TACo0S’04 Preliminary Version

A Dual Language Approach to the
Development of Time-Critical Systems

Luigi Lavazza 1

CEFRIEL and
Dipartimento di FElettronica e Informazione
Politecnico di Milano
Milano, Italy

Sandro Morasca ®

Dipartimento di Scienze della Cultura, Politiche e dell’Informazione
Universita degli Studi dell’Insubria
Como, Italy

Angelo Morzenti*

Dipartimento di Elettronica e Informazione
Politecnico di Milano
Milano, Italy

Abstract

Developing time-critical systems requires expressive, rigorous, easy to use notations
to describe the time-related features of the systems, in a way that is formal enough to
support and automate activities like property verification and test case generation.
We propose a dual-language approach provided with a descriptive formalism for
specifying the properties of a system and its components in addition to the typical
UML (and UML-RT) diagrams. This description consists of a formula of a new logic,
called OTL (Object Temporal Logic), which is an extension of OCL. The approach

is applied to a case study derived from the authors’ industrial experiences.

[

Thanks to everyone who should be thanked
Email: lavazza@elet.polimi.it
Email: sandro.morasca@uninsubria.it
Email: morzentiQelet.polimi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

LAavAzzA, MORASCA, MORZENTI

1 Introduction

The development of time-critical systems requires the availability of notations
that are expressive, rigorous, easy to use, and provided with software tools
at the same time. Time-critical software systems are usually complex and
need to be modeled and analyzed from several different perspectives, such as
their functional behavior, their temporal behavior, and their structure. In
the last few years, UML [1] has been increasingly used for the development
of complex systems such as real-time software, even though UML was not
originally conceived for modeling real-time systems. Only recently were timing
features added to the UML notation (see for instance the introduction of
Time in the proposal for UML 2.0 [4]), but their introduction is still tentative,
incomplete, and not well integrated with the other aspects of UML. So, the
practical application of UML to the real-time domain is hindered by UML’s
lack of a complete set of constructs to express time-related constraints and
properties, as well as by its lack of formal semantics. An adequate solution
to these problems will need to go one step forward and provide high rigor of
syntactic and especially semantic definition, as well as high integration and
consistency with the rest of the UML notation. Moreover a high level of
abstraction is needed, so that the notation can be used in phases in which
high-level properties of a system are described, but not its inner functioning.

In this paper, we propose an extension to UML for introducing timing
aspects to address these problems via a set of carefully thought and balanced
time-related notations that are integrated and consistent with UML notation,
so they can be used by practitioners in industrial environments with mini-
mal overhead and can support suitable development methods for time-critical
systems.

The notation we propose is centered on architectural diagrams that corre-
spond to UML-RT collaboration diagrams. System components are modeled,
along with the relations of mutual inclusion and communication, via a small
set of fundamental constructs: capsules correspond to components; ports and
protocols model abstract interfaces; and connectors correspond to communi-
cation relations. The partitioning of a complex system into a set of parallel
components (i.e., parts) that communicate via connectors results in a com-
position hierarchy, where the leaves correspond to the components that are
directly modeled in an operational style with a state-transition machine.

We also propose a descriptive formalism to specify the properties of a
system and its components, whose style is thus complementary to that of
the leaf-level capsules statecharts. This description consists of a formula of a
new logic, OTL (Object Temporal Logic), which is fully compatible with the
original OCL (Object Constraint Language) descriptive notation for asserting
properties in UML.

In our proposal of a “dual language” approach, OTL formulas and state-
charts are also complementary at the methodological level. An OTL formula

2

LAavAzzA, MORASCA, MORZENTI

acts as an abstract specification of constraints and temporal relations that
must hold among the states, events, and signals of the statechart machine
associated with the same capsule, so there is no redundancy between the in-
formation provided by the OTL formula and the statechart.

Our proposal is based on general concepts that appear to comply both
with the consolidated versions of UML and OCL, and with the directions of
the draft proposals [2,3,4].

