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Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatments over the last 10
years, with even increasing indications in many neoplasms. Non-small cell lung cancer
(NSCLC) is considered highly immunogenic, and ICIs have found a wide set of
applications in this area, in both early and advanced lines of treatment, significantly
changing the prognosis of these patients. Unfortunately, not all patients can benefit from
the treatment, and resistance to ICIs can develop at any time. In addition to T
lymphocytes, which are the major target, a variety of other cells present in the tumor
microenvironment (TME) act in a complex cross-talk between tumor, stromal, and
immune cells. An imbalance between activating and inhibitory signals can shift TME
from an “anti-” to a “pro-tumorigenic” phenotype and vice versa. Natural killer cells (NKs)
are able to recognize cancer cells, based on MHC I (self and non-self) and independently
from antigen presentation. They represent an important link between innate and adaptive
immune responses. Little data are available about the role of pro-inflammatory NKs in
NSCLC and how they can influence the response to ICIs. NKs express several ligands of
the checkpoint family, such as PD-1, TIGIT, TIM-3, LAG3, CD96, IL1R8, and NKG2A. We
and others have shown that TME can also shape NKs, converting them into a pro-tumoral,
pro-angiogenic “nurturing” phenotype through “decidualization.” The features of these
NKs include expression of CD56, CD9, CD49a, and CXCR3; low CD16; and poor
cytotoxicity. During ICI therapy, tumor-infiltrating or associated NKs can respond to the
inhibitors or counteract the effect by acting as pro-inflammatory. There is a growing
interest in NKs as a promising therapeutic target, as a basis for adoptive therapy and
chimeric antigen receptor (CAR)-NK technology. In this review, we analyzed current
evidence on NK function in NSCLC, focusing on their possible influence in response to ICI
treatment and resistance development, addressing their prognostic and predictive roles
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and the rationale for exploiting NKs as a tool to overcome resistance in NSCLC, and
envisaging a way to repolarize decidual NK (dNK)-like cells in lung cancer.
Keywords: natural killer, non-small cell lung cancer, tumor microenvironment, checkpoint inhibitors, inflammation,
angiogenesis, polarization, resistance
1 INTRODUCTION

Immunotherapy has become a milestone in the treatment of
almost all kinds of neoplasms, both solid and hematologic. While
chemotherapy is aimed to kill cancer cells, immunotherapy
stimulates the immune system to react against tumors (1). The
concept of cancer immunotherapy is based on the finding that
tumor cells, normally recognized and neutralized by T cells, can
develop mechanisms to evade the host’s immune surveillance.
Thus, inhibition of negative regulators of T-cell function may
increase the activation of the immune system, inducing a
subsequent enhancement of antitumor responses as well (1).
Great progress has been made from the first attempts with cancer
vaccines leading to the approval of the more recent immune
checkpoint inhibitors (ICIs). Among these, the first therapeutic
molecules to be developed and to have brought a clinical
improvement are the anti-cytotoxic T-lymphocyte antigen 4
in.org 2
(CTLA-4), also known as CD152, and the anti-programmed
death receptor-1/programmed death ligand-1 (PD-1/PD-L1)
antibodies. These agents, alone or in combination, are
routinely used in clinical practice for the treatment of many
solid tumors, such as lung cancer, urothelial and renal cell
carcinoma, head and neck tumors, melanoma, and mismatch
repair deficient colon cancer (2). ICIs act by blocking the
activation of tumor-induced inhibitory pathways: the first one
(anti-CTLA-4) mostly at the early stage of naïve T-cell activation,
at the site of antigen presentation in lymph nodes, and the latter
(anti-PD-1/PD-L1) at the advanced stage of a T-cell immune
response, directly in the tumor microenvironment (TME) (3), as
depicted in Figure 1. In addition to PD-1/PD-L1 and CTLA-4,
other checkpoint molecules such as the T-cell immunoglobulin
and mucin domain 3 (TIM-3), lymphocyte activation gene-3
(LAG3), T-cell immunoglobulin and immunoreceptor tyrosine-
based inhibitory motif (ITIM) domain (TIGIT), and, more
FIGURE 1 | Natural killer cell (NK) plasticity in cancer. Tumor cells and tumor microenvironment (TME) induce a pro-tumor CD56+CD16− decidual-like phenotype
that expresses inhibitory receptors. The blockade of these receptors or the use of chimeric antigen receptor (CAR) or adaptive therapy can reverse this mechanism
by switching NKs into antitumor cytotoxic CD56dimCD16+ cytotoxic phenotype that can release granzyme and perforin.
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recently, V-domain immunoglobulin suppressor of T-cell
activation (VISTA) have been explored as potential targets for
the development of new agents for cancer immunotherapy (4).
Non-small cell lung cancer (NSCLC), the most common cause of
cancer-related death worldwide, is considered a highly
immunogenic neoplasm. ICIs have found a wide range of
applications in this oncologic field, in both early and advanced
lines of treatment, dramatically changing the prognosis of these
patients in many cases (5–12). Unfortunately, not all patients can
benefit from this treatment, and resistance can occur even in
individuals who were previously responsive (13, 14). Several
explanations have been provided for the lack of efficacy of
ICIs, one of which is related to the low presence of T
lymphocytes to be reactivated by targeting the immune
checkpoints. The fine balance between activating and
suppressing signals of the immune system plays a pivotal role
in promoting or, conversely, counteracting cancer onset and
progression. Tumor-infiltrating T lymphocytes have emerged as
important prognostic and predictive factors in many types of
cancer. In particular, the percentage of CD8+ T lymphocytes as
well as the CD4+/CD8+ ratio and the polarization toward an anti-
cancer T-helper response (Th1 vs. Th2), seem to correlate with
better prognosis and improved response to ICIs in melanoma,
breast, and lung cancers (15–17). Another reason lies in the
complex interaction existing between innate immunity, stromal,
and tumor cells in TME, which is crucial in regulating tumor
formation, growth, invasion, and metastasis. The importance of
tumor-associated macrophages (TAMs) in tumor response has
been recently understood. Some preliminary observations
propose that polarization toward a pro-tumorigenic M2
phenotype correlates with worse prognosis and increased risk
of recurrence after resection in different types of cancer,
including lung tumors; more recent evidence also suggests a
possible negative predictive role for response to ICIs (15, 18). We
have been working for a long time on tumor-associated natural
killer cells (NK) (TA-NKs). Despite their crucial role in
immunity, limited data are evaluable about their role to
modulate the response to immunotherapy. In this review, we
want to summarize and discuss the data currently available on
the behavior of NKs under ICI treatment, their role in resistance
to treatment and possible strategies to exploit their function as a
therapeutic target, and their potential re-polarization into killers,
with a focus on NSCLC.
2 NATURAL KILLER CELL PHENOTYPE
AND BIOLOGY

NKs are lymphoid cells of the innate immune system,
representing about 20% of total peripheral blood (PB)
circulating lymphocytes. Since their discovery in the 1970s,
they have aroused growing interest thanks to their potent
cytolytic function against tumor cells or virus-infected cells
without previous antigen sensitization or immunologic
memory (19–21). T-cell immunity requires recognition of
specific antigens presented through major histocompatibility
Frontiers in Oncology | www.frontiersin.org 3
complex (MHC) class I and class II proteins by CD8+ and
CD4+ T cells (22, 23), respectively, while NKs recognize as
“non-self”, tumor cells that have lost their MHC class I
molecules (19, 20). Furthermore, they are primary producers of
interferon-gamma (IFN-g), the most potent stimulus for MHC
expression and antigen presentation, acting as a cross-talk
between innate and adaptive responses. Recently, NKs have
been recategorized as type 1 in the larger family of innate
lymphoid cells (ILCs) (24–26).

