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Abstract. We show that a real sequence x is convergent if and only if there exist a regular
matrix A and an Fσδ-ideal I on N such that the set of subsequences y of x for which Ay
is I-convergent is of the second Baire category. This includes the cases where I is the ideal
of asymptotic density zero sets, the ideal of Banach density zero sets, and the ideal of finite
sets. The latter recovers an old result given by Keogh and Petersen in [J. London Math.
Soc. 33 (1958), 121–123]. Our proofs are of a different nature and rely on recent results in
the context of I-Baire classes and filter games.

As application, we obtain a stronger version of the classical Steinhaus’ theorem: for each
regular matrix A, there exists a {0, 1}-valued sequence x such that Ax is not statistically
convergent.

1. Introduction

Given an infinite real matrix A = (an,k), we say that A sums a real sequence x if Ax =
(
∑

k an,kxk) is well defined and convergent. The matrix A is regular if it maps convergent
sequences into convergent sequences, preserving the corresponding limits.

The classical Steinhaus’ theorem states that a regular matrix A cannot sum all {0, 1}-
valued sequences, see e.g. [10]. This can be rewritten equivalently as follows: a regular
matrix A cannot sum all subsequences of a divergent {0, 1}-valued sequence x. We recall
also that Hahn’s theorem [4, Theorem 2.4.5] states that a matrix A sums all {0, 1}-valued
sequences if and only if it sums all bounded sequences. On this direction, Buck [7, 8] showed
that a regular matrix A cannot sum all subsequences of a given divergent sequence x.

Let Σ be the set of strictly increasing functions σ : N → N, so that a subsequence of a
sequence x is uniquely identified by some σ ∈ Σ, and write σ(x) := (xσ(n)). Accordingly,
Buck’s result tells us that, if A is regular and x is divergent, then the set

Σx,A := {σ ∈ Σ : Aσ(x) ∈ c} (1)

cannot be equal to Σ. Finally, Keogh and Petersen [26] proved the following:

Theorem 1.1. Let x be a divergent sequence and A be a regular matrix. Then Σx,A is meager.

This is meaningful since Σ is a Gδ-subset of the Polish space NN, hence it is a Polish space
as well by Alexandrov’s theorem; in particular, Σ is not meager in itself. Special instances
of Theorem 1.1 have been recently rediscovered in [5, 6, 37]. Related results can be found in
[23, Theorem 2.3] and [14, 24, 32, 35].
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Note that, if x is convergent and A is regular, then Σx,A is equal to the whole Σ. Therefore,
by Theorem 1.1, x is convergent if and only if there exists a regular matrix A such that Σx,A

is not meager. The aim of this work is to show that Theorem 1.1 holds even if the space of
convergent sequences c in the definition of Σx,A in (1) is replaced by a much bigger set, e.g.,
the space of statistically convergent sequences (see Section 2). Our methods are different
from those employed by Keogh and Petersen, and rely on more recent result on filter games
and ideal Baire classes.

2. Main result

Let I be an ideal on the positive integers N, that is, a hereditary family of subsets of N
closed under finite unions; moreover, it is assumed that I contains the family of finite sets
Fin and it is different from P(N). Let I? := {S ⊆ N : Sc ∈ I} be its dual filter. Every subset
of P(N) is endowed with the relative Cantor-space topology. In particular, we may speak
about Fσ-subsets of P(N), meager ideals, etc. In addition, let Z be the ideal of asymptotic
density zero sets, that is,

Z := {S ⊆ N : limn |S ∩ [1, n]|/n = 0} .
For our purposes, it will be important also to recall the definition of the ideal Fin × Fin,
which can be represented as an ideal on N by

Fin× Fin := {S ⊆ N : ∀∞k ∈ N, {n ∈ S : ν2(n) = k} ∈ Fin} ,
where ν2(n) stands for the 2-adic valuation of n ∈ N (that is, ν2(n) = max{k ≥ 0 :
2k divides n}). We recall that Z is a Fσδ-ideal, while Fin × Fin is Fσδσ. Given ideals I,J
on N, we say that I contains an isomorphic copy of J if there exists an injection ι : N→ N
such that S ∈ J if and only if ι−1[S] ∈ I for all S ⊆ N; see e.g. [17].

