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Abstract: Foods are known to be modulators of inflammation and skeletal development. The intestine
plays an essential role in the regulation of bone health mainly through the regulation of the absorption
of vitamin D and calcium; in fact, inflammatory bowel diseases are often related to bone health issues
such as low bone mineral density, high fracture risk, osteoporosis and osteopenia. Considering the
complexity of the pathways involved, the use of a simple animal model can be highly useful to
better elucidate the pathogenic mechanisms. Soybean flour with a high saponin content has been
used in many studies to induce intestinal inflammation in zebrafish larvae. Using a 50% soybean
meal (SBM), we analyzed the effects of this soy-induced inflammatory bowel disease on zebrafish
larval osteogenesis. Soybean meal induces intestinal functional alterations and an inflammatory state,
highlighted by neutral red staining, without altering the general development of the larvae. Our data
show that the chondrogenesis as well as endochondral ossification of the head of zebrafish larvae are
not affected by an SBM-diet, whereas intramembranous ossification was delayed both in the head,
where the length of the ethmoid plate reduced by 17%, and in the trunk with a delayed vertebral
mineralization of 47% of SBM larvae. These data highlight that diet-dependent bowel inflammation
can differently modulate the different mechanisms of bone development in different zones of the
skeleton of zebrafish larvae.
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1. Introduction

Foods have been known to modulate human physiology and, consequently, body
structures. The skeletal system, for example, is known to be strongly influenced by dietary
habits [1]. Foods have also been correlated with inflammatory bowel diseases which, in
turn, can generate multiple complications [2,3] including bone issues such as a high risk of
low bone mineral density and increased incidence of fractures [4].

The study of the impact of natural products and foods on human health can be con-
ducted in vivo with simple animal models which mimic the human physiology, such as
zebrafish (Danio rerio) [5]. Zebrafish show high homology in genes and organs with humans,
their embryos have fast external development, optical clarity and are of a small size, all
of which make them a great model for developmental and pathophysiological studies [6].
Zebrafish intestine closely resemble the mammalian small intestine anatomy and functions,
though it is simpler and lacks a definite stomach. Zebrafish have been widely used for
the study of tissue damage with leukocyte recruitment thanks to their highly conserved
immune system and their transparency that allows live microscopy analysis [7]. In addi-
tion, zebrafish bone tissue is also very similar to that of humans for the composition of
the mineralized matrix and for the presence of functional osteoblasts and osteoclasts [8].

Int. J. Mol. Sci. 2022, 23, 7480. https://doi.org/10.3390/ijms23137480 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23137480
https://doi.org/10.3390/ijms23137480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2292-5288
https://doi.org/10.3390/ijms23137480
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23137480?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 7480 2 of 11

Zebrafish larvae osteogenesis is characterized by the following two different types of os-
sification: endochondral ossification, that takes place from a cartilaginous scaffold, and
intramembranous ossification, that is a direct ossification operated by mesenchymal stem
cell precursors [9]. The neurocranium and the pharyngeal arches are ossified by endochon-
dral processes, while vertebral bodies are formed by intramembranous ossification in a
progressive cranio-caudal direction through notochord direct mineralization [10]. There are
many models of zebrafish intestinal inflammation [11–13]. This study focused on the effects
on zebrafish larval development when fed with a diet based on soybean flour, especially fo-
cusing on its effects on bone mineralization. Soybean flour is well known to induce several
biological effects [14] including intestinal inflammation that has been already studied in
various fish models [15–18] even in zebrafish larvae [19] and adults [20]. The model we
used in this investigation was based on soybean meal (SBM) and was previously studied
by Hedrera et al. who reported that zebrafish larvae already start to develop intestinal
inflammation 2 days after the start of the SBM diet, because of its high saponin content [19].
Saponins are steroid or triterpenoid glycosides with several biological effects including
alteration of the nutrient uptake through the intestinal membrane and the induction of
inflammatory processes in the distal intestine characterized by infiltration in the lamina
propria of immunoglobulin M (IgM) and T cells, eosinophils, macrophages, neutrophils
and lymphocytes [14]. Therefore, the aim of this study was to analyze zebrafish larvae
osteogenesis, with a focus on both endochondral and intramembranous ossification under
the influence of a soybean diet that generates intestinal inflammation.

2. Results
2.1. SBM-Diet Induced Alterations in Mid-Intestine of Zebrafish Larvae

To induce dietary intestinal inflammation, zebrafish embryos were raised to 5 days
post fertilization (dpf) and then fed with control diet (CTR) or SBM diet up to 9 dpf, as
described by Hedrera [19]. Mortality rate, length and morphology remained unchanged
between SBM and CTR larvae (data not shown). To confirm the presence of intestinal
dysfunction, a live staining of lysosomal activity in the mid-intestine with neutral red
was performed. A strong reduction in the neutral red staining was detected in SBM
larvae compared to CTR, evaluated as intensity (Figure 1A), length (Figure 1B), thickness
(Figure 1C) and area (Figure 1D).

