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1 Introduction

The relevance of black holes (BHs) in AdS spaces is known for several reasons. One is of
course the AdS/CFT correspondence and its several applications, for instance to condensed
matter physics (see e.g. [1]), Fermi liquids physics [2], and superconductivity [3], to name
a few. In such frameworks, the coupling to electromagnetic charges and scalar fields is
of utmost importance, at least in order to deal with for realistic physical models; as a
consequence, gauged supergravity models including Abelian gauge fields and coupled to
non-linear sigma models quite naturally acquire a key role. On the other hand, BPS
solutions provide examples in which supersymmetric conformal field theories are defined on
curved backgrounds, the conformal boundaries. However, non-BPS as well as non-extremal
BH solutions turn out to have intriguing applications within the holographic paradigm, such
as, for example, to finite temperature condensed matter systems. Another important and
more recently established framework is the Kerr/CFT correspondence, which offer valuable
insights into the microscopic description and computation of BH entropy (cf. e.g. [4, 5]).

The structure of single-center extremal BPS black holes in N = 2, D = 4 ungauged
supergravity is well known: they are asymptotically flat solutions to Maxwell-Einstein equa-
tions, preserving eight supersymmetries at spatial infinity (at which, due to the absence
of a gauge potential, scalar fields are unfixed moduli), then breaking all supersymmetry
when radially flowing towards the event horizon, and finally restoring half of the super-
symmetries when the scalar fields, regardless of their asymptotical values, are attracted
to fixed values, purely dependent on the conserved electric and magnetic BH charges, at
the spherically symmetric horizon. This is the celebrated attractor mechanism [6–10]. In
gauged supergravity, the physical scenarios open up to a wide range of possibilities, one of
which will be the object of the present investigation. Recent years witnessed unanticipated
progress in finding BPS, as well as non-BPS and non-extremal, thermal BH solutions in
generally matter coupled N = 2 gauged supergravity in D = 4 space-time dimensions; see
for instance [11–27]. In presence of gauging (of the isometries of the scalar manifolds), the
supersymmetric BH solutions may be asymptotically AdS4 and preserve all eight supersym-
metries, with the scalars being fixed at critical points (at least local minima) of the gauge
potential itself. In this framework, the near-horizon geometry of extremal BHs is no more
the Bertotti-Robinson conformally-flat AdS2×S2 geometry, but rather generalizes to spher-
ical, hyperbolic and also flat configurations (with generally non-vanishing Weyl tensor).

Whereas the aforementioned attractor mechanism and its exploitation in terms of crit-
ical dynamics of an effective black hole potential [10] is well studied in the ungauged theory,
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a systematic study of the attractor mechanism and of the corresponding (generalized) ef-
fective BH potential is still missing in gauged supergravity, notwithstanding the wealth of
possibilities of the gauged scenario. Investigation of attractor flows in presence of gauging
started to be carried out in the BPS case in [28] and [29], as well as in [30] and [31] in
the effective black hole potential formalism (in [31] the coupling to hypermultiplets was
considered, too).

Refs. [30, 31] and [32] provided the construction of an effective BH potential Veff which
depends on the gauge potential V , and moreover generalizes the BH potential VBH of
the ungauged case (to which it reduces in the limit of zero gauging). At the (unique)
event horizon of extremal BHs, the (at least local minima) critical points of Veff govern the
attractor mechanism; despite scalar fields are not generally all stabilized at the BH horizon
(and thus a moduli space of “flat” directions is present), the non-negative value of Veff at
the BH horizon provides the Bekenstein-Hawking BH entropy1 (in units of π):

S

π
= Veff|∂Veff=0 . (1.1)

The present paper concerns the classification of the critical points of Veff and the study
of the corresponding properties of the extremal BH solutions, in N = 2 D = 4 supergravity
coupled to vector multiplets in presence of a (generally dyonic) U(1) Fayet-Iliopoulos (FI)
gauging. By denoting the number of vector multiplets with nv, and developing on the
findings of [32], we will exploit a manifestly symplectic, Sp(2nv+2,R)-covariant formalism.
Furthermore, we will use structural identities of the special Kähler geometry of vector
multiplets’ scalar manifolds in order to completely classify all the possible extremal BH
solutions with spherical or hyperbolic near-geometries. As it will be evident from the
treatment below, our analysis encompasses both BPS and non-BPS configurations, and we
will provide detailed analysis of BPS sub-sectors throughout.

Upon extremizing Veff, two main classes of critical points arise out; namely:

Class I, corresponding to critical points of Veff which are also critical points of both VBH
and V (all placed at the horizon):

∂iVBH = 0;
∂iV = 0;

}
⇒ ∂iVeff = 0, ∀i. (1.2)

Class II, corresponding to critical points of Veff which are not critical points of VBH nor
of V , with the gradients of VBH and of V being proportional:

∂iVBH =
(
2VBHV + κ

√
1− 4VBHV − 1

)
2V 2 ∂iV, ∀i. (1.3)

1In general, proper extremal BH attractors are defined by (at least local) minima of the effective BH
potential, both in the ungauged and gauged theory. For what concerns the ungauged case, in the symmetric
cosets of special geometry, all critical points of VBH are characterized by an Hessian matrix with strictly
non-negative eigenvalues (with vanishing eigenvalues corresponding to “flat” directions of VBH itself) [33].
In the gauged framework under consideration, we are assuming the same to hold for the critical points of
Veff; indeed, the zero Hessian eigenvalues seems to be ubiquitous also in presence of gauging (see e.g. [13]).
We leave a detailed analysis of the Hessian modes at the critical points of Veff for further future work.
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For both classes, at least for symmetric scalar manifolds’ geometries, the BH entropy
can be related to suitable (2-)polarizations of a quartic structure, invariant under U -
duality,2 and primitive in all cases but for minimal coupling of the vector multiplets [36, 37].
Thus, our analysis provides an extension of the analysis of [38] (subsequently developed
in [39]), in which algebraic BPS equations supported by generally dyonic charge configura-
tion, and with a cubic prepotential function, were solved. Thence, we will recognize some
examples among the currently known solutions as belonging to a corresponding sub-class
of the aforementioned two main classes of critical points of Veff. It should also be remarked
here that an interesting outcome is provided by the explicit construction of a novel static
extremal BH solution in U(1) FI gauged supergravity, supported by both non-BPS and
BPS charge configurations.

All in all, the general structure of this paper splits up into three main parts:

1. In the first part (sections 2–4), we will exploit special Kähler geometry and the 2-
polarizations of the quartic invariant structure in symmetric special cosets, in order
to retrieve, and further generalize in various ways, some known results on the entropy
of extremal BH attractors.

2. In the second part (sections 6–11), we consider the effective BH potential Veff in-
troduced in [30, 31, 40] and provide a complete classification of its critical points,
pointing out the existence of various (yet undiscovered) BPS sub-sectors.

3. In the third part (section 12), we will provide some examples of known solutions, and
determine their placement in the classification given in the second part. Furthermore,
we will also present a novel static extremal BH solution to the STU model, in which
the dilaton interpolates between an hyperbolic near-horizon geometry and AdS4 at
infinity.

Some final remarks and four appendices conclude the paper.

2 Identities and fluxes in projective special geometry

We start by introducing the symplectic vectors Q and G of electric-magnetic black hole
fluxes resp. U(1) Fayet-Iliopoulos (FI) gaugings of N = 2, D = 4 Maxwell-Einstein
supergravity , which in the so-called 4D/5D special coordinates’ symplectic frame can be
written as

Q :=
(
p0, pi, q0, qi

)T
; (2.1)

G :=
(
g0, gi, g0, gi

)T
, (2.2)

2Here, U -duality is referred to as the “continuous” symmetries of [34]; their discrete versions are the
U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [35], which occur
when the Dirac-Schwinger-Zwanzinger quantization condition is enforced.

– 3 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
9

where the naught index pertains to the graviphoton, and i = 1, . . . , n, with n denoting
the number of vector multiplets.3 Moreover, κ is related to the constant scalar curvature
R = 2κ of the (unique) event horizon of the static extremal black hole solution under
consideration. In the following treatment we will consider κ = 1 (spherical) or κ = −1
(hyperbolic) near-horizon geometry.4

The following identities holds in the projective special Kähler geometry of the vector
multiplets’ scalar manifold5 Mv (with dimCMv = n; cf. e.g. [40–42], and refs. therein):

Q = iZV − iZV + iZ ı̄V ı̄ − iZ iVi; (2.3)
G = iLV − iLV + iLı̄V ı̄ − iLiVi, (2.4)

where

Z := 〈Q,V〉 , Zi ≡ DiZ := 〈Q,Vi〉 , (2.5)
L := 〈G,V〉 , Li ≡ DiL := 〈G,Vi〉 , (2.6)

with 〈·, ·〉 denoting the symplectic product defined in the flat symplectic bundle constructed
over the special Kähler-Hodge manifold Mv. We adopt the notation of [40–42]; see also
appendix C.

By using the results of [43–45], one can prove the following “two-centered” special
Kähler identities:

1
2 〈Q,G〉 = −Im

(
ZL

)
+ Im

(
ZiL

i
)

= −Im
(
ZL− ZiL

i
)

; (2.7)

−1
2Q

TM (N )G = Re
(
ZL

)
+ Re

(
ZiL

i
)

= Re
(
ZL+ ZiL

i
)

; (2.8)
1
2Q

TM (F)G = −Re
(
ZL

)
+ Re

(
ZiL

i
)

= −Re
(
ZL− ZiL

i
)
, (2.9)

where Li = gi̄L̄, and N = NΛΣ and F = FΛΣ respectively are the (complexified) ki-
netic vector matrix and the Hessian matrix of the prepotential F . The symplectic, real,
symmetric (2n+ 2)× (2n+ 2) matrixM (N ) is defined as

M (N ) =
(
Im (N ) + Re (N ) Im−1 (N )Re (N ) −Re (N ) Im−1 (N )

−Im−1 (N )Re (N ) Im−1 (N )

)
, (2.10)

and M (F) is defined the same way, with NΛΣ → FΛΣ. In terms of the covariantly holo-
morphic sections V and of its covariant derivatives Vi, such two matrices have the following

3In order to compare our results to Halmagy’s treatment [52], we here only deal with U(1) FI gauging
(namely, only vector multiplets). After [32], it is however possible to straightforwardly include also hyper-
multiplets’ Abelian gaugings, by simply replacing G with P := PxQx . In this case, no assumptions on the
geometry of the hypermultiplets’ scalar manifold are needed. We leave the detailed treatment of such a
framework to future investigation.

4The case κ = 0, corresponding to extremal black holes with flat horizon, deserves a separate treatment,
which we leave for future investigation.

5We will henceforth denote the imaginary unit as i.
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expressions (see e.g. [44] and refs. therein):

M(N ) = Ω
(
VV̄T + V̄VT + Vi gi̄V̄T̄ + V̄̄g̄iVTi

)
Ω (2.11)

M(F) = Ω
(
VV̄T + V̄VT − Vi gi̄V̄T̄ − V̄̄g̄iVTi

)
Ω (2.12)

where
Ω :=

(
0 −In+1

In+1 0

)
(2.13)

is the symplectic metric. Thus:

1
2Q

TM (F)G + i
2 〈Q,G〉 = −ZL+ ZiL

i; (2.14)

−1
2Q

TM (N )G − i
2 〈Q,G〉 = ZL+ LiZ

i
. (2.15)

By denoting with

H := e−K/2V; (2.16)
Hi := e−K/2Vi, (2.17)

the holomorphic symplectic sections (such that ∂ı̄H = 0 and ∂ı̄Hj = 0), using the properties
(cf. e.g. [41, 42]) 〈

H,H
〉

= −ie−K ; (2.18)〈
Hi,H̄

〉
= ie−Kgi̄, (2.19)

and defining the superpotential W and “gauging-superpotential” Y respectively as

W := e−K/2Z, Wi := e−K/2Zi, (2.20)
Y := e−K/2L, Yi := e−K/2Li, (2.21)

Eqs. (2.7)–(2.9) can be rewritten as follows:

1
2 〈Q,G〉 = −ie2KIm

(
WY

) 〈
H,H

〉
− ie2KIm

(
WiY ̄

) 〈
H̄,H

i
〉

; (2.22)

−1
2Q

TM (N )G = ie2KRe
(
WY

) 〈
H,H

〉
− ie2KRe

(
WiY ̄

) 〈
H̄,H

i
〉

; (2.23)
1
2Q

TM (F)G = −ie2KRe
(
WY

) 〈
H,H

〉
− ie2KRe

(
WiY ̄

) 〈
H̄,H

i
〉
. (2.24)

3 Symmetric very special geometry and quartic 2-polarizations

The above identities hold in the projective special Kähler geometry of the vector multiplets’
scalar manifold Mv, regardless of the data specifying such a manifold.

Instead, we will now specialize the treatment by assuming Mv to be a symmetric
(homogeneous) coset space, whose (local) geometry is given by a cubic holomorphic pre-
potential

F (X) := 1
3!dijk

XiXjXk

X0 , (3.1)
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with the cubic symmetric constant tensor dijk satisfying the so-called adjoint identity,

di(kl|dj|mn)d
ijp = 4

3δ
p
(kdlmn), (3.2)

or equivalently
Ci(kl|Cj|mn)C

ijp = 4
3δ

p
(kClmn), (3.3)

where Cijk is the Kähler covariantly holomorphic rank-3 symmetric tensor occurring in the
identities

DiVj = iCijkV
k
, (3.4)

Ri̄kl = −gi̄gkl − gilgk̄ + CikmC ̄lpg
mp, (3.5)

with Ri̄kl denoting the Riemann tensor of Mv. The dijk’s and duality structures of the
corresponding Mv’s have been classified in [47] and [48].

In this framework, the ring of invariant homogeneous polynomials under the non-
transitive action of the electric-magnetic duality group on its representation space R in
which both the aforementioned symplectic vectors Q (2.1) and G (2.2) sit, is granted to
be one-dimensional, and finitely generated by a primitive6 quartic homogeneous polyno-
mial, denoted by I4 and associated to the rank-4 completely symmetric invariant ten-
sor KMNPQ [49] (see also [50] and [51]); for instance, considering the symplectic vector
Q (2.1)∈ R, one can define

I4 (Q,Q,Q,Q) := 1
2KMNPQQMQNQPQQ. (3.6)

The explicit expression of the rank-4 invariant symmetric tensor KMNPQ = K(MNPQ) is
given by (D.1) of [55] in the so-called 4D/5D special coordinate symplectic frame [48, 53],
as well as by eq. (5.36) of [56] and by (4.4)-(4.14) of section 4.3 of [57] in a way independent
from the symplectic frame (and manifestly invariant under diffeomorphisms in Mv).

For the treatment given in the present paper, we will need to explicitly compute the
2-polarizations of I4 [57–60]:

I4 (Q+ G,Q+ G,Q+ G,Q+ G) =: I2 + 4I1 + 6I0 + 4I−1 + I−2, (3.7)

where7

I2 := I4 (Q,Q,Q,Q) = 1
2KMNPQQMQNQPQQ (3.8)

= −
(
p0q0 +piqi

)2
+ 2

3q0dijkp
ipjpk− 2

3p
0dijkqiqjqk+dijkd

ilmpjpkqlqm (3.9)

=
(
|Z|2−|Zi|2

)2
− 4

3 Im
(
ZC ı̄̄kZ

ı̄Z ̄Zk
)
−gi̄CiklC ̄mnZ

kZ lZmZn; (3.10)

6Primitivity of I4, i.e. the fact that the corresponding invariant tensor KMNPQ cannot be reduced
in terms of other lower-rank tensors, generally holds for all symmetric Mv’s characterized by the cubic
holomorphic prepotential (3.1). However, in a peculiar sub-class of BPS black holes, treated in section 5.3.1,
I4 becomes a perfect square (and so are all its non-vanishing 2-polarizations; cf. (5.34)–(5.38)).

