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Abstract: Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only
tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host
immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is
weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to
the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional
functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it
is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its
expression could be relevant also in other cell types which are important players in the TME, including
DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of
RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2
in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and
-independent signaling, which are associated with DCs’ survival/autophagy/apoptosis. RNASET2
expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely
abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and
-independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication
for TME and, therefore, in anti-tumor immunity.
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1. Introduction

The tumor microenvironment (TME) has an undeniable influence on cancer progres-
sion by affecting tumor growth and on the ability of stromal and immune cells to orchestrate
immune responses locally [1]. Hypoxia is a key component of the TME and a severe intratu-
moral hypoxia is associated with increased risk of mortality [2]. Indeed, hypoxia promotes
not only tumor growth and metastasis, but it negatively affects infiltrating immune cells by
impairing host immunity [3].

Dendritic cells (DCs) are the most potent antigen-presenting cells [4] and during their
lifespan they are often exposed to hypoxia [5,6].

Although DCs constitute a rare immune cell population within tumors, these cells
are crucial for initiation and regulation of the immune responses in a microenvironment,
like the TME, which is characterized by a low oxygen tension [7,8]. In this context, tumors
impair DC biology in many ways, including the modulation of DC differentiation, and the
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modification of their metabolism by decreasing the availability of nutrients and oxygen,
and, therefore, by compromising DC viability [3]. Previous reports have shown that
DCs are affected by hypoxia in terms of cell survival, differentiation, activation, and
migration [9,10]. In addition, we have previously demonstrated that a prolonged exposure
to hypoxia resulted in a pro-apoptotic program in immature DCs, along with PI3K/AKT
inhibition [11].

The PI3K/AKT pathway plays a key role in DC survival [12]. This pathway is tightly
related to the hypoxia-inducible factor (HIF) which is the master regulator of the hypoxia
responses [13]. HIF is composed by an oxygen-regulated α subunit and a constitutively
expressed β subunit. In the presence of oxygen, HIF-1α is prolyl-hydroxylated and,
thereafter, it interacts with the von Hippel Lindau protein, leading to ubiquitination and
rapid destruction in proteasomes. In hypoxia, HIF-1α evades proteasomal degradation.
This results in the binding of active HIF heterodimers with the hypoxic-responsive elements
(HREs) present in the promoter of the target genes, including the C-X-C chemokine receptor
type 4 (CXCR4), the pro-angiogenic vascular endothelial growth factor (VEGF-A), and the
BCL-2 Interacting Protein 3 (BNIP3). The latter belongs to the BCL-2 family of proteins,
and, along with other BCL-2 family members, such as the induced myeloid leukemia cell
differentiation protein Mcl-1, is involved in DC survival, autophagy, and apoptosis [14–16].

RNASET2 belongs to the T2 family ribonucleases, which are highly conserved, since
they are found in the genomes of protozoans, plants, bacteria, animals, and viruses [17].
Besides its nuclease activity, RNASET2 exerts many additional functions and it has been
involved in several human pathologies, including inflammation and cancer [18]. RNASET2
has been associated with anti-tumor activities, since its overexpression is a good prognostic
index in several neoplastic diseases [19]. Indeed, its overexpression inhibits the clonogenic-
ity of ovarian cancer cells in vitro and suppresses tumorigenesis and metastatic potential
in vivo [20,21]. Besides its intracellular expression, RNASET2 is also secreted and recent
experimental data from several groups have indicated that human RNASET2 belongs to
the stress-response gene family [22]. The role of RNASET2 is not restricted to cancer cells
and could be relevant also in other cell types which are important players in the TME. In
fact, RNASET2 has been recently associated with immune cell functions, highlighting its
potential involvement in innate and, so far, anti-tumor immunity [18,23–25]. Thus, the
modulation of RNASET2 expression and secretion in DCs may be functionally relevant in
the TME.

In this study, and for the first time, we report that hypoxia enhances the expression and
secretion of RNASET2 in human monocyte-derived DCs. This was paralleled by the HIF-1α
accumulation and HIF-dependent and -independent signaling, and with a decreased DCs
survival. Interestingly, we found out that RNASET2 overexpression, under hypoxia, was
enhanced by pharmacological inhibition of PI3K/AKT. Furthermore, treatment of hypoxic
DCs with the TLR4 ligand LPS resulted in the almost complete abolishment of RNASET2
expression, which was reversed by PI3K/AKT inhibition.

