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Simple Summary: Worldwide biodiversity loss points to a necessity of upgrading to a fast and
effective monitoring method that can provide quick conservation action. Newly developed envi-
ronmental DNA (eDNA) based method found to be more cost-effective, non-invasive, quick, and
accurate than traditional monitoring (spot identification, camera trapping). Although the eDNA
based methods are proliferating rapidly, as a newly developed branch, it needs more standardization
and practitioner adaptation. The present study aims to evaluate the eDNA based methods, and
their potential achievements in biodiversity monitoring, and conservation for quick practitioners’
adaption. The investigation shows that the eDNA technique is applicable largely in (i) early detec-
tion of invasive species, (ii) species detection for conservation, (iii) community-level biodiversity
monitoring, (iv) ecosystem health monitoring, (v) study on trophic interactions, etc. Thus, the eDNA
technique shows a great promise with its high accuracy and authenticity, and will be applicable alone
or alongside other methods in the near future.

Abstract: Recently developed non-invasive environmental DNA-based (eDNA) techniques have
enlightened modern conservation biology, propelling the monitoring/management of natural pop-
ulations to a more effective and efficient approach, compared to traditional surveys. However,
due to rapid-expansion of eDNA, confusion in terminology and collection/analytical pipelines
can potentially jeopardize research progression, methodological standardization, and practitioner
adoption in several ways. Present investigation reflects the developmental progress of eDNA
(sensu stricto) including highlighting the successful case studies in conservation management. The
eDNA technique is successfully relevant in several areas of conservation research (invasive/conserve
species detection) with a high accuracy and authentication, which gradually upgrading modern
conservation approaches. The eDNA technique related bioinformatics (e.g., taxon-specific-primers
MiFish, MiBird, etc.), sample-dependent methodology, and advancement of sequencing technol-
ogy (e.g., oxford-nanopore-sequencing) are helping in research progress. The investigation shows
that the eDNA technique is applicable largely in (i) early detection of invasive species, (ii) species
detection for conservation, (iii) community level biodiversity monitoring, (iv) ecosystem health
monitoring, (v) study on trophic interactions, etc. Thus, the eDNA technique with a high accuracy
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and authentication can be applicable alone or coupled with traditional surveys in conservation
biology. However, a comprehensive eDNA-based monitoring program (ecosystem modeling and
function) is essential on a global scale for future management decisions.

Keywords: environmental DNA application; biodiversity monitoring; invasive species; species under
conservation; molecular ecology; conservation management

1. Introduction

The loss of biodiversity has been one of the most serious concerns worldwide. The
world has been losing its biodiversity due to a target to fulfilling high demands of satisfac-
tion by the human race which in turn is incurring expensive and detrimental demands to
nature [1]. According to IPBES (The Intergovernmental Science-Policy Platform on Biodi-
versity and Ecosystem Services) report, 25% of animals and plants are already threatened
with extinction [2]. The wild animals and plants, as well as domestic ones, are facing a fight
for survival due to anthropogenic activity. In the next thirty years, 30–50 % of plant species
will become extinct [3]. The current rate of extinction is 1000 to 10,000 times greater than the
natural extinction rate on our planet [2]. This is an extremely serious issue that will be more
severe in the coming days. However, to mitigate this issue, we need to initiate a monitoring
program at both local and global levels. In designing such a monitoring system, we need
to consider the development of a fit-for-purpose, accurate and cost-effective technique for
the detection of species, assessment of biodiversity and study of species interactions.

Environmental DNA, known as eDNA, is shed by organisms during their existence in
nature [4]. During their lifespan, organism shed DNA wherever they have been present
for a moments. The collection and analysis of these environmental samples and monitor-
ing of the ecosystem without harming organisms is the basis of eDNA study. Recently
eDNA, provided valuable contribution to both aquatic and terrestrial monitoring [5,6].
Originally, the eDNA-based species detection was a microbiological study, dating back
in 1987 [7] and the use of eDNA to detect macro-organism directly from water sample
came to the front in early 2008 with detection of aquatic invasive species [8]. Later on,
the methodology was updated and reinforced by some pioneer studies [9,10]. Afterward,
rate of eDNA release, degradation, persistence as well as the changes in concentration
with organism abundance were explored [11–16]. However, as more studies incorporated
the use of eDNA approaches, terminology quickly diverged, becoming more convoluted
or generally misunderstood [17,18]. What quickly followed was two distinct schools of
thought: (i) those who view eDNA as relating to any DNA originating from environmen-
tal samples (eDNA sensu lato: [4]), and (ii) research referring to eDNA originating from
macro-organisms specifically (eDNA sensu stricto). Researchers use eDNA for species de-
tection to reveal many critical ecological questions, such as studies of population genetics,
abundance and habitat preference, detection of unrecorded populations, understanding
behavioral biology, monitoring of reproductive migration, pathogens, terrestrial plant
community, biodiversity of marine and river ecosystem, nutrient quality, assessment of
coral ecosystem, etc. [19]. Moreover, the novel eDNA-based approaches have been used
to solve some critical conservation issues such as the detection of rare and endangered
species [20], invasive species [21], monitoring whole biodiversity [22,23], study of anthro-
pogenic effect [24], ecosystem health [25] and disease [26]. As eDNA-based methods are
emerging rapidly as a multidisciplinary branch of science (Figure 1), it is necessary to
evaluate the recent advancements for proper implementation.
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Figure 1. Developmental progress of eDNA technique in last two decades (data collected from
PUBMED advanced search with “environmental DNA or eDNA” as title).