NKs exert both cytotoxic and regulatory activities. On the one
hand, they induce apoptosis and cell death through the release of
perforin and granzyme by their intracytoplasmic granules; on the
other hand, they orchestrate innate response through the
secretion of immunomodulatory soluble factors, such as
cytokines and chemokine, which act on hematopoietic cell
recruitment and activation (24–28).

Two major immunophenotypic subpopulations of NKs,
which differ in morphology and function, have been identified
in PB based on the relative expression of the CD56 and CD16
antigen surface markers. The first subset, the CD56dimCD16+,
accounts for 95% of NKs in PB, and, when it comes into contact
with virus-infected cells or tumor cells expressing low levels of
MHC class I or other ligands, exhibits high cytotoxic activity
through perforin and granzyme release. The other subset, the
CD56brightCD16−, represents only 5% of NKs circulating in PB,
but it is the majority of NKs in secondary lymphoid tissues and
shows low cytotoxic potential and efficient production of
cytokines, such as the tumor necrosis factor (TNF)-alpha and
the granulocyte macrophage colony-stimulating factor (GM-
CSF), both of which play a crucial role in the modulation of an
immune response, particularly in chronic inflammation. These
cells are considered as a less differentiated form than the
“terminally differentiated” CD56dimCD16+, subtype (29). In
fact, when exposed to interleukin (IL)-2, IL-12, and/or IL-15,
they can differentiate into granules secreting CD56dimCD16+

NKs (30–32).
NKs dynamically circulate between organs and the

bloodstream to exert their immunosurveillance activity (33,
34). Among organs, the lungs have the highest contents of
NKs, mostly the CD56dimCD16+ subtype (34–37). An analysis
performed on NKs isolated from bronchoalveolar lavage of
normal lungs underlined that pulmonary NKs are mainly
functionally inactive and show a weaker response to immune
stimulation, as a consequence of local inhibitory influences (38).
However, in response to proper stimuli, such as IL-2, lung NK
activity is completely restored. This suggests that pulmonary
alveolar macrophages can regulate lung NK activity for the
maintenance of physiological homeostasis (38), as the lungs are
continuously exposed to novel antigens (38, 39).

The third type of NKs showing a CD56brightCD16− phenotype
and the expression of killer-cell immunoglobulin-like receptors
(KIR) receptor, CD69, and CD49a on the cell surface has been
recently described (35, 40, 41). About 15% of tissue-resident NKs
in the lungs are CD56brightCD16−CD49a+, with a high ability to
secrete IFN-g (40). This can be considered a “decidual”
phenotype (dNK), recapitulating an NK type first described in
May 2022 | Volume 12 | Article 886440
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the decidua and which has a crucial role in the tolerance of the
embryo and the spiral artery formation (42–45). The dNK was
observed in many cancers, both infiltrating and in PB. In cancer
patients, it acts in a “pro-tumorigenic” way, inducing tolerance
and proving nurturing function, similar to what happens with
the embryo (42).
3 NATURAL KILLER CELLS IN NON-
SMALL CELL LUNG CANCER AND
MODULATION BY THE TUMOR
MICROENVIRONMENT

NKs were found to be an important part of the TME in various
cancer types, able to modulate the immune response and affect
prognosis, particularly in lung cancer (35–37, 40, 41, 46–48).
Although these cells normally carry out immune surveillance and
have the function of destroying tumor cells, they can also act as
tumor-promoting inflammatory leukocytes. This is in large due
to the modulation by both the tumor itself and the TME, which is
constituted by various immune cells, fibroblasts, extracellular
matrix, growth factors, and endothelial and vascular cells: an
imbalance between activating and inhibitory signals can
determine whether NKs will exert their cytotoxic activity or
remain inactive or even become pro-tumor (46). Intratumorally,
NKs have a prognostic significance in lung cancer: high NK
infiltration was positively correlated with survival rate in patients
who underwent surgery in early stages, and in particular,
increased NK infiltration was found in squamous cell
carcinoma (SCC), in non-smoking patients, and lower-stage
tumors (T1–T2 and limited nodal involvement) (46).

In NSCLC patients, NKs were found at the invasive margin of
tumor samples (35, 48). Tumor-infiltrating NKs (TI-NKs) in
lung cancer are mostly of the CD56brightCD16− subset and
exhibit low cytotoxic potential as well as high cytokine
production capability. They are mainly present in the tumor
stroma, particularly in the alveolar and peri-bronchovascular
interstitium, without direct interaction with tumor cells,
suggesting a major role in the orchestration of the immune
response rather than killing effect (36, 48). In contrast, the
percentage of cytotoxic CD56dimCD16+ NKs is lower in lung
cancer compared to normal tissue, probably as a result of the
modulation by TME, and it is related to MHC class I expression,
as it is higher in MHC I-deficient tumors.

TME can directly contribute to the bloodstream recruitment
and the accumulation of CD56brightCD16− NKs at the tumor site
by promoting a switch in chemokine expression. In particular,
the number of CD56bright NKs infiltrating NSCLC is correlated
with a downregulation of C-X-C Motif Chemokine Ligand
(CXCL)2, the chemokine specifically attracting CD56dim NKs,
and overexpression of the chemokines preferentially attracting
CD56bright NKs, CXCL9, CXCL10, and C-C Motif Chemokine
Ligand (CCL)19. These chemokines, through the binding to C-
X-C Motif Chemokine Receptor (CXCR)3, promote low-
cytotoxic CD56bright NK recruitment, ultimately leading to
Frontiers in Oncology | www.frontiersin.org 4
tumor escape (34). TI-NKs show a deep alteration of their
phenotype, with overexpression of CXCR3 receptor and
downregulation of CD57 mature NK marker, and have
profound defects in their ability to activate granzyme B
degranulation and IFN-g production (49).

Whether the presence of TI-NKs and their tumor-specific
characterization affect prognosis and treatment sensitivity is
largely unknown. A high proportion of TI-NKs have been
associated with longer progression-free survival (PFS) in
advanced and resected early-stage NSCLC, in both squamous
and adenocarcinoma (50–52). Conversely, in a recent meta-
analysis performed on NKs infiltrating solid tumors, including
four studies on lung cancer, no correlation was found between
the degree of NK infiltration and overall survival (OS) in patients
from stage I to IV (53). However, the small sample size, the high
variability in methods used for analysis, and the large differences
in stages and histological profiles in all these studies make it
difficult to draw definitive conclusions. Furthermore, such
heterogeneous results might depend on the dual nature of the
NKs themselves, since, against all the “dogmas” on terminal
differentiation, they can switch from a cytotoxic antitumor
activity to an exhausted pro-tumoral function under pressure
and modulation of tumor and TME.

