
Citation: Terrinoni, A.; Micheloni, G.;

Moretti, V.; Caporali, S.; Bernardini,

S.; Minieri, M.; Pieri, M.; Giaroni, C.;

Acquati, F.; Costantino, L.; et al. OTX

Genes in Adult Tissues. Int. J. Mol.

Sci. 2023, 24, 16962. https://doi.org/

10.3390/ijms242316962

Academic Editor: Alfredo

Ciccodicola

Received: 12 October 2023

Revised: 22 November 2023

Accepted: 25 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

OTX Genes in Adult Tissues
Alessandro Terrinoni 1 , Giovanni Micheloni 2,* , Vittoria Moretti 2 , Sabrina Caporali 3 , Sergio Bernardini 1,
Marilena Minieri 1 , Massimo Pieri 1 , Cristina Giaroni 4 , Francesco Acquati 2,5 , Lucy Costantino 6,
Fulvio Ferrara 6 , Roberto Valli 2 and Giovanni Porta 2

1 Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
2 Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria,

Via JH Dunant 5, 21100 Varese, Italy
3 Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1,

00133 Rome, Italy
4 Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5,

21100 Varese, Italy
5 Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
6 Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
* Correspondence: giovanni.micheloni@uninsubria.it; Tel.: +39-0332-397-106

Abstract: OTX homeobox genes have been extensively studied for their role in development, es-
pecially in neuroectoderm formation. Recently, their expression has also been reported in adult
physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal
mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli.
Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of
functions of genes by varying their temporal expression, with the selection of homeobox genes from
the “toolbox” to drive or contribute to different processes at different stages of life. OTX involvement
in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well
as possible therapeutic targets.

Keywords: OTX homeobox genes; adult tissues; tumor; inflammation; ischemia

1. Introduction

Orthodenticle homeobox protein 1 and 2 (OTX1 and OTX2) are transcription factors
encoded by homeobox-containing genes, embedded in humans on chromosomes 2p13 and
14q21-22, respectively [1]. Protein structures and interactome are described in Figure 1, and the
list of interactors of OTX proteins is available in Supplementary Materials (Figures S1 and S2).

OTX genes in vertebrates and OTX-like genes in lower species (e.g., the Drosophila
orthodenticle otd gene) are indispensable for the specification, regionalization, and terminal
differentiation of the rostral part of the central nervous system [2], involved in the develop-
ment and morphogenesis of the neuroectoderm and the vertebrate central nervous system.
During embryonic development, they are also important for specification of cell identity,
cell differentiation, and the positioning of the body axis [3]. Their pleiotropic activities
thus involve OTX proteins in the morphogenesis and physiology of different tissues and
districts. They can each act singularly on specific cells and tissues or cooperate together
in common pathways. Moreover, the different OTX proteins can coopt specific or shared
effectors in their action (Figure 2). The main loci of their action are summarized in Figure 2
and specifically discussed in the text.

Mutations and abnormal expression of these powerful transcription factor genes are
also involved in several human pathologies. This review aims to highlight the activity of
OTX genes in postnatal tissues, mainly focusing on pathological conditions summarized in
Figure 3 and discussed throughout the text.
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Figure 1. (A) Similarity alignment of OTX1 and OTX2 proteins. Red boxes represent high similarity
protein sequence elaborated using COBALT Constraint-based Multiple Alignment Tool (NCBI). Black
boxes represent the Homeobox domain common to the two transcription factors, small boxes the
nucleotides involved in the DNA binding. (B) Interactors of OTX1 and OTX2 elaborated with STRING
Version 12 software “https://string-db.org/ (accessed on 16 November 2023)”. Network nodes
represent proteins, colored nodes represent query proteins (OTX1, 2) and first shell of interactors.
The filled nodes indicate when a 3D structure is known or predicted. Edges represent protein–
protein associations. The list of interactors has been generated using BioGRID version 4.4.225
“https://thebiogrid.org (accessed on 16 November 2023)”. Only interactors with physical, non-
redundant high-throughput (HTP) evidence have been considered.
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Figure 2. Schematic representation of OTX transcription factors involvement in development and
differentiation in different organs.
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Figure 3. Schematic representation of OTX transcription factors’ involvement in pathological diseases.
Red arrows indicate the effect of upregulation or downregulation of specific effectors. Interactions
with other proteins are specifically indicated in different pathologic conditions. OTX1 and OTX2
often act on the same pathway and inside the same cell system, either forming dimers or complexes
with other proteins.
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2. Development

Analysis of OTX1 and OTX2 in human fetal brains revealed spatiotemporal distribu-
tion of mRNA and proteins during development [4]. OTX2 is expressed in the diencephalon,
mesencephalon, and archicortex, whereas OTX1 can be considered a marker of proliferative
zones of the neocortex in fetal brain development [4].

Double deletion of Otx1 and Otx2 in mice is embryonically lethal [5], whereas het-
erozygous double mutants show several defects in central nervous system and sensory
organ formation due to gastrulation impairment [6,7].