2. Results
2.1. Hypoxia Enhances RNASET2 Expression Along with HIF-1α Dependent and Independent
Signaling in Human Monocyte-Derived DCs

To determine the effects of hypoxia on RNASET2 expression, DCs were exposed to
normoxia and hypoxia for 24 h. The hypoxic condition that was used in the study (2%
O2, equivalent to 14 mmHg), corresponding to an average of pO2 tension present in the
TME [8], was able to induce a significant increase in HIF-1α accumulation (Figure 1A).
The effects of hypoxia on DCs were not restricted to HIF-1 signaling. Indeed, hypoxia
enhanced the expression of the signal transducer and activator of transcription (STAT)3α,
which is typically associated with DC inhibition within the TME [26,27]. In addition, we
determined whether our hypoxic experimental conditions resulted in the overexpression
of genes, which are transcriptionally regulated by HIF-1α. These include the BCL-2
family member BNIP3, the pro-angiogenic growth factor VEGF-A and the chemokine
receptor CXCR4. BNPI3 induces loss of mitochondrial membrane potential, which may
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promote DC cell death, whereas VEGF-A is commonly referred as a promoter of tumor
angiogenesis and CXCR4-CXCL12 signaling has been associated with the polarization
towards an immune-suppressive microenvironment [28]. Having established that our
experimental conditions were compatible with a hypoxic response/signature in DCs [11],
we next determined whether hypoxia could affect RNASET2 expression. In this regard,
when DCs were exposed to hypoxia they showed a significant and sustained enhancement
of RNASET2 mRNA expression, as established by RT-qPCR (Figure 1B). Moreover, we
observed that hypoxia significantly increased RNASET2 protein levels, when compared
to the normoxic control. Furthermore, the increased RNASET2 expression was not only
observed at intracellular level. Indeed, a 48 h exposure of DCs to hypoxia also caused a
significant increase in RNASET2 secretion, as determined by ELISA, indicating its potential
effects on the surrounding cells within the TME.
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Figure 1. (A) HIF-1α and STAT3α protein levels as determined by Western blotting and BNIP3; VEGF-A and CXCR4 
mRNAs as determined by RT-qPCR analysis after 24 h exposure to normoxia and hypoxia. (B) RNASET2 mRNA after 24 
and 48 h exposure to normoxia and hypoxia as determined by RT-qPCR, RNASET2 protein levels, as detected by Western 
Blotting (after 24 h), and secretion as measured by ELISA assay (after 48 h). (C) Live cell percentage after 48 h exposure to 
normoxia and hypoxia, as determined by LIVE/DEAD assay, phAKT, phmTOR, and Mcl-1 protein levels after 24 h expo-
sure to normoxia and hypoxia, as determined by Western blotting. All blots shown are representative of at least three 
independent experiments and β-actin was used as loading control. β-actin was used as a housekeeping gene for RT-qPCR 
analysis. * indicates statistically significant differences (p ≤ 0.05; n = 3).

Figure 1. (A) HIF-1α and STAT3α protein levels as determined by Western blotting and BNIP3; VEGF-A and CXCR4
mRNAs as determined by RT-qPCR analysis after 24 h exposure to normoxia and hypoxia. (B) RNASET2 mRNA after
24 and 48 h exposure to normoxia and hypoxia as determined by RT-qPCR, RNASET2 protein levels, as detected by Western
Blotting (after 24 h), and secretion as measured by ELISA assay (after 48 h). (C) Live cell percentage after 48 h exposure
to normoxia and hypoxia, as determined by LIVE/DEAD assay, phAKT, phmTOR, and Mcl-1 protein levels after 24 h
exposure to normoxia and hypoxia, as determined by Western blotting. All blots shown are representative of at least three
independent experiments and β-actin was used as loading control. β-actin was used as a housekeeping gene for RT-qPCR
analysis. * indicates statistically significant differences (p ≤ 0.05; n = 3).
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The hypoxia-induced intracellular and extracellular protein levels of RNASET2 were
paralleled by a decreased DC viability, which was assessed with ethidium bromide/calcein
staining and fluorimetric analysis. As shown in Figure 1C, the percentage of live DCs was
significantly lower after a 48 h exposure to hypoxia when compared with normoxic controls.
In addition, exposure to hypoxia was accompanied by a decreased phosphorylation of AKT
and mTOR. The enhanced DC cell death program by hypoxia was further confirmed by the
decrease in Mcl-1 that is a member of the BCL-2 protein family, with specific antiapoptotic
effects in DCs [16,29].