7Note that throughout our treatment |Zi|2 and |Li|2 are shorthand for
∑n

i,j=1 ZiZ ̄g
i̄ and∑n

i,j=1 LiL̄g
i̄, respectively (unless otherwise specified).
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I1 := I4 (Q,Q,Q,G) = 1
2KMNPQQMQNQPGQ (3.11)

= −1
2

[(
p0
)2
q0g0 +p0g0q2

0

]
− 1

2
(
pipjqigj +pigjqiqj

)
−1

2
(
p0q0p

igi+p0q0g
iqi+p0g0p

iqi+g0q0p
iqi
)

+1
6
(
g0dijkp

ipjpk+3q0dijkp
ipjgk

)
− 1

6
(
g0dijkqiqjqk+3p0dijkqiqjgk

)
+1

2dijkd
ilm
(
pjpkqlgm+pjgkqlqm

)
(3.12)

= 1
2
(
|Z|2−|Zi|2

)(
ZL+ZL−Z ̄L̄−Z

jLj
)

−1
3 Im

[(
3ZLk+LZk

)
C ı̄̄kZ

ı̄Z ̄
]
− 1

2g
i̄CiklC ̄mnZ

kZn
(
Z lLm+LlZm

)
; (3.13)

I0 := I4 (Q,Q,G,G) = 1
2KMNPQQMQNGPGQ (3.14)

= −1
6

[(
p0
)2
g2

0 +
(
g0
)2
q2

0 +4p0g0q0g0

]
−1

6

[(
pigi

)2
+
(
giqi

)2
+2pigjqigj +2pigjqjgi

]
−1

3
(
p0q0g

igi+p0g0p
igi+p0g0g

iqi+g0q0p
igi+g0q0g

iqi+g0g0p
iqi
)

+1
3
(
g0dijkp

ipjgk+q0dijkp
igjgk

)
− 1

3
(
g0dijkqiqjgk+p0dijkqigjgk

)
+1

6dijkd
ilm
(
pjpkglgm+4pjgkqlgm+gjgkqlqm

)
(3.15)

= 1
3
(
|Z|2−|Zi|2

)(
|L|2−|Li|2

)
+ 1

6
(
ZL+ZL−Z ı̄Lı̄−Z

iLi
)2

−2
3 Im

[(
ZLk+LZk

)
C ı̄̄kZ

ı̄L̄
]

−1
6g

i̄CiklC ̄mn
(
4ZkZmLlLn+ZkZ lLmLn+ZmZnLkLl

)
; (3.16)

I−1 := I4 (Q,G,G,G) = 1
2KMNPQQMGNGPGQ (3.17)

= −1
2

[(
g0
)2
q0g0 +p0g0g2

0

]
− 1

2
(
pigjgigj +gigjqigj

)
−1

2
(
p0g0g

igi+g0q0g
igi+g0g0p

igi+g0g0g
iqi
)

+1
6
(
3g0dijkp

igjgk+q0dijkg
igjgk

)
− 1

6
(
3g0dijkqigjgk+p0dijkgigjgk

)
+1

2dijkd
ilm
(
pjgkglgm+gjgkqlgm

)
(3.18)

= 1
2
(
|L|2−|Li|2

)(
ZL+ZL−Z ̄L̄−Z

jLj
)

−1
3 Im

[(
ZLk+3LZk

)
C ı̄̄kL

ı̄L̄
]
− 1

2g
i̄CiklC ̄mnL

kLn
(
ZmLl+Z lLm

)
; (3.19)
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I−2 := I4 (G,G,G,G) = 1
2KMNPQGMGNGPGQ (3.20)

= −
(
g0g0 +gigi

)2
+ 2

3g0dijkg
igjgk− 2

3g
0dijkgigjgk+dijkd

ilmgjgkglgm (3.21)

=
(
|L|2−|Li|2

)2
− 4

3 Im
(
LC ı̄̄kL

ı̄L̄Lk
)
−gi̄CiklC ̄mnL

kLlLmLn. (3.22)

Notice that

I−1 = I1|Q↔G ; (3.23)
I−2 = I2|Q→G ; (3.24)

I0 = I0|Q↔G . (3.25)

Furthermore, I2, I1, I0, I−1 and I−2 form a spin-2 (quintet) representation of the would-be
horizontal symmetry SLh(2,R) acting on the doublet (Q,G)T [58].

4 BPS black hole entropy. . .

In [28], within the assumption of mutual non-locality8

〈G,Q〉 = −κ, (4.1)

the general form of the ( 1
4 -)BPS conditions were obtained to read

Z = iκSL; (4.2)
Zi = iκSLi, (4.3)

where S denotes the Bekenstein-Hawking entropy9 of the extremal BPS black hole solution.
Note that, by virtue of the identity (2.7), the mutual non-locality condition (4.1) can be
rewritten as

2Im
(
ZL− ZiL

i
)

= −κ. (4.4)

From (4.2)–(4.3), one obtains the following expressions of the Bekenstein-Hawking
entropy S of BPS extremal black holes (no sum on repeated indices)

S = −iκZ
L

= −iκZj
Lj
, ∀j, (4.5)

implying

S = −iκZ
L
L
L

= −iκZL
|L|2

= − iκ
2 |L|2

(
ZL− ZL

)
=
κIm

(
ZL

)
|L|2

, (4.6)

and

S = −iκZjL
j

LjL
j = −iκ

2LjL
j

(
ZjL

j −Z ̄L̄
)

=
κIm

(
ZjL

j
)

LjL
j , (4.7)

8Actually, [28] only dealt with spherical horizon (κ = 1). The derivation of BPS conditions for hyperbolic
horizon (κ = −1) was done in [32].

9In units of π, as understood throughout all the treatment.
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where no summation on repeated indices is performed. From (4.6) and (4.7), one obtains

|L|2 S − |Li|2 S = κIm
(
ZL− ZiL

i
)

= κ

2 〈G,Q〉 ; (4.8)

m

S
(
|L|2 − |Li|2

)
= κ

2 〈G,Q〉 , (4.9)

where we recall that n is the number of vector multiplets (or, equivalently, the complex
dimension of Mv), and the identity (2.7) has been used in the last step.

We should here also recall another expression for the BPS entropy in the case κ = 1,
obtained in [28] by studying the near-horizon dynamics:

S = 2
(
|Zi|2 − |Z|2

)
= 1

2
(
|Li|2 − |L|2

) = QTM(F)Q = 1
GTM(F)G , (4.10)

implying

S =

√√√√ |Z|2 − |Zi|2
|L|2 − |Li|2

=
√
QTM(F)Q
GTM(F)G , (4.11)

where we have recalled the symplectic-invariant quadratic form of projective special Kähler
geometry defined by the matrixM(F) (see (2.10)–(2.12)). We also observe that (4.9) (with
κ = 1) and (4.10) consistently imply (4.1) with κ = 1, because

S
(
|L|2 − |Li|2

)
= 1

2 〈G,Q〉 ⇔ 〈G,Q〉 = −1. (4.12)

By plugging (4.2)–(4.3) into (2.4), one obtains

iQ = κSG + 2ZV − 2Z ı̄V ı̄, (4.13)

a relation which holds at the event horizon of the BPS extremal black hole.
Within these conventions, we can write the following symplectic products, that will be

useful later,

〈V ,V〉=−i,
〈
Vi,V ̄

〉
= igi̄,

〈
Vi,V

j
〉

= iδ ji ,
〈
V ı̄,V ̄

〉
=−iδ ̄ı̄ , (4.14)〈

V,Vi
〉

=
〈
V ı̄,V

〉
= 0, 〈Vi,Vj〉=

〈
V ı̄,V ̄

〉
= 0, 〈V ,Vi〉=

〈
V ,V ı̄

〉
= 0. (4.15)

We note that, by using the BPS relation (4.13), the contractions between iQ and the
symplectic sections allow to retrieve again the BPS relations (4.2)–(4.3):

i 〈V ,Q〉 = −iZ = κSL ⇔ Z = iκSL; (4.16)
i 〈Vi,Q〉 = −iZi = κSLi ⇔ Zi = iκSLi. (4.17)

Moreover, (1
4 -)BPS conditions (4.2)–(4.3) yield

〈Q,G〉 = −2κS
(
|L|2 − |Li|2

)
; (4.18)

QTM (N )G = QTM (F)G = 0. (4.19)
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Note that (4.1) and (4.18) yield the generalization of the last term of the r.h.s. of (4.10) to
κ = ±1, namely

S = κ

2
(
|Li|2 − |L|2

) = κ

GTM (N )G . (4.20)

Remarkably, in section 8 we will obtain a generalization, given by (8.2), of the first term
in the r.h.s. of (4.10) holding for both cases κ = ±1.

5 . . . and its relations with quartic 2-polarizations

The BPS conditions and their properties discussed above hold in the projective special Käh-
ler geometry of the vector multiplets’ scalar manifold Mv, regardless of the data specifying
such a manifold.

Once again, we will now specialize the treatment by assuming Mv to be a symmetric
(homogeneous) coset space, associated to the cubic holomorphic prepotential F (3.1). In
this framework, we are going to determine the relations among the BPS black hole entropy
S and the various 2-polarizations of the quartic invariant introduced in section 3.

In order to do this, we start and consider the contraction of the duality invariant
quartic structure 1

2KMNPQ with the “algebraic BPS conditions” given by (4.13). To this
aim, from (4.13) we get

QM + iκSGM = 2i
(
−ZVM + Z ı̄VMı̄

)
, (5.1)

whose l.h.s. and r.h.s. can then be contracted as follows:

〈Q+ iκSG,Q+ iκSG〉 = 0; (5.2)(
QM + iκSGM

)T
M(N )

(
QM + iκSGM

)
= 0; (5.3)(

QM + iκSGM
)T
M(F)

(
QM + iκSGM

)
= 0, (5.4)

and
1
2KMNPQ

(
QM + iκSGM

)(
QN + iκSGN

)(
QP + iκSGP

)(
QQ+ iκSGQ

)
(5.5)

= 8 · 12KMNPQ

(
−ZVM +Z ı̄VMı̄

)(
−ZVN +Z ı̄VNı̄

)(
−ZVP +Z ı̄VPı̄

)(
−ZVQ+Z ı̄VQı̄

)
.

Let us start from the l.h.s. of eq. (5.5), which, by recalling the definitions (3.8)–(3.20),
reads

1
2KMNPQ

(
QM + iκSGM

) (
QN + iκSGN

) (
QP + iκSGP

) (
QQ + iκSGQ

)
= 1

2KMNPQQMQNQPQQ + 4iκS · 1
2KMNPQQMQNQPGQ

−6S2 · 1
2KMNPQQMQNGPGQ

−4iκS3 · 1
2KMNPQQMGNGPGQ + S4 · 1

2KMNPQGMGNGPGQ

= I2 − 6S2I0 + S4I−2 + 4iκS
(
I1 − S2I−1

)
. (5.6)
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On the other hand, the r.h.s. of eq. (5.5) reads

8 · 1
2KMNPQ

(
−ZVM + Z ı̄VMı̄

) (
−ZVN + Z ı̄VNı̄

) (
−ZVP + Z ı̄VPı̄

) (
−ZVQ + Z ı̄VQı̄

)
= 8Z4 · 1

2KMNPQV
MVNVPVQ − 32Z3Z ı̄ · 1

2KMNPQV
MVNVPVQı̄

+48Z2Z ı̄Z ̄ · 1
2KMNPQV

MVNVPı̄ V
Q
̄ − 32ZZ ı̄Z ̄Z k̄ · 1

2KMNPQV
MVNı̄ V

P
̄ V

Q

k̄

+8Z ı̄Z ̄Z k̄Z l̄ · 1
2ΩMNPQV

M
ı̄ V

N
̄ V

P
k̄ V

Q

l̄ . (5.7)

The vanishing of each term of the r.h.s. (5.7) of eq. (5.5) can be proved without
performing any computation,10 as follows. Through the expressions (3.8)–(3.22), the five
two-centered invariants I2, I1, I0, I−1 and I−2 are quartic homogeneous polynomials in the
respective variables:

I2 := 1
2KMNPQQMQNQPQQ = I2

(
Z,Zi,Z,Z ı̄

)∣∣∣
Z:=〈Q,V〉, Zi:=〈Q,Vi〉

; (5.8)

I1 := 1
2KMNPQQMQNQPGQ

= I1
(
Z,Zi,Z,Z ı̄,L,Li,L,Lı̄,

)∣∣∣
Z:=〈Q,V〉, Zi:=〈Q,Vi〉, L:=〈G,V〉, Li:=〈G,Vi〉

; (5.9)

I0 := 1
2KMNPQQMQNGPGQ

= I0
(
Z,Zi,Z,Z ı̄,L,Li,L,Lı̄,

)∣∣∣
Z:=〈Q,V〉, Zi:=〈Q,Vi〉, L:=〈G,V〉, Li:=〈G,Vi〉

; (5.10)

I−1 := 1
2KMNPQQMGNGPGQ = I1|Z↔L, Zi↔Li ; (5.11)

I−2 := 1
2KMNPQGMGNGPGQ = I2|Z→L, Zi→Li . (5.12)

Thus, one can proceed and evaluate

1
2KMNPQV

MVNVPVQ = 1
2KMNPQVMVNVPVQ

(5.8)= I2
(
Y,Yi,Y,Yı̄

)
= 0; (5.13)

1
2KMNPQV

MVNVPVQı̄ = 1
2KMNPQVMVNVPVQi

(5.9)=

= I1
(
Y,Yj ,Y,Y̄,Xi,Xij ,Xı̄,Xı̄̄,

)
= 0; (5.14)

1
2KMNPQV

MVNVPı̄ V
Q
̄ = 1

2KMNPQVMVNVPi V
Q
j

(5.10)=

= I0
(
Y,Yk,Y,Yk̄,Xa,Xak,Xā,Xāk̄

)
= 0; (5.15)

1
2KMNPQV

MVNı̄ V
P
̄ V

Q

k̄ = 1
2KMNPQV

MVNi VPj V
Q
k

(5.11)=

= I1
(
Y,Yl,Y,Yl̄,Xb,Xbl,Xb,Xbl̄

)∣∣∣
Y↔Xb, Yl↔Xbl

= 0; (5.16)

1
2KMNPQV

M
ı̄ V

N
̄ V

P
k̄ V

Q

l̄ = 1
2KMNPQVMi VNj VPk V

Q
l

(5.12)=

= I2
(
Y,Ym,Y,Ym

)∣∣∣
Y→Xc, Ym→Xcm

= 0, (5.17)

10An explicit computation is presented in appendix A.
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where a = i, j, b = i, j, k, and c = i, j, k, l. Crucially, in the last step of eqs. (5.13)–(5.17)
the homogeneity of the (suitable n-polarizations, with11 n = 1, 2, 3, 4, of the) polynomials
I2, I1, I0, I−1 and I−2 has been used, implying the vanishing of (5.13)–(5.17), because

Y := 〈V ,V〉 = 0; (5.18)
Ym := 〈V , Um〉 = 0; (5.19)
Xc := 〈Uc,V〉 = 0; (5.20)

Xcm := 〈Uc, Um〉 = 0, (5.21)

as a consequence of the identities (4.14)–(4.15).
Then, one can re-consider the equation (5.5),

(5.5)⇔ I2 − 6S2I0 + S4I−2 + 4iκS
(
I1 − S2I−1

)
= 0, (5.22)

and obtain two relations between the quartic 2-polarizations and the (square of) BPS
entropy, namely

I2 − 6S2I0 + S4I−2 = 0⇔ S2 ≡ S2
± = 3I0

I−2
±

√
36I2

0 − 4I2I−2

2I−2
(5.23)

and
I1 − S2I−1 = 0⇔ S2 = I1

I−1
. (5.24)

In turn, the consistency of such two expressions yield a polynomial cubic constraint among
the quartic 2-polarizations for BPS black holes:

±
√

36I2
0 − 4I2I−2 = 2I−2

( I1
I−1
− 3I0

I−2

)
; (5.25)

⇓
9I2

0I2
−1 − I2I2

−1I−2 = (I1I−2 − 3I0I−1)2 = I2
1I2
−2 + 9I2

0I2
−1 − 6I1I0I−1I−2; (5.26)

m
−I2I2

−1I−2 = I2
1I2
−2 − 6I1I0I−1I−2; (5.27)

mI−2 6=0

I2I2
−1 − 6I1I0I−1 + I2

1I−2 = 0. (5.28)

To make contact with literature, by setting I2, I1, −6I0, −I−1 and I−2 respectively equal
to a0, a2, a4, a6 and a8, formulæ (5.23), (5.24) and (5.28) respectively match eqs. (3.26),
(3.27) and (3.28) of [52], and moreover formulæ (3.8)–(3.22) accomplish the task mentioned
below eq. (3.28) therein.

Consequently, for BPS black holes (in models with symmetric vector multiplets’ scalar
manifoldsMv), as far as the evaluation of the 2-polarizations of the quartic duality invariant
I4 and their relation with BPS black hole entropy are concerned, three possibilities may
arise:

11Rigorously speaking, only the (1- and)2-polarizations of the quartic structure I4 are explicitly known.
Nevertheless, this is immaterial for the reasoning made here, because only the homogeneity (of degree 4)
matters.
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5.1 General case

I1 6= 0 (5.24)⇔ I−1 6= 0. (5.29)

Both the expressions (5.23) and (5.24) hold true, with the constraint (5.28).

5.2 Vanishing of I2, I−2 or I0

I2 = 0 (5.28)⇔ I−2 = 0 (5.28)⇔ I0 = 0. (5.30)

In this case (5.23) is meaningless, and only the expression (5.24) holds true.

5.3 Vanishing of I1 or I−1

I1 = 0 (5.24)⇔ I−1 = 0. (5.31)

In this case (5.24) is meaningless, and only the expression (5.23) holds true.

5.3.1 A noteworthy BPS sub-class

A remarkable sub-class of BPS critical points, satisfying (4.2)–(4.3), is characterized by
the further condition

CijkL
jLk = 0, ∀i, (5.32)

which implies also
CijkZ

jZk = −S2CijkL
jLk = 0, ∀i. (5.33)

Thus, whenMv is symmetric, at the BPS critical points which further satisfy (5.32)–(5.33),
the 2-polarizations (3.8)–(3.22) of the quartic duality invariant I4 read as follows:12

I2 =
(
|Z|2 − |Zi|2

)2
= S4

(
|L|2 − |Li|2

)2
; (5.34)

I1 = 0; (5.35)

I0 = 1
3S

2
(
|L|2 − |Li|2

)2
; (5.36)

I−1 = 0; (5.37)

I−2 =
(
|L|2 − |Li|2

)2
, (5.38)

yielding the relation
I2

0 = I2I−2
9 ⇒ 3I0 =

√
I2I−2, (5.39)

as well as the simple expression of BPS entropy,

S4 = I2
I−2

. (5.40)

12Even if it does not belong to the class of symmetric manifolds Mv’s with cubic holomorphic prepoten-
tial (3.1), the class of the so-called minimally coupled models of N = 2, D = 4 supergravity have CPn, and
thus symmetric, scalar manifolds [36], and the corresponding quartic structure is non-primitive, because
it is reducible in terms of a quadratic symmetric invariant structure (cf. e.g. [62], as well the treatment of
sections 3 and 4 of [61]). In this class of models the condition (5.32) holds globally (and not only at BPS
attractors) because Cijk = 0 globally. The BPS sub-class under consideration indeed encompasses all BPS
critical points in such models. For the case n = 1, see section 12.3.
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Interestingly, (5.39) is the very condition of vanishing of the radicand in the square
root in eq. (5.23), which indeed simplifies (removing the inherent “±” branching) down to

S2 = 3I0
I−2
±

√
36I2

0 − 4I2I−2

2I−2
=
√

I2
I−2

, (5.41)

which is nothing but (5.40). In fact, the BPS sub-class under consideration, defined
by (5.39), satisfies (5.31).