Otx1 knockout (KO) in mice leads to spontaneous epilepsy and seizures [8], and to
repression of the differentiation, but not proliferation, of neuronal progenitor cells (NPCs),
suggesting a role in controlling the differentiation–proliferation balance [9,10]. Conditional
KO in developing neocortex led to its reduction in size and cell number [11].

Otx2 KO revealed a peculiar idiosyncratic role in developmental processes involving
septum formation and neocortex specification, and also in neurogenesis, oligodendroge-
nesis, and the regulation of cholinergic neurons in median ganglion eminences [12,13].
Otx2 deletion in the thalamus instead shifted NPC differentiation from glutamatergic to
GABAergic interneurons [14].

Otx genes are also expressed in sensory organs [6,8,15]. Otx1 and Otx2 play an
essential role in proper mouse retina development in a dose-dependent fashion [16–18]. In
human fetal retina OTX2 is expressed first in the dorsal portion of the optic vesicles and
maintained in the outer layer of optic cup, from which the retinal pigmented epithelium
(RPE) originates [19]. In mice it also induces the production of pigment in RPE through
the induction of genes involved in melanosome glycoprotein formation [17]. Later, it is
also expressed in part of the neural retina (NR), particularly in post-mitotic neuroblast cells
that generate different cell types including ganglion cells, photoreceptors, glial, and Müller
cells [20]. OTX1 expression is instead confined to the anterior retina [19]. The importance
of these two genes is reinforced by the fact that loss-of-function mutations in OTX1 and
OTX2 lead to variably severe ocular malformations such as Microphthalmia-anophthalmia-
coloboma (MAC) [21–24].

In addition to its role in eye formation, OTX genes are also involved in inner ear
development in mammals. In mice, Otx1 and Otx2 are expressed in non-sensory regions,
presumptive lateral crista (Otx1) and ventrolateral part (both genes), whereas mutations
in both genes are associated with utricle, saccule, and cochlea developmental defects [25].
OTX2 regulates the expression of TAp63, a crucial factor in proper inner ear formation [26].

Otx2 expression is strictly correlated with expression of N-myc, another gene involved
in ear development. Otx2 is expressed in the roof of the cochlear duct, and its inactivation in
mice leads to the shift of normally expressing Otx2 regions from non-sensory to prosensory,
marked by the lack of formation of the Reissner’s membrane, the formation of two organs of
Corti, and the dysregulated proliferation of hair cells in the apical portion of the cochlea [27].
Furthermore, several defects are evident in the macula and saccule of Otx1−/− mice, and
markedly worse in Otx2−/+ Otx1−/− animals. Interestingly, the defect in Otx1−/− can be
rescued by overexpressing an Otx2 cDNA, demonstrating a fundamental but overlapping
role of both genes in driving the correct architecture of the organ [25].

3. Embryonic and Adult Stem Cells

In addition to what has already been described earlier, in early embryonic develop-
ment, OTX2 plays a critical role in maintaining embryonic stem cells (ESCs) in a metastable
state, in order to fluctuate between different states of pluripotency. In particular, OTX2 is
required to predispose ESC for differentiation and the morphogenetic process of gastrula-
tion [28].

In pigmented epithelium transplantations approaches in retina degeneration, the
limited clinical benefit is mainly due to the dedifferentiation of the transplanted cells that
undergo an epithelial–mesenchymal transition. In adult tissue, the role of the homeo-
gene OTX2 in preventing dedifferentiation through the regulation of target genes has
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been demonstrated: OTX2 transfected photoreceptors transplanted in a damaged retina
prevented the epithelial–mesenchymal transition [29].

4. Adult Tissues

OTX genes are involved in physiological functions in some adult tissues as well
(Figure 2).

4.1. Neuronal Tissues
4.1.1. Brain

In adult mouse brain, Otx2 is expressed in several regions, including the ventral
segmental area (VTA), lateral geniculate nucleus, superior colliculus, medial septum, the
cerebellum, and choroid plexus [30]. The choroid plexus, located in brain ventricles, is
responsible for the synthesis of cerebrospinal fluid (CSF), where epithelial cells secrete
OTX2 [31–33]. This provides the protein to all of the cortex, where OTX2 exerts a non-cell
autonomous activity, for example, in the supragranular layer of the binocular visual cortex
and in anxiety-related regulation of behavior [34–36].

