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Abstract

We extend the (gauged) Skyrme model to the case in which the global isospin group (which usually 
is taken to be SU(N)) is a generic compact connected Lie group G. We analyze the corresponding field 
equations in (3+1) dimensions from a group theory point of view. Several solutions can be constructed 
analytically and are determined by the embeddings of three dimensional simple Lie groups into G, in a 
generic irreducible representation. These solutions represent the so-called nuclear pasta state configurations 
of nuclear matter at low energy. We employ the Dynkin explicit classification of all three dimensional Lie 
subgroups of exceptional Lie group to classify all such solutions in the case G is an exceptional simple 
Lie group, and give all ingredients to construct them explicitly. As an example, we construct the explicit 
solutions for G = G2. We then extend our ansatz to include the minimal coupling of the Skyrme field to 
a U(1) gauge field. We extend the definition of the topological charge to this case and then concentrate 
our attention to the electromagnetic case. After imposing a “free force condition” on the gauge field, the 
complete set of coupled field equations corresponding to the gauged Skyrme model minimally coupled to 
an Abelian gauge field is reduced to just one linear ODE keeping alive the topological charge. We discuss 
the cases in which such ODE belongs to the (Whittaker-)Hill and Mathieu types.
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1. Introduction

Nuclear pasta is a phase of matter that appears organized in some ordered structures when a 
large number of Baryons is confined in a finite volume [1], [2], [3], [4], [5], [6]. These config-
urations appear, for instance, in the crust of neutron stars. Such aggregations of Baryons may 
take the form of tubular structures, called Spaghetti states, or layers having a finite width, called 
Lasagna states, or even globular shape, the gnocchi. Until very recently, it was always tacitly 
assumed that nuclear pasta phase is the prototypical situation in which it is impossible to reach 
a good analytic grasp. This is related to the fact that such structures appear in the low energy 
limit of Quantum Chromodynamics (QCD) in which perturbation theory does not work and, at a 
first glance, the strong non-linear interactions prevent any attempt to find exact solutions. Now, 
the low energy limit of QCD is described by the Skyrme model [7] at the leading order in the ’t 
Hooft expansion (see [8], [9], [10], [11], [12], [13], as well as [14], [15] and references therein). 
Unsurprisingly, the highly non-linear character of the Skyrme field equations discouraged any 
mathematical description of this kind of structures. Consequently, as the above references show, 
numerical methods (which, computationally, are quite demanding) are dominating in this regime. 
The situation is even worse when one wants to analyze the electromagnetic field generated in the 
nuclear pasta phase as, when the minimal coupling with the U(1) gauge field is taken into ac-
count; even the available numerical methods are not effective.

On the other hand, one may ask: is the mathematical dream of an analytic description of 
nuclear pasta structure really out of reach? Analytical methods to infer the general dependence 
of the nuclear pasta phase on relevant physical parameters (such as the Baryon density) not only 
would greatly improve our understanding of the nuclear pasta phase itself, but they could also 
shed considerable light on the interactions of dense nuclear matter with the electromagnetic field.

From the mathematical viewpoint, the problem is very deep and yet simple to state: can we 
find analytic solutions of the (gauged) Skyrme model able to describe typical configurations of 
the nuclear pasta phase? Despite the fact that this model has been introduced in the early sixties, 
for several years only numerical solutions had been available (the only exceptions being [16], in 
which the authors constructed analytic solutions of the Skyrme field equations in a suitable fixed 
curved background). Nevertheless, the mathematical beauty of the Skyrme model attracted the 
attention of many leading mathematicians and physicists. In particular, in [17], [18], [19], [20]
and [21], the authors were able to disclose the geometrical structures of configurations with two 
Skyrmions, to analyze the interaction energy of well separated solitons, to establish necessary 
conditions for the existence of Skyrmionic crystals and so on. All these remarkable results have 
been obtained without the availability of analytic solutions of the Skyrme field equations. These 
efforts (together with the comparison with Yang-Mills theory in which explicit solutions repre-
senting instantons and non-Abelian monopoles shed considerable light on the mathematical and 
physical properties of Yang-Mills theory itself) show very clearly the importance to search for 
new analytic tools to analyze the gauged Skyrme model in sectors with high Baryonic charge.

Quite recently, new methods have been introduced that allowed the construction of explicit 
analytical solutions of the Skyrme field equations. Such solutions are suitable to describe nuclear 
Lasagna and Spaghetti states, see [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], and 
[33]. Let us recall that the Skyrme model is a non-linear field theory for a scalar field U taking 
values in the SU(N) Lie group, where N is the flavor number. This theory possesses a conserved 
topological charge (the third homotopy class) which physically is interpreted as the Baryonic 
charge of the configuration.
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Most of the solutions found so far have been constructed by employing ad hoc ansätze adapted 
to the properties of the SU(2) group, but soon it has been realized that particular group struc-
tures seem to be at the root of the solvability of the Skyrme field equations. For example, the 
exponentiation of certain linear functions taking value in the Lie algebra lead to Spaghetti-like 
configurations, while Euler parameterization of the field U , with suitable linear exponents, lead 
to Lasagna-like solutions. In all these cases, the solutions are also topologically non-trivial with 
arbitrary Baryonic charge. A proper mathematical understanding and generalization of the strat-
egy devised in [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32] and [33], offers the 
unique opportunity to disclose the deep connections of the nuclear pasta phase with the the-
ory of Lie groups; two topics which (until very recently) could have been considered extremely 
far from each other. The present paper is devoted to this opportunity: to provide nuclear pasta 
configurations of Lasagna and Spaghetti types with the mathematical basis of Lie group the-
ory.

A first step in this direction was to link certain properties of the semi-simple Lie group to the 
possibility of getting explicit solutions of the Skyrme equations in the Lasagna configurations for 
the case of SU(N) groups with arbitrary N [33]. More in general, using the methods developed 
in [26], [27], [28], [30], [31], [33], with the generalization of the Euler angles to SU(N) of [34], 
[35], [36], it has been possible to construct non-embedded multi-Baryonic solutions of nuclear 
Spaghetti and nuclear Lasagna, at least for the case for the SU(N) groups, see [37].

A fundamental ingredient in the theory of Lie groups with relevant applications in the Skyrme 
model is the concept of non-embedded solutions introduced in [11] and [12]. These are solutions 
of the SU(N)-Skyrme model which cannot be written as trivial embeddings of SU(2) in SU(N). 
However, the techniques used to get such results, for example in [33], where quite specific of the 
group SU(N). In fact, as we will show in the present manuscript, there is a very interesting 
relation between Lie group theory and such families of solutions, which allows to generalize the 
above results in a much more general setting and to classify the solutions: this is exactly the main 
goal of the present paper.

1.1. Resume of the results

Firstly, we will prove that, having fixed a compact connected Lie group G with a given 
irreducible representation (irrep), the solutions are determined in general by deformations of 
embeddings of three dimensional Lie groups into G.

Secondly, we will prove that inequivalent families of solutions correspond to inequivalent 
embeddings (not related by conjugation in G). The problem of determine all possible three di-
mensional subgroups of a simple Lie group has been solved by E. B. Dynkin in [38]. In particular, 
in that paper, all possible three dimensional subalgebras of the exceptional Lie algebras are writ-
ten down.

Thirdly, we will show that such classification also classifies the Spaghetti and Lasagna so-
lutions determined via group theory methods. The difference between Spaghetti and Lasagna 
depends on the realization of the subgroup element of G: if it is generated by the exponentiation 
of a linear combination of the generators of a three-dimensional subalgebra of g =Lie(G), then 
we get Spaghetti-like solutions, while if the realization is through Euler parameterization we get 
Lasagna-like solutions. Then, we will compute explicitly relevant quantities such as the energy 
of these configurations.

Fourthly, we will extend this classification to the case of the gauged Skyrme model minimally 
coupled to Maxwell theory. In particular, we will extend the definition of topological (Baryonic) 
3
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charge to this case. We will reduce the complete set of coupled field equations both in the gauged 
Lasagna case and in the gauged Spaghetti case to a single linear equation and we will analyze 
the integrable cases which correspond to Whittaker-Hill and Mathieu types linear differential 
equations.

1.2. Main tools employed in the analysis

In the present work, we will employ abstract techniques and general properties of semi-simple 
Lie groups in order to investigate their relation with solvability of the Skyrme equations. This 
allows to extend all the results found in [33] for the special unitary groups to an arbitrary semi-
simple compact Lie group. Indeed, all results will be based on the properties of the roots and 
weights of the associated Lie algebras, while a generalized Euler parameterization of the Skyrme 
field U , taking values in G, will lead in general to Lasagna configurations. Similarly, the direct 
exponentiation of the algebra, as discussed above, will lead us to Spaghetti structures extending 
the results of [37]. In any case, we will compute the energy of such configurations and will 
show that they have always a non-trivial Baryon (topological) charge. Interestingly enough, a 
strategy for constructing non-trivial non-SU(2) solutions in the sense of [11] and [12] will result 
to be strictly related to the classification of all three dimensional groups in any given simple Lie 
group, provided by Dynkin in his PhD thesis work, see [38]. As an application of our general 
analysis, we will show how to construct all non-trivial Lasagna and Spaghetti configurations in 
any exceptional Lie group, making very explicit the case of G = G2.

The generalization of our ansätze which allows to include the minimal coupling of the model 
to a U(1) electromagnetic field will be introduced as follows. As usual, the gauge field will work 
as a connection making all derivative covariant under the action of the U(1) gauge field, while 
their dynamics is expressed by the usual Maxwell action (although our methods also work in 
the Yang-Mills case). The covariant derivatives break the topological nature of the original term 
expressing the Baryonic charge. Therefore, generalizing the result in [8], we will deform the 
Baryonic density expression in order to recover topological invariance.

The introduction of the electromagnetic field makes the field equations of the gauged Skyrme 
model minimally coupled to Maxwell theory extremely more complicated than in the Skyrme 
case. Nevertheless, quite surprisingly, the equations will be separable (in a suitable sense) and 
once again solvable, after imposing the free force conditions on the gauge field. This condi-
tion appears quite naturally in Plasma physics (see [39], [40], [41], [42], [43] and references 
therein). Quite interestingly, such condition implies that the gauge field disappears from the 
gauged Skyrme field equations (without being a trivial gauge field, of course) and therefore, 
in this way the gauged Skyrme field equations can be solved as in the ungauged case. It is a very 
non-trivial result that the remaining field equations (which correspond to the Maxwell equations 
with the source term arising from the gauged Skyrme model) reduce just to one linear equation 
for a suitable component of the gauge field in which the Skyrmion act as a source-like term. We 
will analyze the integrable cases in which this last remaining equation takes the form of a Hill 
equation for the case of Lasagna states, while a Schrödinger equation with a bi-periodic potential 
of finite type in the Spaghetti case.

Interestingly enough, for the Lasagna case another nice coincidence shows up here: the rele-
vant solutions we need are exactly the periodic solutions whose existence has been investigated 
in [44], and which explicit form for the case of a Whittaker-Hill equation has been determined 
in [45].
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It is a truly remarkable result that such a complicated phase such as the nuclear pasta phase 
of the low energy limit of QCD (even taking into account the minimal coupling with Maxwell 
theory) can be understood so cleanly in terms of the theory of Lie group.

1.3. Notations and conventions

Our conventions are as follows. The action of the Skyrme model in (3 + 1) dimensions is

I =
∫

d4x
√−g

[
K

4
Tr

(
LμLμ + λ

8
GμνG

μν

)]
, (1.1)

Lμ = U−1∂μU, Gμν = [Lμ,Lν], U(x) ∈ G,

where K and λ are positive coupling constants and g is the metric determinant. The Skyrme field 
U is a map

U : R1,3 −→ G

where G is semi-simple compact Lie group, so that

Lμ =
dim(G)∑

i=1

Li
μTi,

where {Ti} is a basis for the Lie algebra g = Lie(G).
The system is confined in a box of finite volume with a flat metric. For Lasagna states we will 

use a metric of the form

ds2 = −dt2 + L2
r dr2 + L2

γ dγ 2 + L2
φdφ2, (1.2)

where the adimensional spatial coordinates have the ranges

0 ≤ r ≤ 2π, 0 ≤ γ ≤ 2π, 0 ≤ φ ≤ 2π, (1.3)

so that the solitons are confined in a box of volume V = (2π)3LrLγ Lφ .
For nuclear Spaghetti we will use the metric ansatz

ds2 = −dt2 + L2
r dr2 + L2

θ dθ2 + L2
φdφ2, (1.4)

with adimensional coordinates ranging in

0 ≤ r ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, (1.5)

and a total volume V = 4π3LrLθLφ .
The energy-momentum tensor associated to the Skyrme field is given by

Tμν = −K

2
Tr

(
LμLν − 1

2
gμνLαLα + λ

4
(gαβGμαGνβ − 1

4
gμνGαβGαβ)

)
. (1.6)

The topological charge is defined by (see Proposition 3)

B = 1

24π2

∫
V

Tr(L∧L∧L), (1.7)

where V is the spatial region spanned by the coordinates at any fixed time t , L = U−1dU and Tr 
is the trace over the matrix indices.
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2. Lasagna groups

In [46] it has been shown how Lasagna configurations can be determined as solutions of the 
Skyrme equations realized as Euler parameterizations of three dimensional cycles in SU(N). 
Indeed, these cycles result to be suitable deformations of different non-trivial embeddings of 
SU(2) into SU(N). Here we want to prove that such construction can be easily extended to any 
simple Lie group (at least for the case of the undeformed embedding). Recall that in the case of 
SU(N) the embedding was defined [33] by the generalized Euler map

U(t, r, γ,φ) = e

(
t

Lφ
−φ
)
σκ

eh(r)emγκ , (2.1)

where σ is a constant, m is an integer, κ a suitable matrix in SU(N) and h(r) results to be a 
linear function of r with values in the Cartan algebra H . Indeed, the main trick was to determine a 
suitable matrix κ able to make everything easily computable and to grant periodicity of emγκ . The 
convenient strategy has been composed in two steps: first we have taken a basis of eigenmatrices 
of the simple roots, λj , j = 1, . . . , r , where r = N − 1 is the rank of the group, and defined the 
matrix

κ =
r∑

j=1

(cjλj − c∗
j λ

†
j ), (2.2)

where † means hermitian conjugate and cj are complex constants. The second step consisted 
in determining the allowed values for the cj . We want to do the same with a generic simple 
Lie group G replacing SU(N). The first problem we ran into is the following. If λ ∈ gC is an 
eigenmatrix of a root α of the Lie algebra g of G (so it belongs to the complexification gC of g), 
in general λ† doesn’t belong to gC if G �= SU(N) for some N . So in general κ defined above is 
not a matrix of g.
In order to overcome this problem, we notice that a compact simple Lie group G always contain a 
split maximal subgroup [47], which is a maximal subgroup K with the property that 2dim(K) +
r = dim(G) and that there exists a Cartan subalgebra H of g all contained in p, the orthogonal 
complement of the Lie algebra k of K in g (w.r.t. the Killing product):

g= k⊕ p. (2.3)

Of course k is a subalgebra of g, while p is not, since

[k, k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k, (2.4)

which says that p is a representation space for G and K is an isotropy group for p. One can easily 
show that a root matrix λ, associated to a root α, must have the form

λ = k + ip, k ∈ k, p ∈ p, p �= 0. (2.5)

Then, k − ip also is a root matrix, corresponding to the root −α. We replace the hermitian 
conjugation with the ∼ conjugation defined by

˜k + ip ≡ (k + ip)∼ := k − ip. (2.6)

This way, if λj , j = 1, . . . , r are matrix roots corresponding to the simple roots of g, then

κ =
r∑

j=1

(cjλj + c∗
j λ̃j ) ∈ g. (2.7)
6
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Notice that for G = SU(N) we have λ̃ = −λ†.
If we choose normalizations as in Appendix A, we can use the matrices Jk to decompose 
h(z) =∑r

j=1 yj (z)Jj . The properties of the roots can be inferred case by case from the lists 
in Appendix A. Exactly the same calculations as in [46] show that the field equations for the 
Skyrme field are equivalent to the system

h′′ + λm2

2L2
γ

N−1∑
j=1

αj (h
′′)|cj |2Jj = 0, (2.8)

∑
j<k

(
αj (h

′)2 − αk(h
′)2 − i

(
αj (h

′′) − αk(h
′′)
))

cj ck(αj |αk)λαj +αk
= 0. (2.9)

The first equation has solution h′′ = 0, as a consequence of the strict positivity of the Cartan 
matrix for each simple group. The second system, using that the λαj+αk

are independent, reduces 
to the set of equations

αj (h
′)2 − αk(h

′)2 = 0, j < k, s.t. (αj |αk) �= 0. (2.10)

Since (αj |αk) �= 0 if and only if αj and αk are linked and since there are r −1 links in a connected 
Dynkin diagram, these are exactly r − 1 equations. These are independent and assuming a =
α1(h) �= 0 have the general solution

αj (h
′) = εja, j = 2, . . . , r, (2.11)

where εj are signs. As in [46], we can solve it by writing

h′ = a

r∑
j=1

2
wj

(αj |αj )
Jj . (2.12)

Applying αk to both hands and defining ε1 = 1 we get

εk =
r∑

j=1

2
wj

(αj |αj )
αk(Jj ) =

r∑
j=1

wjC
G
jk, (2.13)

where CG is the Cartan matrix associated to G. The Cartan matrix is positive definite and is 
therefore always invertible, so that

wk =
r∑

j=1

εj (C
G)−1

j,k. (2.14)

Therefore, we have proven the following generalization of Proposition 2 in [46].