Let ω be the vector space of all real sequences, together with its classical subspaces `∞,
c, c0, `1, c00 of bounded, convergent, convergent to 0, absolutely summable, and eventually
0 sequences, respectively. In addition, given an ideal I on N, we define also the following
subspaces of ω:

`∞(I) := { I-bounded sequences },
c(I) := { I-convergent sequences },
cb(I) := { I-convergent bounded sequences }.

Note that c = c(Fin) = cb(Fin) and `∞ = `∞(Fin). Here, a sequence x ∈ ω is I-bounded
if there exists k such that {n ∈ N : |xn| ≥ k} ∈ I. Moreover, x is I-convergent to η ∈ R,
shortened as I- limx = η, provided that {n ∈ N : |xn − η| > ε} ∈ I for all ε > 0. Every
subspace of `∞ will be endowed with the topology induced by the supremum norm. In the
literature, Z-convergence is usually called statistical convergence.

At this point, for each infinite real matrix A = (an,k), let ωA be the set of sequences x such
that Ax is well defined, so that

ωA := {x ∈ ω :
∑

k an,kxk converges for all n} .
For all nonemptyX, Y ⊆ ω, let (X, Y ) be the matrix class of matrices A which map sequences
in X into sequences in Y , i.e., (X, Y ) := {A : x ∈ ωA and Ax ∈ Y for all x ∈ X}. Given
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ideals I,J on N, a matrix A is (I,J )-regular if it is maps I-convergent bounded sequences
into J -convergent bounded sequences, preserving the corresponding ideal limits, that is,

A ∈ (cb(I), cb(J )) and I- limx = J - limAx for all x ∈ cb(I).

Note that (Fin,Fin)-regular matrices are simply the classical regular matrices. Probably
the most important regular matrix is the Cesàro matrix C1 = (an,k) defined by an,k = 1

n
if

k ≤ n and an,k = 0 otherwise. Classes of (I,J )-regular matrices have been recently used
and characterized in [13]. In particular, the following result extends the classical Silverman–
Toeplitz characterization, see [13, Theorem 1.2 and Theorem 1.3], cf. also [30]:

Theorem 2.1. A matrix A is (Fin, I)-regular if and only if:
(R1) supn

∑
k |an,k| <∞;

(R2) I- limn an,k = 0 for all k ∈ N;
(R3) I- limn

∑
k an,k = 1.

Finally, for each real sequence x, matrix A, and ideal I, define
Σx,A(I) := {σ ∈ Σ : Aσ(x) ∈ c(I)} .

Note that Σx,A = Σx,A(Fin). Our main result follows (for the proof, see Section 4):

Theorem 2.2. Let x be a divergent sequence, I be a Borel ideal on N which does not contain
an isomorphic copy of Fin×Fin, and A be a (Fin, I)-regular matrix. Then Σx,A(I) is meager.

Some remarks are in order. First of all, Theorem 2.2 holds for (Fin, I)-regular matrices,
hence in particular it holds for regular matrices. Secondly, all Fσδ-ideals satisfy the above
hypothesis, see Remark 3.2 below. In particular, Theorem 2.2 holds for the ideal Z of
asymptotic density zero sets, for the ideals generated by nonnegative regular matrices (see
[3, Proposition 13]), for the ideal Fin (hence, providing another proof of Theorem 1.1), and
for the ideal of Banach density zero sets. Lastly, if x is convergent then Σx,A(I) = Σ.

Putting everything together, we obtain:

Corollary 2.3. A real sequence x is convergent if and only if there exists a regular matrix
A such that {σ ∈ Σ : Aσ(x) is statistically convergent } is not meager.

