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Abstract: Urban wastewater effluents bring large amounts of nutrients, organic matter, and organic
microcontaminants into freshwater ecosystems. Ensuring the quality of wastewater treatment (WWT)
is one of the main challenges facing the management of wastewater treatment plants (WWTPs). How-
ever, achievement of high-quality standards leads towards significant energy consumption: usually
the more intensive WWT process requires additional energies. Energy efficiency at WWTP is actual
mainstream on the current sustainable development agenda. The WWTP processes and methods
can be considered from the standpoint of material and energy flows according to circular economy
paradigm, which offers great possibilities to reuse waste originating from WWT in order to receive
renewable energy. The correlation between energy and quality issues to evaluate WWTP efficiency
is of a great scientific and practical interest. The main goal of the paper is to check the dependency
between these two main issues in WWTP management—WWT quality and energy efficiency—and
to determine possible limits of such relation. The municipal sewerage system of Ekaterinburg, Russia
was studied within this paper. The total length of centralized sewerage system in Ekaterinburg is
over 1500 km of pipes within two main sewerage basins: northern and southern. The methodological
framework for the current research consisted of three steps: (i) WWT quality evaluation, (ii) energy
efficiency evaluation, and (iii) WWTP Quality/Energy (Q/E) efficiency dependency matrix. For the
purpose of research, authors investigated the 2015–2018 period. The results showed that the outputs
correlate with the technical conditions of WWTPs and the implementation of the best available
techniques (BATs): most of the northern WWTP values are referred to the green zone (good rank),
while the southern WWTP values are situated generally in the orange zone (unsatisfactory rank).
The proposed methodological approach for Q/E dependency of WWT process creates a strong but
simple tool for managers to evaluate the current success of the operation of WWTP and progress
towards circular economy practices implementation.

Keywords: wastewater; sustainable management; circular economy; benchmark; energy

1. Introduction

Humans and their activities produce wastewaters that are generally referred to as
‘urban wastewaters’, which are generally a mix of metabolic residues from humans and
drainage waters [1]. WWTPs act as terminal shields for urban cities to protect the wa-
ter environment from contamination and achieve water resource circulation [2]. Urban
wastewater effluents bring large amounts of nutrients, organic matter, and organic mi-
crocontaminants into freshwater ecosystems [3]. Ensuring the quality of WWT is one of
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the main challenges facing the management of WWTPs. The high standard in WWT is
achieved through the implementation of the best available techniques (BAT).

WWT is an energy intensive process. The specific electric energy consumption in
different countries generally ranges from 0.4 to 0.9 kWh per cubic meter of treated wastew-
ater [4–6], depending on the inflow quality, WWTP’s scale, climate, and distribution. The
smaller WWTPs are characterized by a high energy consumption compared to relatively
larger-scale WWTPs. Even though small-scale WWTPs have simplified configuration and
wastewater and sludge handling processes, the unit energy consumption is greater than
larger WWTPs due to less frequent optimizations and hurdles associated with simplified
management [6]. Energy efficiency at WWTP is an urgent issue in the current sustainable
development agenda. According to the circular economy (CE) paradigm, the WWTP can
now have a positive energy balance through the application of energy recovery techniques.
Sewage sludge (SS) as main byproduct of WWTPs could be used as an energy resource
for producing electricity and heat through conventional technologies [7,8]. Anaerobic
digestion (AD) is the popular treatment process within WWTPs due to its proven efficiency
to further reduce pollutant levels, yield a fairly stabilized sludge, substantially reduce
sludge tonnage needing disposal, use of minimum input energy, and generate biogas [9].

The achievement of WWT quality through the introduction of modern technologies
and the increase in the number of technological stages usually leads towards an increase in
overall energy consumption. Modernization process at WWTP can be fulfilled via several
alternative technological solutions—every solution has its own WWT quality and energy
efficiency indicators, as well as investment and operational costs. In order to make a
decision about which technologies should be introduced, it is necessary to consider them
both in terms of the WWT quality and energy efficiency. Moreover, today there is a need for
managers to conduct an express assessment of the current progress in the development of
specific WWTP and compare results with typical objects. Eventually, WWTPs can become
engines for the circular economy, playing an important role in the water cycle that allows
water sanitation and reuse, facilitating energy production and allowing the recovery of
various products from wastes [10].