OTX2 regulates critical periods (CPs) of plasticity in adult brain cortex, where envi-
ronmental stimuli induce a learning process that deeply affects neuronal physiology and
morphology. Since the 1960s, the most studied process involves the visual cortex, where
OTX2 is involved in a positive feedback loop with perineuronal net (PNN) in the induction
and termination of CPs [30,37,38]. In detail, in response to an external stimulus, i.e., a
sensory input, PNN starts to form in the visual cortex. Glycosaminoglycans (GAGs) con-
tained in this specialized extracellular matrix bind OTX2 [37], promoting its internalization
by GABAergic inhibitory interneurons that synthesize parvalbumin (PV-cells). OTX2 in
PV-cells mediate their maturation, which is necessary and sufficient to initiate CP [30,32,34].
The accumulation of OTX2 in PV-cells in mice increases from P20 to P40 when CP ends.
OTX2 effect follows a ‘French flag’ temporal model, characterized by two thresholds: the
first that initiates CP characterized by OTX2 accumulation in PV-cells, and the second that
causes CP closure and non-plastic state maintenance in which OTX2 concentration does
not change [37–39].

Transient inactivation of OTX2 via delivered agents (i.e., siRNA) leads to the reactiva-
tion of plasticity in adult visual cortex. Thus, the differential kinetics of OTX2 regulation
across brain regions might offer opportunities for therapeutic intervention in neurodevel-
opmental disorders [32,40].

OTX2 produced by the choroid plexus also exerts a non-cell-autonomous role in sup-
port cells, i.e., astrocytes, in ventricular-subventricular zones (V-SVZ) and rostral migratory
stream (RMS) in adult brain via the regulation of extracellular matrix (ECM) composition.
This effect is essential for both newborn neuron levels and olfactory bulb formation [41,42].

Brain plasticity associated with OTX2 also extends to the primary auditory and medial
prefrontal cortex, associated with hearing and acoustic effects [43].

4.1.2. Dopaminergic Neurons

Otx2 expression is essential for proper dopaminergic (DA) neuron development and
maintenance [44–46]. In particular, the depletion of Otx2 resulted in a severe reduc-
tion in DA neurons, especially those located in the VTA; abnormal innervation of the
mesolimb, A10 DA axonal projection; and loss and alteration of sensitivity to drugs [47,48],
whereas its upregulation resulted in increased innervation, resistance to neurotoxins, and
reduction in spontaneous locomotor activity [49]. Detailed analysis of OTX2 action in
adult mesencephalic–diencephalic DA neurons has been carried out by Simeone and col-
leagues [50].

4.1.3. Retina and PVR

Otx expression is maintained in adult vertebrate retina, especially in the RPE [15,16,20],
and the OTX2 protein has been observed in some retinal cells [51,52]. The analysis of
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the expression of a subset of genes in retinectomy samples from patients affected by
proliferative vitreoretinopathy (PVR), an inflammatory complication of retinal detachment,
showed an association between OTX genes expression and severity of the disease: those
samples expressing OTX2, VEGFA, TP53, and TP63 are characterized by more severe PVR
and patients require a greater number of surgical procedures, whereas samples with high
OTX1 expression came from patients with a better prognosis [51].

The presence of OTX2 in differentiated cells of the retina is compatible with its role in
cell identity maintenance, while its upregulation in PVR samples can be associated to the
reactivation of proliferation in RPE cells released in the vitreous humor as a consequence of
retinal detachment [53].

OTX1 expression in MIO-M1, a Müller cell line, is altered in response to a hypoxia-
mimicking treatment with cobalt chloride. Interestingly, this gene is upregulated in the
recovery phase after cobalt chloride has been removed, suggesting a differentiating role in
processes activated by hypoxic stimulus in glial cells [54].

4.1.4. Pineal Gland

In addition to Otx action in pineal gland formation [18,55], OTX2 is also present in
melatonin-producing pinealocytes, where it controls the expression of Tph1, Aanat, and
Asmt—enzymes responsible for melatonin synthesis [56].

4.1.5. Pituitary Gland

OTX2 is also involved in pituitary gland development through the control of HESX1
and POU1F1 transcription factors [57,58], and in adult functioning, as observed in patients
where deletion or mutations of OTX2 are associated with pathologies with variable expres-
sion, ranging from anophthalmia, ear abnormalities, and hypopituitarism [59] to pituitary
hypoplasia and defects in pituitary hormone production [58,60–63].

Otx2 is also expressed in mice hypothalamus, where it induces the gonadotropin-
releasing hormone (GnRH) [64,65].

4.1.6. Sinonasal Mucosae and Nasal Polyps

Finally, OTX genes are also involved in pathological conditions linked to inflammation.
They are expressed both in normal sinonasal mucosae and in nasal polyps (NPs) [66], inflam-
matory outgrowths of sinonasal tissue, usually presenting as bilateral inflammatory lesions
originating in the ethmoid sinuses and projecting into the nasal airway beneath the middle
turbinate [67]. In NPs the number of p63-positive cells in the epithelium increases [68,69],
with the ratio between TAp63 and ∆Np63 isoforms correlating with polyp recurrence [66],
consistent with a potential p63 pro-proliferative or oncogenic function [70,71].

In this setting, OTX2 is crucial in determining the progression and possibility of
recurrence, due to its ability to transactivate TAp63, moving cells toward a differentiated,
un-proliferative state associated with lower probability of recurrence compared to cases in
which TAp63 is less expressed [66].