This paper is organized as follows. Section 2 describes OTL, Section 3
describes the application of our dual-language approach to a case study, while
Section 4 concisely compares our approach with the ones existing in the liter-
ature. Conclusions are in Section 5.

2 The OTL language

OCL can be used to state behavioral properties of a system and its parts. How-
ever, when dealing with time-dependent systems, OCL (in its current form or
the one proposed in [2] for OCL 2.0) needs to be extended to adequately spec-
ify temporal aspects. It is not possible to reference different time instants in
a single OCL formula, so only invariant properties can be formalized, which
at most include references to attribute values before or after method execu-
tion. Important temporal properties of systems that make reference to the
time distance between events cannot be adequately specified, thus making it
impossible to specify that the response to a stimulus must be guaranteed to
occur within some specified time interval.

We propose OTL as a temporal logic extension to OCL. Based on one
fundamental temporal operator, OTL provides the typical basic temporal op-
erators of temporal logics, i.e., Always, Sometimes, Until, etc. In addition,
OTL allows the modeler to reason about time in a quantitative fashion. OTL
is totally integrated with the other UML notations: it simply extends the
OCL 2.0 standard library by adding two new classes, Time and 0ffset (see
Figure 1) which directly inherit from class OclAny, and no changes in the
metamodel are required. Class Time models time instants, which are defined
based on the current time taken as the time origin. Class 0ffset models the
distance between two time instants. An 0ffset d that is added to a Time ob-
ject (see below the ‘+’ operator for class Time) is interpreted as a displacement
towards the future if d is positive, towards the past if d is negative. Other
basic time-related concepts, such as the notion of a time interval can be easily
defined in terms of the concepts of Time and Offset.

The existence of both classes Time and Offset allows for a conceptually
sound quantitative treatment of time and the definition of sensible operations
involving objects of the two classes. For instance, class Time provides (1) an
operation ‘<’ that checks the ordering between its objects; (2) an operation
‘dist’ for finding the (positive, null, or negative) time distance between two
Time objects, which returns an object of class 0ffset; (3) an operation ‘+’

3

LAavAzzA, MORASCA, MORZENTI

that takes a parameter d of class 0Offset and returns the Time object that lies
at a time distance d in the future if d is positive or in the past if d is negative;
and (4) an operation called futrInterval that takes a parameter of class
Offset and returns a Collection all of Time points within a distance d in
the future (symmetrically, the operator pastInterval returns the Collection
of all Time points within a distance d in the past). Class 0ffset has sum and
subtraction operations between its objects.

OclAny

[I I [|
|OcIType| |OcIState| |OcIModeIEIement | | Real | | Integer |

| Time || Offset | |Boo|ean || String |

OclVoid

Fig. 1. The OCL standard library extended with types Time and Offset.

Time and Offset may be discrete or dense, depending on the application at
hand. From a methodological viewpoint, continuous time is useful when mod-
eling the evolution over time of intrinsically continuous physical entities (e.g.,
a temperature or a voltage) that are external to the device or system under
development and that must be monitored or controlled. The use of contin-
uous entities is indispensable even for just expressing the user requirements,
and a fortior: for analyzing and proving their satisfaction in the System Re-
quirements analysis [6]. On the other hand, discrete time will suffice to model
parts corresponding to digital, synchronous devices and in general in the UML
artifacts related with detailed specification, design and implementation of the
device under development.

The adoption of a possibly dense time has implications on the semantics of
the OTL language, because OCL assumes (see [2], Appendix A on semantics)
that quantified variables range only over finite sets and defines the meaning of
quantification in terms of finite iterations, like in the iterative statements
of programming languages. In the OTL language, instead, the semantics
of quantification over time cannot be based on finite iteration, but must be
defined in the same way as in more conventional mathematical logics that
include arithmetic. We do not expect any technical difficulty in providing this
kind of semantics for OTL, but we do not include this in the present work,
mainly for space reasons, and leave it as a further development.

