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Abstract: This work is aimed at reviewing the current state of the art in geosite selection, assessment,
and communication. We first highlight the main papers that have defined paramount concepts
such as geodiversity, geoheritage, and geosites. We then delve into the theoretical principles and
guidelines that have been proposed over the last twenty years by researchers who have thoroughly
illustrated how to individuate and assess geosites. In doing so, we illustrate notable field examples of
applications of qualitative and quantitative assessments of geosites in places such as Serbia, India,
Iceland, Ecuador, Sardinia (Italy), Egypt, Tasmania (Australia), and Brazil. The third part of this work
is dedicated to illustrating a list (by no means exhaustive) of works that have tried to come up with
innovative tools, strategies, and solutions to promote and communicate geosites. From our work, it
appears that geosites can be extremely effective as fully fledged outreach tools capable of bridging
the gap between Earth science and the lay public.
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1. Introduction
1.1. Geodiversity, Geoheritage, Geosites

Natural diversity can be subdivided into biodiversity and geodiversity [1]. Geodiver-
sity expresses a variety of geological (rocks, minerals, fossils, sediments), geomorphological,
hydrogeological, volcanic, tectonic, stratigraphic, sedimentary, and paleogeographic fea-
tures that represent the natural context on which anthropic activities take place [2–5].
Another key concept is geoheritage, which needs to be evaluated [6], managed [7], sub-
jected to conservation [8–14], valorized through geoparks [15–24], and be the focus of
geotourism [25–35], geoscience museums [36–39], and mapping [40,41]. Preserving geoher-
itage means safeguarding the natural diversity of major geomorphological and geological
elements, i.e., geoheritage sites, also known as geosites. These are natural features [1]
which represent the geological heritage of a territory [40,42] and are marked by a number
of distinctive values, as illustrated in the next chapter. They are not always natural features,
but they can be quarries, spoil tips, road cuttings, and even museum collections. Geosites
can also be defined [43,44] as “places where geological objects or fragments of the geological
environment are exposed on the land surface, and thus are accessible for visits and studies”.
A step forward has been taken by Gioncada et al. [45], who have underscored that “the
definition of a geosite should be interpreted as an outstanding outreach activity based on
a deep knowledge of the general and local geological significance of the proposed site”.
Geosites can be represented by geomorphological features and processes, which can be part
of geomorphodiversity [46] and are called geomorphosites [25,47]. Geosites can be related
to a great deal of topics within the Earth science field. Thus, there are paleontologic [48],
mineralogic [49], petrologic, volcanic [50–52], tectonic, igneous, mining [45], hydrogeologic,
sedimentary, stratigraphic, and paleogeographic geosites. A special mention to the latter is
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needed, given their complexity. In fact, Bruno et al. [53], describe paleogeographic geosites
as “geological heritage sites that represent paleoenvironments in general or highlight par-
ticular paleoenvironmental features, which are of special interest for science, education, or
tourism/recreation”. Geosites can be as small as a single outcrop or big and complex, such
as the unique Granite Gorge in Mountainous Adygeya, Russia [54]. They can be classified in
five typological categories: point, section, area, complex area, and viewpoint, as proposed
by Fuertes-Gutiérrez & Fernández-Martínez [55]. On account of their importance, they may
be of local, regional, national, or global relevance [56]. Geosites may also be differentiated
based on their spatial appearance: circumscribed sites such as outcrops, linear features
such as faults, as well as aerially extended features such as peaks.

