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Maxwell equations in the absence of free charges require initial data with a 
divergence-free displacement field D. In materials in which the dependence D =
D(E) is nonlinear the quasilinear problem ∇ ·D(E) = 0 is hence to be solved. In many 
applications, e.g. in the modelling of wave packets, an approximative asymptotic 
ansatz of the electric field E is used, which satisfies this divergence condition at t = 0
only up to a small residual. We search then for a small correction of the ansatz to 
enforce ∇ · D(E) = 0 at t = 0 and choose this correction in the form of a gradient 
field. In the usual case of a power type nonlinearity in D(E) this leads to the sum of 
the Laplace and p-Laplace operators. We also allow for the medium to consist of two 
different materials so that a transmission problem across an interface is produced. 
We prove the existence of the correction term for a general class of nonlinearities 
and provide regularity estimates for its derivatives, independent of the L2-norm 
of the original ansatz. In this way, when applied to the wave packet setting, the 
correction term is indeed asymptotically smaller than the original ansatz. We also 
provide numerical experiments to support our analysis.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper is concerned with the study of the existence and regularity estimates for weak solutions of 
the second-order quasilinear problem defined on the whole space Rn, n ≥ 2,

∇ · D(x,∇φ + U0(x)) = 0, x ∈ Rn, (1.1)

where ∇· stands for the divergence operator, U0 : Rn → Rn is a prescribed vector field and the function 
D : Rn ×Rn → Rn is such that D(x, ·) is growing both linearly and nonlinearly at infinity, namely

D(x, v) := ε1(x)v + εf (x)f(v) for (x, v) ∈ Rn ×Rn, (1.2)
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with positive coefficients ε1, εf : Rn → R+ and where f : Rn → Rn is a superlinear vector field, the precise 
behaviour of which will be specified in Section 2. However, the model growth that one should have in mind 
is f(v) = |v|p−1v for some p > 1. Our analysis is confined to the case of positive ε1, εf . An essential feature 
of our problem is that the coefficients ε1, εf , although smooth in each half-space Rn

± := {x ∈ Rn | ±x1 > 0}, 
are not continuous on Γ := {x ∈ Rn | x1 = 0}. This means that (1.1) has to be understood pointwise in 
Rn

± and becomes a transmission problem with the straight interface Γ, which has to be coupled with the 
interface condition

�D(·,∇φ + U0) · e1�(x) = 0, x ∈ Γ. (1.3)

Here, the symbol �ϕ� denotes the jump of ϕ on Γ. More precisely, for x ∈ Γ we define

�ϕ�(x) := lim
h→0+

(ϕ(x + he1) − ϕ(x− he1)) ,

where e1 := (1, 0, . . . , 0)T and similarly we define ek for k ∈ {2, . . . , n}. We usually omit the variable x in 
the notation �ϕ�(x). In Sobolev spaces the interface condition has to be understood in a trace sense, see 
Definition 2.1.

Motivation: a Maxwell problem Problem (1.1)-(1.2)-(1.3) is motivated by the study of Maxwell equations 
when one investigates the configuration of two materials separated by a straight interface. Let us illustrate 
this background in more detail. Maxwell equations in nonlinear dielectric materials without free charges 
and currents are described by

μ0∂tH = −∇× E , ε0∂tD = ∇×H, ∇ · D = ∇ · H = 0, x ∈ Rn, t > 0 (1.4)

with1

n = 2 or n = 3,

where ε0 and μ0 are the permittivity and the permeability of the free space respectively, E = (E1, E2, E3)T
and H = (H1, H2, H3)T are the electric and the magnetic field respectively, and the electric displacement 
field D = (D1(E), D2(E), D3(E))T depends nonlinearly on the electric field. In the usual case of Kerr isotropic 
media, one has

D(·, E)(x, t) = ε1(x)E(x, t) + ε3(x)(E(x, t) · E(x, t))E(x, t). (1.5)

In the following we set ε0 = μ0 = 1 without loss of generality. Here we consider two different materials in 
Rn

− and Rn
+ respectively, divided by the interface Γ. We model this configuration by allowing a discontinuity 

of the linear and cubic susceptibility coefficients ε1 and ε3 across the interface, so that we have

εj := ε−j χRn
−

+ ε+j χRn
+

for j ∈ {1, 3},

where χΩ denotes the characteristic function of the set Ω. We make the usual assumption that ε1, ε3 are 
positive a.e. and bounded: 0 < d ≤ ε±1 , ε

±
3 ∈ L∞(Rn

±) for some constant d. Because of the inhomogeneity of 
the material, Maxwell equations (1.4) have to be coupled with suitable interface conditions. In particular, 
since Γ = {x1 = 0}, one has to prescribe

1 In the two-dimensional case n = 2 we assume without loss of generality (E, H, D) = (E, H, D)(x1, x2) and here ∇× =
(∂1, ∂2, 0)T× and ∇· = (∂1, ∂2, 0)T · .
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�E2� = �E3� = 0, �H1� = �H2� = �H3� = 0, �D1� = 0, (1.6)

see e.g. [18, Section 33-3].
If the material is homogeneous or periodic in the x2, x3 variables and one considers localised quasi-

monochromatic signals, it is a standard practice in the physics literature to use an approximation by 
travelling pulses modulated by an envelope, see e.g. [29,35]. A formal ansatz for an asymptotic approximation 
of a solution U := (E , H)T of the Maxwell system (1.4) is then2

Uans(x, t) :=
(
Eans(x, t)
Hans(x, t)

)
:= εA(ε(x|| − νgt), ε2t)mU (x1)ei(k0·x||−ω0t) + c.c. , (1.7)

where x|| := (x2, . . . , xn)T denotes the components tangential to the interface, νg ∈ Rn−1 is the group-
velocity of the mode, k0 ∈ Rn−1 is the wave vector, ω0 ∈ R represents a frequency, and 0 < ε � 1 is 
a small asymptotic parameter. The vector function mU : R → C6 is an exponentially decaying “interface 
eigenvector” of a linear problem associated with (1.4) (i.e. ε3 ≡ 0), whereas the profile A : Rn−1 × R → C

has to solve a suitable nonlinear amplitude equation of Schrödinger kind in the real slow variables X :=
ε(x|| − νgt) and T := ε2t, see e.g. [21,16,35]. Therefore, A is smooth and exponentially decaying when 
sufficient conditions are assumed at the initial time T = 0 of the nonlinear Schrödinger equation, see e.g. 
[46].

The above ansatz Uans has the property that the divergence equation for the H-field, i.e. ∇ · H = 0, is 
automatically satisfied for all times thanks to the choice of mU , see Section 5. Moreover, the choice of the 
profile A is such that when Uans is inserted in the Maxwell system, it produces a sufficiently small residuum 
in ε for large time scales t ∈ [0, T0(ε)] with T0(ε) ∈ O(ε−2) as ε → 0. Finally, one can notice that

∂t(∇ · D) = ∇ · ∂tD = ∇ · (∇×H) = 0,

which means that whenever the divergence of the D-field vanishes at t = 0, it vanishes for all times. The 
problem is that ∇ · D(·, E(0)

ans) 	= 0 for

E(0)
ans(x) := Eans(x, 0) = εA(εx||, 0)mE(x1)eik0·x|| + c.c. , (1.8)

where mE denotes the vector of the first three components of mU . Nonetheless one expects that this di-
vergence condition should become satisfied by means of a suitable small correction of the ansatz above. 
This is precisely the motivation behind the present work. In other words, our aim is to find a vector field 
V : Rn → Rn which is asymptotically smaller in ε than E(0)

ans and such that

E(0) := E(0)
ans + V (1.9)

solves

∇ · D(·, E(0)) = 0, (1.10)

so that it can be used as an initial condition for the electric field. Of course, E(0) has also to fulfil conditions 
(1.6), i.e.

�
E(0)
2

�
=

�
E(0)
3

�
= �D1(E(0))� = 0. (1.11)

2 Here c.c. denotes the complex conjugate of the previous term.



4 T. Dohnal et al. / J. Math. Anal. Appl. 511 (2022) 126067
This correction of higher-order in ε will not derange the behaviour of Eans in the curl-equations. Indeed, if this 
step is achieved, one then prescribes Uans(x, 0) + (V, 0)T(x) as the initial condition for the electromagnetic 
field, which then satisfies the two divergence equations in (1.4), and which is asymptotically close to the 
initial value of the explicit ansatz Uans. Having that in hand, one can proceed following the strategy of [43]
and get the existence of an exact solution of the Maxwell equations (1.4) which is well approximated by 
Uans for a large time scale. This part of the analysis is presented in detail in the forthcoming [47].

General problem and aims We rewrite our problem (1.1)-(1.2)-(1.3) as{
−∇ · a(x,∇φ) = b(x), x ∈ Rn

±, (a)�(a(·,∇φ) + ε1U0) · e1� (x) = 0, x ∈ Γ, (b)
(1.12)

with n ≥ 2,

a(·,∇φ) := εff(U0 + ∇φ) + ε1∇φ (= D(U0 + ∇φ) − ε1U0)

and

b := ∇ · (ε1U0),

and where U0 : Rn → Rn is a given vector field which satisfies the (linear) transmission condition �ε1U0 · e1� = 0. Instead of (1.12b) we often use the shorter notation �D1(U0 + ∇φ)� = 0 as in (1.3).
The Maxwell problem described above corresponds then to the case n = 2 or n = 3, U0 = E(0)

ans, 
f(v) = |v|2v, when we look for an irrotational vector field V , i.e.

V = ∇φ

for some φ : Rn → R. Note that this formulation does not consider the first two transmission conditions �
E(0)
2

�
=

�
E(0)
3

�
= 0, but they will be automatically satisfied in our application, see Section 5.

By (1.12a)-(1.12b) we aim to consider a more general setting of a second-order transmission problem 
in Rn which involves a quasilinear operator, namely the divergence of both a linear term (which therefore 
produces an anisotropic Laplacian) and a nonlinear term, the growth of which is superlinear and behaves 
like a power. Hence, our difficulties in solving such a problem are threefold: we have to deal with a sort 
of anisotropic (p, 2)-Laplacian operator, with the unboundedness of the domain Rn

± and furthermore with 
transmission conditions on the interface Γ. As a consequence, we first need to find a suitable functional 
setting in which to prove the existence of a solution φ. Then, under additional regularity conditions on 
the coefficients on Rn

±, we prove regularity estimates for ∇φ which do not involve ‖U0‖2. This is of great 
importance for the above application: ‖U0‖2 = ‖E(0)

ans‖2 is asymptotically of order O(ε1/2) and we are looking 
for V = ∇φ so that it is a correction of U0, i.e. ‖V ‖2 = O(ε1/2) and for which (1.9)-(1.10) hold. This means 
that the estimates for ‖∇φ‖2 (and for its derivatives) should not depend on ‖U0‖2. For details, see Section 5.

Previous results As briefly mentioned, problem (1.12a)-(1.12b) may be classified as a quasilinear transmis-
sion problem driven by an operator with a (p, 2)-growth.

A problem is referred to as transmission (or diffraction) when the domain in which the equation is 
defined is split in two or more subdomains in which the coefficients are regular, while at the interfaces 
they present jump discontinuities, and here the behaviour of the solutions is driven by some compatibility 
conditions. One usually imposes a condition on the jump of the solutions as well as on the normal derivative 
with respect to the interface. This class of problems is of great importance for physics and other applied 
sciences, since they can be derived from many models in which composite materials are treated, not only in 
the context of propagation of electromagnetic signals, but also e.g. in crack problems [2], thermodynamics 
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[38] and mathematical biology [10,14]. Moreover, a large amount of papers exist on the numerics of such 
problems, see e.g. [13,39,15,49] and references therein.

The theoretical treatment began in the ’60s with the classical works of the Russian school by Olĕınik, 
Ladyzhenskaya, Rivkind, Ural’tseva, and coauthors, see e.g. [40,27,28,26], where linear and quasilinear 
elliptic and parabolic transmission problems with smooth interfaces were first considered. In these works 
the main aim was to show that the solutions of the weak formulation are indeed classical, i.e. of class 
C2,α in the subdomains where the coefficients are regular, and locally of class C1,α near the interface, so 
that the transmission conditions are satisfied pointwise. Such results were later on improved and extended 
in [32,25,17,45]; here, however, denoting by z the unknown-variable and by ξ the gradient-variable, the 
growth of the function a(x, z, ξ) with respect to ξ is always supposed linear. In [31] the authors analyse 
the case of two adjacent materials which behave according to a model with nonlinear growth of power-type 
in the gradient-variable (which may also be different from material to material); such results have been 
later improved in [22,23]. More recently, quasilinear transmission problems even with a wild growth of the 
function a in the gradient-variable have been investigated in [7] by means of Orlicz spaces techniques. We 
also mention another direction of research for transmission problems focused on the analysis of non-smooth 
interfaces [11].