6 Effective black hole potential formalism

So far, we have been considering only BPS attractors; a generalization of the whole treat-
ment to encompass all classes of extremal BH attractors, including the non-BPS ones,13

can be achieved by exploiting the so-called effective black hole potential formalism. Indeed,
regardless of the specific data of the projective special Kähler geometry of the vector multi-
plets’s scalar manifolds as well as from the quaternionic Kähler geometry of the hypermul-
tiplets’ scalar manifolds, from the treatment of [30], then extended to Abelian gaugings of
hypermultiplets in [31] and made manifestly symplectic-invariant in [32], the near-horizon
attractor dynamics of the equations of motion is known to be governed by an effective black
hole potential function14 Veff, whose critical points can be related to Q’s (2.1) supporting
extremal black hole solutions in the U(1) FI gauging of N = 2, D = 4 supergravity spec-
ified by G (2.2). As specified at the start of this paper, we will not be considering the
coupling to hypermultiplets. As resulting from eqs. (D.19)–(D.20), which we report here
for simplicity’s sake, the Bekenstein-Hawking [64, 65] black hole entropy S (in units of π,
as always understood) is expressed by15

Veff := 1− κ
√
κ2 − 4V VBH
2V (6.1)

S = κVeff=κ−
√
κ2 − 4V VBH

2V , (6.2)

where the (manifestly symplectic) effective black hole potential VBH in the ungauged
case [10] and the manifestly symplectic-invariant gauge potential V [28] are defined by

VBH := |Z|2 + |Zi|2 = −1
2Q

TM (N )Q; (6.3)

V := −3 |L|2 + |Li|2 = 1
2G

TM (F)G − 2 |L|2 . (6.4)

Note how VBH is non-negative by definition, whereas V can have any sign; in particular,
the critical points of V (evaluated at spatial infinity) define the cosmological constant Λ of

13Non-BPS extremal BH solutions in supergravity with U(1) FI gaugings have been discussed in literature,
for instance in [46], in which the attractor mechanism and the scalar flow have been described by a first
order formalism exploiting a suitably defined fake superpotential.

14In the specific example of the magnetic STU model treated in section 12.2 and appendix C, the
introduction of Veff is recalled in appendix D.

15The evaluation at ∂Veff = 0 (which corresponds to ∂iVeff = ∂uVeff = 0 ∀i, ∀u) is understood throughout.
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the asymptotical geometry of the black hole solution. For κ = 1 (spherical horizon), the (at
least) local minima of Veff support extremal black holes, whereas for κ = −1 (hyperbolic
horizon) the (at least) local maxima of Veff support extremal black holes. Moreover, we will
see below that for κ = −1 the effective potential Veff does not pertain to the entropy itself,
but rather to the entropy density. It is here worth pointing out the consistency condition
for Veff (and thus for S),

1− 4VBHV > 0. (6.5)

6.1 κ = 1

This case has spherical near-horizon geometry S2. The angular integral is finite,∫ 2π

0
dϕ

∫ π

0
sin θdθ = 4π, (6.6)

and the Bekenstein-Hawking entropy-area formula holds,

S

π
= AS2

4π = r2
H = Veff|∂Veff=0 , (6.7)

where AS2 = 4πr2
H is the area of the event horizon surface S2 of radius rH , and Veff|∂Veff=0 >

0 necessarily. Explicitly, it holds that

S

π
= Veff=1−

√
1− 4V VBH

2V > 0 for


V < 0;
or
V > 0 : 1− 4V VBH > 0.

(6.8)

Note that in this case the symplectic vector of charges has magnetic and electric components
defined as (cf. (2.1))

Q :=
(
pΛ, qΛ

)T
, (6.9)

where pΛ := 1
4π

∫
S2
FΛ, qΛ := 1

4π

∫
S2
GΛ. (6.10)

6.2 κ = −1

This case has hyperbolic near-horizon geometry H2. The angular integral [31]

V :=
∫
H2

sinh θdθ ∧ dϕ (6.11)

diverges, and thus, strictly speaking, the black hole entropy S is infinite. However, for
κ = −1 one can define the entropy density

S := S
V = − Veff|∂Veff=0 , (6.12)

which is finite and positive, and being given by the opposite of the critical value of Veff;
thus, it must necessarily hold that Veff|∂Veff=0 < 0. Explicitly,

S = −Veff=−1−
√

1− 4V VBH
2V , (6.13)
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which is not consistent for V > 0, because in this case it would entail a negative entropy
density:

S = −

(
1 +

√
1− 4 |V |VBH

)
2 |V |

!
< 0. (6.14)

Therefore, for κ = −1 the relation (6.2), or equivalently (6.13), is consistent only for V < 0,
for which

S =

(
1 +

√
1 + 4 |V |VBH

)
2 |V | > 0. (6.15)

This is in line with the observation below (5.38) of [31]. Note that in this case the symplectic
vector of charges has magnetic and electric components defined as (cf. (2.1))

Q :=
(
pΛ, qΛ

)T
, (6.16)

where pΛ and qΛ are actually charge densities, defined by the following expressions (cf.
(3.10)-(3.11) of )

pΛ := 1
V

∫
H2
FΛ; (6.17)

qΛ := 1
V

∫
H2
GΛ. (6.18)

7 General properties of Veff

In N = 2, D = 4 supergravity coupled to vector multiplets and with U(1) FI gauging,
regardless of the specific data of the projective special Kähler geometry of the vector mul-
tiplets’ scalar manifolds, the attractor flow in the near-horizon limit is governed by the criti-
cal points (respectively minima for κ = 1 and maxima for κ = −1) of the effective black hole
potential16 Veff (6.1) [30, 31], such that the attractors are critical points of Veff, satisfying [30]

∂iVeff = 2V 2∂iVBH −
(
2VBHV + κ

√
1− 4VBHV − 1

)
∂iV

2V 2√1− 4VBHV
= 0, ∀i, (7.1)

where

∂iVBH = 2ZZi + iCijkZ
jZk; (7.2)

∂iV = −2LLi + iCijkL
jLk. (7.3)

Note how Veff can have any sign. Indeed, as recalled below (6.3)–(6.4), it holds that

VBH |∂VBH=0 = Sungauged > 0; (7.4)
V |∂V=0 =: Λ R 0, (7.5)

where Sungauged denotes the Bekenstein-Hawking entropy (in units of π, as understood
throughout) of the extremal black hole in ungauged N = 2, D = 4 Maxwell-Einstein

16Note that, apart from the redefinitions VBH them → VBH us
(8π)2 and Vthem → Vus

2 (cf. the last footnote of
appendix D), the Veff defined in [31] is κ times the Veff defined by (D.19) or (6.1).
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supergravity. The Bekenstein-Hawking entropy S of static extremal black hole solutions
(with spherical or hyperbolic near-horizon geometry, respectively corresponding to κ = 1
and κ = −1) in U(1) FI gauged N = 2, D = 4 supergravity is given by (6.2), in which we
recall once more that the evaluation at the horizon of the extremal black hole solution under
consideration (corresponding to the evaluation at ∂iVeff = 0 (7.1)), will be understood.

Note that the ungauged limit [30]

lim
V→0

Veff|∂iVeff=0 = VBH |∂iVBH=0 = Sungauged (7.6)

exists only for κ = 1 [10]. Moreover, from the treatment given at the start of section 6 at
the critical points of Veff the following consistency conditions must hold:

{
1− 4VBHV > 0;
V 6= 0.

(7.7)

If such two conditions hold, then

∂iVeff = 0⇔ 2V 2∂iVBH −
(
2VBHV + κ

√
1− 4VBHV − 1

)
∂iV = 0, ∀i. (7.8)

Let us also notice that the saturation of the consistency bound (6.5) corresponds to

1− 4VBHV = 0⇔ V = 1
4VBH

. (7.9)

If such a saturation holds, the Bekenstein-Hawking black hole entropy S of the extremal
black hole reads (manifestly specifying the evaluation at critical points of Veff) reads

S|1−4VBHV=0 = κ

2V

∣∣∣∣
∂iVeff=0

= 2κ VBH |∂iVeff=0 , (7.10)

which however (for κ = 1) is generally not the double of Sungauged = VBH |∂iVBH=0 (cf. (7.6)),
because for κ = 1 in general it holds that

VBH |∂iVeff=0 6= VBH |∂iVBH=0 . (7.11)

8 Generalization of BPS entropy formula (4.10) to κ = ±1

The BPS critical points generally satisfy the criticality conditions (7.1) as well as the BPS
conditions (4.2)–(4.3). By virtue of the latter, at BPS critical points it holds that

V
(6.4)= −3 |L|2 + |Li|2 = 1

S2

(
−3 |Z|2 + |Zi|2

)
. (8.1)
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Therefore, for κ = ±1, by virtue of (6.2) and (6.1), the BPS Bekenstein-Hawking entropy
S satisfies the following equation:17

S=κVeff =
κ−

√
1− 4

S2

(
|Z|2 + |Zi|2

)(
−3 |Z|2 + |Zi|2

)
2
S2

(
−3 |Z|2 + |Zi|2

) ;

m
2
S

(
−3 |Z|2 + |Zi|2

)
=κ−

√
1− 4

S2

(
|Z|2 + |Zi|2

)(
−3 |Z|2 + |Zi|2

)
;

⇓

1+ 4
S2

(
−3 |Z|2 + |Zi|2

)2
− 4κ
S

(
−3 |Z|2 + |Zi|2

)
= 1− 4

S2

(
|Z|2 + |Zi|2

)(
−3 |Z|2 + |Zi|2

)
;

m

S= 2κ
(
|Zi|2−|Z|2

)
=κQTM(F)Q, (8.2)

with consistency conditions given by

|Z|2 − |Zi|2 ≶ 0⇔ |L|2 − |Li|2 ≶ 0, for κ = ±1; (8.3)
m

QTM(F)Q ≷ 0⇔ GTM(F)G ≷ 0, for κ = ±1. (8.4)

As announced below eq. (4.20), eq. (8.2), which holds true regardless of the specific data
of the projective special Kähler geometry of the vector multiplets’ scalar manifold Mv,
provides the generalization to κ = ±1 of the first term in the r.h.s. of (4.10) (which hold
only for κ = 1). By collecting eqs. (4.20) and (8.2), one can thus write that for κ = ±1 the
BPS entropy reads

S = 2κ
(
|Zi|2 − |Z|2

)
= κ

2
(
|Li|2 − |L|2

) , (8.5)

which thus generalizes (4.10) (obtained in [28] for κ = −1) to κ = ±1, and still im-
plies (4.11).

Finally, let us remark that, by virtue of the BPS conditions (4.2)–(4.3), at the BPS
critical points of Veff the gradients of VBH and V become proportional (of a factor −S2),
namely:

∂iVBH = S2
(
2LLi − iCijkL

jLk
)

= −S2∂iV ; (8.6)

m

S2 = −∂iVBH
∂iV

, ∀i (no summation on i). (8.7)

Again, (8.6) and (8.7) hold for any BPS extremal black hole (with κ = ±1) in N = 2,
D = 4 U(1) FI gauged supergravity coupled to vector multiplets, regardless of their scalar
manifold Mv.

17The eveluation at the BPS conditions (4.2)–(4.3) will be henceforth understood.
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9 Classification of critical points of VBH

The critical points of VBH pertain to extremal black hole attractors in the ungauged limit,
and by construction of VBH they are placed at the (unique) event horizon of the extremal
black hole; from (7.2), they satisfy [66]

∂iVBH = 2ZZi + iCijkZ
jZk = 0, ∀i. (9.1)

After [45], the relation between I2 (3.8)–(3.10) and VBH (6.3) at the critical points of VBH
itself reads

I2 = V 2
BH −

32
3 |Z|

2 |Zi|2 . (9.2)

From the treatment of [66] (see also [42] or [41] for a complete list of references), three
classes of critical points of VBH exist, namely:

VBH .I Zi = 0 ∀i, and Z 6= 0 (for κ = 1, corresponding to the would-be 1
2 -BPS critical

points in the ungauged limit), yielding

VBH = |Z|2 ; (9.3)
I2 = V 2

BH = |Z|4 . (9.4)

VBH .II Z = 0, and CijkZ
jZk = 0 ∀i (for κ = 1, corresponding to the would-be non-BPS

Z = 0 critical points in the ungauged limit), yielding

VBH = |Zi|2 ; (9.5)
I2 = V 2

BH = |Zi|4 . (9.6)

VBH .III Z 6= 0 and Zi 6= 0, such that (9.1) holds true (for κ = 1, corresponding to the
would-be non-BPS Z 6= 0 critical points in the ungauged limit), yielding (cfr. sections
4-6 of [54] and refs. therein, and [56])

|Zi|2 = 3 |Z|2 + ∆Z , (9.7)

and thus

VBH = 4 |Z|2 + ∆Z ; (9.8)

I2 = −16 |Z|4 + ∆2
Z −

8
3∆Z |Z|2 , (9.9)

where ∆Z is defined as18

∆Z := −1
4

(
DmD(ı̄C ̄k̄l̄)

)
ZmZ ı̄Z ̄Z k̄Z l̄

N3 (Z)
, (9.10)

where N3 is the cubic form related to the tensor Cijk of special geometry,

N3(Z) ≡ N3(Z,Z,Z) := CijkZ
iZjZk. (9.11)

Note that ∆Z = 0 (at least in) in symmetric scalar manifolds (because in those cases
DmD(ı̄C ̄k̄l̄) = 0 identically).

18Note that ∆Z (9.10) is generally complex, but at critical points of VBH it is real, and it is such that
VBH |∂VBH=0 > 0.
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10 Classification of critical points of V

In an analogous way, one can classify the critical points of the (manifestly symplectic in-
variant) potential V of the Abelian U(1) FI gauging in N = 2, D = 4 supergravity. When
placing the critical points of V at the spatial asymptotical background of the extremal black
hole solution, they determine the type of flux vacua; in other words, the critical value of V at
the asymptotical background determines the cosmological constant Λ. On the other hand,
we will see in section 11 that the critical points of V placed at the event horizon of the ex-
tremal black hole will be relevant for the classification of the class I of critical points of Veff.

From (7.3), the critical points of V satisfy

∂iV = −2LLi + iCijkL
jLk = 0, ∀i. (10.1)

From the definition of I−2 (3.20)–(3.22) and V (6.4), at the critical points of V it holds
that

I−2 = V 2 + 8
3 |L|

2 V = V

(
V + 8

3 |L|
2
)

=
(
−3 |L|2 + |Li|2

)(
−1

3 |L|
2 + |Li|2

)
. (10.2)

Three classes of critical points of V exist, namely

V .I Li = 0 ∀i, and L 6= 0, yielding

V = −3 |L|2 ; (10.3)
I−2 = |L|4 . (10.4)

If placed at spatial infinity, this class would correspond to supersymmetric anti-de
Sitter (AdS4) vacua (Λ < 0).

V .II L = 0, and CijkL
jLk = 0 ∀i, yielding

V = |Li|2 ; (10.5)
I−2 = |Li|4 . (10.6)

If placed at spatial infinity, this class would correspond to de Sitter (dS4) vacua
(Λ > 0).

V .III L 6= 0 and Li 6= 0, such that (10.1) holds true. It can be proven that (see appendix B)

|Li|2 = 3 |L|2 + ∆L, (10.7)

and thus

V = ∆L; (10.8)

I−2 = ∆2
L + 8

3 |L|
2 ∆L, (10.9)
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where, analogously to (9.10), ∆L is defined as19

∆L := −1
4

(
DmD(ı̄C ̄k̄l̄)

)
LmLı̄L̄Lk̄Ll̄

N3(L)
, (10.10)

where
N3(L) ≡ N3(L,L,L) := CijkL

iLjLk. (10.11)

Note that ∆L = 0 (at least in) in symmetric scalar manifolds (because in those
cases DmD(ı̄C ̄k̄l̄) = 0 identically). If placed at spatial infinity, this class would
correspond to dS4 vacua, Minkowski4 vacua or AdS4 vacua depending on whether
Λ T 0⇔ ∆L T 0.

Thus, it should be remarked that, (at least) for symmetric vector multiplets’ scalar
manifolds, each class of flux vacua is associated to only one class of critical points of V
(placed at the asymptotical background):

supersymmetric AdS4 vacua (Λ < 0) ⇔ class V .I;
dS4 vacua (Λ > 0) ⇔ class V .II;

Minkowski4 vacua (Λ = 0) ⇔ class V .III.
(10.12)

11 Classification of critical points of Veff

For κ = ±1, from (7.8), regardless of Mv, only two classes of critical points of Veff exist,
placed at the (unique) event horizon of the extremal black hole; namely:20

Class I corresponds to critical points of Veff which are critical points of both VBH and V ,
as well:

∂iVBH = 0;
∂iV = 0;

}
⇒ ∂iVeff = 0, ∀i. (11.1)

Again, the placement of the critical points of VBH and V is at the (unique) event
horizon of the extremal black hole. The nine sub-classes of class I will be listed and
discussed below. Note that (11.1) is trivially consistent with (8.6); thus, we anticipate
that the class I of critical points of Veff includes various sub-classes admitting BPS
critical points (namely, sub-classes I.1, I.5 and I.9, at which (8.7) is meaningless, of
course; see below).