1.2. Visual Examples of Geosites and a New Type of Geosite

In Figure 1a, we show a portion of the Mt. Etna volcano, a huge, complex geosite,
composed of a great number of smaller volcanic geosites, the protection of which has been
made possible by the institution of the Parco dell’Etna Geopark [57]. In Figure 1b, we
display an example of a major tectonic geosite: the Kura foreland basin in the foreground,
with the Kura fold-thrust belt [58,59] in the background. The two can be treated as one
geosite because they are part of a unique tectonic process, i.e., the propagation of the
Greater Caucasus towards its foreland basin, through an actively southward-propagating
fold-thrust belt, whose basal thrust is seen at the transition between the plains and the
mountains in the background. Figure 1c shows a wonderful example of a geomorphosite,
the Godafoss waterfall in northeastern Iceland.
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Figure 1. (a) In the foreground, the Bove Valley, in the background, the southeastern crater of Mt. Etna
volcano. Photograph by F. Pasquaré Mariotto. (b) In the background, the Kura fold-thrust belt near
its southern section, transitioning into the Kura foreland basin (in the foreground), Greater Caucasus,
Azerbaijan. Photograph by F. Pasquaré Mariotto. (c) A very good example of a geomorphosite is the
outstanding Godafoss waterfall in northeastern Iceland. Photograph by Paolo Oppizzi.
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Among a possible new type of geosite, it is worth mentioning gravity-related land-
forms. An example of such gravity-related geosites is represented by deep-seated gravita-
tional slope deformations, which are widespread in mountain ranges such as the Alps [60]
and which are discussed among the examples of geosite communication provided in the
third section of this work [61].

In the following chapters, we will focus on a number of milestone papers dealing
with the selection and assessment of geosites, carried out through the application of
a set of values. Subsequently, we will describe experiences of geosite promotion and
communication. We wish to stress that our work is not comparable to bibliometric analyses
that, according to Herrera-Franco et al. [62], contribute to reconstructing the evolution of
an academic topic, such as geoheritage, from the beginning to future prospects. We have
chosen to perform a selection of the numerous works on this topic, which we regard as
most representative and challenging.

2. Geosite Selection and Assessment
2.1. Geosite Selection

First of all, it is worth pointing out that selecting a geosite for geoconservation implies
defining its importance based on objective criteria and not on someone’s subjective judge-
ment. So, before delving into geosite assessment, it is worth mentioning a set of works
that have illustrated the methodology that needs to be used to select localities that ought
to be recognized as geosites and geomorphosites and thus should be conserved, also for
geotourism purposes (e.g., [63–68]). In this regard, it is particularly worth mentioning the
milestone paper by Wimbledon et al. [65], which described in detail the comprehensive site
selection program known as the Geological Conservation Review, undertaken in Britain
from 1977 to 1991. The Review formed a vital foundation for successive Earth science
conservation efforts. Its product was a complete network of scientifically justified sites
for conservation. In the following years, a key initiative from the International Union of
Geological Science (IUGS) was the project named GEOSITES, inaugurated in 1995 with the
aim to identify meaningful geological and geomorphological sites at the worldwide and
regional level [69,70].

Now, starting with some examples of selected geosites, we highlight the work by
Migòn et al. [71], who described the granite geomorphological heritage of the Waldviertel
region in Lower Austria, home to a great deal of geomorphosites represented by residual
landforms, tors, and boulders, which can be observed in various sizes and shapes. In
particular, their shapes can be very distinctive and uncommon, thus capable of capturing
the interest of the lay people. On the other hand, Gnezdilova et al. [72] selected a number
of geosites and highlighted their evolution in geological time, describing a sequence
of ancient environments and ecosystems which may be very interesting for the public,
also in order to increase awareness of past and future climate change. As illustrated by
Archer [73], Hay [74], and Bottjer [75], extreme climate change comparable to the one
we are experiencing today, as well as its impacts on the environment, can be observed
in our planet’s geological history. Therefore, paleogeographic geosites could be used as
educational tools, unveiling past and current climate change, and prompting mitigation
and adaptation strategies.

2.2. Geosite Assessment

A major effort has been made in the recent past, by several authors [1,76–80], to come
up with approaches aimed at performing the assessment of geosites, using a range of
criteria. Most assessment efforts use the scientific value [81], which may be subdivided
into four subcriteria: representativeness, integrity, rarity [82–84], and also the degree of
scientific knowledge about the geosite, attested by the number and quality of published
scientific studies focused on the geosite [1]. Representativeness regards how exemplary a
geosite is in terms of the geological processes that can be seen there. Rarity pertains to the



Resources 2023, 12, 29 4 of 15

uncommonness of the geosite if compared to geosites of the same typology at the global
level, whereas integrity represents the degree to which the geosite is preserved [83].