OTL formulas are evaluated with respect to an implicit current time in-
stant. To allow for the evaluation of a predicate p at a time different from
the current one, OTL introduces —consistent with the OCL notation— a new
primitive as a method of class Time. Method eval receives an 0clExpression
as the parameter (p) and returns the (boolean) value of p at time t. This is

4

LAavAzzA, MORASCA, MORZENTI

denoted as t.eval(p) or, more concisely, as p@t.

All other temporal operators can be defined based on method eval. In
particular, properties can be expressed on collections of objects of class Time,
i.e., on time intervals. For instance, formula context C inv: Lasts(p, d)
specifies that p holds in the interval lasting d time units from the current time,
as defined in Table 1.

A number of operators can be likewise defined to refer to the future (e.g.
Futr, SomF, AlwF, WithinF, Until, whose intuitive meaning and formal def-
initions are in Table 1, where inf denotes the infinite 0ffset value) and
the past (e.g., the corresponding operators Past(p,d), SomP(p), AlwP(p),
WithinP(p,d), and Since(p,q)). Even though they do not add expressive
power, it is widely recognized that operators referencing the past make shorter,
more readable, and more intuitive specifications possible.

operator intuitive meaning | formal definition

Lasts(p,d) for d time units in | now.futrInterval(d)->forall(t: Time |

the future t.eval(p))
Futr(p,d) d time units in the | p@(now + d)
future
SomF (p) sometimes let I: Set(Time) = now.futrInterval(inf) in

I->exists(t: Time | p@t)

AlwF (p) always let I: Set(Time) = now.futrInterval(inf) in
I->forall(t: Time | p@t)

WithinF (p,d) | within d time units let I: Set(Time) = now.futrInterval(d) in
I->exists(t: Time | p@t)

Until(p,q) p holds until q oc- | let I: Set(Time) = now.futrInterval(inf) in

curs I->exists(t:Time | q@t and Lasts(p,t-now))

Table 1
Derived operators.

For operators that refer to time intervals we add a suffix to indicate explic-
itly if the extremes of the interval are included; we use the letter ‘i’ to denote
inclusion, and letter ‘e’ to denote exclusion, so formula Lasts_ie(p,d) states
that property p holds from now (included) to now+d (excluded).

3 A Case Study

We illustrate our dual language approach with a fragment of the specifica-
tion of a digital energy and power meter, developed for the Italian Energy
Board [11] in the TRIO object oriented temporal logic language [7]. This de-

3

LAavAzzA, MORASCA, MORZENTI

vice is certainly critical, although not “safety-critical”, because it is installed
in millions of copies, so its precision and reliability are crucial. The meter is
composed of a magnetic transducer (called G_Ferraris after the name of its
inventor) that converts the electric energy flowing through the line into the
rotation of a disk. In the peripheral part of the disk, transparent and opaque
portions are evenly alternated, so the disk position and velocity (which are
respectively proportional to energy and power consumption) can be detected
by a photocell, as shown in Figure 2 (a).

l 2 | % N
) T 7
activate
]
sampling
() (b)

Fig. 2. (a) Rotating disk and photocell; (b) Activation and sampling of photocells.

To minimize its wear, the photocell is activated only for a small fraction of the
total working time of the meter, as shown in Figure 2 (b). Once the photocell
is activated, its signal is sampled with a delay ¢, to permit it to reach a stable
state. The consumption of an energy quantum is detected when the disk
moves from a transparent portion to an opaque one, or vice versa.

A device called “Reader” issues the sampling command for the photocells
and detects the full/empty position of the disk from the reading of the pho-
tocell signal. A further device, called CostAssign, determines the cost for
the client of each consumed quantum of energy, based on the current time,
date, and applicable tariff, provided by two other components called Tariff
and Calendar. A final device, called Totalizer, computes the total amount
of the invoice to be sent periodically to the client. The overall structure of
the energy meter is shown as a simplified version of a UML-RT collaboration
diagram in Figure 3, where we have omitted unnecessary details for the sake
of readability. We have also adopted the convention of giving the same name
to pairs of connected ports.