Class II corresponds to critical points of Veff which are not critical points of VBH nor of
V , with the gradients of VBH and of V being proportional:

∂iVBH =
(
2VBHV + κ

√
1− 4VBHV − 1

)
2V 2 ∂iV

(6.1)= (VBH − Veff)
V

∂iV ⇒ ∂iVeff = 0, ∀i.
(11.2)

19Note that ∆L (10.10) is generally complex, but at critical points of V it is real.
20A priori, (7.8) would imply that a third class of critical points, characterized by ∂iVBH = 0 and ∂iV 6= 0,

but with 2VBHV = 1−κ
√

1− 4VBHV , might exist. However, this class is not consistent with the equations
of motion; see and eq. (5.35) of [31].
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For what concerns the BPS sector, by exploiting the BPS conditions (4.2)–(4.3)
within this class, and using (6.2), (6.1) and (8.7), one trivially obtains that the
entropy of the BPS extremal black holes of class II satisfies the square of (6.2):

S2 (8.7), ∀i= −∂iVBH
∂iV

=
(
1− 2VBHV − κ

√
1− 4VBHV

)
2V 2 = V 2

eff. (11.3)

11.1 Class I

The class I of critical points splits into 9 sub-classes, given by the combinatorial product
(denoted by “⊗”) of classes of critical points of VBH and V :

VBH .1
VBH .2
VBH .3

crit. pts of VBH

⊗


V .1
V .2
V .3

crit. pts of V

= 9 sub-classes of class I of crit. pts of Veff. (11.4)

I.1. This sub-class is given by “VBH .1⊗V .1”, and thus it is characterized by all covariant
derivatives of Z and L vanishing,

∀i,
{
Zi = 0;
Li = 0,

(11.5)

yielding
VBH = |Z|2 > 0, V = −3 |L|2 < 0;

[if placed at spatial infinity: AdS4]

S = κVeff = −κ+
√

1+12|Z|2|L|2

6|L|2 > 0.

(11.6)

Ungauged limit.

lim
|L|→0

S = −κ+ 1 + 6 |Z|2 |L|2

6 |L|2
=


|Z|2 (κ = 1) ;

−1+3|Z|2|L|2

3|L|2 (κ = −1) ;
(11.7)

since the limit |L| → 0 corresponds to the limit V → 0−, from (7.6) one can conclude
that only the κ = 1 case is allowed (in other words, the κ = −1 consistency condition
−1 + 3 |Z|2 |L|2 > 0 never holds). When Mv is symmetric, the 2-polarizations of the
quartic invariant (3.8)–(3.22) respectively read

I2 = |Z|4 ; (11.8)
I1 = |Z|2 Re

(
ZL

)
; (11.9)

I0 = 1
3 |Z|

2 |L|2 + 2
3Re

2
(
ZL

)
; (11.10)

I−1 = |L|2 Re
(
ZL

)
; (11.11)

I−2 = |L|4 . (11.12)
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BPS sector. The BPS critical points of this sub-class further enjoy the following rela-
tions:

VBH = S2 |L|2 > 0, V = −3 |L|2 < 0 (11.13)

and

S = κVeff =
−κ+

√
1 + 12S2 |L|4

6 |L|2
;

⇓

12 |L|2 S
(
2S |L|2 + κ

)
= 0 S 6=0, L6=0⇔ S = − κ

2 |L|2
= −2κ |Z|2 , (11.14)

which is also obtained from (8.2) by using (11.5). This expression is possible only for
κ = −1: only extremal black holes with hyperbolic horizon topology can be BPS, within
this sub-class. When Mv is symmetric, the 2-polarizations of the quartic invariant (11.8)–
(11.12) respectively read

I2 = S4 |L|4 ; (11.15)
I1 = 0; (11.16)

I0 = S2

3 |L|
4 ; (11.17)

I−1 = 0; (11.18)
I−2 = |L|4 . (11.19)

Summary. The sub-class I.1 describes extremal black holes with AdS4 asymptotics (at
least in the doubly-extremal case). Both spherical and hyperbolic horizon geometries are
allowed; however, the BPS subsector has only hyperbolic (κ = −1) near-horizon geometry.
Thus, BPS doubly-extremal21 black holes with spherical symmetry and AdS4 asymptotics
cannot exist, in this sub-class: the comment below (3.17) of [28], explaining the results
of [67–69], is retrieved.

I.2. This sub-class is given by “VBH .1⊗V .2” , and thus it is characterized by

∀i,
{
Zi = 0;
L = 0, CijkL

jLk = 0.
(11.20)

This forbids the existence of a BPS subsector, and moreover yields

VBH = |Z|2 > 0, V = |Li|2 > 0;
[if placed at spatial infinity: dS4]

S = κVeff = κ−
√

1−4|Z|2|Li|2

2|Li|2
> 0,

(11.21)

21In the extremal but not doubly-extremal case, namely when the scalars are running, the asymptotics
depends on whether the horizon attractor values of scalars and their values at spatial infinity (i.e., in the
asymptotic background) belong to the same class of critical points of V , or not. In the former case, the
asymptotics is still AdS4 and the comment below (3.17) of [28] gets generalized to any extremal (BPS)
black hole; in the latter case; the asymptotics will be Minkowski4 or dS4.
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which forbids κ = −1 (i.e., hyperbolic near-horizon geometry). The consistency bound for
this sub-class is

1− 4 |Z|2 |Li|2 > 0. (11.22)

Saturation of consistency bound (11.22). When

2 |Li|2 = 1
2 |Z|2

, (11.23)

the bound (11.22) is saturated, and the entropy boils down to

S|1−4|Z|2|Li|2=0 = κ

2 |Li|2
= 2κ |Z|2 , (11.24)

which necessarily implies κ = 1.

Ungauged limit.

lim
|Li|→0

S = −κ+ 1 + 2 |Z|2 |Li|2

2 |Li|2
=


|Z|2 (κ = 1) ;

−1+|Z|2|Li|2

|Li|2
(κ = −1) .

(11.25)

Again, κ = −1 cannot hold in the ungauged limit, because the entropy positivity con-
dition (−1 + |Z|2 |Li|2 > 0) is not consistent with (11.22): in the ungauged limit only a
spherical horizon is allowed. When Mv is symmetric, the 2-polarizations of the quartic
invariant (3.8)–(3.22) respectively read

I2 = |Z|4 ; (11.26)
I1 = 0; (11.27)

I0 = −1
3 |Z|

2 |Li|2 ; (11.28)

I−1 = 0; (11.29)
I−2 = |Li|4 . (11.30)

Summary. The sub-class I.2 describes non-supersymmetric extremal black holes with
spherical near-horizon geometry and dS4 asymptotics (in the doubly-extremal case, or
when the classes of critical points of V - to which horizon scalars resp. asymptotic scalars
belong - coincide; cf. footnote 17, which will be understood throughout), and characterized
by the bound (11.22).

I.3. This sub-class is given by “VBH .1⊗V .3” , and thus it is characterized by

∀i,
{
Zi = 0;
Li = i

2L̄CijkL
jLk.

(11.31)

This forbids the existence of a BPS subsector, and moreover yields

VBH = |Z|2 > 0, V = ∆L;

S = κVeff =
κ−

√
1− 4 |Z|2 ∆L

2∆L
,

(11.32)
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within the following consistency conditions:

∆L 6
1

4|Z|2 ; (11.33)

∆L 6= 0. (11.34)

Eq. (11.34) implies that this sub-class does not exist when Mv is symmetric (and when-
ever DmD(ı̄C ̄k̄l̄) = 0; cf. discussion in section 10). Moreover, there is no an asymptotic
Minkowski solution in this sub-class.22

Saturation of consistency bound (11.33). When the bound (11.33) is saturated, the
entropy boils down to a very simple expression, valid only for κ = 1,

S = 1
2V = 2|Z|2, (11.35)

which represents a dS4 extremal black hole with spherical symmetry.

Ungauged limit.

lim
∆L→0

S = κ− 1 + 2 |Z|2 ∆L
2∆L

=


|Z|2 (κ = 1) ;

−1+|Z|2∆L
∆L (κ = −1) ;

(11.36)

in such a limit, the hyperbolic geometry would further constrain the attractor such that{
−1 + |Z|2 ∆L > 0;
∆L > 0;

or
{
−1 + |Z|2 ∆L 6 0;
∆L < 0;

(11.37)

however, again, the limit ∆L → 0 corresponds to the limit V → 0, and thus, from (7.6),
only the κ = 1 case is allowed, and therefore conditions (11.37) never hold. When Mv is
symmetric, the 2-polarizations of the quartic invariant (3.8)–(3.22) respectively read

I2 = |Z|4 ; (11.38)
I1 = |Z|2 Re

(
ZL

)
; (11.39)

I0 = −1
3 |Z|

2
(
2 |L|2 + ∆L

)
+ 2

3Re
2
(
ZL

)
; (11.40)

I−1 = −
(
2 |L|2 + ∆L

)
Re
(
ZL

)
; (11.41)

I−2 = ∆2
L + 8

3 |L|
2 ∆L. (11.42)

Summary. The sub-class I.3 describes asymptotically non-flat and non-supersymmetric
extremal black holes characterized by the bound (11.33), as well as by (11.34). The spatial
asymptotics of the extremal black hole is controlled by the asymptotic, critical value of V :
by assuming that such a value belongs to the class V .3, it corresponds to the asymptotical
value of ∆L. In turn, the evaluation of ∆L at the event horizon determines the near-horizon
geometry: when ∆L > 0, (11.33) must hold and only κ = 1 is allowed; on the other hand,
when ∆L < 0 (11.33) is automatically satisfied, and no restriction on the horizon geometry
holds.

22This holds in the doubly-extremal case, or when the classes of critical points of V - to which horizon
scalars resp. asymptotic scalars belong - coincide.
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I.4. This sub-class is given by “VBH .2⊗V .1”, and thus it is characterized by

∀i,
{
Z = 0, CijkZ

iZj = 0;
Li = 0.

(11.43)

This forbids the existence of a BPS subsector, and moreover yields

VBH = |Zi|2 > 0, V = −3 |L|2 < 0;
[if placed at spatial infinity: AdS4]

S = κVeff = −κ+
√

1+12|Zi|2|L|2

6|L|2 > 0.

(11.44)

Ungauged limit.

lim
|L|→0

S = −κ+ 1 + 6 |Zi|2 |L|2

6 |L|2
=


|Zi|2 (κ = 1) ;

−1+3|Zi|2|L|2

3|L|2 (κ = −1) ,
(11.45)

in this limit, the hyperbolic geometry (κ = −1) would further constrain the attractor such
that −1+3 |Zi|2 |L|2 > 0; however, the limit |L| → 0 corresponds to the limit V → 0−, and
thus, from (7.6), one can conclude that only the κ = 1 case is allowed (in other words, the
κ = −1 consistency condition −1 + 3 |Zi|2 |L|2 > 0 never holds). When Mv is symmetric,
the 2-polarizations of the quartic invariant (3.8)–(3.22) respectively read

I2 = |Zi|4 ; (11.46)
I1 = 0; (11.47)

I0 = −1
3 |Zi|

2 |L|2 ; (11.48)

I−1 = 0; (11.49)
I−2 = |L|4 . (11.50)

Summary. The sub-class I.4 describes only asymptotically AdS4 and non-
supersymmetric extremal black holes, with no restriction on the near-horizon geometry
(the observation done in footnote 18 holds true here, as well).

I.5. This sub-class is given by “VBH .2⊗V .2” , and thus it is characterized by

∀i,
{
Z = 0, CijkZ̄jZ̄k = 0;
L = 0, CijkL̄jL̄k = 0,

(11.51)

yielding
VBH = |Zi|2 > 0, V = |Li|2 > 0;

[if placed at spatial infinity: dS4]

S = κVeff = κ−
√

1−4|Zi|2|Li|2

2|Li|2
> 0,

(11.52)

which does not allow for flat (κ = 0) or hyperbolic (κ = −1) near-horizon geometry, within
the conditions:

1− 4 |Zi|2 |Li|2 > 0; (11.53)
|Li|2 6= 0. (11.54)
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Saturation of consistency bound (11.53). When (11.53) is saturated, the entropy
boils down to a very simple expression, valid only for κ = 1,

S = κ

2 |Li|2
= 2κ |Zi|2 , (11.55)

which represents an extremal black hole with spherical horizon and dS4 asymptotics (the
observation done in footnote 18 holds true here, as well).

Ungauged limit.

lim
|Li|→0

S = κ− 1 + 2 |Zi|2 |Li|2

2 |Li|2
=


|Zi|2 (κ = 1) ;

−1+|Zi|2|Li|2

|Li|2
(κ = −1) .

(11.56)

Again, the case κ = −1 cannot hold, because the entropy positivity condition (−1 +
|Z|2 |Li|2 > 0) is not consistent with (11.53): in the ungauged limit only spherical horizon
is allowed. When Mv is symmetric, the 2-polarizations of the quartic invariant (3.8)–(3.22)
respectively read

I2 = |Zi|4 ; (11.57)
I1 = |Zi|2 Re

(
Z ̄L̄

)
; (11.58)

I0 = 1
3 |Zi|

2 |Li|2 + 2
3Re

2
(
Z ̄L̄

)
− 2

3g
i̄CiklC ̄mnZ

kLlZmLn; (11.59)

I−1 = |Li|2 Re
(
Z ̄L̄

)
; (11.60)

I−2 = |Li|4 . (11.61)

BPS sector. The BPS critical points of this sub-class saturate the consistency condi-
tion (11.53); indeed, they enjoy the following relations:

VBH = S2 |Li|2 > 0; (11.62)
V = |Li|2 > 0, (11.63)

which imply (11.55), clearly valid only for a spherical horizon topology. When Mv is sym-
metric, the 2-polarizations of the quartic invariant (11.57)–(11.61) can be further simplified
as follows:

I2 = S4 |Li|4 ; (11.64)
I1 = 0; (11.65)

I0 = −S2
(
|Li|4 + 2

3R (L)
)

; (11.66)

I−1 = 0; (11.67)
I−2 = |Li|4 , (11.68)

where R (L) denotes the sectional curvature evaluated on L’s,

R (L) ≡ R
(
L,L,L,L

)
:= Ri̄klL

iL̄LkLl, (11.69)

with Ri̄kl denoting the Riemann tensor of the vector multiplets’ scalar manifold.
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Summary. The sub-class describes only “large”, asymptotically dS4 extremal black holes
characterized by the bound (11.53), as well as by (11.54), and having only spherical (κ = 1)
near horizon geometry. At the horizon, such black holes can be supersymmetric ( 1

4 -BPS).

I.6. This sub-class is given by “VBH .2⊗V .3” , and thus it is characterized by

∀i,

Z = 0, CijkZ
jZk = 0;

Li = i
2LCijkL

jLk.
(11.70)

This forbids the existence of a BPS subsector, and moreover yields

VBH = |Zi|2 > 0, V = ∆L;

S = κVeff = κ−
√

1−4|Zi|2∆L
2∆L ,

(11.71)

within the following conditions:

∆L 6
1

4|Zi|2
; (11.72)

∆L 6= 0. (11.73)

Thus, since ∆L 6= 0, this class does not exist when Mv is symmetric (and whenever
DmD(ı̄C ̄k̄l̄) = 0; cf. discussion in section 10). Moreover, there is no an asymptotic
Minkowski solution in this sub-class (the observation done in footnote 18 holds true here,
as well).

Saturation of consistency bound (11.72). When the bound (11.33) is saturated, the
entropy boils down to a very simple expression, valid only for κ = 1,

S = κ

2∆L
= 2|Zi|2, (11.74)

which represents an extremal black hole with spherical horizon and dS4 asymptotics (again,
the observation done in footnote 18 holds true here, as well).

Ungauged limit.

lim
∆L→0

S = κ− 1 + 2 |Zi|2 ∆L
2∆L

=


|Zi|2 (κ = 1) ;

−1+|Zi|2∆L
∆L (κ = −1) .