Proposition 1. All local solutions of the Skyrme field equations of the form determined by the 
ansatz (2.1), (2.7), with metric

ds2 = −dt2 + L2
r dr2 + L2

γ dγ 2 + L2
φdφ2, (2.15)

are given by

h(r) = arvε, (2.16)

vε =
∑
j,k

(CG)−1
j,kεj

2

‖αk‖2 Jk, (2.17)
7
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where a is a real constant and εj are signs, with ε1 = 1.

Now we have to discuss which choices of the coefficients cj are allowed. To this hand, we have 
that the solution must cover a topological cycle entirely. First, we notice that as a consequence 
of our normalizations, if we want to get it with r varying in [0, 2π], we must take

a = 1

2
, (2.18)

see [46], Proposition 3.
The second step is to grant periodicity of eγ κ . This is the difficult part and determines the al-
lowed values for the cj . Notice that κ is diagonalizable (over C). Indeed, since G is compact, 
in the adjoint representation κ results to be antihermitian and then diagonalizable with imagi-
nary eigenvalues. It follows that it is diagonalizable in any representation with purely imaginary 
eigenvalues. If N is the dimension of the representation, then the eigenvalues iμ1, . . . , iμN must 
be in rational ratios, which means that for any μa �= 0 it must exist integers na �= 0 such that

μanb = μbna, (2.19)

or, equivalently, that it exists a non-vanishing real number μ and N integers na ∈ Z, such that

μa = μna. (2.20)

This condition in general will depend on N , G and the constants cj . In [46] this problem has 
been shown to have a set of solutions for the particular case of G = SU(N) in the fundamental 
representation. Here we have to generalize that procedure without exploiting a very explicit real-
ization. Indeed, we can prove that there are solutions with all cj different from zero by following 
a strategy developed by Dynkin in [38], that we will recall in the next section. Let us choose f
in the Cartan subalgebra, such that αj(f ) = b, a positive constant independent on j , so that

[f,λj ] = ibλj , [f, λ̃j ] = −ibλ̃j . (2.21)

We can easily determine it as follows. If hj = i[λj , ̃λj ], then set f =∑r
k=1 pkhk . Thus, the 

above condition is equivalent to

b =
r∑

k=1

pkαj (hk) =
r∑

k=1

pk(αj |αk) =
r∑

k=1

pk

‖αk‖2

2
CG

kj . (2.22)

from which we immediately get

pj = b
2

‖αj‖2

r∑
k=1

(CG)−1
kj . (2.23)

By the properties of the Cartan matrix it follows that pj are all positive. Finally, we set

cj = eiψj

√
b

2
pj . (2.24)

Then, we have the following proposition:

Proposition 2. If κ is constructed with the above choice of cj , then eκz is periodic with period 
n 2π where n may be 1 or 2 depending on the representation, n = 1 for the adjoint representation.
b

8
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Proof. We first show that periodicity is independent on the phases of cj . If eκz is periodic, then, 
for any fixed g ∈ G, geκzg−1 is also periodic with the same period. Since the simple roots αj are 
linearly independent, for any fixed j we can find an element hj of the Cartan algebra such that 
αk(hj ) = δkj . Let us set g = eψhj . Then,

gκg−1 =
r∑

k=1

(cke
ψhj λke

−ψhj + c∗
ke

ψhj λ̃ke
−ψhj ) =

r∑
k=1

(cke
iψαk(hj )λk + c∗

ke
−iψαk(hj )λ̃k)

=
∑
k �=j

(ckλk + c∗
j λ̃k + cj e

iψλj + c∗
j e

−iψ λ̃j ), (2.25)

which shows that gκg−1 differs from κ only by the phase of cj . This proves our assert. So, it 
is sufficient to prove the proposition for ψj = 0. In this case, T3 := f, T1 := κ and T2 = 1

b
[f, κ]

form an A1 subalgebra of g, and κ is conjugate to f in G. Indeed, [Ti, Tj ] = bεijkTk from which

T1 = e
π
2 T2T3e

− π
2 T2 . (2.26)

Therefore, as before, the periodicity of eκz is equivalent to the periodicity of efz. But

ef zhj e
−f z = hj , (2.27)

and

ef zλαe−f z = eiα(f )zλα. (2.28)

Now, any given root α is

α =
∑
j

njαj , (2.29)

with the nj all non-negative or all non-positive integers. Therefore,

eiα(f )z = e
i
∑

j nj bz
. (2.30)

All these exponentials are therefore periodic, with the longest period determined by the simple 
roots, for which eiα(f )z = eibz, which has period T = 2π/b. But

ef T λαe−f T = λα (2.31)

for any root α implies that g = ef T is in the center of the group. Since the center of a simple 
compact group is finite, this means that gn = I is the unit matrix for some integer n. Now, since 
κ is not in the Cartan subalgebra, it follows from [48], Section VII, Theorem 8.5 (see also [47]) 
that n = 1 or n = 2 depending on the specific representation. �

This shows that there exist always at least a set of solutions with all non- vanishing cj , 
parametrized by a torus of phases. In [46] it has been shown that indeed, for the case of SU(N) in 
the smallest irreducible representation, there is a further set of deformations that has been called 
a moduli space. This is a very difficult task to be investigated in general and we will not consider 
it here.
9
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2.1. On the physical meaning of the time-dependence in the ansatz

It is worth to discuss the physical meaning of the time-dependent ansatz in Eq. (2.1) for the 
Lasagna-type configurations as well as the one in Eqs. (3.1), (3.2) and (3.3) for the spaghetti-
type configurations. First of all, despite the time-dependence of the ansatz of the U field, the 
energy-momentum tensor is still stationary (so that it describes a static distribution of energy 
and momentum). This approach is inspired by the usual time-dependent ansatz that is used for 
Bosons stars [58,59] (and generalize it to arbitrary Lie group) in which the U(1) charged scalar 
field depends on time in such a way to avoid the Derrick theorem (see [60]). Secondly, the 
peculiar time-dependence is chosen in order to simplify as much as possible the field equations 
without loosing the topological charge (as, until very recently, the Skyrme field equations have 
always been considered a very hard nut to crack from the analytic viewpoint). Thirdly (as it will 
be discussed in the next sections on the minimal coupling with Maxwell), the present ansatz 
(both for lasagna and spaghetti type configurations) produces U(1) currents associated to the 
minimal coupling with Maxwell with a manifest superconducting current. Indeed (as it is clear 
from Eqs. (6.69) and (6.130)), the present U(1) current always has the form

Jμ = �(∂μ� − 2Aμ) , (2.32)

where � depends on either the Lasagna or the spaghetti profiles (see Eqs. (6.69) and (6.130)) 
while � is a field which is defined modulo 2π . Consequently, the following observations are 
important.

1) The current does not vanish even when the electromagnetic potential vanishes (Aμ = 0).
2) Such a “left over”

J (0)
μ = Jμ

∣∣
Aμ=0 = �∂μ� , (2.33)

is maximal where � is maximal (and this corresponds to the local maxima of the energy density: 
see Eqs. (6.69) and (6.70).

3) J(0)μ cannot be turned off continuously. One can try to eliminate J(0)μ either deforming 
the profiles appearing in � integer multiples of π (but this is impossible as such a deformation 
would kill the topological charge as well) or deforming � to a constant (but also this deformation 
cannot be achieved for the same reason). Moreover, as it is the case in [57], � is only defined 
modulo 2π . Consequently, J(0)μ defined in Eq. (2.33) is a superconducting current supported by 
the present gauged configurations.

These are the three of the main physical reasons to choose this peculiar time-dependent ansatz. 
On the other hand, it is worth to emphasize that the peculiar time-dependence we have chosen 
(for the reasons explained above) prevents one from using the usual techniques (see, for instance, 
[13]) to “quantize” the present topologically non-trivial solutions. In particular, the typical hy-
pothesis of a static SU(N)-valued field U is violated in our case (since, as it has been already 
emphasize, the requirement to have a static Tμν which describes a stationary distribution of en-
ergy and momentum does not imply that U itself is static). Therefore, to estimate the “classical 
isospin” of the present configurations we will proceed in a different manner in the next sections.

2.2. Energy and Baryon number

The energy of these solutions can be easily computed by means of Proposition 6 in Ap-
pendix B. We get
10
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E = LrLγ Lφ‖c‖2 K

2
π3

[
16

σ 2

L2
φ

+ ‖vε‖2

‖c‖2L2
r

+ σ 2λ

L2
φL2

r

+4
m2

L2
γ

(
2 + λ

8L2
r

+ λσ 2

L2
φ‖c‖2

(
r∑

j=1

‖αj‖2|cj |4

+
∑
j<k

|cj |2|ck|2(αj |αk)

(
2εj εk + (αj |αk)(1 − εj εk)

)))⎤⎦ , (2.34)

with

‖vε‖2 = −Trv2
ε , (2.35)

‖c‖2 =
r∑

j=1

|cj |2, (2.36)

and where σ depends on the representation and has to be chosen so that the solution correctly 
covers a cycle when m = 1 and φ varies from 0 to 2π . To specify it, let us investigate the 
Baryon number integral. To this hand, let us look better at Proposition 2. The fact that n = 1 or 
2 obviously distinguishes the SO(3)-type solutions from the SU(2)-type ones (see [46]), since 
only in the first case the period remains invariant when passing to the adjoint representation. The 
right ranges are then understood by considering the correct Euler parameterizations for SO(3)

and for SU(2). If we write it generically as

U(x,y, z) = exT3eyT1ezT3 , (2.37)

one finds that, if T is the period of the exponential functions, in both cases z must vary in a period 
and y in a range of T/4. The difference is in x, which has to vary in a period for SO(3) and half 
a period for SU(2), for example, see Appendix C in [46]. If we set x = σφ, y = r and z = mγ

and we want to normalize the ranges of the coordinates φ, r, γ , so that all vary in [0, 2π], we see 
that we always have to require

b = n, σ = n

2
, (2.38)

where n is an integer. With these conventions we can state the following proposition.

Proposition 3. The Baryonic topological charge is

B = 1

24π2

∫
εijkTr(LiLjLk)

√
g drdγ dφ = mn‖c‖2, (2.39)

where Li = U−1∂iU .

The proof is exactly the same as in Appendix F of [46], so we omit it.
The energy per Baryon g = E/B is therefore

g = LrLγ Lφ

K

2mn
π3

[
16

σ 2

L2
φ

+ ‖vε‖2

‖c‖2L2
r

+ σ 2λ

L2
φL2

r

+ 4
m2

L2
γ

(
2 + λ

8L2
r

+ λσ 2

L2
φ‖c‖2

(
r∑

‖αj‖2|cj |4

j=1

11
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+
∑
j<k

|cj |2|ck|2(αj |αk)

(
2εj εk + (αj |αk)(1 − εj εk)

)))]
. (2.40)

3. Spaghetti groups

Another kind of configurations is obtained by starting from a different ansatz, which leads to 
Spaghetti like solutions. Spaghetti can be parameterized by the following ansatz:

U(t, r, θ,φ) = exp(χ(r)τ1), (3.1)

where τ1 = �n · �T = n1T1 + n2T2 + n3T3 is defined by

�T = (T1, T2, T3), �n = (sin� cos�, sin� sin�, cos�) (3.2)

� = qθ, � = p

(
t

Lφ

− φ

)
, q = 2v + 1, p, v ∈ N, p �= 0 . (3.3)

In the ansatz, Ti are matrices of a given representation of the Lie algebra of G and are required 
to define a three dimensional subalgebra that we can choose to normalize so that

[Tj , Tk] = εjkmTm, (3.4)

and satisfy

Tr(TjTk) = −2IG,ρδjk, (3.5)

where IG,ρ is the Dynkin index of su(2) in G (see [38]), that is the coefficient relating the trace 
product in the representation ρ of Lie(G) to the Killing product of su(2). We also define

τ2 = ∂�τ1, (3.6)

τ3 = 1

sin�
∂�τ1. (3.7)

Together with τ1, they satisfy

[τj , τk] = εjkmτm. (3.8)

With these rules, we get for Lμ = U−1∂μU :

Lr =τ1 χ ′(r). (3.9)

For the other terms, set α = �, � and using

U−1∂αU = χ

1∫
0

e−σχτ1∂ατ1e
σχτ1, (3.10)

e−σχτ1τ2e
σχτ1 = cos(σχ)τ2 − sin(σχ)τ3, (3.11)

e−σχτ1τ3e
σχτ1 = sin(σχ)τ2 + cos(σχ)τ3, (3.12)

we get

L� = sinχ τ2 − (1 − cosχ) τ3, (3.13)

L� = sin�(sinχ τ3 + (1 − cosχ) τ2), (3.14)
12
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and

Lt = p

L
L�, (3.15)

Lθ = qL�, (3.16)

Lφ = −pL�. (3.17)

This shows that the expression of the Lμ is universal (depend only on the algebra of the τj ), so 
the field equations are always the same for any choice of the group. These are

4χ ′′(r)
(
λq2 sin2

(χ

2

)
+ L2

θ

)
− q2 sinχ

(
4L2

r − λχ ′2)= 0 . (3.18)

What is expected to change is just the topological charge and the energy. Given this universality 
property, we see immediately that, for any given group G, these kinds of solutions are classified 
by all possible ways of finding a three dimensional simple subalgebra of the lie algebra g. Luck-
ily, we don’t need to tackle such a program, since has already been solved by E. B. Dynkin in 
[38], chapter III. This work as follows.

First, it is convenient to complexify the algebra, recombine and normalize the generators 
f, e+, e− of the subgroup so that

[e+, e−] = −if, [f, e±] = ±2ie±. (3.19)

Each complex three dimensional simple algebra is isomorphic to this. However, we must consider 
as equivalent only the ones which are isomorphic through an automorphism of the group. Let αj , 
j = 1, . . . , r be simple roots defined from a cartan subalgebra containing f . Then, it results that 
(αj |f ) must be integer numbers that can assume only the values 0,1,2. The set of numbers dj =
αj (f ) are called the Dynkin characteristic of the subgroup. The main result of [38] is that the 
three dimensional simple subalgebras A are in one to one correspondence with the characteristics 
and one can indeed classify the characteristics. A subalgebra is said to be regular if its roots are 
indeed roots of g. The subalgebra A is said to be integral if the projection of the roots of g along 
the direction of the roots of A are integer multiples of the simple root αA of A. Since αA(f ) = 2, 
we see that the dual of αA in the Cartan subalgebra H is

hαA
= 2

(f |f )
f. (3.20)

From this it follows immediately that A is integral if and only if all the numbers of the Dynkin 
characteristic χA = (d1, . . . , dr) of A are even (so are 0 and 2). All inequivalent characteristics 
for the exceptional Lie groups are listed in [38]. Furthermore, given such a characteristic χ =
(d1, . . . , dr), there it is explained how to construct explicitly the associated subalgebra. First, if 
Jj is the dual of αj in H , write

f =
r∑

j=1

pjJj , (3.21)

and choose pj so that αj (f ) = dj . This gives

dj =
r∑

k=1

pk(αk|αj ) =
r∑

k=1

‖αk‖2

2
pkC

G
kj . (3.22)

From this we get
13
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pk =
r∑

j=1

dj (C
G)−1

jk

2

‖αk‖2 . (3.23)

As usual, CG is the Cartan matrix. In general, the construction of the remaining generators is 
non-trivial. To do it, one has to consider the subset of the root system � defined by

�χG
= {α ∈ �|α(f ) = 2}. (3.24)

Then, all roots are positive. If λα are the corresponding eigenmatrices (normalized so that 
Tr(λ̃αλα) = −1), one then has to look for real coefficients kα such that, setting

e+ =
∑

α∈�χG

kαλα, (3.25)

e− =
∑

α∈�χG

kαλ̃α, (3.26)

then [e+, e−] = −if . If χG is an admissible characteristic, then in general there are infinite 
solutions, but we know that are all equivalent so it is sufficient to choose one, all the other ones 
being related to it by conjugation with elements of the group. Notice that the resulting equations 
are in general∑

α �=β∈�χG

kαkβ [λα, λ̃β ] = 0, (3.27)

∑
β∈�χG

k2
βnβ,j = pj , (3.28)

where we used that any positive root can be written as

β =
r∑

j=1

nβ,jαj , (3.29)

with nβ,j non-negative integers, and

[λ̃β , λβ ] = i

r∑
j=1

nβ,j Jj . (3.30)

In the particular case when dj = 2 for all j , �χG
consists of all simple roots and the solution is 

easily obtained as

e+ =
r∑

j=1

√
pjλj , e− =

r∑
j=1

√
pj λ̃j . (3.31)

Finally, we can go back to our real case by taking

T1 = 1

2
(e+ + e−), T2 = 1

2i
(e+ − e−), T3 = 1

2
f. (3.32)

Notice that this is the same construction we used to get a periodic generator κ for the Lasagna 
configurations. This also shows that indeed we can construct a κ matrix for each three dimen-
sional subalgebra.
14
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3.1. Energy density and Baryon charge

Let us determine the energy density and the Baryon charge. The energy density is defined by 
the Ttt component of the energy-momentum tensor

Tμν = −K

2
Tr(TiTj )

[
Li

μLj
ν − 1

2
gμνLρiLρ

j + λ

4

(
gρσ Gi

μρGj
νσ − 1

4
gμνG

ρσ i
Gj

ρσ

)]
.