In addition to the scientific one, other values, referred to as “additional” [85,86], can
be identified and assessed: cultural, ecologic, economic, aesthetic, and educational. The
cultural value consists of four subcriteria: historical, artistic, religious, and literary [83].
Among the above, it is particularly worth mentioning the aesthetic value [87] and the
educational value, the latter defined [1] as the combination of didactic relevance (how
easily a geosite’s characteristics or processes might be understood by the lay people), safety,
accessibility, and possible exploitation of the geosite for educational activities (georoutes
and guided tours). We hereunder provide an overview of a number of papers that dealt
with geosites, described them, and subsequently attempted to assess their quality on
the basis of most (or some) of the above criteria and values. Regarding geomorphosite
assessment, many works in the last two decades have taken on this task [31,47,83,85,88–90].

We begin our overview with the work by Pasquaré Mariotto et al. [63], who focused
on two key areas of Iceland, namely the Snaefellsnes Peninsula in the western part of the
island, and the North Volcanic Zone (NVZ), a tectonically active area in northern Iceland.
In regard to the first area, the authors identified two peaks (Figure 2): the 1446-m-high
Snæfellsjökull stratovolcano and Kirkjufell, or “Church Mountain”.
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Figure 2. (a) The majestic figure of ice-capped Snæfellsjökull volcano; (b) Kirkjufell, an iconic peak
that is the most photographed natural feature in Iceland. Photographs by Fabio L. Bonali.

Regarding the first, the authors were able to recognize virtually all the values that
concur to assess the quality of a geosite, including the literary one, as Snæfellsjökull is
featured in the well-known science-fiction novel by Jules Verne, Journey to the Center of
the Earth (1864). The famous stratovolcano also has a high educational value: in fact, it
is easily accessible and is situated within the Snæfellsjökull National Park (founded in
2001), where guided tours are carried out on a regular basis. As pertains to Kirkjufell,
although not as representative of most values that define a geosite, it certainly has a major
educational value. In fact, all subcriteria can be mentioned and assessed: the peak is very
easily accessible, the processes that led to its formation (glacial erosion of a pile of ancient
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basalts) can be easily understood by the lay people, and, finally, guided tours to the base of
the peak are conducted regularly.

A very good example of geosite assessment is the one performed by Carriòn Mero et al. [91],
whose work has been aimed at evaluating the most interesting geosites in the Chimborazo
province (Ecuador) and putting forth options for the development of geotourism in the study
area. The authors’ methodological approach was based on: (i) a preliminary inventory of geosites
that resulted in 20 selected geosites; (ii) a semi-quantitative geosite assessment and proposal of
travel itineraries for geotourism purposes; and (iii) the application of the strengths, weaknesses,
opportunities, and threats (SWOT) matrix to the development of geotourism strategies, keeping
into account the principles and values of sustainability. The authors’ assessment suggested
that 25% of the 20 evaluated geosites are very highly interesting and 75% are highly interesting.
The top three geosites assessed by the authors are the Chimborazo volcano, also known as
“Earth’s Closest Point to the Sun”, the Pallatanga fault, active for the last 600 ka [92], and the
geosite called Cacha Community, which features rustic huts and circular museums as part of
the Pucaratambo tourist center.

The Geosite Assessment Model (GAM) methodology was first applied by Vujičić et al. [93],
when dealing with the assessment of geosites in the Fruska Gora Mountain, located at the
confluence of the Danube and Sava Rivers, in the Autonomous Province of Vojvodina, northern
Serbia. For the purpose of their research, the authors used the inventory of geosites at Fruska
Gora Mountain that had been assembled by Markovic et al. [94], who had come up with
14 geosites, evaluated in terms of their scientific, educational, and aesthetic values, current
condition, and accessibility. The result of the further assessment by Vujičić et al. [93] suggests
that the Fruska Gora Mountain geosites have a good number of main values, but low additional
values; the authors conclude that they could be considered only as potential tourist attractions
in terms of their scientific/educational value and aesthetic attractiveness.

