx

= n
∫ n−i+p+1

−i+p+1
β′[p](τ + i− j)β′[p](τ)dτ = n

∫
R

β′[p](τ)β′[p](τ + i− j)dτ
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= −nβ′′[2p+1](p + 1 + i− j) = −nβ′′[2p+1](p + 1− i + j),

(H̃n,[p])ij =
∫ 1

0
B′j,[p](x)Bi,[p−1](x)dx = n

∫ 1

0
β′[p](nx− j + p + 1)β[p−1](nx− i + p)dx

=
∫ n−i+p

−i+p
β′[p](τ + i− j + 1)β[p−1](τ)dτ =

∫
R

β[p−1](τ)β′[p](τ + i− j + 1)dτ

= β′[2p](p + i− j + 1) = −β′[2p](p− i + j),

(M̃n,[p−1])ij =
∫ 1

0
Bj,[p−1](x)Bi,[p−1](x)dx =

∫ 1

0
β[p−1](nx− j + p)β[p−1](nx− i + p)dx

= n−1
∫ n−i+p

−i+p
β[p−1](τ + i− j)β[p−1](τ)dτ = n−1

∫
R

β[p−1](τ)β[p−1](τ + i− j)dτ

= n−1β[2p−1](p + i− j) = n−1β[2p−1](p− i + j).

Thus,

[(n−1Kn,[p])ij]
n
i,j=p+1 = [−β′′[2p+1](p + 1− i + j)]ni,j=p+1 = Tn−p( fp), (72)

[(H̃n,[p])ij]
n
i,j=p+1 = [−β′[2p](p− i + j)]ni,j=p+1 = Tn−p(gp), (73)

[(nM̃n,[p−1])ij]
n
i,j=p+1 = [β[2p−1](p− i + j)]ni,j=p+1 = Tn−p(hp). (74)

It follows from (72) that the principal submatrix of n−1K[p]
n − Tn+p( fp) corresponding to the row

and column indices i, j = p + 1, . . . , n is the zero matrix, which implies (66). Similarly, (73) and (74)
imply (67) and (68), respectively.

Theorem 6. Let p ≥ 2, let ν = (ν1, ν2) ∈ Q2 be a vector with positive components, and assume that n = nν

(it is understood that n varies in the infinite subset of N such that n = nν ∈ N2). Then,

{An,[p]}n ∼σ,λ κ(θ) =


ν2

ν1
hp(θ1) fp(θ2) −gp(θ1)gp(θ2)

−gp(θ1)gp(θ2)
ν1

ν2
fp(θ1)hp(θ2)

 .

Proof. The thesis follows immediately from Theorem 1 and (62)–(65) as soon as we have proven that

{Ãn,[p]}n ∼σ,λ κ(θ). (75)

We show that
{Ãn,[p],ij}n ∼GLT κij(θ), i, j = 1, 2. (76)

Once this is done, the thesis (75) follows immediately from Theorem 5 and GLT 1 as the matrix Ãn,[p]
is symmetric. Actually, we only prove (76) for (i, j) = (1, 2) because the proof for the other pairs of
indices (i, j) is conceptually the same. Setting p = (p, p) and keeping in mind the assumption n = nν,
by Lemma 5 and Equations (5), (51) and (52), we have

Ãn,[p],12 = −H̃n1,[p] ⊗ (H̃n2,[p])
T = −(Tn1+p(gp) + Rn1,[p])⊗ (Tn2+p(gp) + Rn2,[p])

T

= −(Tn1+p(gp) + Rn1,[p])⊗ (Tn2+p(gp) + (Rn2,[p])
T)

= −(Tn+p(gp(θ1)gp(θ2)) + Tn1+p(gp)⊗ (Rn2,[p])
T + Rn1,[p] ⊗ (H̃n2,[p])

T)

= Tn+p(κ12) + Vn,[p],

where rank(Vn,[p]) ≤ 4p(n1 + p) + 4p(n2 + p). Thus, {Vn,[p]}n ∼σ 0 by Proposition 1, and (76)
(for (i, j) = (1, 2)) follows from GLT 2 and GLT 3.
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Remark 5. Using (58), it is not difficult to see that the functions fp(θ) and gp(θ) in (69) and (70) can be
expressed in terms of hp(θ) as follows:

fp(θ) = (2− 2 cos θ)hp(θ), gp(θ) = (e−iθ − 1)hp(θ).

Therefore, the 2× 2 matrix-valued function κ(θ) appearing in Theorem 6 can be simplified as follows:

κ(θ) =
1

ν1ν2
hp(θ1)hp(θ2)

[
ν2(eiθ2 − 1)
−ν1(eiθ1 − 1)

] [
ν2(e−iθ2 − 1) −ν1(e−iθ1 − 1)

]
.

In particular, det(κ(θ)) = 0 for all θ. According to the informal meaning behind the spectral distribution
{An,[p]}n ∼λ κ(θ) reported in Remark 1, this means that, for large n, one half of the eigenvalues of An,[p] are
approximately zero and one half is given by a uniform sampling over [−π, π]2 of

trace(κ(θ)) =
1

ν1ν2
hp(θ1)hp(θ2)

[
ν2

1(2− 2 cos θ1) + ν2
2(2− 2 cos θ1)

]
.

8. Conclusions

We have illustrated through specific examples the applicative interest of the theory of block
GLT sequences and of its multivariate version, thus bringing to completion the purely theoretical
work [34]. It should be said, however, that the theory of GLT sequences is still incomplete. In particular,
besides filling in the details of the theory of multilevel block GLT sequences—the results of Section 5
have been obtained as a combination of the results in [14,34], but formal proofs of them are still missing
and will be the subject of a future paper—, it will be necessary to develop the theory of the so-called
reduced GLT sequences, as explained in ([13] Chapter 11).
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