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Abstract
In this article, we focus on a two-dimensional conservative steady-state Riesz
fractional diffusion problem. As is typical for problems in conservative form,
we adopt a finite volume (FV)-based discretization approach. Precisely, we use
both classical FVs and the so-called finite volume elements (FVEs). While FVEs
have already been applied in the context of fractional diffusion equations, clas-
sical FVs have only been applied in first-order discretizations. By exploiting the
Toeplitz-like structure of the resulting coefficient matrices, we perform a qual-
itative study of their spectrum and conditioning through their symbol, leading
to the design of a second-order FV discretization. This same information is
leveraged to discuss parameter-free symbol-based multigrid methods for both
discretizations. Tests on the approximation error and the performances of the
considered solvers are given as well.
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1 INTRODUCTION

Fractional partial differential equations have recently become very popular due to a growing number of real world phe-
nomena that have been found to be more properly described by fractional models than by traditional integer-order ones.
Indeed, fractional derivatives are a natural tool for modeling processes exhibiting anomalous diffusion. For instance,
particle transport in heterogeneous porous media is an excellent example of application where anomalous diffusion is
observed, see, for example, Reference 1.

It is well known that analytical solutions are available only for some special fractional problems, therefore solving
general fractional models asks for the investigation of numerical techniques. During the last two decades, a variety of
discretization methods for fractional problems have been studied including finite difference methods,2 finite element
methods,3 finite volume (FV)-based methods,4,5 spectral methods,6 and mesh-free methods.7
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Here, we focus on two different finite volume-based discretizations of the following two-dimensional boundary-value
steady-state conservative Riesz fractional diffusion equation (FDE) of order 2 − 𝛼, 2 − 𝛽, with 0 < 𝛼, 𝛽 < 1 and with
absorbing boundary conditions:

⎧⎪⎨⎪⎩
− 𝜕

𝜕x

(
Kx(x, y) 𝜕

1−𝛼u(x,y)
𝜕|x|1−𝛼

)
− 𝜕

𝜕y

(
Ky(x, y) 𝜕

1−𝛽u(x,y)
𝜕|y|1−𝛽

)
= v(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈
(
R2 ⧵Ω

)
,

(1)

where 𝜕1−𝛼u(x,y)
𝜕|x|1−𝛼 and 𝜕1−𝛽u(x,y)

𝜕|y|1−𝛽 are the Riesz fractional derivative operators (see Section 2) with respect to x- and y-variables,
respectively, Ω = (a1, b1) × (a2, b2) is the spatial domain, Kx(x, y),Ky(x, y) are the nonnegative bounded diffusion coeffi-
cients, v(x, y) is the forcing term.

In more detail, we consider both standard FV method and the so-called finite volume element (FVE) method. In
both cases, by integrating, the approximation of the differential operator is reduced to the approximation of the fractional
derivative of order less than 1 on cell boundaries. In the FV method, we use fractionally shifted Grünwald formulas to
discretize the Riemann–Liouville (RL) fractional derivatives at control volume faces in terms of function values at the
nodes. In the FVE case, the solution is approximated in the space of C0 finite elements and then fractionally derived using
exact formulas for fractional derivatives of a polynomial.

The one-dimensional version of (1) was first treated by FVE in Reference 8, and an FVE method for a two-sided
time-dependent space-FDE was introduced in Reference 4. In Reference 9, the latter scheme was proven to be uncondi-
tionally stable and convergent with second-order accuracy. An FV approach to solve an advection–dispersion equation
with constant dispersion coefficient was given in Reference 5. In Reference 10, Hejazi et al. proved its stability and
first-order accuracy. A second-order FV discretization appears to be missing in the literature.

Less work has been done in the treatment by FV-based methods of the two-dimensional problem (1). In Reference 11,
Jia and Wang presented a fast FVE method for conservative space-FDEs with variable coefficients on convex domains,
while in Reference 12, Yang et al. extended the FV method to the two-dimensional fractional Laplacian.

Due to the non-local nature of fractional derivatives, most of the commonly used discretization schemes lead to dense
linear systems, whose solution requires high computational expenses. On the other hand, the shift invariant character
of the fractional operators, in presence of uniform meshes gives rise to Toeplitz-like structured matrices. The search for
efficient numerical methods that can significantly reduce the computational time by exploiting the structure of the coef-
ficient matrices has become a new trend in the literature. Concerning the case of one-dimensional problems discretized
by FVE, we mention References 8, 13, and 14. In Reference 8, the authors propose a scaled-Toeplitz preconditioner which
can be inverted in O(Nlog2N) operations (with N the matrix size that is a function of the mesh size) via a superfast
direct Toeplitz solver. A less expensive preconditioner whose computational cost is O(N log N) is given in Reference 13,
where the authors study a scaled-circulant preconditioning for Krylov methods. In Reference 14, the authors perform a
detailed spectral analysis of the coefficient matrices, and design an ad hoc multigrid approach to solve the associated lin-
ear systems. The solvers in References 13 and 14 were also numerically tested in the 2D setting, although the considered
discretization matrices were not properly including the tridiagonal mass matrices induced by the compact support of the
nodal basis functions. We refer the reader to Section 3 for a precise derivation of the two-dimensional coefficient matrices
and to Reference 11 for related performances of the block-circulant-circulant-block preconditioning.

The literature lacks of numerical methods for the solution of FV discretizations of (1). To the best of our knowl-
edge, Reference 12 is the only paper that introduces a FV scheme with preconditioned Lanczos method for solving
two-dimensional space-fractional reaction–diffusion equations involving the fractional Laplacian operator.

The aim of this article is twofold: From one side, we build a FV scheme for (1) that yields a second-order error rate
and we numerically check how it compares with the FVE counterpart; from the other side, mimicking the approach in
Reference 14, we provide the spectral analysis of the resulting coefficient matrices and we use such analysis to prove the
linear convergence rate of an ad-hoc multigrid method that smoothly applies to both FV and FVE discretizations. We
stress that in the latter case the proposed multigrid method differs from the proposal in Reference 14 due to the choice
of the smoother. Precisely, here the relaxation parameter of damped Jacobi is automatically estimated at a coarser grid
exploiting the spectral information given by the symbol. Finally, leveraging the decay of the symbol Fourier coefficients,
we propose a banded preconditioner to be used in combination with GMRES and to be inverted in an approximate way
by one V-cycle of the aforementioned multigrid method. Several numerical results confirm the robustness of our strategy
with respect to various state-of-the-art methods present in literature.
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The outline of this article is the following. In Section 2, we introduce some preliminary tools. Section 3 contains the
FVE discretization of (1). In Section 4, we provide the FV discretization of (1) and the spectral analysis of the correspond-
ing coefficient matrix, which is our main contribution. In Section 5, we define an ad hoc multigrid solver and a banded
preconditioner, and in Section 6, we report some numerical results. Our conclusions are drawn in Section 7.

2 PRELIMINARIES

This section contains various preliminaries on fractional derivatives (Section 2.1) and Toeplitz matrices (Section 2.2)
needed in the rest of this article.

2.1 Fractional operators

The Riesz fractional operator in the x-variable is defined as

𝜕1−𝛼u(x, y)
𝜕|x|1−𝛼 = 𝜂(𝛼)

[
𝜕1−𝛼u(x, y)
𝜕RL
+ x1−𝛼

+
𝜕1−𝛼u(x, y)
𝜕RL
− x1−𝛼

]
, 𝜂(𝛼) = − 1

2 cos
(

(1−𝛼)𝜋
2

) ,
where the left (+) and right (−) derivatives are given in the RL form, that is,

𝜕1−𝛼u(x, y)
𝜕RL
+ x1−𝛼

= 1
Γ(𝛼)

𝜕

𝜕x∫
x

a1

u(𝜉, y)(x − 𝜉)𝛼−1d𝜉,

𝜕1−𝛼u(x, y)
𝜕RL
− x1−𝛼

= − 1
Γ(𝛼)

𝜕

𝜕x∫
b1

x
u(𝜉, y)(𝜉 − x)𝛼−1d𝜉,

with Γ(⋅) being the gamma function. Similarly one can define the Riesz fractional operator in the y-variable.
An alternative definition of the left and right fractional derivatives is based on the shifted Grünwald–Letnikov (GL)

formulas. For any p, q ∈ Z and 0 < hx ≪ 1, we define the p-shifted and q-shifted GL fractional derivatives of order 1 − 𝛼,
with 0 < 𝛼 < 1, as

𝜕1−𝛼u(x, y)

𝜕
GL,p,hx
+ x1−𝛼

= 1
h1−𝛼

x

∞∑
k=0

t(1−𝛼)k u (x − (k − p)hx, y) , (2)

𝜕1−𝛼u(x, y)

𝜕
GL,q,hx
− x1−𝛼

= − 1
h1−𝛼

x

∞∑
k=0

t(1−𝛼)k u (x + (k − q)hx, y) , (3)

where t(1−𝛼)k = (−1)k
(

1−𝛼
k

)
. Again similar definitions can be given for the fractional derivatives in the y-variable.

