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ABSTRACT
Humans spend the majority of their time indoors, where they are
potentially exposed to hazardous pollutants. Within this context,
over the past few years, there has been an upsurge of low-cost sen-
sors (LCS) for the measurement of indoor air pollutants, motivated
both by recent technological advances and by increased awareness
of indoor air quality (IAQ) and its potential negative health impacts.
Although not meeting the performance requirements for reference
regulatory-equivalent monitoring indoors, LCS can provide inform-
ative measurements, offering an opportunity for high-resolution
monitoring, emission source identification, exposure mitigation and
managing IAQ and energy efficiency, among others. This article dis-
cusses the strengths and limitations that LCS offer for applications in
the field of IAQ monitoring; it provides an overview of existing sen-
sor technologies and gives recommendations for different indoor
applications, considering their performance in the complex indoor
environment and discussing future trends.
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1. Introduction

The concern about the negative impacts of indoor air quality (IAQ) on human health
has fueled a growing awareness, even though most air quality (AQ) regulations and
atmospheric chemistry research have historically focused on outdoor air. Humans spend
more than 90% of their time indoors in developed countries[1] and poor IAQ has been
estimated to be the ninth-largest factor of disease risk.[2] The World Health
Organization (WHO) states that, nowadays, household air pollution is one of the main
causes of premature death and disease in the developing world, attributing >3.8 million
premature deaths per year to household exposure to smoke from inefficient cooking
practices and fuels indoors[3] compared to 4.2 million deaths attributed to ambient (out-
door) air pollution. The mixture of indoor air pollutants derives from outdoor infiltra-
tion and from indoor source emissions (such as furniture and paintings, cleaning
products, indoor activities, etc.[4]). The concentrations of those pollutants, which include
a variety of particulate matter, biological pollutants and around 400 gas compounds, are
ruled by multiple indoor and outdoor factors.[5,6]

The awareness of AQ related problems has developed in parallel with rapid techno-
logical advances, which have evolved to offer low-cost sensors (LCS) and sensor systems
capable of satisfying the interest of citizens, who demand online and real-time informa-
tion concerning air pollution, as part of their digital ecosystem. This demand is in line
with the characteristics of LCS, which can provide high-density spatiotemporal pollution
data, which motivated their rapid dissemination over the last years. There is still no uni-
versally agreed definition of LCS.[7]

A chemical sensor, in general, is a device that converts chemical data into an analyt-
ically useful signal.[8] The WMO reports[9,10] state that a sensor system is defined as an
integrated device consisting of one or more sensor elements and other supporting com-
ponents needed to make a fully functional and autonomous detection system. Other
names have been given to sensor systems in the literature, like IoT (Internet of Things)
AQ sensors, environmental sensors, low-cost sensors, air sensors, among others.[11] Two
definitions are adopted in this work:[9,12] i) sensor element: the fundamental transduc-
tion mechanism able to respond to the presence of a gas or particle and that generates
a measurable signal, such as electrical, ii) sensor system: a fully functional and autono-
mous detection system which includes one or several sensor elements and its assorted
signal processing hardware. It can include remote data transfer and data processing
steps. Although some definitions are available,[13,14] a general description accepted by
the scientific community is that they have significantly lower costs than reference-grade
instrumentation, which allows for deployment with a high degree of spatial resolution.
Low-cost, easy-to-use air pollution monitoring technologies have recently emerged and
have advanced quickly in IAQ monitoring.
More in detail, to date, there are open and challenging questions over LCS that have

to be addressed, e.g., regarding their purpose, their performance, lack of established and
standardized criteria and procedures on their use and of intrinsic quality assurance
tools, among others. LCS generally do not meet performance requirements of regulatory
equivalent reference instrumentation indoors.[9] Nevertheless, the recently published
Standard CEN/TS 17660-1:2021[15] has set the criteria established by the Directive 2008/
50/EC[16] for the equivalence of sensor systems used outdoors to those instruments for
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indicative measurements and objective estimation (Directive 2008/50/EC).[16] To date,
there is no similar standard for indoor measurements, but it is a step forward in the
reliability of LCS in general. Their use to characterize the subtle changes in the indoor
environment is challenging due to the sensitivity, accuracy and time response that they
present. However, a range of common indoor air pollutants can be measured with these
devices, offering an excellent opportunity for the indoor community, like the identifica-
tion of possible emission sources in different parts of a household, management and
mitigation of IAQ issues, real-time warning systems, personal exposure, as well as build-
ing control to optimize energy efficiency and for health risk assessment purposes.[9]

Kumar et al.[17] discussed how real-time sensing could bring a paradigm shift in manag-
ing the concentration of important air pollutants at high spatiotemporal resolution in
billions of urban houses worldwide. LCS deployed in large numbers and accessed
through wireless links throughout the internet can provide an extraordinary opportunity
to manage and control the new generation of buildings,[18] empowering citizens to con-
trol their environments. Despite their drawbacks, their use has been encouraged due to
their advantages (e.g., lower costs, portability, lower electricity consumption,
etc.).[7,14,17,19–22,131,132]

Within this context, and from the upsurge use of LCS to characterize the air quality
outdoors, the IAQ community has considered their use with caution, but also with
expectation. However, there are significant differences between the contaminants found
in both environments, the environments themselves, and the purpose for which LCS are
used, which imply that LCS used indoors have their own specificities.[14,23,24]

This review discusses the possibilities offered by LCS for indoor use and also their
limitations. It revisits the variety of LCS that are used for measuring indoor contami-
nants and discusses their use for a suite of purposes, including the different technologies
employed and considering their performance, advantages and disadvantages. This study
is devoted to a wide audience that includes the academic community, AQ experts,
architects, building managers, decision-makers, the public and, in general, those inter-
ested in the AQ of indoor environments and in exploring the prospects of using LCS
for this purpose. The main contribution of this review paper is to discuss the current
state of the art of LCS technologies for IAQ-related purposes while highlighting poten-
tial limitations and challenges.

2. Use of LCS for indoor air quality applications

LCS can be used for purposes related to the IAQ, indoor comfort index and energy
optimization in buildings. A recent publication from Chojer et al.[7] systematically
reviewed in detail 35 projects, corresponding to 41 publications reporting the develop-
ment of LCS indoors. All were published from 2014 onwards, and the majority were
published in the previous three years (2017–2019), thus evidencing a growing subject.
Buildings or general indoor environment monitoring were the intended application in
most of the reviewed projects, while other specific applications were also found, such as
IAQ monitoring of classrooms, hospitals, personal monitoring, and asthma trigger
assessment. These authors observed that other relevant IAQ applications were missing,
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like households in low-income countries, museums or airports, although this does not
mean that such applications have never been tested in other studies.
Due to their low cost, ease of installation, and low power consumption, LCS are

increasingly used in system networks to provide an increased spatial measurement dens-
ity of real-time concentrations. They can measure a series of common indoor air pollu-
tants,[25] such as carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2) and
airborne particulate matter (PM) along with carbon dioxide (CO2) for controlling venti-
lation levels indoors. Chojer et al.[7] observed that most of the reviewed projects
included only temperature (T), relative humidity (RH) and CO2 sensors, while CO was
measured in 43% of the studies, volatile organic compounds (VOCs) in 37%, and PM2.5

and PM10, at a lower extent than expected. Other pollutants were also considered spor-
adically (formaldehyde (HCHO), O3, NO2, ammonia, benzene, toluene and nitrogen
oxides (NOx)).
LCS open a new era in monitoring the concentration of indoor pollutants in indoor

environments worldwide.[17] Nevertheless, LCS show limitations as they do not give a
reliable absolute measure, for which they cannot be used as a substitute for reference
instruments for monitoring purposes.[9] For the same reason, LCS cannot currently be
used in IAQ monitoring for toxicological or legal thresholds compliance, nor should
they be used for IAQ audits. Still, their relative output, under certain conditions, can be
used to generate metrics or indicators that allow qualitative and cost-effective IAQ
management.[26]

LCS can also be used for AQ awareness and identification of pollution hotspots.
Standalone LCS and LCS networks have a great potential for performing diagnostics of
air contamination events from emitting sources and occupants’ activities. IAQ data can
be used to correlate the occupant’s diseases with their living environment quality.
Furthermore, source apportionment analyses of indoor pollutants (e.g., VOCs) could
become possible, and the impact of various building materials on IAQ could be also
evaluated.[27] For instance, Shen et al.[28] used a network of LCS to disentangle the con-
tribution of different sources (infiltration from outdoors vs cooking) to the time-
resolved concentrations in the various premises of a residential home. Among others,
this approach avoids the uncertainties linked to the effect of sampling location on the
variability of air concentrations.[29]