TME is composed of a multitude of immune cells, in addition
to T and B cells, macrophages, granulocytes, mast cells,
fibroblasts and extracellular matrix, secreting growth factors,
activating or inhibitory cytokines, and chemokines and
proteases, all of which are in dynamic spatial and temporal
evolution. An imbalance in cellular and soluble inhibitory factors
results in the establishment of a pro-tumoral microenvironment,
which in turn supports tumor growth, progression, and
resistance. NKs have pleiotropic functions, and given their dual
nature between innate and adaptive immunity, TME may deeply
affect their function to contrast or to support tumor growth and
promote immune escape. As in other observed malignancies, TI-
NKs derived from NSCLC displayed an impaired degranulation
activity and INF-g production when exposed to tumor cells than
NKs present in normal lung tissue or circulating in the
bloodstream (48, 54). Furthermore, T1-NKs produce placental-
derived growth factor (PIGF), vascular endothelial growth factor
(VEGF), and IL-8/CXCL8, particularly in SCC (37). We found
that the CD56+CD16− NKs represented the predominant subset
in samples from 31 surgically resected NSCLC and a minor
subset in samples from adjacent normal lung tissue and PB (37).
We also observed that NK supernatants derived from NSCLC
samples induced endothelial cell chemotaxis and formation of
capillary-like structures in vitro, particularly evident in SCC
patients and absent in controls (37). Taken together, these data
suggest that in NSCLC, and particularly in SCC, NKs act as
proangiogenic cells with a mechanism at least in part mediated
by transforming growth factor-beta (TGF-beta). TI-NKs
infiltrating the tumors have been shown to have a phenotype
characterized by CD56brightCD16−/low CD94/NK group 2
member A (NKG2A)+ perforin low (36, 37, 47) and decreased
expression of CD337/NK protein (NKp)30, NKp80/KLRF1,
CD226/DNAX accessory molecule (DNAM-1), CD16, and
May 2022 | Volume 12 | Article 886440

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gemelli et al. NK in Lung Cancer Resistance
CD85j/Ig-like transcript (ILT2) inhibitory receptors. TI-NKs in
NSCLC patients show uniformly poor cytotoxicity and acquire a
pro-angiogenic dNK-like phenotype, described as VEGF+
CXCL8+ PlGF+ (37, 42, 47). This NK subtype was observed in
many cancers, in both infiltrating tumoral tissues and the PB (37,
41, 42, 47). In cancer, these cells lack the ability to kill malignant
cells and directly act in a “pro-tumorigenic” way, inducing
immune tolerance and providing nurturing function (37, 42,
47), similar to what happens in the embryo.

The production of pro-angiogenic factors not only is limited
to TI-NKs but also is observed in PB NKs (tumor-associated NKs
(TA-NKs)) (37, 42, 47). TA-NKs present similar phenotypic
characteristics compared to TI-NKs (37, 41, 42, 47, 55, 56). The
presence of these NKs in PB results in a potent systemic pro-
tumorigenic effect even in early-stage small-size carcinomas,
especially for the SCC (37, 47). The TME interacts with the
immune system and may impair NK activity through different
strategies, including the production of inhibitory cytokines, such
as TGF-beta and IL-10, the high infiltration of peritumoral
monocytes/macrophages, which can induce the polarization of
NK toward a pro-tumorigenic phenotype, and the inhibition of
natural cytotoxicity receptor (NCR) expression, mainly NKp30,
NKp44, and NKp46 (57–59). Here we describe the main
mechanisms involved.

3.1 Decidual Natural Killer Cells
As reported above, dNK cells are a third NK subset that has
recently been described and differs from the PB subset at
both functional and phenotypical levels. They show a
CD56brightCD16− phenotype, a characteristic expression profile
of KIR receptors, various chemokine receptors, and tissue
residency markers CD9 and CD49a on the cell surface (43–45).
CD9 is a member of the tetraspanin family, which is associated
with different integrin adhesion receptors and modulates cell
migration, invasion, and adhesion. CD9 is upregulated by TGF-
beta (60) and is also characteristic of exosomes (61) CD49a
constitutes the alpha-subunit of the alpha1beta1 integrin
receptor (VLA1), which binds collagen IV present in basement
membranes and is involved in regulating cell cytotoxic activity,
migration, and adhesion (43).

This NK subtype was first identified in the as decidual
placenta and uterus and for this reason called dNKs (43, 62).
dNKs are highly proangiogenic and have a fundamental function
in decidual vascularization and spiral artery formation, through
the secretion of proangiogenic cytokines like PlGF, angiogenin,
CXCL8, VEGF, and angiopoietins 1 and 2 (44, 63–66). When
added to tumor cell xenografts, dNK cells can stimulate
neoangiogenesis and tumor growth (63). dNKs play also an
important role in maintaining immune homeostasis: acting as an
immunosuppressant and losing their killing ability, they create a
microenvironment protected by the recognition of the immune
system and capable of tolerating the growth of the embryo
(43–45).

Similar mechanisms occur in tumors; cancer cells can shape
the TME, converting immune cells from a cytolytic to a tolerant
and nurturing phenotype (42). dNK cells with proangiogenic
decidual features have been described in lung cancer and other
Frontiers in Oncology | www.frontiersin.org 5
tumors, such as colorectal and prostate cancers (42). The dNK
cell decidual marker CD9 is expressed by TI-NKs of melanoma,
colorectal cancer, breast cancer, and glioblastoma (41, 42, 55, 56,
67–70). The chemokine receptor CXCR3, another dNK marker,
is expressed in TI-NKs of colorectal cancer, breast cancer,
melanoma, and glioblastoma (42, 49, 67–69), while CXCR4 in
NK is upregulated in neuroblastoma and prostate cancer (42, 71).
TA-NKs express CD9 and CD49+ in NSCLC, prostate cancer,
and melanoma (41, 42, 56, 69), and CXCR4 is present in TA-NKs
of prostate cancer (56). TME induces accumulation of
CD56brightCD16− poorly cytotoxic NKs, promotes their
survivorship and NK decidualization, and reprograms them to
resume embryonic activity finalized to tumor immune escape
and growth (42). TME can exert this function through the release
of a large number of proangiogenic factors, like adenosine
(ADO), hypoxia, prostaglandin E2 (PGE-2), glycodelin-A
(GdA), HLA-G, and galectin-1 (42). Among these molecules,
TGF-beta seems to be the most potent cytokine inducing
immune response downregulation and NK decidualization, and
it is found to be upregulated in many tumor types (60, 72, 73).

CD56brightCD16− NKs represent the predominant subset in
resected NSCLC and show proangiogenic features, such as
VEGF, P1GF, and IL-8 secretion, particularly evident in SCC
(37, 42, 47). In our previous publications, we showed that
supernatants derived from TI-NKs and TA-NKs can induce
endothelial cell chemotaxis and capillary formation in vitro
(37). NKs expressing decidual-like markers, such as CD49a
and CD9, have also been found in pleural effusion from
primary and metastatic tumors, including lung cancer. These
cells showed compromised degranulation activity and IFN-g
production and enhanced VEGF secretion, which was partially
restored with the addition of IL-2 (37, 74).