2.2. Modulation of Hypoxia-Induced RNASET2 Expression by PI3K/AKT Pathway and TLR4
Ligand LPS

The above results suggest that PI3K/AKT may be associated with RNASET2 expres-
sion in hypoxic DCs. The involvement of the PI3K/AKT pathway in the regulation of
RNASET2 was established by a series of experiments, where DCs were exposed under hy-
poxia for 24 h employing, in the last 6 h, the panPI3K irreversible inhibitor Wortmannin [30].
As shown in Figure 2A, treatment of DCs with Wortmannin under hypoxia significantly
enhanced the expression of RNASET2. The effectiveness of Wortmannin under hypoxia,
was validated by a significant inhibition of AKT and mTOR phosphorylation, as well as by
a reduced expression of the anti-apoptotic protein Mcl-1, which is specifically related to
cell survival in immature DCs [29].
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Figure 2. (A) RNASET2, phAKT, phmTOR, and Mcl-1 protein levels as determined by Western blotting in DCs exposed to
hypoxia for 24 h and treated or untreated in the last 6 h with Wortmannin. (B) phAKT, phmTOR, and Mcl-1 protein levels
as determined by Western blotting in DCs exposed to hypoxia for 24 h in the presence or not of LPS. (C) RNASET2, mRNA,
and protein levels as determined by RT-qPCR analysis and Western blotting, respectively, in DCs exposed to hypoxia in the
presence or not in the presence of LPS for 24 h. RNASET2 protein levels as determined by Western blot analysis in DCs
exposed to hypoxia in the presence of LPS for 24 h and treated or untreated in the last 6 h with Wortmannin. All blots
shown are representative of at least three independent experiments and β-actin was used as loading control. β-actin was
used as a housekeeping gene for RT-qPCR analysis. * indicates statistically significant differences (p ≤ 0.05; n = 3).

To further test the mechanism by which hypoxia affects RNASET2 expression in DCs,
we performed additional experiments employing an activator of PI3K/AKT signaling
in DCs, the TLR4 ligand, LPS. As shown in Figure 2B, a 24 h exposure to hypoxia in
the presence of LPS resulted in an increased phosphorylation of AKT and mTOR, when
compared to hypoxic controls. This reduction was accompanied by a significant increase
in the antiapoptotic protein Mcl-1, confirming a previous study showing that PI3K/AKT
activation by LPS protects DCs from apoptosis under hypoxia [11]. More interestingly,
LPS treatment caused a significant reduction in RNASET2 expression at both mRNA and
protein levels (Figure 2C). As we postulated that RNASET2 expression was regulated by
the PI3K/AKT pathway, we treated DCs with LPS also in the presence of the PI3K inhibitor,
Wortmannin. In this case, the inhibitor caused a significant enhancement of RNASET2
protein expression in LPS-treated DCs under hypoxia. Once again, these results suggest an
important implication of the PI3K/AKT pathway in RNASET2 modulation, thus indicating
a novel and additional modality by which RNASET2 may be regulated in DCs upon their
exposure to a hypoxic condition, like in the TME.

3. Discussion

Here, we report for the first time that hypoxia enhances the expression of RNASET2
in human DCs and that PI3K/AKT and TLR4-activation by LPS modulate such expression.

Previous reports have shown that RNASET2 is overexpressed in ovarian cancer lines
in response to several stress conditions, including hypoxia [19]. The same report showed
that in RNASET2-silenced OVCAR3 ovarian cancer cell line, under hypoxic conditions, the
proliferation rate was significantly higher when compared to controls [19]. In addition, its
overexpression inhibits the clonogenicity of ovarian cancer cells in vitro [20,21], indicating
that RNASET2 may be implicated in the inhibition of tumor cell proliferation and survival.