(11.75)

A priori, the hyperbolic geometry further constrains the attractor such that{
−1 + |Z|2 ∆L > 0;
∆L > 0;

or
{
−1 + |Z|2 ∆L 6 0;
∆L < 0;

(11.76)

however, the limit ∆L → 0 corresponds to the limit V → 0, and thus, from (7.6), one can
conclude that the κ = 1 case is allowed (in other words, the κ = −1 consistency condition
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−1+|Zi|2∆L
∆L > 0 never holds). When Mv is symmetric, the 2-polarizations of the quartic

invariant (3.8)–(3.22) respectively read

I2 = |Zi|4 ; (11.77)
I1 = |Zi|2Re

(
Z ̄L̄

)
; (11.78)

I0 = −2
3 |Zi|

2 |L|2− 2
3R

(
Z,Z,L,L

)
+ 5

3Re
2
(
Z ̄L̄

)
+ Im2

(
Z ̄L̄

)
; (11.79)

I−1 = −
(
4 |L|2 +∆L

)
Re
(
Z ̄L̄

)
− Im

(
LN3 (L,L,Z)

)
−Re

(
R
(
L,Z,L,L

))
; (11.80)

I−2 = ∆2
L+ 8

3 |L|
2 ∆L, (11.81)

where

R
(
Z,Z,L,L

)
:= Ri̄klZ

iZ ̄LkLl; (11.82)

R
(
L,Z,L,L

)
:= Ri̄klL

iZ ̄LkLl (11.83)

are suitable polarizations of the sectional curvature (11.69), and

N3 (L,L,Z) := C ı̄̄kL
ı̄L̄Zk. (11.84)

Summary. The sub-class I.6 describes only “large”, asymptotically non-flat and non-
supersymmetric extremal black holes characterized by the bound (11.72), as well as
by (11.73). The spatial asymptotics of the extremal black hole is controlled by the asymp-
totic, critical value of V : by assuming that such a value belongs to the class V .3, it
corresponds to the asymptotical value of ∆L. In turn, the evaluation of ∆L at the event
horizon determines the near-horizon geometry: when ∆L > 0, (11.72) must hold and only
κ = 1 is allowed; on the other hand, when ∆L < 0 (11.72) is automatically satisfied, and
no restriction on the horizon geometry holds.

I.7. This sub-class is given by “VBH .3⊗V .1” , and thus it is characterized by

∀i,
{
Zi = − i

2ZCijkZ
jZk;

Li = 0.
(11.85)

This forbids the existence of a BPS subsector, and moreover yields

VBH = 4 |Z|2 + ∆Z > 0, V = −3 |L|2 < 0;
[if placed at spatial infinity: AdS4]

S = κVeff = −κ+
√

1+12(4|Z|2+∆Z)|L|2
6|L|2 > 0.

(11.86)

Ungauged limit.

lim
|L|→0

S =
−κ+ 1 + 6

(
4 |Z|2 + ∆Z

)
|L|2

6 |L|2
=


4 |Z|2 + ∆Z (κ = 1) ;

−1+3(4|Z|2+∆Z)|L|2
3|L|2 (κ = −1) .

(11.87)
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The hyperbolic geometry would further constrain the attractor such that −1 +
3
(
4 |Z|2 + ∆Z

)
|L|2 > 0; however, the limit |L| → 0 corresponds to the limit V → 0−, and

thus, from (7.6), one can conclude that only the κ = 1 case is allowed (in other words, the
κ = −1 consistency condition −1 + 3

(
4 |Z|2 + ∆Z

)
|L|2 > 0 never holds). When Mv is

symmetric, the 2-polarizations of the quartic invariant (3.8)–(3.22) respectively read

I2 = −16 |Z|4 + ∆2
Z −

8
3∆Z |Z|2 ; (11.88)

I1 = −2
(
|Z|2 + ∆Z

2

)
Re
(
ZL

)
+ 2

(
|Z|2 + ∆Z

3

)
Re (ZL) ; (11.89)

I0 = −1
3
(
2 |Z|2 + ∆Z

)
|L|2 + 2

3Re
2
(
ZL

)
; (11.90)

I−1 = |L|2 Re
(
ZL

)
; (11.91)

I−2 = |L|4 . (11.92)

Summary. The sub-class I.7 describes asymptotically AdS4 and non-supersymmetric
extremal black holes, with no restrictions on the near-horizon geometry (the observation
done in footnote 18 holds true here, as well).

I.8. This sub-class is given by “VBH .3⊗V .2” , and thus it is characterized by

∀i,

 Zi = − i
2ZCijkZ

jZk;
L = 0, CijkL

jLk = 0.
(11.93)

This forbids the existence of a BPS subsector, and moreover yields

VBH = 4 |Z|2 + ∆Z > 0, V = |Li|2 > 0;
[if placed at spatial infinity: dS4]

S = κVeff = κ−
√

1−4(4|Z|2+∆Z)|Li|2
2|Li|2

> 0,

(11.94)

which does not allow for flat or hyperbolic near-horizon geometry, within the condition

1− 4
(
4 |Z|2 + ∆Z

)
|Li|2 > 0. (11.95)

Saturation of consistency bound (11.95). When (11.95) is saturated, the entropy
boils down to a very simple expression, valid only for κ = 1,

S = 1
2 |Li|2

= 2
(
4 |Z|2 + ∆Z

)
, (11.96)

which represents an extremal black hole with spherical horizon and dS4 asymptotics (the
observation done in footnote 18 holds true here, as well).
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Ungauged limit.

lim
|Li|→0

S =
κ− 1 + 2

(
4 |Z|2 + ∆Z

)
|Li|2

2 |Li|2
=


4 |Z|2 + ∆Z (κ = 1) ;

−1+(4|Z|2+∆Z)|Li|2
|Li|2

(κ = −1) .
(11.97)

Again, the hyperbolic geometry would further constrain the attractor such that −1 +(
4 |Z|2 + ∆Z

)
|Li|2 > 0; however, the limit |Li| → 0 corresponds to the limit V → 0+,

and thus, from (7.6), one can conclude that only the κ = 1 case is allowed (in other words,
the κ = −1 consistency condition −1 +

(
4 |Z|2 + ∆Z

)
|Li|2 > 0 never holds). When Mv is

symmetric, the 2-polarizations of the quartic invariant (3.8)–(3.22) respectively read

I2 = −16 |Z|4 + ∆2
Z −

8
3∆Z |Z|2 ; (11.98)

I1 = −
(
4 |Z|2 + ∆Z

)
Re
(
Z ı̄Lı̄

)
− Re

(
R
(
Z,L,Z,Z

))
+ 2Re

(
Z2Z ı̄Lı̄

)
; (11.99)

I0 = −1
3 |Li|

2
(
4 |Z|2 + ∆Z

)
− 2

3R
(
Z,Z,L,L

)
− 2

3 Im
2
(
Z ı̄Lı̄

)
; (11.100)

I−1 = |Li|2 Re
(
Z ı̄Lı̄

)
; (11.101)

I−2 = |Li|4 . (11.102)

Summary. The sub-class I.8 describes asymptotically dS4, non-supersymmetric ex-
tremal black holes characterized by the bound (11.95), and having only spherical (κ = 1)
near-horizon geometry (the observation done in footnote 18 holds true here, as well).

I.9. This sub-class is given by “VBH .3⊗V .3” , and thus it is characterized by

∀i,

Zi = − i
2ZCijkZ

jZk;
Li = i

2LCijkL
jLk,

(11.103)

yielding

VBH = 4 |Z|2 + ∆Z > 0, V = ∆L;

S = κVeff =
κ−

√
1− 4

(
4 |Z|2 + ∆Z

)
∆L

2∆L
> 0,

(11.104)

with the following conditions:

1− 4
(
4 |Z|2 + ∆Z

)
∆L > 0; (11.105)
∆L 6= 0. (11.106)

Thus, since ∆L 6= 0, this class does not exist when Mv is symmetric (and whenever
DmD(ı̄C ̄k̄l̄) = 0; cf. discussion in section 10). Moreover, there is no an asymptotic
Minkowski solution in this sub-class (the observation done in footnote 18 holds true here,
as well).

– 31 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
9

Saturation of consistency bound (11.105). When (11.105) is saturated, the entropy
boils down to a very simple expression, valid only for κ = 1,

S = 1
2∆L

= 2
(
4 |Z|2 + ∆Z

)
, (11.107)

which represents an extremal black hole with spherical horizon and dS4 asymptotics (again,
the observation done in footnote 18 holds true here, as well).

Ungauged limit.

lim
∆L→0

S =
κ− 1 + 2

(
4 |Z|2 + ∆Z

)
∆L

2∆L
=


4 |Z|2 + ∆Z (κ = 1) ;

−1+(4|Z|2+∆Z)∆L
∆L (κ = −1) .

(11.108)

As in previous cases, the hyperbolic geometry would further constrains the attractor such
that −1+(4|Z|2+∆Z)∆L

∆L > 0; however, the limit ∆L → 0 corresponds to the limit V → 0, and
thus, from (7.6), one can conclude that only the κ = 1 case is allowed (in other words, the
κ = −1 consistency condition −1+(4|Z|2+∆Z)∆L

∆L > 0 never holds). When Mv is symmetric,
the 2-polarizations of the quartic invariant (3.8)–(3.22) respectively read

I2 = −16 |Z|4 + ∆2
Z −

8
3∆Z |Z|2 ; (11.109)

I1 = −
(
|Z|2 + ∆Z

2

)(
ZL+ ZL − Z ̄L̄ −Z

jLj
)

+

+2
3Re

[(
3Z2Lı̄Z ı̄ + ZL

(
3|Z|2 + ∆Z

))]
− 4|Z|2Re

(
ZiL

i
)

; (11.110)

I0 = 1
3

(
2|Z|2 + ∆Z

2

)(
2|L|2 + ∆L

2

)
+

−4
3Re

[
ZL

(
Z ı̄Lı̄ −Z ı̄Lı̄

)]
+

−1
6
[
gi̄CiklC ̄mn4ZkZmLlLn

]
+ 4

3Re
(
ZLZiL

i
)

; (11.111)

I−1 = −
(
|L|2 + ∆L

2

)(
ZL+ ZL − Z ̄L̄ −Z

jLj
)

+

−2
3Re

[(
3L2Lı̄Zı̄ + ZL

(
3|L|2 + ∆L

))]
− 4|L|2Re

(
ZiL

i
)

; (11.112)

I−2 = ∆2
L + 8

3 |L|
2 ∆L. (11.113)

BPS sector. At the BPS critical points of this sub-class, (4.3) and the definitions (9.10)
and (10.10) yield

∆Z = S2∆L, (11.114)

and thus
VBH = S2

(
4 |L|2 + ∆L

)
> 0, (11.115)

which in turn implies

S = κ

2
(
2 |L|2 + ∆L

) = 2κ
(
2 |Z|2 + ∆Z

)
, (11.116)
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which can be obtained by plugging (9.7) and (10.7) into (8.2). The expression (11.116)
constrains the near-horizon geometry, depending on sgn(∆Z) (11.114)= sgn(∆L). For ∆Z > 0,
only κ = 1 is allowed; for ∆Z < 0, the bound (11.105) yields

4 |Z|2 > 4 |Z|2 + ∆Z >
1

4∆L
, (11.117)

which in principle admits both signs of 2 |Z|2 + ∆Z : when 2 |Z|2 + ∆Z > 0, once
again only spherical (κ = 1) near-horizon geometry is allowed; on the other hand, when
2 |Z|2 + ∆Z < 0, only hyperbolic (κ = −1) near-horizon geometry is allowed. When Mv

is symmetric, the 2-polarizations of the quartic invariant (11.109)–(11.113) can be further
simplified as follows:

I2 = −16 |Z|4 + ∆2
Z −

8
3∆Z |Z|2 ; (11.118)

I1 = −8
3
κ

S
|Zi|2ImZ2; (11.119)

I0 = 1
3S2

(
2|Z|2 + ∆Z

2

)2
− 8

3
|Zi|2

S2 ReZ2 + 2
3
|Z|2|Zi|2

S2 ; (11.120)

I−1 = 8
3κS

3|Zi|2ImZ2; (11.121)

I−2 = 1
S2 ∆2

Z + 8
3 |Z|

2 ∆Z . (11.122)

Summary. The sub-class I.9 describes asymptotically non-flat extremal black holes char-
acterized by the bound (11.105), as well as by (11.106). The spatial asymptotics of the
extremal black hole is controlled by the asymptotic, critical value of V : by assuming that
such a value belongs to the class V .3, it corresponds to the asymptotical value of ∆L. In
turn, the evaluation of ∆L at the event horizon determines the near-horizon geometry:
when ∆L > 0, (11.105) must hold and only κ = 1 is allowed; on the other hand, when
∆L < 0 (11.105) is automatically satisfied, and no restriction on the horizon geometry
holds. Such black holes can be supersymmetric ( 1

4 -BPS), a priori admitting both spherical
and hyperbolic horizons, once again depending on sgn(∆Z) =sgn(∆L): when ∆L > 0, only
κ = 1 is allowed, whereas when ∆L < 0, only κ = −1 is allowed.

11.2 Class II

The class II of critical points of Veff is such that both ∂iVBH 6= 0 and ∂iV 6= 0, but nev-
ertheless ∂iVeff = 0, because ∂iVBH and ∂iV are suitably proportional, as given by (11.2).
Note that the ungauged limit is ill-defined in this class, since it would imply Veff → VBH
(cfr. eq. (7.6)), but ∂iVeff = 0→ ∂iVBH 6= 0. As we will see below, the class II of critical
points of Veff splits into 15 sub-classes.

11.2.1 Q-sector

Since (cfr. (9.1))
∂iVBH = 2ZZi + iCijkZ

jZk, (11.123)
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one can compute23

|∂iVBH |2 ≡ gi̄∂iVBH∂̄VBH = 2 |Zi|4 + 4 |Z|2 |Zi|2 +R (Z)− 4Im
(
ZN3(Z,Z,Z)

)
= −I2 + V 2

BH −
16
3 Im

(
ZN3(Z,Z,Z)

)
> 0. (11.124)

From section 9, we recall that Zi = 0 is a sufficient condition for ∂iVBH = 0; thus, the
critical points of Veff of class II will be characterized by the condition

Zi 6= 0 for at least some i’s. (11.125)

Thus, for a non-vanishing Q, in the Q-sector (flux sector) we can then recognize three
sub-classes of critical points of Veff of class II:

Q.1 Im
(
ZN3(Z,Z,Z)

)
= 0;

Q.2 I2 = 0;

Q.3 generic, with non-vanishing I2 and Im
(
ZN3(Z,Z,Z)

)
.

11.2.2 L-sector

Since (cfr. (10.1))
∂iV = −2LLi + iCijkL

jLk, (11.126)

one can compute24

|∂iV |2 ≡ gi̄∂iV ∂̄V = 2 |Li|4 + 4 |L|2 |Li|2 +R (L) + 4Im
(
LN3(L,L,L)

)
= −I−2 + V 2 + 16 |L|4 − 8V |L|2 + 8

3 Im
(
LN3(L,L,L)

)
> 0, (11.127)

From section 10, we recall that Li = 0 is a sufficient condition for ∂iV = 0; thus, the critical
points of Veff of class II will be characterized by the condition

Li 6= 0 for at least some i’s. (11.128)

Thus, for a non-vanishing L, in the L-sector (gauging sector) we can then recognize five
sub-classes of critical points of Veff of class II:

L.1 Im
(
LN3(L,L,L)

)
= 0;

L.2 I−2 = 0;

L.3 V = 0;

L.4 L = 0;

L.5 generic, with non-vanishing I−2, V , L and Im
(
LN3(L,L,L)

)
.

23Note that, since Mv has not been specified to be symmetric, the I2 in the second line of (11.124)
may also depend on scalar fields coordinatizing Mv (which in (11.124) as well as in conditions Q.1-Q.3 are
understood to be stabilized at the critical points of Veff).

24Note that, since Mv has not been specified to be symmetric, the I−2 in the second line of (11.127)
may also depend on scalar fields coordinatizing Mv (which in (11.127) as well as in conditions L.1-L.3 are
understood to be stabilized at the critical points of Veff).
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11.2.3 General properties

On the other hand, from (11.2), at the class II of critical points of Veff it holds that

∂iVBH = (VBH − Veff)
V

∂iV, ∀i, (11.129)

and thus25

|∂iVBH |2 = (VBH − Veff)2

V 2 |∂iV |2 . (11.130)

Further equivalent expressions, involving I2, I−2, VBH and V can be obtained by plug-
ging (11.124) and (11.127) into (11.130).

Moreover, one can compute:

gi̄∂iVBH∂̄V = 2
(
Z iL

i
)2
− 4LZZiL

i − 2iLN3
(
L,Z,Z

)
−2iZN3 (Z,L,L) +R

(
Z,L,Z,L

)
, (11.131)

where N3
(
L,Z,Z

)
and R

(
Z,L,Z,L

)
denote suitable polarizations of the cubic form

associated to Cijk and of the sectional curvature (11.69), respectively,

N3
(
L,Z,Z

)
:= CijkL

iZjZk; (11.132)

R
(
Z,L,Z,L

)
:= Ri̄klZ

iL̄ZkLl. (11.133)

While (11.124) and (11.127) are manifestly real, (11.131) seems a complex quantity, but
actually, it is a real one. Indeed, from (11.129), it follows that

gi̄∂iVBH∂̄V = (VBH − Veff)
V

|∂iV |2 , (11.134)

which is a manifestly real quantity, thus implying that

0 = Im
(
gi̄∂iVBH∂̄V

)
= Im

 2
(
Z ı̄Lı̄

)2
− 4LZZiL

i − 2iLN3
(
L,Z,Z

)
−2iZN3 (Z,L,L) +R

(
Z,L,Z,L

)
 . (11.135)

Recalling that, from (6.2), the critical values of κVeff determine the Bekenstein-Hawking
entropy S (in units of π), the relations (11.129) allows to obtain S at critical points of κVeff
(or, equivalently, of Veff) of the class II, also in the non-supersymmetric case. Indeed,
from (11.129) one obtains that (∀i, no Einstein summation on dummy indices)

S = κVBH − κV
∂iVBH
∂iV

. (11.136)

25Eq. (11.130) holds ∀i, and thus a fortiori when summed over i (namely, when |∂iVBH |2 and |∂iV |2 are
given by (11.124) resp. (11.127)).
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In order to relate S to the quantities |∂iVBH |2 (11.124) and |∂iV |2 (11.127), one can observe
that (11.130) entails an inhomogeneous quadratic equation26 in S,

V 2
eff − 2VBHVeff + V 2

BH − V 2 |∂iVBH |
2

|∂iV |2
= 0, (11.137)

whose solution reads

κVeff ± = S± = κVBH ±
1
2

√√√√4V 2
BH − 4

(
V 2
BH − V 2 |∂iVBH |

2

|∂iV |2

)

= κVBH ±

√√√√V 2 |∂iVBH |
2

|∂iV |2
= κVBH ± |V |

√√√√ |∂iVBH |2
|∂iV |2

. (11.138)

The sign of the first term in the r.h.s. of (11.138) is κ, whereas the sign of the second
term is ±. In order to maximize the entropy, the “+” branch should be chosen. By
recalling (11.124) and (11.127), one thus obtains the following expression for the entropy
S at the critical points of Veff of class II (regardless of their BPS properties and of the
symmetricity27 of Mv):

S = κVBH + |V |

√√√√√2 |Zi|4 + 4 |Z|2 |Zi|2 +R (Z)− 4Im
(
ZN3(Z,Z,Z)

)
2 |Li|4 + 4 |L|2 |Li|2 +R (L) + 4Im

(
LN3(L,L,L)

) (11.139)

= κVBH + |V |

√√√√√ −I2 + V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
−I−2 + V 2 + 16 |L|4 − 8V |L|2 + 8

3 Im
(
LN3(L,L,L)

) , (11.140)

which can thus be evaluated in the various sub-classes of class II (see below).
We should also observe that, for what concerns the BPS sector, one obtains nothing

new. Indeed, the BPS conditions (4.2)–(4.3) plugged into (11.123) and (11.126) allow to
elaborate (11.136) for the BPS entropy as follows:

S = κVBH + κV S2 ⇔ κV S2 − S + κVBH = 0. (11.141)

Such inhomogeneous quadratic equation in S is consistent with S = κVeff (namely, (6.2) at
the BPS critical points of Veff) by suitably choosing the “±” branching (in the determination
of the roots of (11.141)) and the value of κ such that ±κ = −1.