Considering this background, the aim of the present investigation is to focus on
and summarize the methodological development and application of macro-organismal
eDNA in biodiversity monitoring, highlighting successful case studies in conservation
management. By doing so, we hope to draw the attention of practitioners who may
otherwise be unfamiliar with the achievements of eDNA-based methods that have been
made to date.

2. Overview of Sampling and Laboratory Protocol for eDNA

The detection of biological signature from eDNA traces has been reported from
different environment (e.g., water, soil, air, snow, and even in drinking water) [27], where
the sampling approaches and extracting protocols of eDNA have indicated ‘required
modifications’ depending on sample type and interest [16].

2.1. Collection and Accumulation of eDNA Samples

The long-time exposure and abundance of target organisms strongly increase the
amount of eDNA into the environment [28], where detection probability was reported to
be higher near the habitat [29]. Nevertheless, organisms in low abundance can be traced
with meticulous experimental design [30]. The occurrence of the targeted eDNA in the en-
vironment depends upon their life history, body size, behavior, seasonal and reproductive
activity (e.g., eDNA amount observed is higher during the breeding season) [6]. The persis-
tence may depend upon the physicochemical factors of the environment (e.g., temperature,
pH, and oxygen) [29]. Not only the physicochemical characteristics of the medium, but
also the mobilization of the medium (e.g., intra-medium: water to water; inter-medium:
soil to water) influences the existence/persistence of eDNA in the environment, including
false-positive detection due to multiple factors (e.g., medium current, settlement, predator,
anthropogenic activity, etc.) [28].
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2.1.1. Aquatic Environment

Generally, in aquatic biomes, the existence of eDNA differs according to sampling
zones (e.g., littoral, limnetic, and intertidal) [6,16]. The different effective samplers
(e.g., Nansen metal water sampler, Bucket and van Dorn sampler, Kemmerer type water
sampler, Niskin water sampler, Bottles, PVC pole, and Polyethylene Nalgene bottles, etc.)
are used in different studies for eDNA sampling [31,32]. In the case of lentic ecosystems,
eDNA deposits in sediments, since water is stagnant, whereas long-dated eDNA is ob-
served in significantly higher amounts in sediment zone compared to photic zone [33].
Here, a well cleaned DNA free bottle or one-time use sampler is suitable for the collection,
whereas a sampler equipped with pole/rope-like structure is used for benthic water sam-
pling [34]. On the other hand, in the lotic ecosystem, a filter funnel can be used against the
flow to collect eDNA from water; however, the chances of false-positive results (due to
transportation of eDNA) should be kept in consideration.

The sample can be processed through filtration/centrifugation/ultra-centrifugation/
precipitation steps after collection (if the accumulation step is not performed) [32]. The
filtration technique (as it processes larger volumes of water at once) is the most common
method adopted for accumulation of DNA into filter paper (0.2–3.0 µm size) [32,35]. The
main problem of this technique is clogging, in particular for smaller pore filters; here
the use of two or more separate filter papers for samples can be adopted. Moreover,
conventional filtration, enclosed sterivex filters (pressure mediated filter without electricity)
are highly effective and advanced techniques in remote field surveys [35]. The ethanol
precipitation, centrifugation, and ultra-centrifugation steps are suitable for places where
long-time access is difficult and when the targeted DNA is present in high concentration
(because those generally process less volume of sample) [32,35]. In the precipitation step,
ethanol or isopropanol are required to accumulate DNA; however, the centrifugation and
ultra-centrifugation steps require no chemicals [16]. Furthermore, the detection probability
is correlated with sample volume, although it is necessary to optimize it depending on
target organism [36]. Tsuji et al. [32] reviewed the protocols on eDNA studies in water,
which indicated that over 78% of cases used the filtration method, followed by ethanol
precipitation (13%) and centrifugation (4%). The most common type of filter paper is used
as cellulose nitrate (CN) 0.45 µm pore size, although other types (0.45 µm mixed cellulose
ester membrane, 0.7 µm glass microfiber, etc.) are also considered [32,37].