Of note, the fact that intracellular RNASET2 may control cell proliferation/survival
is not restricted to tumor cells. Indeed, a previous study has shown that stress-induced
RNASET2 overexpression inhibits cell proliferation and mediates apoptosis in human
melanocytes [22]. In keeping with these data, we found out in our study that RNASET2
overexpression in hypoxic DCs was accompanied by a decreased cell viability, along with
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downregulation of anti-apoptotic proteins belonging to the BCL-2 family [29]. One of them,
Mcl-1, is particularly important for DC survival and differentiation [15]. In addition, we
observed that hypoxic DCs concomitantly showed lower phosphorylation levels of AKT
and mTOR, and both belong to signaling pathways which are crucial for DC survival [31,32].
More importantly, we showed that the induction of RNASET2 under hypoxia was further
increased by PI3K/AKT inhibition, supporting the involvement of pro-survival signaling
pathway in the modulation of RNASET2 expression in hypoxic DCs.

The fact that hypoxia induces a massive increase in expression and secretion of
RNASET2 may be related to a previous observation where in ovarian cancer cell lines,
analysis of a region immediately upstream of the first exon of the RNASET2 gene and the
whole first intron showed two putative HIF-1 binding sites, suggesting a possible role for
one or more of these elements in the observed hypoxia-induced upregulation of RNASET2
expression [19]. In the present study, hypoxic DCs expressed high levels of RNASET2
mRNA, and protein levels, which paralleled the accumulation of HIF-1α and the expression
of genes which are transcriptionally regulated by HIF-1α. One of them is VEGF-A which,
in the TME, contributes to the inhibition of DC functions. The other gene that is regulated
by HIF is BNIP3 which plays an important role in autophagy/apoptosis. Thus, RNASET2
may be one of the genes that could be relevant for modulating DC survival under hypoxia
as well.

In addition, the observed increase in RNASET2 secretion in DCs’ response to hypoxia
further supports the hypothesis of its putative role as an “alarmin”, by activating a “danger-
response” program, with important implications in the TME [33]. Alarmins are endogenous
molecules which share some common features, including their passive release from necrotic
cells or active secretion from cells of the innate immune system, that promote adaptive
immunity [34]. Thus, the observed secretion of RNASET2 by hypoxic DCs suggests the
execution of extracellular roles which could be relevant in the TME to coordinate an
immune response.

The impact of RNASET2 in DCs functions was suggested by a previous study where
Clonorchis sinensis-derived RNASET2 could significantly suppress the expression of LPS-
induced DCs maturation markers in murine bone marrow derived DCs [35]. Our study
extends this observation to endogenous RNASET2 and characterize the PI3K/AKT as the
major pathway involved in LPS-induced downregulation in DCs.

The cross talk between TLRs and RNASET2 in immune sensing has been evidenced
by two recent reports, showing that TLR8 is a sensor of RNASET2 degradation prod-
ucts [24,25]. The latter one clearly indicates the relevance of lysosomal RNASET2 activity
functions upstream of TLR8 in monocytic cell lines. However, the authors suggest that
RNASET2’s pro-immunogenic role upstream of TLR8 may be in a tight equilibrium with
its potential anti-inflammatory role as an RNA-degrading enzyme. In our study, we have
shown that RNASET2 expression may be modulated by LPS, thus indicating a potential
function downstream of TLR4. It is tempting to speculate that in DCs the pro-inflammatory
effects, which are physiologically activated by TLR4 activation, may be followed by a
strong downregulation of intracellular RNASET2 expression and, so far, a reduced anti-
inflammatory effect. Still, regarding LPS, it is widely accepted that it induces a terminal
differentiation in DCs [36]. Thus, RNASET2 expression may be inversely associated with
DC maturation and its intracellular decrease, as we observed upon LPS stimulation, may
ensue a pro-survival effect in DCs, therefore protecting them against the hypoxic stress.
The inhibition of DCs’ viability by TME is not restricted to the hypoxic microenviron-
ment. Tumor-derived factors, such as VEGF-A, PGE2, and ATP, keep infiltrating DCs at
an immature state that is not functional for the activation of T cell response [10]. Indeed,
one of the characteristics of the TME is the accumulation of immature DCs that are not
able to finally differentiate. This accumulation generates tolerogenic signals resulting in a
non-execution of a proper anti-tumor immune response. RNASET2 upregulation, together
with the inhibition of phAKT, phmTOR, and Mcl-1 might be part of an “editing” process
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that leads to the elimination of pro-tumor immature DCs. This process will abort in the case
DCs sense activation signals, such as LPS, leading to maturation and anti-tumor immunity.