4.2. Breast

Homeobox genes are well studied in mammary gland development, due to their
ability to direct transitions necessary to switch between linear and cyclical phases [72,73],
but little is known on the involvement of OTX genes in this process.

OTX1 is physiologically expressed in breast tissues during the linear and cyclical
organ phases, with a role in cell differentiation and the balance between symmetrical and
asymmetrical division, and it is overexpressed during lactation in mice [74,75].

4.3. Hematopoiesis

OTX1 expression is also involved in the control of blood cell production. Otx1 gene is
transcriptionally active at several hematopoietic sites, i.e., in bone marrow, and especially
in erythroid lineage cells [76]. Indeed, Otx1 deficient mice show fewer red blood cells
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and a reduction in early and late erythroid progenitors; furthermore, they show aber-
rant numbers of leukocytes and myelo-monocytic precursors [76]. In a cellular model of
Shwachman–Diamond Syndrome (SDS), a rare ribosomopathy characterized by altered
hematopoiesis [77], OTX2 has been found to be downregulated [78].

4.4. Myenteric Plexus/Intestine
4.4.1. Inflammation in Mice

Upregulation of Otx genes has also been described in the myenteric plexus along the
gastrointestinal tract in response to an inflammatory challenge. Bistoletti et al. demon-
strated that in response to dinitro-benzene sulfonic (DNBS) acid-induced colitis, there is
a significant increase in both Otx1 and Otx2 mRNA and corresponding protein levels in
longitudinal muscle myenteric plexus (LMMP) preparations of rat small intestine and distal
colon. Anti-OTX antibodies showed an increase in the number of myenteric neurons ex-
pressing the transcription factors in distal colon and in the small intestine—i.e., far from the
site of injury—suggesting that these molecules can also be induced at distant sites [79]. It is
possible that distant OTX1 and OTX2 upregulation is caused by inflammatory mediators
such as VEGFα, positively correlated with OTX2 expression in a report examining retinal
pigment epithelial cells during inflammation [51], or TNFα, indicated as a modulator of
OTX2 expression in in vitro models of chronic subretinal inflammation [80]. In addition, a
positive correlation between inflammatory cytokines (i.e., IL6) and OTX1 has been seen in
a genome-wide study of foot-and-mouth viral disease in animals [81]. We can thus suggest
that OTX genes are implicated in neuronal degeneration during inflammatory states along
the gastrointestinal tract, suggesting OTX genes as potential targets for the development of
new therapeutic approaches [82].

4.4.2. Inflammation in Zebrafish

Likewise, the induction of inflammation in adult zebrafish intestine through a soy-
based diet showed an increase in otx1 and otx2 expression that parallels gut morphological
alterations in the acute phase of inflammation, again suggesting a role in remodelling
processes in response to inflammatory stimuli [83].

4.4.3. Ischemia/Reperfusion in Mice

OTX proteins are also upregulated during intestinal ischemia/reperfusion (I/R) in-
jury and are correlated with alterations of the intestinal neuromuscular function in this
pathophysiological condition (Figure 4 shows characteristic immunohistochemistry of the
specific localization).

Filpa et al. demonstrated that nitric oxide (NO) is involved in OTX1 and OTX2
ischemic-induced upregulation, describing an interplay between both transcription fac-
tors and enteric nitrergic neurons that results in altered motor responses involving NO
production [84]. During both gut inflammation and I/R injury, inducible nitric oxide
synthase (iNOS) and neuronal nitric oxide synthase (nNOS) exert neurodamaging and
neuroprotective actions, respectively, in enteric neuronal homeostasis [84,85]. NO derived
from iNOS promoted OTX1 up-regulation predominantly in enteric glial cells and in few
myenteric neurons; whereas nNOS is more closely related to OTX2 up-regulation, which is
only seen in the soma of a relatively small percentage of myenteric neurons, sustaining the
protective role of OTX2 already noted in NPs [66,84]. The linkage of OTX1 and OTX2 and
NO pathways to cell damage and inflammatory activity suggests that OTX transcription
factors can be interesting targets for the treatment of gastrointestinal problems such as I/R
injury [86].
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1 
 

 

Figure 4. Confocal images showing immunohistochemical localization of OTX1 and OTX2 in lon-
gitudinal muscle myenteric plexus (LMMP) whole-mount preparations of the rat small intestine
and colon after DNBS-induced colitis. (A–F) Co-localization of OTX1 with the glial marker S100 β.
(G–L) Co-localization of OTX2 with the pan neuronal marker HuC/D. Arrows indicate neurons and
asterisks indicate glial cells. With modifications from Bistoletti et al., 2020 [74]. Bar: 50 µm.