Our data suggest that tissue inhibitors of metalloproteases
(TIMPs) might counteract cancer-induced NK polarization, by
restoring the expression of activation markers like NKG2D and
reducing the expression of exhaustion markers such as CD9,
CD49a, and the T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) (75). Taken together, these and many other
results suggest an important role for NK polarization in tumor
growth and invasion, including in NSCLC. Understanding these
mechanisms is fundamental for the development of new therapeutic
strategies. A blockade of decidualization could constitute a new
therapeutic target, not only in lung cancer but also in other
malignancies sharing this phenomenon.

3.2 Activating and Inhibitory Receptors
A mechanism by which TME may shape NKs into a non-
cytotoxic phenotype is the reduction of activating NK
receptors and the induction of inhibitory receptors on the cell
surface. The tolerance toward self-healthy cells is mediated by
HLA molecules that bind to inhibitory HLA NK receptors,
mainly KIRs and CD94/NKG2A, mitigating NK cytotoxic
ability (36, 48). NKG2A is an inhibitory member of the NKG2
family and is expressed on CD56high NKs (76, 77). The non-
classical MHC class I molecule HLA-E is the major ligand of
NKG2A−CD94 (76–78). High NKG2A expression on the cell
surface is a marker of NK exhaustion and correlates with a worse
May 2022 | Volume 12 | Article 886440
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prognosis (76–79). This goes in parallel with the downregulation
of NCRs such as NKp30, NKp44, and NKp46, by a mechanism
that is supposed to depend on cell-to-cell contact (76–79).
Upregulation of inhibitory NK receptors occurs in cancer (76–
78). As for “decidualization,” TGF-beta is the most potent
stimulus to induce upregulation of inhibitory T-cell receptors
(TCRs) and downregulation of the activating ones on NKs (60,
72, 73). Lung cancer produces a high amount of TGF-beta, and
the circulating levels of this factor correlate with prognosis (48)
and diagnostic effects for patients with early-stage NSCLC (80).

Inhibitory checkpoints have an important role in maintaining
homeostasis and usually are not expressed by resting NKs, but in
cancer and other pathological condition, their production is
induced by the interaction of ligands released by tumor cells,
to allow immune escape.

Among these, TIGIT is an important co-inhibitory receptor
of the immunoglobulin superfamily expressed by NKs (81).
Together with CD96, TIGIT binds to CD155 and CD112
resulting in NK and T-cell inhibition (82). Like TIGIT, TIM-3
has been investigated as a marker of T-cell exhaustion because
it is frequently co-expressed with PD-1 and has recently
been found overexpressed in circulating NKs of advanced
lung cancer (83). Moreover, TIM-3 is overexpressed in
CD3−CD56+ NKs, and it is higher in patients with advanced
lung adenocarcinoma (nodal involvement or T3–T4); this
overexpression is correlated with shorter OS. Interestingly,
blocking TIM-3 alone or in combination with an anti-PD1
may reverse the NK exhaustion (84).

Beyond a well-established regulatory role in T-cell activation,
overexpression of LAG3 was associated with decreased NK
function in mouse models. However, this has not been
confirmed in humans, so further studies might focus on T-cell
regulation for LAG3 rather than NK function (85–87).

NK activation is partially controlled by KIRs upon binding
with their ligands, primarily the HLA-C molecules. KIRs are a
large family that comprehends several inhibitory receptors,
which bind to different allotypes of MHC complexes. Through
this binding, KIRs activate intracellular inhibitory signals that
prevent NK activation (88). The importance of KIR inhibition
has been demonstrated in acute myeloid leukemia (AML)
patients in whom allogeneic transplantation of stem cells
having a mismatch between KIRs on donor NKs and recipient
MHC class I molecules was likely to reactivate NK antitumor
function, leading to improved relapse-free survival and OS. The
results suggest that blocking the interaction between KIRs and
MHC class I results in NK activation and subsequent eradication
of the residual leukemia clones (89).

PD-1 is one of the most important immune checkpoints, with
relevant clinical applications. PD-1 was first described in T cells,
but it is also expressed in NKs (90–92). Like other checkpoint
regulators, its primary role is to maintain cell homeostasis.
However, cancer cells can express their ligand (PD-L1) and,
together with other inhibitory immune cells, like the regulatory T
cells (Tregs), can release TGF-beta to induce PD-1 expression on
NKs, thereby escaping the immune response (90–92).
Furthermore, PD-L1 expressing circulating epithelial tumor
Frontiers in Oncology | www.frontiersin.org 6
cells CETCs have been detected in 82% of lung cancer patients.
PD-L1 positive CETCs could be a potential biomarker to select
patients for treatment with PD-1/PD-L1 inhibitors, and may be a
direct target of anticancer treatment (93).

All these receptors are currently under investigation in
clinical trials as targets.

3.3 Alterations of Natural Killer
Cell Metabolism
NK metabolism might be impaired in TI-NKs, limiting NK
cytotoxic activity. TME plays a major role even in this context,
as it consumes a large number of nutrients, such as glucose and
glutamine, and releases TGF-beta, which in turn reduces NK
glycolysis and oxidative phosphorylation, decreasing NK activity
(94). Inhibition of the TGF-beta pathway restores NK
metabolism, underlying its importance in TME regulation (94).
The enzyme fructose-1,6-biphosphates 1 (FBP1) is upregulated
by TGF-beta during cancer progression, resulting in functional
NK impairment (95). An FBP1 inhibitor has recently been
developed and showed preclinical evidence of restoring NK
function (95). In addition to low glucose concentrations, TME
is characterized by other conditions that can decrease NK
function, like hypoxia and acidic pH (96). Moreover, hypoxia
can reduce NK surface expression of activating receptors such as
NKG2D, and the resulting high level of hypoxia-inducible factor
1 alpha (HIF-1 alpha) is correlated with a worse prognosis in
NSCLC (97). This is possibly due to adenosine and lactate
accumulation that block NK activation and cytotoxicity,
increasing the number of regulatory inhibitory cells like Tregs
and myeloid-derived suppressor cells (MDSCs) (97). Natural
Polyphenols can exerts antitumor activity and circumvent anti-
PD-1 resistance (98). We have investigated the effects of a
polyphenol rich olive mill wastewater derived polyphenols on
the immune-microenvironment of lung cancer to overcome
resistance (99).
4 NATURAL KILLER CELLS AS A
POTENTIAL PREDICTIVE BIOMARKER
FOR IMMUNOTHERAPY IN NON-SMALL
CELL LUNG CANCER