Our hypotheses, based mainly on observations and correlations, need to be further
corroborated by more in-depth experiments concerning the relation between RNASET2
expression and the DC maturation profile in hypoxic condition. Hypoxia itself modulates the
maturation of DCs, resulting in a reduced expression of markers of their maturation in the
presence of LPS [37]. In this regard, specific experiments are currently ongoing. Preliminary
data confirm the reduction in some maturation markers in hypoxic DCs and this reduction
appears to correlate with the increased expression of RNASET2 (data not shown).

In conclusion, we have established that a prolonged hypoxia, along with the inhibition
of DCs’ survival, induces the expression of RNASET2 and that this effect is negatively
regulated by the PI3K/AKT pathway and LPS. Our study, albeit preliminary, opens new
perspectives on the role of RNASET2 in a hypoxic microenvironment as TME and so in
anti-tumor immunity.

4. Materials and Methods
4.1. Reagents

RPMI 1640, fetal bovine serum (FBS), penicillin/streptomycin, L-Glutamine were pur-
chased from Euroclone, Devon, UK. Fycoll was purchased from Cederlane Labs and Per-
coll from Amersham Bioscience, Pittsburgh, PA, USA. Recombinant human granulocyte
macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13) were purchased
from ProSpec TechnoGene, East Brunswick, NJ, USA. All reagents contained <0.125 endotoxin
units/mL, as checked by the Limulus Amebocyte Lysate assay (Cambrex, East Rutherford,
NJ, USA). LPS from Escherichia coli strain 055:B5 was obtained from Sigma–Aldrich, Milano,
Italy. Wortmannin was purchased from Tocris Biosciences, Bristol, UK.

4.2. Human Monocyte-Derived DC Preparation and Culture Conditions

Human monocyte-derived DCs were generated as previously described [11]. The
study was reviewed and approved by Ethical Committee of Azienda Ospedaliera Universi-
taria Senese and University of Siena (CAVSE 17022020). The participants provided their
written informed consent.

Briefly, highly enriched blood monocytes (>95% CD14) were obtained from anony-
mous buffy coats (South-East Tuscany Blood Establishment, AOUS, Siena, Italy) by Fycoll
and Percoll gradient centrifugations. Monocytes were differentiated into DCs (>90% CD1a
and <5% CD14) upon 6 days culture (in RPMI 1640, supplemented with 10% FBS) with
50 ng/mL GM-CSF and 20 ng/mL IL-13, as previously reported [11].

DCs were cultured under either normoxia (atmospheric pO2 levels: 21% O2, 5% CO2
and 74% N2 corresponding to a pO2 ~ 140 mmHg) or hypoxia (2% O2, 5% CO2 and 94% N2,
corresponding to a pO2 ~ 14 mmHg) by the workstation InVivo O2 400 (Ruskinn, Pencoed,
UK) as previously described [11]. In some experiments, LPS (100 ng/mL), was added and
the cultures were carried out for 24 h.

Where indicated, Wortmannin (5 µM) was added directly to the culture medium 6 h
before the end of treatment. At the indicated times, cells were harvested for further analysis,
as described below.

4.3. Western Blot

DCs were harvested and lysed in 40 µL of RIPA buffer (Cell Signaling Technolo-
gies, Danvers, MA, USA) containing a cocktail of protease inhibitors (Sigma-Aldrich,
St. Louis, MO, USA). Then, equal amounts of total proteins were loaded onto SDS-PAGE
gel and blotted onto a nitrocellulose membrane (BIO-RAD, Hercules, CA, USA) and
blocked in TBS supplemented with 0.1% Tween and 5% nonfat dry milk for 1 h. The
following primary antibodies were used as listed: HIF-1α (BD Biosciences, San Jose, CA,
USA, 1:200 Cat.n◦ 610958), STAT3α (Cell Signaling Technologies, Danvers, MA, USA,
1:1000 Cat.n◦ 9139), RNASET2 (rabbit polyclonal antibody raised against recombinant
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RNASET2 protein, (kindly provided by Francesco Acquati) phAKT (Cell Signaling Tech-
nologies, Danvers, MA, USA, 1:1000 Cat.n◦4058), phmTOR (Cell Signaling Technologies,
Danvers, MA, USA, 1:1000 Cat.n◦ 2971), Mcl-1 (Cell Signaling Technologies, Danvers,
MA, USA, 1:1000 Cat.n◦ 94296), and β-actin (Sigma-Aldrich, 1:50,000 Cat.n◦ A3854). Anti-
mouse IgG HRP (Cell Signaling Technologies, Danvers, MA, USA, 1:2000 Cat.n◦ 7076)
and anti-rabbit IgG-HRP (Cell Signaling Technologies, Danvers, MA, USA, 1:2000 Cat.n◦