Remark 1. Consider u ∶ R2 → R with supp(u) ∈ [0, 1]2 and the equispaced grid

xi = ihx, i = 1, … ,Nx, hx =
1

Nx + 1
,

yj = jhy, j = 1, … ,Ny, hy =
1

Ny + 1
,

with Nx,Ny ∈ N. Then Equation (2) with p = 0 can be written as

𝜕1−𝛼u(xi, yj)

𝜕
GL,0,hx
+ x1−𝛼

= 1
h1−𝛼

x

(
G+,0u(j))

i ,

where
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G+,0 =

⎛⎜⎜⎜⎜⎜⎝

t(1−𝛼)0 0 · · · 0
t(1−𝛼)1 t(1−𝛼)0 ⋱ ⋮

⋮ ⋱ ⋱ 0
t(1−𝛼)Nx−1 · · · t(1−𝛼)1 t(1−𝛼)0

⎞⎟⎟⎟⎟⎟⎠
∈ R

Nx×Nx , u(j) =

⎛⎜⎜⎜⎜⎜⎝

u(x1, yj)
u(x2, yj)

⋮

u(xNx , yj)

⎞⎟⎟⎟⎟⎟⎠
∈ R

Nx . (4)

Matrix G+,0 is a Toeplitz matrix and represents the left fractional derivative operator. The choice of p ≠ 0 yields the same
structured matrix, but with the diagonals shifted to the right of p positions, if p > 0, and the diagonals shifted to the left
of |p| positions, if p < 0. We denote such an operator by G+,p.

Note that in the case of p > 0 we have to compute p new coefficients t(1−𝛼)Nx
, … , t(1−𝛼)Nx+p−1 to fill the bottom left diagonals.

Furthermore, when q = 0, the right fractional derivative operator in Equation (3) is G−,0 = −GT
+,0. If q ≠ 0 then we denote

such an operator by G−,q and it holds G−,q = −GT
+,q.

Let hx > 0, then, under proper hypothesis (see Reference 15) it can be proven that, for p1, p2, q1, q2 ∈ Z with p1 ≠ p2
and q1 ≠ q2,

𝜕1−𝛼u(x, y)
𝜕RL
+ x1−𝛼

= w𝛼
p
𝜕1−𝛼u(x, y)

𝜕
GL,p1,hx
+ x1−𝛼

+ (1 − w𝛼
p)

𝜕1−𝛼u(x, y)

𝜕
GL,p2,hx
+ x1−𝛼

+ O(h2
x),

𝜕1−𝛼u(x, y)
𝜕RL
− x1−𝛼

= w𝛼
q
𝜕1−𝛼u(x, y)

𝜕
GL,q1,hx
− x1−𝛼

+ (1 − w𝛼
q)

𝜕1−𝛼u(x, y)

𝜕
GL,q2,hx
− x1−𝛼

+ O(h2
x),

(5)

where w𝛼
p = 1−𝛼−2p2

2(p1−p2)
and w𝛼

q = 1−𝛼−2q2
2(q1−q2)

with p = (p1, p2) and q = (q1, q2). Of course, the same reasoning applies to the
y-variable as well.

Remark 2. Let Nx ∈ N and consider an arbitrary equispaced grid {xi}
Nx
i=1, where hx is the step length. Due to the FV

discretization (see Section 4), we are required to evaluate the fractional derivative operators between two grid points, for
example, in

(
xi −

hx
2
, y
)

, which leads to

𝜕1−𝛼u
(

xi −
hx
2
, y
)

𝜕
GL,p,hx
+ x1−𝛼

= 1
h1−𝛼

x

∞∑
k=0

t(1−𝛼)k u
(

xi − (k − p + 1
2
)hx, y

)
,

𝜕1−𝛼u
(

xi −
hx
2
, y
)

𝜕
GL,q,hx
− x1−𝛼

= − 1
h1−𝛼

x

∞∑
k=0

t(1−𝛼)k u
(

xi + (k − q − 1
2
)hx, y

)
.

(6)

This motivates the need of a non-integer shift.

In References 10 and 16, a non-integer shift was used to define a first-order FV approximation. A second-order FV
scheme is still missing in the literature. In order to fill this gap in Section 4, we note that the validity of Equation (5)
extends also to the case where p1, p2, q1, q2 ∈ R with p1 ≠ p2 and q1 ≠ q2. The reader can easily verify this assuming that
p1, p2, q1, q2 are real and following the same argument of the proof of Theorem 1 in Reference 15.

As a consequence, for a generic step length hx > 0 and for p1 ≠ p2 ∈ Z + 1
2
, q1 ≠ q2 ∈ Z + 1

2
, we can write

𝜕1−𝛼u
(

xi −
hx
2
, yj

)
𝜕RL
+ x1−𝛼

= 1
h1−𝛼

x

(
w𝛼

p

∞∑
k=0

t(1−𝛼)k u
(

xi −
(

k − p1 +
1
2

)
hx, yj

)
+(1 − w𝛼

p)
∞∑

k=0
t(1−𝛼)k u

(
xi −

(
k − p2 +

1
2

)
hx, yj

))
+ O(h2

x);

𝜕1−𝛼u
(

xi −
hx
2
, yj

)
𝜕RL
− x1−𝛼

= 1
h1−𝛼

x

(
w𝛼

q

∞∑
k=0

t(1−𝛼)k u
(

xi +
(

k − q1 −
1
2

)
hx, yj

)
+(1 − w𝛼

q)
∞∑

k=0
t(1−𝛼)k u

(
xi + (k − q2 −

1
2
)hx, yj

))
+ O(h2

x).

(7)

We refer the reader to Theorem 1 for the matrix form of Equation (7).
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2.2 Toeplitz matrices and their symbol

As already observed in Remark 1, when considering uniform meshes, the discretization of the fractional operators yields
a Toeplitz matrix. In order to explore the properties of such matrices, we recall some basic definitions, see, for example,
Reference 17.

Definition 1. A Toeplitz matrix TN ∈ CN×N has constant coefficients along the diagonals, namely (TN)i,j = ti−j, i, j =
1, … ,N. If {tk}k∈Z are the Fourier coefficients of a function f , that is, tk = 1

2𝜋
∫ 𝜋

−𝜋f (x)e−ikxdx, then the function f is called
the symbol of {TN}N , and we write TN = TN(f ).

Remark 3. If TN is generated by f , then TH
N is generated by f . Hence, TN is Hermitian whenever f is a real function.

Furthermore, in the case where coefficients tk are real it holds that f (x) = f (−x), hence if f is real then it is also even.

In the case of a two-dimensional operator, the discretization of the considered fractional derivative operators yields
a two-level Toeplitz matrix, which is a block-Toeplitz with Toeplitz blocks (BTTB) matrix. The BTTB matrix of order
N = NxNy generated by f is

T(2)
N (f ) =

∑
|j1|≤Nx

∑
|j2|≤Ny

f[j1,j2]J
[j1]
Nx

⊗ J[j2]
Ny

,

where J[ji]
ni

∈ Rni×ni has entry (r, s)th equals 1 if s − t = ji and 0 elsewhere.

Remark 4. An interesting computational property of the unilevel Toeplitz matrix TN is that the matrix-vector product can
be performed in O(N log N) through the fast Fourier transform (FFT) algorithm.18 A similar property holds for BTTB as
well.

Remark 5. The symbol has many properties, one of which is that it allows to estimate the range of the eigenvalues of an
Hermitian Toeplitz matrix.

In the following, we aim at writing explicitly the symbol of the (properly scaled) Toeplitz matrices representing the
discretized operators in Equation (6) of Remark 2. Such symbol will be useful in the computation of the symbol for the
FV discretization of (1) performed in Section 4. Having this in mind, we start with a couple of intermediate results.

Proposition 1. Let Nx ∈ N, then it holds that G+,0,G−,0 defined in Equation (4) are such that

G+,0 = TNx (g
𝛼(x)), G−,0 = TNx (−g𝛼(x)),

with g𝛼(x) = (1 − eix)1−𝛼 .

Proof. According to the definition of symbol and by means of the generalized Newton binomial, it holds

g𝛼(x) =
∑
k∈Z

t(1−𝛼)k eikx =
∑
k∈Z

(−1)k
(1 − 𝛼

k

)
eikx = (1 − eix)1−𝛼,

which completes the proof. ▪

The following result, proved in Appendix A, is needed for later analysis.

Lemma 1. For all x ∈ [0, 𝜋] it holds that

g𝛼(x) + g𝛼(x) = 22−𝛼sin1−𝛼
(x

2

)
sin

(
x + 𝛼(𝜋 − x)

2

)
(8)

and

g𝛼(x)eix + g𝛼(x)e−ix = 22−𝛼sin1−𝛼
(x

2

)[
sin(x) cos

(
x + 𝛼(𝜋 − x)

2

)
+ cos(x) sin

(
x + 𝛼(𝜋 − x)

2

)]
. (9)



6 of 20 DONATELLI et al.