4.1 Natural Killer Cells and
Anti-PD-1/PD-L1
ICIs targeting the PD-1/PD-L1 axis are now a milestone in the
treatment of NSCLC (Figures 2, 3), both as a single agent and in
combination therapies (5, 6, 10–12, 100). In the lung, there are
two main subtypes of NSCLC, namely, adenocarcinoma and
SCC, for which immunotherapy may be a valuable strategy for
the treatment of driver-negative metastatic patients (101). The
WHO guidelines have emphasized the importance of the precise
subclassification of NSCLC in both resection specimens
and small-s ized diagnost ic materia l , the uti l i ty of
immunohistochemical biomarkers in the accurate diagnosis
and subclassification of NSCLC, and the critical role of
May 2022 | Volume 12 | Article 886440
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molecular characterization for targeted therapy (102). The use of
a marker of adenocarcinoma, such as thyroid transcription factor
1 (TTF1), and a marker of squamous cell differentiation, such as
p40, is recommended as a two-hit, sparing-material minimalist
antibody panel approach for reliably subtyping tumors (103). In
Frontiers in Oncology | www.frontiersin.org 7
clinical practice, after subtyping, the suitability for immune
checkpoint axis-based immunotherapy is usually evaluated by
means of the immunohistochemical detection of PD-L1 on
tumor cells, which turned out to be a potential predictor of
response to inhibitors especially when it is higher than 50%
FIGURE 3 | PD-L1 immunostaining in a case of squamous cell carcinoma (SCC). Poorly differentiated squamous cell carcinoma (top left panel, H&E staining) was
readily subtyped by means of immunoreactivity for p40 (p40+++) and negativity for TTF1 (TTF1−), according to the current WHO guidelines (top right panel). Diffuse
and intense membrane immunostaining for PD-L1 was observed in tumor cells, already evident at lower magnification (×100, bottom left panel) and then confirmed
at higher magnification (×200, bottom right panel) as membrane decoration in over 95% of tumor cells.
FIGURE 2 | Lung adenocarcinoma obtained with EBUS-TBNA procedure (A) and pleural effusion (cell block) (B). These two cases of metastatic adenocarcinoma to a
mediastinal lymph node (A) and pleura cavity (B) featured solid-clumped patterns of growth, which turned out positive for TTF1 and negative for p40, thus confirming the
correct subtyping as required by the current WHO guidelines (not shown). When tumors were made to react with antibodies to PD-L1 within companion kits, clusters of
tumor cells unequivocally revealed membrane decoration in more than 50% of them, thus suggesting amenability of immunotherapy. Clone Agilent-Dako 22C3 was
developed in Autostainer Link 48, with original magnification at ×400 (A), while Ventana-Roche clone SP263 was developed in BenchMark Ultra IHC at ×200 (B).
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(104). The immunohistochemical reaction to PD-L1, which is
quantified as the percentage of immunolabeled cells on the
membrane independent of its completeness or intensity
(realizing the so-called tumor proportion score) (104), is
shown in Figure 2 for adenocarcinoma and Figure 3 for SCC.
In clinical practice, it is usual to substitute the immune
checkpoint axis by means of the immunohistochemical
detection of PD-L1 on cancer cells, which is a potential
predictor of response to inhibitors, especially when it is higher
than 50 (104). PD-L1 expression is highly variable among
different malignancies, and it can be very heterogeneous even
in the same tumor, with different levels of expression depending
on the area considered, as shown in Figures 2 and 3 (104).
Recent studies demonstrated that NKs play a crucial role in
tumoral response to ICIs. PD-1 is expressed by NKs in PB and
TME in multiple cancers, including lung cancer (90–92). After
binding to PD-L1, PD-1-positive NKs become unpaired in
mouse and human models, suggesting that downregulation of
this pathway plays an important role not only in T cells but also
in other immune cells of the TME. By PD-1/PD-L1 blockade,
ICIs partially restore the normal NK activity, highlighting the
therapeutic and predictive potential of PD-1-positive NKs (105–
107). Interestingly, PD-1/PD-L1 blockade may also influence NK
activity by inducing a Treg downregulation, Treg inhibit NK
function and survival through TGF-beta release (105, 106).
Several mouse models showed that the therapeutic effect was
NK-dependent in MHC-deficient tumors, while in MHC-
expressing tumors (T-cell sensitive), NK depletion has the
same effect as CD8+ T-cell depletion (105). Accordingly, mice
lacking both T cells and NKs do not develop any response after
PD-1 blockade (108). NKs can influence response to ICIs also
triggering antibody-dependent cell-mediated cytotoxicity
(ADCC) against cancer cells in in vitro models, as the Fc
gamma receptor (Fcg) on NKs is an integral part of the ADCC
mechanism (109). Furthermore, NKs can stimulate the
migration and survival of CD141+ dendritic cells (DCs) via
chemokines and cytokine production (i.e., CCL5, XCL-1, or
lymphotactin, FLT3-Ligand) (110). Finally, NKs release a great
amount of IFN-g, which can induce PD-L1 expression on tumor
cells, increasing sensitiveness to ICI (110).

In conclusion, PD-1 is an important regulator of NK function,
and its blockade was shown to enhance NK activity leading to
increased tumor control. Moreover, NKs were shown to play a
role in response to PD-1–PD-L1-based therapies against tumors
both sensitive and resistant to T cell-mediated cytotoxicity.

Due to their central role in immune response, NKs may be
involved in predicting tumor response to immunotherapy. An
NK-related gene expression profile performed on NSCLC
patients treated with nivolumab or pembrolizumab was found
to be correlated to treatment response and PFS (111). In another
prospective trial of nivolumab in NSCLC, patients who achieved
clinical benefit showed higher baseline functionally active
circulating NKs compared to non-responders. Circulating NK
numbers progressively increased during PD-1 blockade in
responders, counterbalanced by a reduction in circulating
Tregs (112).
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Furthermore, stratification of patients by quantification of
NK receptors from blood samples could be a useful prognostic
and predictive tool: low expression of Natural Cytotoxicity
Triggering Receptor (NCR) 1 and 3 correlated with worse
prognosis in NSCLC and PD-L1-positive (>5%) patients, and
low NCR3 expression correlated with the worse outcome to anti-
PD1 (113).

As it is well known that NKs are primary producers of IFN-g,
the best overall response rate (ORR) to nivolumab has been
reported in advanced NSCLC patients with higher expression of
the IFN-g target gene (114).

An exploratory analysis of the phase II randomized POPLAR
trial showed that NSCLC patients with high T-effector–IFN-g-
associated gene expression had improved OS with atezolizumab
compared to docetaxel (115). Circulating levels of IFN-g might
reflect the activation of the IFN-g signaling and could be an easy
tool to monitor patients during treatment. In a prospective study
on 26 NSCLC patients treated with pembrolizumab or
nivolumab, increased blood levels of IFN-g and in addition
other cytokines (TNF-alpha, IL-1b, IL-2, IL-4, IL-6, and IL-8)
at the time of diagnosis and 3 months after the start of the
treatment were significantly correlated with improved response
to immunotherapy and prolonged OS, while no correlation with
PD-L1 expression was found (116). However, robust data on the
specific contribution of NKs in response to anti-PD-1/PD-L1
drugs in NSCLC are limited. Further prospective studies are
needed to assess the predictive role in this context, and no data
are available on the modulation of NKs under concomitant
chemotherapy and immunotherapy.