Personal monitoring in the breathing zone is the gold standard for the exposure
assessment to air pollutants, whenever the inhalation pathway is predominant.
Compact, light, economical, and energy-efficient LCS have a great potential for applica-
tion in large-scale risk assessment or epidemiological studies.[30]

LCS make now possible the involvement of the local communities in IAQ measure-
ments to increase consumer awareness of the importance of reducing indoor exposure
to toxic chemicals and making informed behavioral choices (e.g., smoking, using or not
a fume hood during cooking) for an effective IAQ control. The use of IoT nodes can
lead to improvements in the process of data acquisition and processing as well as to
enhanced applications for data consulting and notifications. It also enables the creation
of real-time health and wellbeing monitoring systems to plan effective strategies and
real-time mitigation interventions to improve IAQ management in smart living environ-
ments. These goals could be also achieved in citizen-science projects, making sure that
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participants would be correctly advised by experts on the correct use (e.g., calibration,
maintenance, etc.) of LCS, data analysis and interpretation of results. As a matter of fact,
one of the open challenges is the quality control, data pre-processing and analysis of such a
large amount of data.[20] Naturally, a great increase in data coverage will emphasize the
need for skilled staff to treat LCS (big) data (i.e., a high volume of data of different nature,
generated with high velocity) and turn it into correct and useful information.[14,31]

The use of LCS for management of energy and IAQ in urban and commercial build-
ings has been reviewed in the literature.[20,32] Low-cost and smart devices can be used
to change the way people interact with buildings and use their facilities, as well as man-
age their own exposure. LCS can contribute to the buildings to become smarter, health-
ier, more comfortable and more energy-efficient. Networks of IAQ sensor kits or
systems can be useful to building managers and may be included in risk management
programs for controlling indoor sources of air pollutants and building ventilation. More
in general, LCS can be applied in intelligent and autonomous control systems equipped
with complimentary wireless communication infrastructures for a real-time and long-
term integrated and optimized management of IAQ, energy consumption and microcli-
mate.[26,33] The augmented spatial and temporal coverage provided by LCS technologies
in comparison with reference monitoring systems could also favor optimized manage-
ment of heating, ventilation and air conditioning systems, preventing incorrect decisions
and consequent health outcomes for the occupants.[34]

Williams and collaborators[35] identified 16 different air monitoring applications derived
from 48 studies that included quantitative performance information. Among these, the
most cited objective for monitoring air pollution was supplemental monitoring, followed by
community near-source monitoring, public education, and hot-spot detection.
The lowering of costs of IAQ monitoring could imply a large-scale use of LCS in pre-

vention programs for health protection. This could specifically benefit low-income
households, for which indoor comfort, IAQ, health, and energy and environmental
problems were evaluated.[36] At the same time, one should be very cautious in using
LCS to test compliance of such measurements with IAQ legally binding thresholds or
guidance values for the intrinsic disadvantages and limitations (lack in accuracy and
long-term stability, cross-interferences, etc.) reported before. Moreover, the fact that the
indoor environment itself can affect LCS performance should be also taken into
due account.[37]

2.1. Advantages and disadvantages of LCS

Table 1 shows a list of the main technical advantages and limitations in the use of LCS
indoors. Applications and non-recommended uses, which can be considered as advan-
tages and disadvantages, respectively, have not been reported in this table as they have
been discussed above.

2.2. LCS vs reference instruments

Since the monitoring of IAQ involves using reference-grade methods or equivalent, LCS
should ideally exhibit sensitivity, selectivity, good accuracy and robustness.[22]
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Nonetheless, due to the affordability and accessibility of low-cost sensors, their validity
and reliability deserve attention. The WMO reports[9,10] highlight that LCS can not sub-
stitute reference instruments, especially for mandatory monitoring. A recent systematic
review[38] evaluating 31 studies performed in indoor environments and 11 in laboratory
conditions, evidenced that the reliability of LCS for qualitative AQI analysis was
adequate. However, a consistent on-field calibration between the LCS and a reference
instrument is highly recommended. Besides, a future trend for this technology is the
application of an intelligent algorithm able to continuously calibrate the sensors from
the data measurements. In this regard, it should be noted that to date such a process is
not totally independent because reference instruments are still needed for validation and
calibration purposes.
In general, LCS exhibit moderate correlations with reference-grade instruments, reveal-

ing sufficient precision for monitoring IAQ, especially for qualitative analysis. Overall,
using LCS to monitor IAQ is encouraged, but not waiving the relevance of high-quality
instruments.[22,38] For these reasons, currently, LCS cannot replace reference-grade meas-
urement techniques in applications such as IAQ monitoring for toxicological or legal
thresholds compliance, nor should they be used for IAQ audits. Still, these authors state
that their relative output, under certain conditions, can allow qualitative and cost-effective
IAQ management. In this regard, the major purpose of using LCS in IAQ assessment has
been their successful use as a complementary tool of the reference techniques, as a quali-
tative source of atmospheric composition data, followed by community near-source moni-
toring, public education and hot-spot detection.[35] According to the work of these
authors, the preference for regulatory monitoring is the achievement of high accuracy,
selectivity and precision. Although these parameters are still important for non-regulatory
monitoring purposes, high spatial density and low cost are given priority. The uncertainty
associated with the LCS data is usually higher than that of reference monitors.[39]

Compared to these, LCS tend to be less sensitive, less precise, and less selective to meas-
ure a specific compound or variable of interest. Another key finding of the WMO
reports[9,10] is that LCS should be operated under established quality assurance and qual-
ity control protocols that guarantee to meet or exceed the objectives of the research

Table 1. List of main advantages and disadvantages of LCS, (excluding application aspects).
Advantages

Low-cost
Low size, low weight, portable
Allows real-time and high temporal and spatial coverage (possibility of installing sensor networks)
Emerging market, with growing number of companies now commercializing LCS
Growing scientific literature reporting evaluations of the performance of LCS vs reference measurements
(big) Data that can be accessed online and in real-time (IoT, mobile apps) by citizens
Suitable for citizen-science projects

Disadvantages

Often affected by cross-sensitivities with compounds and atmospheric variables�
Frequent calibration needed, although not between service intervals
Relatively short lifetime (1–2 years)
Long term drift and, in some cases, poor data quality
Many studies do not report the analysis method used
Lack of standardization of procedures for calibration and data analysis
Concern about data access and data protection
�Less important indoors than outdoors due to lower variability of RH and T.
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application. Until very recently, despite the number of reviews published in the scientific
literature, there was no standard protocol for comparing and evaluating the agreement
between sensor systems and reference observations. Under these conditions, the use of
sensors for monitoring purposes, i.e., demanding compliance with the requirements of
grade instruments, or beyond their possibilities, has plaid against their credibility, leading
to mistrust of LCS. Some of the aspects discussed above have been addressed by the
Standard CEN/TS 17660-1:2021,[15] which regulates the procedures and requirements of
sensor systems for monitoring gas contaminants in outdoor measurements at fixed sites.
An adapted regulation for indoor applications is still pending.
Table 2 compares a generic LCS device with its corresponding reference-grade instru-

ment (i.e., a reference instrument with a certification from an official regulating body),
measuring (indoor air) pollutants according to a predefined methodology and providing
data that meets regulatory requirements.[10] Detailed evidence about performance com-
parison of LCS with reference-grade instruments area is also available in recently pub-
lished studies.[22,38]

2.3. Technical aspects

The use of LCS for IAQ assessment purposes, when compared to outdoor environ-
ments, demand for increased repeatability and accuracy, due to LCS operation across a
wide range of levels, particularly at low concentrations. Another critical element com-
mon to LCS used both indoors and outdoors is handling, processing, and analysis of
the huge amount of data that can be obtained from all these sensors, which still present
a significant challenge and associated cost. Still, S�a et al.[38] concluded that the use of
LCS to monitor IAQ should be encouraged, because of the advantages described above.