(3.33)

A direct computation gives

Ttt = 2IG,ρ

Kp

4L2
φLrLθ

[
ρ0 + 2 sin2(qθ)ρ1

]
, (3.34)

with

ρ0 =L2
φ

p

[
4L2

r q
2 sin2

(χ

2

)
+
(

L2
θ + q2λ sin2

(χ

2

))
χ ′2
]
, (3.35)

ρ1 =p sin2
(χ

2

)[
4L2

r

(
L2

θ + q2λ sin2
(χ

2

))
+L2

θλχ ′2
]

. (3.36)

IG,ρ is the Dynkin index and can be computed as follows. First, observe that a generic root has 
the form

β(f ) =
r∑

j=1

nβ,jαj (f ) =
r∑

j=1

nβ,j dj . (3.37)

By using (3.22), (3.28) and the definition of �χG
, we get

Tr(ff ) = −
r∑

j=1

r∑
k=1

pjpk(αk|αj ) = −
r∑

j=1

r∑
k=1

‖αk‖2

2
pjpkC

G
kj

= −
r∑

j=1

pjdj = −
r∑

j=1

∑
β∈�χG

k2
βnβ,j dj = −

∑
β∈�χG

k2
ββ(f ) = −2

∑
β∈�χG

k2
β

(3.38)

Tr(e+e−) = −
∑

β∈�χG

k2
β (3.39)

Therefore,

Tr(TiTj ) = −δij

2

∑
β∈�χG

k2
β, (3.40)

and so

IG,ρ =
∑

β∈�χG

k2
β

4
. (3.41)

The Baryon charge can be written as
15
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B = 1

24π2

∫
ρB

√
gdrdθdφ, (3.42)

in which ρB is the Baryonic density charge

ρB = εijkTr(LiLjLk). (3.43)

Recalling the ranges (1.5) for the coordinates and that q = 2v + 1 and χ(0) = 0, we get

B = 2p

π
IG,ρχ(2π). (3.44)

The boundary conditions on χ(r) depend on the periodicity of τ1, which corresponds to the 
periodicity of T3 (T3 = τ1(� = π)). We must have χ(2π) = nπTG,ρ , so that

B = 2npIG,ρTG,ρ, (3.45)

where TG,ρ = 1 for representations with even dimension and TG,ρ = 2 for representations with 
odd dimension.

3.2. On the “classical” isospin of these configurations

We have shown in previous sections that the inclusion of a suitable time-dependence in the 
ansätze, both for lasagna and spaghetti phases (see Eqs. (2.1) and (3.1)), is one of the key ingre-
dients that allows the field equations to be considerably reduced, leading to a single integrable 
ODE equation for the profiles. This time-dependence offers a nice short-cut to estimate the “clas-
sical Isospin” of the configurations analyzed in the present paper (a relevant question is whether 
or not the classical Isospin is large when the Baryonic charge is large). In particular, one may 
evaluate the “cost” of removing such time-dependence. Such a cost is related to the internal 
Isospin symmetry of the theory. This is like trying to estimate the angular momentum of a spin-
ning top by evaluating the cost to make the spinning top to stop spinning. In the present case, the 
time-dependence of the configurations can be removed from the ansätze by introducing a Isospin 
chemical potential; then the isospin chemical potential needed to remove such time-dependence 
is a measure of the classical Isospin of the present configurations. We will see how this works for 
the simplest SU(2) case, where the generators are Tj = iσj , being σj the Pauli matrices (general 
group G behave in a similar way).

As it is well known, the effects of the Isospin chemical potential can be taken into account by 
using the following covariant derivative

∇μ → Dμ = ∇μ + μ̄[T3, ·]δμ0 . (3.46)

Now, we will use exactly the same ansatz as before in the spaghetti SU(2) case, but this time 
without the time dependence:

U = eχ(x) (�n· �T ) ,

�n = (sin� sin�, sin� cos�, cos�) ,

where

χ = χ (r) , � = qθ , � = pφ ,

q = 1

2
(2v + 1) , p, v ∈N , p �= 0 ,
16
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together with the introduction of the Isospin chemical potential in Eq. (3.46) in the theory. One 
can check directly that the complete set of Skyrme equations can still be reduced to the same 
ODE for the profile χ (r) in the case of the spaghetti phase in Eq. (3.18) only provided the 
Isospin chemical potential for the spaghetti phase is given by

μ̄S = p

Lφ

. (3.47)

In other word, the cost to eliminate the time-dependence is to introduce an Isospin chemical 
potential which is large when the Baryonic charge of the spaghetti is large. Something similar 
happens in the case of the lasagna phase. Let us consider the ansatz in terms of the Euler angles 
but without the time-dependence for the SU(2) case:

UL = e�T3eHT2e�T3 ,

where

� = pφ , H = h(r) , � = mθ , p,m ∈ N .

Let us introduce the Isospin chemical potential, demanding that the profile h(r) should be the 
same as before. Then, as in the spaghetti case, the Skyrme field equations with chemical potential 
can still be satisfied by the very same profile h(r) provided we fix the Isospin chemical potential 
as

μ̄L = pm

(p2L2
φ + m2L2

θ )
1
2

. (3.48)

At this point it is important to remember that in the SU(2) case the lasagna and spaghetti type 
solutions have the following values for the topological charges

BS = np , BL = mp ,

see [25] and [26] for more details. These arguments show that the “classical Isospin” of config-
urations with high Baryonic charge is large. Finally, it is important to point out that the large 
Isospin case corresponds to either neutron rich or proton rich matter and due to Coulomb effects 
(not taken into account in this model), the neutron rich solution is preferred. This fact is very 
convenient as far as the physics of neutron stars is concerned.

4. Examples: exceptional pasta

As an example we can consider the “basic exceptional Skyrmions”, that are solutions in lowest 
dimensional representation when G is one of the exceptional Lie groups. There are five cases that 
we now recall according to the dimension of the group. For each of them we know all inequivalent 
three dimensional subalgebras, each one determined by the Dynkin characteristic χI(d1, . . . , dr), 
where I is the Dynkin index and dj are the coefficients of the characteristic, ordered as the simple 
root listed in Appendix A.

The smallest exceptional group is G2, a 14 dimensional group of rank 2 whose smallest irrep 
is 7 dimensional. There are four different three dimensional subalgebras. It contains four 3D 
subalgebras, having characteristics

χ1 = (0,1), χ3 = (1,0), χ4 = (0,2), χ28 = (2,2).
17
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χ1 and χ2 are regular but not integral, while χ4 and χ28 are not regular but are integral. In 
particular, the minimal regular subalgebra containing χ4 is χ1 ⊕χ3, while χ28 is maximal so that 
the smallest regular subalgebra containing it is G2 itself.

The next group is F4, a 52 dimensional group of rank 4. Its smallest irrep is 26 dimensional. 
It contains 15 su(2) type subalgebras, whose characteristics are

χ1 = (1,0,0,0); χ2 = (0,0,0,1); χ3 = (0,1,0,0); χ4 = (2,0,0,0);
χ6 = (0,0,1,0); χ8 = (0,0,0,2); χ9 = (0,1,0,1); χ10 = (2,0,0,1);

χ11 = (1,0,1,0); χ12 = (0,2,0,0); χ28 = (2,2,0,0); χ35 = (1,0,1,2);
χ36 = (0,2,0,2); χ60 = (2,2,0,2); χ156 = (2,2,2,2).

The regular subalgebras are χ1 and χ2, which are not integral. The integral subalgebras are χ4, 
χ8, χ12, χ28, χ36, χ60 and χ156. In particular, χ156 is maximal.

The third group is E6, a 78 dimensional group of rank 6. Its smallest irrep is 27 dimensional. 
It contains 20 su(2) type subalgebras, whose characteristics are

χ1 = (0,1,0,0,0,0); χ2 = (1,0,0,0,0,1); χ3 = (0,0,0,1,0,0);
χ4 = (0,2,0,0,0,0); χ5 = (1,1,0,0,0,1); χ6 = (0,0,1,0,1,0);
χ8 = (2,0,0,0,0,2); χ9 = (1,0,0,1,0,1); χ10 = (1,2,0,0,0,1);

χ11 = (0,1,1,0,1,0); χ12 = (0,0,0,2,0,0); χ20 = (2,2,0,0,0,2);
χ21 = (1,1,1,0,1,1); χ28 = (0,2,0,2,0,0); χ30 = (1,2,1,0,1,1);
χ35 = (2,1,1,0,1,2); χ36 = (2,0,0,2,0,2); χ60 = (2,2,0,2,0,2);
χ84 = (2,2,2,0,2,2); χ156 = (2,2,2,2,2,2).

The only regular subalgebra is χ1, which is not integral. The integral subalgebras are 
χ4, χ8, χ12, χ20, χ28, χ36, χ60 and χ156. The last one is also maximal.

The third group is E7, a 133 dimensional group of rank 7. Its smallest irrep is 58 dimensional. 
It contains 44 su(2) type subalgebras, whose characteristics are

χ1 = (1,0,0,0,0,0,0); χ2 = (0,0,0,0,0,1,0); χ3′ = (0,0,1,0,0,0,0);
χ3′′ = (0,0,0,0,0,0,2); χ4′ = (2,0,0,0,0,0,0); χ4′′ = (0,1,0,0,0,0,1);
χ5 = (1,0,0,0,0,1,0); χ6 = (0,0,0,1,0,0,0); χ7 = (0,2,0,0,0,0,0);
χ8 = (0,0,0,0,0,2,0); χ9 = (0,0,1,0,0,1,0); χ10 = (2,0,0,0,0,1,0);

χ11′ = (1,0,0,1,0,0,0); χ11′′ = (2,0,0,0,0,0,2); χ12′ = (0,0,2,0,0,0,0)

χ12′′ = (1,0,0,0,1,0,1); χ13 = (0,1,1,0,0,0,1); χ14 = (0,0,0,1,0,1,0);
χ15 = (0,0,0,0,2,0,0) χ20 = (2,0,0,0,0,2,0); χ21 = (1,0,0,1,0,1,0);
χ24 = (0,0,0,2,0,0,0); χ28 = (2,0,2,0,0,0,0); χ29 = (2,1,1,0,0,0,1);
χ30 = (2,0,0,1,0,1,0); χ31 = (2,0,0,0,2,0,0); χ35′ = (1,0,0,1,0,2,0);

χ35′′ = (2,0,0,0,0,2,2); χ36′ = (0,0,2,0,0,2,0); χ36′′ = (1,0,0,1,0,1,2);
χ38 = (0,1,1,0,1,0,2); χ39 = (0,0,0,2,0,0,2); χ56 = (0,0,0,2,0,2,0);
χ60 = (0,0,2,0,0,2,0); χ61 = (2,1,1,0,1,1,0) χ62 = (2,1,1,0,1,0,2);
χ63 = (2,0,0,2,0,0,2); χ84 = (2,0,0,2,0,2,0); χ110 = (2,1,1,0,1,2,2);
18
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χ111 = (2,0,0,2,0,2,2); χ156 = (2,0,2,2,0,2,0); χ159 = (2,2,2,0,2,0,2);
χ231 = (2,2,2,0,2,2,2) χ399 = (2,2,2,2,2,2,2).

The only regular subalgebra is χ1, which is not integral. The integral subalgebras are 
χ3′′ , χ4′ , χ7, χ8, χ11′′ , χ12′ , χ15, χ20, χ24, χ28, χ31, χ35′′ , χ36′ , χ39, χ56, χ60, χ63, χ84, χ111, χ156, 
χ159, χ231 and χ399. The last one is also maximal.

The third group is E8, a 248 dimensional group of rank 8. Its smallest irrep is 248 dimensional. 
It contains 70 su(2) type subalgebras, whose characteristics are

χ1 = (0,0,0,0,0,0,0,1); χ2 = (1,0,0,0,0,0,0,0); χ3 = (0,0,0,0,0,0,1,0);
χ4′ = (0,1,0,0,0,0,0,0); χ4′′ = (0,0,0,0,0,0,0,2); χ5 = (1,0,0,0,0,0,0,1);
χ6 = (0,0,0,0,0,1,0,0); χ7 = (0,0,1,0,0,0,0,0); χ8 = (2,0,0,0,0,0,0,0);
χ9 = (1,0,0,0,0,0,1,0); χ10′ = (2,0,0,0,0,0,0,1); χ10′′ = (0,0,0,0,1,0,0,0);

χ11 = (0,0,0,0,0,1,0,1); χ12′ = (0,0,0,0,0,0,2,0); χ12′′ = (0,0,1,0,0,0,0,1);
χ13 = (0,1,0,0,0,0,1,0); χ14 = (1,0,0,0,0,1,0,0); χ15 = (0,0,0,1,0,0,0,0);
χ16 = (0,2,0,0,0,0,0,0); χ20′ = (1,0,0,0,1,0,0,0); χ20′′ = (2,0,0,0,0,0,0,2);
χ21 = (1,0,0,0,0,1,0,1); χ22 = (0,1,0,0,0,0,0,1); χ24 = (0,0,0,0,0,2,0,0);
χ25 = (0,0,1,0,0,1,0,0); χ28 = (0,0,0,0,0,0,2,2); χ29 = (0,1,0,0,0,0,1,2);
χ30′ = (1,0,0,0,0,1,0,2); χ30′′ = (0,0,0,1,0,0,1,0); χ31 = (0,0,0,1,0,0,0,2);
χ32 = (0,2,0,0,0,0,0,2); χ34 = (0,0,1,0,0,1,0,1); χ35 = (2,0,0,0,0,1,0,1);
χ36′ = (1,0,0,1,0,0,0,1); χ36′′ = (2,0,0,0,0,0,2,0); χ37 = (1,0,0,0,1,0,1,0);
χ38 = (0,1,1,0,0,0,1,0); χ39 = (0,0,0,1,0,1,0,0); χ40 = (0,0,0,0,2,0,0,0);
χ56 = (2,0,0,0,0,2,0,0); χ57 = (1,0,0,1,0,1,0,0); χ60 = (2,0,0,0,0,0,2,2);
χ61 = (1,0,0,0,1,0,1,2); χ62 = (0,1,1,0,0,0,1,2); χ63 = (0,0,0,1,0,1,0,2);
χ64 = (0,0,0,0,2,0,0,2); χ70 = (1,0,0,1,0,1,0,1); χ84′ = (1,0,0,1,0,1,1,0);

χ84′′ = (2,0,0,0,0,2,0,2); χ85 = (1,0,0,1,0,1,0,2); χ88 = (0,0,0,2,0,0,0,2);
χ110 = (2,1,1,0,0,0,1,2); χ111 = (2,0,0,1,0,1,0,2); χ112 = (2,0,0,0,2,0,0,2);
χ120 = (0,0,0,2,0,0,2,0); χ156 = (2,0,0,0,0,2,2,2); χ157 = (1,0,0,1,0,1,2,2);
χ159 = (0,1,1,0,1,0,2,2); χ160 = (0,0,0,2,0,0,2,2); χ166 = (1,0,1,1,0,0,2,2);
χ182 = (2,1,1,0,1,1,0,1); χ184 = (2,0,0,2,0,0,2,0); χ231 = (2,1,1,0,1,0,2,2);
χ232 = (2,0,0,2,0,0,2,2); χ280 = (2,0,0,2,0,2,0,2); χ399 = (2,1,1,0,1,1,2,2);
χ400 = (2,0,0,2,0,2,2,2); χ520 = (2,2,2,0,2,0,2,2); χ760 = (2,2,2,0,2,2,2,2);

χ1240 = (2,2,2,2,2,2,2,2).

The only regular subalgebra is χ1, which is not integral. The integral subalgebras are χ4′′ , χ8, 
χ12′ , χ16, χ20′′ , χ24, χ28, χ32, χ36′′ , χ40, χ56, χ60, χ64, χ84′′ , χ112, χ120, χ156, χ160, χ184, χ232, 
χ280, χ400, χ520, χ760 and χ1240. The last one is also maximal.