4.2 Natural Killer Cells and Anti-CTLA-4
The CTLA-4 is abundantly expressed by Tregs and, upon
stimulation, by cytotoxic T cells (9, 100). While interest in the
role of innate immunity in anti-PD-1/PD-L1 therapy is growing,
little is known about NKs in CTLA-4-based therapies. Although
under IL-2 stimulation murine NKs can exhibit CTLA-4 on their
surface, this does not happen in humans (117, 118).

Anti-CTLA-4 seems to increase intratumor NK levels in
melanoma murine models, positively affecting response,
especially when treatment was combined with IL-2 (119). In
melanoma patients, high levels of intratumor NKs in
pretreatment tumor samples were correlated to improved
outcomes of anti-CTLA-4 (120), and survival rate was
correlated with low levels of IL-15 in the serum. In PB of
patients with malignant pleural mesothelioma (MPM), a
reduction of CD56dim effector NKs was observed as compared
to healthy controls, but the levels of these cells increased after
therapy with tremelimumab, an anti-CTLA-4 monoclonal
antibody (mAb) (121). Similar results were reported in
melanoma patients after treatment with ipilimumab (122).

Treg downregulation upon anti-CTLA-4 therapy can result in
reduced Treg-mediated NK inhibition (123). Taken together,
these data suggest a possible interplaying role between CTLA-4
blockade and NKs. These observations might be useful, as
combination therapy of nivolumab, ipilimumab, and standard
chemotherapy has recently been approved in clinical practice as a
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first-line option for metastatic NSCLC. A combination of
multiple checkpoints might overcome NK resistance to a single
agent and restore NK immunity. However, to date, no data are
available in this field.
5 NATURAL KILLER CELLS AS A TARGET
OF NEW THERAPEUTIC STRATEGIES

Resistance to anti-PD-1/PD-L1 and anti-CTLA-4 ICIs can occur
during treatment, as a result of the exhaustion of immunological
targets or the activation of alternative pathways, under pressure
and dynamic changes of the TME. Thus, there is an urgent need
for the development of new pharmacological agents able to block
these evasion mechanisms. As for PD-1/PD-L1 and anti-CTLA
4, blocking other cancer-dependent inhibitory pathways, either
through single agents or in combinations with other ICIs, is one
of the most studied strategies to obtain disease control.
Mobilization of NKs, which can coordinate the anticancer
response together with T cells, may also be a promising
therapeutic strategy. As reported above, NKs have a crucial
Frontiers in Oncology | www.frontiersin.org 9
role in tumor response and are also possibly implicated in
response to immunotherapy. Many efforts have been made to
target NKs as therapeutic agents. NK immunotherapy can be
approached from two directions: the activation of endogenous
NKs currently circulating or resident within normal or tumor
tissues or the administration of activated autologous or
allogeneic NKs. Tables 1 and 2 summarize ongoing clinical
trials with ICIs and adoptive or chimeric antigen receptor
(CAR)-NK therapy in NSCLC. Most of the targets that are
being explored by new ICIs are expressed on NKs.

5.1 Inhibitors of Natural Killer Cell
Receptors in Non-Small Cell Lung Cancer
As exhausted TI-NKs or TA-NKs express inhibitory receptors
on their cell surface, one strategy to overcome resistance
is to target in order to restore NKs to their antitumoral
activity (Figure 4).

5.1.1 Anti-KIR
Monoclonal antibodies targeting KIR inhibitory receptors
KIR2DL1–3 have been developed. They mimic the “missing-
TABLE 1 | Current clinical trials with checkpoint inhibitors in NSCLC.

Identifier Drug Phase Study design Setting Status

TIGIT
NCT04294810
SKYSCRAPER-
01

Tiragolumab III Tiragolumab + atezolizumab vs. placebo + atezolizumab Untreated advanced NSCLC
PD-L1 pos.

Active,
recruiting

NCT03563716
CITYSCAPE-01

Tiragolumab II Tiragolumab + atezolizumab vs. placebo + atezolizumab Untreated advanced Active, not
recruiting

NCT04746924 Ociperlimab III Ociperlimab + tislelizumab vs. pembrolizumab in PD-L1 ≥ 50% Untreated advanced PD-L1
pos.

Active,
recruiting

NCT05102214 HLX301 I/II HLX301 (bi-specific: TIGIT and PD-1) single-arm multicohort Previously treated solid
tumors

Active,
recruiting

KIR
NCT01714739 Lirilumab I/II Lirilumab + nivolumab or nivolumab and ipilimumab Pretreated solid tumors Completed
NCT03347123 Lirilumab I/II Lirilumab + nivolumab + epacadostat Pretreated solid tumors Completed
TIM-3
NCT03708328 RO7121661 I RO7121661 (Bi-specific: TIM-3 and PD-1) single arm dose escalation

phase + expansion cohort
Advanced solid tumors Active,

recruiting
NCT03744468 BGB-A425 I/II BGB-A425+ tislelizumab multicohort Stage III-IV NSCLC PD-L1

positive
Active,
recruiting

LAG-3
NCT02966548 Relatlimab I Relatlimab + nivolumab Pretreated, metastatic solid

tumors
Active, not
recruiting

NCT01968109 Relatlimab II Relatlimab + nivolumab Solid tumors (I or II line
NSCLC)

Active, not
recruiting

NCT03459222 Relatlimab I/II Relatlimab + nivolumab + ipilimumab Solid tumors Not recruiting
NCT03625323 IMP321

(eftilagimod alpha)
II Eftilagimod alpha + pembrolizumab I or II line NSCLC Active, not

recruiting
NCT04623775 Relatlimab II Relatlimab + nivolumab + Chemotherapy vs. nivolumab +

chemotherapy
First-line stage IV NSCLC Active,

recruiting
NCT04205552 Relatlimab II Relatlimab + nivolumab vs. nivolumab Neoadjuvant stage IB–IIIA

NSCLC
Active,
recruiting

NKG2A
NCT03822351 Monalizumab II Durvalumab/monalizumab/oleclumab

Following chemo-radiotherapy
Stage III NSCLC Active, not

recruiting
NCT05061550 Monalizumab II Durvalumab/monalizumab/oleclumab Neo/adjuvant stage IB–IIIA

NSCLC
Active, not
recruiting
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self” response by blocking the interaction between KIR2DL and
the natural ligand HLA-C. Lirilumab is a fully humanized IgG4
that binding with high affinity to KIR2DL1–3 receptors,
expressed in about half of TI-NKs and TA-NKs, blocks the
interaction with HLA-C. Lirilumab was first investigated on
hematologic malignancies (124), but it showed initial efficacy
and a favorable safety profile also in a phase I basket trials
Frontiers in Oncology | www.frontiersin.org 10
comprising various tumor types (breast, ovarian, pancreatic, and
endometrial cancers) (125). A combination of lirilumab and
nivolumab showed promising activity in the SCC of the head and
neck (126). Lirilumab is under investigation in various solid
tumors, including NSCLC, alone or in combination with
nivolumab and epacadostat in a multicohort phase I–II
study (NCT03347123).
FIGURE 4 | Activating and inhibitory receptors on natural killer cells (NKs) and their ligands on tumor cells. Checkpoint inhibitors bind to inhibitory receptors on NKs,
preventing the link with their ligands on tumor cells and vice versa. Here are reported the major pathways and monoclonal antibodies currently used in clinical
practice or under evaluation in clinical trials.
TABLE 2 | Current clinical trials on adoptive and CAR-NK therapy in NSCLC.