Table 2. Comparability of LCS for indoor measurements and reference instrumentation.
Concept Low-cost sensor Reference-grade instrument

Cost (indicative range) 100–2500 e 10000–75000 e

Operating cost Relatively inexpensive Expensive
Location Portable or fixed (also organized in

sensors network)
Typically fixed location

Staff Training Little or none (monitor)
Some training (research)

Some training (monitor)
High training (instrument)

Analysis skills None (if data are provided by the
sensor system)
High (research)

None (monitor)
High skills (instrument)

Data quality Depends on sensor and analysis
procedure. Not complying with AQ
directive (Directive 2008/50/EC)

Known and stable. Repeatable and
reliable, complying with AQ directive
(Directive 2008/50/EC)

Selectivity May suffer from interferences with
environmental parameters and other
contaminants

High selectivity

Lifetime 1–2 yearsþ drift > 10 years
Development degree Research Advanced
Accessibility to data In real-time In real-time (monitor)

Usually not in real-time (instrument)
Area coverage High Low
IoT applications Yes No
For regulatory monitoring No Yes
End user Research, policymakers,

building managers
Local government, citizens
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Besides, even though a sensor network can be deployed at a relatively low cost, the
labor to maintain the network and process the data is likely to quickly exceed the cost
of the hardware. It is also imperative to consider the cost of field calibration, additional
hardware requirements, setup and installation costs in the total budget. Thus, the future
of sensor networks for IAQ purposes or its integration in existing BEMS (Building
Energy Management System) lies not only in the improvement of the sensor’s technol-
ogy but also in the availability of accessible and affordable services for data processing
and sensor-network maintenance.
Saini et al.[11] stated that the major problem is solving the tradeoff between quality

and cost. Sensor calibration requirements and accuracy are key parameters for the
developer’s community. Solving limitations associated with frequent calibration require-
ments is a considerable challenge. Consequently, it is critical to design sensors for
remote monitoring applications that are easy to maintain. The plug-and-play sensors
with IoT capabilities present a significant opportunity for future applications and reduce
additional hardware requirements. Additionally, clear criteria for selecting appropriate
sensors according to their specific use (awareness, hot spot detection, etc.,) and place of
installation (schools, hospitals, restaurants, residential housing) are needed. The industry
has to address these applications and respond to the LCS community by designing cost-
efficient solutions, which can be also useful for developing smart cities with sustainable
buildings that ensure healthy IAQ conditions for occupants.
Aging of LCS produces drift, which affects their long-term stability and their per-

formance, eventually leading to shortening their lifetime.[40,41] In PM LCS, degradation
of the electrical components of the sensor and dust accumulation are generally believed
to be the causes of drift.[42,43] Besides, most sensor packages cannot provide reliable
information, since they still have limitations regarding their selectivity. In a study on
the control of IAQ in smart homes, Zhang and Srinivasan[44] did not consider this tech-
nology sufficiently advanced to be applied for regulatory purposes on a large scale,
because of their limited robustness, repeatability, and lack of a widely accepted protocol
for sensor validation, testing and deployment. Sensor performance will need to be tested
under a wide range of environmental conditions[10,11] before being deployed on a large
scale. Also, the own continuous and fast development of LCS can be challenging for the
evaluation of LCS by researchers, as several versions of the same type of sensor with dif-
ferent states of evolution and performance can coexist in the same study framework.
Regarding PM LCS, to date, it is unlikely that the current generation of these sensors will be

able to effectively detect so many details and subtle variations in the indoor environment, but
with the rapid development of the technology, this will likely change. For example, currently
available LCS are not suitable for measuring ultrafine/nanoparticles (<100nm in diameter).[26]

Another weakness of LCS is their signal-to-noise ratio which defines their limit of detection
(LOD), making them less useful in low pollution environments. This can be solved to some
extent by recording for longer periods and averaging the results, collocating several sensors
and taking an average and using digital filters to remove high-frequency noise.[133]

2.3.1. Implementation
Depending on their operating principle, there are different technologies used by the sen-
sor elements to react to the presence of the pollutant, namely electrochemical (EC),[46]

8 M. RÓDENAS GARCÍA ET AL.



metal oxide semiconductors (MOS)[45] photoionization detectors (PID),[47] non-disper-
sive infrared (NDIR)[48] and light scattering[49] among others. According to Chojer
et al.,[8] the most recurrent sensing technologies were thermistors (temperature), capaci-
tive sensor technology (RH), non-dispersive infrared – NDIR (CO2), particle scattering
(PM), and Metal Oxide Semiconductor – MOS (CO, VOC and formaldehyde). A
description of sensor technologies is provided in the Supplementary Material S1. Only
sensors for determining pollutants are considered here, therefore, environmental param-
eters, e.g., RH and T, are not included in this work.
Regarding hardware integration, two platform types have recently emerged with high

applicability for the development of low-cost IAQ systems, namely Generic Platforms
and Sensor Platforms, whose main part is a microcontroller. Generic platforms are gen-
eral-purpose computing platforms with multiple functionalities. Sensor platforms are
specific-based platforms that integrate built-in capacities and environmental LCS for
AQ applications. Moreover, the reduced size of these low-cost sensor platforms allows
for new capabilities to evaluate health risks from indoor air pollution exposure.[39]

It is a common practice to use these platforms to collect data for IoT applications, to
control actuator devices, and to perform certain data processing tasks. IAQ systems
based on IoT can incorporate sensors to monitor different parameters such as CO2,
CO, PM, VOCs, O3, NO2 and SO2

[11]. The most popular platforms are the ESP32,
Arduino, Raspberry Pi boards, and Waspmote. To connect these boards (and their sen-
sors) to the internet, usually, wireless communication technologies are preferred, e.g.,
the WiFi network, which has an extensive and accessible infrastructure. However, other
communication technologies for data transmission are used by some IAQ systems based
on IoT, such as Bluetooth, due to its compatibility and low cost, and Ethernet.[50] If the
required range is small and the needed bandwidth is low, Zigbee should be considered.
LoRa enables long-range transmissions with very low power consumption.[51]

The introduction of wireless technologies allowed the use of sensor networks, which
are defined as a group of devices distributed over a specific area. A sensor network con-
sists of nodes each of them including one or several sensors, data transmission module,
a microcontroller and a power source.[52] Their purpose is to analyze a specific func-
tionality, e.g., monitor the AQ in different indoor activities.[11,53] The whole network
can be considered as a class of measuring instruments, and can also integrate additional
data from reference nodes or instrument, in such a way that by using computational
intelligence, the measurement uncertainty and the number of LCS nodes needed can be
reduced.[54,55]

2.3.2. Calibration and data analysis methods
One of the most critical challenges associated with LCS technology is the level of data
reliability. The process of guaranteeing that the data measured with a sensor is consist-
ent with the same data from a standard measurement is also often called quality assur-
ance (QA).[10] These authors state that this is often performed using calibration
techniques where a sensor is compared with a reference-grade instrument and, certainly,
the current research to improve the data reliability of LCS focuses on developing cali-
bration models. By applying a suitable calibration to any device, QA ensures that a sen-
sor produces robust and accurate data. Sensors need to be calibrated by collocating
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them with reference instruments, which may be considered to provide the “ground
truth,” and within the environment in which they will operate. Although this is less crit-
ical indoors than outdoors due to the lower variability of T and RH indoors, sensors
must be calibrated under conditions as close as possible to those at which the measure-
ments will be done.[10,11] Thus, the LCS measurement is used as input to the modeling
procedure, together with other data (typically measurements of additional pollutants as
well as of ambient environment conditions like T and RH). Then, a model is developed,
trained, tested and validated, resulting in an output that is as close as possible to the
ground truth. This procedure has been shown to improve not only the basic statistical
indices of sensor performance but also to be able to drastically improve the relative
expanded uncertainty of the measurement. It renders the LCS as appropriate for uses
not previously foreseen (i.e., as complementary measurements to official instruments
under certain assumptions), according to the Directive 2008/50/EC[16] and to the
Standard CEN/TS 17660-1:2021[15] for AQ.[55]