Most investigations on WWT and WWTP are focused on either quality or energy
efficiency issues. However, some manuscripts devoted to single quality/energy framework
were still found. These papers use the following methodological approaches: Life Cycle
Assessment (LCA), Benchmark Simulation Model (BSM and BSM2) and other WWTP
models, Performance Assessment System (PAS), and Data Envelopment Analysis (DEA).

The LCA methodology is described in ISO 14040:2006 standard and addresses the
environmental aspects and potential environmental impacts of WWTP products and pro-
cesses [11]. In particular, this methodology considers, among other issues, the relationship
between WWT quality and energy issues, but generally it is focused on evaluation of
potential environmental impact [12]. Rebello et al. [13] conducted a literature review of
111 studies on LCA of WWTP and proposed a guideline framework suitable for urban
WWT utilities. Lopes et al. [14] presented and discussed environmental performance
of full-scale WWTP using LCA approach, including construction and operation phases.
Lorenzo-Toja et al. [15] examined two WWTPs, located in different climatic regions (At-
lantic and Mediterranean) of Spain, using LCA approach. Chen et al. [16] used a novel
technique, multi-agent deep reinforcement learning (MADRL), based on LCA methodol-
ogy, to examine and optimize dissolved oxygen and chemical dosage at WWTP. All these
manuscripts include both quality and energy issues but have some limitations. LCA is
a strong tool—it can be applied for the great variety of cases depending on the project’s
scope. This is a great challenge because you can analyze any issue; however, it imposes
high requirements on the quality of such analysis, requires skilled personnel and special
software, it is rather complex to understand for common users, it is difficult to scale, and
finally we have no opportunity to check direct relation between WWT quality and WWTP’s
energy efficiency.
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Benchmark Simulation Model (BSM) is a simulation environment defining a plant
layout, a simulation model, influent loads, test procedures, and evaluation criteria. For each
of these items, compromises were pursued to combine plainness with realism and accepted
standards. Once the user has validated the simulation code, any control strategy can be
applied and the performance can be evaluated according to a defined set of criteria [17].
Revollar et al. [18] proposed the plant-wide control strategy using BSM2 in order to improve
eco-efficiency of WWTP. In particular, performance indicators that measure potential energy
recovery from biogas, electricity consumption, CO2, emissions, production of sludge for
disposal, and effluent quality have been considered. The approach proposed by these
authors is aimed towards choosing the most appropriate operating strategy for specific
WWTP and analyzing a large set of indicators, including energy and quality. However,
the direct relation between energy and WWT quality is absent. De Ketele et al. [19],
as well as the team considered above, analyze WWTP operation strategies in terms of
transition towards Waste Resource Recovery Facilities using BSM under performance
indexes—effluent quality index (EQI) and operation cost index (OCI). There is also no
direct connection between quality and energy issues within this paper.

Zaborowska et al. [20] proposed an authentic plant-wide model for evaluation of the
energy balance and greenhouse gas footprint at large WWTPs. The model is used to predict
future conditions using KPIs to measure effluent quality, energy, and GHG emissions in
order to choose the best operational strategy and technological upgrades. The integrated
model has a high forecast accuracy but it’s difficult to scale as adaptation is required.

The manuscripts of Cassidy et al. [21] and Silva et al. [22] are devoted to PAS method-
ology. According to the case studies, WWTPs were examined by the following KPIs:
energy performance (both manuscripts), effectiveness and reliability (both manuscripts),
and sludge management (Cassidy et al.). The proposed tools have excellent intuitive
interpretation for different stakeholders and can be used as a sectoral benchmark, but these
KPIs have no relation to each other.

Longo et al. [23] presented an improved DEA methodology: Robust Energy Efficiency
DEA (REED). In other words, REED is DEA designed for WWTP. The authors have analyzed
399 real WWTP using REED; therefore, we can conclude that it is a very scalable tool and
can be used as a sectoral benchmark. However, REED is rather complex because it has
several different conditions and indicators, and has no clear dependency between energy
and quality.