2.1.2. Terrestrial Environment

The selection of different soil layers eventually depends on targeted taxa. The soil may
be collected using a sterile digger or debris metal screens (to remove large particles), and
collected soil needs to be kept in a dark box (containing ice) for the transpiration purpose
to the laboratory as soon as possible for DNA extraction [38]. In another technique, the
soil sample can be dissolved in water by agitation, followed by filtration (like water) to
concentrate the DNA into filter paper. The sterile tubes, modified plastic syringes, and
drilling core samples can be inserted into the sediment to withdraw the sediment samples
for eDNA study. In the case of air sampling, especially designed volumetric samplers can
be used [23].

2.1.3. Extraction of eDNA from Other Organisms without Isolating Target Taxa

The eDNA also can be extracted from a non-target organism to study species interac-
tion data of target organisms, such as feces to study the dietary information, insect-derived
DNA (iDNA) to study mammalian diversity, flower to study plant-pollinators-interaction,
water from sponges to study marine diversity, etc. [39–42].

2.2. Preservation of Samples in eDNA Technique

The quality and quantity of DNA undergoes degradation/change due to microbial
activity, mechanical forces, chemical reactions, etc., hence the preservation of sample is
an essential step for experimental design [37]. On-site, if filtration and/or preservation is
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not possible then samples should be stored in dry-ice or in a styrofoam box with cooling
elements (just after collection) and at −20 ◦C in the laboratory (not more than 8 h) [32,37].
Dried or semi-dried samples (e.g., soil, feces) also can be stored in a pouch containing silica
beads. The filter is generally preserved by freezing in a liquid medium or dry medium. The
liquid preservative (e.g., ethanol, Longmire’s buffers, cetyl trimethyl ammonium bromide
(CTAB), ATL lysis buffer (Qiagen, Hilden, Germany), etc.) are effective to store DNA
present on the filter paper [32,37]. Alternatively, filter paper (wrapped in aluminum foil or
directly) can be placed in a silica gel containing packet (to keep it moisture free) [37].

2.3. The eDNA Analysis in Laboratory

Samples should be stored in dry preservative, which later on can undergo extraction
process directly (e.g., soil sample) [43], whereas the filter paper should be stored in ethanol
or other liquid media, before DNA extraction, and should be kept in an open micro-
centrifuge tube under a fume hood to let the liquid evaporate properly. On the other hand,
for centrifugation, ultra-centrifugation, and precipitation steps, DNA can be extracted from
pellets [37]. It is important to mention that both conventional (e.g., CTAB) and commercial
kits (time-saving and less hazardous) are available (e.g., DNeasy blood tissue kit, Qiagen)
for DNA extraction [32,37].

In the case of single species detection, eDNA is subjected to amplification with species-
specific primer [44]. Here, conventional PCR (cPCR) can be used to conduct a ‘presence
and absence’ study whereas quantitative PCR (qPCR) is more preferred for quantification
of targeted DNA and elimination of false positive or negative results [16,45]. In qPCR,
probes are one of the best option to identify particular species, although intercalating dye
(e.g., SYBR Green) can be used instead of probes for cost-effectiveness [45]. However, the
droplet digital PCR (ddPCR) (sensitive PCR) has better species specificity and quantification
accuracy than the formers [31]. Recently, CRISPR-Cas is gaining popularity in eDNA-based
species detection [46]. Moreover, in all cases, positive and negative controls should be
maintained [44].