While linear models have been more commonly used in calibrations, recently, non-
linear machine learning (ML) models are emerging as a promising advancement that
have improved the data results in outdoor studies, being able to better account for
environmental effects and cross-sensitivities.[56–58] The number and type of interfering
contaminants indoors imply that extrapolating the application of these advanced meth-
ods from sensors used outdoors to indoors is not straightforward, it should be taken
with caution and suggests the need for further discussion and research. In general, con-
sidering indoor environments, more studies are needed as only a few have
been published.
Another aspect is the lack of standard procedures to calibrate the data from LCS. In

their review of 40 studies, Saini et al.[11] stated that 31 studies (77.5%) did not report
calibration procedure details, and the accuracy specification was absent in 39.4% of
them. The authors indicated that numerous sensors (pre-calibrated and field-calibrated
models) demand recurrent calibration, almost after every 6months, to maintain reliable
and accurate performance. Repeated calibration can be a serious challenge when remote
monitoring is the focus. It is also critical to implement frequent calibration in real-time
because the calibration procedures may be too complex for the end-user. Chojer et al.[7]

concluded that only 12 out of 35 reviewed LCS development projects evaluated sensor
performance, including calibration and/or validation outcomes of the sensors, thus
showing that most of the developers still merely apply the factory datasheets informa-
tion. These authors also evidenced a lack of standardized practice and therefore that
calibration and validation methods varied significantly with each project. With just two
studies testing the long-term stability and only one study checking the cross-sensitivity
of the sensors, the authors concluded that more studies are needed, especially those
conducted with a thorough check of device performance to ensure data reliability from
the LCS. Finally, a recent review[22] examined the LCS for AQ measurement: results of
the analysis suggested that LCS exhibited improved performances in the experiments
with stable environmental settings, in the comparison against non-designated reference
instruments. However, methodological factors in experimental design (such as the pollu-
tant attribute and sensor original equipment manufacturer specification) resulted in
contradictory results. Mean Normalized Bias (MNB) and Coefficient of Variation (CV)
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(i.e., two measures that US-EPA recommends for determining the suitable application
tier of AQ sensors,[59]) varied significantly among published experiments due to the dis-
crepancy in experimental design.

3. Quality of the data measured by LCS in indoor environments

3.1. Indicators of performance

At present, the main limitation of LCS is that they are generally characterized by worse
performance in terms of accuracy than the commonly used standard techniques.[30]

Previous studies have tested several LCS investigating their measurement performance.
Concerning this issue, the European Union Air Quality Directive indicates that uncer-
tainty should be the main indicator for the evaluation of the data quality objective of
air pollution measurement methods.[16]

The performances of LCS must be evaluated in order to validate the data collected.
Nevertheless, there is a lack of uniformity in the metrics used in the reported validation
results (R2, percentage errors, MAE – Mean Absolute Error, etc.) and in the parameters
to study (linearity, precision, etc.). In fact, it is important to harmonize the metrics
used to evaluate the quality of the data, which includes both the calibrations and the
analysis. Significant efforts and initiatives have and are being carried out in this line,
which aim at standardizing the use and testing procedures of LCS, and at setting certifi-
cation schemes based on the uncertainty of the measurement, which will allow better
use of LCS and a better evaluation of their performance. The most common technique
is to make a preliminary evaluation under laboratory conditions, using LCS paired with
golden standard methods and evaluate their performances. Usually, LCS performance is
evaluated using different methods or reliability indicators,[60–62] e.g.,:

� Precision: evaluation of uncertainty between collocated LCS by means of uncer-
tainty analysis and linear regression, as reported by Watson et al.[63]

� Comparison with reference methods: using Mann-Whitney test, Spearman’s
correlation (rho) and regression analysis according to the indications described
by Watson et al.[63] Accordingly, linear regression analysis may be used to evalu-
ate the level of agreement between two methods (in this case LCS and reference
method). Moreover, as reported in the literature,[63] equation parameters (R,
slope, and intercept) can be used as indicators of the comparability and/or pre-
dictability between the two methods.

� Linearity: using linear regression analysis to describe the agreement between the
concentration measured via LCS under examination and the reference technique.
The y-intercept and the slope of regression, as well as the coefficient of deter-
mination, may be used for the evaluation of the agreement.

� Error trends: using the Bland-Altman plot method[64,65] and evaluating the abso-
lute and relative errors.

� Uncertainty: uncertainty between a couple of LCS can be calculated following
the guidance (EC Working Group for demonstration of equivalence). Both clas-
sical and artificial intelligence methods are used for assessing uncertainty.[54]
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However, the evaluation of this metric is not included in most sensor studies.[66] The
most commonly used statistical indicators used with sensor elements and sensor systems
in relation to reference instruments are reported in Table S1 as derived from recent
studies.[66–68] Rai et al.[69] published an exhaustive literature review on this topic where
performance was assessed for PM, O3 and NO2 by considering the values of the coeffi-
cient of determination (R2), compared with reference instruments. Most studies consid-
ered the parameters repeatability, reproducibility, stability and limit of
detection.[66,67,70,71] The most common metric informed either in field, laboratory or
indoor intercomparisons against reference data is R2, which can be interpreted as an
indicator of how well measurements obtained by means of a tested sensor fit with those
obtained from the corresponding “reference” instrument.
Another important parameter in LCS performance evaluation is that of the Relative

Expanded Uncertainty (REU), as this is the criterion for their classification in a way
that is consistent with the requirements for indicative measurements and objective esti-
mation defined in Directive 2008/50/EC.[16] The REU is used for this purpose by the
recently adopted ISO standard CEN/TS 17660-1:2021.[15]

During the last ten years, several intercomparisons have been carried out for gases
and particulate matter, in the laboratory,[72,73] in the field,[60,66–68,74,75] and also in
indoor environments.[37,76] Some of these intercomparisons were carried out using sen-
sor systems and others using only the sensor elements. A recent review[22] examined
the indicators used to evaluate the performance of AQ LCS from a total of 112 articles.
Figures of R2, Root Mean Square Error (RMSE), MNB, and CV were extracted for a
detailed analysis. It was observed that R2 or its square root (R, Pearson Correlation
Coefficient) were commonly adopted to describe how well the response of LCS corre-
lated to that of reference instruments. Besides, RMSE, MAE, MNB, Mean Bias Error
(MBE), Standard Error of Estimate (SEE), and Mean Normalized Error (MNE) to evalu-
ate the measurement error of the LCS. RMSE and SEE provided more weighting to the
most significant errors, while MAE treated each error equally. MBE and MNB described
the deviation from the reference instrument. CV was used to assess the intra-model
variability in 20 studies. Williams et al.[59] proposed to use MNB and CV to determine
the performance of AQ sensors. In Table S2 it is possible to observe the variation of the
different metrics commonly used for different gases.

3.2. Certification and testing initiatives

Unlike reference instrumentation subjected to comprehensive regulatory standards and
processes for evaluation and certification, few standards and certifications exist for LCS.
This has led to confusion in the market, as new buyers are unaware of the performance
of their sensors, how to operate (e.g., calibrate) them, and how well they need to per-
form for a given purpose. Some protocols developed by research centers and national
standardization institutes are emerging to provide quality indicators (quantitative per-
formance requirements).
Saini et al.[11] pointed out that there is a significant lack of scientific validation and

testing activities following systematic approaches to validate the performance of LCS
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when compared with calibrated instruments. These studies should consider different
indoor environments and different stages of the sensor’s life quality.
Unfortunately, the calibration of the sensors in the laboratory do not often overlap

with the full range of conditions in an indoor environment. Tests in laboratories or
simulation chambers are suitable to study cross-sensitivities with a number of gaseous
species[77] and dependence on relative humidity and temperature. Nevertheless, they
cannot cover the suit of variability of gaseous species existing indoors and ever-evolving
aerosol physical and optical properties, all of which are known sources of error for LCS
measurements, reason why it is recommended that the calibration of the sensors is
done in a real environment.
There have been various initiatives for developing a structured and repeatable LCS

testing procedure. Some of those include (indicative list):

� The Environmental Protection Agency of the USA, providing the US EPA Air
Sensor Toolbox (US-EPA[78]) on sensor use, sensor testing protocols, LCS use
guidelines and best practices, etc., for laboratory and field environments.

� The Air Quality Sensor Performance Evaluation Center (AQ-SPEC[79]) program
of the California South Coast area, provides installation guides and information
on laboratory as well as on the field tests for outdoor environments.

� The AIRLAB Microsensors Challenge (AIRLAB[80]) organized by Airparif,
France, testing approx. 55 devices using 20 metrics, including indoor and out-
door evaluation sites.

� ASTM D8405-21 (ASTM International[81]) , and standard method for evaluating
PM2.5 sensors in indoor air applications.

� AIREAMOS,[82] a Spanish initiative promoting the measurement of CO2 levels as
an indicator of COVID-19 infection risk, carried out one of the few systematic tests
of CO2 LCS indoors and in simulation chambers (EUPHORE[83]), elaborating a
guide with the evaluation of different commercial sensors versus a reference.