Identifier Type of
NK

Patient
number

Phase Drugs Setting Current
status

NCT04990063 Autologous 20 I Natural killer cells (NKs) and gamma delta T cells (gdT cells) +
chemotherapy

Advanced NSCLC Active,
recruiting

NCT02843204 Allogenic 109 I/II Allogenic NK + pembrolizumab Advanced pretreated NSCLC Completed
NCT02118415 Autologous 90 II Hsp70-peptide TKD/IL-2 activated, autologous NKs Maintenance therapy, unresectable

stage III NSCLC after chemo-
radiotherapy

Suspended

NCT04616209 Allogenic 24 I/II Allogeneic PB103 and standard cancer treatment Stage IIIB–C/IV Active,
recruiting

NCT04872634 Allogenic 24 I/II SNK01 + chemotherapy ± cetuximab Advanced NSCLC, pretreated with
TKI

Active,
recruiting

NCT03656705 CAR-NK 5 I Chimeric costimulatory converting receptor (CCCR)-modified
NK92 cells in previously treated advanced non-small cell lung
carcinoma

Advanced pretreated NSCLC Enrolling
by
invitation

NCT03841110 Allogenic 37 I FT500 (allogeneic, iPSC-derived NK) monotherapy or plus
pembrolizumab/nivolumab/atezolizumab

Advanced pretreated NSCLC Active,
recruiting

NCT04440735 BIKE 100 I DSP107(SIRPa-4-1BBL) + Atezolizumab Advanced refractory NSCLC Active,
recruiting

NCT04050709 CAR-NK 16 I PD-L1 t-haNK Pretreated solid tumors Active, not
recruiting
May 2022 | Volume 12 | Art
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5.1.2 Anti-NGK2A
NKG2A is another inhibitory receptor expressed on the NK
surface (76, 77). After interaction with a non-classical MHC class
I molecule, it forms heterodimers with CD94 leading to the
activation of inhibitory intracellular signals. As reported above,
NKG2A is overexpressed on NKs in many types of cancers and is
related to worse prognosis and immunotherapy resistance. This
has encouraged the development of a specific monoclonal
antibody blocking this pathway, called monalizumab (76, 77).
Furthermore, when combined with anti-PD-1, monalizumab can
stimulate also CD8+ T-cell antitumor activity (76, 77).
Monalizumab is currently under investigation in combination
with durvalumab in solid tumors and in particular in NSCLC
(NCT02671435, NCT03833440).

5.1.3 Anti-TIM-3
Preclinical evidence suggests that TIM-3 blockade alone or in
combination with PD-1 inhibitors can reverse the functional
impairment of TIM-3+ T cells (127, 128). An increase in TIM-3+
circulating NKs has been reported in lung cancer, associated with
immune suppressive TME, NK killing activity inhibition, and the
more aggressive disease form, suggesting that it could be a possible
therapeutic target in NSCLC (84). Preclinical data demonstrated
that TIM-3 blockade is effective not only in counter-modulating
dysfunctional CD8+ T cells and Tregs but also in restoring NK
cytotoxic activity and TNF-alpha and IFN-g production in lung
cancer (83). Therapeutic TIM-3 antibodies are currently being
evaluated in phase I trials either as single-agent treatment or in
combination therapy [NCT03744468, NCT03708328].
Furthermore, a bi-specific antibody targeting both PD-1 and
TIM-3, AZD7789, has recently been developed and is currently
under investigation in a phase I trial in patients with different solid
tumors, including lung cancer [NCT03708328].

5.1.4 Anti-LAG3
Although the specific role of LAG-3 in human NKs is still
unclear, the therapeutic blockade of this checkpoint receptor
remains appealing due to its interaction with both NK and T
cells, particularly in combination with PD-1 inhibitors. Certain
clinical-grade inhibitors (IMP321, BMS-986016) are currently
under investigation in ongoing phase I and II trials (129).

5.1.5 Anti-TIGIT
TIGIT is an inhibitory receptor expressed on CD8+ T cells, Tregs,
and NKs and has gained increasing attention as a promising
novel pharmacological target for cancer immunotherapy.
Binding to its ligands CD155 and CD112 (or nectin-2)
expressed by tumor cells and antigen-presenting cells in the
TME, TIGIT induces anergy of T cells and NKs, immune
suppression, and tumor escape (130). The combination of the
anti-TIGIT antibody, tiragolumab, with atezolizumab showed
encouraging results in NSCLC. In preclinical models, the
combination of anti-TIGIT and anti-PD-L1 synergistically
improved tumor control and survival (131). The randomized
phase II CITYSCAPE compares the first-line treatment with
tiragolumab plus atezolizumab with atezolizumab alone in
metastatic NSCLC patients, stratified for histology and selected
Frontiers in Oncology | www.frontiersin.org 11
for PD-L1 expression (132). The combination of tiragolumab
and atezolizumab significantly improved ORR (37% versus 21%)
and PFS (median PFS (mPFS) 5.42 versus 3.58), independently
from the histology, with a greater magnitude benefit in patients
with PD-L1 > 50% (133). The blockade of TIGIT could be an
interesting chemo-sparing strategy; however, longer follow-up
and phase III trials are required.

5.2 BiKEs and TriKEs
Bi- and Tri-specific T-cell engagers (BiTEs and TriTEs) are bi- or
tri-valent antibodies constituted by two or three single-chain Fc
fragments, respectively, that create a link between T cells and
tumor cells (134). T cells lack Fcg receptors, so normal
monoclonal antibodies are not able to directly recruit T cells
(135). Thanks to their two or three chains, BiTEs and TriTEs can
recognize both one or two tumor antigens and one CD3
molecule, associated with the TCR, at the same time resulting
in T-cell activation (136). This is an intriguing strategy to re-
activate exhausted T cells induced by long-term exposure to
tumor antigens. More recently, the same mechanism has been
designed for bi- or tri-specific killer−cell engagers (BiKEs and
TriKEs) to recruit and activate NKs in the TME and to promote
tumor lysis. These molecules are built up by two (BiKEs) or three
(TriKEs) single-chain variable fragments (scFv) with different
heavy and light antibody chains connected through short peptide
linkers (137). These can be considered “NK cell adaptors”; they
usually target an activating receptor, like NKp46 and CD16 on
NKs and a tumor antigen, such as CD19, CD20, or endothelial
growth factor receptor (EGFR) and Fc fragments (138).
Compared to monoclonal antibodies, BiKEs and TriKEs
present some important advantages, such as higher
biodistribution, due to their small size, lower immunogenicity,
and great flexibility (139). AFM24 is a bispecific EGFR/CD16A
innate cell engager antibody that has shown preclinical activity in
controlling tumor growth in in vitro and mouse models of
EGFR-positive tumors, independently from the presence
of EGFR mutation (140). TriKEs have the ulterior advantage of
targeting two different molecules, preventing an eventual
downregulation of one selected molecule on target tumor cells
(137). A new generation of TriKEs and TetraKEs (with four
functional domains) has been designed to incorporate an IL-15
moiety, with the aim of promoting NK activation, in vivo
persistence, and proliferation. However, most of these agents
are only in preclinical development, and further studies are
needed before testing them in a clinical setting.