The main goal of current investigation is to check the dependency between two main
issues in WWTP management—WWT quality and energy efficiency—and to determine
possible limits of such relation. The specific objectives of the paper are:

• to identify the main criteria affecting the efficiency of WWTP under CE paradigm;
• to propose a correlation framework for WWTP’ efficiency evaluation under CE paradigm;
• to apply a correlation framework as a benchmark tool for sectoral competitive com-

parison of WWTPs.

2. Materials and Methods
2.1. Study Area

Authors have studied the municipal sewerage system of Ekaterinburg, Russia. Ekater-
inburg is the largest industrial, scientific, and commercial center in Russia, which is situated
on the border of Europe and Asia. With a population of almost 1.5 million inhabitants, it is
the fourth largest city in Russia. The total length of centralized sewerage system is over
1500 km of pipes within two main sewerage basins: northern and southern. Each sewerage
zone has its own wastewater treatment plant with corresponding titles.

About 85% of total wastewater from the city is transported to the southern WWTP. It
was designed in early 1970th and put into operation in 1975. These utilities have traditional
2-stage treatment technology (mechanical and biological) with chlorine disinfection before
discharge. Primary sludge and waste-activated sludge are fed to the mechanical dewatering
workshop where the sludge mixture is dehydrated up to 75% humidity. The originated cake
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is transported at landfills. The maximum wastewater inflow performance is 550,000 m3

per day. Since 1975, there have been no modernization or reconstruction activities and
nowadays this WWTP is morally and technically obsolete. Modern energy recovery
techniques are absent. Furthermore, several concrete settling and aeration tanks began to
crumble due to aggressive impact of wastewaters (acid exposure, e.g., H2SO4).

The remaining amount of wastewater from the city goes to the northern WWTP. These
utilities have the same age and technological process line as the former one but have
passed through total modernization in 2002–2008 with introduction of the BAT, including
rotary drum fine screens, sand traps with aeration, aeration tanks with nitrification and
denitrification, UV-disinfection before discharge, and others. Sewage sludge treatment
include anaerobic digestion with biogas generation at two methane tanks with maximum
capacity 2 × 5000 m3 and mechanical dewatering. The methane tanks are working under
mesophilic digestion terms with average hydraulic retention time (HRT) of 27 days. Biogas
is transported at CHP-unit for electric and thermal energy generation. Nowadays the WWT
process conforms the basics of CE practices.

2.2. Methodology of Research

Methodological framework for current research consists of three steps: (i) WWT
quality evaluation, (ii) energy efficiency evaluation, and (iii) WWTP Quality/Energy (Q/E)
efficiency dependency matrix. For the purpose of research, authors have investigated the
2015–2018 annual reports on the quality of WWT and energy efficiency of the WWTPs,
mentioned above.

2.2.1. WWT Quality Evaluation

Authors have selected the six most critical pollutants that have significant pollution
effect while insufficiently treated wastewaters enter a water body. These pollutants were
mentioned by Kiselev et al. [24], including (i) suspended solids; (ii) biochemical oxygen
demand in 20 days (BOD20); (iii) phosphorus phosphate; (iv) nitrate-ion; (v) nitrite-ion;
and (vi) ammonium-nitrogen.

As previously was proposed by Rukavishnikova et al. [25], authors used the an-
nual multiplicity and frequency indicators for the samples that have been taken through
the corporate laboratory control activities. The multiplicity of pollutant i is calculated
as follows:

Mi =
CP

i

MPCP
i

, (1)

where CP
i -annual average concentration of i substance (mg/dm3) and MPCP

i -maximum
permissible concentration of i substance (mg/dm3).

The frequency of pollutant i is calculated as follows:

Fi =
Qex

i
Qi

, (2)

where Qex
i is the annual number of samples of i substance with excess MPC (pcs.) and Qi is

the annual number of all samples of i substance (pcs.).
Authors concluded that it would be quite compelling to offer expert evaluation

weights (EW, see Table 1) for frequency/multiplicity assessment of each pollutant previ-
ously selected. As the basis, authors have used the classification of water in water bodies
according to frequency and multiplicity of pollution mentioned in the guiding document
RD 52.24.643-2002, “Methodological guidelines. Method for comprehensive assessment of
the degree of surface water pollution by hydrochemical indicators” [26].
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Table 1. WWT quality expert EW.