In particular, letting x be the sequence (0, 1, 0, 1, . . .), we obtain that {σ(x) : σ ∈ Σ} =
{0, 1}N and Σx,A(Z) 6= Σ, which give us a stronger version of Steinhaus’ theorem:

Corollary 2.4. For each regular matrix A, there exists a {0, 1}-valued sequence x such that
Ax is not statistically convergent.

On a similar direction, letting A be the infinite identity matrix, it follows that, a real
sequence x is convergent if and only if {σ ∈ Σ : σ(x) ∈ c(I)} is not meager, provided that I
is an ideal on N as in Theorem 2.2. For the latter class of ideals, this gives us a generalization
of [1, Corollary 2.7], which states that limx = η if and only if {σ ∈ Σ : I- limσ(x) = η} is not
meager, provided that I is a meager ideal and I- limx = η (note that η is explicit). Other
Tauberian theorems related to statistical convergence can be found in [2, 9, 21, 22, 33, 34].

Finally, note that Theorem 2.2 does not hold without any restriction on the ideal I.
Indeed, if A is a (Fin, I)-regular matrix, then it satisfies condition (R1) of Theorem 2.1, so
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that A ∈ (`∞, `∞). Thus, if x ∈ `∞ \ c and I is a maximal ideal, then every subsequence
σ(x) is bounded, hence Aσ(x) ∈ cb(I). In particular, for each bounded divergent sequence
x, there exist an ideal I and a (Fin, I)-regular matrix A such that Σx,A(I) is not meager.

3. Preliminaries

Given an ideal I, let G(I) be the following game introduced by Laflamme in [29]: at stage
n ∈ N player I chooses a set An ∈ I? and, then, player II chooses a nonempty finite set
Fn ⊆ An. At the end of the game, player II is declared the winner if

⋃
n Fn /∈ I. Moreover, a

sequence (Fk) of nonempty finite sets is said to be a I?-universal set if each A ∈ I? contains
some Fk. We say that I? is ω-diagonalizable by I?-universal sets if there exists an infinite
matrix (Fn,k) of nonempty finite sets such that each row is a I?-universal set and, moreover,
for each A ∈ I? there exist n,m ∈ N such that Fn,k ∩ A 6= ∅ for all k > m.

Theorem 3.1. Let I be an ideal on N. Then the following are equivalent:
(c1) I? is ω-diagonalizable by I?-universal sets ;
(c2) player II has a winning strategy in the game G(I).

If, in addition, I is a Borel ideal, then they are also equivalent to:
(c3) I does not contain an isomorphic copy of Fin× Fin;
(c4) I is Fσ-separated from its dual filter I? (that is, there exists an Fσ-set K such that

I ⊆ K and K ∩ I? = ∅).

Proof. See [29, Theorem 2.16(ii)] for (c1)⇐⇒ (c2). For the other equivalences, see [28]. �

Remark 3.2. As it has been shown in [36, Corollary 1.5], all Fσδ-ideals satisfy condition (c4).
Related results on condition (c4) can be found in [18, Proposition 3.6] and [31, Theorem 2.1].

At this point, for each ideal I and topological space X, define the I-Baire one class

BI1 (X) :=
{
f ∈ RX : ∃(fn) ∈ C(X)N,∀x ∈ X, f(x) = I- lim fn(x)

}
,

where C(X) stands for the space of real-valued continuous functions on X. Note that BI1 (X)
coincides with the classical Baire one class B1(X) if I = Fin. However, it has been shown in
[28, Proposition 8], the same holds if X is a complete metric space and I is an ideal for which
player II has a winning strategy in the game G(I), cf. also [15] for related results. Some years
later, Filipów and Szuca proved in [19], in particular, that the hypothesis of completeness on
X is unnecessary to obtain the latter conclusion:

Theorem 3.3. Let I be an ideal on N such that I? is ω-diagonalizable by I?-universal sets.
Moreover, let X be a perfectly normal topological space. Then BI1 (X) = B1(X).