The environment of the energy meter is represented in Figure 3 by capsule
Environment, which provides the meter with the stimuli, i.e., amount of energy
used and noise, which are general functions of time, with the provision that
the energy used is monotonically nondecreasing and the noise is limited in
absolute value, as specified formally later in the paper.

The device is subject to vibrations, which may cause minimal changes in
the position of the disk even if no energy is being consumed and the disk
should be perfectly still. These spurious transitions are filtered out by the
Reader device via a second photocell placed at an angular distance from the
first one equal to 7/2, where v is the angle of each opaque or transparent
peripheral region of the disk, as shown in Figure 4 (a). This ensures that only

6

LAavAzzA, MORASCA, MORZENTI

i —
: Calendar
Environment PhiPort - VibrationsPort
DatePort
NoisePort Photocelll
Tariff

. Photocell2

. Pos2Port | pos1Port
Reader TokenPort

PricePort

CostAssign

EnergyReportedUsedPort TotalCostPort

Activate

Port TotPort

Totalizer

Fig. 3. Collaboration diagram of the system.

one of the two photocells may generate spurious transitions, so the signals
from the second photocell can be used to confirm transitions detected by the
first one: a rising edge (i.e., a switch from “empty” to “full” signal) from the
first photocell is confirmed by the subsequent rising edge of the second one,
and similarly for the falling edge, as shown in Figure 4 (b).

Y First

photocell

7U M Second
photocell
Rising edge Confirm Falling edge Confirm
rising edge falling edge

(a) (b)

Fig. 4. (a) Opaque and transparent regions on the disk; (b) Confirmation of edges.

The class diagram of the system is given in Figure 5. For space reasons we
have omitted protocol definitions, which can be easily inferred by the reader.
The G_Ferraris rotates the disk so that the angle of the disk is always pro-
portional to the energy used. It may also generate spurious vibrations, whose
amplitude is known to be limited. Such behavior can be specified in a purely
declarative way by means of the following OTL statements:

context G_Ferraris
inv: abs(self.Vibrations) <= Phi_e
inv: now >= StartedAt implies
Phi = Phi@StartedAt + k * EnvironmentPort.Energy_used()

7

LAavAzzA, MORASCA, MORZENTI

Calendar Tariff

CurrentTime ()

CurrentDate () CurrentTariff () : Double

Reader
delta : Integer = 20
delta_1 : Integer = 25 —
delta_2 : Integer = 3100

nq : Integer =0

<<constant>> k : Double TotalCost

EnergyUsedReported () : Double add(tar : Double)

token()
Disk Photocell
<<constant>> n : Integer = 10
<<constant>> N : Integer @ ——on)
/ gamma : Double +observed 2|Off()
Full() : Boolean

alfa() : Double
gamma() : Double G Ferraris
pos_F() : Boolean Phi - Double =
Full) : Boolean Vibrations : Double

| <<constant>> Phi_e : Double
StartedAt : Time
<<constant>> k : Double

Environment

Noise() : Double Phi() : Double
EnergyUsed () : Double Vibrations() : Double

Fig. 5. Class diagram of the system.

where Phi represents the rotation angle of the disk, Phi_e is the maximum am-
plitude of vibrations, k is the constant ratio between Phi and the energy used.
Attributes Vibrations and StartedAt represent the generated vibrations and
the time at which the G_Ferraris was activated, respectively.