5.3 Adoptive Natural Killer Cell Therapy
5.3.1 Non-Genetically Modified
An alternative approach to the systemic activation of NKs is to
directly introduce activated NKs into patients. This adaptive
transfer of NKs is the most direct way to restore and improve the
function of the immune system. NKs can be autologous or
allogenic as derived from PB mononuclear cells (PBMCs) or
stem cells (umbilical cord blood and embryonic stem cells) or
NK lines. Following isolation, NKs can be activated by exposure
to cytokines or other stimulating factors or by genetically
engineered manipulation (141, 142). To assess the feasibility of
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autologous NK transfer, a study was designed in patients with
advanced NSCLC and treated with a combination of docetaxel
and ex vivo expanded autologous NK. However, it failed to
demonstrate a real therapeutic benefit of the combination,
probably due to poor NK activity in vivo (143). Even though
autologous NKs can be efficiently expanded and activated in
vitro, the unsuccessful result of this study suggests that this
approach is probably not a feasible treatment modality (42, 143,
144). Compared to autologous NKs, allogeneic NKs have a
longer persistence in vivo, which corresponds to an improved
response to treatment but is burdened with a higher risk of graft-
versus-host disease (145). Adaptive allogenic or alloreactive
transfer results in MHC-I and KIR ligand mismatch and
efficient immune response, as reported first in AML (146).
Following AML, clinical studies testing the adaptive transfer of
mismatched alloreactive NKs as a form of immunotherapy
showed low toxicity and initial therapeutic efficacy also in solid
tumors including NSCLC (147, 148). In advanced NSCLC,
repetitive infusions of alloreactive donor NKs resulted in
encouraging disease control in many patients, highlighting its
potential use in this setting (149). Furthermore, the combination
of allogenic adaptive NK therapy with pembrolizumab led to
improved OS and PFS (median OS (mOS) 15.5 vs. 13.3 months;
mPFS 6.5 vs. 4.3 months; p < 0.05) as compared to
pembrolizumab alone in pretreated advanced NSCLC patients.
The survival advantage was particularly evident in PD-L1-
positive patients (>50%) (149).

To expand the therapeutic use of alloreactive NKs, human
NK lines have been generated as a renewable source of NKs. The
human NK line NK-92 (150) is highly cytotoxic against a variety
of cancer types, and it is under investigation also in phase I trials
in solid tumors, such as melanoma (151, 152). The NK-92 cell
line has been used as a source of NKs for adaptive transfer and
modified for improved efficacy and target specificity, with genetic
manipulation or cytokine activation prior to adaptive transfer. In
a phase I basket trial, infusion of NK-92 cells was particularly
active in patients with lung cancer patients: three of four small
cell lung cancer (SCLC) and NSCLC patients in the study have
tumor response according to Response Evaluation Criteria in
Solid Tumors (RECIST) criteria or long-lasting disease control
with the adaptive transfer of IL-2 activated NK-92 cells (153). A
hypothesis about this particular sensitivity in lung cancer
patients is that NKs reside in the lung prior to circulating
following intravenous administration (142). These could
represent an intriguing strategy to develop in dedicated
clinical trials.

5.3.2 Chimeric Antigen Receptor–Natural Killer Cells
Genetically modified NKs present enhanced specificity and
activity against the target. One of these methods that are
founding increasing interest is the construction of CARs
based on NKs instead of T lymphocytes (154). CAR-T cells
are now widely used in clinical practice, mostly in
hematological malignancies, but this technology has also been
applied to macrophages and NKs to enhance efficacy and limit
possible toxicity (155). In fact, CAR-NK administration is not
associated with the development of cytokine release syndrome,
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neurotoxicity or graft-versus-host response, and other
side effects, which makes it a very attractive therapeutic
option (156).

The sources of NKs usable for CAR-NK are the same as for
adaptive therapy: PB or umbilical cord NKs or cell lines, such as
NK-92. Recently, a CAR-NK was created using NK-92-derived
cell lines carrying on the surface the immune checkpoint anti-
B7-H3: in xenograft models, it showed significant inhibition of
tumor growth and increased survival, providing a proof of
concept for its development in the clinical setting (157).
Another interesting new chimeric costimulatory converting
receptor was built up by modified NK92 and constituted by
the extracellular domain of PD-1, transmembrane and
cytoplasmatic NKG2D domain, and cytoplasmic domain of the
TNF receptor superfamily member 4−1BB (TNFRSF9/CD1377).
It is able to counteract the immunosuppressive action of PD-1
and showed preclinical in vitro anti-humoral activity against
human lung cancer H1299 cells (158). Delta-like ligand 3 (DLL3)
is overexpressed in most SCLC and may be used as a target for
CAR-NKs therapy. In a recent study, DLL3-positive SCLC cell
lines have been cocultured with DLL3-CAR-NK-92, and the
construct was proved to have a high cytolytic effect (158). This
report explored the potential in the treatment of SCLC.
Furthermore, the DLL3-CAR NK-92 showed improved
cytotoxicity also against lung metastasis in tumor models with
good tolerance and in subcutaneous tumor models of
SCLC (158).
CONCLUSION

Cancer treatment with ICIs of PD-1/PD-L1 and CTLA-4 is
widely used in clinical practice, but, unfortunately, it shows
limited efficacy in a variety of patients due to secondary
resistance or non-response. In physiological conditions, NKs
play an important role in the immune response against the
tumor. However, following neoplastic transformation, cancer
cells and TME act by modulating NK functions inducing the
switch toward a pro-tumor phenotype (42, 144). TME can
influence the treatment response and effectiveness of ICIs, and
a growing amount of evidence suggest that NKs can act as a
predictor as well as a prognostic factor (42, 144). NKs have been
shown to play a crucial role in metastatic tumor surveillance in
both NSCLC and SCLC. In recent years, the application of NK
and CAR-NK immunotherapy has brought significant progress
in the field of cancer therapy, with the latest clinical trials
showing tremendous potential (155). Although the clinical
focus of NK therapy is largely hematopoietic malignancies,
conceivable progression of NK immunotherapy in the
treatment of lung cancer has also emerged.

The lung cancer cells and the TME can polarize NKs into pro-
inflammatory, pro-angiogenic decidual-like subsets (42, 155).
Therefore, although the application of NK therapy as a
standalone agent or in combination with other therapeutic
modalities is a rapidly evolving field that is producing
promising results, the possibility of turning the tumor and
TME into a non-lytic phenotype has to be taken into account.
May 2022 | Volume 12 | Article 886440
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The findings summarized in this review have yet to be fully
confirmed in more in-depth clinical settings, but they highlight a
potential diagnostic and therapeutic modality in a field with
limited therapeutic options and an invariably low survival rate.

Curbing NK pro-inflammatory switch in cancer is pivotal in
the success of immunotherapy with ICI.
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