The evolution of technology has allowed to introduce a new high-throughput sequenc-
ing (HTS) platform enabling analysis and identification of whole communities, commonly
termed DNA metabarcoding [4]. The HTS platform can produce billions of sequences in a
single run, allowing analyzing several samples in parallel and identifying several species in
each sample. Such an advancement leads to an increase in the computational load, and it is
imperative to move toward high-performance computing. Furthermore, DNA metabarcod-
ing is a widely tested and validated approach for processing mixed taxon. The community
detection through DNA metabarcoding relies on “universal” primers (i.e., non-specific
primers), therefore introducing amplification bias when the primers match some taxa
better than others during PCR amplification [38]. This bias might be counteracted using
hybridization probes by allowing the targeted capture of barcoding genes. An alternative
is to sequence directly the extracted bulk DNA without PCR [47]. These metagenomic
techniques overlook most of the problems associated with PCR-based metabarcoding, such
as the loss of some taxonomic groups due to primer binding sites [48], and they are well
established for bacterial communities and recently applied to eukaryotes [38]. An advisable
procedure is to design a metabarcoding-based study in order to be ecosystem-specific and
target-gene primer sets. Considering the desired ecosystem and taxonomic context, in-silico
and in-vitro tests should be performed to validate the applicability of the primer pairs.
PCR primers (species-specific or universal) can be designed manually or using software
(e.g., Primer Express 3.0, 3.0.1, NCBI primer blast, allele ID) [48]. Furthermore, practitioners
can also consult for standard manual or technical advice to eDNA societies/private sectors,
such as DNAqua-Net (https://dnaqua.net/), EnviroDNA (https://www.envirodna.com/),
CaleDNA (https://ucedna.com/), The eDNA society, Japan (https://ednasociety.org/en/),
etc., and all of the links are accessed on 20 November 2021. Moreover, a general outline of
eDNA based technique is presented in Figure 2.

https://dnaqua.net/
https://www.envirodna.com/
https://ucedna.com/
https://ednasociety.org/en/
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Figure 2. Schematic workflow of eDNA-based studies and its application in biodiversity monitoring and conservation.

3. Precautions in eDNA Study

Contamination can arise from various sources (indicated below) at any stage during
the sampling and laboratory analysis which can distort the result precision.

3.1. Precautions in Field

In the field, contamination is a major issue for inter and intra sampling. The sterilized
sampling boots or sterile chest waders should be used when the researcher is required to
reach deep into the sampling site for sample collection [44]. It is highly recommended that
all tools should be sterilized with 10–50% bleach solution followed by deionized water
(>2 times) [30]. Special care should be taken during opening the filter paper (sterile filters
should be preferred) from the package and after filtration, as filter paper should be removed
using previously sterilized forceps.

3.2. Precautions in Laboratory

In the laboratory, although a specific or universal primer is present, there is a chance
of false-positive or false-negative detection. Types of errors in DNA-based detection are
well-reviewed by Darling et al. [49]. To obtain accurate results in the laboratory, there are
several precautions that should be taken under consideration: (i) cleanliness, (ii) wearing
of clean clothes, (iii) one-time use of gloves and a facial masks, (iv) cleaning of the surface
of workplace using chemical (e.g., DNA Away, Decon 90, DNA-exitusPlus and bleach
solution) and physical methods (UV light), (v) DNA extraction in a contamination-free
zone (vi) restriction of movement during while handling PCR, (vii) use of proper control
samples, and (viii) totally unidirectional workflow, [30,44].
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4. Application of eDNA in Conservation Biology

The biodiversity monitoring implies multiple aspects to be studied and understood
from species distributions, interactions, abundance, invasiveness to ecosystem health,
imbalance, and climatic effects. The ecosystems need a frequent and accurate monitoring
program due to the large decline in biodiversity. The proper management of biodiversity
(by a suitable monitoring method) protects the ecosystem-change due to anthropogenic
activity [1], but delay in understanding their effect can cause ecological and economic
loss. Indeed, eDNA-based monitoring can provide ecological data for taxon including
presence/absence, abundance, habitat dispersion, immigration, emigration, community
interaction, and species distribution [38]. eDNA can be applied in regular monitoring
programs in zoological parks, botanical parks, national parks, and protected areas [50].

4.1. Early Detection of Invasive Species

The invasive species are the ‘introduced species’ into a new place (naturally or anthro-
pogenically) where they begin to proliferate rapidly and outcompete native species [51,52],
leading to destruction of resources while also carrying new pathogen strains into intro-
duced places [51]. Regular basis monitoring and documenting their distribution is needed
for accurate conservation management. Pioneer studies on eDNA-based work reported
the detection of invasive American bullfrog (Lithobates catesbeianus) in aquariums and
freshwater systems [8]. Thereafter, a progression of interest in eDNA-based study on
invasive species was noticed. Now, the feasible success of eDNA-based monitoring is not
only limited to small freshwater species, but also to large semi-aquatic macro-organism
(e.g., Python bivittatus), and terrestrial mammals (Sus scrofa) [34,53,54]. Till now, several
invasive species throughout all taxonomic groups such as fish (e.g., Hypophthalmichthys
nobilis, Salvelinus fontinalis, Oncorhynchus mykiss, Esox lucius, Salmo trutta etc.), amphibian
(e.g., Lithobates catesbeianus), arthropod (e.g., Aedes albopictus, Eriocheir sinensis, Rhithropanopeus
harrisii, Crangonyx pseudogracilis), Mollusca (e.g., Dreissena polymorpha, Limnoperna fortune,
Crepidula fornicate etc.), Reptile (e.g., Python bivittatus, Trachemys scripta etc.), mammals
(e.g., Sus scrofa), angiosperms (e.g., Elodea canadensis), etc. are detected from diverse envi-
ronment (freshwater, seawater, etc.) efficiently by eDNA-based method (Table 1). Although
progress in methodological standardization for detection of invasive macro-organism from
terrestrial habitat (soil, air) is under study [55].