As an example, we will finally construct the explicit solutions for G2, which we can call “G2
exceptional pasta”.
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4.1. G2 exceptional Spaghetti

Here we consider explicit solutions case by case. Our deduction will be quite general and 
independent on the specific realization in terms of matrices, but just on the chosen representa-
tion. Nevertheless, for sake of completeness, in Appendix D we will provide an explicit matrix 
realization of the subalgebras in the lowest fundamental representation.

4.1.1. χ1-Spaghetti
Since χ1 = (0, 1), we get p ≡ (p1, p2) = (6, 4). The only root satisfying α(f ) = 2 is α6 =

3α1 + 2α2. Therefore, e+ = kλ6 and equation (3.27) is trivial, while (3.28) gives

k = √
2. (4.1)

Therefore, the Spaghetti solution is determined by the matrices

T
(1)
1 =

√
2

2
(λ6 + λ̃6), (4.2)

T
(1)
2 =

√
2

2i
(λ6 − λ̃6), (4.3)

T
(1)
3 = 3J1 + 2J2. (4.4)

Notice that up to now this is independent on the choice of the irrep. The choice of the represen-
tation allows to further specify the type of solution. The fundamental representations of G2 are 
the 777, with maximal weight α4, whose seven weight are on the small hexagon given by ±αa, 
a = 1, 3, 4, plus one vanishing weight, and the 141414 which is the adjoint representation, with max-
imal weight α6 and with all roots as weight. The action of ±α6 on the small hexagon shows that 
if we choose to work with the 777, then R7 decomposes as 222 ⊕ 222 ⊕ 111 ⊕ 111 ⊕ 111 under χ1, so that is 
an SU(2) type solution.
For 141414, we see that the action of ±α6 decomposes R14 into 333 ⊕222 ⊕222 ⊕222 ⊕222 ⊕111 ⊕111 ⊕111, which 
is again an SU(2) type solution.

4.1.2. χ3-Spaghetti
Since χ3 = (1, 0), we get p ≡ (p1, p2) = (12, 6). The only root satisfying α(f ) = 2 is α4 =

2α1 + α2. Therefore, e+ = kλ4 and equation (3.27) is trivial, while (3.28) gives

k = √
6. (4.5)

Therefore, the Spaghetti solution is determined by the matrices

T
(3)
1 =

√
6

2
(λ4 + λ̃4), (4.6)

T
(3)
2 =

√
6

2i
(λ4 − λ̃4), (4.7)

T
(3)
3 = 6J1 + 3J2. (4.8)

The action of ±α6 on the small hexagon shows that if we choose to work with the 777, then R7

decomposes as 333 ⊕ 222 ⊕ 222 under χ3, so that is an SU(2) type solution.
For 141414, we see that the action of ±α4 decomposes R14 into 444 ⊕444 ⊕333 ⊕111 ⊕111 ⊕111, which is again 
an SU(2) type solution, since it contains even dimensional subrepresentations.
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4.1.3. χ4-Spaghetti
Since χ4 = (0, 2), we get p ≡ (p1, p2) = (12, 8). This time there are four roots satisfying 

the condition α(f ) = 2, which are α2, α3, α4 and α5. Thus, we can put e+ =∑5
j=2 kjλj and 

e− =∑5
j=2 kj λ̃j . Using the results of Appendix D, we see that equations (3.27) and (3.28)

become

1√
2
k2k3 +

√
2

3
k3k4 + 1√

2
k4k5 = 0, (4.9)

k2
3 + 2k2

4 = 3k2
5 = 12, (4.10)

k2
2 + k2

3 + k2
4 + k2

5 = 8. (4.11)

There are several solutions of this system, but we know that we just need to find one. A very 
simple choice is

k3 = k4 = 0, k2 = k5 = 2. (4.12)

Therefore, the Spaghetti solution is determined by the matrices

T
(4)
1 = λ2 + λ̃2 + λ5 + λ̃5, (4.13)

T
(4)
2 = −i(λ2 − λ̃2 + λ5 − λ̃5), (4.14)

T
(4)
3 = 6J1 + 4J2. (4.15)

To understand the type of solution, we notice that the action of T1 and T2 leave invariant the 
subspaces 〈λ3, ̃λ1, ̃λ4〉 and 〈λ̃3, λ1, λ4〉, so that in the representation 777, R7 decomposes as 333 ⊕
333 ⊕ 111. We see that it is a SO(3)-type solution.
Starting from the adjoint, we see that the action λ̃2 + λ̃5 applied repeatedly to λ6 generates a 
combination of λ2 and λ5, then an element of H , then a combination of λ̃2 and λ̃5, and finally 
λ̃6. This shows that working with 141414, R14 decomposes as 555⊕333⊕333⊕333⊕111. Again, it is an SO(3)

type solution.

4.1.4. χ28-Spaghetti
This is the principal case, with χ28 = (2, 2). Therefore p ≡ (p1, p2) = (36, 20). We already 

know the solution in this case. The Spaghetti solution is

T
(28)
1 = 3(λ1 + λ̃1) + √

5(λ2 + λ̃2), (4.16)

T
(28)
2 = −i3(λ1 − λ̃1) − i

√
5(λ2 − λ̃2), (4.17)

T
(28)
3 = 18J1 + 10J2. (4.18)

Because of Proposition 2, we already know that working in the adjoint the solution is of SO(3)-
type. In the representation 777, it is sufficient to verify that for T− = 3λ̃1 +√

5λ̃2, and v the maximal 
vector of 777, then the vectors ρk

777(T−)(v), k = 0, . . . , 6 are all linearly independent. Here ρ777 : G2 →
End(R7) is the representation map of the algebra. This is proved in Appendix D and proves that 
R7 is irreducible under χ28. Since it is odd dimensional, it is of SO(3)-type.

4.2. G2 exceptional Lasagna

For the exceptional Lasagna we can use Proposition 2. Since we already know that n = b must 
be equal to 1, we get that (p1, p2) = (18, 10), and, if we fix ψj = 0 for simplicity, then
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κ = T
(28)
1 = 3(λ1 + λ̃1) + √

5(λ2 + λ̃2). (4.19)

Moreover, from Proposition 1 we get

h(z) = z

2
T

(28)
3 . (4.20)

This defines the simplest exceptional G2 Lasagna.

5. Extended ansatz

In order to allow for further generalizations, it is convenient to employ the Euler parameteri-
zation in a more general ansatz, after fixing the matrices κ and f . Let us consider the Skyrmionic 
field1

U(t, r,φ, γ ) = e�(t,r,φ,γ )κeχ(t,r,φ,γ )f e�(t,r,φ,γ )κ , (5.1)

where κ is specified in (2.2), and f has the same properties as in (2.21). One of the aims of
this generalization is to provide a description of different pasta states without specifying them 
a priori. This could lead to a comprehensive description of Skyrmions in a finite volume and 
to an analytical definition of other possible states (such as gnocchi states) and the transitions 
between them. In this work, we did not analyze all these possibilities and all the limits of these 
models, but we outline the main properties which characterize them, namely the wave equations, 
the topological charge and the energy density. If we define

α = 1

2
(� − �) and ξ = 1

2
(� + �) , (5.2)

then

U(t, r,φ, γ ) = e−α(t,r,φ,γ )κeξ(t,r,φ,γ )κeχ(t,r,φ,γ )f eξ(t,r,φ,γ )κeα(t,r,φ,γ )κ . (5.3)

This gives

Lμ = e−ακe−ξκ
[
∂μα(κ − κ̂) + ∂μξ(κ + κ̂) + ∂μχf

]
eξκeακ , (5.4)

where we introduced the matrix function

κ̂ = e−χf κeχf . (5.5)

Since

tr(λjλk) = 0, tr(λj λ̃k) = −δjk, (5.6)

we have

tr(κ2) = tr(κ̂2) = −2‖c‖2, (5.7)

and f can be normalized so that

tr(f 2) = tr(κ2). (5.8)

This leads to the condition (2.24) and, in particular, |cj |2 = b
2pj . Using these conventions we 

can now write the Skyrme equation explicitly.

1 In this section we will use the coordinates {t, r, φ, γ }, however the results are applicable for both the lasagna and the 
spaghetti phases.
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5.1. Non-linear wave equations

We call wave equations to the field equations for the functions α, ξ and χ . These result to be

∂μ∂μχ

{
1 + b2λ

[
∂μα∂μα sin2

(
bχ

2

)
+ ∂μξ∂μξ cos2

(
bχ

2

)]}

− b sin(bχ)

(
1 − b2λ

4
∂μχ∂μχ

)(
∂να∂να − ∂νξ∂νξ

)
− b3λ sin(bχ) cos(bχ)

[
∂μα∂μα∂νξ∂νξ − (∂μα∂μξ

)2]

− b2λ

{
sin2
(

bχ

2

)
∂μ∂μα∂να∂νχ + cos2

(
bχ

2

)
∂μ∂μξ∂νξ∂νχ

+ sin2
(

bχ

2

)[
∂μα∂μ

(
∂να∂νχ

)− ∂μχ∂μ
(
∂να∂να

)]

+ cos2
(

bχ

2

)[
∂μξ∂μ

(
∂νξ∂νχ

)− ∂μχ∂μ
(
∂νξ∂νξ

)]}

− b3λ

4
sin(bχ)

[(
∂μα∂μχ

)2 − (∂μξ∂μχ
)2]= 0, (5.9)

4 cos

(
bχ

2

){
cos

(
bχ

2

){
∂μ∂μα

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂να + ∂μχ∂μ

(
∂νχ∂να

)− ∂μα∂μ
(
∂νχ∂νχ

)]}

− sin

(
bχ

2

){b2λ

2
sin(bχ)∂μ∂μα∂να∂νξ

− b2λ

2
sin(bχ)

[
∂μ∂μξ∂να∂να + ∂μξ∂μ

(
∂να∂να

)− ∂μα∂μ
(
∂να∂νξ

)]
+ b3λ cos(bχ)

[
∂μχ∂μα∂να∂νξ − ∂μχ∂μξ∂να∂να

]+ b∂μχ∂μξ
}}

+ 4 sin

(
bχ

2

){
sin

(
bχ

2

){
∂μ∂μξ

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂νξ + ∂μχ∂μ

(
∂νχ∂νξ

)− ∂μξ∂μ
(
∂νχ∂νχ

)]}

− cos

(
bχ

2

){b2λ

2
sin(bχ)∂μ∂μξ∂να∂νξ

− b2λ

2
sin(bχ)

[
∂μ∂μα∂νξ∂νξ + ∂μα∂μ

(
∂νξ∂νξ

)− ∂μξ∂μ
(
∂να∂νξ

)]
+ b3λ cos(bχ)

[
∂μχ∂μξ∂να∂νξ − ∂μχ∂μα∂νξ∂νξ

]− b∂μχ∂μα
}}

= 0, (5.10)
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4 sin

(
bχ

2

){
cos

(
bχ

2

){
∂μ∂μα

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂να + ∂μχ∂μ

(
∂νχ∂να

)− ∂μα∂μ
(
∂νχ∂νχ

)]}

+ sin

(
bχ

2

){b2λ

2
sin(bχ)∂μ∂μα∂να∂νξ

− b2λ

2
sin(bχ)

[
∂μ∂μξ∂να∂να + ∂μξ∂μ

(
∂να∂να

)− ∂μα∂μ
(
∂να∂νξ

)]
+ b3λ cos(bχ)

[
∂μχ∂μα∂να∂νξ − ∂μχ∂μξ∂να∂να

]+ b∂μχ∂μξ
}}

− 4 cos

(
bχ

2

){
sin

(
bχ

2

){
∂μ∂μξ

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂νξ + ∂μχ∂μ

(
∂νχ∂νξ

)− ∂μξ∂μ
(
∂νχ∂νχ

)]}

+ cos

(
bχ

2

){b2λ

2
sin(bχ)∂μ∂μξ∂να∂νξ

− b2λ

2
sin(bχ)

[
∂μ∂μα∂νξ∂νξ + ∂μα∂μ

(
∂νξ∂νξ

)− ∂μξ∂μ
(
∂να∂νξ

)]
+ b3λ cos(bχ)

[
∂μχ∂μξ∂να∂νξ − ∂μχ∂μα∂νξ∂νξ

]− b∂μχ∂μα
}}

= 0. (5.11)

5.2. Energy density

The energy-momentum tensor takes the form

Tμν =K

2
‖c‖2

{
8

[
∂μα∂να sin2

(
bχ

2

)
+ ∂μξ∂νξ cos2

(
bχ

2

)]
+ 2∂μχ∂νχ

− gμν4

[
∂ρα∂ρα sin2

(
bχ

2

)
+ ∂ρξ∂ρξ cos2

(
bχ

2

)]
− gμν∂ρχ∂ρχ

}

+ K

2
‖c‖2(2b2λ)

{[
∂μξ∂νξ∂ρα∂ρα + ∂μα∂να∂ρξ∂ρξ

− (∂μα∂νξ + ∂μξ∂να
)
∂ρα∂ρξ

]
sin2(bχ)

−
[
∂μα∂να sin2

(
bχ

2

)
+ ∂μξ∂νξ cos2

(
bχ

2

)]
∂ρχ∂ρχ

−
[
∂ρα∂ρα sin2

(
bχ

2

)
+ ∂ρξ∂ρξ cos2

(
bχ

2

)]
∂μχ∂νχ

− sin2
(

bχ

2

)(
∂μα∂νχ + ∂μχ∂να

)
∂ρα∂ρχ

− cos2
(

bχ
)(

∂μξ∂νχ + ∂μχ∂νξ
)
∂ρξ∂ρχ

}

2
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− K

2
‖c‖2b2λgμν

{[
∂ρξ∂ρξ∂σ α∂σ α − (∂ρα∂ρξ

)2] sin2(bχ)

+
[
∂ρα∂ρα sin2

(
bχ

2

)
+ ∂ρξ∂ρξ cos2

(
bχ

2

)]
∂σ χ∂σ χ

−
[(

∂ρα∂ρχ
)2 sin2

(
bχ

2

)
+ (∂ρξ∂ρχ

)2 cos2
(

bχ

2

)]
∂σ χ∂σ χ

}
. (5.12)

From this, we can obtain the energy density as ρE = Ttt .

5.3. Baryon charge

The Baryon charge is

B = 1

24π2

∫
ρBdrdγ dφ, (5.13)

with

ρB = −12‖c‖2εijk∂iα∂j ξ∂k cos(bχ). (5.14)

Up to now we have just written local expressions, but in order to compute the Baryonic charge 
it is necessary to define the ranges of α, ξ and χ . Proposition 2 tells us that the period of egκ is 
Tκ = ηn 2π

b
, where η = 1, 2 depending on the representation, while n ∈ Z. Following [46], the 

ranges must be

0 ≤ α ≤ ησn
2π

b
, 0 ≤ χ ≤ π

b
and 0 ≤ ξ ≤ ηm

2π

b
, (5.15)

where σ = 1 for odd-dimensional representations and 1
2 for even-dimensional representations 

and m, n are both integer. The integration of the density charge leads to

B = 2mnση2 ‖c‖2

b2 . (5.16)

We can compute the ratio ‖c‖
2

b2 in the following way. From (5.8), we get

−2‖c‖2 = Tr(f 2) =
r∑

j=1

pj Tr(hjf ), (5.17)

where the definition f =∑r
j=1 pjhj has been used. Now, we can replace the coefficients pj

with (2.23) and Tr(hjf ) = αj (f ) = ib to get

‖c‖2 =
r∑

j=1

pj Tr(hjf ) =
r∑

j=1

b2

‖αj‖2

r∑
k=1

(CG)−1
jk . (5.18)

The Baryon charge takes the form

B = 2mnση2
r∑ 1

‖αj‖2 (CG)−1
jk . (5.19)
j,k=1
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5.4. Example: the Lasagna case

Let us now compare the results obtained in this section with the previous ones. Our quantities 
can be written in terms of the Lasagna ansatz as follows

α = − σ t

2Lφ

+ σ
φ

2
+ m

γ

2
and ξ = σ t

2Lφ

− σ
φ

2
+ m

γ

2
. (5.20)

Moreover, the profile function depends only on the parameter r (χ = χ(r)). This leads to the 
following relations

∂μχ∂μα = ∂μχ∂μξ = 0, ∂μ∂μα = ∂μ∂μξ = 0

∂μα∂μα = ∂μξ∂μξ = ∂μα∂μξ = 1

4L2
γ

.