4.5. Mastocytosis

A genome-wide association (GWAS) in patients affected by mastocytosis revealed a
potential novel involvement of OTX2 [87]. Mastocytosis comprises a heterogeneous group
of diseases which causes abnormal accumulation of clonal mast cells (MC) in skin, bone
marrow, and/or other visceral organs [88]. SNP-array analysis detected polymorphisms
associated with the disease, including polymorphism rs11845537 G > A in the OTX2-
AS1 gene, which is frequently observed both in adults and in children with cutaneous
mastocytosis [87]. OTX2-AS1 belongs to the family of natural antisense transcripts (NATs),
a class of RNAs having sequence complementarity with other transcripts and involved in
several cellular processes ranging from proliferation to EMT and tumorigenesis [89]. Its
expression has also been observed in developing retina [90]. However, a potential role
of the OTX2-AS1 gene and the subsequent involvement of OTX2 in mastocytosis is still
undetermined [87].
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5. Tumor Progression
5.1. Medulloblastoma

The main tumor in which OTX genes have been studied is medulloblastoma (MB),
the most common brain tumor in children, with virtually all medulloblastomas expressing
OTX1, OTX2, or both genes [91].

MB originates in the cerebellum, where OTX2 is detectable during development in
progenitor cells of the external granule layer [92] and then becomes restricted to choroid
plexus, pineal gland, and retinal pigmented epithelium postnatally [93].

MB is divided into five molecular subgroups (WNT, SHH/wild type TP53, SHH/
mutant TP53, Group 3 and Group 4) with unique genetic, epigenetic, and molecular
signatures [94,95]. OTX2 is highly expressed in Group 3 and Group 4, and is expressed in
WNT MB but not in SHH, which usually shows OTX1 expression [95,96]. The expression
of these genes is also associated with the localization and prognosis of these tumors: OTX1
is expressed in a high proportion (53%) of MB, especially in nodular/desmoplastic tumors,
normally localized in the hemisphere and large cell variants, and it is associated with either
very young or adult age of onset. OTX2 is also expressed in a large proportion (>66%)
of medulloblastomas and is specifically associated with vermian topography and classic,
large cell, and anaplastic variants. This gene was also associated with the development of
leptomeningeal metastasis and shorter overall survival [91,97,98].

Various studies have demonstrated that all-trans retinoic acid (ATRA) repressed OTX2
expression and inhibited OTX2-expressing medulloblastoma cell growth, suggesting that
medulloblastomas may be amenable to therapy with retinoids [99]. In fact, pharmaco-
logically relevant doses of ATRA induce apoptosis in medulloblastoma cells—although
no connection with anaplastic histology or inhibition of OTX2 expression was estab-
lished [100,101].

In addition to its expression levels, OTX2 is also duplicated in several MB with no
WNT or SHH activated pathways [102], thus leading several studies to elucidate an OTX2
oncogenic role in medulloblastomas.

In OTX2 expressing MB cell lines, silencing of the gene caused downregulation of
directly targeted cell cycle genes and indirectly targeted genes for visual perception, and
the induction of differentiation to a neuronal-like status, recalling events in cerebellum
development [103]. Surprisingly, overexpression of this gene in MB cell lines lacking
endogenous OTX2 expression initially induces cell cycle progression but finally inhibits
cell proliferation, activating a senescence-like phenotype that involves the P53 pathway
and/or secretion of senescence-associated factors, suggesting that OTX2 is unable on its
own to control cell cycle [96].

In fact, oncogenic properties exerted by OTX2 are associated with MYC, another
typically amplified and/or overexpressed gene in medulloblastoma [104], which is directly
induced by OTX2 [96] and frequently colocalizes with OTX2 [105] to promoters of MB [104]
and embryonic/neural stem cell specific genes [106].

As described for other transcription factors like CRX, it is possible that OTX2 exerts a
non-canonical transcription factor activity that involves histone acetylation and methylation
of specific promoters [107]. This hypothesis suggests that OTX2 interacts with ATXN7,
promoting histone acetylation through recruitment of histone acetyl transferase (HAT)-
containing activators, even if direct evidence of this mechanism is lacking [105]. In addition,
Group 3 and 4 MB have high levels of trimethylated histone 3 lysine 27 (H3K27me3) [108]
either in the presence or absence of mutation in H3K27 demethylases [108], and OTX2
silencing in MB cell lines resulted in downregulation of polycomb genes, that are required
for H3K27 methylation, and upregulation of H3K27 demethylases, causing a decreased
in trimethylated H3K27 especially in OTX2-binding promoters [109]. One effect of this
chromatin landscape regulation is the downregulation of axon guidance signaling genes
in Group 3 and Group 4 MB, and specifically of semaphorin ligand and receptors, which
guides differentiation in embryonic neurons [95]. Further studies in Group 3 MB revealed
a OTX2-PAX3 signaling axis that controls cell fate [110].
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Taken together, these data indicate that OTX2 action in MB varies in different MB
subgroups [110].