Proof. See [19, Theorem 3.2]. �

This has been also obtained in [28, Corollary 12] for nonpathological analytic P-ideals I
and arbitrary topological spaces X. We recall also the classical Baire classification theorem.

Theorem 3.4. Let X be a metrizable space and fix a Baire one function f ∈ B1(X). Then
the set of points of continuity of f is a comeager Gδ-set.

Proof. See [25, Theorem 24.14]. �
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Finally, we will use the well-known characterization of meager ideals due to Talagrand.

Theorem 3.5. Let I be an ideal on N. Then the following are equivalent:
(m1) I is meager ;
(m2) there exists σ ∈ Σ such that A /∈ I whenever N ∩ [σ(n), σ(n + 1)) ⊆ A for infinitely

many n ∈ N;
(m3) I is Fσ-separated from the Fréchet filter Fin? (that is, there exists a sequence (Fn) of

closed sets such that I ⊆
⋃
n Fn and Fn ∩ Fin? = ∅ for all n ∈ N).

Proof. See [1, Proposition 3.1] and [38, Theorem 2.1]. �

At this point, we split the intermediate results into two cases: the first one assumes that
x is a bounded divergent sequence, the second one that x is unbounded.

3.1. Bounded case.

Lemma 3.6. Fix two sequences x ∈ `∞ and a ∈ `1. Then the map

Σ→ R : σ 7→ a · σ(x)

is uniformly continuous.

Proof. The claim holds trivially for x = 0, hence suppose hereafter that x 6= 0, so that
‖x‖ > 0. Note that the topology on Σ is metrizable by d : Σ× Σ→ R defined as

∀σ1, σ2 ∈ Σ, d(σ1, σ2) =
∑

i∈ Im(σ1)4 Im(σ2)

1

2i
.

Fix ε > 0. Since a ∈ `1, there exists k0 ∈ N such that
∑

k>k0
|ak| < ε

2‖x‖ . At this point,
define δ := 1/2k0 and note that, if there exists k ≤ k0 such that k ∈ Im(σ1)4 Im(σ2) then
d(σ1, σ2) ≥ 1/2k ≥ δ. Therefore, for each σ1, σ2 ∈ Σ with d(σ1, σ2) < δ, we obtain that the
least element of Im(σ1)4 Im(σ2) is greater than k0, which implies that

|a · σ1(x)− a · σ2(x)| =
∣∣∑

k>k0
ak(xσ1(k) − xσ2(k)))

∣∣ ≤ 2‖x‖
∑

k>k0
|ak| < ε.

This concludes the proof. �

Corollary 3.7. Fix a matrix A ∈ (c0, `∞) and a sequence x ∈ `∞. Then the map

Σ→ R : σ 7→
∑

k an,kxσ(k)

is uniformly continuous for each n ∈ N.

Proof. Thanks to [4, Theorem 2.3.5], A belongs to (c0, `∞) if and only if supn
∑

k |an,k| <∞.
The claim follows by Lemma 3.6. �

Lemma 3.8. Fix a bounded divergent sequence x ∈ `∞ \ c, an ideal I on N, and (Fin, I)-
matrix A. Then Σx,A(I) is dense and the map

T : Σx,A(I)→ R : σ 7→ I- limn

∑
k an,kxσ(k) (2)

is everywhere discontinuous.
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Proof. Let B ⊆ Σ an arbitrary open ball. Observe that there exist σ1, σ2 ∈ B such that
limσ1(x) = α and limσ2(x) = β, where α := lim supn xn and β := lim infn xn are finite
and distinct since x ∈ `∞ \ c. Considering that A is (Fin, I)-regular, we obtain that α =
I- limAσ1(x) and β = I- limAσ2(x). In particular, B ∩Σx,A(I) 6= ∅, hence Σx,A(I) is dense.