From previous treatment, it follows that the class II of critical points of Veff splits into
15 sub-classes, given by the combinatorial product (denoted by “⊗”) of the possibilities in

26Eqs. (11.137) and (11.138) hold ∀i, and also when |∂iVBH |2 and |∂iV |2 are given by (11.124)
resp. (11.127).

27Again, sinceMv has not been specified to be symmetric, the I2 and I−2 in the second line of (11.140) may
also depend on scalar fields coordinatizing Mv (which in (11.140) as well as in section 11.2 are understood
to be stabilized at the critical points of Veff).
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the Q- and L- sectors (namely, inthe flux sector and in the gauging sector):
Q.1 : Im

(
ZN3(Z,Z,Z)

)
= 0;

Q.2 : I2 = 0;
Q.3 : Im

(
ZN3(Z,Z,Z)

)
6= 0, I2 6= 0;

Q-sector

⊗



L.1 : Im
(
LN3(L,L,L)

)
= 0;

L.2 : I−2 = 0;
L.3 : V = 0;
L.4 : L = 0;
L.5 : none of Im

(
LN3(L,L,L)

)
, I−2, V and L vanishing,

G-sector

(11.142)

with the generic sub-class being given by the case28 “3⊗5”.

II.1. This sub-class is given by “Q.1⊗L.1” , and thus it is characterized by

Im
(
ZN3(Z,Z,Z)

)
= 0 = Im

(
LN3(L,L,L)

)
; (11.143)

therefore, from (11.140), its entropy reads

S = κVBH + |V |
√

−I2 + V 2
BH

−I−2 + V 2 + 16 |L|4 − 8V |L|2
. (11.144)

II.2. This sub-class is given by “Q.1⊗L.2” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
= 0;

I−2 = 0;
(11.145)

therefore, from (11.140), its entropy reads

S = κVBH + |V |
√√√√ −I2 + V 2

BH

V 2 + 16 |L|4 − 8V |L|2 + 8
3 Im

(
LN3(L,L,L)

) . (11.146)

II.3. This sub-class is given by “Q.1⊗L.3” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
= 0;

V = 0;
(11.147)

therefore, from (11.140), its entropy reads

S = κVBH , (11.148)

which is meaningful only for κ = 1, i.e. for spherical horizon. Despite the (assumed)
non-vanishingness of the gauging vector G, the extremal black holes of this sub-class have,
formally, the same entropy and the same asymptotical behaviour of their counterparts in the
ungauged limit; of course, such a similarity is only formal, because in general VBH |∂Veff=0 6=
VBH |∂VBH=0, thus their entropy will generally be different.

28Throughout the present treatment, the first number denotes the sub-class in the Q-sector, whereas the
second number denotes the sub-class in the L-sector.
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II.4. This sub-class is given by “Q.1⊗L.4” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
= 0;

L = 0;
(11.149)

therefore, from (11.140), its entropy reads

S = κVBH + |Li|2

√√√√√−I2 + V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
gi̄CiklC ̄mnL

kLlLmLn
. (11.150)

II.5. This sub-class is given by “Q.1⊗L.5” , and thus it is characterized by Im
(
ZN3(Z,Z,Z)

)
= 0;

none of Im
(
LN3(L,L,L)

)
, I−2, V and L vanishing;

(11.151)

therefore, from (11.140), its entropy reads

S = κVBH + |V |
√√√√ −I2 + V 2

BH

−I−2 + V 2 + 16 |L|4 − 8V |L|2 + 8
3 Im

(
LN3(L,L,L)

) . (11.152)

No BPS sector is allowed in this sub-class.

II.6. This sub-class is given by “Q.2⊗L.1” , and thus it is characterized by{
I2 = 0;
Im
(
LN3(L,L,L)

)
= 0; (11.153)

therefore, from (11.140), its entropy reads

S = κVBH + |V |

√√√√ V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
−I−2 + V 2 + 16 |L|4 − 8V |L|2

. (11.154)

II.7. This sub-class is given by “Q.2⊗L.2”, and thus it is characterized by{
I2 = 0;
I−2 = 0;

(11.155)

therefore, from (11.140), its entropy reads

S = κVBH + |V |

√√√√√ V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
V 2 + 16 |L|4 − 8V |L|2 + 8

3 Im
(
LN3(L,L,L)

) . (11.156)

II.8. This sub-class is given by “Q.2⊗L.3” , and thus it is characterized by{
I2 = 0;
V = 0,

(11.157)

therefore, from (11.140), its entropy reads

S = κVBH , (11.158)

which is meaningful only for κ = 1, i.e. for spherical horizon. Considerations analogous to
the ones made for the sub-class II.3, hold here, as well.
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II.9. This sub-class is given by “Q.2⊗L.4” , and thus it is characterized by{
I2 = 0;
L = 0;

(11.159)

therefore, from (11.140), its entropy reads

S = κVBH + |Li|2

√√√√√V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
gi̄CiklC ̄mnL

kLlLmLn
. (11.160)

II.10. This sub-class is given by “Q.2⊗L.5” , and thus it is characterized by{
I2 = 0;
none of Im

(
LN3(L,L,L)

)
, I−2, V and L vanishing; (11.161)

therefore, from (11.140), its entropy reads

S = κVBH + |V |

√√√√√ V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
−I−2 + V 2 + 16 |L|4 − 8V |L|2 + 8

3 Im
(
LN3(L,L,L)

) . (11.162)

No BPS sector is allowed in this sub-class.

II.11. This sub-class is given by “Q.3⊗L.1” , and thus it is characterized by Im
(
ZN3(Z,Z,Z)

)
6= 0, I2 6= 0

Im
(
LN3(L,L,L)

)
= 0;

(11.163)

therefore, from (11.140), its entropy reads

S = κVBH + |V |

√√√√−I2 + V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
−I−2 + V 2 + 16 |L|4 − 8V |L|2

. (11.164)

No BPS sector is allowed in this sub-class.

II.12. This sub-class is given by “Q.3⊗L.2” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
6= 0, I2 6= 0

I−2 = 0;
(11.165)

therefore, from (11.140), its entropy reads

S = κVBH + |V |

√√√√√ −I2 + V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
V 2 + 16 |L|4 − 8V |L|2 + 8

3 Im
(
LN3(L,L,L)

) . (11.166)

No BPS sector is allowed in this sub-class.
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II.13. This sub-class is given by “Q.3⊗L.3” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
6= 0, I2 6= 0

V = 0;
(11.167)

therefore, from (11.140), its entropy reads

S = κVBH , (11.168)

which is meaningful only for κ = 1, i.e. for spherical horizon. Similarly to sub-classes
II.3 and II.8, despite the (assumed) non-vanishing of the gauging vector G, the extremal
black holes of this sub-class have, formally, the same entropy and the same asymptotical be-
haviour of their counterparts in the ungauged limit, Again, since Veff|∂Veff=0 6= VBH |∂VBH=0,
their entropy will generally be different.

II.14. This sub-class is given by “Q.3⊗L.4” , and thus it is characterized by{
Im
(
ZN3(Z,Z,Z)

)
6= 0, I2 6= 0

L = 0;
(11.169)

therefore, from (11.140), its entropy reads

S = κVBH + |Li|2

√√√√√−I2 + V 2
BH −

16
3 Im

(
ZN3(Z,Z,Z)

)
gi̄CiklC ̄mnL

kLlLmLn
. (11.170)

No BPS sector is allowed in this sub-class.

II.15. This sub-class is given by “Q.3⊗L.5” , and thus it corresponds to the generic case,
in which none of Im

(
ZN3(Z,Z,Z)

)
, I2, Im

(
LN3(L,L,L)

)
, I−2, V and L is vanishing.

The entropy is thus given by the general expression (11.140).

12 Taxonomy

By way of example, in this section, we report the main features of some known solutions of
static and extremal BHs to N = 2, D = 4 supergravity coupled to vector multiplets (in the
STU model, in the axion-dilaton CP1model, and in the T 3 model), with U(1) FI gaugings.29

It is here worth remarking that a complete taxonomy of all known solutions goes beyond
the aim of the present paper. Since the classification of each known solution requires a
detailed treatment and a good deal of computations, we will report on it in a future work.

12.1 Electric STU

We start and take under consideration the electric STU model [28], defined by the holo-
morphic prepotential

F = X1X2X3

X0 . (12.1)

29In such a framework, non-extremal solutions have been discussed e.g. in [77, 78] and [46].
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Introducing the usual coordinates

s := X1

X0 , t := X2

X0 , u := X1

X0 , (12.2)

the symplectic vector V can be written as

V = eK/2
(
1, s, t, u, −stu, tu, su, st

)T
, (12.3)

and the Kähler potential and the target space metric are

K = − log (−8 Im s Im t Imu) , (12.4)

gss̄ = − 1
(s− s)2 , gtt̄ = − 1

(t− t)2 , guū = − 1
(u− u)2 .

We make the following choices for the charges (i = 1, 2, 3)

G = ( 0, gi, g0, 0)T , Q = ( p0, 0, 0, qi)T , (12.5)

with gi = g and qi = q; then, the central charges and their derivatives are

Z = −eK/2
[
q (s+ t+ u) + p0stu

]
; (12.6)

L = eK/2 [−g0 + g (tu+ su+ st)] ; (12.7)

Zs = − ieK/2

2Ims
[
q (s+ t+ u) + p0stu

]
− eK/2

(
q + p0tu

)
; (12.8)

Zt = − ieK/2

2Imt
[
q (s+ t+ u) + p0stu

]
− eK/2

(
q + p0su

)
; (12.9)

Zu = − ieK/2

2Imu
[
q (s+ t+ u) + p0stu

]
− eK/2

(
q + p0st

)
; (12.10)

Ls = − ieK/2

2Ims [−g0 + g (tu+ su+ st)] + geK/2 (u+ t) ; (12.11)

Lt = − ieK/2

2Imt [−g0 + g (tu+ su+ st)] + geK/2 (s+ u) ; (12.12)

Lu = − ieK/2

2Imu [−g0 + g (tu+ su+ st)] + geK/2 (s+ t) . (12.13)

We now calculate the derivatives of the symplectic vector V:

Vs = i
2ImsV + eK/2

(
0, 1, 0, 0, −tu, 0, u, t

)T
; (12.14)

Vt = i
2ImtV + eK/2

(
0, 0, 1, 0, −su, u, 0, s

)T
: (12.15)

Vu = i
2ImuV + eK/2

(
0, 0, 0, 1, −st, t, s, 0

)T
; (12.16)

DsVs = i
ImsVs; (12.17)

DuVs = i
2ImuVs + i

2Ims

(
Vu −

i
2ImuV

)
+ eK/2

(
0, 0, 0, 0, −t, 0, 1, 0

)T
; (12.18)

DtVs = i
2ImtVs + i

2Ims

(
Vt −

i
2ImtV

)
+ eK/2

(
0, 0, 0, 0, −u, 0, 0, 1

)T
. (12.19)
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Taking the symplectic products of these derivatives we can calculate the only non-zero
element of Cijk,

〈Vt, DuVs〉 = Cstu = −1, (12.20)

then the solution belongs to Class II.15: = Q. 3⊗L.5.
Next, we take all scalar fields equal s = t = u = −iy and this yields to

K = − log(8y3), eK/2 = 1√
8y3 , p0 = 1

g0
(−1 + 3gq) , (12.21)

while for the central charges we have

Z = ieK/2y
(

3q + 1
g0

(1− 3gq)y2
)
, L = −eK/2(g0 + 3gy2). (12.22)

Then, the non-vanishing 2-polarizations of the quartic invariant are given by the following
expressions

I2 = −4p0q3, I−2 = 4g0g
3, I0 = −1

6(1− 12gq + 24g2q2), (12.23)

and the entropy of extremal ( 1
4 -)BPS black holes reads

S =

√√√√ 3I0
I−2

+

√
36I2

0 − 4I2I−2

2I−2
= 1

4

√
1 + 2(1− 4gq)

√
1− 16gq + 48g2q2 − 3(1− 4gq)2

g0g3 ,

(12.24)
corresponding to (5.23) with the choice of the branch “+” (for entropy maximization).
From the discussion in section 5, one can immediately observe that the BPS extremal
black holes of this example satisfy the condition (5.31).

12.2 Magnetic STU

In the previous section, we have considered the electric STU model in the symplectic frame
defined by (12.1), in which the quartic invariant reads (cf. (3.8)–(3.9))

I2 := I4(Q) = −(p0q0 + piqi)2 + 4q0p
1p2p3− 4p0q1q2q3 + 4(p1p2q1q2 + p1p3q1q3 + p2p3q2q3).

(12.25)
By performing a symplectic transformation defined by the following matrix [28]:

S :=



−1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, (12.26)
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one can switch to the so-called magnetic symplectic frame defined by30

FSTU := −2i
√
X0X1X2X3, (12.27)

and

S
(
p0, pi, q0, qi

)T
=:
(
−p0,−qi,−q0, p

i
)T

; (12.28)

S
(
1, s, t, u, −stu, tu, su, st

)T
=: −

(
1, tu, su, st, −stu, −s, −t, −u

)T
, (12.29)

and in which the quartic invariant reads

I2 = −(p0q0 − piqi)2 + 4q0q1q2q3 + 4p0p1p2p3 + 4(p1p2q1q2 + p1p3q1q3 + p2p3q2q3). (12.30)

Now, we present a new non-BPS solution (with hyperbolic horizon) to this prepotential
(I = 1, 2, 3). For details, see appendix C; note that only the scalar τ1 is running, whereas
τ2 and τ3 are frozen at their asymptotical values, which are critical points for V itself:

ds2 = −A(r)dt2 + dr2

A(r) +
(
r2 −∆2

) (
dθ2 + sinh2 θdφ2

)
; (12.31)

A(r) :=
(

(64)2a2 +G
(
b2G+ 4

(
r2 −∆2) (−∆2G+Gr2 − 8

))
32G (r2 −∆2)

)
; (12.32)

τ1 =
√
g0g1
g2g3

τ (r) , τ2 =
√
g0g2
g1g3

, τ3 =
√
g0g3
g1g3

, (12.33)

τ(r) := r −∆
r + ∆; (12.34)

F I = (±)I
Gb

64(r2 −∆2)


(r+∆)
g0(r−∆)
(r+∆)
g1(r−∆)
(r−∆)
g2(r+∆)
(r−∆)
g3(r+∆)

 dt ∧ dr + (±)I
a

gI
sinh θ dθ ∧ dφ. (12.35)

This solution represents a non-extremal black hole in AdS4 with electric and magnetic
charges

G = 64√g0g1g2g3, gI > 0, pI = (±)I
a

gI
, qI = (±)Ib gI , (no sum on I), (12.36)

where (±)I is a vector in which in each component one can choose between the values
± = {+1,−1}. When the extremality condition

(64)2a2G2 + b2G4 6 64G2 (12.37)

is saturated, the unique event horizon is located at

rH =
√

∆2 + 4
G
. (12.38)

30This symplectic frame can be obtained from the N = 2 truncation of the SO(8) gauged N = 8
supergravity [34, 71].
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The Bekenstein-Hawking entropy reads

S

π
= A

4 =
(√
−(64)2a2 − b2G2 + 64

2G + 4
G

)
(g − 1), (12.39)

where we compactified to a Riemann surface of genus g. The entropy in the non-BPS
(and non-extremal) case still does not depend on the values of the scalars, but only on the
values of the charges. This might seem quite unexpected, since the attractor mechanism
in the non-extremal case would not work. In fact, there is no attractor mechanism, and
the non-extremal (non-BPS) BH entropy would depend also on the asymptotical values of
scalar fields, which however are stabilized in terms of the gauging parameters and of the
BH charges in the asymptotical background (as critical points, actually local minima) of
the gauge potential. Thus, the non-extremal BH entropy may be recast in an explicit form
depending only on the BH charges and gauging parameters supporting the solution under
consideration. The potentials read