Multiplicity
Frequency M ≤ 1 1 < M ≤ 2 2 < M ≤ 10 M > 10

0.0–0.1 1 1 0.6 0.25
0.1–0.3 1 0.9 0.5 0.2
0.3–0.5 0.95 0.8 0.4 0.1
0.5–1.0 0.9 0.7 0.25 0

Resulting evaluation weight (REW) for the 6 pollutants is calculated as follows:

REW =
∑6

i=1 EWi

6
, (3)

2.2.2. WWT Energy Efficiency Evaluation

WWTP operational activities require significant energy consumption. Energy bench-
marking at WWTP is a powerful management tool for continuous improvement [27].
According to Gurung et al. [6], one of the most popular indicators of energy efficiency is
average energy consumption per unit of treated wastewater (AEC), which is calculated
as follows:

AEC =
EC
Q

, (4)

where EC-energy, consumed from the grid (kWh/year), and Q-total volumetric flow of
treated wastewater (m3/year).

Application of relevant CE practices at WWTP implies the evaluation of Net Energy
Consumption indicator. According to [28], the average net energy consumption per unit of
treated wastewater (ANEC) is calculated as follows:

ANEC =
EC − EG

Q
, (5)

where EG-energy, self-generated at WWTP (kWh/year).

2.2.3. Quality/Energy Dependency Matrix

The last step of methodology is to assess the relationship between WWT quality and
energy costs. Authors suggested the Q/E dependency matrix, which contains boundary
values both for energy and for quality. The quality and energy efficiency outputs, obtained
via Equations (3)–(5), are plotted on the graph along the corresponding axes. The resulting
value falls into a certain square zone. The matrix is presented in Figure 1.

Several color squares are used to evaluate the current position of WWTP. They measure
the Q/E benchmarking ranking for the WWTPs under consideration as follows:

• Dark green: an excellent rank;
• Green: good rank;
• Yellow: average rank;
• Orange: unsatisfactory rank;
• Red: critical rank.
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3. Results and Discussions

WWT samples were collected through laboratory control, analyzed for six main
substances, and averaged into annual values. The data are reported in Table 2.

Table 2. Sample data for northern and southern WWTPs (2015–2018).

Substance WWT
2015 2016 2017 2018

MPCP
i CP

i MPCP
i CP

i MPCP
i CP

i MPCP
i CP

i

Suspended solids Southern 15.00 23.50 15.00 24.30 15.00 34.30 15.00 71.40
Northern 15.00 4.02 15.00 3.45 7.74 1.99 7.74 3.83

BOD(20)
Southern 11.19 13.50 11.19 15.20 11.19 28.00 3.00 23.00
Northern 6.00 7.72 6.00 6.13 6.00 6.66 3.00 5.13

Phosphorus phosphate Southern 0.20 2.27 0.20 2.36 0.20 2.62 0.20 2.6
Northern 0.20 2.53 0.20 3.26 0.20 3.88 0.20 3.45

Nitrate-ion
Southern 40.00 30.40 40.00 27.80 40.00 40.90 40.00 32.20
Northern 40.00 45.00 40.00 32.17 40.00 40.33 40.00 40.17

Nitrite-ion
Southern 0.20 0.30 0.20 0.53 0.20 0.33 0.08 0.33
Northern 0.19 0.12 0.19 0.14 0.08 0.03 0.08 0.17

Ammonium-nitrogen Southern 0.39 2.20 0.39 4.80 0.39 2.20 0.39 3.40
Northern 0.62 0.54 0.62 0.59 0.40 0.70 0.40 0.33

The MPCP
i indicator is set up by local authorities responsible for nature protection for

each WWTP under several criteria—so we have different values both for WTTPs and years.
Multiplicity and frequency indicators were calculated using Equations (1) and (2). The

outputs are presented in Table 3.
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Table 3. Multiplicity and frequency outputs.