An important initiative is the publication of the already briefly introduced above
Standard CEN/TS 17660-1:2021[16] by the Technical Committee CEN/TC 264, Working
Group 42 on AQ, entitled “Performance evaluation of air quality sensor systems – Part 1:
Gaseous pollutants in ambient air” for sensor systems used to monitoring gas contami-
nants in fixed sites outdoors, i.e., not indoors. A second part of PM LCS is being prepared.
The specifications are based on total uncertainty of the Data Quality Objectives (DQOs),
similar to the quantitative absolute values usually provided for reference instrumenta-
tion.[17] It requires both laboratory and field trial validation and sets a certification scheme
that, for the first time, defines 3 classes of sensors, based on the uncertainty of the measure-
ment, as follows: Class 1 sensor system: sensors consistent with indicative methods; Class 2
sensor system: sensors consistent with objective estimations methods and Class 3 sensor sys-
tem: sensors not formally associated with any mandatory target. It also defines procedures
and requirements for the evaluation of the performance of LCS.
In addition to the above, there have been initiatives for developing Laboratory Test

Methods for Low-Cost Indoor Air Quality Sensors (e.g., by the Office of Energy
Efficiency & Renewable Energy,[84] which has already produced tangible results.
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3.3. Performance of LCS by pollutant

A description of the performance of different types of sensors grouped by the species
they determine is given in this work. The selection has been done based on the key pol-
lutants pointed out by the WHO document on IAQ guidelines[3] for the protection of
public health from risks associated with exposure to pollutants indoors and considering
their relevance to the IAQ. Therefore, some are important from the toxicological and
health point of view, for their use as indicators of occupancy control and comfort, for
source identification, or because of their interest as reactive species. A common limita-
tion of LCS is the lack of appropriate evaluations in conditions relevant to the indoor
environment in order to define the performance and the effect of typically expected
interferences. Whenever available, reference has been made here to studies conducted
indoors and, were not possible due to the limited number of studies under such condi-
tions, information from outdoor studies has been included. While manufacturers claim
that LCS can be used in both environments, extrapolations from outdoor to indoor
must be taken with caution. In summary, some LCS have a higher potential to provide
at least good quality estimations of some indoor air pollutants, within certain limits of
tolerance. That information could be deemed quite useful for the monitoring of certain
indoor pollutants such as CO or CO2. Regarding other LCS, e.g., NO2 or O3, advance-
ments in the technology and in the analysis algorithms have improved their perform-
ance, although their use to obtain accurate indoor measures is still challenging.

3.3.1. Nitrogen dioxide (NO2)
NO2 LCS can be used in source identification, e.g., fire detection, and can be used as a
parameter to calculate the so-called AQ Index (AQI) together with concentrations of
CO2, t-VOCs and PM. In the market, the technologies used for NO2 sensors are Metal
Oxide Semiconductor (MOS) and Electrochemical (EC), with typical limit of detection
(LoD) of 2 ppbv and 2–5 ppbv, respectively. Both are cross sensitive to O3, but in the
case of EC sensors it, has been reduced by including an O3 filter. MO sensors baseline
resistance drifts with time and have strong sensitivity to RH, therefore, they are difficult
to calibrate. Di Carlo and Falasconi[85] have attributed the MOS sensor drift to different
structural and morphological variations of the sensor. Hence, EC sensors are preferred
over MO. However, EC sensors also show high sensitivity to T and RH and recent
papers[70] have presented algorithms that attempt to correct this. Lewis et al.[77] identi-
fied interferences with other compounds such as CO2 which, at atmospheric concentra-
tions, might be significant compared to the signal generated by NO2. This interference
might be due to high concentrations of CO2 changing the gas diffusion rate of NO2

(and of other gases). To face this dependency on atmospheric parameters, these authors
proposed supervised learning algorithms to improve the accuracy of the data reported
by sensors. Spinelle et al.,[86] reported interferences against O3 in certain NO2 sensors,
which can be diminished by applying supervised learning techniques. Karagulian
et al.[66] found in a review of comparison tests in the field that those algorithms
reported R2 of 0.91–0.94 versus multi-linear regression algorithms with R2 of 0.81.
However, R2 varied from nearly 0 to 0.998 depending if it was calculated using data
measured in laboratory or field conditions (Table 3) which points out that sensors must
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be calibrated under conditions as close as possible to those at which the measurements
will be done.[10,11] Nevertheless, these figures have to be taken with caution since they
correspond to laboratory and urban environments. Only a few studies include NO2

measurements indoors with LCS, which could be related to the measurement’s complex-
ity.[38] Among those, measurements in kitchens using NO2 sensors (NO2-B43F,
Alphasense) reported R2 of 0.79–0.94[87] and a comprehensive campaign in 40 homes
using the Aeroqual S500 Sensor System showed R2 values of 0.55–1.00.[22]

3.3.2. Ozone (O3)
The most used techniques for O3 detection are MOS and EC sensors. Both techniques
perform very well under laboratory conditions where all degrees of freedom are con-
trolled (Table 4). O3 sensors have shown good repeatability in laboratory evaluations,[86]

but in the real-world other parameters affect the data quality.
Field assessments have generally shown O3 sensors performance as being encourag-

ing. MOS O3 sensors tend to exhibit slow response times, non-linear relationships with
reference data, limits of detection of several ppbV, limited interferences with other gases
and some sensitivity to temperature and humidity.[59,86] Typical R2 values range
between 0.12 and 0.77 for O3 sensors reported in the AQ-SPEC evaluations.[67,79,88]

MOS sensors show more long-term drift than EC sensors. These authors also stated
that EC sensors show very fast response times with minimal rise and lag times which

Table 3. Performance parameters of NO2 sensors in laboratory and field studies.

Device
Sensor
(type)

Coefficient of
Det. (R2) – Lab

Coefficient of
Det. (R2) – Field Interferences

SGX MiCS 2710 MOS >0.998a 0.02–0.74b-d O3
b

Alphasense NO2-A1 EC 0.97b–0.99e 0.89–0.92e SO2
a, O3

e

CairPol CairClip NO2 ANA EC 0.99f 0.01–0.74b,g NH3
f, O3

b

Alphasense NO2-B4 EC 0.96–0.99b,h,i 0.04–0.90b,c,h,i O3
b, CO2

k

Citytech NO2_3E50 EC > 0.99f 0.00–0.89b,c NH3
f, O3

b

Aeroqual AQYv1.0 EC 0.60–0.77l 0.60–0.88l n.d.
Aeroqual S500 EC n.d. 0.55–1.00m n.d.
Alphasense NO2–B43F EC n.d. 0.89–0.97n n.d.

Coefficient of determination (R2). aWilliams et al.[59]; bSpinelle et al.[86]; cBorrego et al.[67]; dJiao et al.[138]; eMead
et al.[46]; fSpinelle et al.[86]; gDuval et al.[97]; hCastell et al.[39]; iSun et al.[139]; kLewis et al.[77]; lAQ-SPEC[79]; mKang
et al.[22], nTryner et al.[87] Field indoor measurements in bold letters.

Table 4. Performance parameters of O3 sensors in laboratory and field studies.

Device
Sensor
(type)

Coefficient of
Det. (R2) – Lab

Coefficient of
Det. (R2) – Field Interferents

2bTech POM UV 0.995a 0.99a n.d.
Aeroqual AQY MOS 0.975a 0.96f n.d.
Aeroqual S-500 MOS 0.991a 0.94–0.98d n.d.
Alphasense O3B4 EC >0.99b 0.02–0.70f NO2

Alphasense OX-B421 EC 0.99c 0.01–0.66a NO2, NO, CO2

Unitec MOS 0.897a 0.77a n.d.
Aeroqual SM-50 MOS n.d. 0.39–0.99f n.d.
Alphasense OX-B431 EC n.d. 0.48–0.78g n.d.
SGX Sensortech MICS-2714 MOS 0.816h 0.52–0.62h n.d.