All the mentioned results (with the exception of [32]) deal with the case of a bounded domain. Equation 
(1.12a), instead, is set over the whole Rn: this means, roughly speaking, that the growth in the function 
a with respect to ξ influences the choice of the function space. Having in mind our Maxwell setting, we 
assume that a(x, z, ξ) = a(x, ξ) and a(x, ·) consists of a linear term and power-like nonlinear terms. Therefore 
the operator we are dealing with can be thought of as a sum of a Laplacian and a p-Laplacian. Quasilinear 
problems of this kind, in the literature called (p, q)-Laplacian or double phase problems, have recently gained 
a lot of attention in the mathematical community regarding existence and regularity issues. Focusing here 
on those contributions in which the equation is posed on the whole Rn, we mention [30,9,6], in which also a 
nonlinear right-hand side is considered, and [4,3,5], where in addition a more general double phase operator 
is considered. In these works the techniques are mainly variational, taking advantage of the mountain pass-
or linking-type geometry which the functional associated with the equation enjoys. Orlicz spaces come into 
play in [4,3] due to the generality of the operator considered. In [8] double phase problems are shown to 
emerge in the context of static solutions for Lorentz invariant hyperbolic equations on R3+1. On the other 
hand, the interest in the study of local regularity for (p, q)-Laplacian equations initiated by Marcellini in 
[33] significantly grew in the last two decades, and we refer to [36,37,34] for an overview on the subject. The 
focus of these works is on finding sharp conditions on the growth of a(x, ·) with respect to the dimension n, 
such that the solutions of (1.12a) are locally of class C1,α in the case the coefficients are at least continuous.

We aim to prove standard Sobolev regularity for our solution (which is enough for our application) 
by means of the well-established method of the difference quotient. Nevertheless we also provide global 
estimates which are independent on the L2-norm of the given vector field U0 as described above. This 
complicates the analysis.

The rest of the paper is organised as follows. In Section 2 we motivate and describe the suitable functional 
setting for problem (1.12a)-(1.12b) and we give the precise statements of the assumptions and of our main 
results. In Section 3 we prove existence and an estimate for ∇φ in terms of the right-hand side b of (1.12a)
and of U0 but independent of ‖U0‖2. Section 4 contains the proof of the estimates for the derivatives of 
∇φ in which the discontinuity of the coefficients at the interface comes into play. We shortly illustrate then 
how analogous estimates are also achievable for higher derivatives of ∇φ. Finally in Section 5 we apply such 
results to the original divergence problem (1.9)-(1.10)-(1.11) arisen in the context of Maxwell equations 
described above and we provide a numerical verification of our results. The short Section 6 contains a 
discussion about questions which are left open by our analysis, and concludes the paper.
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Notation As usual, for Ω ⊂ Rn, C∞
0 (Ω) denotes the space of C∞-functions with compact support in Ω and 

D′(Ω) its dual space. Lp(Rn)m is the Lebesgue space of p-integrable functions over Rn which take values in 
Rm. Of course, when m = 1 we omit the second exponent. The norm in Lp-spaces for 1 ≤ p ≤ ∞ is always 
denoted by ‖ · ‖p (i.e. for both scalar and vector case) and p′ := p

p−1 and p∗ := np
n−p denote the conjugate 

exponent and the critical exponent for the Sobolev embedding W 1,p(Rn) ↪→ Lp∗(Rn), respectively. We 
write f ∈ Lp(Rn

±) if f = f−χRn
−

+ f+χRn
+

with f+ ∈ Lp(Rn
+) and f− ∈ Lp(Rn

−). The spaces W 1,p(Rn
±) are 

analogously defined. The ball with centre x0 ∈ Rn and radius r > 0 is denoted by Br(x0). Moreover, we 
refrain from writing the domain of integration when integration is meant on the whole Rn. The differential 
dx will be often omitted.

2. Variational structure, assumptions and functional setting

Variational formulation of the problem Proceeding formally and postponing to the next paragraph the 
precise assumptions on U0 and f , we start by showing that if we suppose that f is irrotational, i.e. f = ∇F

for some F ∈ C1(Rn), problem (1.12a) has a variational structure with the energy functional

J (φ) :=
∫

εfF (U0 + ∇φ) +
∫

ε1
|∇φ|2

2 +
∫

ε1U0 · ∇φ.

Notice that, due to the particular form of the right-hand side b, J involves only the gradient of φ and not 
the function φ itself. Indeed, we claim that the Euler-Lagrange equation associated with J is (1.12a) and 
that critical points of J satisfy the interface condition (1.12b). For any η ∈ C∞

0 (Rn) we get

J ′[φ](η) =
∫

εff(U0 + ∇φ) · ∇η +
∫

ε1(U0 + ∇φ) · ∇η.

Splitting each integral over the two half-spaces Rn
± and applying formally Gauß’s theorem to each of them, 

we get∫
ε1(U0 + ∇φ) · ∇η =

∫
Rn

−

ε−1 (U0 + ∇φ) · ∇η +
∫
Rn

+

ε+1 (U0 + ∇φ) · ∇η

= −
∫

∇ · (ε1(U0 + ∇φ))η −
∫
Γ

(
(ε1(U0 + ∇φ))+ − (ε1(U0 + ∇φ))−

)
· e1η,

where u±(x) := limh→0± u(x + he1), x ∈ Γ. Analogous computations hold for the first term∫
εff(U0 + ∇φ) · ∇η = −

∫
∇ · (εff(U0 + ∇φ)) η

−
∫
Γ

(
(εff(U0 + ∇φ))+ − (εff(U0 + ∇φ))−

)
· e1η.

All in all smooth critical points of J satisfy∫
∇ · (εff(U0 + ∇φ) + ε1∇φ) η +

∫
∇ · (ε1U0)η +

∫
Γ

(
D(·, U0 + ∇φ)+ −D(·, U0 + ∇φ)−

)
· e1η = 0.

Taking now η ∈ C∞
0 (Rn) with supp η ⊂ Rn

±, the boundary integral vanishes and we obtain that the critical 
points of J satisfy (1.12a) in Rn

±. If, on the other hand, supp η ∩Γ 	= ∅, then the boundary integral tells us 
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that the quantity 
(
D(·, U0 +∇φ)+−D(·, U0 +∇φ)−

)
·e1 = �D1(·, U0 +∇φ)� vanishes a.e., which is condition 

(1.12b).
As we work in a Sobolev space, we need to interpret the interface condition via the normal trace of 

D(·, U0 +∇φ) on Rn
+ and Rn

−. The standard definition of the normal trace for Hdiv-functions is not suitable 
in our setting because our solutions do not satisfy D(·, U0 + ∇φ) ∈ L2(Rn). Instead we define the trace in 
the sense of distributions.

Definition 2.1. For

S± :=
{
D ∈ L1

loc(Rn
±)n
∣∣∣∣∇ · D ∈ L1

loc(Rn
±)
}

we define the traces

T+ : S+ → D′(Γ),
(
T+D
)
[ψ] := −

∫
Rn

+

∇ · D ψ̂ + D · ∇ψ̂ for all ψ ∈ C∞
0 (Γ),

where ψ̂ ∈ C∞
0 (Rn

+) such that ψ̂|Γ = ψ, and analogously

T− : S− → D′(Γ),
(
T−D
)
[ψ] :=

∫
Rn

−

∇ · D ψ̂ + D · ∇ψ̂ for all ψ ∈ C∞
0 (Γ),

where ψ̂ ∈ C∞
0 (Rn

−) such that ψ̂|Γ = ψ.

The existence of ψ̂ was proved, e.g. in [50]. The fact that the trace is independent of the choice of ψ̂ follows 
directly from the definition of the weak divergence. With this definition the interface condition (1.12b) in 
trace sense is

T+D(U0 + ∇φ) = T−D(U0 + ∇φ) in D′(Γ). (2.1)

As the above calculation shows, if ∇ · D(·, U0 + ∇φ) exists in the classical sense, then (2.1) is equivalent to 
(1.12b) pointwise on Γ.

Assumptions Trying to retain the essential features of the Maxwell context described in the introduction, 
we assume the following conditions for f , ε1, εf , U0 throughout the paper.

(H0) ε1, εf ∈ L∞(Rn) and there exists a constant d such that ε1(x), εf (x) ≥ d > 0 a.e. in Rn;
(F0) there exist p > 1 and F ∈ C1(Rn) convex so that F (0) = 0, f = ∇F , and F (v) ≥ μp|v|p+1 for some 

μp > 0;
(F1) there exist 1 < α ≤ p and constants 0 < λp ≤ Λp and Λα ≥ 0 such that for all v ∈ Rn

i) |f(v)| ≤ Λp|v|p + Λα|v|α;
ii) f(v) · v > λp|v|p+1;

(A0) U0 ∈ L2(Rn)n ∩ Lp+1(Rn)n;
(A1) b := ∇ · (ε1U0) ∈ L2(R2) ∩ L1(log, R2) if n = 2 and b ∈ L2(Rn) ∩ L

2n
n+2 (Rn) if n ≥ 3, where 

L1(log, R2) :=
{
ϕ ∈ L1

loc(R2)
∣∣ ‖ϕ‖L1(log,R2) :=

∫
log(2 + |x|)|ϕ(x)| dx < ∞

}
. To unify the two cases, 

we write

|||b||| :=
{
‖b‖L1(log,R2) if n = 2,
‖b‖ 2n if n ≥ 3;

(2.2)

n+2



8 T. Dohnal et al. / J. Math. Anal. Appl. 511 (2022) 126067
(A2) U0 does not weakly solve the nonlinear equation ∇ · D(·, E) = 0, where D(·, E) is defined in (1.2)
(i.e. φ = 0 is not a solution in the sense of Definition 2.2), but satisfies the transmission condition �ε1U0 · e1� = 0 (in the sense of Definition 2.1).

To obtain the existence and L2-estimates for the derivatives of ∇φ, we need moreover

(H1) ε1, εf ∈ W 1,∞(Rn
±);

(F2) f ∈ C1(Rn)n and there exist constants 0 < λ̃p ≤ Λ̃p and Λ̃α ≥ 0 such that the Jacobi matrix Jf of f
satisfies for all v, ξ ∈ Rn

i) |Jf (v)| ≤ Λ̃p|v|p−1 + Λ̃α|v|α−1;
ii) (Jf (ξ)v) · v ≥ λ̃p|ξ|p−1|v|2;

(A3) ∂kU0 ∈ L2(Rn)n×n ∩ Lp+1(Rn)n×n for k ∈ {2, . . . , n}, and ∂1U0 ∈ L2(Rn
±)n×n ∩ Lp+1(Rn

±)n×n;
(A4) ∂kb ∈ L2(Rn), k ∈ {2, . . . , n}, and ∂1b ∈ L2(Rn

±).

Remark 1. Assumptions (H0)-(H1) on the coefficients ε1, εf give us the structure of a transmission problem.

Remark 2. The simplest (and physically relevant) model nonlinearity is f(v) = |v|p−1v with p > 1, but 
also nonlinearities of the kind f(v) =

∑N
i=1 |v|qiv with qi > 0 satisfy (F0)-(F2) with α = 1 + mini qi and 

p = 1 + maxi qi and are allowed.

Remark 3. Assumption (A2) reflects the situation that we encounter in our application to the Maxwell 
setting, where the vector field U0, being just a solution of the linearised equation and not of the nonlinear 
equation ∇ · D(·, E) = 0, still satisfies the transmission condition �D1(·, U0)� = 0. Notice that such a 
transmission condition allows to apply Gauß’s theorem and transform the third term in the functional J
into 
∫
bφ, which exists thanks to assumption (A1), see Section 3.

The main results From assumptions (H0), (F1), and (A0), it is easy to see that the suitable functional space 
in which to look for critical points of the functional J is

D2,p+1 := D1,2
0 (Rn) ∩D1,p+1

0 (Rn), (2.3)

where for q ≥ 1

D1,q
0 (Rn) := C∞

0 (Rn)
|·|1,q with the norm |u|1,q := ‖∇u‖q

is the homogeneous Sobolev space, sometimes in the literature referred to as the Beppo Levi space. The norm 
on D2,p+1 is defined as ‖ · ‖D := | · |1,2 + | · |1,p+1.

Definition 2.2. We say that φ ∈ D2,p+1 is a weak solution of problem (1.12a)-(1.12b) if∫
εff(U0 + ∇φ) · ∇η +

∫
ε1(U0 + ∇φ) · ∇η = 0 for all η ∈ D2,p+1. (2.4)

Weak solutions indeed satisfy the interface condition (1.12b) in the trace sense, which follows from the 
definition and from the fact that ∇ · D(U0 + ∇φ) = 0 pointwise almost everywhere, see Theorem 2.2 and 
its proof.