As a corollary to Proposition 1, we obtain the symbol of the Toeplitz matrices representing the second-order
discretization of the fractional derivative operators given in Equation (5).

Corollary 1. Let Nx ∈ N, hx = 1
Nx+1

, and p,q ∈ Z2, then Equation (5) can be written as follows

𝜕1−𝛼u(xi, yj)
𝜕RL
+ x1−𝛼

= 1
h1−𝛼

x

(
TNx

(
g𝛼+,p(x)

)
u(j))

i + O(h2
x),

𝜕1−𝛼u(xi, yj)
𝜕RL
− x1−𝛼

= 1
h1−𝛼

x

(
TNx

(
g𝛼−,q(x)

)
u(j))

i + O(h2
x),

where u(j) is defined in Equation (4) and

g𝛼+,p(x) = g𝛼(x)
(

w𝛼
pe−ip1x + (1 − w𝛼

p)e−ip2x) ,
g𝛼−,q(x) = −g𝛼(x)

(
w𝛼

qeiq1x + (1 − w𝛼
q)eiq2x) .

Proof. According to the definition of symbol, shifting the diagonals by p positions to the right or left consists in multiplying
the symbol by e−ipx or eipx, respectively. Therefore, the proof follows by Remark 1. ▪

We are now ready to provide the symbol of the Toeplitz matrices corresponding to the fractional left and right operators
evaluated at the midpoint xi− 1

2
given in Equation (6).

Theorem 1. Let Nx ∈ N, hx = 1
Nx+1

, and p,q ∈ Z2 + 1
2

, then Equation (7) can be written as follows

𝜕1−𝛼u
(

xi −
hx
2
, yj

)
𝜕RL
+ x1−𝛼

= 1
h1−𝛼

x

(
H+,pu(j))

i + O(h2
x),

𝜕1−𝛼u
(

xi −
hx
2
, yj

)
𝜕RL
− x1−𝛼

= 1
h1−𝛼

x

(
H−,qu(j))

i + O(h2
x), (10)

where u(j) is defined in Equation (4) and H+,p = TNx

(
g𝛼+,p(x)e

i x
2

)
, H−,q = TNx

(
g𝛼−,q(x)e

i x
2

)
.

Proof. We only provide the proof in the case of the left fractional derivative since for the other case the proof follows the
same steps. From Equation (7), which represents the ith row of the matrix-vector product in Equation (10), we have that
the resulting matrix is a Toeplitz generated by

w𝛼
p

∞∑
k=0

t(1−𝛼)k ei(k−p1+
1
2
)x + (1 − w𝛼

p)
∞∑

k=0
t(1−𝛼)k ei(k−p2+

1
2
)x = w𝛼

pg𝛼(x)ei(−p1+
1
2
)x + (1 − w𝛼

p)g𝛼(x)ei(−p2+
1
2
)x

= g𝛼(x)
(

w𝛼
pe−ip1x + (1 − w𝛼

p)e−ip2x) ei x
2

= g𝛼+,p(x)e
i x

2 ,

which completes the proof. ▪

3 FV-TYPE DISCRETIZATIONS

Here we review the idea of an FV-based discretization applied to problem (1). First, we cover the domain Ω with a mesh
∪n

i=1Qi, where 𝜇(Qi ∩ Qj) = 0, i ≠ j, with 𝜇 the Lebesgue measure. Then, by integrating over the control volumes Qi, the
approximation of the differential operator is reduced to the approximation of the fractional derivative of order 1 − 𝛾 , 𝛾 ∈
{𝛼, 𝛽}, on cell boundaries. In particular, in Section 3.1, we recall the FVE approach, where the solution is approximated in
the space of C0 finite elements and then fractionally derived using exact formulas for fractional derivatives of a polynomial.
The classical FV approach will be treated in Section 4.
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In our specific case, given Nx,Ny ∈ N, we partition the domain Ω = [a1, b1] × [a2, b2] into Nx × Ny equal rectangles.
More specifically, letting

hx =
b1 − a1

Nx + 1
, xi = a1 + ihx, i = 1, … ,Nx,

hy =
b2 − a2

Ny + 1
, yj = a2 + jhx, j = 1, … ,Ny,

we define control volumes Qij =
[

xi− 1
2
, xi+ 1

2

]
×
[

yj− 1
2
, yj+ 1

2

]
. By integrating Equation (1) over Qij, we obtain S1 + S2 = S3,

where

S1 = −∫
yj+ 1

2

yj− 1
2

∫
xi+ 1

2

xi− 1
2

𝜕

𝜕x

(
Kx(x, y)

𝜕1−𝛼u(x, y)
𝜕|x|1−𝛼

)
dxdy,

S2 = −∫
yj+ 1

2

yj− 1
2

∫
xi+ 1

2

xi− 1
2

𝜕

𝜕y

(
Ky(x, y)

𝜕1−𝛽u(x, y)
𝜕|y|1−𝛽

)
dxdy,

S3 = ∫
yj+ 1

2

yj− 1
2

∫
xi+ 1

2

xi− 1
2

v(x, y)dxdy.

We approximate S3 by means of the tensor product of Simpson’s rules, which is an order 3 scheme, so that the approx-
imation of the right-hand side will not influence the solution and the comparison of the FV and FVE discretization
approaches. Therefore,

S3 =
hxhy

36

(
v
(

xi− 1
2
, yj− 1

2

)
+ 4v

(
xi− 1

2
, yj

)
+ v

(
xi− 1

2
, yj+ 1

2

)
+ 4v

(
xi, yj− 1

2

)
+ 16v(xi, yj)

+ 4v
(

xi, yj+ 1
2

)
+ v

(
xi+ 1

2
, yj− 1

2

)
+ 4v

(
xi+ 1

2
, yj

)
+ v

(
xi+ 1

2
, yj+ 1

2

))
+ O(h3

x + h3
y). (11)

Performing the integration in dx, one can rewrite S1 as

S1 = ∫
yj+ 1

2

yj− 1
2

Kx

(
xi− 1

2
, y
) 𝜕1−𝛼u

(
xi− 1

2
, y
)

𝜕|x|1−𝛼 dy − ∫
yj+ 1

2

yj− 1
2

Kx

(
xi+ 1

2
, y
) 𝜕1−𝛼u

(
xi+ 1

2
, y
)

𝜕|x|1−𝛼 dy. (12)

At this point, we can proceed in two different ways:

1. Either approximating again S1 as

S1 = Kx

(
xi− 1

2
, yj

)
∫

yj+ 1
2

yj− 1
2

𝜕1−𝛼u
(

xi− 1
2
, y
)

𝜕|x|1−𝛼 dy − Kx

(
xi+ 1

2
, yj

)
∫

yj+ 1
2

yj− 1
2

𝜕1−𝛼u
(

xi+ 1
2
, y
)

𝜕|x|1−𝛼 dy + O(h3
y), (13)

and u(x, y) by a piecewise polynomial and finally computing exactly the remaining integrals thanks to the exact
formulas for the fractional derivatives of polynomials (FVE approach);

2. Or approximating the integrals with the midpoint rule, leading to

S1 = hyKx

(
xi− 1

2
, yj

) 𝜕1−𝛼u
(

xi− 1
2
, yj

)
𝜕|x|1−𝛼 − hyKx

(
xi+ 1

2
, yj

) 𝜕1−𝛼u
(

xi+ 1
2
, yj

)
𝜕|x|1−𝛼 + O(h3

y), (14)

and using the Grünwald formulas for the point values of the fractional derivatives (FV approach).

The order of accuracy of (13) can be understood by reinterpreting the product hy
𝜕1−𝛼u(xi− 1

2
,yj)

𝜕|x|1−𝛼 appearing in (14) as the
result of applying the midpoint rule to the integral appearing in (13). Finally, the order of accuracy of the fully discrete
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scheme obtained is further capped by the choice of polynomial spaces in the FVE approach or the order of the Grünwald
formulas in the FV approach.

A similar reasoning of course applies to S2.

3.1 FVE discretization matrices and their spectral study

FVE have already been applied to FDE problems in References 4, 9, and 11. In this approach, the unknown function is
sought into a classical tensor product Q1 finite element space on the dual grid whose vertices are at the centers of the
control volumes Qij. In this view, we consider the basis functions {𝜙x

k(x) ⊗ 𝜙
y
l (y)}

Nx ,Ny

k,l=1 where

𝜙x
k(x) =

⎧⎪⎪⎨⎪⎪⎩

x−xk−1
hx

, x ∈ (xk−1, xk),
xk+1−x

hx
, x ∈ (xk, xk+1),

0, elsewhere,

for k = 1, … ,Nx, and define similarly 𝜙
y
l (y) with yl in place of xk and hy in place of hx. Then, considering as unknowns

the function values uij at the center of Qij, we replace u(x, y) in Equation (13) with its approximation ũ(x, y) =∑Nx ,Ny

k,l=1 ukl𝜙
x
k(x)𝜙

y
l (y) leading to

S1 =
Nx ,Ny∑
k,l=1

ukl

⎛⎜⎜⎜⎝
𝜕1−𝛼𝜙x

k

(
xi− 1

2

)
𝜕|x|1−𝛼 Kx(xi− 1

2
, yj)∫

yj+ 1
2

yj− 1
2

𝜙
y
l (y)dy −

𝜕1−𝛼𝜙x
k

(
xi+ 1

2

)
𝜕|x|1−𝛼 Kx(xi+ 1

2
, yj)∫

yj+ 1
2

yj− 1
2

𝜙
y
l (y)dy

⎞⎟⎟⎟⎠ .
Since the support of 𝜙y

l (y) is compact, then

∫
yk+ 1

2

yk− 1
2

𝜙
y
l (y)dy ≠ 0, only if l = k − 1, k, k + 1,

which evaluates to hy

8
,

6hy

8
,

hy

8
, respectively, and leads to the tridiagonal mass matrix

BNy = tridiag
(1

8
,

6
8
,

1
8

)
∈ R

Ny×Ny .