2.2. Chondrogenesis as Well as Endochondral Ossification Were Not Affected in the Head
under SBM-Diet

To investigate the role of the intestine in skeletal development, we analyzed chon-
drogenesis and different patterns of bone mineralization in the head of developing larvae
treated or not with SBM diet. The analysis of the chondrogenesis did not reveal signif-
icant differences between CTR and SBM larvae. In fact, SBM larvae stained with alcian
blue showed a normal development of the cartilaginous structures at 9 dpf (Figure 2A) as
confirmed by jaw measurements (Figure 2B), compared to CTR.

To test endochondral mineralization, we performed double staining with alizarin
red and alcian blue and we measured cerathoyal bone mineralization in the head. A
slight slowdown of cerathoyal endochondral mineralization was detected in SBM larvae
(Figure 3A) even if not statistically significant (SBM vs. CTR, −11%, Figure 3B).

2.3. Intramembranous Ossification Was Delayed in Head and Trunk of SBM Larvae

SBM larvae stained only with alizarin red S (Figure 4A) displayed, in the head, a de-
creased intramembranous ossification of the ethmoid plate (SBM vs. CTR, −17%, p < 0.001,
Figure 4B).

We also analyzed the intramembranous ossification in the trunk focusing on vertebral
mineralization (Figure 5A). CTR larvae showed an average of eight mineralized vertebrae
at 9 dpf while SBM vertebral mineralization results almost halved (SBM vs. CTR, −43%,
p < 0.001, Figure 5B). Total lengths of the larval body were taken to verify the normal



Int. J. Mol. Sci. 2022, 23, 7480 3 of 11

general development of the body (Figure 5C) and were used to calculate a normalized
index of vertebral mineralization (number of vertebrae/total body length, N.V./L.), thereby
confirming the decreased SBM vertebral mineralization rate (SBM vs. CTR, −47%, p < 0.001,
Figure 5D).

Figure 1. Intestinal effects of SBM. (A) Neutral red live staining of mid-intestine in larvae alimented
with soy (SBM) or normal diet (CTR) showed decreased intensity of the staining in SBM larvae.
Measure of length (B, SBM vs. CTR, p < 0.001), thickness (C, SBM vs. CTR, p < 0.001) and area
(D, SBM vs. CTR, p < 0.001) of neutral red staining in controls (CTR) and soy (SBM). Data derived
from 10 CTR and 10 SBM larvae, with tests performed 3 times as independent experiments with
comparable results and significant differences were evaluated using the Student t-test (*** p < 0.001).
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Figure 2. Head of zebrafish embryos stained with alcian blue. (A) Cartilage structures of CTR and
SBM embryos visualized as lateral view (upper panel) and bottom view (lower panel). Black arrow
indicates the jaw. (B) Length of jaw in CTR and SBM embryos. The measure was performed as
indicated by black arrow in upper panel of A. Data derived from 10 CTR and 10 SBM larvae, with tests
performed 3 times as independent experiments with comparable results. No significant difference
was detected using the Student t-test.
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Figure 3. Bottom view of zebrafish larvae head double stained with alizarin red and alcian blue.
(A) Mineralizing cartilage structures of CTR and SBM embryos can be visualized in purple, black
arrow indicates the mineralizing area of cerathoyal. (B) Percentage of cerathoyal mineralization
(small square bracket in A) compared to total length of jaw (long square bracket in A) in CTR and SBM
larvae. Data derived from 10 CTR and 10 SBM larvae, with tests performed 3 times as independent
experiments with comparable results. No significant difference was detected using the Student t-test.
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Figure 4. Later view of zebrafish larvae head stained with alizarin red. (A) Mineralizing structures of
CTR and SBM embryos can be visualized in purple, black arrow indicates the ethmoid plate, which
is formed by intramembranous mineralization. (B) Length of ethmoid plate (square bracket in A),
measured in CTR and SBM larvae (SBM vs. CTR, −17%, p < 0.001). Data derived from 10 CTR and
10 SBM larvae, with tests performed 3 times as independent experiments with comparable results
and significant differences were evaluated using Student’s t-test (*** p < 0.001).