In addition, supσ,σ′∈B∩Σx,A(I) |T (σ)− T (σ′)| ≥ α − β for every open ball B ⊆ Σ, therefore
T cannot be continuous at any point of Σx,A(I). �

Remark 3.9. With the same hypotheses of Lemma 3.8, assume that I is a Borel ideal.
Then Σx,A(I) is Borel and the map T defined in (2) is Borel measurable. For, note that
necessarily A ∈ (c0, `∞). Hence the map T is the I-pointwise limit of the sequence of
functions Tn : σ 7→

∑
k an,kxk restricted to Σx,A(I), which are continuous for each n ∈ N

thanks to Corollary 3.7. In particular, each of them is Borel measurable. The claim follows by
[27, Lemma 1 and Lemma 2]. However, as remarked in [27, Example 1], some assumptions on
I are needed to ensure that the I-pointwise limit of measurable functions is still measurable.

Theorem 3.10. Fix a bounded divergent sequence x ∈ `∞ \ c, an ideal I on N such that I?
is ω-diagonalizable by I?-universal sets, and a (Fin, I)-regular matrix A.

Then Σx,A(I) is meager.

Proof. Set X := Σx,A(I) and let T be the map defined in (2). Thanks to Corollary 3.7,
T ∈ BI1 (X). Since X is metrizable and I? is ω-diagonalizable by I?-universal sets, then
T ∈ B1(X) by Theorem 3.3. At this point, it follows by Theorem 3.4 that the set of continuity
points of T is a comeager subset of X. Hence, by Lemma 3.8, X is a dense subset of Σ which
is meager in itself. We conclude that X is meager in Σ. �

3.2. Unbounded case.

Theorem 3.11. Fix sequences x ∈ ω \ `∞ and a ∈ ω \ c00. Then{
σ ∈ Σ :

(∑
k≤n akxσ(k)

)
∈ `∞

}
is meager.

Proof. Let E be the claimed set. Observe that E =
⋃
mEm, where

∀m ∈ N, Em :=
{
σ ∈ Σ :

∣∣∑
k≤n akxσ(k)

∣∣ ≤ m for all n
}
.

We are going each Em is nowhere dense. Note that each Em is closed. Thus, let us assume
for the sake of contradiction that there exists m0 such that Em0 has nonempty interior, hence
there exist positive integers t1 < · · · < tj such that σ ∈ Em0 whenever σ(s) = ts for all
s = 1, . . . , j. Since a /∈ c00, there exists a minimal integer i0 ≥ j + 1 such that ai0 6= 0. In
addition, since x /∈ `∞, there exists an integer t0 ≥ tj + i0 such that

|ai0xt0 | ≥ m0 + 1 +
∣∣∣∑k≤j akxtk

∣∣∣ . (3)

Finally, define σ0 : N→ N as follows:
(i) σ0(s) = ts for all s = 1, . . . , j;
(ii) σ0(j + s) = tj + s for all s = 1, . . . , i0 − j − 1;
(iii) σ0(i0 + s) = t0 + s for all integers s ≥ 0.
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Note that σ0 is strictly increasing, hence σ0 ∈ Σ. Moreover, thanks to (i), σ0 ∈ Em0 . On the
other hand, by (iii) we have σ0(i0) = t0. And by the minimality of i0 we get aj+s = 0 for all
s = 1, . . . , i0 − j − 1. Putting everything together with (3), we obtain that∣∣∑

k≤i0 akxσ0(k)

∣∣ =
∣∣∣ai0xt0 +

∑
k≤j akxtk

∣∣∣ ≥ m0 + 1,

which would imply that σ0 /∈ Em0 . This contradiction concludes the proof. �

A matrix A is said row finite if every row is in c00, that is, for each n there exists k0 ∈ N
such that an,k = 0 for all k ≥ k0.

Corollary 3.12. Let A be a matrix which is not row finite, and fix x ∈ ω \ `∞.
Then {σ ∈ Σ : σ(x) ∈ ωA} is meager.

Proof. By hypothesis, there exists r0 ∈ N such that ar0,k 6= 0 for infinitely many k. Hence

{σ ∈ Σ : σ(x) ∈ ωA} =
⋂
r

{
σ ∈ Σ :

(∑
k≤n ar,kxσ(k)

)
∈ c
}

⊆
{
σ ∈ Σ :

(∑
k≤n ar0,kxσ(k)

)
∈ `∞

}
.