According to Tomic and Božic [95], the Lazar Canyon area (eastern Serbia) shows
a number of geosites of remarkable scientific value and high geotourism potential. The
authors selected three geosites in particular: the Lazar Canyon, the Lazar Cave, and the
Vernjikica Cave. For the assessment of the above geosites, they applied a slightly modified
version of the GAM methodology, which they called M-GAM. This methodology entails
the contribution of tourists, whose opinions, according to the authors, should lead to more
objective and accurate results than those obtained by experts only.

Saurabh et al. [96] focused on the Mehrangarh ridge (MGR) of Jodhpur City, situated
in northwestern India, whose landscape developed between 750 to about 540 million years
ago and spans two major periods (Cryogenian and Ediacaran) of the Earth’s history. The
authors, based on a qualitative assessment, identified 12 geosites that might be helpful
in fostering the development of geotourism in India, a country which, according to the
authors, has yet to establish its first geopark.

Fancello et al. [97] have focused their work on a stretch of coastline along the south-
western side of the Gulf of Cagliari, Sardinia, Italy. The authors selected seven geosites
and assessed them on the basis of at least three of the following parameters: scientific
value, educational value, aesthetic value, accessibility of the sites, and proximity to touristic
facilities. This work is particularly valuable as it considers a region (Sardinia) whose
geological significance and interest is well known to geologists but not to the hundreds of
thousands of tourists that flock to the island every summer.

Sallam et al. [98] have centered their analysis on the Faiyum Oasis in the Western
Desert of Egypt, renowned for its paleontological content, but whose geological heritage
has not yet been studied in detail. By means of a careful assessment of the several geological
features in the Oasis, the authors have performed an assessment that, together with the
above-mentioned values, considers also the relative abundance and intrinsic diversity
of the studied geosites. Their assessment made it possible to select 10 geosites that may
become the main attraction of a future geopark situated in the Oasis.

Another example of geosite evaluation is contained in a work by Marescotti et al. [99],
who have performed the qualitative and quantitative assessment of 10 geosites in the
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Beigua UNESCO Global Geopark (Liguria, Italy), which features 54 sites known for their
significant geological peculiarities. Among the 54 sites, the authors selected five of the
twelve geosites officially listed in the Italian National Inventory of geosites by ISPRA [100]
and five geosites chosen as representative of different geological features and processes, as
well as relevant educational activities conducted in the park during the past decade. For
each of the selected sites, the authors carried out a qualitative and quantitative assessment
by applying the criteria and methodology put forth by Brilha [1]. Among the great deal
of outcomes of this milestone study, we chose to mention the fact that the quantitative
assessment of the ten selected sites enabled us to observe a much higher scientific value
of the geosites featured in the Italian inventory by ISPRA [100] than the other geosites
(apart from one exception). This is consistent with the fact that geosites included in the
Italian inventory must have, as a primary condition, a recognized scientific value in terms
of representativeness, rarity, integrity, and scientific knowledge.

Visnic et al. [101] proposed a list of loess geosites on the Srem Loess Plateau, which
may turn into major elements of Serbia’s geotourism potential. In doing so, the authors
make use of the Geosite Assessment Model (GAM) proposed by Vujičić et al. [93]. Ten
geosites have been assessed by way of the GAM model: half of them received high-level
scores in terms of the criteria that can foster the development of geotourism in the area.

Franceschelli et al. [49] have concentrated on a single geosite, which could be called
a “petrologic/mineralogic geosite”: in the territory near Tamarispa village (northeast
Sardinia); they describe in detail stunning wollastonite–garnet–diopside-bearing marbles
and illustrate mineralogical peculiarities such as the size of a rare garnet mineralization,
represented by giant poikiloblastic garnet crystals up to 20 cm in diameter. The assessment
of the geosite results in two main conclusions: it has a high scientific value (e.g., rarity of
the garnets and representativeness of the petrological processes) and a major educational
value, also being easily accessible for tourists.

The work by Carrion-Mero et al. [102] illustrates a qualitative and quantitative as-
sessment of the “El Sexmo” Tourist Mine in Zaruma, southwestern Ecuador. The most
challenging assessment was the quantitative one, made possible by the application of
both the GAM methodology, proposed for the first time by Vujičić et al. [93], and the one
elaborated later by Brilha [1]. The authors highlight the exceptionality of the Mine and
claim that, thanks to their study and their proposals for protection and improvement, the
number of visitors could increase from 9000 to approximately 12,000 people per year. This,
in turn, would boost geotourism while at the same time pursue the goals of sustainable
development of the area.