Notice that (1.12a) depends just on the gradient of the unknown function, and not on the function itself. 
This is the first difference between our analysis and the quasilinear problems on the whole Rn of the same 
kind which appear in the literature: indeed the p-Laplace-kind operator is often coupled with the term 
|u|p−2u, so that one can work within the functional framework of classical Sobolev spaces, see e.g. [30,5,6].
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Our main results are the following:

Theorem 2.1. Let ε1, εf , f, U0 satisfy assumptions (H0), (F0)-(F1), (A0)-(A2). Then there exists a non-
trivial minimum φ of the functional J in D2,p+1 and there holds∫

|∇φ|2 +
∫

|U0 + ∇φ|p−1|∇φ|2 ≤ C
(
‖U0‖p+1

p+1 + ‖U0‖α+1
α+1 + ‖b‖2

2 + |||b|||2
)
, (2.5)

where the constant C depends only on Λp, λp, Λα, d, ‖ε1‖∞, and ‖εf‖∞. Moreover, φ is a weak solution of 
(1.12a)-(1.12b).

Theorem 2.2. Let ε1, εf , f, U0 satisfy assumptions (H0)-(H1), (F0)-(F2), (A0)-(A4) and let φ be a min-
imiser of Theorem 2.1. Then for ∇φ the tangential (with respect to Γ) derivatives ∂k∇φ, k ∈ {2, . . . , n}, 
satisfy ∂k∇φ ∈ L2(Rn)n and∫

|∂k∇φ|2 +
∫

|U0 + ∇φ|p−1|∂k∇φ|2 ≤ Ck

(
‖U0‖p+1

p+1 + ‖∂kU0‖p+1
p+1 + ‖U0‖α+1

α+1

+ ‖∂kU0‖α+1
α+1 + ‖b‖2

2 + |||b|||2 + ‖∂kb‖2
2

)
.

(2.6)

The normal derivative ∂11φ exists in L2(Rn
±) and there holds

∫
Rn

±

|∂11φ|2 +
∫
Rn

±

|U0 + ∇φ|p−1|∂11φ|2 ≤ C1

(
‖U0‖p+1

p+1 +
n∑

k=1

‖∂kU0‖p+1
Lp+1(Rn

±) + ‖U0‖α+1
α+1

+
n∑

k=1

‖∂kU0‖α+1
Lα+1(Rn

±) + ‖b‖2
2 + |||b|||2 +

n∑
k=2

‖∂kb‖2
L2(Rn

±)

)
.

(2.7)

The constants Ck, C1 depend only on Λp, λp, Λα, Λ̃p, λ̃p, Λ̃α, d, ‖ε1‖W 1,∞(Rn
±), and ‖εf‖W 1,∞(Rn

±).
Moreover, equation (1.12a) is satisfied pointwise almost everywhere and the interface condition (1.12b)

holds in the trace sense of Definition 2.1.

Remark 4. In estimate (2.7) only the first component ∂11φ of the normal derivative ∂1∇φ appears. Indeed, 
for the remaining components there holds ∂1kφ = ∂k1φ a.e. in Rn

±, k ∈ {2, . . . , N}, and thus estimate (2.6)
can be directly applied. Hence, only ∂11φ has to be studied separately. For details, see Section 4.3.

Remark 5. An upper bound for ‖∇φ‖2
2 + ‖∇φ‖p+1

p+1 analogous to (2.5) with the same terms on the right-
hand side can be obtained by (3.9). However, we preferred to state Theorem 2.1 this way to have a better 
comparison with the left-hand side of the inequalities (2.6)-(2.7).

Remark 6. Notice that the quantity on the right-hand side of (2.5) does not involve ‖U0‖2. This will be 
crucial in our application to the asymptotic Maxwell problem in Section 5 in order to show that ∇φ is 
actually an L2-correction of U0, as desired.

Remark 7. If one prescribes higher regularity on ε1, εf , U0, b, as well as a control on the higher derivatives 
of f analogously to assumptions (F1)-(F2), one may further infer similar estimates for the higher derivatives 
of ∇φ to the ones in (2.6)-(2.7). The proof is then analogous to that of Theorem 2.2.

The functional setting: homogeneous Sobolev spaces Before giving the proofs of Theorems 2.1-2.2 in the 
next sections, for the sake of a self-contained exposition and in order to state some properties of such spaces 
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that are needed in the sequel, we take now a small detour and define homogeneous Sobolev spaces following 
[19, Chapter II], see also [24, Sec 6]. For Ω ⊂ Rn arbitrary measurable domain, m ∈ N, and q ≥ 1, we start 
by defining

Dm,q(Ω) := {u ∈ L1
loc(Ω) |D�u ∈ Lp(Ω), |�| = m}

with the norm |u|m,q := ‖∇mu‖q. If Ω is unbounded, a control on the norm of the highest derivative 
does not imply a control on the norms of the function itself and of all other derivatives. In other words 
Dm,q(Ω) \Wm,q(Ω) 	= ∅. Nevertheless, if q > 1 any function u ∈ Dm,q(Ω) belongs to Wm,q

loc (Ω) and

‖u‖Wm,q(Ω′) ≤ C

⎛⎝∑
|�|=m

‖D�u‖Lq(Ω′) + ‖u‖L1(Ω′)

⎞⎠ (2.8)

for any Ω′ ⊂⊂ Ω, see [19, Lemma II.6.1].
An immediate disadvantage of these spaces is that, if P ∈ Pm := {polynomials of degree ≤ m − 1}, then 

it is clear that |u|m,q = |u + P |m,q. One can avoid this by defining

8Dm,q(Ω) := {[u]m |u ∈ Dm,q(Ω)},

where [u]m := {w ∈ Dm,q(Ω) | w = u + P, for someP ∈ Pm} and one can show that 8Dm,q(Ω) is a Banach 
space. Since C∞

0 (Ω) ⊂ 8Dm,q(Ω) via the natural inclusion i : u �→ i(u) := [u]m, the space Dm,q
0 (Ω) :=

C∞
0 (Ω)

|·|m,q is isomorphic to a closed subset of 8Dm,q(Ω), so it is a Banach space too.

Remark 8. Notice that this means that if we consider u ∈ D1,q
0 (Rn), then it coincides with an element of 

D1,q(Rn), so u ∈ L1
loc(Rn). This in turns implies that u ∈ W 1,q

loc (Rn) by (2.8).

The spaces 8Dm,q(Ω) and Dm,q
0 (Ω) turn out to be separable for 1 ≤ q < +∞ and reflexive for 1 < q < ∞, 

see [19, Exercise II.6.2] or [42, Theorem 2.2]. This implies that our space D2,p+1 defined in (2.3) is a reflexive 
Banach space. Indeed, the spaces D1,2

0 (Rn) and D1,p+1
0 (Rn) form a conjugate couple of Banach spaces (i.e. 

their intersection is dense in both spaces) and therefore, see [1, Theorem 8.III],

D′′
2,p+1 =

(
D1,2

0 (Rn) ∩D1,p+1
0 (Rn)

)′′
=
(
D1,2

0 (Rn)′ + D1,p+1
0 (Rn)′

)′
= D1,2

0 (Rn)′′ ∩D1,p+1
0 (Rn)′′ = D1,2

0 (Rn) ∩D1,p+1
0 (Rn) = D2,p+1.

Finally, we recall a result which allows us to split a function which belongs to 8D1,q(Ω) into a “Sobolev” 
term in W 1,q and a “regular” term which might not be in W 1,q but over which we may have a control in 
some Lebesgue space.

Proposition 2.3 ([41], Theorem 2.2 (iii)). For q ∈ [1, ∞) there exist linear maps T0 : 8D1,q(Rn) → W 1,q(Rn)
and T∞ : 8D1,q(Rn) → C∞(Rn) such that [u] = [T0(u)] + [T∞(u)] for all [u] ∈ 8D1,q and

‖T0(u)‖W 1,q ≤ C|u|1,q, |T∞(u)|1,q ≤ |u|1,q, ‖∇T∞(u)‖∞ ≤ |u|1,q,

where C = C(n) > 0. Moreover T∞ may be chosen to satisfy

|T∞(u)|(x) ≤ C|u|1,q log(2 + |x|), x ∈ Rn if q = n,

‖T∞(u)‖q∗ ≤ C|u|1,q if q < n,

where we recall q∗ = nq .
n−q
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Remark 9. This result motivates our definition of the norm |||·|||.

3. Existence and estimates for ∇φ (proof of Theorem 2.1)

Notation In the sequel we often use the symbol � to indicate that an inequality holds up to a multiplicative 
constant depending only on the structural constants n, Λp, λp, Λα, Λ̃p, λ̃p, Λ̃α, d, ‖ε1‖W 1,∞(Rn

±), and 
‖εf‖W 1,∞(Rn

±) but not on U0, b, and φ. Moreover δ is a small positive parameter and Cδ denotes a positive 
constant which smoothly depends on δ and the value of which may vary from line to line.

Minimisation Under assumptions (H0), (F0)-(F1), and (A0), the existence part of Theorem 2.1 essentially 
follows by the standard minimisation method. First, note that the functional J is well-defined on D2,p+1, 
since ∣∣∣∣∫ εfF (U0 + ∇φ)

∣∣∣∣ ≤ ‖εf‖∞
∫

|F (U0 + ∇φ)|

≤ ‖εf‖∞
(

Λp

∫
|U0 + ∇φ|p+1 + Λα

∫
|U0 + ∇φ|α+1

)
� ‖U0‖2

2 + ‖U0‖p+1
p+1 + ‖∇φ‖2

2 + ‖∇φ‖p+1
p+1

since F (0) = 0 and α ∈ (1, p]. Moreover, J is coercive on D2,p+1. Indeed, by (F0)

J (φ) ≥ dμp‖U0 + ∇φ‖p+1
p+1 + d

2‖∇φ‖2
2 − ‖ε1‖∞‖U0‖2‖∇φ‖2

≥ C‖∇φ‖p+1
p+1 +

(
d
2 − δ

)
‖∇φ‖2

2 − C‖U0‖p+1
p+1 − Cδ‖U0‖2

2,

and the coercivity of J follows by choosing δ sufficiently small. Finally, the weakly lower semicontinuity is 
ensured by the convexity of J , see e.g. [20, Theorem 4.5]. Indeed, J is a sum of a squared weighted L2-norm 
and a nonlinear term driven by F , which is convex due to (F0). Since D2,p+1 is a reflexive Banach space 
as shown in Section 2, the direct method of the calculus of variations provides the existence of a global 
minimum of J , which is in particular a weak solution of (1.12a)-(1.12b). Note that such a minimum is not 
trivial because otherwise ∇ · D(·, U0) = 0 would weakly hold and thus violate assumption (A2).

Estimate (2.5) Testing (2.4) with η = φ, we find∫
εff(U0 + ∇φ) · (U0 + ∇φ) +

∫
ε1|∇φ|2 =

∫
εff(U0 + ∇φ) · U0 −

∫
ε1U0 · ∇φ. (3.1)

Since ε1 and εf are bounded from below by a positive constant, see (H0), the growth condition (F1.ii) 
implies that ∫

εff(U0 + ∇φ) · (U0 + ∇φ) +
∫

ε1|∇φ|2 ≥ dλp

∫
|U0 + ∇φ|p+1 + d

∫
|∇φ|2. (3.2)

On the other hand, by (F1.i), Hölder inequality with exponents p+1
p and p + 1, and a δ-Young inequality 

we have∣∣∣∣∫ εff(U0 + ∇φ) · U0

∣∣∣∣ ≤ ‖εf‖∞
(

Λp

∫
|U0 + ∇φ|p|U0| + Λα

∫
|U0 + ∇φ|α|U0|

)
≤ δ

∫
|U0 + ∇φ|p+1 + Cδ

∫
|U0|p+1 + δ

∫
|U0 + ∇φ|α+1 + Cδ

∫
|U0|α+1
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and, using xα+1 � xp+1 + x2 for x ≥ 0, since α ∈ (1, p],∫
|U0 + ∇φ|α+1 �

∫
|∇φ|p+1 +

∫
|∇φ|2 +

∫
|U0|α+1

�
∫

|U0 + ∇φ|p+1 +
∫

|∇φ|2 + ‖U0‖α+1
α+1 + ‖U0‖p+1

p+1.