The conclusion follows by Theorem 3.11. �

Theorem 3.13. Let I be a meager ideal on N. Fix an unbounded sequence x ∈ ω \ `∞ and
a row finite matrix A such that

∀w ∈ N, Zw := {n ∈ N : an,k = 0 for all k ≥ w} ∈ I. (4)

Then {σ ∈ Σ : Aσ(x) ∈ `∞(I)} is meager.

Proof. Thanks to Theorem 3.5, there exists a sequence (Fn) of closed sets in P(N) such that
I ⊆

⋃
n Fn and Fn ∩ Fin? = ∅ for all n ∈ N. Fix w ∈ N. Since Zw ∈ I by condition (4),

it follows that the family Jw := {U \ Z : U ∈ I} is an ideal on Tw := N \ Zw such that
Jw ⊆

⋃
nGn and Gn ∩ Fin? = ∅ for all n ∈ N, where Gn := Fn ∩ P(Tw) is closed in P(Tw).

It follows, again by Theorem 3.5, that Jw is a meager ideal on Tw. Hence there exists a
partition {Iw,1, Iw2 , . . .} of Tw into nonempty finite subsets such that a set U ⊆ Tw does not
belong to Jw whenever Iw,n ⊆ U for infinitely many n.

At this point, let S be the claimed set. Since Tw ∈ I? for each w ∈ N, we obtain that
∀w ∈ N, S =

⋃
m{σ ∈ Σ : {n ∈ N : |

∑
k an,kxσ(k)| ≥ m} ∈ I}

=
⋃
m{σ ∈ Σ : {n ∈ Tw : |

∑
k an,kxσ(k)| ≥ m} ∈ Jw}

⊆
⋃
m{σ ∈ Σ : {n ∈ Iw,q : |

∑
k an,kxσ(k)| ≥ m} 6= Iw,q for all large q}

=
⋃
m

⋃
p

⋂
q≥p{σ ∈ Σ : {n ∈ Iw,q : |

∑
k an,kxσ(k)| ≥ m} 6= Iw,q}

=
⋃
m

⋃
p

⋂
q≥p
⋃
J(Iw,q

{σ ∈ Σ : {n ∈ Iw,q : |
∑

k an,kxσ(k)| ≥ m} = J}.

Note that all the inner sets are closed, so that also each

Sw(m, p) :=
⋂
q≥p{σ ∈ Σ : ∀q ≥ p,∃n ∈ Iw,q, |

∑
k an,kxσ(k)| < m}

is closed. Since S ⊆
⋃
m,p Sw(m, p), it is sufficient to show that there exists w ∈ N such that

each Sw(m, p) has empty interior: this would imply that S is contained in a countable union
of nowhere dense sets.
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To this aim, suppose for the sake of contradiction that there exist m0, p0 ∈ N and positive
integers t1 < · · · < tj0 such that σ ∈ S(m0, p0) whenever σ(s) = ts for all s = 1, . . . , j0. Set
w0 := j0 + 1. By condition (4), the set Tw0 belongs to I?, hence it is nonempty. Note that,
by construction, rn ≥ w0 for all n ∈ Tw0 . Define n0 := minTw0 , let p1 be the positive integer
for which n0 ∈ Iw0,p1 , and finally set

α := min{|an,k| : an,k 6= 0 and n ∈ Iw0,q0}, where q0 := max{p0, p1 + 1}.
Note that α is well defined since A is row finite, and set k0 := max{rn : n ∈ Iw0,q0}.

Finally, define σ0 : N→ N recursively as follows:
(i) σ0(s) = ts for all s = 1, . . . , j0;
(ii) for each s = j0 + 1, . . . , k0, if σ0(1) < · · · < σ0(s− 1) are already defined, then σ0(s)

is an integer h > σ0(s− 1) such that

|xh| ≥ 1
α

(
m0 + max

{∣∣∑
k<s an,kxσ0(k)

∣∣ : n ∈ Iw0,q0

})
.