Coefficient of determination (R2). aCollier-Oxandale et al.[68]; bSpinelle et al.[86]; cCastell et al.[39], dMasey et al.[140], fAQ-
SPEC,[79] gKang et al.,[22] hTryner et al.,[87] iBaldelli.[25] Field indoor measurements in bold letters.
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suggests potential use for continuous or near-continuous environmental monitoring, lin-
ear response and appropriate detection limits for ambient applications. These authors,
among others, observed O3 sensors interference from NO2 and NO2 sensors interference
from O3.
MOS sensors for O3 are typically SnO2, but better performance is achieved with

WO3. Careful control of ambient air temperature and RH can lead to good MOS
results.[59] EC sensors remain the most common sensor, since, like NO2 sensors, they
are selective, responding only to other strong oxidants (including NO2 and halides).
However, although NO2 sensors can remove O3, it is much more difficult for O3 sen-
sors to remove NO2 and often the O3 sensor signal is actually the combination of NO2

plus O3, then, the NO2 concentration must be measured and subtracted from the total
concentration to derive the O3 concentration. According to Williams et al.,[89] WO3

MOS sensors are better at excluding NO2.
Both O3 and NO2 are toxic and the limit value set by WHO for NO2 is 10 mg m�3

for annual average and 20 mg m�3 for 24 h-exposure, and the limit values of O3 for
human health protection, which can be applied to indoor air, are 100mg m�3 for an
average 8-hours exposure.[3] These low thresholds put very low error levels for these
two gases: if we assume a þ/�25% error of the LV then measuring these species is a
challenge for LCSs.

3.3.3. Carbon Dioxide (CO2)
Most CO2 sensors are based on the NDIR technology, some of them include built-in
temperature and RH sensors for output compensation. This technology is very accurate
and selective as the detection is done in a narrow wavelength band, avoiding absorption
from other molecules. However, sensors must be individually calibrated for temperature
and humidity dependence.[9] Typically, CO2 LCS report accuracies of either ±30 ppm or
±50 ppm (±3% or ±5% of the measured value), which is an acceptable error for most
indoor applications (i.e., evaluation of the occupancy level and ventilation rates in a
room). Recently, with the COVID-19 pandemic, the use of these sensors has experi-
enced a huge growth as CO2 levels have been proposed to be used as an indicator for
estimating the ventilation rate and, indirectly linked, the airborne infection risk.[48,90]

NDIR CO2 sensors are different in their design and the resultant performance. The
first to note is size and form factor: a standard cylindrical shape is common, while
others offer a variety of designs, mostly based on optical moldings on top of an elec-
tronic board. One important difference is the use of single or dual path optics: dual
path is more expensive but provides a reference channel to correct for drift in the
optical components (e.g., SCD30 from Sensirion, which includes T and RH compensa-
tion). The optical design is also important: the simplest design is a straight path, but
this makes the sensor housing larger, so folded optics, integrating spheres and focused
systems are available. The light source is the major power requirement. Tungsten lamps
are low-cost but typically require 300mA when operating. LEDs are now becoming
available at 4 to 4.4 mm emission wavelengths, which dramatically reduces the power
requirements. Likewise, the detector has traditionally been either a thermopile or pyro-
electric, but photovoltaic and photoacoustic detectors are now on the market, each with
different costs, power requirements and performances. Three important performance
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issues should also be considered. NDIR CO2 sensors are linearly dependent on the
ambient pressure, and its correction is a lesser one but desirable. If the CO2 LCS does
not include a pressure sensor, then ±3% weather driven barometric pressure variations
will change the observed CO2 concentration by an additional ±3%. A second problem is
shock resistance. If a LCS uses a tungsten light bulb as the infrared source, then shock
can shift the tungsten filament in the light bulb, significantly shifting the reading. A
third issue is warm up and response time. To get the required accuracy, the optical sys-
tem should be thermally stable. If the light source is thermal and requires more than
10mW power then heat will be generated and the entire optical sensor must be ther-
mally stable to achieve the quoted accuracy, taking typically 15 to 30minutes. Once sta-
ble, the optics respond in milliseconds, but the sensor response time depends on the
rate of CO2 diffusion into the optical cell, so LCS response time is diffusion-limited and
depends on the mechanical design.
To warn the users, it is worth mentioning that there are other options in the market

to measure CO2 using a t-VOC sensor, which indirectly measures the so-called equiva-
lent CO2 (eCO2). This option lacks transparency not only on what an eCO2 is but also
on how the conversion to CO2 is done, which makes these sensors a non-recommended
option.[91] These authors also point out that these kinds of issues are likely contributing
factors to mistrust of LCS in general. On the contrary, the NDIR technology is recom-
mended. Studies on the behavior of the sensor’s output along with working time are
critical for reliable validation of LCS. A standard method is being drafted, ASTM
WK74360 (ASTM International, 2020[92]), for evaluating CO2 sensors in indoor air
applications. Table 5 shows a summary of the performances of some of some NDIR
sensors when compared with reference instruments.

3.3.4. Carbon Monoxide (CO)
CO is mostly measured with EC sensors, with detection limits lower than 10 ppb.
However, there are a couple of studies related with MOS. Piedrahita et al.[93] stated that
the response of the sensor MICS-5525 decreased linearly when the temperature was
increased from 19 �C to 40 �C during chamber testing. Furthermore, R2 ranged from
0.38 and 0.60. Spinelle et al.[94] tested the MiCS 4514 under field conditions. R2 between
the sensor and the reference data ranged from 0.76 to 0.78 during the calibration period
but after 4.5months validation phase, R2<0.1. Regarding EC sensors, Borrego et al.[67]

tested four different sensor systems (AQMesh, CAM_11, ENEA/AirSensorBox,
NanoEnvi) with the same sensor element (Alphasense CO-B4) in a field campaign and

Table 5. Performance parameters of NDIR CO2 sensors.

Sensor System NDIR SENSOR (Company)
Dual/Single
channel

Coefficient of Det.
(R2) – Office Accuracy

Aranet SUNRISE (Sensair) n.d. 0.99a ±30ppm þ3% of reading
Sanity Air SCD-30 (Sensirion) Doble 0.99a ±30ppm þ3% of reading
Stand alone sensor IRC-A1 (Alphasense) n.d. 0.91–0.93c ±50ppm
SignCO2 COZ-IR (G.S.S.) Single 0.97a ±30ppm þ3% of reading
Dioxcare CM1116 (Cubic) Single 0.99a ±50ppm þ 5% of reading

aAIREAMOS[82]; cSuriano et al.[141]

APPLIED SPECTROSCOPY REVIEWS 17



the R2 ranged from 0.53 to 0.87 pointing out that not only the sensor element itself is
important but also the implementation and the algorithm applied in the calculations.
Also, evaluations of CO sensors showed good linearity with reference measurements
and few interferences. For example, Gillooly et al.[95] reported R2 of 0.99 and RMSE of
0.018 ppm, and Casey et al.[96] R2 � 0.96 and RMSE � 0.1 ppm in indoor studies.
Tryner et al.[76] obtained R2 from 0.63 to 0.94 using an Alphasense CO-B4 in studies
carried out in kitchens. In chambers studies, an excellent agreement between EC sensors
and reference data with R2>0.99[39,46] was found. Sun et al.[97] reported that the sensor
element Alphasense CO-B4 was unaffected by humidity and temperature changes dur-
ing chamber studies. However, in a laboratory study, Lewis et al.[77] found that the sen-
sor’s response increased by 0.201mV�ppb�1 per percentage point increase in humidity.
If analyzed with machine learning or modeling corrections, low-cost CO detection tech-
niques resulted in a high degree of correlation (R2 ¼ 0.95–0.99), with uncertainty in the
10–15% range as reported in an outdoor study.[57] However, CO sensors may be linear
over a limited concentration range, therefore the CO sensor should be chosen according
to the concentration range for which it will be used.[98]

3.3.5. Total volatile organic compounds (t-VOC):
LCS determine VOC as an operational metric defined as “total VOC” that covers a large
group of individual substances. An air sample can contain 100–200 types of VOCs with
diverse chemical structures. VOCs are present at different levels of concentration
indoors. The continuous and direct-reading monitoring of the concentration of VOCs
from these sensors is used to better understand AQ changes related to pollutant activ-
ities in the home and to identify sources of pollution such as off-gassing from building
materials or furniture[99] or leaks from technological installations. t-VOC LCS cannot
give a chemical speciation, but instead, they can provide well-resolved time and spatial
information.[77]