VBH =
(

64a2

G
+ Gb2

64

)(
1 + |τ |2

Reτ

)
, ∂τVBH = 1

2

(
64a2

G
+ Gb2

64

)(
τ2 − 1
Re2τ

)
; (12.40)

V = −G16

(
4 + 1 + |τ |2

Reτ

)
, ∂τV = G

32

(
1− τ2

Re2τ

)
; (12.41)

∂τ2V = 0, ∂τ3V = 0, (12.42)

while the effettive potential is defined by (D.19) with κ = −1.
Focusing on the extremal case, we can take the branch which allows the limit b = 0

which is supersymmetric, namely

a = 1
64
√

64− b2G2; (12.43)

the entropy density reduces to the supersymmetric value (cf. (6.12))

S = S
V = 4

G
= 1

16√g0g1g2g3
. (12.44)

At the unique event horizon, we have the following values

B|H = 4
G
, τ1|H =

√
g0g1
g2g3

√
∆2G+ 4−∆G√
∆2G+ 4 + ∆G

, (12.45)

Veff|H = 4
G
, ∂τ Veff|H = 0, (12.46)

and we see that these configurations are extremizing the effective potential. It is here worth
remarking that (12.44) yields

S2 = 16
G2 = −∂τ1VBH |H

∂τ1V |H
, (12.47)

consistent with the result (8.7) for BPS critical points of Veff. Since ∂τ1VBH |H 6= 0 and
∂τ1V |H 6= 0, one concludes that such BPS critical points of Veff belong to class II.15 ,
discussed in section 11.2.
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It is here worth remarking a curious fact: by varying the value of the parameter ∆,
one can switch between class II.15 and class I.1 of critical points of Veff, respectively
discussed in sections 11.1 and 11.2. In fact, a (continuous) deformation of one into the
other can be achieved by suitably choosing the parametric dependence of the scalar fields
τI ’s. By setting

∆ = 0, (12.48)

one obtains

τ = 1; (12.49)
∂IVBH = 0, (12.50)
∂IV = 0, (12.51)

thus corresponding to the sub-class 1.I:= VBH .1⊗V .1, since for the extremal solution at
the horizon holds that

VBH = |Z|2 = 2
G
, V = −3 |L|2 = −3G8 . (12.52)

By considering the entropy formula (11.14), one consistently obtains the result (recall that
κ = −1)

S = −2κ |Z|2 = 4
G
, (12.53)

for any extremal black hole. This is a very interesting phenomenon, whose investigation
in detail is left to future work; here, we confine ourselves to observe that the transition
from ∆ 6= 0 to ∆ = 0 as specified by (12.48) corresponds to a transition among different
classes of critical points of Veff which, in a symmetric model like the STU model, should
correspond to a transition among different duality orbits in the representation spaces Q
and G. Namely, we have transited from class II.15 to class I.1 by imposing (12.48); this
cannot be achieved by a U -duality transformation, but rather through a symplectic finite
transformation belonging to the pseudo-Riemannian coset Sp(8,R)/SL(2,R)3.

With the choices
pI = − 1

8gI
, qI = 0, (12.54)

the extremal critical point becomes ( 1
4 -)BPS, and the corresponding BPS entropy enjoys the

expression (5.41), thus belonging to the noteworthy BPS sub-class discussed in section 5.3.1.
One can thus conclude that the BPS extremal black hole supported by (12.48) and (12.54),
belonging to the BPS sub-sector of class I.1 of critical points of Veff, is characterized
by (5.32), and provides an example in which (5.31), and thus (5.39), is satisfied.

Finally, by performing the further identifications

g0, g1 → g0/2 g2, g3 → g2/2, ` = 8
G
.

we get the static solution to the axion-dilaton model [13, 63] F = −iX0X1, presented in
the next section.
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12.3 CP1

Starting from the STU model, in order to obtain the minimally coupled model of N = 2,
D = 4 supergravity with CP1 vector multiplet’s scalar manifold in the symplectic frame
defined by

FCP1 := −iX0X1, (12.55)

one needs to identify the contravariant symplectic sections as follows:

X2 ⇒ X0/
√

2, (12.56)
X0 ⇒ X0/

√
2, (12.57)

X1 ⇒ X1/
√

2, (12.58)
X3 ⇒ X1/

√
2, (12.59)

thus getting that the quartic invariant boils down to be the square of a quadratic invariant:

I2 = (q0q1 + p0p1)2. (12.60)

We now present the investigation of the attractor dynamics of the complex scalar field
(axion-dilaton) within a subclass of extremal solutions previously found in [13] and [63], in
presence of U(1) FI gauging. These correspond to the choices (A = 0, 1)

G = (0, gA)T , Q = (κpA, 0)T . (12.61)

The symplectic section can be parametrised in terms of the complex scalar field τ by
choosing X0 = 1, X1 = τ , so that the holomorphic symplectic section reads (cf. (2.16))

H =
(
1, τ, −iτ, −i

)T
, (12.62)

where τ coordinatizesMv ≡ CP1. The Kähler potential and the non-vanishing components
of the metric of the scalar manifold are respectively

e−K = 4Reτ gτ τ̄ = gτ̄ τ = ∂τ∂τ̄K = (2Reτ)−2. (12.63)

By recalling (2.16), the Kähler-covariantly holomorphic symplectic section reads

V = 1
2
√
Reτ

H. (12.64)

Its derivative and the central charges respectively read

DτV ≡ Vτ = eK/2

2τ
(
−1, τ, iτ, −i

)T
; (12.65)

Z := 〈Q,V〉 = −ieK/2κ(p0τ + p1), (12.66)

L := 〈G,V〉 = −4g0g1e
K/2(p0τ + p1), (12.67)

and the derivative of the central charges is

DτZ = 〈Q,Vτ 〉 = iκe
K/2

2τ (p1 − p0τ). (12.68)
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Since also this model is symmetric, one can compute the 2-polarizations of the quartic
structure that, by virtue of (12.60), is non-primitive (namely, the square of a quadratic
invariant structure; see footnotes 5 and 11):

I2 = (p0p1)2, (12.69)
I1 = 0, (12.70)

I0 = 1
3p

0p1g0g1, (12.71)

I−1 = 0, (12.72)
I−2 = (g0g1)2. (12.73)

In this noteworthy subclass, as discussed in section 5.3.1, from (5.41) the BPS extremal
black hole entropy reads

S = 4

√
I2

I−2

(5.39)= 4

√
9 I2

0
I2
−2

=
√

3 I0
I−2

=
√
p0p1

g0g1
. (12.74)

We should recall that in [13] and [63] the following identifications were made:

p0 = − 1
4g0

, p1 = − 1
4g1

. (12.75)

resulting into the entropy (12.74) to simplify down to

S = 1
4g0g1

. (12.76)

When the solution presents an hyperbolic horizon, S denotes the entropy density, and one
can compactify to a Riemannian surface of genus g, and the identification with the above
formalism is trivial, since

V = 4π(g − 1). (12.77)

12.4 T 3

Finally, we consider the solution in [72] for the model with prepotential

F = (X1)3

X0 , (12.78)

with non vanishing FI U(1) gauging parameters g0 = gξ0 and g1 = gξ1. The BH solution
has one magnetic charge p0 and one electric charge q1. The charges and the constants of
the solution are

p0 = ∓ 1
gξ0

(
1
8 + 8(gξ1β1)2

3

)
, q1 = ± 1

gξ1

(
3
8 −

8(gξ1β1)2

3

)
, (12.79)

β0 = ξ1β1
ξ0

, α0 = ± 1
4ξ0

, α1 = ∓ 3
4ξ1 , c = 1− 32

3 (gξ1β1)2 . (12.80)
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Then, the central charges and their derivatives read

Z = −eK/2
3s

(
3
8 −

8
3(β1g

1)2
)

g1
− s2

(
1
8 + 8

3(β1g
1)2
)

g0

 , (12.81)

L = eK/2
(
3g1s2 − g0

)
, (12.82)

DsZ = −i 1
2ImsZ − e

K/2


(

3
8 −

8
3(β1g

1)2
)

g1
− s2

(
1
8 + 8

3(β1g
1)2
)

g0

 , (12.83)

DsL = eK/2(3g1s2 − g0), (12.84)

where s is the only scalar field and K is the Kähler potential as usual. The I±2 quartic
invariants read

I2 = −4p0q3
1, I−2 = 4g0(g1)3.

Thus, L, I−2 and I2 are non-vanishing, and exploiting the above results it is straightforward
to show that also Im

(
LN3(L,L,L)

)
and Im

(
ZN3(Z,Z,Z)

)
do not vanish, implying that

this solution belongs to the class II.15: = Q.3⊗L.5.

13 Conclusion

In this paper, we have considered N = 2, D = 4 supergravity coupled to Abelian vector
multiplets with U(1) Fayet-Iliopoulos gaugings.

By exploiting the identities determining the structure of projective special Kähler ge-
ometry endowing the vector multiplets’ scalar manifold in presence of electric and magnetic
BH charges as well as of (generally dyonic) gauging parameters, we retrieved, extended and
generalized various results on the expression of Bekenstein-Hawking entropy of asymptot-
ically AdS4 BPS BHs in gauged supergravity. In doing this, we made use of the quartic
structure (and 2-polarizations thereof) characterizing the U -duality groups of type E7 corre-
sponding to symmetric scalar manifolds. Then, we have presented a complete classification
of the critical points of the effective black hole potential Veff which governs the attractor
mechanism at the horizon of extremal BHs, relating - when possible - the resulting attrac-
tors to the critical points of the gauge potential V as well as of the effective black hole
potential in the ungauged case, VBH . In all cases, we have analyzed the existence of BPS
sub-sectors and studied their features. Finally, we have inserted explicit known examples
of asymptotically AdS4 static extremal (BPS) BH in gauged supergravity in the aforemen-
tioned classification, and, as a by-product of our treatment, we also have provided a novel,
static extremal BH solution to the STU model, with the dilaton interpolating between a
hyperbolic horizon and AdS4 at infinity.

The classification of the critical points of Veff which we have provided in the present
work will hopefully be instrumental in order to discover and explore new solutions of
Maxwell-Einstein supergravity with non-vanishing gauge potential. Some directions for
possible further developments also concern the extension to the planar case (κ = 0), the
coupling of hypermultiplets (cf. e.g. [32, 73]), and the generalization to stationary solutions.
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It is finally worth remarking that an almost uncharted territory is provided by non-Abelian
gaugings of N = 2 D = 4 supergravity, which just a few works (see e.g. [74–76]) have
hitherto dared to investigate; the question whether in presence of non-Abelian gaugings
an effective black hole potential formalism for the (covariant) attractor mechanism can be
established, still remains unanswered.

Finally, it is worth mentioning that the few examples discussed in section 12 belong
to two classes only. A quick procedure for the identification of a given solution into one
class of our classification is not currently available; actually, a considerable deal of work
and computations is needed in order to do so. While this is of course not an impossible
task, it would nevertheless be helpful to develop some characterization theorems in order
to simplify such an identification. Interestingly, such a characterization would likely also
provide a strategy for the construction of explicit solutions in any given class, or, possibly
otherwise, prove the emptiness of some classes.

A Computation of the r.h.s. of eq. (5.7)

In special Kähler geometry based on the cubic holomorphic prepotential (3.1), named very
special geometry, the cubic form is defined as (cfr. e.g. [53, 54])

V := − 1
3!dklmIm

(
Xk

X0

)
Im
(
X l

X0

)
Im
(
Xm

X0

)
, (A.1)

and the scalar manifold of the corresponding minimal supergravity theory in D = 5 is
defined as the hypersurface at V = 1. In order to compute the contractions in the r.h.s.
of (5.7), we have to recall some basic formulæ of very special Kähler geometry. From e.g.
the treatment of [53], choosing the so-called 4D/5D special coordinates’ symplectic frame
and fixing the Kähler gauge such that X0 = 1, with Xi

X0 =: zi = xi − iV 1/3λ̂i (such that
1
3!dijkλ̂

iλ̂j λ̂k = 1, which is a way to rewrite (A.1)), one can define

κ̂ij := dijkλ̂
k, κ̂i := dijkλ̂

j λ̂k, κ̂ := dijkλ̂
iλ̂j λ̂k = 6; (A.2)

hij := dijkx
k, hi := dijkx

jxk, h := dijkx
ixjxk. (A.3)

Then, the symplectic sections read

VM =: eK/2


X0

Xi

F0
Fi

 = eK/2


1
zi

−F
∂F
∂Xi

 , (A.4)

where

eK/2 = 1
2
√

2
V−1/2, (A.5)
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and

F = 1
3!dijkz

izjzk = 1
3!dijk

(
xi − iV1/3λ̂i

) (
xj − iV1/3λ̂j

) (
xk − iV1/3λ̂k

)
= 1

3!dijkx
ixjxk − i

2V
1/3dijkx

ixj λ̂k − 1
2V

2/3dijkx
iλ̂j λ̂k + i

3!Vdijkλ̂
iλ̂j λ̂k

= h

6 −
1
2V

2/3κ̂ix
i + iV

1/3

2
(
−hiλ̂i + 2V2/3

)
= h

6 −
1
2V

2/3hij λ̂
iλ̂j + iV

1/3

2
(
−κ̂ijxixj + 2V2/3

)
, (A.6)

and

Fi = ∂F

∂X i
= 1

2dijkz
jzk = 1

2dijk
(
xj − iV1/3λ̂j

) (
xk − iV1/3λ̂k

)
= 1

2dijkx
jxk − iV1/3dijkx

j λ̂k − 1
2V

2/3dijkλ̂
j λ̂k =

= 1
2hi −

1
2V

2/3κ̂i − iV1/3hij λ̂
j = 1

2hi −
1
2V

2/3κ̂i − iV1/3κ̂ijx
j , (A.7)

such that

Z := 〈Q,V〉 = eK/2
(
q0 + ziqi − p0F0 − piFi

)
= eK/2

(
q0 + ziqi + p0F − piFi

)
. (A.8)

On the other hand, the Kähler-covariant derivatives of the symplectic sections read

VMi ≡ DiVM = eK/2


D̃iX

0

D̃iX
j

D̃iF0
D̃iFj

 , (A.9)

D̃i ≡ ∂iK + ∂i, (A.10)

where

D̃iX
0 = − i

4V
−1/3κ̂i; (A.11)

D̃iX
j = δji −

i
4V
−1/3κ̂i

(
xj − iV1/3λ̂j

)
; (A.12)

D̃iF0 = −hi2 + 1
4V
−1/3κ̂i + 1

8 κ̂iκ̂jkx
jxk

+iV1/3
( 1

24V
−2/3hκ̂i + κ̂ijx

j − 1
8 κ̂iκ̂jx

j
)

; (A.13)

D̃iFj = hij −
1
4 κ̂iκ̂jkx

k + i
(1

8V
1/3κ̂iκ̂j − V1/3κ̂ij −

1
8V
−1/3κ̂ihj

)
, (A.14)

such that

Zi ≡ DiZ = 〈Q,Vi〉 = eK/2
(
q0DiX

0 + qjDiX
j − p0DiF0 − pjDiFj

)
. (A.15)
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Thus, from (5.7) and recalling the identity (3.2), one can proceed and compute

e−2K 1
2ΩMNP QV

MVNVPVQ

(3.8)–(3.9)= −
(
X

0
F 0+Xi

F i

)2
+2

3F 0dijkX
i
X

j
X

k−2
3X

0
dijkF iF jF k+dijkd

ilmX
j
X

k
F lFm

=−
(
−F+1

2dijkz
izjzk

)2
−2

3Fdijkz
izjzk

− 1
12d

ijkdilmdjnpdkrsz
lzmznzpzrzs+1

4dijkd
ilmzjzkdlpqdmrsz

pzqzrzs

=−4F 2−4F 2−4F 2+12F 2=0. (A.16)

e−2K 1
2ΩMNP QV

MVNVPVQ

ı̄

(3.11)–(3.12)= −1
2

[(
X

0)2(
Dı̄F 0

)
F 0+X0(

Dı̄X
0)
F

2
0

]
−1

2

[
X

k
F kX

j
Dı̄F j+Xk

F k

(
Dı̄X

j
)
F j

]
−1

2

[
X

0
F 0X

j
Dı̄F j+X0

F 0

(
Dı̄X

j
)
F j+X0(

Dı̄F 0
)
X

j
F j+

(
Dı̄X

0)
F 0X

j
F j

]
+1

6

[(
Dı̄F 0

)
djklX

j
X

k
X

l+3F 0djklX
j
X

k
Dı̄X

k
]
−1

6

[(
Dı̄X

0)
djklF jF kF l+3X0

djklF jF kDı̄F l

]
+1

2dnjkd
nlmX

j
X

k
F lDı̄Fm+1

2dnjkd
nlmX

j
(
Dı̄X

k
)
F lFm

=−1
2

[
−
(
Dı̄F 0

)
F+
(
Dı̄X

0)
F

2]−1
2

[
zkF kz

jDı̄F j+zkF k

(
Dı̄X

j
)1

2djklz
kzl

]
−1

2

[
−FzjDı̄F j−

1
2F
(
Dı̄X

j
)
djmnz

mzn+1
2
(
Dı̄F 0

)
zjdjmnz

mzn−1
2

(
Dı̄X

0)
Fzjdjmnz

mzn

]
+1

6

[(
Dı̄F 0

)
djklz

jzkzl−3Fdjklz
jzkDı̄X

k
]