Table 1. Detection invasive species using eDNA, including species under study, target region and environment.

Taxonomic Group Environment Species and Target Region Reference

Amphibian Pond Lithobates catesbeianus Cyt-b [8]
Angiosperms River, Lake & Stream Elodea canadensis trnL [56]

Arthropod Freshwater sources Aedes albopictus ITS; Ae. j. japonicus COI, Ae.
Koreicus COI [57]

Lake Eriocheir sinensis, Carcinus maenus COI [58]
Orconectes rusticus; Pacifastacus leniusculus COI [59]

Seawater Rhithropanopeus harrisii COI [60]
River and Lake Crangonyx pseudogracilis COI [61]
Dust sample Community COI [62]

Fish Aquarium, River &
Reservoirs

Oncorhynchus mykiss, Salmo salar, Salmo trutta,
Salvelinus fontinalis, and Salvelinus namaycush 16s [63]

Fresh water tank Oreochromis mossambicus 16s [64]
River, Lake & Creek Esox lucius COI, Cyt-b [65]
Pond Lepomis macrochirus Cyt-b [15]
River & Reservoirs Cyprinus carpio SNPs [66]
River & Lake Hypophthalmichthys nobilis, H. molitrix MDL [9,54]
Streams Salvelinus fontinalis Cyt-b [67]

Invertebrate Seawater Sabella spallanzanii COI [68]
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Table 1. Cont.

Taxonomic Group Environment Species and Target Region Reference

Bugula neritina COI [69]
Mammal Streams & Creek Sus scrofa MDL [70]
Mollusca Estuaries Xenostrobus securis COI [71]

River, Lake & Stream Dreissena polymorpha, D. bugensis, D. rostriformis
Limnoperna fortune COI; Dreissena sp. 18s [58,72,73]

Lakes Community 16s [74]
Seawater Crepidula fornicata COI [75]

Rangia cuneata 16s [76]
Reptile Freshwater Python bivittatus Cyt-b, ND4 [34,53]

Pond Trachemys scripta COI [77]

N. B.: Mitochondrial Cytochrome c oxidase I: COI; Mitochondrial Cytochrome b: Cyt-b; rRNA 16s and 18s: ribosomal RNA 16s and 18s:
18s; Internal transcribed spacer: ITS; Mitochondrial NADH4: ND4; Mitochondrial D loop: MDL; Single nucleotide polymorphisms: SNPs;
Chloroplast tRNA gene: trnL.

4.2. Species Detection for Conservation

A species under conservation needs regular basis monitoring and management [30]. If
the species present in the environment is low in abundance, over time it leads to them being
endangered, mostly due to anthropogenic activity, and sometimes naturally. Application of
eDNA based investigation on critically endangered species is not limited to a single taxon
but also for detecting multiple taxa at a time through eDNA metabarcoding [78,79], with
advantages present such as short-term monitoring and cost-effectiveness. The detection of
species under conservation (e.g., rare, indicator, endangered, vulnerability, etc.) and their
present conservation status in different environments, including their barcoding regions by
eDNA, are shown in Table 2, where it has been noted that eDNA has successfully adapted
standardization and is gradually growing to be an effective monitoring system. Monitoring
of different taxa under conservation, such as Arthropod (e.g., Cambarus speleocoopi; Endan-
gered, Pacifastacus fortis; Critically Endangered; Baetis buceratus; Vulnerable) Amphibia
(e.g., Triturus cristatus; Lest Concern, Odorrana splendida; Endangered, Cryptobranchus
alleganiensis; Near Threatened), Fish (e.g., Spirinchus lanceolatus; Threatened, Hypoph-
thalmichthys molitrix; Near Threatened, Salvelinus confluentus; Vulnerable, Misgurnus fos-
silis; Least Concern), Reptile (e.g., Shinisaurus crocodilurus; Near Threatened), Mammals
(e.g., Neophocaena asiaeorientalis; Endangered) and Angiosperm (Sapria himalayana; En-
dangered) signifies that performance of eDNA remains same irrespective of different
environments (lake, stream, pond, soil), where variation in methods aid to a success-
ful detection. However, sometimes, the eDNA technique can suffer from low detection
probability [e.g., detection of the critically endangered animal, large-tooth sawfish (Pristis
pristis)] [78]. Still, in most cases (as noted in Table 2) the eDNA method successfully detects
species under conservation.