Int. J. Mol. Sci. 2022, 23, 7480 7 of 11

Figure 5. Lateral view of zebrafish larvae trunk double stained with alizarin red and alcian blue.
(A) Mineralizing vertebrae of CTR and SBM embryos can be visualized in purple. Black arrow
indicates a single vertebral body, which is formed by intramembranous mineralization. (B) Number
of vertebrae in CTR and SBM larvae (SBM vs. CTR, −43%, p < 0.001). (C) Larval length. (D) Number
of vertebrae/total body length (N.V./L.) (SBM vs. CTR, −47%, p < 0.001). Data derived from 10 CTR
and 10 SBM larvae, with tests performed 3 times as independent experiments with comparable results
and significant differences were evaluated by using Student’s t-test (*** p < 0.001).

3. Discussion

The zebrafish gastrointestinal system is a good model to study physiological digestive
processes and IBD pathogenesis because it is closely related to mammalian small intestines,
both in terms of cellular anatomy and functions such as nutrients absorption and immunes
functions [11,21].

The larval length analysis highlighted that SBM does not influence the general embryo
development but induces intestinal region-specific effects. Neutral red is a staining method
that can be easily used live in zebrafish larvae because it can diffuse across cellular mem-
branes at pH 7, accumulating in acidified lysosomes and that can be protonated if exposed
at an acidic pH [13]. This stain marks the lysosome-rich enterocytes (LREs) that are highly
endocytic and that can be found in the zebrafish mid-intestine [22]. In fact, the zebrafish
intestine is divided into three different segments named the intestinal bulb, which is the
anterior part, the mid-intestine and posterior-intestine. In particular, the mid-intestine
presents goblet cells and enterocytes [21] containing lysosomes that make this part of
the intestine positive to neutral red staining [13]. In the zebrafish embryo enterocolitis
model with trinitrobenzene sulfonic acid (TNBS), a significant reduction in intensity and
the extension of neutral red staining associated with inflammation and loss of function
were observed [13,23]. Similarly, in our model with zebrafish larvae fed with SBM from
5 to 9 dpf, the neutral red mid-intestine staining results were less intense compared to the
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control intestines. These data suggest that the zebrafish larval intestine pH decreases and
its function is altered following a soy-based diet.

Hedrera et al. [19] also found an increase in pro-inflammatory cytokines, Interleukin
1 beta (IL-1β) and Interleukin 8 (IL-8) in the same model. Another study performed on
6–9 dpf zebrafish larvae highlighted that saponin exposure in water increases the number
of neutrophils present in the intestinal area in a dose dependent manner and indices of
immune stimulation, which were detected as am increased pro-inflammatory cytokine
expression [12].

IBD is often related to bone health issues such as low bone mineral density, osteo-
porosis and osteopenia [4] through different mechanisms such as intestinal vitamin D
calcium malabsorption and the involvement of cytokines in the intestinal inflammatory
process [24] that directly promote bone loss [25]. Our data highlight that SBM affects
zebrafish larvae mineralization with a very specific effect related only to intramembranous
mineralization. In fact, endochondral ossification does not seems to be affected by SBM
since the cartilaginous head tissue develops normally and also its subsequent mineral-
ization is normal. On the contrary, head and vertebral intramembranous ossification is
reduced by SBM. Specific gene expressions mediated by Runt-related transcription factor
2 (Runx2) drive osteoblast differentiation from osteochondral progenitor stem cells [26].
Several in vitro experiments demonstrated that Tumor necrosis factor—alpha (TNF-α) in-
hibits osteoblast differentiation at the early stage of differentiation [27,28]. The intestine and
its microbiome have an essential role in the regulation of bone health principally through
the regulation of calcium absorption. Numerous studies have been performed concerning
the modulation of the gut microbiome on various animal models such as rodents, chicken
and even zebrafish [29] Microbiota play essential roles in the development of zebrafish
embryos, influencing the immune system, physiology, reproduction, nutrients metabolism
and ossification [30]. The importance of zebrafish microbiota on embryo mineralization [30]
suggests that any alteration can influence, positively or negatively, early mineralization
processes. It has been previously demonstrated that a probiotic-supplemented diet effects
the growth and calcification of zebrafish larvae due to the probiotic capability to modulate
the transcription of 212 genes including genes implicated in nutrients metabolism [31].
Avella et al. demonstrated that the administration of Lactobacillus rhamnosus anticipated
backbone development in correlation with insulin-like growth factor (IGF) system stim-
ulation while involving vitamin D and retinoic acid, key factors for chondrogenesis and
morphogenesis [30] as well as the stimulation of the expression of other key genes for
ossification [32]. As is the case in humans and mice, zebrafish enterocolitis is closely related
to the microbiota. TNBS-exposed zebrafish larvae demonstrated that antibiotic treatment
diminished the inflammation and prevented the transcription of pro-inflammatory cy-
tokines [13]. Oehlers et al. performed another study based on dextran sodium sulfate (DSS)
induced enterocolitis, finding that this model was also microbiota dependent with neu-
trophilic inflammation, which can be ameliorated with antibiotic and anti-inflammatory
treatments [33]. López Nadal [12] performed the microbial sequencing of whole zebrafish
larvae and highlighted that saponin exposure modified microbial composition, thereby
increasing its diversity, which has also been observed in studies with other fish [34,35].
These microbiota alterations due to saponin exposure in SBM can contribute to the alter-
ations in larval mineralization. Our data highlighted that a specific alteration in zebrafish
intramembranous larval mineralization correlated with SBM diet, which interestingly does
not affect endochondral mineralization. Diet’s influence on the intestinal microbiome
should be considered in future studies to better understand the effects of soybean meal on
zebrafish development. Possible limitations of the work are the differences in the digestive
trait between humans and fish. Zebrafish, lacking a definite stomach, may have different
digestive processes.