(iii) σ0(k0 + s) = σ0(k0) + s for all s ∈ N.
Considering that σ0 is strictly increasing by construction, it follows by (i) that σ0 ∈ Sw0(m0, p0).
At the same time, since j0 < rn ≤ k0 for all n ∈ Iw0,q0 , we obtain by (ii) that
∀n ∈ Iw0,q0 , |

∑
k an,kxσ0(k)| = |

∑
k≤rn an,kxσ0(k)|

≥ |an,rnxσ0(rn)| −
∣∣∑

k<rn
an,kxσ0(k)

∣∣
≥ α|xσ0(rn)| −max

{∣∣∑
k<rn

ai,kxσ0(k)

∣∣ : i ∈ Iw0,q0

}
≥ m0.

This implies that σ0 /∈ Sw0(m0, p0), hence we obtained the desired contradiction. �

4. Proof of Theorem 2.2

Proof of Theorem 2.2. First, suppose that x is a bounded divergent sequence. Then Σx,A(I)
is meager by Theorem 3.1 and Theorem 3.10.

Secondly, suppose that x is unbounded. If A is not row finite, then Σx,A(I) ⊆ {σ ∈ Σ :
σ(x) ∈ ωA}, which is meager by Corollary 3.12. Otherwise, suppose hereafter that A is a
row finite (Fin, I)-regular matrix. Note that I is a Borel ideal, hence it is meager. Thanks
to Theorem 2.1, A satisfies conditions (R1)–(R3). For each w ∈ N, it follows by (R2) and
(R3) that I- limn

∑
k≥w an,k = 1. In particular, Zw is contained in {n ∈ N :

∑
k≥w an,k = 0},

which belongs to I. This implies that condition (4) in Theorem 3.13 holds. It follows that
Σx,A(I) is contained in {σ ∈ Σ : Aσ(x) ∈ `∞(I)}, which is meager by Theorem 3.13. �

5. Concluding remarks

It doesn’t come as a surprise that, under suitable hypotheses on the matrix A and the
ideal I, the set Σx,A(I) is either meager or the whole Σ. Indeed, by a known topological
0-1 law, see e.g. [25, Theorem 8.47], a tail subset of Σ with the Baire property is either
meager or comeager. This applies also in our case. For, let I be a Borel ideal and A be a
(Fin, I)-regular matrix. Then, it follows by Remark 3.9 that Σx,A(I) is Borel, hence it has
the Baire property. Moreover, if σ1(n) = σ2(n) for all but finitely many n, then y ∈ c0 where
yn := xσ2(n) − xσ1(n) for all n. Hence, if σ1 ∈ Σx,A(I) then

I- limAσ2(x) = I- limAσ1(x) + I- limAy = I- limAσ1(x).
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This implies that also σ2 ∈ Σx,A(I), proving that Σx,A(I) is also a tail set.
In the same direction of [14, 20, 24], we leave as open questions for the interest reader

to check whether the analogues of Theorem 2.2 hold for permutations and strechings of the
sequence x.

Finally, our main result seems to be related also to a conjecture of DeVos [16] which can
be reformulated as follows: if E is an FK-space (that is, a locally convex vector space of ω
which is also Fréchet and with continuous coordinates) containing c00, then {0, 1}N ⊆ E if
and only if E ∩ {0, 1}N is not meager. However, it seems quite unlikely that spaces of the
type {x ∈ ω : Ax ∈ c(I)} may provide a counterexample to the latter conjecture. Indeed, it
has been shown by Connor in [11, Theorem 3.3] that, even for the well-behaved ideal I = Z,
the unique FK-space containing c(Z) is ω.

5.1. Note added in proof. I have been recently informed by Cihan Orhan that a result
related to Corollary 2.4 appeared in [12, Lemma 1] in the case of certain coregular matrices.
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