5.2. Retinoblastoma

RB is the most common ocular cancer, and it often reveals morphological features
suggesting its origin from photoreceptor cells (e.g., formation of fleurettes and Flexner–
Wintersteiner rosettes) [111]. This tumor mainly occurs due to biallelic mutation of the RB1
gene on chromosome 13; but other events, such as chromosomal anomalies (isochromosome
6p or extra copies of chromosome 1p) [111] or epigenetic changes [112], are involved in RB
development. RB protein is also involved in several cancers due to its ability to interact
with p53 and p21 and regulate cell cycle and apoptosis [113].

Due to the toxicity of standard treatments [114,115], several efforts have been made to
identify other candidate therapeutic targets [112], with a strong interest in genes related to
stemness due to the peculiar role of cancer stem cells in tumor development, treatment,
and response to therapies [116,117].

Analysis of expression profiles of RB tumor samples and cell lines identified several
genes and proteins overexpressed in this pathology [52,118]. Interestingly, all these genes
are associated with OTX2, either directly or indirectly. The high expression of OTX2 and
CRX in RB tumors and cell lines suggested that retinoblastomas may originate from cells
normally expressing these transcription factors, such as bipolar cells or photoreceptor
precursors [52]. Expression of HIWI2, a PIWI-like protein involved in stem cell self-renewal,
is increased in Y79 cells, and its knockdown significantly downregulates OTX2 protein and
gene expression, perhaps through PI3K/Akt or FGF signaling pathways [119,120].

We recall that CRX and OTX2 have important roles in the development of human retina:
CRX is involved in the proliferation of cells and in cells committed to the bipolar lineage,
whereas OTX2 is associated with the maturation of photoreceptor cells. In mature retina,
these genes show a reversed expression pattern: CRX is most abundant in photoreceptors
and OTX2 is primarily expressed in bipolar cells [121].

OTX2′s crucial role in cell fate determination in mouse and human retina [52,122]
pointed toward this gene as a potential target for new therapies for RB. Effectively, OTX2
knockdown (KD) by siRNA or downregulation through treatment with ATRA resulted in
less proliferation and increased cell death in cell lines and tumor growth reduction in vivo,
suggesting that OTX2 could indeed link multiple tumor-driving pathways involving CRX,
C-MYC and RB phosphorylation [123].

5.3. Sinonasal Neoplasms

Analysis of the expression of OTX genes in tissues of the nasal cavity revealed a signif-
icant modulation in neoplastic tissue, suggesting that the activation/inactivation of OTX
genes is involved in the pathogenesis of different types of sinonasal neoplasms [124,125].
Analysis by real time PCR and immunohistochemistry revealed that both genes are ex-
pressed in normal sinonasal mucosa. Furthermore, high expression of OTX1 was detected
in non-intestinal-type adenocarcinomas (NITACs), whereas OTX2 was present in olfactory
neuroblastomas (ONs) and poorly differentiated neuroendocrine carcinomas (PDNECs).
Interestingly, neither OTX1 nor OTX2 was detected in intestinal-type adenocarcinomas
(ITACs) [124,125]. Intriguingly, it has been shown that chromosomes 2 and 14, on which
OTX1 and OTX2 genes map, are present in extra copies in ON samples of many patients,
suggesting a mechanism associated with chromosomal dosage [126].

Taken together, these data point toward OTX genes and protein as markers for proper
tumor classification and potential new targets for therapy.

5.4. Laryngeal Squamous Cell Carcinoma

OTX1 has an oncogenic role in laryngeal squamous cell carcinoma (LSCC) tumorigen-
esis and progression. LSCC is one of the most common cancers occurring in the head and
neck region [127,128]. Tu and colleagues demonstrated for the first time that the overex-
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pression of OTX1 in LSCC tumor samples is associated with lymph node metastasis and
poor prognosis. OTX1 KD resulted in reduction of proliferation, migration, and invasion
capacity in LSCC cell lines and diminished growth in xenograft. They also found that
OTX1 is negatively regulated by miR-129-5p [129]. This miRNA has already been studied
in many types of cancers [130–132] and microRNAs (miRNAs) are strongly associated with
the development and lymph node metastasis of laryngeal cancers [133,134]. Therefore, the
upregulation of miR-1295p could be a potential therapeutic strategy for patients with LSCC
and high OTX1 expression [129].

5.5. Esophageal Squamous Cell Carcinoma

Esophageal squamous cell carcinoma (ESCC) is a multifactorial disease characterized
by a low survival rate due to late-stage diagnosis, with a high incidence in both Asian and
Western countries [135,136]. Comparative analysis of ESCC and adjacent noncancerous
tissues revealed that an increased expression of OTX1 in ESCC is associated with tumor size,
lymph node metastases, and survival [136]. Studies of overexpression and silencing in cell
lines indicate that OTX1 promotes migration and invasiveness in vitro and tumorigenesis
in nude mice xenograft models [136].

5.6. Gastric Cancer

Gastric cancer (GC) tissues also present a high expression of OTX1 compared with
adjacent non-tumor tissues, both at the mRNA and protein levels, [137,138] with higher
levels in GC that develops lymph node metastasis and in patients with lower survival
rate [138].