Therefore ∣∣∣∣∫ εff(U0 + ∇φ) · U0

∣∣∣∣ � δ

∫
|U0 + ∇φ|p+1 + δ

∫
|∇φ|2 + Cδ‖U0‖α+1

α+1 + Cδ‖U0‖p+1
p+1, (3.3)

where the first two terms on the right-hand side can be absorbed by the quantities on the right of (3.2). It 
remains to estimate the last term in (3.1). Since we aim to obtain an estimate of the L2- and Lp+1-norms 
of ∇φ independently of the L2-norm of U0, we need to rely on the term b = ∇ · (ε1U0). By (A1)-(A2) we 
deduce b ∈ L2(Rn) as well as the transmission condition �ε1U0 · e1� = 0. Hence

−
∫

ε1U0 · ∇φ =
∫

bφ (3.4)

and we aim to show that the right-hand side is well-defined in L1, which is not trivial since we are working 
in homogeneous Sobolev spaces. To this purpose, we decompose φ = u + v according to Proposition 2.3
with u := T∞(φ) and v := T0(φ). Hence we have v ∈ H1(Rn) with ‖v‖H1 ≤ C|φ|1,2 and either |u(x)| ≤
C log(2 + |x|)|φ|1,2 if n = 2 or ‖u‖2∗ ≤ C|φ|1,2 if n ≥ 3. Then∣∣∣∣∫ bφ

∣∣∣∣ � ‖b‖2‖v‖2 + |||b||||φ|1,2 � (‖b‖2 + |||b|||) |φ|1,2

� δ

∫
|∇φ|2 + Cδ

(
‖b‖2

2 + |||b|||2
)
.

(3.5)

Hence, (3.1)-(3.5) yield

(1 − C1δ)
∫

|U0 + ∇φ|p+1 + (1 − C2δ)
∫

|∇φ|2 � Cδ

(
‖U0‖α+1

α+1 + ‖U0‖p+1
p+1 + ‖b‖2

2 + |||b|||2
)
,

for suitable constants C1, C2 > 0. To infer the desired estimate (2.5) it is now sufficient to choose δ sufficiently 
small after having observed that∫

|U0 + ∇φ|p−1|∇φ|2 �
∫

|U0 + ∇φ|p+1 +
∫

|U0 + ∇φ|p−1|U0|2

�
∫

|U0 + ∇φ|p+1 + ‖U0‖p+1
p+1,

(3.6)

where again Hölder inequality with conjugate exponents p+1
p−1 and p+1

2 and a δ-Young inequality have been 
used. This concludes the proof of Theorem 2.1.

For later use, we note here that the “almost converse” inequality∫
|U0 + ∇φ|p+1 �

∫
|U0 + ∇φ|p−1|∇φ|2 + ‖U0‖p+1

p+1 (3.7)

holds. Indeed, by similar arguments as for (3.6) we have
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∫
|U0 + ∇φ|p+1 ≤

∫
|U0 + ∇φ|p−1|U0|2 +

∫
|U0 + ∇φ|p−1|∇φ|2

� ‖U0‖p+1
p+1 +

∫
|∇φ|p−1|U0|2 +

∫
|U0 + ∇φ|p−1|∇φ|2

≤ 2‖U0‖p+1
p+1 + ‖∇φ‖p+1

p+1 +
∫

|U0 + ∇φ|p−1|∇φ|2.

(3.8)

Now we further estimate

‖∇φ‖p+1
p+1 �

∫
|U0 + ∇φ|p−1|∇φ|2 +

∫
|U0|p−1|∇φ|2

≤
∫

|U0 + ∇φ|p−1|∇φ|2 + δ‖∇φ‖p+1
p+1 + Cδ‖U0‖p+1

p+1

by the δ-Young inequality, so choosing δ small enough one gets

‖∇φ‖p+1
p+1 �

∫
|U0 + ∇φ|p−1|∇φ|2 + ‖U0‖p+1

p+1. (3.9)

Estimate (3.7) follows by combining (3.8) with (3.9).

4. Estimates for the derivatives of ∇φ (proof of Theorem 2.2)

In the previous section we proved the existence of φ in D2,p+1, together with estimate (2.5), under the 
sole assumption that the coefficients ε1, εf are bounded from above and below by positive constants. Their 
regularity was not involved. However, for the existence of the derivatives of ∇φ as well as analogous estimates 
on them, the regularity of ε1, εf comes into play. Assumption (H1) guarantees that their weak derivatives 
exist in the half-spaces Rn

± but they might have a jump at the interface, which is the typical situation in 
applications. We show that the derivatives of ∇φ which are tangential to the interface exist on the whole 
Rn, while the normal derivative ∂11φ is well-defined just in the two half-spaces. In both cases we obtain 
estimates analogous to the one found in the previous section.

We make use of the well-known method of difference quotients. In the context of transmission problems it 
was employed in [28] to obtain local regularity for linear equations and then extended in [45] to quasilinear 
problems of the kind (1.12a) with a function a(x, ·) with at most linear growth. On the other hand, this 
method was also applied to double phase quasilinear problems in [33]. Here we want to merge these two 
features and obtain analogous estimates for our double phase quasilinear transmission problem (1.12a)-
(1.12b).

We start by defining the difference quotient of a function u : Rn → R in the direction ek, k ∈ {1, . . . , n}
as

∂h
ku(x) := u(x + hek) − u(x)

h
, 0 < |h| � 1.

We recall that the action of the difference quotient on the product and the integral is similar to the derivative. 
Namely for u, v : Rn → R there holds

∂h
k (uv)(x) = u(x + hek)∂h

k v(x) + ∂h
ku(x)v(x)

and ∫
u(x)∂h

k v(x) dx = −
∫

∂−h
k u(x)v(x) dx. (4.1)
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Moreover, we will make use of the following well-known properties of the difference quotient, see e.g. [28, 
Chp. 2 Lemma 4.6] or [33, Lemma 2.7]:

Lemma 4.1. Let Ω′ be an open set compactly contained in Ω ⊂ Rn with h0 := dist(Ω′, Rn \ Ω) > 0.

1. If v ∈ W 1,q(Ω) for some q ≥ 1, then for every |h| ≤ h0 there holds 
∫
Ω′ |∂h

k v|q ≤
∫
Ω |∂kv|q;

2. If v ∈ Lq(Ω) for some q > 1 and if there exists a constant C > 0 such that ‖∂h
k v‖Lq(Ω′) ≤ C for every 

|h| ≤ h0, then ∂kv ∈ Lq(Ω′) and ‖∂kv‖Lq(Ω′) ≤ C;
3. If v ∈ W 1,q(Ω) for some q > 1, then ∂h

k v → ∂kv strongly in Lq(Ω′) for every k ∈ {1, . . . , n}.

When Ω = Rn, points 1.-3. hold also for Ω′ = Rn and any h0 > 0.

4.1. Local estimates for the derivatives of ∇φ

Let k ∈ {1, . . . , n} and

ζ ∈
{
C∞

0 (Rn
±) if k = 1,

C∞
0 (Rn) if k ≥ 2,

(4.2)

with 0 < ζ ≤ 1 in the interior of its support. In this section, we investigate at once local estimates for the 
normal derivative of ∇φ, which corresponds to the case k = 1, and for the tangential derivatives of ∇φ, i.e. 
the case k ∈ {2, . . . , n}. In both cases we aim to obtain the estimate∫

|∂k∇φ|2ζ2 +
∫

|U0 + ∇φ|p−1|∂k∇φ|2ζ2 ≤ C
(
‖U0‖p+1

p+1 + ‖U0‖α+1
α+1 + ‖∂kU0‖p+1

p+1

+ ‖∂kU0‖α+1
α+1 + ‖b‖2

2 + |||b|||2 + ‖∂kb‖2
2

)
,

(4.3)

where in the case k = 1 the Lebesgue norms of ∂kU0 and ∂kb have to be understood on Rn
±. To this purpose 

it is important to choose the test function ζ as in (4.2), and hence, when the normal derivative is considered, 
supp ζ is strictly contained in one of the two half-spaces. We stress the fact that the constant C in (4.3) will 
depend on ‖∇ζ‖∞ in addition to the structural constants of the problem as detailed in Theorem 2.2.

We test (2.4) with η = ∂−h
k

(
∂h
kφ ζ2) for h > 0 when k ∈ {2, . . . , n} and 0 < h < dist(supp ζ, Γ) when 

k = 1. Analogously to (3.4) we apply Gauß’s theorem, obtaining∫
εff(U0 + ∇φ) · ∂−h

k ∇
(
∂h
kφ ζ2)+

∫
ε1∇φ · ∂−h

k ∇
(
∂h
kφ ζ2) =

∫
b ∂−h

k

(
∂h
kφ ζ2) . (4.4)

We begin by considering the linear terms. First by (4.1),

−
∫

ε1∇φ · ∂−h
k ∇

(
∂h
kφ ζ2) =

∫
∂h
k (ε1∇φ) · ∇

(
∂h
kφ ζ2)

=
∫

ε1(· + hek)|∇∂h
kφ|2ζ2 + 2

∫
ε1(· + hek)∇∂h

kφ · ∂h
kφ ζ∇ζ

+
∫

∂h
k ε1∇φ · ∇∂h

kφ ζ2 + 2
∫

∂h
k ε1∇φ · ∂h

kφ ζ∇ζ.

(4.5)

We estimate the first term on the right in (4.5) from below by∫
ε1(· + hek)|∇∂h

kφ|2ζ2 ≥ d

∫
|∇∂h

kφ|2ζ2, (4.6)
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and we estimate from above all other terms. Here we use δ-Young inequalities, Lemma 4.1, and the estimate 
|∂h

k ε1| ≤ ‖ε1‖W 1,∞(Rn
±), which holds due to our choice of h:

∣∣∣∣∫ ε1(· + hek)∇∂h
kφ · ∂h

kφ ζ∇ζ

∣∣∣∣ ≤ ‖ε1‖∞‖∇ζ‖∞
(
δ

∫
|∇∂h

kφ|2ζ2 + Cδ‖∂h
kφ ζ‖2

2

)
� δ

∫
|∇∂h

kφ|2ζ2 + Cδ‖∇φ‖2
2,

(4.7)

∣∣∣∣∫ ∂h
k ε1∇φ · ∇∂h

kφ ζ2
∣∣∣∣ ≤ ‖ε1‖W 1,∞(Rn

±)

(
δ

∫
|∇∂h

kφ|2ζ2 + Cδ‖∇φ‖2
2

)
, (4.8)∣∣∣∣∫ ∂h

k ε1∇φ · ∂h
kφ ζ∇ζ

∣∣∣∣ ≤ ‖ε1‖W 1,∞(Rn
±)‖∇ζ‖∞

(
‖∇φ‖2

2 + ‖∂h
kφ ζ‖2

2
)
� ‖∇φ‖2

2. (4.9)

Notice that all terms on the right-hand sides of (4.7)-(4.9) either may be absorbed by (4.6) or depend just 
on ‖∇φ‖2, which can be estimated by known quantities using Theorem 2.1. We underline the fact that here, 
as well as in the following estimates, the constants hidden in the symbol � may also depend on ‖∇ζ‖∞.

The last term in (4.4), once integrated by parts as in (4.1), can be easily estimated:∣∣∣∣∫ b ∂−h
k

(
∂h
kφζ

2)∣∣∣∣ ≤ ‖∂h
k b ζ‖2‖∂h

kφ ζ‖2 ≤ ‖∂kb‖2
2 + ‖∇φ‖2

2. (4.10)

The next step is to estimate the first term in (4.4). Following [33], we define

g : Rn ×Rn → Rn, g(x, ξ) := εf (x)f(ξ)

and so for u : Rn → Rn one has

∂h
k g(x, u(x)) = 1

h

1∫
0

d

dt
g(x + thek, u(x) + th∂h

ku(x)) dt

=
1∫

0

⎛⎝ ∂g

∂xk
(x + thek, u(x) + th∂h

ku(x)) +
n∑

j=1

∂g

∂ξj
(x + thek, u(x) + th∂h

ku(x))∂h
kuj(x)

⎞⎠ dt

=
1∫

0

∂kεf (x + thek)f(u(x) + th∂h
ku(x)) dt +

1∫
0

εf (x + thek)Jf
(
u(x) + th∂h

ku(x)
)
∂h
ku(x) dt.