Let ul = [u1l,u2l, … ,uNxl]T, then, by performing the same computations done in Reference 8, it follows that

Nx∑
k=1

𝜕1−𝛼ũ
(

xi− 1
2
, y
)

𝜕|x|1−𝛼 = 𝜙
y
l (y)

Nx∑
k=1

ukl

𝜕1−𝛼𝜙x
k

(
xi− 1

2

)
𝜕|x|1−𝛼 = 𝜙

y
l (y)

𝜂(𝛼)
Γ(𝛼 + 1)h1−𝛼

x

(
G𝛼,Nx ul)

i ,

where G𝛼,Nx = TNx (ĝ
𝛼(x)), with

ĝ𝛼(x) =
∑
k∈Z

t̂(𝛼)k eikx

and

t̂(𝛼)k =

⎧⎪⎪⎨⎪⎪⎩

(
3
2

)𝛼

− 3
(

1
2

)𝛼

, k = 1,(
k + 1

2

)𝛼

+
(

k − 3
2

)𝛼

− 2
(

k − 1
2

)𝛼

, k ≥ 2,

−t̂(𝛼)−k+1, k ≤ 0.
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Therefore, the FVE discretization of the FDE problem in (1) yields the linear system

AFVEu = b, (15)

where the right-hand side b follows from Equation (11), the solution is u = {ukl}
Nx ,Ny

k,l=1 and the coefficient matrix is the
following N × N, with N = NxNy, matrix

AFVE = r
(

Kx,L(BNy ⊗ G𝛼,Nx ) + Kx,R(BNy ⊗ GT
𝛼,Nx

)
)
+ s

(
Ky,L(G𝛽,Ny ⊗ BNx ) + Ky,R(GT

𝛽,Ny
⊗ BNx )

)
, (16)

with

Kx,L = diag
({

Kx

(
xi− 1

2
, yj

)}Nx ,Ny

i,j=1

)
, Kx,R = diag

({
Kx

(
xi+ 1

2
, yj

)}Nx ,Ny

i,j=1

)
,

Ky,L = diag
({

Ky

(
xi, yj− 1

2

)}Nx ,Ny

i,j=1

)
, Ky,R = diag

({
Ky

(
xi, yj+ 1

2

)}Nx ,Ny

i,j=1

)
.

The grid dependent scale factors are r = 𝜂(𝛼)hy

Γ(𝛼+1)h1−𝛼
x

, s = 𝜂(𝛽)hx

Γ(𝛽+1)h1−𝛽
y

.
As already observed in Reference 14, in the one-dimensional case with constant diffusion coefficients, the symbol

of the coefficient matrix is
(

ĝ𝛼(x) + ĝ𝛼(x)
)

, which is a nonnegative function with a unique zero of order lower than 2 at
x = 0. In the case of a two-dimensional equation with constant diffusion coefficients the symbol of AFVE is

ĝ𝛼2D(x, y) = rKxm(y)
(

ĝ𝛼(x) + ĝ𝛼(x)
)
+ sKym(x)

(
ĝ𝛼(y) + ĝ𝛼(y)

)
,

where m(z) = 6+2 cos(z)
8

is the symbol of the mass matrix BNz , with z = {x, y}.

Remark 6. Note that ĝ𝛼2D(x, y) has a unique zero of order lower than 2 at (x, y) = (0, 0). This is because the symbol of the
mass matrix is a strictly positive function.

4 FV DISCRETIZATION MATRICES AND THEIR SPECTRAL STUDY

FV discretizations consider as unknowns the point values of the function uij at the centers of the control volumes. Differ-
ently from the FVE approach, after having integrated, the fractional derivatives of order 1 − 𝛾 , 𝛾 ∈ {𝛼, 𝛽}, on the boundary
of each control volume are now approximated by a fractionally shifted Grünwald formula; by choosing half integer shifts,
these fractional derivatives are expressed in terms of the unknowns uij.

First-order accurate FV discretizations for FDE problems appeared in References 5, 10, and 16. Here we build a
second-order scheme by imposing some reasonable constraints on the shift parameters involved in the approximation of
the fractional derivatives. In addition, on the same line of what has been done in Reference 14, we provide a spectral study
of the resulting coefficient matrices which allows to build ad-hoc solvers for the associated linear systems in Section 5.

Let us go back to (13). The choice of approximating S1 as in (14) and using Equation (10) yields a N × N linear system,
whose structure of the coefficient matrix AFV, except for the mass matrices that are replaced by identities, is the same as
AFVE in Equation (16). In detail, we have to solve

AFVu = b, (17)

where b follows from Equation (11), u = {uij}
Nx ,Ny

i,j=1 , with uij ≈ u(xi, yj), and

AFV ∶= Ax + Ay

with

Ax = r
(

Kx,L(INy ⊗ M𝛼,L) − Kx,R(INy ⊗ M𝛼,R)
)

and Ay = s
(

Ky,L(M𝛽,L ⊗ INx ) − Ky,R(M𝛽,R ⊗ INx )
)
, (18)
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where the new scaling factors are r = 𝜂(𝛼)hy

h1−𝛼
x

, s = 𝜂(𝛽)hx

h1−𝛽
y

and the Toeplitz matrices M𝛼,L,M𝛼,R,M𝛽,L,M𝛽,R represent the dis-
cretized fractional operators by means of the shifted weighted GL formulas in Equation (10). Specifically, the matrices
M𝛼,L,M𝛼,R are such that

𝜕1−𝛼u
(

xi− 1
2
, yj

)
𝜕|x|1−𝛼 = r

((
INy ⊗ M𝛼,L

)
u
)

i+Nx(j−1) + O(h2
x),

𝜕1−𝛼u
(

xi+ 1
2
, yj

)
𝜕|x|1−𝛼 = r

((
INy ⊗ M𝛼,R

)
u
)

i+Nx(j−1) + O(h2
x),

that is, M𝛼,L coincides with TNx

(
f (p,q)𝛼 (x)

)
, where

f (p,q)𝛼 (x) = g𝛼+,p(x)e
i x

2 + g𝛼−,q(x)ei x
2 ,

while M𝛼,R is obtained by M𝛼,L shifting its diagonals one position forward, that is, M𝛼,R = TNx

(
f (p,q)𝛼 (x)e−ix

)
. The matrices

M𝛽,L,M𝛽,R are similarly defined.

4.1 Properties of the symbol of AFV

In the following, we study the properties of AFV and we explain what is a good choice for the shifting parameters
p = (p1, p2), q = (q1, q2). In this view, we note that in case of constant diffusion coefficients Kx(x, y) = Kx > 0, from
Equation (18) we have Ax = rKx INy ⊗ (M𝛼,L − M𝛼,R), where

M𝛼,L − M𝛼,R = TNx

(
F(p,q)
𝛼 (x)

)
, (19)

with F(p,q)
𝛼 (x) = f (p,q)𝛼 (x) − f (p,q)𝛼 (x)e−ix.

Having in mind the design of an ad-hoc multigrid method for the linear systems associated to AFV, we ask that F(p,q)
𝛼 (x)

is a nonnegative function with a unique zero (see Section 5.1 for more details). Let us first require that F(p,q)
𝛼 (x) is a

real-valued function. Since there are many free parameters we fix q = p. Under this constraint function F(p,p)
𝛼 (x) reads as

F(p,p)
𝛼 (x) = g𝛼+,pei x

2 − g𝛼+,pei x
2 −

(
g𝛼+,pei x

2 − g𝛼+,pei x
2

)
e−ix =

(
g𝛼+,p − g𝛼+,p

) (
1 − e−ix) ei x

2

and

F(p,p)
𝛼 (x) − F(p,p)

𝛼 (x) =
(

g𝛼+,p − g𝛼+,p
)(

ei x
2 − e−i x

2

)
−
(

g𝛼+,p − g𝛼+,p
)(

e−i x
2 − ei x

2

)
,

which is zero ∀x ∈ (−𝜋, 𝜋] and ∀p1, p2, and this implies that F(p,p)
𝛼 (x) is a real-valued function independently of p.