The disk is characterized by n, the number of transparent sectors of the
disk; gamma, the size (expressed as an angle) of each sector (see Figure 4 (a));
N, a coefficient used to make the position of the disk independent from the
model of meter considered. gamma can be defined as follows (in plain OCL):

context Disk inv: gamma=3.14159/self.n

Class Disk is equipped with method alfa(), which computes the sum of
the vibrations, noise and the normalized angular position Phi, i.e., what is
observed by the photocells. Operation alfa() can be formalized as follows:

context Disk::alfa():Real

pre: True

post: Result = EnvironmentPort.Noise() +
PhiPort.Phi()/self.N + VibrationsPort.Vibrations()

pos_F() is also a method of the disk: it is a boolean function that states if
the disk (i.e., Phi) is in a position that will be read by the photocell as full,
and false otherwise. It is formalized by the following OCL statement

context Disk::pos_F():Boolean

pre: self.oclInState(Active)

post: let X:Double = mod(alfa(),(2*gamma)) in
(0 <= X and X < gamma) and Result = True) or
(gamma <= X and X < 2*gamma) and Result = False)

8

LAavAzzA, MORASCA, MORZENTI

where mod is the modulo operation.
The behavior of the photocells associated with the Disk is specified by the
very simple statechart reported in Figure 6 (a).

TokenPort.token() /
ng = ng+1 ~TotPort.add(DatePort .current_tariff())

ActivatePort.On ‘

(@) (b)

Inactive

ActivatePort. Off

Fig. 6. Statecharts of class photocell (a) and class CostAssign (b).

For the photocell it is important to specify the Full() method:

context Photocell::Full():Boolean
pre: self.oclInState(Active)
post: (observed.pos_F()and Result = True) or
(not observed.pos_F()and Result = False)

The photocell can be asked to provide the position only if the cell is active.
The Reader has to accomplish two main tasks: to activate the photocells
periodically, and to detect transitions from a transparent sector to an opaque
sector and viceversa. The behavior of the Reader class is modeled by the
statechart in Figure 7, which implements the strategy for filtering out spurious
transitions. Let fulll and emptyl be predicates denoting the detection of
opaque or transparent regions on the first photocell (full2 and empty2 are
defined in a similar way).

context Reader
def fulll: Boolean = PosiPort.Full()
def emptyl: Boolean = not PoslPort.Full()

The rising and falling edges on the first photocell are defined by predicates
risingEdgel and fallingEdgel in the following formulas (risingEdge?2 and
fallingEdge2 are defined similarly for the second photocell):

def risingEdgel: Boolean = fulll and Since(not fulll, emptyl)
def fallingEdgel: Boolean = emptyl and Since(not emptyl, fulll)

Predicates confirmedRisingEdge and confirmedFallingEdge, are defined in
terms of the previous predicates as follows:

def confirmedRisingEdge: Boolean =

risingEdge2 and Since(not risingEdge2, risingEdgel)
def confirmedFallingEdge: Boolean =

fallingEdge2 and Since(not fallingEdge2, fallingEdgel)

Finally, the detection of an energy quantum occurs at every “confirmed edge” —
whether rising or falling— and results in sending a token message to CostAssign
through the TokenPort. This is specified in OTL as follows:

inv: TokePort~token() = (confirmedRisingEdge or confirmedFallingEdge)

9

LAavAzzA, MORASCA, MORZENTI

Message sending can be indicated in OCL only in post-conditions (as the time
scope of the event is the execution of an operation). In OTL we can define
precisely when the message sending occurs, so we are not constrained to use
this construct only in post-conditions.

The OTL formula above is part of the model of the Reader component
of the energy meter, and contributes to specify its behavior, implemented
through a statechart (Figure 7).

Active
after(delta) [Pos1.GetPosition()]

after(delta)
[Pos1. GetPosition() and Pos2.GetPosition()]
~Distrib.token

after(delta) [Pos1.GetPosition()]

After(delta) [Pos1.GetPosition()]

after(delta)

[not Pos1.GetPosition() and
not Pos2.GetPosition()]
"Distrib.token

after(delta)
after(delta) [not Pos1.GetPosition()]
[Posl. GetPosition and

not Pos2. GetPosition()]

After(delta)
[not Pos1. GetPosition and
Pos2. GetPosition()]

after(delta)
not Pos1.GetPosition()]

after(delta) [Pos1.GetPosition()]
after(delta) [not Pos1.GetPosition()]

% after(delta) [not Pos1.GetPosition()] Waiting_to_start]

After(delta_2) ~Photocell.On After(delta_1) “Photocell. Off APhotocell.On
°

Fig. 7. Statechart of class Reader.