Table 2. eDNA studies used to assist conservation management, including target species, conservation status, target region
and environment.

Taxonomic Group Environment Species, Conservation Status, Detection Method,
Target Region Reference

Amphibian Pond Triturus cristatus LC, qP, Cyt-b [80]
Pool Pelophylax lessonae LC, qP, Cyt-b [81]
Stream Odorrana splendida EN, qP, Cyt-b [82]

Onychodactylus japonicus LC, qP, 12s [83]
Drainage Cryptobranchus alleganiensis NT, qP, Cyt-b [84]
Stream Cryptobranchus alleganiensis alleganiensis NT, qP, Cyt-b [45]

Hynobius vandenburghi EN, qP, Cyt-b,12s [30]
Bromeliads’ water Phytotriades auratus EN, qP, Cyt-b [85]

Angiosperm Rhizospheric soil/Flora Sapria himalayana EN, qP, ITS [86]
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Table 2. Cont.

Taxonomic Group Environment Species, Conservation Status, Detection Method,
Target Region Reference

Arthropod Caves/springs
(Water) Cambarus speleocoopi EN, qP, COI [87]

River/pond Austropotamobius pallipes EN, qP, COI [88]
River/Lake/Spring Creek Pacifastacus fortis CR, qP, COI [89]
River/lake Baetis buceratus VU, cP, COI [61]
Harbor Zearaja maugeana EN, qP, ND4 [90]
River/lake Opsariichthys uncirostris uncirostris Th, qP, MDL [91]
River Pristis pristis CR, cP, COI [78]

Plecoglossus altivelis ryukyuensis EN, qP, ND4 [92]
Oncorhynchus tshawytscha EN, qP, COI [93]

Fish River Spirinchus lanceolatus Th, qP, Cyt-b [94]

River/lake Hypophthalmichthys nobilis DD

Hypophthalmichthys molitrix NT, cP, MDL [9]

Strems Salvelinus confluentus VU, qP, Cyt-b [67]
Wetland Misgurnus fossilis LC, qP, Cyt-b, COI [95,96]

Acipenser medirostris NT, qP, COI [97]
Sea Kogia sima DD, MB, 12s [98]

Heteropterans Streams/wetland Nepa hoffmanni EN, qP, 16s [99]
Mammals Lake Neophocaena asiaeorientalis EN, MB, 16s, Cyt-b [20,100]
Reptile Streams Shinisaurus crocodilurus EN, qP, Cyt-b [101]

N.B.: Mitochondrial Cytochrome c oxidase I: COI; Mitochondrial Cytochrome b: Cyt-b; rRNA 16s: 16s; rRNA 12s: 12s; Internal Transcribed
Spacer: ITS; Mitochondrial NADH4: ND4; Mitochondrial D loop: MDL; qPCR: qP; cPCR: cP; Metabarcoding: MB; Least concern: LC;
Endangered: EN; Near threatened: NT; Vulnerable: VU; Critically Endangered: CR; Threatened: Th; Data Deficient: DD.