In order to make a reasonable choice of p, we numerically check how the relative 2-norm approximation error varies
with p while solving (17) in the case where Kx = Ky = 1 and solution u(x, y) with related forcing term f (x, y) are the ones
reported in Section 6. Many tests show that choosing p1, p2 too far from 0 leads to an increase in the error. Hence, we fix
p1 = 1

2
,− 1

2
. Figure 1 shows the relative 2-norm error for p1 = 1

2
, p2 ∈

{
− 7

2
, … ,− 1

2
,

1
2
, … ,

7
2

}
and varying 𝛼, 𝛽. We note

that the optimal p seems to be p =
(

1
2
,− 1

2

)
, since it gives the lowest error for a wider range of fractional derivative orders

if compared to other combinations.
We do not show the results for p1 = − 1

2
since every tested combination with p2 ∈

{
− 7

2
, … ,− 1

2
,

1
2
, … ,

7
2

}
leads to

highly ill-conditioned linear systems with a large increase in approximation error except for p = (− 1
2
,

1
2
), which yields

the same results as the shift p =
(

1
2
,− 1

2

)
due to the symmetry of formulas in Equation (10) with respect to the shifting

parameters p1, p2 and q1, q2, respectively. Therefore, from now onwards, we will fix p =
(

1
2
,− 1

2

)
.
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F I G U R E 1 Relative error varying (𝛼, 𝛽) and p2, with fixed p1 = 1
2

The numerical results in Section 6 show that such a choice of p and q leads to a second-order accurate numerical
scheme for Equation (1) (see Figure 2).

Remark 7. Interestingly enough, when 𝛼, 𝛽 ≈ 0, p =
(

1
2
,

3
2

)
has almost one-third of the approximation error than p =(

1
2
,− 1

2

)
. Moreover, some preliminary numerical checks, which are not reported here, seem to indicate that the resulting

coefficient matrix is positive definite and therefore it could be another interesting combination to investigate.

We now check whether for p =
(

1
2
,− 1

2

)
, the symbol F(p,p)

𝛼 (x) is nonnegative with a unique zero. For the sake of
readability, we omit the superscript (p,p) in the symbol and rewrite it as

F𝛼(x) = ei x
2 (1 − e−ix)

(
g𝛼(x)

(
w𝛼

pe−i x
2 + (1 − w𝛼

p)ei x
2

)
− g𝛼(x)

(
w𝛼

pei x
2 + (1 − w𝛼

p)e−i x
2

))
= g𝛼(x)

(
w𝛼

p(1 − e−ix) + (1 − w𝛼
p)(eix − 1)

)
− g𝛼(x)

(
w𝛼

p(eix − 1) + (1 − w𝛼
p)(1 − e−ix)

)
= (2w𝛼

p − 1)(g𝛼(x) + g𝛼(x)) + eix (g𝛼(x)(1 − w𝛼
p) − g𝛼(x)w𝛼

p
)
+ e−ix (g𝛼(x)(1 − w𝛼

p) − g𝛼(x)w𝛼
p
)

= (2w𝛼
p − 1)(g𝛼(x) + g𝛼(x)) − w𝛼

p(eix + e−ix)(g𝛼(x) + g𝛼(x)) + eixg𝛼(x) + e−ixg𝛼(x)

= (g𝛼(x) + g𝛼(x))(2w𝛼
p − 1 − w𝛼

p(eix + e−ix)) + eixg𝛼(x) + e−ixg𝛼(x).

Then, from Equation (5), we have w𝛼
p = 2−𝛼

2
and from Lemma 1 and the Euler formulas, we have

F𝛼(x) = 22−𝛼sin1−𝛼
(x

2

)(
sin

(
x + 𝛼(𝜋 − x)

2

)
(1 − 𝛼 − (2 − 𝛼) cos(x))+sin (x) cos

(
x + 𝛼(𝜋 − x)

2

)
+cos (x) sin

(
x + 𝛼(𝜋 − x)

2

))
= 22−𝛼sin1−𝛼

(x
2

)(
sin

(
x + 𝛼(𝜋 − x)

2

)
(1 − 𝛼)(1 − cos(x)) + sin (x) cos

(
x + 𝛼(𝜋 − x)

2

))
.

The following theorem answers positively to our request of having a symbol M𝛼,L − M𝛼,R which is nonnegative with a
single zero. The proof follows from the study of the two multiplicative factors of the symbol and is reported in Appendix B.

Theorem 2. Function F𝛼(x) has a unique zero at x = 0 of order 2 − 𝛼 for 0 < 𝛼 < 1 and x ∈ [0, 𝜋].

Remark 8. It is well known that in case of a one-dimensional second-order diffusion equation, the symbol of the coeffi-
cient matrix has a zero of order 2 at x = 0 (see Theorem 10.5 and Remark 10.2 in Reference 19), which is in accordance
with the limit case 𝛼 = 0 where we have F0(x) = 2(2 − 2 cos x), that is, a multiple of the Laplacian symbol.

It is easy to see that the properties of F𝛼(x) transfer to the symbol of AFV. First recall that F𝛼(x) is the sym-
bol of M𝛼,L − M𝛼,R in Equation (19). Therefore, multiplying by the scaling parameters and diffusion coefficients
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we have

Ax = rKxTNx (F𝛼(x)).

Similarly, along the second spatial dimension,

Ay = sKyTNy(F𝛽(y)).

Therefore,

AFV = TN(𝛼,𝛽(x, y)), where 𝛼,𝛽(x, y) = r KxF𝛼(x) + sKyF𝛽(y).

If we suppose r
s
→ c, with c ∈ R+, when Nx,Ny → ∞, then from Theorem 2 the following corollary immediately follows.

Corollary 2. Let 𝛼, 𝛽 ∈ (0, 1), r
s
→ c as Nx,Ny → ∞ and take constant diffusion coefficients, then the symbol 𝛼,𝛽(x) is a

nonnegative function that has a unique zero at (x, y) = (0, 0) of order min{2 − 𝛼, 2 − 𝛽}.

5 SYMBOL-BASED FAST SOLVERS

Based on the analysis performed in Section 4, in this section, we propose two iterative strategies for solving (15) and (17).
Precisely, we present a multigrid method with damped Jacobi as smoother and a band preconditioner whose inverse is
approximated through one iteration of the aforementioned multigrid.

5.1 Multigrid methods

Multigrid methods combine two iterative methods known as smoother and coarse grid correction (CGC); for more details
see, for example, References 20 and 21. The smoother is typically a simple stationary iterative method. The multigrid
algorithm can be figured out starting from the two-grid case. One step of a two-grid method is obtained by: (1) com-
puting an initial approximation by few iterations of a pre-smoother, (2) projecting and solving the error equation into a
coarser grid, (3) interpolating the solution of the coarser problem, (4) updating the initial approximation, and finally (5)
applying a few iterations of a post-smoother to further improve the approximation. Since the coarser grid could be too
large for a direct computation of the solution, the same idea can be recursively applied obtaining the so-called V-cycle
method.

A common approach to define the coarser operator, known as geometric approach, consists in rediscretizing the
same problem on the coarser grid. This approach has the advantage of maintaining the same structure of the coef-
ficient matrix at each level, allowing fast matrix-vector products exploiting the Toeplitz structure (see Remark 4).
On the other hand, the coarser problems need to be properly scaled and the result is usually less robust than the
so-called Galerkin approach. The latter, for a given linear system AN x = b, AN ∈ CN×N , defines the coarser matrix as
AK = PT

N AN PN , where PN ∈ CN×K is the full-rank prolongation matrix, while PT
N is the restriction operator. The Galerkin

approach is useful for the convergence analysis, but in practice it could be computationally too expensive for FDE
problems.

The convergence of the V-cycle relies on the so-called smoothing property and approximation property (see Reference
22). In order to discuss the convergence analysis of V-cycle applied either to (15) or (17), we consider constant diffusion
coefficients and weighted Jacobi as smoother. Under these assumptions and because of the Toeplitz structure of the con-
sidered matrices, the weighted Jacobi coincides with the relaxed Richardson iteration which is well known to satisfy the
smoothing property for positive definite matrices, whenever it is convergent.23 Moreover, thanks to Remarks 6 and 8 and
Theorem 2, the approximation property holds with the same projectors as in the case of the Laplacian (see Reference 24)
for both FV and FVE approaches.

Since matrices AFV and AFVE are both sums and products between diagonal matrices and dense block Toeplitz matri-
ces, thanks to Remark 4 the matrix-vector product can be performed in O(N log N) operations, without assembling the
coefficient matrix, and the storage only requires O(N) elements.
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We stress that, by using a Galerkin approach, the block Toeplitz-like structure of AFV and AFVE at the coarser levels
is lost, while implementing the geometric approach allows to perform the matrix-vector products by FFT at each coarser
grid. Therefore, our multigrid hierarchy is built through the geometric approach and the amount of levels is given by
lvl = ⌊log2(Nx)⌋, that is, the coarsest level has size 1 × 1. Note that in order to make the V-cycle properly working, the
linear systems must be scaled such that the right-hand side does not contain any grid dependent scaling factor. Therefore,
we scale both AFVx = b and AFVEx = b by hxhy. Similar scalings of course apply also to all coarser levels.