PID-based sensors are mostly used for VOC monitoring, but also MOS-based sen-
sors,[47] EC amperometric sensors and gas-sensitive field effect transistors (GasFETs)
exist.[100] A critical downside of the available sensors is the varying (and often
unknown) response factor to certain substance groups. The response factors may vary
considerably for e.g., PID sensors[101] or certain MOS sensors.[102] This can lead to sig-
nificant inaccuracies especially in complex mixtures of 20 or more substances, when
even critical substances may be entirely missed or false-positive may interfere with
the evaluation.
MOS and EC sensors show overall high sensitivity even at sub-ppb levels and specifi-

city to individual VOCs or families of them. However, studies conducted both in labo-
ratories and on-field to evaluate the performance of these devices revealed that the
sensor response was affected by chemical interference and the sensor sensitivity changed
with environmental parameters (temperature and humidity).[37] On the contrary, PIDs
were less selective than MOS and EC sensors but they are more sensitivity and can
measure from sub-ppb to ppm.[103] Although PID sensors are generally used for the
real-time monitoring of t-VOCs concentration, the selection of specific photon energies
of different UV lamps may also allow the ionization and detection of specific chemical
classes e.g., aromatic hydrocarbons.[100] Therefore, in the context of the development of
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MOS and EC sensors, PID sensor’s availability as portable detectors of VOCs have pro-
gressively increasing in the last few years.
PIDs are valuable tools for the detection of VOCs but their performance in terms of

sensitivity, levels of detection and ability to detect many different compounds strictly
depend on PID design features. To detect VOCs, several ultraviolet light sources with
different energies can be used: 10,6, 9.6, 10.0 and 11.7 eV. The most commonly used
lamp emits energy at 10.6 eV. The 11.7 eV lamp can detect many compounds, but it has
a relatively short lifetime (about 500 hours of continuous operation), thus requiring fre-
quent lamp changes, driving up maintenance time and cost. Since the photoionization
technique is not selective, the measurements are quoted as total VOCs (t-VOCs).
Nevertheless, more selective data can be done using lamps at 9.8 or 10 eV, allowing
some selective detection of aromatic VOCs, including for example benzene, toluene
and xylenes.
In addition to the UV source, other design features of a PID could allow an effective

and reliable detection of VOCs. Since temperature can affect the sensor performance,
the compensation over typical operating temperature range (0 to 40� C) by internal
software should be a must for reliable PID. As regards humidity, at higher non-con-
densing relative humidity conditions it can produce a small background signal on the
order of several ppb. Moreover, water molecules could block UV light from the gas of
interest and reduce the span reading by up to 50%. However, thanks to an optimized
detector cell geometry these effects can be minimized (up to 10%). In addition, it is
advisable to keep the sensor temperature a few degrees above the dewpoint temperature
to avoid condensation. Finally, in order to face the non-linearity of output at higher
concentration levels due to self-quenching (also known as the rollover effect), a syn-
thetic span gas, such as the isobutylene, is used as standard calibration gas and to deter-
mine the response factors, which are a measure of the sensitivity of a PID to a
particular gas compared to the standard used. Moreover, it is also possible to attach a
pre-filter tube to allow detection and selective measurement of a single VOC compo-
nent (e.g., benzene).[100]

In a MOS, the sensing element is a semi-conductor (a common metal oxide is SnO2).
Commercial screen-printed ceramic MOS sensors achieve detection limits down to sub-
ppb levels due to the well-known grain boundary effect.[104] The voltage across the sen-
sor layer is usually maintained at values lower than 1V to prevent electromigration in
the layer leading to sensor drift. However, the affinity of the pollutants and the sensitiv-
ity of the sensors depend on the working temperature of the sensor and thus these sen-
sors have to be integrated with heating systems. MOS response is not linear and t-
VOCs concentrations can be overestimated.[105,106] Also, MOS sensors are cheap, and
combining various sensors with different reactive layers can be useful to allow getting a
signature of the mixture of VOCs present in the room as a function of specific activ-
ities, e.g., cooking, cleaning, ventilation, etc.
t-VOC sensors respond to changes in the home activities and to emissions of VOCs,

while their speciation is challenging. Some LCS are specifically produced to monitor
single VOCs, such as formaldehyde, benzene or ethanol, but the collection of reliable
data is still an open task. In particular, cross-sensitivity still remains a critical issue asso-
ciated with these miniaturized devices. VOC sensors are good indicators for the purpose
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of indoor monitoring, awareness and identification of hazardous substance leaks.[107]

Demanega et al.,[37] one of the few studies in the literature using t-VOC sensors, tested
different types in a laboratory under the conditions set by the ASTM D72974-14
Standard Practice for Evaluating Residential Indoor Air Quality[108] and found R2 from
0.74 to 0.92. These authors highlighted the potential to identify high pollutant exposures
and to provide data at high spatiotemporal frequency. Values of R2 from 0.68 to 0.75
were reported from a comparison of t-VOC sensors in homes with a reference instru-
ment, while for the intercomparison among sensors R2 varied from 0.79 to 0.94.[109]

3.3.6. PM1, PM2.5, PM10

Most LCS for particulate matter measurement are based on optical methods (laser scat-
tering) and determine PM2.5, and hence large particles typically generated by mechanical
processes (e.g., dust resuspension). PM LCS do not detect small particles, which are ori-
ginated from several typical indoor activities such as combustion processes, cooking,
cleaning (terpenesþO3), with the majority of them of diameters < 0.1 lm (ultrafine
particles, UFP).[110] Indeed, LCS cannot detect UFP,[32] of paramount interest in the
indoor environment.[111,112] On the other hand, their small size and limitations in air
flow to sample coarse particles, lead to PM10 underestimation in some cases and, in
many LCS, PM10 is typically inferred from the PM2.5 concentration by internal
calculations.
Most direct-reading PM sensors categorize measurements into three-dimensional

fractions: PM1, PM2.5 and PM10. LCS for PM measurement calculate particle numbers
and diameters, then convert them into particle mass as lg/m3. A sensor measuring sin-
gle particles is called optical particle counter (OPC) while a sensor measuring total scat-
tered light intensity is a nephelometer or photometer.[113] The performance of PM
sensors is limited by various physical and sensing “challenges”:

� Unlike reference PM analyzers that control airflow rates, cheaper pumps used in
LCS PMs struggle to control flow rate even if any variation in the flow rate will
lead to bias errors because the number of particles passing the light beam will
vary with flow rate.

� OPCs and Nephelometers measure the optical diameter of particles and infer the
particle mass by assuming a density and refractive index of the particles being
measured to calculate particle mass as PM,[42] which may lead to over/underesti-
mation of the concentration.

� PM measurements by LCS can be impacted by the environmental conditions as
well as gaseous cross-sensitivities for PM and gaseous sensors, respectively.[69]

The effect of relative humidity (RH) must be considered: different studies have
reported the influence of RH on different particle properties, such as: i) particle
volume; ii) shape; iii) refractive index; and, consequently, iv) light scattering
properties.[49,60] A number of correction algorithms and strategies have been
proposed.[114,115,134,135] This problem is not linear: it is negligible below typically
65% RH but then grows rapidly as water vapor approaches 100% RH, leading to
optical oversizing of the particles by the Nephelometer or OPC and hence over-
estimation of the particle mass.
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� Inability to detect very small particles: LCS struggle to measure below 250 to 400
mm, depending on the unit, and cannot detect UFPs, which must be estimated.
UPFs are the most numerous of the spectrum of particles, frequently exceeding
10,000 cm3, but they do not have an equivalent contribution to the total mass
since mass is dependent on diameter. Several studies highlighted LCS variable
response depending on PM size and composition and lack of sensitivity to par-
ticles with diameter lower than 0.3 lm.[7,42,103] Nephelometers have a better
chance of estimating UFPs (with the correct algorithm) because they measure
the total scattering from an ensemble of particles, not just one particle. Not yet
at the price of a LCS, initiatives to develop cost-effective, miniature UFP-sizers
based on electrical-mobility-based techniques are being explored.[116]

� Nephelometers do not measure single particle diameters, so the calculation of
PM1, PM2.5 and PM10 must include assumptions of the particle size distribution.
Further, the definition of particle diameter is not universal. The optical particle
diameter is different from the aerodynamic and electrical mobility diameters for
non-spherical particles. Tapered element oscillating microbalance, beta attenua-
tors and optical PM sensors all measure different particle diameter/mass and do
not align exactly with the reference method, which is gravimetric
(EN 12341:2015).