4.3. Biodiversity Monitoring at the Community Level

Advantages over conventional monitoring in short-time detection of biodiversity
helps eDNA concept to proliferate. Pioneer studies began in 2012 [13,14] on detection of
rare and endangered species in freshwater, and successfully demonstrated the potential of
eDNA metabarcoding in ecosystem monitoring. In one study, the earthworm communities
and patterns of plant taxonomical diversity was estimated by DNA-based monitoring
(based on extracellular soil DNA) [102]. In the marine environment, the eDNA metabarcod-
ing was reported by Thomsen et al. [13], where 15 different fish species, one rare species
(European pilchard), and four bird species were successfully detected. Drummond et al. [43]
critically evaluated the metabarcoding approach of eDNA in eukaryotic biodiversity assess-
ment where a broad diversity of eukaryotes was identified from soil DNA. Deiner et al. [5]
advocated the useful way of eDNA to uncover biodiversity information, they detected
296 families of eukaryotes from aquatic ecosystems, and interestingly they also detected
signals from terrestrial life, which indicates the transport of DNA across the environment.
Later, eDNA collected from the stream was noted to identify the same mammals with
camera trapping methods, and this also suggests the possible detection of terrestrial life
from its near aquatic regions. Furthermore, the eDNA method was also successfully used
in the detection of terrestrial plant communities, fungi in the soil, arthropods, other inverte-
brates as well as large terrestrial mammals (Table 3). Ushio et al. [50] developed a method
for the successful detection of avian species with Mibird primer, and clearly addressed
that eDNA-based monitoring is not restricted to a particular group, but also to different
taxonomic groups in the environment. The wetland biodiversity was explored by Shackle-
ton et al. [103], considering landscape patterns with community diversity (both aquatic
and terrestrial life). The recent advancement of eDNA metabarcoding methods improved
the understanding of migratory biodiversity, which was a critical task in conservation
biology [94]. Furthermore, the indirect extraction of DNA (DNA from a non-targeted
organism) also has the potentiality to give a snap-shot of the community (or a taxonomic
group) (e.g., metabarcoding of wildflowers came with animal-interaction in nature: arthro-
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pods diversity) [39]. Additionally, eDNA metabarcoding also allows us to figure out the
trophic interaction relationships using the DNA from stomach content, feces samples, and
even from the surface of organisms etc. [39,104–106]. Thus, eDNA-based methods provide
information about trophic level interactions which is strongly needed for understanding
more complex ecology where conventional methods failed. Furthermore, the monitoring of
ecosystem health is also a critical concern in conservation biology, with the strong impact of
anthropogenic activity, biological invasion, risk of epidemics, etc. The eDNA method is also
applicable in disease monitoring in ecosystem health [26], pathogenic organisms [25,107]
as well as anthropogenic impact in disbalancing ecosystem health due to pollution, global
warming, deforestation, etc., [108].

Table 3. Biodiversity detection of aquatic and terrestrial environment in community level by eDNA
technique.

Taxonomic Group Environment and Target Region Reference

Arthropod Dust sample COI [62]
Wild flower COI, 16s [39]

Bird Water from Zoo cages 12s [50]
Eukaryote Soil, scat, plant material & arthropods COI, 12s [109]

Freshwater sediments 18s [110]
Freshwater COI [5]
Seawater COI, 18s [111,112]

Fish Seawater 12s [113,114]
Fungi Soil and organic litter COI, ITS, 18s [38]
Mammal Forest pond water 12s [115]

Fly derived DNA 16s [42]
Mollusc Lake 16s [74]
Plant and fungi Air ITS [23]
Plant Wetland 18s, trnL [103]
Vertebrate Bulk Arthropod 12s, 16s [104]

N.B.: Mitochondrial Cytochrome c oxidase I: COI; rRNA 12s: 12s; rRNA 16s: 16s; rRNA 18s: 18s; Internal
Transcribed Spacer: ITS; chloroplast tRNA gene: trnL.

5. Current Research Focus

Even though the eDNA technique has proven to be a useful emerging method in
biomonitoring and conservation research, there is a need to understand the current re-
search breaches for its upgradation, like; (i) persistence of eDNA in the environment,
as well as understanding the age of eDNA, where current work is going on (see also,
Marshall et al. [116]), (ii) lack of understanding in eDNA ecology (see also, Rodriguez-
Ezpeleta et al. [18]), where further is study needed (iii) field and laboratory standardization,
where most of the practitioners face problems, (for details see some standard protocols
e.g., ‘The eDNA society’, Japan, https://ednasociety.org/en/, accessed on 20 November
2021) (iv) population genetic data through eDNA, where recent study came with allelic
frequency from eDNA [117], (v) employment of eDNA beyond aquatic environment where
recent research reveals that animal eDNA can be isolated from the air [118], (vi) comparison
with conventional monitoring to make eDNA more authentic, and (vii) the improvement
of bioinformatic studies, etc. These are a few of the main focuses in the coming years for
developing eDNA as a global monitoring method.

6. Recommendation of eDNA Study and Future Perspective

Through the rapid development of technology, the eDNA-based methodologies have
been proven to be highly successful for surveying species-community and monitoring
biodiversity. The ecosystem is a complex system, made of a great number of species with
biotic and abiotic interactions, where the conventional techniques are not powerful enough.
Presently, next-generation biomonitoring based on eDNA offers great opportunities: the
amount of data it can generate, which will allow researchers to address the fundamental