With these choices the equations (5.10) and (5.11) are automatically satisfied. The equation (5.9)
becomes

χ ′′(r)
(

1 + b2λ

4L2
γ

)
= 0, (5.21)

which leads to the solution

χ(r) = r

2b
, (5.22)

where the boundary conditions χ(0) = 0 and χ(2π) = π
b

have been used. Now, it is easy to 
compute the energy density, which results

ρE = K

2
‖c‖2
{ 2

L2
φ

+ 1

L2
γ

+ 1

4b2L2
r

(
1 + b2λ

4L2
γ

)
+ b2λ

8L2
φL2

γ

[
4 sin2

( r

2

)
− 1
]}

. (5.23)

The integration over the volume of the box gives the total energy of the Lasagna

E = 4LφLrLγ π3K
‖c‖2

b2

{ 2

L2
φ

+ 1

L2
γ

+ 1

4b2L2
r

(
1 + b2λ

4L2
γ

)
+ b2λ

8L2
φL2

γ

}
. (5.24)

6. Coupling with U(1) gauge field

By employing the generalization presented in the previous section, it is now easy to couple 
the Skyrmion field to an electromagnetic field Aμ. To this aim we introduce the action

A =
∫

d4x
√−g Tr

[
K

2

(
L̂μL̂μ + λ

8
ĜμνĜ

μν

)
− 1

4
FμνF

μν

]
, (6.1)

where

Fμν = ∂μAν − ∂νAμ (6.2)

and the hat stands for the replacement of the partial derivative with a covariant derivative

Dμ = ∂μ − Aμ [T , ·] , (6.3)

which means that
26



S.L. Cacciatori, F. Canfora, M. Lagos et al. Nuclear Physics B 976 (2022) 115693
L̂μ = U−1DμU = U−1 (∂μU − Aμ [T ,U ]
)

and Ĝμν =
[
L̂μ, L̂ν

]
. (6.4)

Here T is any element of the Lie algebra of the group G, representing the direction of the U(1)

gauge field. Later, we will identify T with the generator T3. The action (6.1) is now invariant 
under gauge transformation

U → e−βT UeβT , Aμ → Aμ + ∂μβ. (6.5)

The gauge invariance appears also in the fact that the theory depends on Aμ through the quantity 
∂μα − Aμ, which is invariant for gauge transformations.

6.1. Covariant Baryonic charge

As in [49], in order to determine a topological invariant, one is tempted to start directly gen-
eralizing (1.7) to the expression

B̂ = 1

24π2

∫
V

Tr[L̂∧ L̂∧ L̂],

which, however, is not a topological invariant if the field-strength F is non-vanishing. Neverthe-
less, a topological invariant can be constructed after a simple subtraction, even for a non-Abelian 
gauge field. Indeed, we have:

Proposition 4. Let S be a three dimensional closed compact manifold,

U : S −→ G (6.6)

a differentiable map from S to the Lie group G, L̂μ = U−1DμU , R̂μ = DμUU−1, with a non 
necessarily Abelian connection ω, and � the curvature of ω,

DμU = ∂μU + [ω,U ], (6.7)

� = dω + 1

2
[ω,ω]. (6.8)

Hence

B̂ = 1

24π2

∫
S

Tr
[
L̂∧ L̂∧ L̂− 3L̂∧ � − 3R̂∧ �

]
, (6.9)

is a topological invariant. Moreover, if H2(S) = 0 and A is Abelian, then B̂ = B .

Proof. In order to prove the proposition, we have to prove that the first variation of B̂ w.r.t. U
and ω (independently) vanishes at any functional point, that is independently if U and ω are 
constrained by some equations of motion. Notice that in taking variations, δω is a well defined 
1-form on S despite ω could not be. To keep notation compact we will use bold round brackets 
to indicate a trace (((M))) ≡ Tr(M). Moreover, we first recall the following properties. If aj , j =
1, . . . , k are Lie algebra valued 1-forms then

(((a1 ∧ · · · ∧ ak−1 ∧ ak))) = (−1)k−1(((ak ∧ a1 ∧ · · · ∧ ak−1))). (cyclicity (c)) (6.10)

If [, ] indicates the Lie product (commutator) of matrix valued forms and a, b, c are three differ-
ential forms of degree ka kb and kc respectively, then
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[a, b ∧ c] = [a, b] ∧ c + (−1)kakbb ∧ [a, c]. (graded algebraic derivative (gad))
(6.11)

Since

((([a, b]))) = 0, (6.12)

in particular, we have that, if a is a 1-form, then

((([a, b] ∧ c))) = (−1)kb(((b ∧ [a, c]))), (algebraic integration by parts (aip)) (6.13)

and

(((Db))) = (((db))). (algebraic trivialization (at)). (6.14)

Using these properties, taking a variation δU of U we can write

1

3
δU(((L̂∧ L̂∧ L̂))) =(((δU L̂∧ L̂∧ L̂))) = ((( − U−1δU L̂∧ L̂∧ L̂+ U−1DδU ∧ L̂∧ L̂)))

=((( − U−1δU L̂∧ L̂∧ L̂+ D(U−1δU) ∧ L̂∧ L̂− D(U−1)δU ∧ L̂∧ L̂)))

=(((D(U−1δU) ∧ L̂∧ L̂))) (6.15)

where we used D(U−1) = −U−1DUU−1 and cyclicity in the last term of the second line. Hence,

1

3
δU(((L̂∧ L̂∧ L̂))) =(((D[U−1δgL̂∧ L̂]))) − (((U−1δU [U−1D(DU) ∧ L̂− L̂∧ U−1D(DU)])))

=d(((U−1δgL̂∧ L̂))) − (((U−1δU [U−1[�,U ] ∧ L̂− L̂∧ U−1[�,U ]))),
(6.16)

where we used (at) in the first term and D(DU) = [�, U ] in the other ones. Now, let us consider

δU(((� ∧ L̂))) = − (((� ∧ U−1δU L̂))) + (((� ∧ U−1DδU)))

= − (((δUU−1(D�)U−1))) + (((D[�U−1δU ]))) + (((� ∧ L̂U−1δU)))

= − (((δU L̂∧ �U−1))) + d(((�U−1δU))) + (((� ∧ L̂U−1δU))), (6.17)

where again we used (c) and (at). In the same way

δU(((� ∧ R̂))) = − (((δUg−1� ∧ R̂))) + d(((δUU−1�))) + (((δUU−1R̂∧ �))). (6.18)

Subtracting (6.17) and (6.18) to (6.16), and multiplying times 3, we get

δU(((L̂∧ L̂∧ L̂−−− 3L̂∧ � − 3R̂∧ �) = 3d(((U−1δU L̂∧ L̂− �U−1δU − �δUU−1))).

(6.19)

Since the r.h.s. is the differential of a globally well defined 2-form and S is a smooth closed 
compact manifold, it follows from Stokes theorem that the first variation of B̂ under variation of 
U vanishes.
As a second step, let us consider a variation δω of ω. The strategy is the same as above. For

μ ≡ 1

3
(((L̂∧ L̂∧ L̂−−− 3L̂∧ � − 3R̂∧ �) (6.20)

we get
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δωμ =(((U−1[δω,U ] ∧ L̂∧ L̂))) − (((U−1[δω,U ] ∧ �))) − (((L̂∧ (dδω + [ω, δω]))))
− ((([δω,U ]U−1 ∧ �))) − (((R̂∧ (dδω + [ω, δω]))))

=(((U−1[δω,U ] ∧ L̂∧ L̂))) − (((U−1[δω,U ] ∧ �))) + d(((L̂∧ δω))) − (((DL̂∧ δω)))

− ((([δω,U ]U−1 ∧ �))) + d(((R̂∧ δω))) − (((DR̂∧ δω))). (6.21)

Now,

DL̂ = d(U−1DU) + [ω,U−1DU ] = −L̂∧ L̂+ U−1(d[ω,U ] + [ω, [ω,U ]] − ω ∧ dU)

= −L̂∧ L̂+ U−1[�,U ], (6.22)

and similarly

DR̂= R̂∧ R̂+ [�,U ]U−1. (6.23)

Finally, noticing that

(((U−1[δω,U ] ∧ L̂∧ L̂))) = (((δω ∧ R̂∧ R̂))) − (((δω ∧ L̂∧ L̂))) (6.24)

and putting all together, we get

δωμ =d((((L̂+ R̂∧ δω)))), (6.25)

which, as above, it proves invariance also under variations of the connection. Thus, B̂ is topolog-
ical invariant.
Now, we have to prove the second part. To this end it is convenient to introduce some further 
notation. After fixing a basis {Ta}a of Lie(G), with structure constants f a

bc defined by2

[Tb,Tc] = f a
bcTa, (6.26)

it is convenient to define

T̃a :=U−1TaU, (6.27)

τa :=Ta − T̃a, (6.28)

τ̌a :=Ta + T̃a, (6.29)

so that, writing ω = ωaτa , we have

L̂ = L− ωaτa (6.30)

and also

(((L̂∧ �))) + (((R̂∧ �))) = �a ∧ (((L̂τ̌a))). (6.31)

Therefore,

(((L̂∧ L̂∧ L̂))) − 3((((L̂+ R̂) ∧ �)))

= (((L∧L∧L))) − 3ωa ∧ (((τaL∧L))) + 3ωa ∧ ωb ∧ (((τaτbL)))

− ωa ∧ ωb ∧ ωc(((τaτbτc))) − 3�a ∧ (((Lτ̌a))) + 3�a ∧ ωb(((τbτ̌a))). (6.32)

By the Maurer-Cartan equation dL = − 1
2 [L, L], and we can write,

2 We use the Einstein’s convention on sums.
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−ωa ∧ (((τaL∧L))) − �a ∧ (((Lτ̌a))) = ωa ∧ (((τadL))) − dωa ∧ (((Lτ̌a))) − 1

2
f a

bcω
b ∧ ωc ∧ (((Lτ̌a)))

= ωa ∧ (((τadL))) − d[ωa ∧ (((Lτ̌a)))] − ωa ∧ d(((Lτ̌a))) − 1

2
f a

bcω
b ∧ ωc ∧ (((Lτ̌a))),

(6.33)

which, using

ωa ∧ (((τadL))) − ωa ∧ d(((Lτ̌a))) = − 2ωa ∧ (((T̃adL))) − ωa ∧ (((L∧ dT̃a)))

= − 2ωa ∧ (((T̃adL))) − ωa ∧ (((L∧ (−[L, T̃a]))) = 0, (6.34)

because of the Maurer-Cartan equations, becomes

−ωa ∧ (((τaL∧L))) − �a ∧ (((Lτ̌a))) = −d[ωa ∧ (((Lτ̌a)))] − 1

2
f a

bcω
b ∧ ωc ∧ (((Lτ̌a))). (6.35)

Next, we rewrite

ωa ∧ ωb ∧ (((τaτbL))) =ωa ∧ ωb ∧ (((TaTbL))) + ωa ∧ ωb ∧ (((T̃aT̃bL))) − ωa ∧ ωb ∧ (((TaT̃bL)))

− ωa ∧ ωb ∧ (((T̃aTbL)))

=1

2
ωa ∧ ωb ∧ ((([Ta,Tb]L))) + 1

2
ωa ∧ ωb ∧ ((([T̃a, T̃b]L)))

− ωa ∧ ωb ∧ ((([Ta, T̃b]L)))

=1

2
ωa ∧ ωb ∧ (((f c

abTcL))) + 1

2
ωa ∧ ωb ∧ (((f c

abT̃cL)))

− ωa ∧ ωb ∧ (((Ta[T̃b,L])))
=1

2
f c

abω
a ∧ ωb ∧ (((τ̌cL))) − ωa ∧ ωb ∧ (((TadT̃b)))

=1

2
f c

abω
a ∧ ωb ∧ (((τ̌cL))) − d[ωa ∧ ωb ∧ (((TaT̃b)))]

+ d[ωa ∧ ωb] ∧ (((TaT̃b)))

=1

2
f c

abω
a ∧ ωb ∧ (((τ̌cL))) − d[ωa ∧ ωb ∧ (((TaT̃b)))]

+ dωa ∧ ωb ∧ (((TaT̃b − T̃aTb))). (6.36)

Since (((T̃aT̃b))) = (((TaTb))), we also have

�a ∧ ωb(((τbτ̌a))) = −�a ∧ ωb(((TaT̃b − T̃aTb))). (6.37)

Finally, using also (((T̃aT̃bT̃c))) = (((TaTbTc))),

ωa ∧ ωb ∧ ωc(((τaτbτc))) =3ωa ∧ ωb ∧ ωc(((T̃aT̃bTc − TaTbT̃c)))

=3

2
ωa ∧ ωb ∧ ωc((([T̃a, T̃b]Tc − [Ta,Tb]T̃c)))

=3

2
ωa ∧ ωb ∧ ωcf d

ab(((T̃dTc − TdT̃c))). (6.38)

After replacing (6.35), (6.36), (6.37) and (6.38) in (6.32) we get
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(((L̂∧ L̂∧ L̂))) − 3((((L̂+ R̂) ∧ �))) = (((L∧L∧L))) − 3d[ωa ∧ (((Lτ̌a))) + ωa ∧ ωb ∧ (((TaT̃b)))].
(6.39)

In particular, if the connection is Abelian,

(((L̂∧ L̂∧ L̂))) − 3((((L̂+ R̂) ∧ �))) = (((L∧L∧L))) − 3d[ωa ∧ (((Lτ̌a)))]. (6.40)

In this case � = dω and, if H2(S) = 0 so that H 2(S) = 0, then � is exact and ω is well defined 
everywhere on S . Therefore, 3d[ωa ∧ (((Lτ̌a)))] is an exact form and Stokes theorem ensures that 
under these hypotheses B̂ = B . �

Notice that with our conventions in (6.4), we have to make the identifications

ω = −A, � = −F, F = dA − 1

2
[A,A] . (6.41)

From (6.39) we then see that

B̂ = 1

24π2

∫
S

ρ̂B drdγ dφ, (6.42)

with

ρ̂B = ρB + 3εijk∂i[Aa
j Tr(Lk(Ta + U−1TaU)) − Aa

jA
b
kTr(TaU

−1TbU)], (6.43)

where, according to the conventions in [46], the orientation of the coordinates is such that εrγφ =
1. In our case S is a closed three dimensional manifold in a semisimple compact Lie group G. 
Since in this case H2(G, Q) = 0, we get that the correction to the density does not contribute to 
the integral and we expect B̂ = B always.
It is worth to mention that in the construction of the solutions of the Skyrme equations, however, 
S is replaced by V that is compact but it is not a closed smooth manifold but a hyperrectangle with 
boundary. Therefore, the above integral does not define a topological invariant unless we impose 
suitable boundary conditions. To understand which are the most suitable ones, let us first analyze 
the case A = 0. In this case the map U maps the hyperrectangle in a closed smooth submanifold 
of G, so L̂ is the pull-back of a 1-form well defined on a closed compact manifold (indeed, the 
left-invariant Maurer-Cartan form) and this is the reason we get a topological invariant. This 
suggests the boundary conditions we are looking for. They have to be imposed so that also A is 
the pull-back of a well defined 1-form over G (or the image of the hyperrectangle in G).
Under these conditions, the quantities Aμ are not independent, due to the fact that �, � and χ
defines a map M : R3+1 �→ R3. Locally, the embedding takes the form A = A�d� + A�d� +
Aχdχ , equivalent to

Aμ = A�∂μ� + A�∂μ� + Aχ∂μχ. (6.44)

6.2. Example: Lasagna states coupled to an electromagnetic field

To be explicit, we now work out the example of Lasagna states. For this case we choose 
T = κ . The covariant derivative determines the coupling of the gauge field to the Skyrmions, 
which appears in the definition of L̂μ

L̂μ = e−ακe−ξκ
[(

∂μα − Aμ

)
(κ − κ̂) + ∂μξ(κ + κ̂) + ∂μχf

]
eξκeακ . (6.45)
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Notice that the introduction of the gauge field in the direction κ causes a shift in Lμ given by 
∂μα → ∂μα−Aμ. It results that all the quantities we computed in the previous section are shifted 
by this quantity when the Skyrmions are coupled to a Maxwell field and it is really easy to convert 
the uncoupled theory with the coupled one. The covariant Baryon density charge now becomes

ρ̂B = ρB + 3εijk∂i[Aj Tr(Lk(κ + U−1κU))]
= ρB + 3εijk∂iTr

[(
∂kα(κ − κ̂) + ∂kξ(κ + κ̂) + ∂kχf

)
(κ + κ̂)

]
. (6.46)

Using that

Tr[(κ − κ̂)(κ + κ̂)] = Tr[f (κ + κ̂)] = 0, (6.47)

and

Tr[(κ − κ̂)(κ + κ̂)] = 2(1 + cos(bχ))Trκ2 = −4‖c‖2(1 + cos(bχ)), (6.48)

ρ̂B = ρB − 12‖c‖2εijk∂i

[
Aj∂kξ(1 + cos(bχ))

]
, (6.49)

where ρB is the uncoupled density. The correction to ρB is a total derivative, so it depends only 
on the boundary conditions, as discussed above. Differently from [49], our system lives in a box, 
so, the electromagnetic field is not constrained to zero at the boundaries. Therefore, the Baryonic 
charge is not necessarily a topological invariant and not even expected to be an integer. As we 
said above, we can fix this problem by requiring for A to be the pull-back of a well defined 
potential over the homology cycle of G selected by the map U . This is easily accomplished by 
looking at the form of the ansatz for the Lasagna states. As t is irrelevant, we fix t = 0 to simplify 
the expressions:

U(r, γ,φ) = e−φσκeχ(r)f emγκ = e−φσκemγ κ̂(r)eχ(r)f . (6.50)

Since bχ(2π) = π , we see that κ̂(0) = −κ̂(2π) = κ , so that, if, for a generic fixed r , U(r, γ, φ)

defines a two dimensional surface in G, for r = 0, 2π it collapses down to one dimensional 
circles:

U(0, γ,φ) = e(mγ−σφ)κ = eξκ , (6.51)

U(2π,γ,φ) = e−(mγ+σφ)κeχ(2π)f = e−ακeχ(2π)f . (6.52)

This degeneration means that well defined 1-forms on the whole manifold must have components 
only along the direction on the degeneration submanifolds, which in our case means

Aα(r = 0) = 0, (6.53)

Aξ(r = 2π) = 0, (6.54)

which in the original coordinates becomes

1

2m
Aγ (r = 0) + 1

2σ
Aφ(r = 0) =0, (6.55)

1

2m
Aγ (r = 2π) − 1

2σ
Aφ(r = 2π) =0. (6.56)

Also, one between φ and γ has to be identified periodically, while the other one is periodic or 
“antiperiodic”3 according to the cases if the cycle is of SO(3) or SU(2), respectively. Therefore, 

3 The antiperiodicity is not exact and in general some matrix components are periodic and other are antiperiodic. 
However, what happens is that points are identified in the image, in such a way to respect orientation, so the corresponding 
differential forms are periodically identified.
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in any case, the 1-forms in the image of the embedding have to be periodically identified so that 
the integrals at the “boundaries” φ = 0 and φ = 2π cancel out and the same happens for the 
boundaries at γ = 0 and γ = 2π . So, the only boundaries that may contribute are the ones at 
r = 0 and r = 2π , which we collectively call ∂rB . Therefore, the Baryonic charge results

B̂ =B − ‖c‖2

2π2

∫
∂B

(1 + cos(bχ))A ∧ dξ

=B + ‖c‖2

2π2

∫
∂rB

(1 + cos(bχ))(σAγ + mAφ)dγ ∧ dφ

=B − ‖c‖2

π2

∫
[0,2π]×[0,2π]

(σAγ (0, γ,φ) + mAφ(0, γ,φ))dγ dφ = B (6.57)

because of the above boundary conditions, and we used that Aα = σAγ + mAφ .