Hence, defining

Zth := (U0 + ∇φ) + th∂h
k (U0 + ∇φ) = (1 − t)(U0 + ∇φ) + t(U0 + ∇φ)(· + hek),

we get for u = U0 + ∇φ

−
∫

εff(U0 + ∇φ) · ∂−h
k ∇

(
∂h
kφ ζ2) =

∫ ⎛⎝ 1∫
0

∂kεf (· + thek)f(Zth) dt

⎞⎠ ·
(
∇∂h

kφ ζ2 + 2∂h
kφ ζ∇ζ

)

+
∫ ⎛⎝ 1∫

0

εf (· + thek)Jf (Zth)∂h
k (U0 + ∇φ) dt

⎞⎠ ·
(
∇∂h

kφ ζ2 + 2∂h
kφ ζ∇ζ

)
=: T + T + S + S + S + S ,

(4.11)
1 2 11 12 21 22
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using the discrete partial integration (4.1). The T -terms (resp. S-terms) originate from the two (resp. four) 
products contained in the first (resp. second) term. Let us analyse all these terms separately, starting with 
S21, since it contains the quantity which is going to enter on the left-hand side of the desired inequality 
(2.6). Indeed, by means of (H0) and (F2.ii), one has

S21 :=
∫ ⎛⎝ 1∫

0

εf (· + thek)Jf (Zth)∇∂h
kφdt

⎞⎠ · ∇∂h
kφ ζ2 ≥ dλ̃p

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∇∂h
kφ|2ζ2. (4.12)

All the remaining terms will be estimated from above by means of (F2.i), either by the terms on the left-hand 
sides of (4.12) and (4.6) multiplied by δ, or by known quantities. For instance

|S11| ≤ ‖εf‖∞
∫ ⎛⎝Λ̃p

1∫
0

|Zth|p−1 dt + Λ̃α

1∫
0

|Zth|α−1 dt

⎞⎠ |∂h
kU0||∂h

k∇φ|ζ2

� δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt +
1∫

0

|Zth|α−1

⎞⎠ |∇∂h
kφ|2ζ2

+ Cδ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt +
1∫

0

|Zth|α−1 dt

⎞⎠ |∂h
kU0|2ζ2,

� δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt + 1

⎞⎠ |∇∂h
kφ|2ζ2

+ Cδ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt +
1∫

0

|Zth|α−1 dt

⎞⎠ |∂h
kU0|2ζ2,

having used the δ-Young inequality in the second step and the estimates xα−1 � xp−1 + 1 for x ≥ 0, 
since α ∈ (1, p], in the last step. In the first term we recognise the “good” quantities. Noticing that by the 
definition of Zth one has

1∫
0

|Zth|p−1 dt � |U0 + ∇φ|p−1 + |U0 + ∇φ|p−1(· + hek), (4.13)

and similarly for α replacing p, we get via Hölder and Young inequalities

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∂h
kU0|2ζ2 � ‖U0 + ∇φ‖p+1

p+1 + ‖(U0 + ∇φ)(· + hek)‖p+1
p+1 + 2‖∂h

kU0 ζ‖p+1
p+1

� 2‖U0 + ∇φ‖p+1
p+1 + 2‖∂kU0‖p+1

p+1

�
∫

|U0 + ∇φ|p−1|∇φ|2 + ‖U0‖p+1
p+1 + ‖∂kU0‖p+1

p+1,

having used (3.7) in the last step. Similarly

∫ ⎛⎝ 1∫
|Zth|α−1 dt

⎞⎠ |∂h
kU0|2ζ2 �

∫
|U0 + ∇φ|α−1|∂h

kU0|2ζ2 +
∫

|U0 + ∇φ|α−1(· + hek)|∂h
kU0|2ζ2
0
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� ‖U0‖α+1
α+1 + ‖∂h

kU0 ζ‖α+1
α+1 + ‖∇φ‖α+1

α+1

� ‖U0‖α+1
α+1 + ‖∂kU0‖α+1

α+1 + ‖∇φ‖p+1
p+1 + ‖∇φ‖2

2

� ‖U0‖α+1
α+1 + ‖∂kU0‖α+1

α+1 + ‖U0‖p+1
p+1 + ‖∇φ‖2

2 +
∫

|U0 + ∇φ|p−1|∇φ|2.

Here we used xα+1 � xp+1 + x2 for x ≥ 0 in the second inequality since α ∈ (1, p], and (3.9) in the last 
inequality to estimate the third term. All in all we get

|S11| � δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt + 1

⎞⎠ |∇∂h
kφ|2ζ2 + Cδ

(
‖U0‖α+1

α+1 + ‖∂kU0‖α+1
α+1

+ ‖U0‖p+1
p+1 + ‖∂kU0‖p+1

p+1 +
∫

|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2
2

)
.

The terms S12 and S22 are estimated in the same way, obtaining

|S12| � ‖U0‖α+1
α+1 + ‖∂kU0‖α+1

α+1 + ‖U0‖p+1
p+1 +

∫
|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2

2

and

|S22| � δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt + 1

⎞⎠ |∇∂h
kφ|2ζ2 + Cδ

(
‖U0‖p+1

p+1 +
∫

|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2
2

)
.

It remains to estimate the T -terms in (4.11). Using (F1.i), we have

|T1| ≤ ‖εf‖W 1,∞(Rn
±)

∫ ⎛⎝Λp

1∫
0

|Zth|p dt + Λα

1∫
0

|Zth|α dt

⎞⎠ |∇∂h
kφ|ζ2. (4.14)

Concerning the first term, we exchange the integrals by Fubini’s theorem in order to use Hölder and δ-
Young inequalities in the x-integral, restoring the original integration order by a second application of 
Fubini’s theorem:

∫ ( 1∫
0

|Zth|p dt
)
|∇∂h

kφ|ζ2 =
1∫

0

(∫
|Zth|

p−1
2 |∇∂h

kφ| ζ |Zth|
p+1
2 ζ

)
dt

≤ δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∇∂h
kφ|2ζ2 + Cδ

∫ ⎛⎝ 1∫
0

|Zth|p+1 dt

⎞⎠
� δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∇∂h
kφ|2ζ2 + Cδ

(
‖U0‖p+1

p+1 +
∫

|U0 + ∇φ|p−1|∇φ|2
)
.

Note that in the last step we argued similarly to (4.13) with p + 1 instead of p − 1, and then applied (3.7)
to the resulting terms.

Analogously one may proceed with the second term in (4.14):

∫ ⎛⎝ 1∫
|Zth|α dt

⎞⎠ |∇∂h
kφ|ζ2 ≤ δ

∫ ⎛⎝ 1∫
|Zth|α−1 dt

⎞⎠ |∇∂h
kφ|2ζ2 + Cδ

∫ ⎛⎝ 1∫
|Zth|α+1 dt

⎞⎠

0 0 0
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� δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt + 1

⎞⎠ |∇∂h
kφ|2ζ2

+ Cδ

(
‖U0‖α+1

α+1 + ‖U0‖p+1
p+1 + ‖∇φ‖2

2 +
∫

|U0 + ∇φ|p−1|∇φ|2
)
.

Hence, from (4.14) we find

|T1| � δ

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt + 1

⎞⎠ |∇∂h
kφ|2ζ2

+ Cδ

(
‖U0‖α+1

α+1 + ‖U0‖p+1
p+1 + ‖∇φ‖2

2 +
∫

|U0 + ∇φ|p−1|∇φ|2
)
.

Finally, a similar bound independent of δ can be established for |T2| since it does not involve ∇∂h
kφ:

|T2| � ‖U0‖α+1
α+1 + ‖U0‖p+1

p+1 + ‖∇φ‖2
2 +
∫

|U0 + ∇φ|p−1|∇φ|2.

Therefore, gathering the estimates we obtained for the terms in (4.5), (4.10), and (4.11), we infer

(1 − C1δ)
∫

|∇∂h
kφ|2ζ2 + (1 − C2δ)

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∇∂h
kφ|2ζ2

� Cδ

(∫
|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2

2 + ‖U0‖α+1
α+1

+ ‖∂kU0‖α+1
α+1 + ‖U0‖p+1

p+1 + ‖∂kU0‖p+1
p+1 + ‖b‖2

2 + |||b|||2 + ‖∂kb‖2
2

)
(4.15)

for suitable constants C1, C2 > 0. Choosing a sufficiently small δ, and since the second term on the left 
in (4.15) is positive, one deduces that 

∫
|∇∂h

kφ|2ζ2 is uniformly bounded with respect to h and that the 
constant depends only on the W 1,∞-norm of ζ. Hence, by Lemma 4.1 one has ∇∂kφ ∈ L2(supp ζ) (with the 
L2-norm bounded by the same right-hand side as in (4.15)) and ∇∂h

kφ → ∇∂kφ in L2(supp ζ) as h → 0, so 
pointwise a.e. in supp ζ. Moreover, thanks to the continuity with respect to translations in the Lp+1-norm, 
one has

Zth = (1 − t)(U0 + ∇φ) + t(U0 + ∇φ)(· + hek) → U0 + ∇φ a.e. in Rn as h → 0.

Hence, applying Fubini’s theorem and Fatou’s lemma, one gets

lim
h→0

∫ ⎛⎝ 1∫
0

|Zth|p−1 dt

⎞⎠ |∇∂h
kφ|2ζ2 ≥

1∫
0

(∫
lim
h→0

|Zth|p−1|∇∂h
kφ|2ζ2

)
dt

=
∫

|U0 + ∇φ|p−1|∇∂kφ|2ζ2,

and therefore from (4.15), once estimate (2.5) found in Theorem 2.1 is applied, one infers (4.3).

4.2. Tangential derivatives ∂k∇φ, k ≥ 2: estimate (2.6)

Let ζ0 ∈ C∞
0 (Rn) so that ζ0 ≡ 1 on B1(0) and supp ζ0 ⊂ B2(0), and let (ζj)j be the sequence of test 

functions defined as ζj := ζ0
( · ). Then the supports of (ζj)j grow to cover the whole Rn, ζj(x) → 1 for all 
j
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x ∈ Rn as j → +∞, and ‖∇ζj‖W 1,∞ are uniformly bounded. Hence an application of Fatou’s lemma to 
(4.3) with ζ = ζj yields (2.6).

Note that for the estimate of tangential derivatives of ∇φ introducing the factor ζ in the test function 
η is actually not necessary. Indeed, testing with η = ∂−h

k

(
∂h
kφ
)

is allowed since Lemma 4.1 holds also for 
Ω = Ω′ = Rn. However, for the sake of a concise presentation in Section 4.3 we use a test function which 
can be used for all derivatives.

4.3. Normal derivative ∂11φ: estimate (2.7)

As mentioned in Remark 4, we are only left with the estimate for the first component of the normal 
derivative ∂1∇φ. Indeed, by the argument detailed in Section 4.1, for a ζ ∈ C∞

0 (Rn
±) one infers the existence 

of ∂1∇φ in L2(supp ζ) together with the estimate∫
|∂1∇φ|2ζ2 +

∫
|U0 + ∇φ|p−1|∂1∇φ|2ζ2 ≤ K1, (4.16)

where the constant K1 depends on the Lp+1- and Lα+1-norms of U0, ∂1U0, ∂1b and on |||b||| in the half-space 
which contains supp ζ. By the arbitrariness of ζ ∈ C∞

0 (Rn
±), one deduces that ∂1∇φ ∈ L2

loc(Rn
±)n. Since 

∇φ ∈ H1
loc(Rn

±)n, it is easy to verify that ∂1kφ = ∂k1φ for all k ∈ {1, . . . , n} as functions in L2(Rn
±) and so 

also a.e. in Rn
±. Hence, decomposing the domain of integration as Rn\Γ = Rn

+∪Rn
−, we get for k ∈ {2, . . . , n}∫

|∂1kφ|2 +
∫

|U0 + ∇φ|p−1|∂1kφ|2 =
∫

|∂k1φ|2 +
∫

|U0 + ∇φ|p−1|∂k1φ|2 ≤ C̃k, (4.17)

where C̃k is the right-hand side of (2.6). Hence we conclude that ∂1kφ = ∂k1φ in L2(Rn), which means that 
∂1kφ, k ∈ {2, . . . , n} are estimated in Section 4.2.

The trick in (4.17) is of course not applicable for ∂11φ. Moreover, note that in the estimate we get from 
(4.16), i.e. ∫

|∂11φ|2ζ2 +
∫

|U0 + ∇φ|p−1|∂11φ|2ζ2 ≤ K1, (4.18)

the constant K1 does depend on ‖∇ζ‖∞. Hence, when one defines a sequence of uniformly bounded test 
functions (ζj)j similarly to Section 4.2, namely such as their support grows to cover e.g. the subspace Rn

+, 
and ζj → 1 pointwise on Rn

+, then ‖∇ζj‖∞ → ∞ as j → ∞ because dist(supp ζj , Γ) → 0. This implies that 
simply applying Fatou’s lemma to (4.18), as we did for the tangential derivatives, is insufficient. The aim 
of this section is thus to obtain an estimate for ∂11φ similar to (4.18) but independent of ‖∇ζ‖∞.