OTX1 KD in GC cell lines caused a reduction in proliferation, with cell cycle arrest in
the G0/G1 phase and less migration and invasion via the reduction of the expression of
mesenchymal markers and EMT-related transcription factors, a critical step involved in
cancer metastases [139]. Furthermore, apoptosis is increased in response to OTX1 KO [138].

Analogously to what is observed in other neoplasms, OTX1 activity is associated with
levels of miR-3196, a GC commonly downregulated microRNA, with the OTX1 3′-UTR
(untranslated region) as a target [140].

These findings demonstrate an OTX1 role in GC carcinogenesis, promoting the metas-
tasis of GC cells by the induction of the EMT process [138].

5.7. Colon/Colorectal Cancer

OTX1 overexpression is also implicated in colorectal cancer (CRC) development and
progression. This gene is commonly overexpressed in CRC tissues and leads to tumor
growth in vivo and cell proliferation and invasion in vitro. Inhibition of OTX1 expression
instead reduces proliferation and invasiveness in vitro [141].

It was further demonstrated that induced upregulation of OTX1 in CRC cell lines
causes an epithelial–mesenchymal transition (EMT)-like phenotype in CRC cells, as shown
by the up-regulation of mesenchymal markers (N-cadherin and Vimentin) and EMT re-
lated transcription factors (i.e., Twist1, Snail, Slug, and ZEB1) and the concomitant down-
regulation of epithelial marker E-cadherin [141].

EMT regulation in CRC also involves other molecules, such as long noncoding RNA
(lncRNA) FEZF1-AS1, which is overexpressed in CRC tissues and cell lines and positively
affects OTX1 protein levels [142]. Furthermore, its inhibition reduces EMT activation via
the downregulation of OTX1 protein [142].

Similarly, OTX1 interacts with lncRNA HNF1A-AS1 and PBX3 in colon cancer to
activate the extracellular-signal-regulated kinase/mitogen-activated protein kinase (ERK/
MAPK) pathway and promote angiogenesis via the PBX-OTX1-VEGF axis [143].

Therefore, OTX1 control of EMT and other pathways could be a potential target for
the therapy of colon cancer [141].
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5.8. Hepatocellular Carcinoma

OTX1 further contributes to Hepatocellular carcinoma (HCC) progression by regulat-
ing the ERK/MAPK pathway. The expression level of OTX1 was significantly elevated in
HCC tissue compared to paired non-cancerous controls, and OTX1 silencing resulted in
cell growth retardation, cell cycle arrest in the S phase, and decreased phosphorylation of
ERK/MAPK signaling [144,145]. OTX1 expression was also positively correlated with the
expression of a lncRNA, MAFG-AS1, whose inhibition suppressed proliferation, migration,
invasion, and angiogenesis in HCC [146].

5.9. Pancreatic Cancer

Pancreatic cancer (PC) is one of the most lethal tumors, ranking as the 7th leading
cause of global cancer deaths in the developed world [147]. Studies revealed that OTX1 is
highly expressed in pancreatic cancer tissues and cell lines [148,149], and that it interacts
with multiple factors in PC.

OTX1 is a downstream target of miR-4516, which is down-regulated in pancreatic
cancer tissues and cell lines, suggesting its role as a tumor suppressor. Its overexpression
inhibited pancreatic cancer cell proliferation, migration, and invasion, via negatively reg-
ulating OTX1 [148], pointing toward miR-4516/OTX1 interaction as a novel therapeutic
target for PC. Moreover, miR-4269 overexpression inhibits pancreatic cancer cell prolifera-
tion, migration, and invasion by affecting the E-box binding homeobox 1 (ZEB1)/OTX1
pathway [149]. ZEB1 is a zinc-finger-homeodomain transcription factor that regulates
cell growth and differentiation [150,151]. Bioinformatic prediction revealed that ZEB1
could bind to OTX1 promoter and activate its transcription [149]. MiR-4269, modulating
ZEB1/OTX1 axis, exerts tumor inhibitory effects on pancreatic cancer progression and
offers a new insight into the clinical treatment of pancreatic cancer patients [149].

5.10. Breast Cancer

OTX1 is overexpressed in breast cancer samples, and its expression correlates with
p53 levels. Analysis of interaction between the two revealed that p53 directly binds the
OTX1 promoter, inducing its expression [74].

Analysis of OTX1 in LA7, a breast cancer stem cell (CSC) line, demonstrated that p53
and OTX1 levels increased when these cells were stimulated to differentiate, suggesting
their involvement in asymmetrical division of CSCs [74]. These data point toward OTX1, to-
gether with p53, as a central molecule in the breast cancer stem cell symmetric/asymmetric
division balance, similar to what observed in mammary SCs [75,152].