Substance WWT
2015 2016 2017 2018

Mi Fi Mi Fi Mi Fi Mi Fi

Suspended solids Southern 1.57 0.903 1.62 0.876 2.29 0.591 4.76 0.959
Northern 0.27 0.000 0.23 0.000 0.26 0.000 0.49 0.065

BOD(20)
Southern 1.21 0.667 1.36 0.556 2.50 0.500 7.67 0.528
Northern 1.29 0.639 1.02 0.389 1.11 0.528 1.71 0.778

Phosphorus phosphate Southern 11.35 1.000 11.80 1.000 13.10 1.000 13.00 0.583
Northern 12.65 1.000 16.30 1.000 19.40 1.000 17.25 0.220

Nitrate-ion
Southern 0.76 0.267 0.70 0.130 1.02 0.198 0.81 0.266
Northern 1.13 0.802 0.80 0.101 1.01 0.336 1.00 0.348

Nitrite-ion
Southern 1.50 0.579 2.65 0.806 1.65 0.429 4.13 0.970
Northern 0.63 0.138 0.74 0.093 0.38 0.138 2.13 0.494

Ammonium-nitrogen Southern 5.64 1.000 12.31 1.000 5.64 1.000 8.72 0.200
Northern 0.87 0.842 0.95 0.263 1.75 0.401 0.83 0.207

The first element of Q/E dependency pair was obtained with the help of WWT quality
expert evaluation weights, described in Table 1. These results are mentioned in Table 4.

Table 4. EW and REW for northern and southern WWTPs.

Substance WWT 2015 2016 2017 2018

Suspended solids Southern 0.70 0.70 0.25 0.25
Northern 1.00 1.00 1.00 1.00

BOD(20)
Southern 0.70 0.70 0.40 0.25
Northern 0.70 0.80 0.70 0.70

Phosphorus phosphate Southern 0.00 0.00 0.00 0.00
Northern 0.00 0.00 0.00 0.20

Nitrate-ion
Southern 1.00 1.00 0.90 1.00
Northern 0.70 1.00 0.80 0.95

Nitrite-ion
Southern 0.70 0.25 0.80 0.25
Northern 1.00 1.00 1.00 0.40

Ammonium-nitrogen Southern 0.25 0.00 0.25 0.50
Northern 0.90 1.00 0.80 1.00

REW (Total)
Southern 0.56 0.44 0.43 0.38
Northern 0.72 0.80 0.72 0.71

The result obtained by authors considers the excess of actual indicators over the
maximum permissible concentrations in contrast to results mentioned in manuscripts
of Revollar et al. [18] and Longo et al. [23], where the weight of purified through WWT
process pollution was taken into account. The authors believe that there is no need to
overcome the MPCs, established by local authorities, because it can lead towards energy
consumption increase.

The second element for Q/E dependency pair was obtained using Equations (4) and (5).
Result are shown in Table 5. We can observe equal AEC and ANEC values both for northern
and southern WWTPs and years, except the 2018 for northern WWTP. The anaerobic
digestion process at northern WWTP has been recently introduced with CHP-unit. In
2018, this unit has not yet been finished; however, we made a small approximation for EG
indicator and included project performance (kWh) as input data.
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Table 5. The inputs for AEC and ANEC calculations and outputs for northern and southern WWTPs.

Substance WWT 2015 2016 2017 2018

EC
Southern 44,894,113 43,934,976 42,859,122 45,202,702
Northern 6,983,065 6,720,995 7,487,034 6,927,041

EG
Southern 0 0 0 0
Northern 0 0 0 4,642,800

Q
Southern 113,033,880 103,380,680 95,086,100 89,874,300
Northern 23,819,410 22,201,630 21,046,310 20,722,530

AEC
Southern 0.397 0.425 0.451 0.503
Northern 0.293 0.303 0.356 0.334

ANEC
Southern 0.397 0.425 0.451 0.503
Northern 0.293 0.303 0.356 0.110

With compliance to the methodology, we have made the last step and transferred our
data into graphical view. The results for the research are shown in Figure 2.
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Figure 2. Outputs for South and North WWTPs.

As one can see from the matrix presented, the outputs correlate with the technical
conditions of WWTPs and the implementation of the BAT: most of the northern WWTP
values are referred to the green zone, while the southern WWTP values are situated
generally in the orange zone.