6.3. Decoupling of Skyrme equations and free-force conditions

To the Skyrmion equation coupled to a Maxwell field, obtained by shifting ∂μα → ∂μα − Aμ

in (5.9), (5.10) and (5.11), we have to add the Maxwell equations, which are given by

∇νF
νμ − Tr

{
K

2
D

(
R̂μ + λ

4

[
R̂ν, Ĝ

μν
])}

= 0. (6.58)

In the generic Euler parameterization, they become

∂ν∂
νAμ − ∂μ

(
∂ν∂

να
)− K

2
‖c‖2
{(

∂μα − Aμ

)[
8 sin2

(aχ

2

)(
1 + a2λ

4
∂νχ∂νχ

)
(6.59)

+ 2a2λ sin2(aχ)∂νξ∂νξ
]
− 2a2λ

[
∂μξ(∂να − Aν)∂

νξ + ∂μχ(∂να − Aν)∂
νχ
]}= 0.

To look for explicit solutions, we aim to decouple the Skyrme equations from the Maxwell field. 
Since Aμ appears in the products 

(
∂μα − Aμ

)
(∂μα − Aμ), 

(
∂μα − Aμ

)
∂μξ and(

∂μα − Aμ

)
∂μχ and in the derivative ∂μ (∂μα − Aμ), we can separate the Skyrme equations 

from the rest by looking for solutions where these terms are a priori fixed functions(
∂μα − Aμ

) (
∂μα − Aμ

)= f (t, r, θ,φ), ∂μ

(
∂μα − Aμ

)= g(t, r, θ,φ), (6.60)(
∂μα − Aμ

)
∂μξ = p(t, r, θ,φ),

(
∂μα − Aμ

)
∂μχ = q(t, r, θ,φ).

Recall that, the quantity ∂μα − Aμ is gauge invariant.

6.3.1. Free-force conditions
Due to gauge invariance, we can introduce the new gauge field Ãμ = Aμ − ∂μα. Imposing the 

conditions

f (t, r, θ,φ) = g(t, r, θ,φ) = p(t, r, θ,φ) = q(t, r, θ,φ) = 0 and Ãν∂νÃμ = 0, (6.61)

the so called free-force conditions are satisfied [27], namely

F̃μνJ
ν = 0, J̃ ν = ∇ρF̃ ρν, (6.62)
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where F̃μν is the field-strength of Ãμ. The wave equations become

∂μ∂μχ

[
1 + b2λ∂νξ∂νξ cos2

(
bχ

2

)]
+ b sin(bχ)

(
1 − b2λ

4
∂μχ∂μχ

)
∂νξ∂νξ

− b2λ
{

cos2
(

bχ

2

)
∂μ∂μξ∂νξ∂νχ

+ cos2
(

bχ

2

)[
∂μξ∂μ

(
∂νξ∂νχ

)− ∂μχ∂μ
(
∂νξ∂νξ

)]}

+ b3λ

4
sin(bχ)

(
∂μξ∂μχ

)2 = 0, (6.63)

4b cos

(
bχ

2

)
∂μχ∂μξ − 4 sin

(
bχ

2

){
∂μ∂μξ

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂νξ + ∂μχ∂μ

(
∂νχ∂νξ

)− ∂μξ∂μ
(
∂νχ∂νχ

)]}= 0, (6.64)

4b sin

(
bχ

2

)
∂μχ∂μξ − 4 cos

(
bχ

2

){
∂μ∂μξ

[
1 + b2λ

4
∂νχ∂νχ

]

− b2λ

4

[
∂μ∂μχ∂νχ∂νξ + ∂μχ∂μ

(
∂νχ∂νξ

)− ∂μξ∂μ
(
∂νχ∂νχ

)]}= 0. (6.65)

The last two equations imply that

∂μχ∂μξ = 0, (6.66)

so

∂μ∂μξ

[
1 + b2λ

4
∂νχ∂νχ

]
= 0 (6.67)

gives ∂μ∂μξ = 0. With these solutions, the Eq. (6.63) takes the simpler form

∂μ∂μχ

[
1 + b2λ∂νξ∂νξ cos2

(
bχ

2

)]
+ b sin(bχ)

(
1 − b2λ

4
∂μχ∂μχ

)
∂νξ∂νξ = 0.

(6.68)

We can also apply them to the Maxwell equations

∂ν∂
νAμ − ∂μ

(
∂ν∂

να
)+ K

2
‖c‖2 (∂μα − Aμ

)[
8 sin2

(
bχ

2

)(
1 + b2λ

4
∂νχ∂νχ

)
(6.69)

+ 2b2λ sin2(bχ)∂νξ∂νξ
]

= 0.

In particular, the energy density is

ρE = 4K‖c‖2
{[

Ã2
t sin2

(
bχ

2

)
+ (∂t ξ)2 cos2

(
bχ

2

)](
1 − b2λ

4
∂ρχ∂ρχ

)

+ b2λ

4
Ã2

t ∂ρξ∂ρξ sin2(bχ) (6.70)

+
[

1 − b2λ∂ρξ∂ρξ cos2
(

bχ
)]

(∂tχ)2
2 4
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− gtt

2
∂ρξ∂ρξ cos2

(
bχ

2

)(
1 + b2λ

4
∂σ χ∂σ χ

)
− gtt

8
∂ρχ∂ρχ

}

6.4. Example: Lasagna, again

We can use the results of this section in order to study the behavior of Lasagna when coupled 
to the U(1) gauge field. To simplify the results, we use the free-force conditions(

∂μα − Aμ

) (
∂μα − Aμ

)= 0, ∂μ

(
∂μα − Aμ

)= 0,(
∂μα − Aμ

)
∂μξ = 0,

(
∂μα − Aμ

)
∂μχ = 0, (6.71)

and for the gauge field we make the ansatz

Aμ = (At(r),0,Aγ (r),Aφ(r)
)
. (6.72)

If we simply shift the gauge field, we can write

ÃμÃμ = 0, ∂μÃμ = 0, Ãμ∂μξ = 0, Ãμ∂μχ = 0. (6.73)

These conditions are easily solved by using (5.20) (which also apply to Ãμ) together with (6.72). 

This leads to the solution Ãt = − Ãφ

Lφ
and Ãγ = 0 (Aγ = m

2 ); so, only one gauge field results to be 

independent, for instance we can take Ãφ . Thus, the wave equations and the Maxwell equation 
become

χ ′′

L2
r

[
1 + b2λ

4L2
γ

cos2
(

bχ

2

)]
+ b

4L2
γ

sin(bχ)

(
1 − b2λ

4L2
r

χ ′2
)

= 0, (6.74)

Ã′′
φ

L2
r

+ K

2
‖c‖2Ãφ

[
8 sin2

(
bχ

2

)(
1 + b2λ

4L2
r

χ ′2
)

+ b2λ

2L2
γ

sin2(bχ)
]

= 0. (6.75)

The first equation can be rewritten as

d

dr

{
χ ′2

2L2
r

[
1 + b2λ

4L2
γ

cos2
(

bχ

2

)]
− 1

2L2
γ

cos2
(

bχ

2

)}
= 0, (6.76)

so that

χ ′2(r) = L2
r

M + 1
2L2

γ
cos2
(

bχ
2

)
1 + b2λ

4L2
γ

cos2
(

bχ
2

) , (6.77)

where M is an integration constant. This determines the boundary values of χ ′ from the ones 
of χ

χ ′2(0) = L2
r

M + 1
2L2

γ

1 + b2λ
4L2

γ

, (6.78)

χ ′2(2π) = L2
rM. (6.79)

Vice versa, we can write M in terms of χ ′(0)
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M = χ ′2(0)

L2
r

(
1 + b2λ

4L2
γ

)
− 1

2L2
γ

, (6.80)

so that

χ ′2(2π) = χ ′2(0)

(
1 + b2λ

4L2
γ

)
− L2

r

2L2
γ

. (6.81)

We can put this result into the Maxwell equations, getting

Ã′′
φ

L2
r

+ K

2
‖c‖2Ãφ sin2

(
bχ

2

)
VM(χ) = 0, (6.82)

where

VM(χ) = 8

[
1 + b2λ

4L2
γ

cos2
(

bχ

2

)]
+ 2b2λ

M + 1
2L2

γ
cos2
(

bχ
2

)
1 + b2λ

4L2
γ

cos2
(

bχ
2

) . (6.83)

From (6.78) we can locally write r in terms of χ as

r(χ) = ± 1

Lr

χ∫
0

√√√√√√ 1 + b2λ
4L2

γ
cos2
(

bχ̂
2

)
M + 1

2L2
γ

cos2
(

bχ̂
2

)dχ̂, (6.84)

which leads to a definition of Ãφ in terms of χ , let us call B(χ) = Ãφ(r(χ)). This way, equation 
(6.82) can be entirely written in terms of χ

B ′′(χ) − b2λ

16L2
γ

B ′(χ) sin(bχ)
1 − M̂ + D1(χ)

D1(χ)D
M̂

(χ)

+ K‖c‖2b2λB(χ) sin2
(

bχ

2

)
2D2

1(χ) + D
M̂

(χ)

D
M̂

(χ)
= 0, (6.85)

where a prime indicates derivative with respect to χ , and the following quantities have been 
introduced

M̂ = M
b2λ

2
, Da = a + b2λ

4L2
γ

cos2
(

bχ

2

)
. (6.86)

Replacing

B(χ) = C(χ) exp

χ∫
0

b2λ

32L2
γ

sin(bχ̂)
1 − M̂ + D1(χ̂)

D1(χ̂)D
M̂

(χ̂)
dχ̂, (6.87)

in (6.85), we get

C′′(χ) + W
M̂

(χ)C(χ) = 0, (6.88)

with
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W
M̂

(χ) = b2λ

32L2
γ

[
cos(bχ)

1 − M̂ + D1(χ̂)

D1(χ̂)D
M̂

(χ̂)

+ bλ

8L2
γ

sin2(bχ)
1

D2
M̂

(
1 + 1 − M̂

D1

)(
b + 1 + 1 − M̂

D1

)]

+ K‖c‖2b2λ sin2
(

bχ

2

)
2D2

1(χ) + D
M̂

(χ)

D
M̂

(χ)
. (6.89)

We can use

1

Da

= 1

a

∞∑
n=0

[
− b2λ

4aL2
γ

cos2
(

bχ

2

)]n

, (6.90)

and

cos2n(x) = 2−2n

{
(2n)!
(n!)2 + 2

n−1∑
s=0

(
2n

s

)
cos [2(n − s)x]

}
. (6.91)

to rewrite the potential (6.89) in series of cos(kbχ), where k runs on all integers, and recognize 
(6.88) as a Hill equation. Notice that putting

x = bχ/2, (6.92)

we have that x must vary in the interval [0, π/2]. Also, we have seen that for the Lasagna states 
such interval must be one quarter of the period over the cycle, which means that the solution 
we are looking for must be periodic with period 2π as a function of x. Therefore, it is worth 
mentioning the following result [44] (see also [50]):

Proposition 5. Let y1(x) and y2(x) be the solutions of the Hill equation

y′′ + f (x)y = 0, (6.93)

where f (x) is an even function of the form

f (x) = 2
∞∑

n=1

fn cos(2nx),

∞∑
n=1

|fn| < ∞, (6.94)

with Cauchy conditions

y1(0) =1, y′
1(0) = 0, (6.95)

y2(0) =0, y′
2(0) = 0. (6.96)

Then, equation (6.93) has:

1. an even solution of period π if and only if y′
1(π/2) = 0;

2. an odd solution of period π if and only if y2(π/2) = 0;
3. an even solution of period 2π if and only if y1(π/2) = 0;
4. an odd solution of period 2π if and only if y′ (π/2) = 0.
2
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Now, the boundary conditions for our Hill equation (6.82) are

Ãφ(0) = − m, (6.97)

Ãφ(2π) =0. (6.98)

Therefore, if we call y(j), j = 1, . . . , 4 the solutions corresponding to the four points of the above 
proposition, if they exist, we get that the solutions of interest for us have the general form

Ãφ(r) = B(χ) = −my(3)(x) + κy(2)(x), (6.99)

for κ an arbitrary constant. The question on the existence of such solutions is investigated in [44]. 
For example, the existence of solution y(2) is granted if and only if ω takes values for which the 
determinant of the infinite dimensional matrix

Mab = δab + fa−b − fa+b

ω2 − a2 , a, b = 1,2,3, . . . , (6.100)

vanishes.4 However, for any practical purposes, such a way is impracticable for looking for 
explicit solutions in this very general case. Therefore, in place of pursuing this very general 
analysis, we move now to a particular but more tractable case.

6.4.1. Linear solution of the Skyrme equations
In the particular case when M = 2

b2λ
, we can find a very simple solution:

χ ′2(r) = 2L2
r

b2λ
⇒ χ(r) = ±

√
2L2

r

b2λ
r, (6.101)

paying the price of fixing L
2
r

λ
(which corresponds to M̂ = 1). Indeed, the boundary conditions on 

χ give χ2(2π) = 2L2
r

b2λ
4π2 = π2

b2 . The Maxwell equation takes the form

Ã′′
φ

L2
r

+ K‖c‖2Ãφ

[(
3 + b2λ

8L2
γ

)
− 3 cos

( r

2

)
− b2λ

8L2
γ

cos r

]
= 0, (6.102)

which is a Whittaker-Hill equation [51,45], see also [52]. It is convenient to introduce the variable 
change r̂ = r

4 , so r̂ has range 0 ≤ r̂ ≤ π
2 . This way, equation (6.102) takes the canonical form

B̃ ′′
φ + 16KL2

r‖c‖2

[(
3 + b2λ

8L2
γ

)
− 3 cos

(
2r̂
)− b2λ

8L2
γ

cos(4r̂)

]
B̃φ = 0. (6.103)

We can therefore determine the solutions y(2) and y(3), following [45]. Using the same notations 
of that paper, we can identify

ω =4
√

KλLr‖c‖ b

Lγ

, (6.104)

η =48KL2
r‖c‖2, (6.105)

ρ = − 12

√
K

λ
LrLγ

‖c‖
b

. (6.106)

4 We use the notation fa−b = 0 if a − b ≤ 0.
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In particular, η = −ωρ. For the function φ(3) we have to take (see [45])

φ(3)(x) = Re
[
e− i

2 ω cos(2x)ψ(3)(x)
]
, (6.107)

where

ψ(3)(x) =
∞∑

n=0

AnBn cos((2n + 1)x), (6.108)

with

A0 = 1, An =
n∏

j=1

(ρ + 2ji), j > 0, (6.109)

and Bn solves the recursion relations

(2 − η)B0 − 1

ω
(η2 + 4ω2)B1 =0, (6.110)

−ωBn + 2[(2n + 1)2 − η]Bn+1 − 1

ω
[η2 + 4(n + 1)2]Bn+2 =0, n ≥ 1. (6.111)

To find the periodic solution of period 2π , ω and η must be constrained by the following trascen-
dental equation, expressed in terms of a continued fraction (see [45], formula (5.1))

1 − 1

2
η =

1
4 (η2 + 4ω2)

9 − η−
1
4 (η2 + 16ω2)

25 − η−
1
4 (η2 + 36ω2)

49 − η− · · · , (6.112)

which then gives the solution

Bn

Bn−1
=

1
2ω

(2n + 1)2 − η

1
4 [η2 + 4(n + 1)2ω2]

(2n + 3)2 − η− · · ·
1
4 [η2 + 4(n + s − 1)2ω2]
(2n + 2s − 1)2 − η− · · · , n ≥ 1.