The work by Ruban et al. [103] centers on The Golden Triangle economic zone of
eastern Egypt, between the Nile Valley and the Red Sea coast. This is a historical mining
area rich in geological features. Field investigations and literature analysis have enabled
the authors to identify eight notable geological sites, assessed as geosites based on the
following criteria: accessibility, vulnerability, scientific value, educational value, touristic
importance, and aesthetic attractiveness.

Wellington Park, located in southeastern Tasmania, is the location of research by
Williams and McHenry [104], who assessed the geosites in the Park mainly according to
the assessment methodology by Brilha [1]. They also made extensive use of Geographic
Information Technology (GIT) tools while carrying out a revised inventory of the Park.
Regarding the possible degradation, most geosites in Wellington Park were at low (59%) to
moderate (37%) risk. In fact, many potential geosites were situated more than 1 km away
from a degradation source, had reasonable legal protection, and had difficult accessibility.

A total of 25 paleontological geosites were analyzed by dos Santos et al. [105] in
the Sousa sedimentary basin in northeast Brazil. The authors compiled an inventory and
assessment of the scientific, educational, and touristic values, together with the vulnerability
of the geosites. They concluded that the fossiliferous geosites of the Sousa basin have low
scientific and touristic values, moderate educational value, and are subject to a high degree
of vulnerability. In fact, the fossiliferous areas are affected by strong natural and anthropic
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threats and are at high risk of degradation. Based on their assessment, the authors do not
judge favorably the possibility to develop a geopark in the Sousa basin.

Other interesting geosite assessment efforts are the ones performed by Tomić and Božić [95],
Štrba [106], Kubalíková and Kirchner [107], Suzuki and Takagi [108], and Raeisi et al. [109]. All
the above works have one point in common, i.e., to have performed the assessment of geosites
and geomorphosites for geotourism development purposes.

3. Geosite Promotion and Communication

Once a geosite or a morphogeosite has been selected and assessed, it has to become
subject to promotion and communication. In this chapter, we provide a few examples of
this kind of crucial activity, without which geosites would remain something accessible only
to Earth scientists and not to the lay public. We are aware that the list of examples detailed
hereunder is by no means complete and exhaustive, and that there are other research groups
that have been actively working in the field of geoheritage management, promotion, and
communication, using cutting-edge technologies such as 3D visualization, web mapping,
unmanned aerial vehicles, augmented reality, and virtual reality (e.g., [110–116]).

We introduce the first of the papers about which we are going to provide some brief
details, by examining the work of Gioncada et al. [45], who have described the volcanic
and mining geoheritage of San Pietro Island, Sardinia, Italy. The island belongs to the
Sulcis Volcanic Province (SVP) at the southwestern end of Sardinia; according to previous
work [117,118], the SVP is composed of eleven major ignimbrite sheets, from trachytes
to rhyolites in composition. Gioncada et al. [45] have selected three geo-volcanological
features: stunning megafolding structures of rhyolitic lava flows named comendites, some
unique degassing features in ignimbrites, and beautiful manganese mineralizations with
the associated mining heritage. The identified folds are extremely rare in that they affect the
whole of the lava flows and have been described and discussed for the first time by Cioni
and Funedda [119]. Another spectacular feature on the island is represented by particular
cavities in welded ignimbritic deposits, due to particular degassing phenomena [120].
The third feature upon which the authors have concentrated their attention is typical
of fossil volcanic environments, places where the deposition of economically valuable
minerals often takes place. This is due to the action of hydrothermal fluids that move and
concentrate ore metals [121]. At San Pietro, the spectacular features shown by the authors
and deemed valuable in terms of geosite selection are peculiar black veins and nodules of
Mn-oxide minerals, hosted in the lava and ignimbrite units. Four geosites are proposed
by the authors, who then propose a great deal of activities that might serve to valorize the
selected geosites on the island. We hereby provide the most meaningful ones: the revision
and enhancement of geocommunication boards along the most frequented touristic trails;
the realization of field guides for students and researchers as well as other divulgative
materials (i.e., booklets) for the general public; and the proposal to renovate some of the
old mining buildings, which might host small visitor centers to enable the tourists to obtain
information about the mining history of the area.