Speaking about the northern WWTP, the main conclusions that managers can come
to are the need for further implementation of energy recovery techniques, as well as the
superintendence over single quality indicators, especially for the phosphorus phosphates.
If current technologies do not allow meeting high quality standards, it is desirable to check
possible solutions using the Q/E dependency matrix.

There is no doubt that the transition to the green zone for southern WWTP requires
global modernization activities throughout the WWT process.

Discussing the possible operational strategies of WWTP based on the results within
different color zones on the Q/E dependency matrix, the following features can be highlighted:

Dark green zone: wastewater treatment technology provides the highest efficiency
with minimum energy consumption (from the grid)—this is the most sustainable result,
which can be achieved to a greater extent using waste-to-energy technologies. The best
example is the use of anaerobic digestion of sewage sludge and the production of biogas,
which is then used in CHP units for electricity and heat generation. Another good example
is the application of pyrolysis technology. Besides providing high energy efficiency with re-
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newable energies for self-consumptions (and even for electricity surplus supplying into the
grid), these technologies solve the problem with sewage sludge treatment and utilization.

However, the methodological approach under consideration has some limitations,
since it does not take into account the emission of pollutants into the air. Speaking about
the impact on the environment, the authors in this study specifically focused on water use,
because the impact that WWTP has on water bodies significantly exceeds the impact on
any other environments.

Green zone: also considered to be a fairly sustainable result. Getting into the green
zone means that WWTPs have either an effective treatment technology with the achieve-
ment of the standard quality of discharged wastewater without the use of modern energy-
efficient solutions, or vice versa: there are certain limitations (technological or organiza-
tional) in achieving MPCs for few indicators using modern energy-efficient solutions.

Yellow zone: indicates satisfactory performance in terms of the quality of treated
wastewaters, but extremely high electricity costs which do not meet modern energy effi-
ciency standards.

The orange and red zones: imply the overall low and even threating efficiency of
WWTP, which requires an immediate resolution. These utilities discharge wastewater with
significant excess of the MPCs, while the energy costs do not matter within this context. It
is urgently required to conduct an audit and make management decisions regarding the
modernization of such facilities.

The Q/E dependency matrix has a clear and intuitive vision of retrospective of sev-
eral WWTPs, but the visualization of hundreds of WWTPs will lead to poor readability.
However, the graphical output, mentioned by Longo et al. [23], when the integrated results
are depicted using bar chart, might be a good solution within this situation.

4. Conclusions

The application of proposed methodological tool on centralized sewerage system of
Ekaterinburg, Russia showed the strong connection of resulting rank with technical and
technological condition of the utilities:
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The southern WWTP has unsatisfactory rating and since 2015 the situation has wors-
ened, because the actual rating has entered the red zone. The major factors of this
negative trend are the WWT quality degradation through extremal deterioration of
concrete basins and equipment, and an increase of unit energy consumption per
treated wastewater (the total treated wastewater has decreased). The key managerial
decision for current WWTP is to conduct complete modernization with BAT implemen-
tation taking into account the positive experience of northern WWTP reconstruction.

The proposed methodological approach for Q/E dependency of WWT process creates
a strong but simple tool for managers to evaluate the current success in operation of WWTP
to work on the transition towards CE. It is intuitive and easy to understand for uninitiated
users. The comparison of the results of the current year with the previous ones allows
the wide range of stakeholders to assess the performance of both the team and the leader
himself objectively. The monitoring framework can also be used as the common benchmark
for the total sector contribution continuous improvement based on seeking and meeting
the best practices as well as the tool for public control over WWT activities and CE practices
implementation.

Technological development in the spheres of WWT and energy efficiency will in-
evitably lead towards incorrect matrix interpretation—modern techniques and not yet
discovered breakthroughs will not give managers a clear view of the effectiveness of their
WWTPs, because the resulting values will always fall into the green zone. In the future,
it will be necessary to update the matrix thresholds to meet the technologies known and
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applied at the time of review, as well as to expand the plotting area of the matrix, that
will be below zero for the AEC/ANEC axis. In addition, it is possible to apply different
matrix boundaries (matrix patterns) for different countries or cross-border associations
(like European Union or Eurasian Economic Union), when taking into account the dif-
ference in technological level in the world, especially the gap between developed and
developing countries.
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