(6.113)

Finally, B0 is fixed by the condition φ(3)(0) = 1.
As what concerns the solution κφ(2)(x), we have to consider

κφ(2)(x) = Re
[
e− i

2 ω cos(2x)ψ(2)(x)
]
, (6.114)

where

ψ(2)(x) =
∞∑

n=1

CnDn sin(2nx), (6.115)

with

C1 = 1, Cn =
n−1∏
j=1

(ρ + (2j + 1)i), j > 1, (6.116)

and Dn solves the recursion relations

(4 − η)D1 − 1

2ω
(η2 + 9ω2)D2 =0, (6.117)

−ωDn−1 + 2[4n2 − η]Dn − 1

ω
[η2 + (2n + 1)2]Dn+1 =0, n > 2. (6.118)
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To find the periodic solution of period π , ω and η must be constrained by the following trascen-
dental equation, expressed in terms of a continued fraction (see [45], formula (5.3))

4 − η =
1
4 (η2 + 9ω2)

16 − η−
1
4 (η2 + 25ω2)

36 − η−
1
4 (η2 + 49ω2)

64 − η− · · · , (6.119)

which then gives the solution

Dn

Dn−1
=

1
2ω

4n2 − η

1
4 [η2 + (2n + 1)2ω2]

4(n + 1)2 − η− · · ·
1
4 [η2 + (2n + 2s − 1)2ω2]

4(n + s − 1)2 − η− · · · , n ≥ 2.

(6.120)

Since κ is arbitrary, no normalization is required for D1. However, notice that κφ(2)(x) can be 
considered only if equation (6.119) has common solutions with (6.112).

6.5. Example: Spaghetti states coupled to an electromagnetic field

In the case of Spaghetti, we do not use a parameterization of Euler type but the exponential 
parameterization of Section 3. Still, the analysis can be easily extended to this case. Following 
[53], the gauge field is described by

Aa
μTa = AμT3. (6.121)

Also in this case, the free-force conditions decouples the Skyrme equations from the Maxwell 
field. In particular, we take

AμAμ = 0, ∂μAμ = 0 Aμ∂μ� = 0, Aμ∂μ� = 0. (6.122)

A reasonable explicit form of a gauge field with these properties is given by

Aμ(t, r, θ,φ) = (At (r, θ),0,0,−LφAt(r, θ)). (6.123)

From (6.121) we see that the equations of motion for the Skyrme field are

Dμ

(
L̂μ + λ

4
Ĝμ

)
= 0, (6.124)

where L̂μ is given by (6.4) with T = T3, and

Ĝμ =
[
L̂ν,
[
L̂μ, L̂ν

]]
. (6.125)

Conditions (6.122) lead to

∂μ

(
Lμ + λ

4
Gμ

)
= 0, (6.126)

which are the uncoupled Skyrme equations. Notice that from (3.18) we get

d

dr

[
2χ ′2 (λq2 sin2

(χ

2

)
+ L2

θ

)
+ 4q2L2

r cosχ
]

= 0, (6.127)

which means that

2χ ′2 (λq2 sin2
(χ

2

)
+ L2

θ

)
+ 4q2L2

r cosχ = 2Z, (6.128)
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where Z is a constant, which is equivalent to

χ ′2(r) = Z − 2q2L2
r + 4q2L2

r sin2 (χ
2

)
L2

θ + λq2 sin2 (χ
2

) . (6.129)

The Maxwell equations for Aφ = −LφAt are

1

L2
r

∂2
r Aφ + 1

L2
θ

∂2
θ Aφ

+ 2KIG,ρ sin2(qθ) sin2
(χ

2

)(
Aφ − p

L2
φ

)[
1 + χ ′2

L2
r

+ 4q2

L2
θ

sin2
(χ

2

)]
= 0. (6.130)

This is a stationary Schrödinger equation with a double periodic potential of finite type. In par-
ticular, here one is interested in the zero eigenvalue case. Both the direct and inverse problem 
for this kind of equation is well studied and much more involuted than the one dimensional case 
(already highly non-trivial). Here we simply defer the reader to the literature (see [54] and refer-
ence therein), and limit ourselves to discuss the boundary conditions.
As we discussed in the previous sections, the boundary conditions on Aμ are outlined by the 
behavior of the Skyrme field in the edges of the box, namely (once again, we fix t = 0)

U(0, θ,φ) = 1, (6.131)

U(2π, θ,φ) = e2πτ1 , (6.132)

U(r,0, φ) = eχT3, (6.133)

U(r,π,φ) = eχT3 . (6.134)

This requires the following constraints

Aφ(0, θ) = Aφ(r,0) = Aφ(r,π) = 0. (6.135)

The contribution of the gauge field to the Baryonic density can be always computed from (6.43). 
This gives

ρ̂B = ρB + 3∂θ

[
AφTr

(
Lr

(
T3 + U−1T3U

))]
− 3∂r

[
AφTr

(
Lθ

(
T3 + U−1T3U

))]
,

(6.136)

where Lr and Lθ are specified in (3.9) and (3.16). We easily find

U−1T3U = T3 + sin(qθ)τ2 − sin(qθ) cosχτ2 + sin(qθ) sinχτ3. (6.137)

This leads to

Tr(LθT3) = Tr(LθU
−1T3U) = IG,ρq sinχ sin(qθ), (6.138)

Tr(LrT3) = Tr(LrU
−1T3U) = −IG,ρχ ′ cos(qθ). (6.139)

Thus, we can check that the contribution to the Baryon charge becomes

B̂ = B + IG,ρ

4π

2π∫
0

(
Aφ(r,π) + Aφ(r,0)

)
χ ′dr = B, (6.140)

according to the boundary conditions specified above, and the general results following Proposi-
tion 4.
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Appendix A. Roots of simple algebras

Here we list the roots of all simple algebras.

A.1. ANANAN

The corresponding complex algebra is sl(N + 1), while the compact form is su(N + 1). If ea , 
a = 1, . . . , N + 1, is the canonical basis5 of RN+1, then the real linear space generated by the 
roots is isomorphic to a hyperplane in RN+1 in which all non-vanishing roots are represented by 
the vectors αj,k = ej − ek , j �= k. The simple roots are αj = ej − ej+1, j = 1, . . . , N . If λj are 
the root matrices corresponding to the simple roots, then

[λj ,λk] = 0 if j − k �= ±1. (A.1)

The split subalgebra is so(N + 1).

A.2. BNBNBN

The corresponding compact form is so(2N + 1). The real linear space generated by the roots 
is isomorphic to RN . If ea , a = 1, . . . , N , is the canonical basis of RN , then all non-vanishing 
roots are represented by the vectors ej − ek , j �= k, ±(ej + ek), j < k, ±ej . The simple roots are 
αj = ej − ej+1, j = 1, . . . , N − 1 and αN = eN . If λj are the root matrices corresponding to the 
simple roots, then

[λj ,λk] = 0 if j − k �= ±1. (A.2)

The split subalgebra is so(N) ⊕ so(N + 1).

5 In the literature, the canonical basis ea is also commonly denoted as La .
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A.3. CNCNCN

The corresponding compact form is usp(2N), the compact symplectic algebra. The real linear 
space generated by the roots is isomorphic to RN . If ea , a = 1, . . . , N , is the canonical basis of 
RN , then all non-vanishing roots are represented by the vectors ej −ek , j �= k, ±(ej +ek), j < k, 
±2ej . The simple roots are αj = ej − ej+1, j = 1, . . . , N − 1 and αN = 2eN . If λj are the root 
matrices corresponding to the simple roots, then

[λj ,λk] = 0 if j − k �= ±1. (A.3)

The split subalgebra is u(N).

A.4. DNDNDN

The corresponding compact form is so(2N). The real linear space generated by the roots is 
isomorphic to RN . If ea , a = 1, . . . , N , is the canonical basis of RN , then all non-vanishing 
roots are represented by the vectors ej − ek , j �= k, ±(ej + ek), j < k. The simple roots are 
αj = ej −ej+1, j = 1, . . . , N −1 and αN = eN−1 +eN . If λj are the root matrices corresponding 
to the simple roots, the relevant non-vanishing commutators are

[λj ,λj+1] j = 1, . . . ,N − 2, [λN−2, λN ]. (A.4)

The split subalgebra is so(N) ⊕ so(N).

A.5. G2G2G2

The corresponding compact form is g2. The real linear space generated by the roots is isomor-
phic to a hyperplane in R3. If ea , a = 1, . . . , 3, is the canonical basis of R3, then all non-vanishing 
roots are represented by the vectors ej − ek , j �= k, and ±(e1 + e2 + e3 − 3es), s=1,2,3. The sim-
ple roots are α1 = e2 −e3 and α2 = e1 −2e2 +e3. If λj are the root matrices corresponding to the 
simple roots, the relevant non-vanishing commutator is [λ1, λ2]. The split subalgebra is so(4).

A.6. F4F4F4

The corresponding compact form is f4. The real linear space generated by the roots is iso-
morphic to R4. If ea , a = 1, . . . , 4, is the canonical basis of R4, then all non-vanishing roots are 
represented by the vectors ej − ek , j �= k, ±(ej + ek), j < k, ±ej , 1

2 (±e1 ± e2 ± e3 ± e4). The 
simple roots are α1 = e2 − e3, α1 = e3 − e4, α3 = e4, and α4 = 1

2 (e1 − e2 − e3 − e4). If λj are 
the root matrices corresponding to the simple roots, the relevant non-vanishing commutators are

[λj ,λj+1]. (A.5)

The split subalgebra is usp(6) ⊕ usp(2).

A.7. E6E6E6

The corresponding compact form is e6. The real linear space generated by the roots is iso-
morphic to R6. If ea , a = 1, . . . , 6, is the canonical basis of R6, then all non-vanishing roots are 
represented by the vectors ±(ej − ek), j < k < 6, ±(ej + ek), j < k < 6,
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±1

2
{±e1 ± e2 ± e3 ± e4 ± e5 + √

6 e6},
where in the parenthesis only an even number of minus signs can appear. The simple roots are

α1 = 1

2
{e1 − e2 − e3 − e4 − e5 + √

6 e6}, α2 = e1 + e2, αk = ek−1 − ek−2,

k = 3, . . . ,6.

If λj are the root matrices corresponding to the simple roots, the relevant non-vanishing commu-
tators are

[λj ,λj+1], j �= 1,2, [λ1, λ3], [λ2, λ4]. (A.6)

The split subalgebra is usp(8).

A.8. E7E7E7

The corresponding compact form is e7. The real linear space generated by the roots is iso-
morphic to R7. If ea , a = 1, . . . , 7, is the canonical basis of R7, then all non-vanishing roots are 
represented by the vectors ±(ej − ek), j < k < 7, ±(ej + ek), j < k < 7, ±√

2 e7,

±1

2
{±e1 ± e2 ± e3 ± e4 ± e5 ± e6 + √

2 e7},
where in the parenthesis only an odd number of minus signs can appear. The simple roots are

α1 = 1

2
{e1 − e2 − e3 − e4 − e5 − e6 + √

2 e7}, α2 = e1 + e2, αk = ek−1 − ek−2,

k = 3, . . . ,7.

If λj are the root matrices corresponding to the simple roots, the relevant non-vanishing commu-
tators are

[λj ,λj+1], j �= 1,2, [λ1, λ3], [λ2, λ4]. (A.7)

The split subalgebra is su(8).

A.9. E8E8E8

The corresponding compact form is e8. The real linear space generated by the roots is iso-
morphic to R8. If ea , a = 1, . . . , 8, is the canonical basis of R8, then all non-vanishing roots are 
represented by the vectors ±(ej − ek), j < k, ±(ej + ek), j < k,

1

2
{±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8},

where in the parenthesis all signs can appear. The simple roots are

α1 = 1

2
{e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8}, α2 = e1 + e2, αk = ek−1 − ek−2,

k = 3, . . . ,8.

If λj are the root matrices corresponding to the simple roots, the relevant non-vanishing commu-
tators are
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[λj ,λj+1], j �= 1,2, [λ1, λ3], [λ2, λ4]. (A.8)

The split subalgebra is so(16).

A.10. Resuming

In conclusion, we see that the commutators we need are strictly related to the Dynkin diagram 
of the algebra: a commutator between eigenmatrices of two simple roots is non zero only if the 
roots are linked, that is if the scalar product is not zero. This is simply related to the fact that, with 
obvious notation, the commutators [λαi

, λαj
] or is an eigenmatrix for αi + αj , or it vanishes. We 

also recall here some very well known facts. The fact that Dynkin diagrams have no loops allows 
to choose the normalization of the matrices λj so that

[λαj
, λαk

] = sign(k − j)(δjk(αj |αj ) − (αj |αk))λαj +αk
(A.9)

t.i. [λαj
, λαk

] = −(αj |αk)λαj +αk
if j < k and with the opposite sign if we change j and k. Here 

(|) is the scalar product in the space of roots. Notice that also

[λ̃αj
, λ̃αk

] = sign(k − j)(δjk(αj |αj ) − (αj |αk))λ̃αj +αk
. (A.10)

Remember that the trace product is proportional to the Killing product and that the only non-
Killing orthogonal root spaces are the ones corresponding to opposite roots. This allows to fix a 
global normalization so that

Tr(λ̃j λk) = −δjk. (A.11)

We also have, for the simple roots αj ,

[λ̃j , λk] = −iδjkJj , (A.12)

where Jj are in a Cartan algebra. From the fact that the simple roots are linearly independent, 
it easily follows that the Jj , j = 1, . . . , r , are a basis for the Cartan subalgebra. This is also 
sufficient to fix the scalar product in the space of roots so that

(αj |αk) = αj (Jk), (A.13)

if the roots are defined as

[h,λj ] = iαj (h)λj , (A.14)

for any h ∈ H . In particular, using ad invariance of the trace product we get

Tr(JjJk) = iTr([λ̃j , λj ]Jk) = iTr(λ̃j [λj , Jk]) = αj (Jk)Tr(λ̃j λj ),

so that

Tr(JjJk) = −(αj |αk). (A.15)

Finally, recall that any given simple Lie algebra is characterized by the r × r Cartan matrix

CG
jk = 2

(αj |αk)

(αj |αj )
. (A.16)

With this we can rewrite the normalization conditions as
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Tr(λ̃j λk) = −δjk, (A.17)

Tr(JjJk) = −CG
jk

(αj |αj )

2
. (A.18)

The Cartan matrices of simple Lie groups can be found, for example, in [55], Table 6.

Appendix B. A proposition

Proposition 6. Let κ =∑r
j=1(cjλj + c∗

j λ̃j ), and h ∈ H a matrix such that αj (h) = εja, where 

εj is a sign, j = 1, . . . , r , and set x := e−hzκehz, z ∈ R. Then

Trκ2 = −2‖c‖2, (B.1)

Tr([h,κ][h,κ]) = Tr([h,x][h,x]) = −2a2‖c‖2, (B.2)

and

Tr([x, κ][x, κ])

= −4 sin2(az)

⎛
⎝ r∑

j=1

‖αj‖2|cj |4 +
∑
j<k

|cj |2|ck|2(αj |αk)[2εj εk + (αj |αk)(1 − εj εk)]
⎞
⎠ .