Moving from one island to another, we examine the work by Antoniou et al. [122] in
Santorini, Greece, one of the best-known volcanic localities in the world, as well as one of
the most touristic. The key locality selected as a geosite is Metaxa Mine in the southwestern
part of the Santorini Volcanic Complex. Here, mining of pumice was carried out until
1984. As the mine is nowadays abandoned (Figure 3), this provides a unique opportunity
to make it a real open-air geological museum, useful for studying volcanic deposits of
the most devastating eruption that took place on the island in the last 10,000 years (the
so-called Minoan eruption), one of the largest volcanic explosive events on Earth [123–125].
Of particular interest and suitability for geosite communication is the Late Bronze Age
(LBA) section, situated in the westernmost sector of the mine.
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The mine itself is distinguished by the presence of 15-m-high, extremely steep cliffs,
therefore unsuitable for fieldwork and touristic purposes, and also subject to debris flows
and rock falls that prevent movement next to the outcrops to appreciate the succession
of the deposits erupted during the Minoan eruption. However, the Metaxa Mine has a
potentially high educational value, providing the lay public with an invaluable chance to
learn about the succession of volcanic events that led to the deposition of the LBA section
and other deposits seen in the mine. Therefore, the authors have decided to overcome
these limitations by means of immersive virtual reality (IVR) and non-immersive VR
techniques, thanks to which this outstanding site has been made available worldwide, both
for scientific and educational purposes. The authors shared online the whole 3D model of
the Metaxa Mine, accessible at https://geovires.unimib.it/geosites/geosite_005/ (accessed
on 18 November 2022), where all relevant features are highlighted, as well as the 3D model
of the famous LBA section (https://geovires.unimib.it/geovolc/geovolc_006/, accessed
on 18 November 2022).

Pasquaré Mariotto and Bonali [126] have showcased the use of virtual outcrops, or
“virtual geosites”, to communicate to the lay public the peculiar processes that occur in
the shallow crust and result in geological features known as “subvolcanic bodies”. These
are outstanding in Iceland, where extensive glacial erosion has exposed the plumbing
systems of ancient volcanoes. Subvolcanic bodies from Iceland have been studied in
detail (e.g., [127–129]) but they are generally poorly known outside the small number of
specialists that focus their research on these magmatic features. However, it is absolutely
worth highlighting an outstanding work [130] that has been aimed at guiding readers
through the “glorious geology of Iceland” and has also focused on subvolcanic bodies.
In addition, Pasquaré Mariotto and Bonali [126] have chosen to assess a few subvolcanic
bodies from eastern Iceland and subsequently to suggest a way to popularize them as
geosites, possibly worthy of geotourism development. In doing so, they have shown
a methodology to make these Icelandic geosites available to the general public, thanks
to breakthrough methods involving the use of drones and structure from motion (SfM)
techniques. They have thoroughly described five virtual geosites (VGs) in a “virtual geotour
mode” and made them available online, so as to enable potential viewers to access them
and gain a better knowledge of subvolcanic bodies and processes. An example of a VG can
be accessed at https://geovires.unimib.it/shallow-magma-bodies/smb_002/ (accessed on
21 November 2022).

https://geovires.unimib.it/geosites/geosite_005/
https://geovires.unimib.it/geovolc/geovolc_006/
https://geovires.unimib.it/shallow-magma-bodies/smb_002/
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Forno et al. [61] have taken on the task of looking into the topic of complex geosites,
which are major elements of the geoheritage of a region, but whose geoconservation and
promotion may be difficult to accomplish. The area the authors have focused on is distin-
guished by the presence of one of the most meaningful, gravity-related geomorphological
features of the Italian Alps: the Pointe Leysser deep-seated gravitational slope deforma-
tion. According to the authors, this complex geosite could be promoted starting from a
general overview of the slope, followed by the analysis of individual sites composing it.
For doing so, they propose two options: (i) the employment of an app capable of showing
the complex geosite as a whole, with a number of detailed insights into the individual
elements of the slope; (ii) the use of a dedicated viewpoint geosite (as described by Migoń
and Pijet-Migoń [131]) equipped with illustrative panels that might arouse the interest of
viewers, who could plan a subsequent visit to the slope to examine some of the single
sites. The authors conclude that a combination of the two approaches might be success-
ful in achieving the goal of communicating such a complex and challenging geological
environment.