First, we claim that equation (1.12a) is actually satisfied pointwise a.e. in Rn
±. Indeed, from the weak 

formulation (2.4) with η ∈ C∞
0 (Rn

±) and from (3.4) with such η instead of φ we get by partial integration

−
∫
Rn

±

∇ · (εff(U0 + ∇φ) + ε1∇φ) η =
∫
Rn

±

bη, (4.19)

where the term on the left-hand side is well-defined. Indeed, concerning the second summand, the functions 
∂k (ε1∂kφ) ∈ L1

loc(Rn
±) because of (4.18) for k = 1 and (2.6) for k ∈ {2, . . . , n}. For the first summand we 

have,3

3 We denote by J(k,j)
f the (k, j)-element of the matrix Jf and by J(k,·)

f its k-th row.
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∂k (εffk(U0 + ∇φ)) = ∂kεffk(U0 + ∇φ) + εfJ
(k,·)
f (U0 + ∇φ) · ∂k(U0 + ∇φ),

so by (F1.i) ∣∣∣∣∣∣
∫

supp η

∂kεffk(U0 + ∇φ)

∣∣∣∣∣∣ � ‖εf‖W 1,∞(Rn
±)

⎛⎝ ∫
supp η

|U0 + ∇φ|p +
∫

supp η

|U0 + ∇φ|α
⎞⎠

�
∫

supp η

|U0 + ∇φ|p + |supp η| � ‖U0 + ∇φ‖p+1
p+1 + |supp η|,

while by (F2.i)

∣∣∣ ∫
supp η

εfJ
(k,·)
f (U0 + ∇φ)·∂k(U0 + ∇φ)

∣∣∣ � ‖εf‖∞
∫

supp η

(
|U0 + ∇φ|p−1 + 1

)
(|∂kU0| + |∂k∇φ|)

�
∫

|U0 + ∇φ|p+1 +
∫

supp η

|U0 + ∇φ|p−1|∂k∇φ|2 +
∫

supp η

|∂k∇φ|2

+
∫

supp η

|∂kU0|p+1 +
∫

supp η

|∂kU0|2 + |supp η|.

Here we used the trivial inequality tp−1 � tp + 1 for t ≥ 0, then wrote p = p+1
2 + p−1

2 and applied the 
Cauchy-Schwarz inequality.

Then, by the arbitrariness of η ∈ C∞
0 (Rn

±) and invoking the fundamental lemma of calculus of variations, 
the fact that the solution ∇φ satisfies equation (1.12a) a.e. follows from (4.19).

Next, we prove the interface condition (1.12b) in the trace sense of Definition 2.1. As ∇ ·D(U0 +∇φ) = 0
a.e. in Rn, we get

(T±D)[ψ] = ∓
∫
Rn

±

D · ∇ψ̂,

where ψ̂ ∈ C∞
0 (Rn) is such that ψ̂|Γ = ψ. Hence we have

(T+D − T−D)[ψ] = −
∫
Rn

D · ∇ψ̂ = 0

using the definition of the weak solution and the fact that C∞
0 (Rn) ⊂ D2,p+1.

In the final part of the proof we estimate the normal derivative ∂11φ. Let us now choose a half-space, say 
Rn

+, and multiply equation (1.12a) by ∂11φ ζ, with ζ ∈ C∞
0 (Rn

+). Integrating over Rn
+, we get∫

Rn
+

∇ · (εff(U0 + ∇φ)) ∂11φ ζ +
∫
Rn

+

∇ · (ε1∇φ) ∂11φ ζ = −
∫
Rn

+

b ∂11φ ζ. (4.20)

We have ∫
n

∇ · (ε1∇φ) ∂11φ ζ =
∫
n

ε1|∂11φ|2ζ +
n∑

k=2

∫
n

ε1∂kkφ∂11φ ζ +
n∑

k=1

∫
n

∂kε1∂kφ∂11φ ζ (4.21)

R+ R+ R+ R+
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and for k ∈ {2, . . . , n} ∣∣∣∣∣∣∣
∫
Rn

+

ε1∂kkφ∂11φ ζ

∣∣∣∣∣∣∣ � δ

∫
Rn

+

|∂11φ|2ζ + Cδ

∫
Rn

+

|∂kkφ|2,

while for k ∈ {1, . . . , n} ∣∣∣∣∣∣∣
∫
Rn

+

∂kε1∂kφ∂11φ ζ

∣∣∣∣∣∣∣ � δ

∫
Rn

+

|∂11φ|2ζ + Cδ

∫
Rn

+

|∇φ|2.

We can decompose the first term in (4.20) as

∫
Rn

+

∇ · (εff(U0 + ∇φ)) ∂11φ ζ =
n∑

k=1

∫
Rn

+

εfJ
(k,·)
f (U0 + ∇φ) ∂k∇φ∂11φ ζ

+
n∑

k=1

∫
Rn

+

εfJ
(k,·)
f (U0 + ∇φ) ∂kU0 ∂11φ ζ +

n∑
k=1

∫
Rn

+

∂kεffk(U0 + ∇φ) ∂11φ ζ.

(4.22)

The last two terms in (4.22) are easy to handle. For k ∈ {1, . . . , n} by (F2.i)∣∣∣∣∣∣∣
∫
Rn

+

εfJ
(k,·)
f (U0 + ∇φ) ∂kU0 ∂11φ ζ

∣∣∣∣∣∣∣ �
∫
Rn

+

|U0 + ∇φ|p−1|∂kU0||∂11φ|ζ

+
∫
Rn

+

|U0 + ∇φ|α−1|∂kU0||∂11φ|ζ

:= Tp + Tα

where

Tp ≤ Cδ

∫
Rn

+

|U0 + ∇φ|p−1|∂kU0|2 + δ

∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ2

� Cδ

⎛⎜⎝∫ |U0 + ∇φ|p+1 +
∫
Rn

+

|∂kU0|p+1

⎞⎟⎠+ δ

∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ2,

and

Tα ≤ Cδ

⎛⎜⎝∫ |U0 + ∇φ|α+1 +
∫
Rn

+

|∂kU0|α+1

⎞⎟⎠+ δ

∫
Rn

+

|U0 + ∇φ|α−1|∂11φ|2ζ2

� Cδ

⎛⎜⎝‖U0‖α+1
α+1 + ‖∇φ‖p+1

p+1 + ‖∇φ‖2
2 +
∫
n

|∂kU0|α+1

⎞⎟⎠

R+
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+ δ

⎛⎜⎝∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ2 +
∫
Rn

+

|∂11φ|2ζ2

⎞⎟⎠

� Cδ

⎛⎜⎝‖U0‖α+1
α+1 + ‖U0‖p+1

p+1 +
∫

|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2
2 +
∫
Rn

+

|∂kU0|α+1

⎞⎟⎠

+ δ

⎛⎜⎝∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ2 +
∫
Rn

+

|∂11φ|2ζ2

⎞⎟⎠ ,

where in the last step we applied (3.9). Hence, using (3.7) we can estimate

∣∣∣∣ ∫
Rn

+

εfJ
(k,·)
f (U0 + ∇φ) · ∂kU0 ∂11φ ζ

∣∣∣∣ � Cδ

(
‖U0‖p+1

p+1 + ‖U0‖α+1
α+1 +

∫
|U0 + ∇φ|p−1|∇φ|2 + ‖∇φ‖2

2

+
∫
Rn

+

|∂kU0|p+1 +
∫
Rn

+

|∂kU0|α+1
)

+ δ

⎛⎜⎝∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ2 +
∫
Rn

+

|∂11φ|2ζ2

⎞⎟⎠ .

Similarly, by (F1.i) one has

∣∣∣∣∣∣∣
∫
Rn

+

∂kεffk(U0 + ∇φ) ∂11φ ζ

∣∣∣∣∣∣∣ �
∫
Rn

+

|U0 + ∇φ|p|∂11φ|ζ +
∫
Rn

+

|U0 + ∇φ|α|∂11φ|ζ

≤ Cδ

∫
|U0 + ∇φ|p+1 + δ

∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ

+ Cδ

∫
|U0 + ∇φ|α+1 + δ

∫
Rn

+

|U0 + ∇φ|α−1|∂11φ|2ζ

� δ
( ∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ +
∫
Rn

+

|∂11φ|2ζ
)

+ Cδ

(∫
|U0 + ∇φ|p+1 +

∫
|∇φ|2 + ‖U0‖p+1

p+1 + ‖U0‖α+1
α+1

)
.

The first term on the right hand side in (4.22) can be rewritten as follows:
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n∑
k=1

∫
Rn

+

εfJ
(k,·)
f (U0 + ∇φ) ∂k∇φ∂11φ ζ

=
∫
Rn

+

εfJ
(1,1)
f (U0 + ∇φ)|∂11φ|2ζ +

n∑
k,j=1

(k,j) �=(1,1)

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ)∂kjφ∂11φ ζ

=
n∑

k,j=1

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ)∂1kφ∂1jφ ζ

+
n∑

k,j=1
(k,j) �=(1,1)

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ) (∂kjφ∂11φ− ∂1kφ∂1jφ) ζ.

(4.23)

Since

n∑
k,j=1

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ) ∂1kφ∂1jφ ζ =

∫
Rn

+

εf (Jf (U0 + ∇φ) ∂1∇φ) · ∂1∇φ ζ

≥ dλ̃p

∫
Rn

+

|U0 + ∇φ|p−1|∂1∇φ|2ζ

≥ dλ̃p

∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ,

by (F2.ii), we may recognise the term we want to keep in the final estimate. The second term on the right 
in (4.23) is estimated from above as usual by (F2.i) and the δ-Young inequality:∣∣∣∣∣∣∣

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ) ∂kjφ∂11φ ζ

∣∣∣∣∣∣∣ � δ

∫
Rn

+

|U0 + ∇φ|p−1|∂11φ|2ζ + δ

∫
Rn

+

|∂11φ|2ζ

+ Cδ

∫
|U0 + ∇φ|p−1|∂kjφ|2 + Cδ

∫
|∂kjφ|2ζ,∣∣∣∣∣∣∣

∫
Rn

+

εfJ
(k,j)
f (U0 + ∇φ) ∂1kφ∂1jφ ζ

∣∣∣∣∣∣∣ �
∫

|U0 + ∇φ|p−1|∂1kφ|2 +
∫

|∂1kφ|2.

This concludes the estimates for all terms in (4.22). Finally, the last term in (4.20) is straightforward:∣∣∣∣∣∣∣−
∫
Rn

+

b ∂11φ ζ

∣∣∣∣∣∣∣ ≤ δ‖∂11φ‖2
2 + Cδ‖b‖2

2.

Recalling inequality (2.6), from equation (4.20) we may thus conclude (by choosing a sufficiently small 
δ) ∫

n

|∂11φ|2ζ +
∫
n

|U0 + ∇φ|p−1|∂11φ|2ζ ≤ C+
1 , (4.24)
R+ R+



24 T. Dohnal et al. / J. Math. Anal. Appl. 511 (2022) 126067
where the constant C+
1 has the same dependencies as in Theorem 2.2. Notice that now the constant C+

1 does 
not depend on ‖ζ‖W 1,∞(Rn

+) anymore, but only on ‖ζ‖∞. Hence, similarly to Section 4.2, one may consider a 
sequence of test functions (ζj)j ⊂ C∞

0 (Rn
+) with a uniformly bounded L∞-norm, which pointwise converge 

to 1 and the supports of which grow to cover the subspace Rn
+. Then, applying Fatou’s lemma to (4.24)

with ζ = ζj , we finally get the desired inequality (2.7). The argument for the half-space Rn
− is completely 

analogous.

5. Application: enforcing ∇ · D(·, E) = 0 at t = 0 in the Maxwell problem for n = 2

Let us return back to the Maxwell setting described in the introduction and apply the general results 
obtained in the previous sections to problem (1.9)-(1.10)-(1.11). We recall that we are considering two 
different materials of dielectric kind which are separated by the interface Γ = {x1 = 0}. Within the whole 
section we restrict ourselves to the case n = 2 and assume that the materials are independent of x2, x3. 
In addition, we choose the special case of the Kerr nonlinear dependence D = D(E) as in (1.5). With the 
notation of (1.2), one has

f(v) = |v|2v, ε1(x) = ε1(x1), εf (x) = ε3(x1). (5.1)

Of course, we require that the material coefficients ε1, ε3 fulfil assumptions (H0)-(H1).

5.1. Linear problem and numerical computation of the eigenvalues

We start by analysing the linear Maxwell problem, i.e. when D = Dlin := ε1(x)E or, in other words, the 
case ε3 ≡ 0. In this setting one may look for solutions of the form

E(x, t) =
(
ϕ1(x1)
ϕ2(x1)
ϕ3(x1)

)
ei(kx2−ωt) + c.c., H(x, t) =

(
ψ1(x1)
ψ2(x1)
ψ3(x1)

)
ei(kx2−ωt) + c.c. (5.2)

with k ∈ R, ω ∈ R \ {0} and ϕ, ψ : R → C3. We study transverse magnetic (TM) modes, that is ϕ =
(ϕ1, ϕ2, 0)T and ψ = (0, 0, ψ3)T. Note that in the special case of piecewise constant ε1, i.e. ε1 = ε+1 χR+ +
ε−1 χR− with ε±1 ∈ R, one can show that all solutions of the form (5.2) with ϕ, ψ ∈ L2(R)3 are TM modes, 
see [12].