At each iteration of V-cycle one iteration of relaxed Jacobi as pre- and post-smoother is performed. The relaxation
parameter𝜔 is estimated through the approach introduced in Reference 25. Such estimation is obtained by: (1) rediscretiz-
ing Equation (1) over a coarser grid (Ñx,Ñy ≤ 24) and keeping the same scaling factors r, s as in the original coefficient
matrix, (2) computing the spectrum of the Jacobi iteration matrix, (3) choosing the weight 𝜔 in such a way that the whole
spectrum is contained inside a complex set O = {(x, y) | x ∈ I ⊂ R,−õ(x) < y < õ(x)}. A possible choice for õ(x) is given
by õ(x) =

√
1 − x2 + 𝜁x − 𝜁, 𝜁 > 0, which is the sum of a semicircle and a line, and is motivated by the need of clustering

the spectrum of the Jacobi iteration matrix inside the unitary circle. Note that õ(x) yields a set O that is slightly smaller
than the unitary circle in such a way that possible outliers are still smaller than 1 in modulus. Our numerical tests in
Section 6 confirm that choosing 𝜁 = 0.4, as done in Reference 25, leads to a linearly convergent algorithm.

5.2 Banded preconditioner

In References 2 and 14, it was, respectively, proven that coefficients t(1−𝛾)k , t̂(𝛾)k → 0 with order 2 − 𝛾 , 𝛾 ∈ {𝛼, 𝛽}, as k → ∞.
Moreover, after basic calculations it can be shown that the kth coefficient of the difference M𝛾,L − M𝛾,R, defined in
Equation (19), decays as O

(
1

k3−𝛾

)
. This motivates the choice, of a band truncation of the discretized fractional operators.

Here we consider a band truncation of matrices G𝛾,Nx ,G𝛾,Ny and M𝛾,L,M𝛾,R for FVE and FV, respectively. The resulting
block-banded-banded-block matrix Ã is used as GMRES preconditioner. Instead of inverting Ã, we apply one iteration
of V-cycle before each iteration of GMRES. The resulting GMRES preconditioner is denoted by VB, where B is an odd
integer number which denotes the block bandwidth and the bandwidth of each block. We expect that for 𝛼, 𝛽 ≈ 1, pre-
conditioner VB will perform better for FV than FVE, due to the almost quadratic decay of the coefficient matrix entries
in the FV approach compared to the almost linear one in the FVE case.

The hierarchy of VB is built through the geometric approach. On the other hand, by projecting Ã at the coarser levels,
the band structure is preserved and the bandwidth does not grow. Therefore, a more robust approach could be obtained
building the hierarchy of VB by means of the Galerkin approach. However, the loss of the diagonal-times-Toeplitz struc-
ture would make it harder to estimate the relaxation parameter of Jacobi and a different smoother should be adopted.
Note that, due to the band structure of Ã, the matrix-vector product at each level has a linear cost with respect to the
matrix size and, as a consequence, each preconditioning iteration costs O(N).

6 NUMERICAL RESULTS

In this section, we check the second-order convergence of the FV scheme proposed in Section 4 and we test the perfor-
mances of the methods presented in Section 5 when applied to both (15) and (17). Precisely, we compare the V-cycle
algorithm given in Section 5.1 as both main solver (denoted by V) and GMRES preconditioner (denoted by V), with the
banded preconditioner VB given in Section 5.2.

Our numerical test have been run on a server with Intel® Xeon® Silver 4114 at 2.20 GHz, 64 GB of RAM and Mat-
lab 2019b. In all considered examples Nx = Ny ∈ {24 − 1, … , 211 − 1}, and the initial guess x(0) is the null vector.
The stopping criterion for the V-cycle is ‖Ax(k)−b‖2||b||2 < tol, where the tolerance is tol= 10−7 and x(k) is the unknown at

the kth iteration, while for the built-in GMRES Matlab function the tolerance is ‖P−1Ax(k)−P−1b‖2‖P−1b‖2
< tol, where P is the

preconditioner.
When reporting the CPU times, tests are repeated 10 times and the average CPU time is taken.
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Let us consider function ũ(x) = x2(1 − x)2, x ∈ Ω = [0, 1]. From Reference 13, the exact Riesz fractional derivatives of
order 1 − 𝛼 and 2 − 𝛼 of ũ, are

d1−𝛼ũ(x)
d|x|1−𝛼 = 𝜂(𝛼)

3∑
k=1

ak

(
x𝛼+k − (1 − x)𝛼+k)
Γ(𝛼 + k + 1)

,

d2−𝛼ũ(x)
d|x|2−𝛼 = 𝜂(𝛼)

3∑
k=1

ak

(
x𝛼+k−1 + (1 − x)𝛼+k−1)

Γ(𝛼 + k)
, (20)

where (a1, a2, a3) = (2,−12, 24). In the following examples, we consider u(x, y) = ũ(x)ũ(y) and build the exact forcing term
v(x, y) through the formulas in Equation (20), for these two choices of the diffusion coefficients:

• Choice 1: Kx(x, y) = Ky(x, y) = 1;
• Choice 2:13 Kx(x, y) = Ky(x, y) = e4x+4y.

Example 1. First, we test the accuracy provided by both FVE and FV approaches while considering Choice 1. Figure 2b
reports the relative 2-norm error in FV (EFV) and in FVE (EFVE), while Figure 2a reports the ratio between the two as Nx
increases and 𝛼, 𝛽 vary.

In Figure 2a, a comparison with the black line representing the square of the step length hx(= hy) confirms the
convergence of order 2 for both FV and FVE.

When the ratio between the errors in Figure 2b is smaller than 1, then the FV approach allows better approximation
of the solution than the FVE approach. We note that FV has a lower approximation error than FVE in the cases where
𝛼, 𝛽 ≤ 0.5. Especially, when 𝛼, 𝛽 ≈ 1 the error in FVE is decreasing faster than in FV, therefore we expect FVE to yield
better results than FV when Nx > 211 − 1. On the contrary, when 𝛼, 𝛽 ≈ 0 the error in FV decreases faster and reaches
almost half the error of FVE for Nx = 211 − 1. Therefore, it is reasonable to expect further improvements in approximation
error for FV with respect to FVE when Nx > 211 − 1. Further tests, which are not reported here, show that similar results
are achieved also for Choice 2.

Example 2. We now test the behavior of our proposals for solving the two linear systems obtained from FVE and FV
when considering Choice 2. Note that, when considering the simpler case of Choice 1, the overall iterations and CPU
times would decrease and the Conjugate Gradient method should be preferred over GMRES, since the coefficient matrix
is a positive definite symmetric matrix. Tables 1 and 2, respectively, show iterations to tolerance (IT) and CPU times of
algorithms V, V, and V5 described in Section 5 compared with:

• VL(geo), which is the 2D Laplacian preconditioner introduced in Reference 14 inverted through one iteration of V-cycle
with the geometric approach and Jacobi weight 𝜔 = 0.75 (as in Reference 14).

(a) (b)

F I G U R E 2 (a) Behavior of the relative 2-norm errors EFV (continuous lines) and EFVE (dashed lines) as Nx increases and (𝛼, 𝛽) vary, (b)
behavior of the ratio EFV

EFVE
as Nx increases and (𝛼, 𝛽) vary
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T A B L E 1 Iterations to tolerance of the V-cycles V, V(𝜔̃), and the preconditioned GMRES with preconditioners V5, VL(geo), VL(gal),
V, V(𝜔̃)

V-cycle Preconditioned GMRES

V V(𝝎̃) V5 VL(geo) VL(gal) V V(𝝎̃)(
𝜶

𝜷

)
Nx + 1 FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV

⎛⎜⎜⎝
0.1

0.1

⎞⎟⎟⎠

26 10 16 11 15 7 10 9 12 9 12 7 10 7 8

27 10 15 11 16 8 10 11 12 11 12 7 10 8 9

28 10 15 12 16 9 10 12 14 11 14 7 9 8 9

29 11 15 12 17 10 10 14 13 12 16 8 9 8 9

210 11 16 13 17 10 10 13 17 14 17 8 10 8 12

211 11 16 13 18 10 13 16 18 15 18 8 10 8 11

⎛⎜⎜⎝
0.3

0.2

⎞⎟⎟⎠

26 24 22 18 25 11 11 20 22 17 22 11 11 10 12
27 20 24 20 27 12 13 22 23 22 24 10 11 12 12