(B.3)

Proof. Let us start with

Trκ2 =
r∑

j=1

r∑
k=1

{cj ckTr(λjλk) + c∗
j c

∗
kTr(λ̃j λ̃k) + c∗

j ckTr(λ̃j λk) + cj c
∗
kTr(λj λ̃k)}

=
r∑

j=1

r∑
k=1

{c∗
j ck(−δjk) + cj c

∗
k (−δjk)} = −2

r∑
j=1

|cj |2, (B.4)

where we used the normalization in the previous section. This proves (B.1).
For (B.2), we first note that

[h,x] = [h, e−hzκehz] = e−hz[h,κ]ehz. (B.5)

Thus,

Tr([h,x][h,x]) = Tr(e−hz[h,κ][h,κ]ehz) = Tr([h,κ][h,κ]). (B.6)

Now, we can use

[h,κ] =
r∑

j=1

(cj [h,λj ] + c∗
j [h, λ̃j ]) = i

r∑
j=1

αj (h)(cjλj − c∗
j λ̃j ). (B.7)

to get

Tr([h,κ][h,κ]) = −Tr

⎛
⎝ r∑

j=1

(iαj (h)λj cj − iαj (h)c∗
j λ̃j )

r∑
k=1

(iαk(h)λkck − iαk(h)c∗
k λ̃k)

⎞
⎠

= −2
r∑

j=1

αj (h)2cj c
∗
j = −2a2‖c‖2, (B.8)
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where we used that αj (h
′)2 = (εj a)2 = a2, and that the only non-vanishing traces are 

Tr(λ̃mλn) = −δmn. This proves (B.2).
For (B.3), we use that

x =
r∑

j=1

(cj e
−hzλj e

hz + cj e
−hzλ̃j e

hz) =
r∑

j=1

(cj e
−αj (h)zλj + c∗

j e
αj (h)zλ̃j )

=
r∑

j=1

(cj e
−iεj azλj + c∗

j e
iεj azλ̃j ). (B.9)

Therefore,

[x, κ] =
∑
j,k

(
cj cke

−iεj az[λj ,λk] + c∗
j c

∗
ke

iεj az[λ̃j , λ̃k] + cj c
∗
ke

−iεj az[λj , λ̃k]

+ c∗
j cke

iεj az[λ̃j , λk]
)
. (B.10)

Using (A.9), (A.10) and (A.12), it can be rewritten as

[x, κ] = −
∑
j<k

(
cj ck(αj |αk)(e

−iεj az − e−iεkaz)λαj +αk

+ c∗
j c

∗
k (αj |αk)(e

iεj az − eiεkaz)λ̃αj +αk

)

− i

r∑
j=1

|cj |2(e−iεj az − eiεj az)Jj

= −
∑
j<k

(
cj ck(αj |αk)(e

−iεj az − e−iεkaz)λαj +αk

+ c∗
j c

∗
k (αj |αk)(e

iεj az − eiεkaz)λ̃αj +αk

)

− 2
r∑

j=1

|cj |2 sin(εj az)Jj . (B.11)

With our normalization for the scalar products we get

Tr([x, κ][x, κ]) = − 2
∑
j<k

|cj |2|ck|2|(αj |αk)|2
∣∣∣e−iεj az − e−iεkaz

∣∣∣2

− 4
r∑

j=1

|cj |4‖αj‖2 sin2(εj az)

− 8
∑
j<k

|cj |2|ck|2(αj |αk) sin(εj ar) sin(εkaz). (B.12)

Next, we use∣∣∣e−iεj az − e−iεkaz
∣∣∣2 = 4 sin2

(
az

εj − εk

2

)
= 2 sin2(az)(1 − εj εk), (B.13)

where we used that (εj − εk)/2 = 0, ±1. Finally, using
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sin(εj az) sin(εkaz) = sin2(az)εj εk, (B.14)

we get (B.3). �
Appendix C. Connection between Lasagna and Spaghetti

It is interesting to compare the results obtained from Lasagna and Spaghetti parameterization. 
We can do this by determining the relation between the two parameterizations via de identifica-
tion

U ≡ eχ(sin� cos�T1+sin� sin�T2+cos�T3) = e�(χ,�,�)T1eH(χ,�,�)T3e�(χ,�,�)T1 . (C.1)

A priori one could expect this parameterization to be dependent on the representation the Tj are 
belonging to, since of course the exponentials do. Nevertheless, in both cases the left invariant 
current Lμ = U−1∂μU for fixed coordinates is independent on the representation but depends 
only on the normalizations. If we normalize the matrices as in the previous sections, after writing 
U−1dU |Exp = U−1dU |Eul we get the differential equation relating the exponential coordinates 
to the Euler ones. These are easily obtained, but writing them is not helpful since it would be 
quite difficult to solve them by brute force. Instead, we can find a solution without knowing 
them. The shown independence on the representation suggests to write down (C.1) in the lowest 
representation. This is achieved by choosing

T1 = 1

2

(
0 i

i 0

)
, T2 = 1

2

(
0 −1
1 0

)
, T3 = 1

2

(
i 0
0 −i

)
. (C.2)

With this choice (C.1) becomes

cos
χ

2
I2 + 2 sin

χ

2
sin� cos� T1 + 2 sin

χ

2
sin� sin� T2 + 2 sin

χ

2
cos� T3

= cos
H

2
cos

� + �

2
I2 + 2 cos

H

2
sin

� + �

2
T1 + 2 sin

H

2
sin

� − �

2
T2

+ 2 sin
H

2
cos

� − �

2
T3. (C.3)

This gives

H = 2 arcsin(sin
χ

2

√
1 + sin2 �), (C.4)

� + � = 2 arctan(tan
χ

2
sin� cos�), (C.5)

� − � = 2 arctan(tan� sin�), (C.6)

and the inverse

χ = 2 arccos(cos
H

2
cos

� + �

2
), (C.7)

� = arctan

⎛
⎝tan

� − �

2

√√√√1 + 1

tan2 H
2

sin2 �+�
2

sin2 �−�
2

⎞
⎠ , (C.8)

� = arctan

(
tan

H

2

sin �−�
2

sin �+�
2

)
. (C.9)
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For example, the Lasagna solutions have the form

� = t

Lφ

− φ, (C.10)

H = ar, (C.11)

� = mθ, (C.12)

so that in the exponential form they take the very complicated form

χ(t, r, θ,φ) = 2 arccos

(
cos

ar

2
cos

t − Lφ(φ − θ)

2Lφ

)
, (C.13)

�(t, r, θ,φ) = arctan

⎛
⎜⎝tan

t − Lφ(φ + θ)

2Lφ

√√√√√1 + 1

tan2 ar
2

sin2 t−Lφ(φ−θ)

2Lφ

sin2 t−Lφ(φ+θ)

2Lφ

⎞
⎟⎠ , (C.14)

�(t, r, θ,φ) = arctan

⎛
⎝tan

ar

2

sin t−Lφ(φ+θ)

2Lφ

sin t−Lφ(φ−θ)

2Lφ

⎞
⎠ . (C.15)

Appendix D. Some technical details about G2

There are different ways of constructing a convenient basis for the Lie algebra of G2. We will 
refer to [56]. In that notation a basis is CJ , J = 1, . . . , 14. The only maximal regular subgroup is 
SO(4) generated by CL, L = 1, 2, 3, 8, 9, 10. The remaining matrices generate p. A convenient 
Cartan subspace is thus

H = 〈C5,C11〉R. (D.1)

As a basis, we take h1 = C11 and h2 = C5. One can easily diagonalize the action of ad(H). If 
we set

λ1 ≡ k1 + ip1 = 1

4
√

2
(
√

3C3 − C8) + i
1

2
√

2
C12, (D.2)

λ2 ≡ k2 + ip2 = 1

8
(C1 + C2 − √

3C9 − √
3C10) + i

1

8
(C6 + C7 + √

3C13 − √
3C14),

(D.3)

then, they satisfy Tr(λi λ̃j ) = −δij and

[h1, λ1] = i
2√
3
λ1, [h2, λ1] = 0, (D.4)

[h1, λ2] = −i
√

3λ2, [h2, λ2] = iλ2. (D.5)

To keep contact with our conventions we have to redefine the basis for H as J1 and J2, defined 
by (notice that λ̃j is simply the complex conjugate of λj )

J1 = −i[λ̃1, λ1] = − 1

2
√

3
C11, (D.6)

J2 = −i[λ̃2, λ2] =
√

3

4
C11 − 1

4
C5. (D.7)
49



S.L. Cacciatori, F. Canfora, M. Lagos et al. Nuclear Physics B 976 (2022) 115693
This gives us the geometry of roots, so that

(α1|α1) = −Tr(J1J1) = 1

3
, (D.8)

(α2|α2) = −Tr(J2J2) = 1, (D.9)

(α1|α2) = −Tr(J1J2) = −1

2
. (D.10)

We can represent this vectors in the canonical euclidean R2 as the vectors

α1 ≡
(

1√
3
,0

)
, α2 ≡

(
−

√
3

2
,

1

2

)
. (D.11)

The corresponding Cartan matrix is

CG =
(

2 −3
−1 2

)
, (D.12)

with inverse

(CG)−1 =
(

2 3
1 2

)
. (D.13)

It is also useful to determine the basis for all eigenspaces, in a convenient way, normalized so 
that Tr(λ̃αλα) = −1 for any root. After setting

α3 = α1 + α2, α4 = 2α1 + α2, α5 = 3α1 + α2, α6 = 3α1 + 2α2, (D.14)

we can state the following proposition.

Proposition 7. A suitable choice of the eigenmatrices associated to the roots αj , j = 3, 4, 5, 6, 
is given by

λ3 = √
2[λ1, λ2], λ4 =

√
3

2
[λ1, λ3], λ5 = √

2[λ1, λ4], λ6 = √
2[λ3, λ4]. (D.15)

Moreover, λ̃j is the complex conjugate of λj .

Proof. We know from the general theory that if λa and λb are eigenmatrices of the roots αa

and αb respectively, and if αa + αb is also root, than the eigenmatrices of αa + αb have the 
form μ[λa, λb] for any given constant μ. Since λ1 and λ2 are eigenmatrices for the fundamental 
roots α1 and α2, we have that the matrices λj specified above are surely eigenmatrices for the 
corresponding roots αj , j = 3, 4, 5, 6. We have only to explain the choices of the constant factors. 
These are chosen to be real and such that Tr(λj λ̃j ) = −1. To prove it, first notice that necessarily 
[λ̃i , ̃λj ] are eigenmatrices for −αi − αj , so we can identify λ̃3 = √

2[λ̃1, ̃λ2] and so on. The 
last part of the proposition then follows from the fact that it is true for λ1 and λ2 and that all 
the coefficient we chosen for defining the remaining λj is real. Then, using ad-invariance of 
the trace product, that is Tr([A, B]C) =Tr(A, [B, C]), and the Jacobi identity [A, [B, C]] =
[[A, B], C] + [B, [A, C]], we have

Tr(λ3λ̃3) =Tr(2[λ1, λ2][λ̃1, λ̃2]) = 2Tr(λ1[λ2, [λ̃1, λ̃2]])
=2Tr(λ1([[λ2, λ̃1], λ̃2] + [λ̃1, [λ2, λ̃2]])). (D.16)
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Since α1 and α2 are simple roots, we have [λ2, ̃λ1] = 0. From (D.6) we see that [λ2, ̃λ2] = iJ2
and since [J2, ̃λ1] = −iα1(J2)λ̃1 = −i(α1|α2)λ̃1 = i

2 λ̃1, we get

Tr(λ3λ̃3) = Tr(λ1λ̃1) = −1. (D.17)

Next, consider

Tr(λ4λ̃4) =Tr(
3

2
[λ1, λ3][λ̃1, λ̃3]) = −3

2
Tr(λ3[λ1, [λ̃1, λ̃3]])

= − 3

2
Tr(λ3[[λ1, λ̃1], λ̃3]) − 3

2
Tr(λ3[λ̃1, [λ1, λ̃3]])

= − 3

2
Tr(λ3[iJ1, λ̃3]) − 3

2
Tr([λ̃1, λ3][λ1, λ̃3])

= − 3

2
i(−iα3(J1))Tr(λ3λ̃3) − 3

2
Tr([λ̃1, λ3][λ1, λ̃3])

=3

2
(α3|α1) − 3

2
Tr([λ̃1, λ3][λ1, λ̃3]). (D.18)

Since α3 = α1 + α2, we have

(α3|α1) = (α1|α1) + (α2|α1) = 1

3
− 1

2
. (D.19)

On the other hand

[λ1, λ̃3] = √
2[λ1, [λ̃1, λ̃2]] = √

2[[λ1, λ̃1], λ̃2] = i
√

2[J1, λ̃1] = i
√

2(−iα2(J1))λ̃2,

(D.20)

where we used again that [λ1, ̃λ2] = 0, and, therefore,

Tr([λ̃1, λ3][λ1, λ̃3]) = 2(α2(J1))
2Tr(λ̃2λ2) = −2(−1/2)2, (D.21)

and putting all together we get Tr(λ4λ̃4) = −1.
The remaining two cases are proved exactly in the same way. �
D.1. The fundamental irreps of G2

G2 has 12 non null roots forming two concentric hexagons in H ∗, plus two vanishing roots, 
like in Fig. 1.

α1, . . . , α6 are the positive roots. To each of them, αj , it corresponds an eigenmatrix λj and 
to each negative root −αj it corresponds λ̃j . To the vanishing roots one associates the matrices 
ha = i[λa, ̃λa], a = 1, 2. The 14 matrices ha , λj + λ̃j , i(λj − λ̃j ), a = 1, 2, j = 1, . . . , 6 form a 
basis for the adjoint representation 141414, with maximal weight μ1 = α6.
The second fundamental irreducible representation has maximal weight μ2 = α4. The weights 
of such representation are 0, ±αb, b = 1, 3, 4, each one with multiplicity 1, so that it is a seven 
dimensional representation, 777. It is depicted in Fig. 2.

The matrices in this representation are ρ777(ha), ρ777(λj ) +ρ777(λ̃j ), i(ρ777(λj ) −ρ777(λ̃j )), a = 1, 2, 
j = 1, . . . , 6, and can be understood by noticing that ρ777(λ̃j ) shifts the weights by αj , giving zero 
if and only if the result is not a weight, and similar for λ̃j .
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α1α1α1

−α1−α1−α1

α2α2α2

−α2−α2−α2

α3α3α3

−α3−α3−α3

α4α4α4

−α4−α4−α4

α5α5α5

−α5−α5−α5

α6α6α6

−α6−α6−α6

Fig. 1. The twelve roots of G2, two of which are zero. α1 and α2 are the simple roots. α6 and α4 are the fundamental 
weights.

v3v3v3

v5v5v5

v2v2v2

v6v6v6

v1v1v1

v7v7v7

v4v4v4

Fig. 2. The irrep 777 of G2. To each weight it corresponds a vector of the basis defining a 7 dimensional vector space.

D.2. Irreducibility of χ28 in representation 777

Let us consider ρ777(T−) = 3ρ777(λ̃1) +
√

5ρ(λ̃2) acting on the maximal vector v1 of 777. Since 
α4 − α2 is not a weight of 777, while α4 − α1 = α3 is, we have that ρ777(T−)v1 = 3ρ(λ̃1)v1 = k2v2, 
with6 k2 �= 0. In the same way we have the chain of relations:

6 We could compute it explicitly, but it is not necessary for our purposes.
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ρ777(T−)v2 = √
5ρ777(λ̃2)v2 = k3v3,

ρ777(T−)v3 = 3ρ777(λ̃1)v3 = k4v4,

ρ777(T−)v4 = 3ρ777(λ̃1)v4 = k5v5,

ρ777(T−)v5 = √
5ρ777(λ̃2)v5 = k6v6,

ρ777(T−)v6 = 3ρ777(λ̃1)v6 = k7v7,

ρ777(T−)v7 = 0,

with all kj different from zero. Therefore, χ28 is a representation of spin 3 and 777 is irreducible 
under χ28.

D.3. Explicit matrix realizations

Here we present the explicit matrix representation of the three dimensional subalgebras in the 
irrep 777 of G2. These are

T
(1)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 − 1

2 0 0 0 0
0 1

2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2
0 0 0 0 0 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.22)

T
(1)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2
0 0 0 0 0 − 1

2 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1

2 0 0 0 0
0 1

2 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.23)

T
(1)
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 − 1

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0
0 0 1

2 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.24)

T
(3)
1 = 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 2 2
0 0 0 1 −2 0 0
0 0 0 −1 −2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.25)
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T
(3)
2 = 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 1
0 0 0 1 −2 0 0
0 0 0 1 2 0 0
0 −1 −1 0 0 0 0
0 2 −2 0 0 0 0
1 0 0 0 0 0 0

−1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.26)

T
(3)
3 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0 0 0
0 0 0 0 0 3 1
0 0 0 0 0 −1 −3

−2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −3 1 0 0 0 0
0 −1 3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.27)

T
(4)
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.28)

T
(4)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.29)

T
(4)
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.30)

T
(28)
1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

5
√

5 0 0 0 0
−√

5 0
√

6 0 0 0 0
−√

5 −√
6 0 0 0 0 0

0 0 0 0 −2
√

6
√

5 −√
5

0 0 0 2
√

6 0 0 0
0 0 0 −√

5 0 0 −√
6

0 0 0
√

5 0
√

6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.31)
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T
(28)
2 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2
√

6 −√
5

√
5

0 0 0 −√
5 0

√
6 0

0 0 0 −√
5 0 0

√
6

0
√

5
√

5 0 0 0 0
2
√

6 0 0 0 0 0 0√
5 −√

6 0 0 0 0 0
−√

5 0 −√
6 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.32)

T
(28)
3 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0 0 0
0 0 0 0 0 5 1
0 0 0 0 0 −1 −5

−2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −5 1 0 0 0 0
0 −1 5 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.33)
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