Our results confirm zebrafish larvae as excellent intestinal, inflammatory and min-
eralization models that can contribute to elucidating in vivo IBD-related bone disorders,
thereby validating their use for large-scale drug tests.
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4. Materials and Methods
4.1. Ethic Statement

This investigation was performed in the Zebrafish Laboratory (IRCCS R. Galeazzi,
GSD Foundation, Milan, Italy) according to Italian and European guidelines on research
(EU Directive 2010/63/EU). Zebrafish experimentation and all protocols of this study were
approved by Ministry of Health (Italy) with authorization n. 742/2019-PR.

4.2. Animals

Danio rerio of AB strain were housed in ZEBTEC© Bench Top System (Tecniplast,
Buguggiate, Italy) and maintained at 28 ◦C under standard conditions [36]. Embryos were
obtained with a single pair of adults and were checked for general health conditions under
a light stereomicroscope as described by Kimmel et al. [37].

4.3. Treatments

Embryos were maintained at 28 ◦C in a dark incubator in a standard growing medium
(E3 medium, 5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4) for up to 5 days
post fertilization (dpf) and were then moved to fish tanks with E3 medium and fed up to
9 dpf with standard fish diet (CTR, Baby microgranules, SHG, Ovada, Italy) or soybean diet
(SBM). SBM was formulated based on a previously published study performed on zebrafish
larvae [19] using 50% w/w standard diet and 50% w/w soybean flour type I (Sigma Aldrich,
St. Louis, MO, USA), a defatted soybean flour with a high protein content (protein ~ 52%
(85+% dispersible and 1% fat) that ensures a very high saponin content. A total of 40 larvae
were fed with each diet and the entire experiment was repeated 3 times for a total amount
of 240 larvae.

4.4. Histochemical Analysis

At the end of the treatment (9 dpf), 10 larvae of each diet were incubated in 2.5 µg/mL
neutral red E3 medium live staining solution at 28 ◦C for 30 min in the dark as described
by Herbomel et al. [38]. Then, larvae were repeatedly washed in E3 medium and anaes-
thetized with 0.01% tricaine methanesulfonate (Sigma Aldrich, St. Louis, MO, USA) E3
medium solution.

The 30 remaining larvae of each diet were euthanized using a 300 mg/L tricaine
methanesulfonate (Sigma Aldrich, St. Louis, MO, USA) solution [39] and fixed in 3.5%
formaldehyde/0.1 M sodium phosphate buffer. Then, Alcian Blue 8GX (Sigma Aldrich,
St. Louis, MO, USA) and/or Alizarin red S (ARS, Sigma Aldrich, St. Louis, MO, USA)
double acid-free staining [40] were performed to stain, respectively, cartilage and bone
tissue. Both the double staining and the two single stainings were performed, each staining
on 10 larvae, to better highlight bone and cartilage tissue separately.

All larvae were examined under a light/fluorescence stereomicroscope (SZX-ZB7
Olympus, Tokyo, Japan) with images acquired using a Discovery CH30 camera (Tiesselab,
Milan, Italy). Images were analyzed with ISC Capture software (version 2.5) to perform
the measurements. We analyzed alcian blue images to measure the jaw and alizarin
red S images to measure the ethmoid plate. Using double staining, we measured the
mineralization level of the cerathoyal (measured as length of the mineralized portion
(positive for alizarin red S staining)*100/total length of the jaw (alcian blue staining) and the
vertebral mineralization rate (N.V./L., calculated as number of mineralized vertebral bodies
(N.V., positive for alizarin red S staining) normalized for the length ((L.) for each larva).

4.5. Statistical Analysis

Data were derived from 40 larvae for each diet, 10 larvae were used for each analysis,
and each test was performed 3 times as independent experiments with comparable results,
using a total amount of 240 larvae. Data were used to calculate the mean value expressed as
mean of the means of the 3 independent experiments ± standard deviation versus control.
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Data were plotted on SigmaStat software (version 3.5) (San Jose, CA, USA) and subjected to
Student’s t-test with the significance values set at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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