28 23 26 22 29 12 13 26 29 23 29 13 13 12 14

29 25 28 24 32 14 14 33 36 28 34 15 13 12 14

210 25 31 26 34 14 15 36 37 34 37 14 15 13 16

211 27 33 28 37 15 16 37 40 35 44 15 16 14 16

⎛⎜⎜⎝
0.5

0.5

⎞⎟⎟⎠

26 8 11 9 11 9 9 19 21 20 23 6 8 6 7

27 9 11 10 12 11 12 26 29 26 29 6 7 6 8

28 9 11 10 13 14 12 30 31 30 34 6 8 7 8

29 10 12 11 13 14 15 40 39 40 42 7 8 7 8

210 10 12 11 14 18 16 43 46 44 56 7 9 7 8

211 11 13 12 14 20 18 54 57 54 63 7 9 8 9

⎛⎜⎜⎝
0.6

0.7

⎞⎟⎟⎠

26 13 16 13 18 12 12 31 34 31 35 8 9 9 10
27 14 18 14 19 14 14 36 45 36 49 9 9 8 10

28 16 19 16 21 16 16 50 52 51 54 10 11 9 10

29 17 21 17 22 19 18 60 74 61 67 10 11 9 11

210 18 22 18 24 23 21 92 88 94 90 12 11 10 12

211 19 24 20 26 30 24 93 103 106 115 12 12 11 14

⎛⎜⎜⎝
0.9

0.9

⎞⎟⎟⎠

26 7 9 7 9 12 12 32 33 33 36 5 6 5 6

27 7 9 7 9 16 15 40 50 41 55 5 6 5 6

28 7 10 8 10 21 18 69 59 63 77 5 6 5 6

29 8 10 8 10 27 23 84 87 86 92 5 7 5 7

210 8 10 8 10 36 30 103 109 102 110 5 7 6 7

211 8 11 9 11 48 38 147 154 145 156 6 7 6 7

Note: The numbers in bold highlight in each row the combination with the lowest computational time (see Table 2).
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T A B L E 2 CPU times of the V-cycles V, V(𝜔̃), and the preconditioned GMRES with preconditioners V5, VL(geo), VL(gal), V, V(𝜔̃)

V-cycle Preconditioned GMRES

V V(𝝎̃) V5 VL(geo) VL(gal) V V(𝝎̃)(
𝜶

𝜷

)
Nx + 1 FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV

⎛⎜⎜⎝
0.1

0.1

⎞⎟⎟⎠

26 0.059 0.093 0.066 0.087 0.025 0.037 0.030 0.040 0.030 0.041 0.092 0.109 0.070 0.076

27 0.129 0.184 0.173 0.238 0.132 0.124 0.137 0.133 0.131 0.134 0.218 0.314 0.252 0.260

28 0.432 0.621 0.514 0.665 0.616 0.391 0.427 0.469 0.416 0.489 0.687 0.771 0.851 0.870

29 1.554 2.040 1.707 2.291 2.440 1.354 1.919 1.378 1.554 1.975 3.022 2.593 2.811 2.882

210 6.409 8.853 7.407 9.305 9.887 5.397 6.425 7.989 8.415 8.256 12.560 13.610 11.600 17.410

211 35.520 48.960 42.840 55.180 46.100 40.000 45.730 42.420 44.140 46.420 69.600 73.860 63.900 89.680

⎛⎜⎜⎝
0.3

0.2

⎞⎟⎟⎠

26 0.142 0.116 0.107 0.123 0.032 0.034 0.058 0.061 0.046 0.061 0.122 0.120 0.115 0.129

27 0.257 0.316 0.288 0.409 0.166 0.151 0.216 0.201 0.212 0.211 0.278 0.283 0.417 0.346

28 0.980 1.085 0.945 1.206 0.631 0.473 0.857 0.820 0.733 0.845 1.377 1.157 1.144 1.217

29 3.499 3.807 3.350 4.310 2.938 1.659 3.692 3.351 3.018 3.298 5.476 3.842 3.798 4.017

210 14.080 16.980 14.790 18.660 11.930 7.765 15.480 13.530 14.770 13.920 19.390 19.610 16.580 20.500

211 86.280 98.790 87.990 110.700 57.970 42.380 78.410 73.000 75.820 83.740 112.100 110.900 110.800 109.500

⎛⎜⎜⎝
0.5

0.5

⎞⎟⎟⎠

26 0.048 0.064 0.054 0.064 0.033 0.029 0.056 0.057 0.059 0.063 0.062 0.097 0.062 0.069

27 0.142 0.137 0.158 0.184 0.136 0.140 0.262 0.262 0.259 0.269 0.157 0.212 0.170 0.265

28 0.390 0.445 0.422 0.540 0.712 0.375 0.949 0.896 0.951 0.939 0.471 0.871 0.688 0.725

29 1.402 1.613 1.556 1.749 2.332 1.741 4.241 3.530 4.280 3.857 2.282 2.913 2.282 2.371

210 5.668 6.699 6.295 7.722 12.510 7.378 17.670 16.060 17.960 20.110 9.426 13.100 9.420 11.160

211 34.310 39.740 37.390 43.570 63.560 40.160 109.400 100.400 109.600 113.700 50.890 69.320 56.160 71.360

⎛⎜⎜⎝
0.6

0.7

⎞⎟⎟⎠

26 0.077 0.092 0.077 0.104 0.040 0.035 0.083 0.084 0.082 0.088 0.099 0.105 0.107 0.113

27 0.220 0.225 0.194 0.290 0.163 0.138 0.326 0.380 0.321 0.413 0.357 0.247 0.272 0.301

28 0.683 0.779 0.676 0.870 0.698 0.474 1.479 1.386 1.513 1.486 1.030 1.052 0.796 0.835

29 2.396 2.837 2.397 2.944 2.936 1.827 5.904 6.209 5.992 5.761 3.408 3.483 2.665 3.449

210 10.210 12.240 10.410 13.130 13.750 8.246 34.660 27.920 35.350 29.570 18.080 14.420 14.070 15.130

211 60.440 72.880 66.270 79.340 86.660 46.320 175.600 167.700 200.500 190.800 105.900 84.110 85.030 101.300

⎛⎜⎜⎝
0.9

0.9

⎞⎟⎟⎠

26 0.042 0.052 0.042 0.053 0.033 0.030 0.085 0.082 0.087 0.089 0.054 0.061 0.055 0.061

27 0.094 0.125 0.111 0.138 0.154 0.120 0.343 0.405 0.350 0.458 0.139 0.165 0.149 0.165

28 0.306 0.409 0.344 0.415 0.792 0.486 2.056 1.551 1.840 2.024 0.403 0.442 0.409 0.459

29 1.132 1.357 1.128 1.361 3.745 2.119 8.027 7.208 8.391 7.843 1.364 2.200 1.370 2.218

210 4.630 5.600 4.612 5.616 19.660 10.660 37.550 34.310 37.380 35.670 5.539 9.299 8.668 9.165

211 25.020 33.670 28.230 33.560 124.200 71.080 272.600 254.800 269.400 264.200 46.270 50.530 48.480 49.380
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• VL(gal), which is the same as preconditioner VL(geo), but implemented through the Galerkin approach.

• V(𝜔̃) and V(𝜔̃), which are the same as V and V but with Jacobi weight fixed as 𝜔̃ = 0.75 +
√

min(𝛼,𝛽)
4

(see Reference 14).

We do not consider any circulant preconditioner for two different reasons: first, in Reference 14 it has been shown
that circulant preconditioners are slower than multigrid methods; second, it is well known that if used as preconditioners
for multilevel Toeplitz matrices, multilevel circulant matrices cannot ensure a superlinear convergence character (see
Reference 26).

In Tables 1 and 2, the numbers in bold highlight, in each row, the combination with the lowest computational time. We
note that, as expected, when 𝛼 = 𝛽, the convergence of V and V is almost independent of the grid size and the amount of
iterations is low. When 𝛼, 𝛽 ≈ 0, the block-banded-banded-block preconditioner V5 yields almost the same iterations as
the full matrix V, but with lower CPU times due to the lower computational cost per iteration. Moreover, the robustness
of preconditioners VL(geo) and VL(gal) quickly deteriorates as 𝛼, 𝛽 increase. Comparing V(𝜔̃) with V we note that the
adaptive choice of the Jacobi weight explained in Section 5 allows slightly faster convergence with respect to the fixed
weight 𝜔̃.

When 𝛼, 𝛽 ≈ 1, instead, the block-banded-banded-block preconditioner seems not to be suitable anymore. This is due
to the decay of the coefficients of the discretized fractional operators which, as discussed in Section 5.2, tend to zero with
order 2 − 𝛾 and 3 − 𝛾 , 𝛾 ∈ {𝛼, 𝛽}, in the FVE and FV approaches, respectively. Notice that the slight improvement in both
iterations and timings provided by the FV approach when 𝛼, 𝛽 ≈ 1 is a direct consequence of the corresponding higher
decay order. Tests not reported in Tables 1 and 2 show V11 to be a robust solver, but still slower than V.