Arranging the nonvanishing components in the vector w(x1) := (ϕ1(x1), ϕ2(x1), ψ3(x1))T, one sees that, 
in order for (E , H) to be a solution of the linear Maxwell problem, w must satisfy the eigenvalue problem

{
L(k, ω)w = 0 in R \ {0},
�ε1w1� = �w2� = �w3� = 0,

(5.3)

where the operator L(k, ω) : D(L) → L2(R)3 is given by

L(k, ω)w :=
(

ε1ωw1 + kw3
ε1ωw2 + iw′

3
kw1 + iw′

2 + ωw3

)
(5.4)

and its domain

D(L) :=
{
w ∈ L2(R)3

∣∣w2, w3 ∈ H1(R)
}
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is dense in L2(R)3. Note that, because ω 	= 0, an element w ∈ D(L) for which L(k, ω)w = 0 also satisfies 
the interface conditions, since w2, w3 ∈ H1(R) ↪→ C(R) and ε1ωw1 + kw3 = 0 implies that ε1w1 is also 
continuous. Moreover, the first two equations of L(k, ω)w = 0 imply that

(ε1w1)′ + ε1ikw2 = 0 (5.5)

in R \ {0}, which means that ∇ · Dlin = 0 holds.
Wave numbers k for which w ∈ D(L) exists such that (5.3) holds are called eigenvalues. The dependence 

k = k(ω) is called the dispersion relation. In general there can be more than one eigenvalue for a given ω. 
Note that for the piecewise constant case the eigenvalue is unique (up to the sign), see the following remark.

Remark 10. One can show that it is always possible to find a solution w such that w1 and w3 are real and 
w2 is imaginary. Indeed, if one substitutes the ansatz (w̃1, iw̃2, w̃3) in (5.3), one obtains a real problem for 
(w̃1, w̃2, w̃3).

One may also rewrite problem (5.3)-(5.4) as a second-order ODE on R+ and R−. Indeed,

w′′
3 = iε′1ωw2 + iε1ωw′

2

= ε′1
ε1
w′

3 − ε1ω (ωw3 + kw1)

= ε′1
ε1
w′

3 − ε1ω
2w3 + k2w3.

From �w2� = 0 we deduce 
�
w′

3
ε1

�
= 0. Therefore, one needs to solve the eigenvalue problem

⎧⎨⎩−w′′
3 + ε′1

ε1
w′

3 − ε1ω
2w3 = −k2w3 in R \ {0},

�w3� =
�

w′
3

ε1

�
= 0

(5.6)

and, once w3 is obtained, one may get the remaining components of w by the relations w1 = − k
ωε1

w3 and 
w2 = − i

ωε1
w′

3. We also see that the interface conditions �ε1w1� = �w2� = 0 at x1 = 0 are satisfied if w3
solves (5.6).

When ε1 = ε−1 χR− + ε+1 χR+ with constants ε±1 ∈ R, equation (5.6) reduces to a second-order ODE 
with constant coefficients and one handily infers the existence of exponentially decaying solutions of the 
differential equation and the first interface condition in (5.6) of the form

w3(x1) =

⎧⎨⎩C e−
√

λ−
ω,kx1 if x1 ≤ 0,

C e
√

λ+
ω,kx1 if x1 > 0,

where C ∈ R \ {0} if λ±
ω,k := k2 − ε±1 ω

2 > 0. In order for the second interface condition to be satisfied too, 
one needs

− ε+1
ε−1

=

√√√√λ+
ω,k

λ−
ω,k

, (5.7)

which in turn yields the dispersion relation
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k2 = ω2 ε+1 ε
−
1

ε+1 + ε−1
.

However, (5.7) implies that ε+1 and ε−1 should have opposite signs, which is not allowed by assumption (H0).
Therefore, next we consider the case of a non-constant ε1|R+ or ε1|R− . Numerically we find examples for 

which (5.6) possesses a localised solution. We treat (5.6) as an eigenvalue problem with the eigenvalue k2. 
By varying the parameter ω we obtain a (non-explicit) dispersion relation k = k(ω).

Numerical implementation To simplify the numerics we write w3 as the sum of a C1-component w3,r and a 
component w3,s of a simple form and with a discontinuous derivative. w3,s can be expressed in term of w3,r
and hence we only need to solve for w3,r. In detail, let w3 = w3,r + w3,s with

w3,s(x1) =
{
w−

3,s ∈ R if x1 < 0,
w+

3,s(x1) if x1 ≥ 0,

and choose the constant w−
3,s such that w3,s is continuous, i.e. w−

3,s = w+
3,s(0). Note that with this choice w3

is continuous. Moreover,�
w′

3
ε1

	
= 0 ⇔ ε−1 (0)

(
w′

3,r(0) + (w+
3,s)′(0)

)
= ε+1 (0)w′

3,r(0)

⇔ (w+
3,s)′(0) = ε+1 (0) − ε−1 (0)

ε−1 (0)
w′

3,r(0) =: ν w′
3,r(0).

(5.8)

If we set

w3,s(x1) = (Lw3,r) (x1) :=
{
− sign ν w′

3,r(0) if x1 < 0,
− sign ν w′

3,r(0) e−|ν|x1 if x1 ≥ 0,

then (5.8) holds and the second interface condition in (5.6) is satisfied. Note that L : C1(R) → C(R) is a 
linear operator and the equation for w3,r is the differential equation⎧⎨⎩

(
−∂2

x1
+ ε′1

ε1
∂x1 − ε1ω

2
)

((I + L)w3,r) = −k2(I + L)w3,r in R \ {0},
�w3,r� =

�
w′

3,r
�

= 0.
(5.9)

We look for solutions w3 which are eigenfunctions, i.e. with w3 ∈ H1(R). In the special case when w3(x1) → 0
for |x1| → +∞, the corresponding conditions for w3,r are

lim
x1→−∞

w3,r(x1) = sign ν w′
3,r(0), lim

x1→+∞
w3,r(x1) = 0.

Note that we can freely choose w′
3,r(0).

To solve (5.9) numerically for a fixed ω ∈ R we discretise the problem and apply a solver for a generalised 
eigenvalue problem, e.g. a solver based on a Krylov-Schur algorithm.

In Fig. 1(a) we plot a possible choice of a dielectric function ε1 satisfying assumptions (H0)-(H1) and 
with a jump at the interface. We chose ε1 constant for x1 < 0 and of the form 1 + e−x1 for x1 ≥ 0. The 
respective solution of (5.3) with an arbitrary normalisation is plotted in Fig. 1(b) and is exponentially 
decaying at ±∞, as shown in (c) for x1 > 0. Note that it is a simple exercise to prove that the solution 
is exponentially decaying for x1 → −∞ since here the potential is constant and the calculations may be 
carried out explicitly. We also point out that the derivative of ϕ2 has a jump at x1 = 0. This is due to the 
fact that by the third equation (5.3) one has −iϕ′

2 = kϕ1 +ωψ3, a sum of a discontinuous and a continuous 
quantity.
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Fig. 1. (a) The dielectric function ε1(x1) = 1χR− +
(
1 + e−x1

)
χR+ . (b) The respective solution w(x1) = (ϕ1(x1), ϕ2(x1), ψ3(x1))T

of the linear problem (5.3) for ω0 = 3 (cf. Remark 10). A corresponding eigenvalue k0 = k0(ω0) produced by the numerics is 
k0 ≈ 3.4352. We plot ε1ϕ1 instead of ϕ1 to show the fact all interface conditions in (5.3) are satisfied. (c) Demonstration of the 
exponential decay of ε1ϕ1, ϕ2, and ϕ3 for x1 → +∞. (For colour figures see the web version of this article.)

5.2. Application of Theorems 2.1-2.2

Let us choose ω0 ∈ R and k0 = k(ω0) as one of the corresponding eigenvalues. The corresponding 
eigenfunction as introduced in Section 5.1 is (ϕ1, ϕ2, ψ3)T. By our choice of TM-modes, the vector mU in 
the ansatz (1.7) is defined as mU (x1) := (ϕ1(x1), ϕ2(x1), 0, 0, 0, ψ3(x1))T and, dropping the third vanishing 
component, we may redefine the vector mE in (1.8) as mE(x1) := (ϕ1(x1), ϕ2(x1))T. Hence our given vector 
field U0 = (U0,1, U0,2)T : R2 → R2, with which one begins the nonlinear analysis, is

U0(x1, x2) = εA(εx2)mE(x1)eik0x2 + c.c. , (5.10)

where U0 needs to satisfy assumptions of Theorems 2.1-2.2, which is the goal of this section. In the amplitude 
approximation of the wavepacket (1.7), A is the initial condition A(·, 0). We do not study the effective 
Schrödinger equation for A in this paper, see [21,16,35,29].

We underline the fact that U0 scales differently in x1 and x2 with respect to ε. It is easy to see that

‖U0‖2 = O(ε1/2)

provided mE ∈ L2(R)2 and A ∈ L2(R). The loss of the 1
2 -power of ε is due to the scaling in the second 

variable. Hence, in order for the solution ∇φ of (1.12a)-(1.12b) to be a correction term of U0, its L2-norm 
should be O(ε1/2). The reason why we may expect such a behaviour for ∇φ is that, if we isolate the term 
b = ∇ · (ε1U0) as in (1.12a), we get
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b(x1, x2) = ∂1 (ε1U0,1) + ε1∂2U0,2

=
[
εA(εx2)

(
(ε1mE,1)′ + ε1ik0mE,2

)
+ ε2ε1A′(εx2)mE,2

]
eik0x2 + c.c. .

In the first term we may recognise eiωt∇ · Dlin as in (5.5), so this term vanishes and hence

b(x1, x2) = ε2ε1(x1)A′(εx2)mE,2(x1)eik0x2 + c.c. , (5.11)

which implies

‖b‖2 = O(ε3/2), (5.12)

provided mE,2 ∈ L2(R) and A′ ∈ L2(R). Notice that if we were in a smooth bounded domain, e.g. with 
Dirichlet boundary conditions, then the estimate ‖φ‖H2 ≤ Cε3/2 would follow from the weak formulation 
(2.4) directly using Poincaré’s inequality. On the other hand, if one looks at the weak formulation (2.4)
with η = φ and naively tries to estimate ‖∇φ‖2

2 by the absolute value of the right-hand side and then using 
the Cauchy-Schwarz inequality, one ends up only with the unsatisfactory estimate ‖∇φ‖2 ≤ Cε1/2, because 
‖ε1U0‖2 = O(ε1/2). This is the reason why it is important that the right-hand sides of the estimates of 
Theorems 2.1-2.2 are not dependent on ‖U0‖2, as briefly observed in Remark 6. With our choice of a cubic 
D-field as in (1.5), one may first apply Theorem 2.1 with α = p = 3 (since there are no further nonlinear 
terms in D) and get, in particular,

‖∇φ‖2
2 � ‖U0‖4

4 + ‖b‖2
2 + ‖b‖2

L1(log), (5.13)

where we recall that ‖b‖L1(log) =
∫
|b(x)| log(2 + |x|) dx. The term ‖b‖2 was estimated in (5.12). Next,

∫
|U0|4 = ε4

∫
R

|A(εx2)|4 dx2

∫
R

|mE(x1)|4 dx1 ≤ ε3‖A‖4
4‖mE‖4

4, (5.14)

so provided A ∈ L4(R) and mE ∈ L4(R)2, one infers

‖U0‖4 = O(ε3/4). (5.15)

For the last term in (5.13), we first note the simple equality

log(s + t) = log(s) + log
(
1 + t

s

)
, s, t ∈ R+,

to obtain, for a suitable constant c > 0,

log(2 + |x|) ≤ log(2 + c|x1| + c|x2|) = log(2 + c|x1|) + log
(

1 + c|x2|
2 + c|x1|

)
≤ log(2 + c|x1|) + log(2 + c|x2|).

Hence,
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‖b‖L1(log) ≤ ε2‖ε1‖∞
∫

|A′(εx2)| |mE,2(x1)| log(2 + |x|) dx

� ε2‖mE,2‖L1(log)

∫
|A′(εx2)| dx2 + ε2‖mE,2‖1

∫
|A′(εx2)| log(2 + c|x2|) dx2

� ε2‖mE,2‖L1(log)

∫
|A′(εx2)| (1 + log(2 + c|x2|)) dx2

� ε‖mE,2‖L1(log)

∫
|A′(y)| log

(
e + c

|y|
ε

)
dy,

where in the last inequality we made use of the variable transformation y = εx2. Finally, choosing any γ > 0
one may estimate log (e + ct) � 1 + tγ for all t ≥ 0. Therefore

‖b‖L1(log) � ‖mE,2‖L1(log)

(
ε‖A′‖1 + ε1−γ

∫
|A′(y)| |y|γ dy

)
= O(ε1−γ), (5.16)

provided mE,2 ∈ L1(log, R) and A′ ∈ L1(γ, R) := {ϕ ∈ L1(R) | 
∫
|ϕ(x)| (1 + |x|γ) dx < ∞}. In summary, 

from estimate (5.13), one infers by (5.12), (5.15), and (5.16) we infer

‖∇φ‖2 ≤ C1ε
3/2 + C2ε

1−γ ,

where γ > 0 is arbitrary and the constants C1 and C2, do not depend on ε. Hence, choosing γ ∈
(
0, 1

2
)

one 
obtains the desired estimate of order O(ε1/2). For γ ∈ (0, 12 ) we get ‖∇φ‖2 = O(ε1−γ).