−1
6

[
1
8

(
Dı̄X

0)
djkldjmndkpqdlrsz

mznzpzqzrzs+3
4d

jkldjmndkpqz
mznzpzqDı̄F l

]
+1

4dnjkd
nlmzjzkdlrsz

rzsDı̄Fm+1
8dnjkd

nlmzj
(
Dı̄X

k
)
dlqsdmrtz

qzszrzt

= 1
2
(
Dı̄F 0

)
F−1

2

(
Dı̄X

0)
F

2−3
2Fz

jDı̄F j−
3
4F
(
Dı̄X

j
)
djklz

kz̄
l

+1
2Fz

jDı̄F j+1
4F
(
Dı̄X

j
)
djmnz

mzn−3
2F
(
Dı̄F 0

)
+3

2

(
Dı̄X

0)
F

2

+F
(
Dı̄F 0

)
−1

2Fdjklz
jzkDı̄X

k

−F 2(
Dı̄X

0)−FzmDı̄Fm

+2FzmDı̄Fm+Fdnjkz
nzj
(
Dı̄X

k
)

=0. (A.17)

Analogously, one can check that

e−2K 1
2ΩMNPQV

MVNVPı̄ V
Q
̄ = 0. (A.18)

e−2K 1
2ΩMNPQV

MVNı̄ V
P
̄ V

Q

k̄ = 0. (A.19)

e−2K 1
2ΩMNPQV

M
ı̄ V

N
̄ V

P
k̄ V

Q

l̄ = 0. (A.20)
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B Proof of (10.7)

At the class V .III of critical points of V (cf. section 10), it holds that

Li = i
2L
CijkL

jLk, (B.1)

which implies
2LLi = − i

4L2CijkC
j
(mn|C

k
|pq)LmLnLpLq, (B.2)

and
|Li|2 = i

2L
N3(L) = − i

2LN3(L) ≡ − i
2LN3(L), (B.3)

where we have defined (cf. (10.11))

N3(L) ≡ N3(L,L,L) := CijkL
iLjLk. (B.4)

By using the special geometry identity (3.1.1.2.12) of [41], one obtains

2LLi = − i
3L2LiN3 (L)− i

12L2

(
DiD(ı̄C ̄k̄l̄)

)
Lı̄L̄Lk̄Ll̄. (B.5)

Therefore, (B.3) and (B.5) yield to(
L − 1

3
|Li|2

L

)
|Lj |2 = − i

24L2

(
DmD(ı̄C ̄k̄l̄)

)
LmLı̄L̄Lk̄Ll̄; (B.6)

m

|L|2 − 1
3 |Li|

2 = −
i
(
DmD(ı̄C ̄k̄l̄)

)
LmLı̄L̄Lk̄Ll̄

24L |Lj |2
(B.3)=

(
DmD(ı̄C ̄k̄l̄)

)
LmLı̄L̄Lk̄Ll̄

12N3(L)
; (B.7)

m

|Li|2 = 3 |L|2 −

(
DmD(ı̄C ̄k̄l̄)

)
LmLı̄L̄Lk̄Ll̄

4N3(L)
, (B.8)

which, by definition (10.10), gives eq. (10.7) �

C Details on the magnetic STU

We use the conventions of [12]. We consider N = 2, D = 4 gauged supergravity
coupled to n Abelian vector multiplets. Apart from the vierbein eaµ, the bosonic field
content includes the vectors AIµ enumerated by I = 0, . . . , n, and the complex scalars
zα where α = 1, . . . , n. These scalars parametrize a special Kähler manifold Mv, i.e. an
n-dimensional Hodge-Kähler manifold that is the base of a symplectic bundle, with the
covariantly holomorphic sections

V =
(
XI

FI

)
, DᾱV = ∂ᾱV −

1
2(∂ᾱK)V = 0 , (C.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative. V obeys
the symplectic constraint

〈V ,V〉 = XIF I − FIX
I = i . (C.2)
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To solve this condition, one defines

V =: eK(z,z̄)/2H(z) , (C.3)

where H(z) is a holomorphic symplectic vector,

H(z) =
(

XI(z)
∂

∂XI F (X) (z)

)
. (C.4)

where F is an holomorphic function homogeneous of degree two, called the prepotential,
whose existence is assumed in order to obtain the last expression. The Kähler potential
is then (cf. (2.18))

e−K(z,z̄) = i〈H,H〉 . (C.5)

The matrix NIJ determining the coupling between the scalars zα and the vectors AIµ is
defined by the relations

FI = NIJXJ , DᾱF I = NIJDᾱX
J
. (C.6)

The bosonic action reads

e−1Lbos = 1
2R+ 1

4(ImN )IJF IµνF Jµν −
1
8(ReN )IJ e−1εµνρσF IµνF

J
ρσ

−gαβ̄∂µz
α∂µzβ̄ − V , (C.7)

with the scalar potential

V = −2g2ξIξJ [(ImN )−1|IJ + 8XI
XJ ], (C.8)

that results from U(1) FI gauging. Here, g denotes the gauge coupling and the ξI are
FI gauging parameters. In what follows, we define gI ≡ gξI . The Einstein’s equations of
motion from (C.7) are given by

Gµν = Tµν =(0) Tµν +(1) Tµν − gµνV, (C.9)
(0)Tµν = 2gαβ̄∂(µz

α∂ν)z
β̄ − gµνgαβ̄∂σz

α∂σzβ̄ , (C.10)
(1)Tµν = −(ImN )IJF IµσF Jσν + gµν

1
4(ImN )IJF IσρF Jσρ, (C.11)

where we have made explicit the contribution form the spin 0 and the spin 1 part. We
can rewrite the full system as

Rµν = −(ImN )IJF IµλF J λ
ν + 2gαβ̄∂(µz

α∂ν)z
β̄ + gµν

[1
4(ImN )IJF IρσF Jρσ + V

]
, (C.12)

0 = ∇µ
[
(ImN )IJF Jµν −

1
2(ReN )IJ e−1εµνρσF Jρσ

]
, (C.13)

0 = 1
4
δ(ImN )IJ

δzα
F IµνF

Jµν − 1
8
δ(ReN )IJ

δzα
e−1εµνρσF IµνF

J
ρσ +

δgαβ̄
δzγ̄

∂λz
γ̄∂λzβ̄

+gαβ̄∇λ∇
λzβ̄ − δV

δzα
, (C.14)

which hold independently from the existence and the choice of a prepotential F (X).
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Defining the tensor

GIµν := RIJF
I
µν + IIJ F̃µν , F̃ Jµν := 1

2
√
−gεµνρσF Jρσ. (C.15)

then eq. (C.13), the Bianchi identities and the charges can be written as

εµνρσ∂µ

(
F Iρσ
GIρσ

)
= 0 ,

1
4π

∫
Σ∞

(
F I

GI

)
=:
(
pI

qI

)
. (C.16)

For the magnetic STU model, the prepotential is given by (12.27), and the symplectic
section can be parametrised in terms of three complex scalar fields τ1, τ2 and τ3 by choosing
X0 = 1, X1 = τ2τ3, X2 = τ1τ3, X3 = τ1τ2, so that

H =
(
1, τ2τ3, τ1τ3, τ1τ2, −iτ1τ2τ3, −iτ1, −iτ2, −iτ3

)T
, (C.17)

where τα’s coordinatize Mv. The Kähler potential and the non-vanishing components of
the metric on the scalar manifold are respectively

e−K = 8Reτ1Reτ2Reτ3, gαᾱ = gᾱα = ∂α∂ᾱK = (τα + τ ᾱ)−2. (C.18)

In particular, we notice the relations

FI = F

2XI
, NIJ = F

2(XI)2 δIJ (C.19)

between the prepotential and the period matrix.
We have

τ1 =
√
g0g1
g2g3

τ(r) ≡
√
g0g1
g2g3

(f(r) + ig(r)) , τ2 =
√
g0g2
g1g3

, τ3 =
√
g0g3
g1g2

. (C.20)

The symplectic section XI and the period matrix NIJ in terms of these scalar fields boil
down to

XI = 1
8

√
G

8
1√
Reτ


1
|g0|
1
|g1|
τ
|g2|
τ
|g3|

 , NIJ = −i64
G



g2
0τ 0 0 0
0 g2

1τ 0 0
0 0 g2

2
τ 0

0 0 0 g2
3
τ


, (C.21)

and Reτ > 0, in order to guarantee the positive definiteness of the spin-1 kinetic terms
of the action, namely the fact that ImNIJ is negative definite. Explicitly, the real and
imaginary parts read

ImNIJ = IIJ = −64
G

diag
(
g2

0Reτ , g2
1Reτ , g2

2
Reτ
|τ |2 , g

2
3
Reτ
|τ |2
)

; (C.22)

ReNIJ = RIJ = 64
G

diag
(
g2

0Imτ , g2
1Imτ , −g2

2
Imτ
|τ |2 , −g

2
3
Imτ
|τ |2
)
. (C.23)
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Now, we employ the two following Ansätze for the metric and the electromagnetic field

ds2 = −A(r)dt2 +A(r)−1dr2 +B(r)dΩ2
k, (C.24)

F Itr = (ImN )−1|IJ

B(r)
(
(ReN )JS pS − qJ

)
, F Iθφ = pIfκ(θ), (C.25)

where dΩ2
k = dθ2 + f2

κ(θ)dφ2 is the metric on the two-dimensional surfaces Σ = {S2, H2}
of constant scalar curvature R = 2κ, with κ = ±1, and (cf. e.g. (5.10) of [31] and refs.
therein)

fκ(θ) = 1√
κ

sin(
√
κθ) =

{
sin θ κ = 1 ,

sinh θ κ = −1 .
(C.26)

The stress tensor for the spin-1 part T (1)
µν can be computed as

(1)T 0
0 =(1) T 1

1 = −(1)T 2
2 = −(1)T 3

3 = − 1
B2VBH ; (C.27)

one can also check that
1
4
∂IIJ
∂za

F IµνF
J |µν − 1

8
∂RIJ
∂za

F Iµν
∗F J |µν = − 1

B2
∂VBH
∂za

, (C.28)

where we defined the so-called black hole (BH) potential [10, 43]

VBH := −1
2Q

TM(N )Q. (C.29)

One also have for gI > 0

V = −G16

(
4 + 1 + |τ |2

Reτ

)
, ∂τV = G

32

(
1− τ2

Re2τ

)
. (C.30)

The field Maxwell and Bianchi field equations (C.16) are satisfied, while the Einsteins
equations of motion and the scalar field equation read31

Rtt = A

2B
(
A′′B+A′B′

)
= A

B2VBH−AV ; (C.31)

Rrr =− 1
2AB2

(
A′′2B2 +A′B′B+2AB′′B−AB′2

)
=− 1

AB2VBH + 1
A
V + τ ′τ ′

2Re2τ
; (C.32)

Rθθ =−1
2
(
A′B′+AB′′

)
+κ= 1

B
VBH +BV ; (C.33)

0 = 1
B2∂τVBH +∂τV −

1
B

(BAτ ′)′

4Re2τ
+A

τ ′2

4Re3τ
. (C.34)

The system can be rewritten as(
2B′′B −B′2

)
B2 = − τ ′τ ′

Re2 τ
; (C.35)

A′′B −AB′′ = 4VBH
B
− 2κ; (C.36)

(AB)′′ = −4BV + 2κ; (C.37)

0 = 1
B2∂τVBH + ∂τV −

1
B

(BAτ ′)′

4Re2τ
+A

τ ′2

4Re3τ
. (C.38)

31The priming denotes differentiation with respect to the radial coordinate.
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Assuming B := r2 −∆2 and hyperbolic symmetry κ = −1, equation (C.35) is solved by

f(r) = r −∆
r + ∆ , g(r) = 0. (C.39)

With such a position, the equation (C.36) reads(
r2 −∆2

)
A′′(r)− 2A(r)−

(
∆2 + r2) ((64)2a2 + b2G2)

8G(r2 −∆2)2 − 2 = 0, (C.40)

and the part of solution which is consistent with the remaining equations of motion is

A(r) = (64)2a2 + b2G2

32G (r2 −∆2) + c1
(
r2 −∆2

)
− r2

∆2 , (C.41)

where c1 is a constant, that can be fixed using the remaining equations (C.37) and (C.38).
In fact, those equations are satisfied if we require the following condition,

− 8c1∆2 + ∆2G+ 8 = 0. (C.42)

D Near-horizon limit and Veff

By considering the treatment of the magnetic STU model given in section 12.2 as well as in
appendix C, we recall here the near-horizon limit of the equations of motion, which yields
to the definition of the effective black hole potential Veff in gauged supergravity . We start
with the metric Ansatz

ds2 = −A(r)dt2 + 1
A(r)dr

2 +B(r)dΩ2
κ, (D.1)

where
dΩ2

κ = dθ2 + f2
κ (θ) dϕ2 (D.2)

is the metric on the two-dimensional surface S2 for κ = 1 or H2 for κ = −1. Such a surface
has constant scalar curvature R = 2κ, and fκ (θ) is defined by (C.26). In the near-horizon
limit, it must hold that

A(r) → r2
H

r2
A

⇒ A′(r)→ 2rH
r2
A

, A′′(r)→ 2
r2
A

; (D.3)

B(r) → r2
H ⇒ B′(r)→ 0, B′′(r)→ 0. (D.4)

Thus:

1. the near-horizon limit of eq. (C.31) reads

A

2B
(
A′′B +A′B′

)
= A

B2VBH −AV ; (D.5)

⇓
r2
H

2r2
Ar

2
H

2
r2
A

r2
H = r2

H

r2
Ar

4
H

VBH −
r2
H

r2
A

V ⇔ 1
r2
A

= 1
r4
H

VBH − V, (D.6)

which matches eq. (2.17) of [30], or eq. (5.33) of [31] (by setting VBH them → VBH us
(8π)2

and Vthem → Vus
2 ).
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2. the near-horizon limit of eq. (C.32) reads

− 1
2AB2

(
A′′B2 +A′B′B+2AB′′B−AB′2

)
=− 1

AB2VBH + 1
A
V + τ ′τ ′

2(Reτ)2 ; (D.7)

⇓

−1
2
r2
A

r2
H

1
r4
H

2r4
H

r2
A

=− r
2
A

r6
H

VBH + r2
A

r2
H

V ⇔ 1
r2
A

= 1
r4
H

VBH−V, (D.8)

again matching eq. (2.17) of [30], or eq. (5.33) of [31].

3. the near-horizon limit of eq. (C.33) reads

−1
2
(
A′B′ +AB′′

)
+ κ = 1

B
VBH +BV ; (D.9)

⇓

κ = 1
r2
H

VBH + r2
HV ⇔

κ

r2
H

= 1
r4
H

VBH + V, (D.10)

which generalizes to κ = ±1 eq. (2.16) of [30] (to which it reduces by setting κ = 1),
or eq. (5.34)32 of [31].

4. the near-horizon limit of eq. (C.34) reads

0 = 1
B2∂τVBH + ∂τV −

1
B

(BAτ ′)′

4 (Reτ)2 +A
(τ ′)2

4 (Reτ)3 ; (D.11)

⇓

0 = 1
B2∂τVBH + ∂τV ⇔ 0 = 1

r4
H

∂τVBH + ∂τV, (D.12)

which - by trivial extension to the generic case with many scalars - matches eq. (2.18)
of [30], or eq. (5.35) of [31].

Thus, by solving (D.10), one obtains

κ

r2
H

= 1
r4
H

VBH + V ⇔ V r4
H − κr2

H + VBH = 0⇔ r2
H,± = κ

2V ±
√
κ2 − 4V VBH

2V . (D.13)

On the other hand, from (D.6) or (D.8) one obtains

1
r2
A

= 1
r4
H,±

VBH−V
(D.13)⇔ 1

r2
A

= −2V + κ

r2
H,±
⇔ r2

A,± = 1
κ

r2
H,±
− 2V =

r2
H,±

κ− 2V r2
H,±

, (D.14)

such that

r2
A,± =

r2
H,±

κ− 2V r2
H,±

= ∓
r2
H,±√

κ2 − 4V VBH
, (D.15)

where in the last step the result

Eq. (D.13)⇔ κ− 2V r2
H,± = ∓

√
κ2 − 4V VBH (D.16)

32Let us remark that (D.10) fixes a typo in eq. (5.34) of [31].
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has been used. Since r2
A > 0, only r2

A,− and r2
H,− make sense:

r2
H = κ−

√
κ2 − 4V VBH

2V ; (D.17)

r2
A = r2

H√
κ2 − 4V VBH

. (D.18)

Thus, one can define33

Veff := 1− κ
√
κ2 − 4V VBH
2V , (D.19)

such that for κ = ±1 it holds that

S = κ Veff|∂Veff=0 . (D.20)

In fact,

∂iVeff = 0 (D.21)
m

κ2∂iVBH +

(
κ2 − 2κ2VBHV − κ

√
κ2 − 4V VBH

)
2V 2 ∂iV

(D.19)= ∂iVBH + κ2V 2
eff∂iV = ∂iVBH + r4

H∂iV = 0, (D.22)

which is satisfied by virtue of the trivial generalization of (D.12) to the generic case of
many scalars, namely

∂τVBH + r4
H∂τV = 0⇒ ∂iVBH + r4

H∂iV = 0, ∀i. (D.23)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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