https://ednasociety.org/en/
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ecological question, such as (i) which species coexist in given ecosystems, and (ii) how they
interact and shape the ecosystem in space and time [119]. Nevertheless, current assessments
of ecological quality would need to be adapted to the eDNA metabarcoding framework,
to allow this technique to truly achieve the best of its potential. Models and ecological
concepts need to be adapted in ways that allow the use of presence/absence data and non-
traditional abundant/biomass estimates at least until the issue of molecular quantification
of these parameters have been resolved and standardized [120]. It will be important that
all these changes will be feasible on a large scale, particularly when considering thresholds,
internationally, and the differences between traditional and molecular methods: the aim
would be standardization across nations and researchers [121]. In this way, the scientific
community would reach a comprehensive eDNA-based monitoring program, possibly in a
few years, across a variety of taxa and environments, allowing providing a framework, on a
global scale, for both ecosystem modeling and function with the ultimate goal of informing
future management decisions [122]. Even though in the last decade huge efforts have been
conducted in place to increment data repository, a critical step in the following years to
further expanding reference databases - aiming to include identifiable sequences for all
target biodiversity [122]. Furthermore, optimization of bioinformatics pathways with also
the development of user-friendly interfaces would contribute to improve a wide-spread
implementation [80]. Indeed, there is an increase of researchers, industry and governments
incorporating eDNA survey into their toolkit for bio-surveys due to (i) ethical reasons,
(ii) high accuracy, (iii) cost-effectiveness, (iv) safety, (v) inaccessible environments, and even
(vi) by non-experts [122]. The biodiversity assessments should be rapid, cost-effective, and
non-invasive, which are important in conservation biology [22]. Even though automation
of eDNA sampling seems not far away, further research is needed around the fate of
eDNA in all ecosystems, to understand the temporal longevity and spatial dispersal in
order to consider fully valid studies about abundance and richness [22,121]. However,
detection of false positive and negative detections is still a matter of concern as it may
generate false biodiversity information, such as false detection of endangered species may
manipulate their conservation status or false detection of pest species may come with
wrong disease forecasting.

Although it is clear that the potential of eDNA-based monitoring in biological research
is almost limitless, but scientific collaboration and coordination is still needed. The eDNA-
based monitoring, especially eDNA metabarcoding, has the potential to bring together
several fields from ecosystem restoration to human health. As the technology keeps
updating and procedures optimizing, eDNA-based monitoring is likely to become an
essential tool, extremely versatile, and essential for the future of molecular research.

7. Conclusions

The protection of species, habitats, and ecosystems from extinction, and destruction of
biotic interactions, is the main issue for the conservation of nature and biodiversity. The
accurate detection technique/method of micro- and macro-organisms (e.g., individuals,
populations, community, etc.) in environmental samples (air, water, and soil) is essential
for conservation management. As per molecular biologists and ecologists, the eDNA-based
monitoring systems are applicable in conservation research (e.g., detection of invasive
species and species under conservation) with high accuracy and authentication, due to
effective approach (over 90% accuracy) in the monitoring and management of natural
populations, compared to traditional surveys. However, until now, researchers are strug-
gling with the application of proper eDNA technique due to lack of proper (i) research
design, (ii) sampling, and (iii) sample-dependent methodology, etc., since the eDNA varies
qualitatively and quantitively from one environment to another. The persistence of targeted
eDNA depends on life history, biological properties, and physicochemical characteristics
of the environment (e.g., temperature, pH, oxygen, conductivity, moisture content, light
(visible/UV) exposure, nuclease activity, microbial activity, etc.). Thus, eDNA persistence
and biology of target organisms are needed to properly design and optimize the sample-
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dependent (targeted species) and environment-dependent (e.g., aquatic, terrestrial, etc.)
protocol, including preservation. The eDNA is subjected to amplification with species-
specific primer for single species detection (barcoding), where qPCR is more effective
compared to cPCR. However, in comparison to qPCR, the ddPCR exhibits more efficiency
for species specificity and accurate quantification. In recent years, CRISPR-Cas is gaining
popularity in eDNA-based species detection. The eDNA-based monitoring, especially
eDNA metabarcoding, has the potential to bring together several fields; from ecosystem
restoration to human health. Thus, the eDNA technique is significantly applicable in
conservation biology, in the specific areas of early detection of invasive species, species
detection for conservation, the community level biodiversity monitoring, ecosystem health
monitoring, study on trophic interactions, etc. In addition, eDNA can be implemented
to monitor the recently extinct species, as if they are still present in the wild, for this
eDNA-based method is more suitable. However, a comprehensive eDNA-based moni-
toring program for the future management decisions, ecosystem modeling and function
should be executed on a global scale. Forthwith, the governmental and academic-industrial
collaborations are essential to make an eDNA survey toolkit for rapid, cost-effective, and
non-invasive biodiversity monitoring.
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