When 𝛼 ≠ 𝛽, the number of iterations of all methods tends to increase as Nx increases. This is due to the anisotropy of
the diffusion along the two coordinate axes. Since hypothesis r

s
→ c in Corollary 2 is not satisfied, neither is the approxima-

tion property, therefore the projectors in V-cycle should be built differently and a strategy like that proposed in Reference
25 should be explored. Nevertheless, using the GMRES with V, not only halves the iteration with respect to V, but also
seems to be much more robust in the anisotropic cases. Consequently, using the lighter preconditioner V5 instead of V
allows to reach the lowest CPU times without losing in robustness.

Now, let us fix Nx = 211 − 1 and consider the solvers with the lowest CPU time in Table 2 for FV and FVE and for each
combination of (𝛼, 𝛽). More precisely, we consider solver V5 for FV except for 𝛼 = 𝛽 = 0.5 and 𝛼 = 𝛽 = 0.9, where we use
V, and solver V for FVE except for (𝛼, 𝛽) = (0.3, 0.2), where we use V5.

Figure 3 shows the 2-norm error versus the CPU time of such solvers for FV (solid line) and FVE (dashed line). We
note that when 𝛼, 𝛽 ≈ 0, the FV method is more efficient since it allows to compute solutions with smaller error than FVE
in the same amount of time, despite the fact that for a given grid FVE is sometimes faster (see Table 2). FV seems to be
more efficient than FVE in the anisotropic cases too, even for large 𝛼, 𝛽 where FVE has a higher accuracy. Instead, in the
isotropic cases with 𝛼, 𝛽 ≈ 1 both approaches allow similar CPU times and, therefore, FVE becomes more suitable than
FV.

(a) (b)

F I G U R E 3 Trend of the 2-norm error versus the CPU time of the fastest solver for various combinations of (𝛼, 𝛽)
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We stress that due to the presence of the tridiagonal mass matrices, each matrix-vector product is more expensive in
FVE than in FV. This goes in favor of FV since allows V-cycle to yield faster results than in the case of FVE, even when a
larger number of iterations is required.

Remark 9. Note that it is not possible to compare the iterations of VL(geo) and V(𝜔̃) in Table 1 with preconditioners P2,N
and MGM2D(J) in Reference 14, because therein the 2D discretization is different from the one given in Equation (16).
Indeed, in References 13 and 14, the authors replaced the tridiagonal mass matrix with an identity matrix resulting in a
mixed FV and FVE approach.

7 CONCLUSIONS AND FUTURE PERSPECTIVES

We have introduced a second-order FV method for problem (1) and we have numerically shown that it is a good alterna-
tive to the FVE approach when 𝛼, 𝛽 ≈ 0. Moreover, we have proposed a block-banded-banded-block preconditioner for
GMRES that allows a fast solution of the resulting linear systems in an amount of iterations to tolerance that is stable as
the size of the coefficient matrix increases. When 𝛼, 𝛽 ≈ 1, the FVE approach revealed more accurate than FV. In this case,
a multigrid method used as standalone solver for the discretized problem should be preferred. Same as in Reference 14,
we used damped Jacobi as smoother, but here we selected its weight adaptively, which yields better results if compared
to the fixed weight proposed in Reference 14.

As highlighted in Remark 7, further improvements in terms of approximation error of the FV approach compared to
the FVE approach when 𝛼, 𝛽 ≈ 0 could be obtained using the shift p =

(
1
2
,

3
2

)
. The analysis of the related symbol and the

design of symbol-based preconditioning and multigrid strategies will be subject of future studies.
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APPENDIX A. PROOF OF LEMMA 1

Proof of Lemma 1. By means of the Euler formulas

eix − eiy = 2i ei x−y
2 − e−i x−y

2

2i
ei x+y

2 = 2i sin
(x − y

2

)
ei x+y

2 ,

eix + eiy = 2 ei x−y
2 + e−i x−y

2

2
ei x+y

2 = 2 cos
(x − y

2

)
ei x+y

2 , (A1)

we have

(1 − eix)1−𝛼 + (1 − e−ix)1−𝛼 =
(

2i sin
(
−x

2

)
ei x

2

)1−𝛼
+
(

2i sin
(x

2

)
e−i x

2

)1−𝛼

=
(

2 sin
(x

2

))1−𝛼 [
(−iei x

2 )1−𝛼 + (ie−i x
2 )1−𝛼

]
=

(
2 sin

(x
2

))1−𝛼
[

ei
(

x
2
− 𝜋

2

)
(1−𝛼) + e−i( x

2
− 𝜋

2
)(1−𝛼)

]
= 22−𝛼sin1−𝛼

(x
2

)
cos

(
𝜋

2
− 𝛼𝜋 + (1 − 𝛼)x

2

)
= 22−𝛼sin1−𝛼

(x
2

)
sin

(
𝛼𝜋 + (1 − 𝛼)x

2

)
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and the proof of Equation (8) follows by rearranging the argument of the sine. Now, again by means of the Euler formula
(A1), we have

g𝛼(x)eix + g𝛼(x)e−ix =
(

e−i x
2 − ei x

2

)1−𝛼
(

ei( x
2
(1−𝛼)+x) + (−1)1−𝛼e−i

(
x
2
(1−𝛼

)
+x)

)
=

(
2 sin

(x
2

))1−𝛼
(

ei((1−𝛼)
(

x
2
− 𝜋

2

)
+x) + e−i((1−𝛼)

(
x
2
− 𝜋

2

)
+x)

)
=

(
2 sin

(x
2

))1−𝛼
2 cos

(
(1 − 𝛼)

(x
2
− 𝜋

2

)
+ x

)
= 22−𝛼sin1−𝛼

(x
2

)
cos

(
𝜋

2
− 3x + 𝛼(𝜋 − x)

2

)
= 22−𝛼sin1−𝛼

(x
2

)
sin

(
x + x + 𝛼(𝜋 − x)

2

)
= 22−𝛼sin1−𝛼

(x
2

)[
sin(x) cos

(
x + 𝛼(𝜋 − x)

2

)
+ cos(x) sin

(
x + 𝛼(𝜋 − x)

2

)]
,

which proves Equation (9) and concludes the proof. ▪

APPENDIX B. PROOF OF THEOREM 2

Proof of Theorem 2. Let us first show that F𝛼(x) is nonnegative, rewriting F𝛼(x) = t1(x)t2(x), with

t1(x) = 22−𝛼sin1−𝛼(x
2
),

t2(x) = sin
(

x + 𝛼(𝜋 − x)
2

)
(1 − 𝛼)(1 − cos(x)) + sin(x) cos

(
x + 𝛼(𝜋 − x)

2

)
.

For (x, 𝛼) ∈ Q = [0, 𝜋] × (0, 1), we have that x+𝛼(𝜋−x)
2

∈ [0, 𝜋
2
] and therefore F𝛼(x) ≥ 0, being sums and products of nonneg-

ative functions. In order to prove that F𝛼(x) has a unique zero at 0, let us consider F′
𝛼(x) = t′1(x)t2(x) + t1(x)t′2(x), where

t′1(x) = 21−𝛼(1 − 𝛼)sin−𝛼
(x

2

)
cos

(x
2

)
,

t′2(x) = cos
(

x + 𝛼(𝜋 − x)
2

)
1 − 𝛼

2
(1 − 𝛼)(1 − cos(x)) + sin

(
x + 𝛼(𝜋 − x)

2

)
1 − 𝛼

2
sin(x) + cos(x) cos

(
x + 𝛼(𝜋 − x)

2

)
= cos

(
x + 𝛼(𝜋 − x)

2

)(
−(1 − 𝛼)2

2
(cos(x) − 1) + cos(x) − 1 + 1

)
+ sin

(
x + 𝛼(𝜋 − x)

2

)
1 − 𝛼

2
sin(x)

= cos
(

x + 𝛼(𝜋 − x)
2

)(
1 − (1 − cos(x))

(
1 − (1 − 𝛼)2

2

))
+ sin

(
x + 𝛼(𝜋 − x)

2

)
1 − 𝛼

2
sin(x).

It is easy to see that t′1(x)t2(x) ≥ 0 and that t′1(x)t2(x) = 0 only if x = 0 or x = 𝜋. Moreover, since

0 ≤ (1 − cos(x))
(

1 − (1 − 𝛼)2

2

)
< 1,

we have that t′2(x) ≥ 0 and t′2(x) = 0 only for x = 𝜋. Hence, t1(x)t′2(x) = 0 for x = 0 or x = 𝜋. As a consequence, F′
𝛼(x) ≥ 0

in Q and F′
𝛼(x) = 0 for x = 0 or x = 𝜋, which means that F′

𝛼(x) is monotonically increasing for x ∈ (0, 𝜋) and 𝛼 ∈ (0, 1). On
the other hand, F𝛼(0) = 0, therefore F𝛼(x) has a unique zero at 0. Moreover, for x → 0, it holds

F𝛼(x) ∼ 22−𝛼x1−𝛼
[
sin

(
𝛼𝜋

2

)
(1 − 𝛼)1

2
x2 + x cos

(
𝛼𝜋

2

)]
= O(x2−𝛼),

which proves that the order of the zero at 0 is 2 − 𝛼. ▪