7074) were used as secondary antibodies (Cell Signaling Technologies, Danvers, MA, USA).
Detection of images was completed using ChemiDoc™ MP System (BIO-RAD, Hercules,
CA, USA). Blots were quantified using Image Lab software (BIO-RAD, Hercules, CA, USA).

4.4. RNA Isolation Extraction and RT-qPCR

Total RNA was isolated using EuroGOLD™Trifast reagent (Euroclone, Devon, UK)
and reverse-transcribed with iScript™cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules,
CA, USA) according to the manufacturer’s instructions. RT-qPCR analysis was performed
using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad Laboratories, Hercules,
CA, USA) and mRNA levels of BNIP3, VEGF-A, CXCR4, and RNASET2 were determined
by MiniOPTICON™ System (Bio-Rad Laboratories). Data were quantitatively analyzed on
an iQ5™ Optical System Software (Bio-Rad Laboratories) by using the 2−∆∆CT method and
β—actin was used as housekeeping gene.

The sequence of the RNASET2 primers used for RT-qPCR is the following:
RNASET2 fw: 5′-CGTAATTCACTCGTTTCCCAATC-3′

RNASET2 rev: 5′-CCCATGCTTTTCCCACTCAT-3′

4.5. ELISA

Cell supernatants were collected and used for the detection of RNASET2 by a double-
antibody sandwich ELISA, according to manufacturer’s instructions (BIOMATIK Ontario,
Kitchener, ON, Canada, Cat. n◦EKU07128). Briefly, standards and samples properly diluted
were incubated onto 96 microtiter plate wells for 2 h at 37 ◦C. Then, a biotinylated antibody
specific to RNASET2 was added for 1 h at 37 ◦C. After washing, avidin conjugated to
horseradish peroxidase was added to each well for 30 min at 37 ◦C and the development
was performed using TMB substrate. The TMB reaction was stopped with sulphuric acid
solution and absorbance was measured at 450 nm with MULTISKAN (ThermoFisher Scien-
tific, San Jose, CA, USA). To subtract high background signals, a reference measurement at
650 nm was performed.

4.6. Cell Death/Viability Assay

Percentage of live DC was assessed using a plasma membrane integrity assay (LIVE/DEAD®

Viability/Cytotoxicity Assay, Molecular Probes, Eugene, OR) as previously described [11]. Live
DC were stained with Calcein AM, that was hydrolyzed in live cells producing an intense
uniform green fluorescence (ex/em ~485 nm/~520 nm). Instead, ethidium homodimer—1 was
used to detect dead cells since it only enters cells with damaged membranes and binds nucleic
acids producing a bright red fluorescence (ex/em ~530 nm/~645 nm). Fluorescence was mea-
sured using a microplate reader (FLUOstar Optima, BMG Labtech, Durham, NC, USA). Live
cell percentages were calculated as follows:

[live cell number/total cell number (live plus dead cells)] × 100.

4.7. Statistical Analysis

The data are presented as the mean ± SEM of at least 3 independent experiments.
Statistical analyses were performed with Graph-Pad Prism (San Diego, CA, USA). Analysis
of variance (ANOVA) and an unpaired two-tailed Student’s t-test were used to test for
significant numerical differences among the group. Difference of p ≤ 0.05 was considered
to be statistically significant (* p ≤ 0.05).
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5. Conclusions

In conclusion, we have established that a prolonged hypoxia, along with the inhibition
of DCs’ survival, induces the expression of RNASET2 and that this effect is negatively
regulated by the PI3K/AKT pathway and LPS. Our study, albeit preliminary, opens new
perspectives on the role of RNASET2 in a hypoxic microenvironment as TME and, therefore,
in anti-tumor immunity.
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