Despite the disadvantages related to the instruments’ performances, these devices are
continuously being improved, and their use is becoming increasingly widespread both
in outdoor and indoor monitoring campaigns. PM LCS may monitor from low PM
concentration (clean rooms) to pollution levels up to 2,000 mg/m3. Previous studies indi-
cate that the optical PM LCS is more suitable to be used in environments where the
presence of larger particles (and therefore particle mass) is more significant. It has also
been suggested that this is more the case for particles in the accumulation and coarse
mode, where aerosols have had sufficient time to coagulate and condensate and form
accumulation mode particles.[113,117]

LCS have been successfully used to track indoor variations in PM concentrations
associated with home activities and have been compared to research-grade instruments.
The largest PM concentrations were observed when measuring during several activities
(cooking and spraying aerosol products) in different rooms (kitchen and bedroom).[118]

The authors pointed out that estimating the mass concentration in the presence of the
wide variety of PM sources existing indoors is challenging. However, PM LCS can help
to manage personal exposure. There have been a number of comparative studies of LCS
PM sensors.[60,73] Tables 6, S3 and S4 summarize performance parameters of LCS to
determine PM1, PM2.5 and PM10, respectively, in indoor and laboratory studies.

3.3.7. Radon
Radon is the largest contributor to the radiation exposure of populations in indoor
environments since, at normal atmospheric conditions, radon appears on the earth’s
surface in the gas form, and easily accumulates indoors. Radon assessment can be
obtained using active detectors.[121] These have a power supply, have the capacity for
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storing data, can include wireless communications and can operate for short-term and
long-term exposure assessment.
This type of detector is designed to detect alpha radiation, and typically, LCS implementa-

tions use ionization chambers[122–124] or alpha spectrometry.[125–127] Ionization chambers
establish an electrical field between two or more electrodes, and the air is allowed to diffuse
into the chamber, being the ionization caused by the decay of radon which emits alpha par-
ticles. The ionized particles are then accelerated and collide into the electrodes, generating elec-
trical pulses that are then detected and counted for specific time intervals.[128] Alpha
spectrometry can also be used to analyze the air that passes through a passive diffusion cham-
ber and perform inexpensive radon detection based on PIN photodiodes.[129,130] Currently,
there are several commercially available LCS for radon assessment. A recent pioneer study[131]

has evidenced that LCS can be used in short-term radon monitoring, being promising tool for
actively reducing exposure to indoor radon concentrations.

3.3.8. Sulfur dioxide (SO2)
SO2 can be monitored with EC and MOS sensors. It is not normally measured by LCS,
for which they are often ineffective due to their low detection limit, very at the edge of
the typical concentrations of SO2 found indoors, which vary from 0 to 8 ppb.[132] A
study outdoors found low correlations with reference at levels below 5 ppb.[67]

3.3.9. Hydrogen sulfide (H2S)
EC hydrogen sulfide sensors show sensitivity down to a few ppb due to their high elec-
troactivity. These EC sensors will also measure thiols/mercaptans but with lower sensi-
tivity and hence higher LoD, which aligns with the human detection limits.

Table 6. Performance parameters in PM2.5 sensors. Adapted from S�a et al.[38]

References Sampling area Device SENSOR Performance indexes

Palmisani et al.[103] Oncology hospitals Speck R2 ¼ 0.34–0.66
Tryner et al.[87] Kitchen of an

occupied home
Plantower PMS5003 R2 ¼ 0.92–0.94

Baldelli[25] Residential building Shinyei Kaisha PPD42-60 q¼ 0.765�0.894
Shen et al.[28] Spaces in appartment

(kitchen, living room,
study room, bedrooms
and entrance)
and outside

Plantower PMS3003 R2 ¼ 0.85�0.94

Coulby et al.[91] Office Plantower PMSA003i R2 ¼ 0.052–0.058
Hegde et al.[118] Two homes Modified Dylos DC100Pro,

Plantower PMS3003
R2 ¼ 0.54–0.99
R2 ¼ 0.48–0.98

Kaliszewski et al.[76] A high occupancy living
room in a flat

Alphasense, OPC-N3 R2 ¼ 0.55–0.99

Zamora et al.[119] Home (occupied and
non-smoking)

AirVisual Pro,
Speck,
AirThinx

R2 ¼ 0.89–0.90
R2 ¼ 0.27–0.50
R2 ¼ 0.92–0.93

Manibusan and
Mainelis[120]

Three homes Air Quality Egg 2 AQE2,
BlueAir Aware,
Foobot,
Speck

R2 ¼ 0.023–0.81
R2 ¼ 0.24–0.94
R2 ¼ 0.31–0.98
R2 ¼ 0.06–0.98

Coefficient of determination (R2). Spearman correlation (q). Only indoor field studies from the year 2020 onwards have
been included.
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4 Conclusions

The increased awareness of AQ due to its health effects and the rapid technological
advances in the field, have motivated an upsurge of LCS, which can bring a paradigm
shift in IAQ. LCS can give data in near-real time, at a relatively low cost and with easy
deployment, allowing a high temporal and spatial data frequency. To date, LCS gener-
ally do not meet regulatory equivalent monitoring requirements and are not a substitute
of reference-grade measurement techniques indoors. Their sensitivity, time response
and accuracy make their use to characterize the subtle changes in the indoor environ-
ment challenging. However, they offer an excellent opportunity for the IAQ community
in uses like the identification of emission sources in different parts of a household, miti-
gation of IAQ issues, real-time warning systems, personal exposure, and in controlling
buildings from the energy efficiency point of view.
Still, sensors systems with real-time readings can open a new era in high resolution

of spatiotemporal IAQ sensing, empowering individuals to control their own environ-
ments and with several expected benefits including i) real-time characterization of
indoor concentrations, ii) increased spatial resolution, iii) reduced uncertainty, iv) iden-
tification of emitting sources from indoor activities, v) air supply data, vi) improved
IAQ management and vii) health benefits. Advancements in technology promise to
revolutionize IAQ monitoring and allow for much-improved exposure assessment
opportunities. Nevertheless, many challenges need to be addressed, including data reli-
ability and accuracy. Improving portability and reducing the cost of sensors for measur-
ing gaseous pollutants and PM without compromising selectivity and sensitivity are
currently the main challenges in IAQ. The development of sensors for ultrafine/nano-
particle measurement is another future requirement.
There are still many open questions, mainly related to the lack of openness and

standardization of calibration and analysis procedures, evaluation of performance, han-
dling and quantification of interferences. Significant efforts and initiatives have been,
and are being carried out in this line, which aim at standardizing the use and testing
procedures of LCS, which will allow better use of LCS and a better evaluation of their
performance. This question has been already addressed for sensor systems used out-
doors, with a certification scheme based on the uncertainty of the measurement which
is a step forward and opens a new era in the use of LCS in general. An adapted regula-
tion for the measurements with LCS indoors is necessary too. To date, this is precisely
a field subject of important efforts through different initiatives to standardize proce-
dures. In parallel, calibration and analysis algorithms are continuously being reported
with a lack of uniformity in the metrics used in the reported validation results (R2, per-
centage errors, MAE, etc.) and in the parameters to study (linearity, precision, etc.),
putting an important limitation on the comparison of device performance, and conse-
quently difficulties in understanding this field’s developments. Moreover, these results
are mostly reported for outdoor environments. Nevertheless, as discussed in this work,
there are significant differences between the type and number of contaminants found
indoors and outdoors, along with the environmental conditions, relative humidity and
temperature, the latter less variable indoors, and the purpose for which LCS are used,
aspects that must be considered.

APPLIED SPECTROSCOPY REVIEWS 23



While physical and data solutions are being improved in LCS, further studies are
needed in indoor sites, with an effort to compare LCS against reference instruments to
characterize performance, interferences, sensor-to-sensor variability, temporal drift, etc.
An assessment and discussion on the suitability and extrapolation of procedures applied
and evaluation of performance obtained outdoors to indoors is also desirable. A field to
explore in the use of LCS is the remote calibration and the data processing of the entire
network of LCS versus the individual analysis, which initial studies have found to be a
promising procedure. Besides, their use in wearable devices demands easy to deploy
sensors and sensor networks and, by extension, reliable and lower-power wireless com-
munication. Other technological future developments should be aimed to improve the
selectivity and long-term stability of the sensors, which will clearly result in better reli-
ability. Also, the specific problem of the indoor environment demands a higher selectiv-
ity to discern among VOCs at ppb concentrations and measurement of ultra-
fine particles.
Even though LCS are not a replacement of more advanced techniques, and their use

has to be taken with caution, their low cost and characteristics make them useful as a
complement to those for specific purposes, generally as a qualitative source of informa-
tion. Low-cost sensor technology is continuously evolving. The interest by the scientific
community and in citizen science in LCS predicts that this evolution will continue
toward more accurate and selective sensors, likely improving their performance and reli-
ability, and therefore becoming a common instrument in IAQ assessment
and management.
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