Pasquaré Mariotto et al. [132] have shown a cutting-edge methodology that may enable
non-scientific audiences to have access to geosites through immersive and non-immersive
virtual reality. To do this, the authors have produced a dedicated WebGIS platform (https:
//arcg.is/1e4erK0, accessed on 26 November 2022), particularly suitable for communicating
geoscience; they have selected nine volcanic outcrops in Santorini, Greece, which were
turned into geospatial models—the so-called virtual geosites (VGs)—by means of UAV-based
photogrammetry and 3D modeling. Subsequently, the authors have uploaded the nine VGs on
an online platform, fully accessible for Earth science teaching and communication. The VGs are
now accessible on a smartphone, a PC, or a tablet, and each VG features a detailed description
and a number of useful annotations which guide the viewers during 3D navigation.

Martínez-Graña et al. [133] have described how they created a virtual geological
itinerary in the Las Quilamas Natural Park, which has an area of 11,100 ha and is part of
the Spanish Central System of the Hercynian Massif. They created a virtual map of the area
with a series of points of interest (geosites), which can be accessed interactively via a series
of geomatics tools such as smartphones, Google Earth, virtual 3D flight modelling, ability
to access descriptive information via QR codes, and access to augmented reality.

Lansigu et al. [134], working in a private company whose purpose is to popularize
and communicate geosciences, demonstrated how it is possible to raise awareness about
geoheritage through a number of cutting-edge visual technologies. To show the validity of
their approach to communicating geoheritage and geosites, they focused on the Lubéron
Natural Park (Provence, France). Among the various products they have showcased, most
noteworthy is the production of a short movie to present the geology of the Alps (in four
languages) and the production of a 14-min cartoon with the different elements and geosites
that characterize the geoheritage of the park.

Eight geosites with paleontological and geomorphological interest, representative
of the Lower and Middle Miocene carbonate deposits near Albufeira in central Algarve
(southern Portugal) have been selected by Martínez-Graña et al. [135]. The authors created
a virtual 3D tour of the georeferenced geosites using augmented reality techniques and
geoinformatic tools. Every stop in the tour is integrated by graphic elements that can be
viewed in Google Earth, together with a great deal of information that quantitatively assess
the educational and scientific value of the geosites. A virtual flight itinerary, compatible
with video formats on smartphones, tablets, and iPads is also provided.

4. Conclusions

Geodiversity and geoheritage have been gaining increasing interest from the scientific
community in the last couple of decades. Their most relevant expressions are geosites,
which can help bridge the gap between Earth science and the lay public. Geosites must be
identified and selected by geologists and geomorphologists based on a deep knowledge of
their general and local geological meaning. Their assessment is paramount to ensure that

https://arcg.is/1e4erK0
https://arcg.is/1e4erK0
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they meet a precise set of prerequisites. The most outstanding effort in geosite assessment
was performed in Great Britain in the 1980s and 1990s, when a set of frameworks were
established, and the geosites were then assessed within these frameworks. Those assess-
ments could be global, regional, national, or local, based on the best consensus among the
scientific community. Once identified and assessed, geosites (also complex ones) can be
promoted and communicated so as to educate the lay public in regard to geological topics,
enhance geotourism, and increase the education potential of geoparks. In the last few years,
technological advancements have made it possible to communicate geoheritage through a
number of technologies, including GIS, augmented reality, animated cartoons and, most
recently, virtual geosites (VGs). These can be accessed and navigated from home, thus
increasing the possibility for the lay public to gain insights into the basic principles and
concepts of geology and appreciate the cultural, educational, and scientific values of the
selected geosites. Moreover, by taking a preliminary virtual look at geosites, the interest of
potential visitors may be aroused, leading them to plan a visit in person.
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