The activation of the photocells can be specified by means of OTL statements
like the following (where delay is some constant):

context Reader

inv: ActivatePort~0On()@StartedAt+delay

inv: ActivatePort”0On()@now implies
(not ActivatePort~0ff()@now and
Lasts_ee(not (ActivatePort~0On() or ActivatePort~0ff()), deltal) and
ActivatePort~0ff () @now+deltal)

inv ActivatePort~0ff ()@now implies
(not ActivatePort~0n()@now and
Lasts_ee(not (ActivatePort~0n() or ActivatePort~0ff()), delta2) and
ActivatePort~0n()@now+delta2)

Reader provides messages token to the CostAssign unit, which uses them
as specified by the statechart in Figure 6 (b). Every time the CostAssign
unit receives a token, it increments the variable nq, which represents the total
number of token received, and calls the add operation of the Totalizer unit,
specifying the current tariff, based on the current date and time.

The total amount of the energy consumed is computed by multiplying the
number of tokens nq by a constant k (the energy ”quantum”). The Totalizer

10

LAavAzzA, MORASCA, MORZENTI

unit is thus able to compute the price of the energy consumed.

A few global properties of the model can also be expressed with OTL.
The amount of used energy reported by the device s monotonically nondecreas-
ing. The following OTL statement describes this requirement via the usual
definition of monotonicity, where D (the length of the interval) is a constant
value defined in the context of class CostAssign:

context CostAssign
inv: let DS = Set(0Offset) = [0..D] in
DS -> forall(d: Offset |
EnergyUsedReported() >= past(EnergyUsedReported(), d))

The cost of the enerqy consumed at constant tariff increases proportionally to
the consumed energy and the tariff. Given an arbitrary time interval of length
IL, in which the applicable tariff is constant, the variation in the total cost
of the consumed energy is the product of the tariff and the energy consumed
during interval IL:

context Totalizer
inv: let TS = Set(Integer) = [minTariff .. maxTariff] in
TS -> forall (tr: Integer | Lasted(Tariff.CurrentTariff()=tr,IL)
implies TotalCost - past(TotalCost,IL) = trx
(CostAssign.EnergyUsedReported()-
past(CostAssign.EnergyUsedReported(),IL)))

The difference (in absolute value) between the energy reported used and the
enerqy actually used over any time span of a predefined constant length TSL
(say, a week or a month) is invariably less than the energy corresponding to a
quantum, say quantumEnergy:

context CostAssign

inv: abs(EnergyUsedReported()-past(EnergyUsedReported(),TSL)-
(Environment .EnergyUsed-past (Environment .EnergyUsed,TSL)))
< quantumEnergy

This property guarantees that the consumer does not have to pay more than
the due, while the energy company does not get paid less than due.

These global properties, as well as any property possibly attached to com-
ponent capsules, can be used in the analysis and verification of the system.

4 Review of the literature

A few proposals have appeared in the recent literature to introduce timing
features in UML in a rigorous, consistent way. A number of these do not deal
with metric time, so we do not review them here. Among the proposals that
explicitly deal with metric time, a few representative ones may be considered.
Flake et al. [8] provide a state-oriented temporal extension to OCL. A formal
concept of state sequence is introduced, on top of which temporal properties
are specified. The syntax is kept consistent to the OCL syntax. However, the