Analogous estimates may be deduced for the first derivatives of ∇φ according to Theorem 2.2 if one 
prescribes further regularity on the functions A and mE . For the sake of clarity, we collect the assump-
tions needed to estimate the quantities ‖U0‖4, ‖b‖2, ‖b‖L1(log) in Table 1. For n, m ∈ N \ {0} we denote 
W 1,p

± (Rn)m := {ϕ ∈ Lp(Rn)m | ∂kϕ ∈ Lp(Rn)m for k ≥ 2, ∂1ϕ ∈ Lp(Rn
±)m} and define the norm accord-

ingly as ‖ϕ‖W 1,p
±

:=
∑n

k=2 ‖∂kϕ‖p +
∑

± ‖∂1ϕ‖Lp(Rn
±).

Table 1
Sufficient regularity assumptions on A and mE to estimate the terms on the first line.

‖U0‖4 ‖b‖2 ‖b‖log ‖U0‖W 1,4
±

‖∂2b‖2

A ∈ L4 A′ ∈ L2 A′ ∈ L1(γ) A ∈ W 1,4 A′ ∈ H1

mE ∈ L4 mE,2 ∈ L2 mE,2 ∈ L1(log) mE ∈ W 1,4
± mE,2 ∈ L2

Summarising our results, we are led to the following.

Proposition 5.1. Let f , ε1, and εf be as in (5.1) and satisfy (H0)-(H1). Let U0 be as in (5.10) with ω0 ∈ R, 
k0 = k(ω0), and with mE being the first two components of the eigenfunction corresponding to k0. Suppose 
moreover A and mE satisfy all the conditions in Table 1. Then there exists a function φ ∈ D2,4 such that 
V = ∇φ is a solution of the problem (1.9)-(1.10)-(1.11) for n = 2 with ‖V ‖W 1,2

±
≤ Cε1−γ for any γ > 0, 

where (1.10) and the third interface condition in (1.11) hold in the sense of Definitions 2.2 and (2.1) resp. 
and the remaining interface conditions hold pointwise.

Remark 11. Due to ‖∇φ‖L2 = O(ε1/2) the function ∇φ may be interpreted as a correction of the initial 
value U0 = E(0)

ans.

Proof. It just remains to show that �E(0)
2 � = 0 since the third component of the electric field vanishes for 

TM-modes. This condition is already satisfied by U0 because of the choice of mE , so one needs to show that 
V2 = ∂2φ is continuous across the interface. However, since φ ∈ D2,4 ⊂ D1,4

0 (R2), by (2.8) we know that 
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φ ∈ W 1,4
loc (R2), so in particular φ ∈ C

0, 12
loc (R2) by the Morrey embedding. This means that φ is continuous 

across the interface and, further, that every tangential derivative with respect to the interface is continuous 
too, see e.g. [48, Sec 173-175]. �
Remark 12. It clearly follows from the analysis above and Remark 7 that it is possible to obtain analogous 
bounds with the same order in ε for the Hk-norm of ∇φ, provided higher regularity of A in R and mE in 
R± is prescribed.

Remark 13. Note that the exponential decay of mE shown by the numerics (Fig. 1(c)) indicates that the 
assumptions on mE in Table 1 are satisfied. In the application where A is the initial condition of the envelope 
A, and hence free to choose, the conditions on A in Table 1 are not critical.

Remark 14. Continuing the parallel with the case of a bounded domain, in which it is clear that ‖b‖2 =
O(ε3/2) would imply ‖∇φ‖H1 = O(ε3/2), and hence ∇φ is of the same order in ε as the right-hand side, we 
expect that the estimates provided by Theorems 2.1-2.2 are not optimal. In our case α = p = 3 we can see 
that this is due to the additional term |||b|||, which produces the logarithmic term as n = 2, while all other 
terms on the right-hand side are indeed of order O(ε3/2). Thus it would be desirable to be able to estimate 
the term b differently than by Proposition 2.3.

5.3. Numerical test

To confirm the analytic results of Propositions 5.1, we calculate a numerical solution of problem 
(1.9)-(1.10)-(1.11) by applying a fixed point iteration to a finite element discretisation of the problem.

For a cubic nonlinearity, as described in the beginning of this chapter, we therefore have to solve⎧⎪⎪⎨⎪⎪⎩
−∇ · (ε1∇φ) = f(φ) in R2

±,�ε1∂1φ� = h(φ),
�∂2φ� = 0,

(5.17)

with the φ-dependent functions

f(φ) := ∇ ·
(
ε1U0 + ε3 |U0 + ∇φ|2 (U0 + ∇φ)

)
,

h(φ) := −
�
ε3 |U0 + ∇φ|2 (U0,1 + ∂1φ)

�
.

To find a solution of (5.17), we rewrite the problem as a system of two coupled Neumann boundary value 
problems, in which we have to determine the functions φ : R2

± → R and g : Γ → R such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · (ε1∇φ) = f(φ) in R2

±,

(ε1∂1φ)− = g,

(ε1∂1φ)+ = h(φ) + g,

�∂2φ� = 0,

(5.18)

where we recall u±(x) := limh→0± u(x + he1), for x ∈ Γ. Note that a solution φ of (5.18) is also a solution 
of (5.17).

We now approximate the solution of the nonlinear problem (5.18) with the help of a fixed point iteration. 
We select an initial guess φ0 and solve
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · (ε1∇φn+1) = f(φn) in R2

±,

(ε1∂1φn+1)− = gn+1,

(ε1∂1φn+1)+ = h(φn) + gn+1,�∂2φn+1� = 0

(5.19)

iteratively for n ≥ 0. The weak formulation of the problem is given by⎧⎪⎪⎨⎪⎪⎩
∫
R2

+
ε1∇φn+1 · ∇η +

∫
Γ gn+1η =

∫
R2

+
f(φn)η −

∫
Γ h(φn)η, η ∈ H1(R2

+),∫
R2

−
ε1∇φn+1 · ∇η −

∫
Γ gn+1η =

∫
R2

−
f(φn)η, η ∈ H1(R2

−),

�∂2φn+1� = 0.

(5.20)

To solve (5.20) numerically, we use the finite element method. First we replace R2
± and Γ by suitable 

bounded domains Ω± ⊂ R2
± and Γ̃ := Ω+ ∩ Ω− ⊂ Γ, respectively. Furthermore we substitute H1(R2

±) with 
the following N -dimensional subspaces V± := span{η±k | k = 1, . . . , N}, N ∈ N, where the shape functions 
η±k ∈ H1(Ω±) are the standard piecewise linear hat functions, which are linearly independent. Then we look 
for solutions of the form

φn+1(x) =
{∑

k Φ+
n+1,k η

+
k (x) if x ∈ Ω+,∑

k Φ−
n+1,k η

−
k (x) if x ∈ Ω−,

gn+1(x) =
∑
k

Gn+1,k η
+
k (x)|Γ̃,

where the coefficients Φ±
n+1,k, Gn+1,k are the solutions of the following system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

k

(
Φ+

n+1,k
∫
Ω+

ε1∇η+
j · ∇η+

k + Gn+1,k
∫
Γ̃ η+

j η
+
k

)
=
∫
Ω+

f(φn)η+
j −
∫
Γ̃ h(φn)η+

j , j = 1, . . . , N,∑
k

(
Φ−

n+1,k
∫
Ω−

ε1∇η−j · ∇η−k −Gn+1,k
∫
Γ̃ η−j η

+
k

)
=
∫
Ω−

f(φn)η−j , j = 1, . . . , N,∑
k

(
Φ−

n+1,k∂2η
−
k |Γ̃ − Φ+

n+1,k∂2η
+
k |Γ̃
)

= 0.

Due to the Neumann boundary conditions and the fact that f and h depend only on the gradient of φ, the 
solution is unique only up to an additive constant. To get uniqueness we additionally demand 

∫
Ω±

φn+1 = 0. 
Therefore, we extend the finite element formulation by

∑
k

Φ±
n+1,k

∫
Ω±

η±k = 0.

Let us now consider the example introduced in Section 5.1 with the main goal of verifying Proposition 5.1
and in particular the conjectured convergence rate O(ε3/2) for ‖∇φ‖2 in Remark 14. Due to the fact 
that we choose piecewise linear shape functions we can only study the convergence of the L2-norm of 
∇φ although Proposition 5.1 estimates even the H1-norm. For our numerical test we choose ε1(x1) =
1χR− + (1 + e−x1)χR+ and mE accordingly (see Fig. 1) ε3 ≡ 1, and we set A(x2) = e−5·106ε2x2

2 . Note 
that with such choices of (exponentially decaying) mE and A, the conditions for U0 and b in Table 1 are 
satisfied. For the discretisation we select Ω− = [−6, 0] × [−6, 6] and Ω+ = [0, 6] × [−6, 6] and choose a regular 
triangulation of step size h together with standard hat functions for η±k . At those boundaries of Ω± which 
are not part of Γ̃ we enforce homogeneous Neumann boundary conditions.

For the fixed point iteration we start with φ0 ≡ 0 as an initial guess. Let us first check the convergence of 
the discretisation (in h and in the iteration n). For Fig. 2 (a) we fixed ε = 3 · 10−4 and calculated ‖∇ · D‖2



32 T. Dohnal et al. / J. Math. Anal. Appl. 511 (2022) 126067
Fig. 2. (a) ‖∇ · D‖2 in dependence on the step size h. (b) Plot of the L2-norm of the residual in the fixed point iteration for each 
step.

Fig. 3. (a) The graph shows that numerically ‖∇φ‖2 = O(ε3/2). (b) Plot of ∂1φ for ε = 3 · 10−4. (c) The first component of the 
corrected initial value E(0)

1 = U0,1 + ∂1φ for ε = 3 · 10−4. Note the different scales in (b) and (c).

for different step sizes h ranging from 0.25 to 0.005. For Fig. 2 (b) we also fixed h = 0.005 and calculated 
the L2-norm of the residual Resn := −∇ · (ε1∇φn) − f(φn) in each step of the fixed point iteration. We see 
the numerical convergence in both plots.

Finally, we study the ε-convergence of ‖∇φ‖2. For the fixed step size h = 0.005 and ε ranging from 10−4

to 10−3 we obtain the desired rate of convergence, see Fig. 3 (a). For ε = 3 · 10−4 Figs. 3 (b) and (c) show 
the first components the computed solutions ∇φ and E(0), respectively.
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6. Generalisations and open problems

Let us finally discuss possible generalisations and questions which are left unanswered by our analysis 
and which we believe to be of interest.

Curved interfaces The interface Γ separating the two materials was chosen straight merely for reasons of 
simplicity. The results can be directly generalised also for a smooth curved interface separating Rn into two 
unbounded subsets.

Positivity of ε1,εf The positivity imposed on the coefficients ε1, εf in (H0) is a common assumptions in 
the analysis literature because the operator involved in equation (1.12a) is then of elliptic type. We are not 
aware of results in the literature dealing with quasilinear operators with coefficients of varying sign.

However, in the electromagnetic context materials with negative material functions exist. For the non-
linear coefficient εf it is the case, e.g., for Galium compounds [44], and for metamaterials both ε1 and εf
may be negative. We have also seen in Section 5.1 that in the simplest case of a piecewise constant ε1, in 
order to obtain the existence of a TM eigenfunction, opposite signs of ε1 in the two subspaces need to be 
imposed, see the dispersion relation (5.7). Hence, if the analytical results could be extended to the case of 
nonpositive coefficients, one may obtain a result similar to Proposition 5.1 for a wider range of materials.

We believe that overcoming this sign problem would be of great interest both for the analysis and the 
physics application.

Suboptimality of the asymptotics As we already mentioned in Remark 14, we expect that the correction 
∇φ of U0 is asymptotically of order O(ε3/2) in the H1-norm. For its L2-norm, this behaviour has been also 
confirmed by our numerical test described in Section 5.3, see Fig. 3(a). The suboptimality of the asymptotic 
estimate in Proposition 5.1 ultimately relies on the term |||b||| in (2.5), since it produces the logarithmic term 
that we estimate by (5.16). All other terms produced when applying Theorem 2.1 to our Maxwell context 
are of the expected order O(ε3/2), see Section 5.2. In order to get a sharp result we would need to get rid 
of |||b||| in (2.5) and therefore to be able to deal with the product 

∫
bφ differently than by (3.5), i.e. than by 

means of Proposition 2.3.
Note that, once such an issue is solved for ‖∇φ‖2, the problem of improving also the asymptotic estimates 

for the higher Sobolev norms does not arise. Indeed, the latter involve only terms which already bound 
‖∇φ‖2, and terms which are asymptotically of order O(ε3/2).
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