11

LAavAzzA, MORASCA, MORZENTI

authors themselves note that the OCL syntax may be somewhat clumsy, and
different constraint languages may be used, provided that a translation mech-
anism into OCL is used. Dense time is used by Roubtsova et al. [9], whose
approach affects class diagrams and statecharts diagrams, but not OCL, based
on the idea that providing OCL with a concept of path would be outside the
framework of OCL. Temporal properties are expressed as a so-called specifi-
cation class, associated with a formal constraint. A specification class is in
specification relationship with an actual class. An interesting aspect is that
most approaches tend to use a syntax based on temporal logic, instead of an
OCL-like syntax. Sendall and Stroheimer [10] introduce timing features on
UML statecharts again and provide five kinds of properties to capture the
temporal aspects of the specifications of a time-dependent system, namely the
times at which events may occur, the durations of activities, and the frequency
of state transitions, so the approach can be used for specifying real-time and
performance properties. None of the above mentioned approaches, however,
provides a logic that allows the designer to properly describe the system re-
quirements without referencing elements of the operational model explicitly.

The OMG document “UML Profile for Schedulability, Performance, and
Time Specification” [5] defines the standard way of introducing time into UML
models. However, it seems that the whole document was conceived mainly to
support design and implementation, rather than specification. Accordingly,
it provides mechanisms —like clocks and timers— for dealing with time in an
operational style, but does not address the problem of specifying the properties
of the system at an abstract level. Using this profile, one can write statecharts
that specify the time behaviour of the system in reaction to events generated
by clocks and timers. This is a suitable way of describing implementations,
but is hardly applicable in the problem domain, where timers and clocks are
not present.

5 Conclusions

The development of real-time critical applications calls for a specific process
and rigorous notation. We propose a “dual language” approach: the structure
of the system and the behavior of the system’s components are modeled via
UML, while a new descriptive language based on temporal logic, called Object
Temporal Logic, allows the developer to assert properties of the system at an
abstract specification level. Our proposal supports a systematic and rigorous
development, centered on explicit, possibly formal requirements specification,
and requirement validation and verification through analysis, possibly in the
form of property proving via deductive methods or model checking.

12

LAavAzzA, MORASCA, MORZENTI
References

[1] OMG, “Unified Modeling Language Specification Version 1.5”, March 2003,
formal/03-03-01. URL: http://www.omg.org.

[2] “Response to the UML 2.0 OCL RfP, Revised Submission, Version 1.6”, January
6, 2003, OMG Document ad/2003-01-07.

[3] “Unified Modeling Language: Infrastructure, version 2.0, Updated submission
to OMG RFP ad/00-09-01”, September 2002.

[4] “Unified Modeling Language: Superstructure version 2.0, 3¢ revised submission
to OMG RFP ad/00-09-02”, OMG document ad/2003-04-01, 10 April 2003.

[5] “UML Profile for Schedulability, Performance, and Time Specification”, OMG
Adopted Specification, ptc/02-03-02, March 2002.

[6] Gargantini, A. and Morzenti, A., Automated Deductive Requirements Analysis
of Critical Systems, ACM TOSEM, 10 (2001), 225-307.

[7] Morzenti, A. and San Pietro, P., Object-Oriented Logic Specifications of Time
Critical Systems, ACM TOSEM, 3 (1994), 56-98.

[8] Flake, S. and Mueller, W. Formal semantics of static and temporal state-
oriented OCL constraints. SoSyM 2(3), October 2003.

[9] Roubtsova, E., Van Katwijk, J., Toetenel, W. and De Rooij, R., Real-Time
systems: specification of properties in UML, in Proceedings of ASCI 2001, May
2001, 188-195.

[10] Sendall, S., and Strohmeier, A., Specifying concurrent system behaviour and
timing constraints using OCL and UML, in Proc. of UML 2001, LNCS 2185,
October 2001, 391-405.

[11] Morzenti, A., Paci, M. and Veroni, F. “Specificha TRIO dell’Unita di
Elaborazione Periferica”, 19/1/93, Draft version 3, In Italian.

13

http://www.omg.org

	Introduction
	The OTL language
	A Case Study
	Review of the literature
	Conclusions
	References