Similar to observations in other tumors, lncRNA and miRNA modulate OTX1 gene
expression. In particular, miR-3196, which negatively regulates OTX1, is “sponged” by
ADPGK-AS1 lncRNA, whose overexpression in breast cancer is a potential prognostic
factor [153]. The depletion of miR-3196 allows OTX1 to exert its proliferating effect [153].

5.11. Lung

Non-small cell lung cancers (NSCLC) account for approximately 85% of lung can-
cers [147] and can be subdivided into lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), and large-cell carcinoma (LCC).

In LUAD, DMBX1 (diencephalon/mesencephalon homeobox 1), a homeodomain-
containing transcription factor of the bicoid sub-family, interacts with OTX2, preventing it
from directly activating p21 transcription, thus causing cell cycle blockade in G1/S [154],
an event already described in MB [103].

Analysis of NSCLC tissues and cell lines revealed an overexpression of OTX1 and
its silencing revealed a central role in promoting proliferation, migration, and malignant
progression in this pathology [155]
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5.12. Bladder Cancer

There are more controversies surrounding OTX1 involvement in bladder cancer, which
includes several types of cancer arising from bladder and upper urinary tissues and arises
when bladder epithelial cells become malignant [156]. A genome-wide methylation analysis
on bladder cancer and healthy bladder tissues identified, among others, OTX1 as a tumor-
specific highly methylated gene [157]. Starting from these data, Beukers et al. identified
OTX1, FGFR3, and TERT as a combined diagnostic urinary biomarker in samples of patients
affected by primary non-muscle invasive bladder cancer (NMIBC), either for detection or
recurrence in high-grade primary tumors [158].

However, a more recent study on bladder cancer and healthy tissues and cell lines
detected the overexpression of OTX1 in cancer that correlates with poor prognosis in
patients. KD and overexpression experiments in cell lines identify an association between
OTX1 expression and motility, cell cycle progression and tumor growth in xenografts [159].

The analysis of exosomes from urine of patients affected by high-grade muscle-
invasive bladder cancer identifies the presence of OTX2-AS1, but functional studies on
OTX2 involvement remain to be carried out to clarify its possible involvement in pathol-
ogy [160].

5.13. Lymphoma

OTX genes are also involved in lymphomas. OTX1 is overexpressed in Hodgkin’s
lymphoma (HL) cell lines, whereas OTX2 and OTX2-AS1 have been detected only in the
KM-H2 line [161]. Analysis of primary patient samples revealed that both OTX1 and OTX2
are overexpressed, while OTX2-AS1 levels remains analogous to those observed in B-cells,
suggesting that it does not have a role in HL [161]. Furthermore, multiple copies of these
genes are present in HL cell lines [161]. OTX2 expression in KM-H2 line is induced by
aberrant FGF2-pathway signaling, with OTX2 controlling MSX1 and FOXC1 transcription
factor expression.

Interestingly, the typical T-cell, zinc-finger, and homeobox gene ZHX1 is upregulated
by both OTX genes and may sustain the deregulated differentiation of B-cells in HL [161].

OTX1, but not OTX2, is expressed in specific subsets of B-cell non-Hodgkin’s lym-
phomas (NHL): in particular, Omodei and colleagues detected OTX1 expression in nearly
all diffuse large B-cell lymphomas, Burkitt lymphomas, and high-grade follicular lym-
phomas, but not in precursor-B lymphoblastic lymphoma, chronic lymphocytic leukemia,
marginal zone, and mantle cell lymphomas, or multiple myeloma. A subset of germinal
center (GC) B-cells carrying plasma markers also express OTX1, suggesting a role in B-cell
differentiation [162].

These findings hint that OTX1 levels might be useful as a molecular marker for high-
grade GC-derived NHL and its involvement in B-cell lymphomagenesis [162].

6. Conclusions

In this review, we examined studies that implicate the functions of OTX genes in a vari-
ety of pathological conditions as well as normal differentiation processes. Interestingly, the
sometimes unique and sometimes joint action of OTX1 and OTX2 reflects the evolutionary
amplification of the function of genes by varying the time and place of their expression.

The best example of this process is represented by the mammary gland, where home-
obox (HB) genes have a critical role in both cell growth and differentiation. In normal
mammary gland, HB genes are involved in ductal formation, epithelial branching, and
lobulo–alveolar development by regulating cell proliferation and differentiation [73]. HB
genes are controlled in a spatial and temporal manner in both stromal and epithelial cells
and when homeobox genes are misexpressed in animal models, different defects are dis-
played in mammary gland development. During the cyclical development of the mammary
gland, the OTX1 gene is overexpressed in lactation, confirming a role of this transcription
factor in cell differentiation [75]. Additional data show different OTX1 gene expression
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levels in mice breast tissues during the linear and the cyclical organ phases, suggesting its
function in normal stem cell differentiation [74].

In adulthood, OTX1 and OTX2 expression is maintained in only limited tissues,
most of which are reasonably associated with nervous system, such as choroid plexus,
dopaminergic neurons, enteric nervous system, pituitary and pineal glands, or sensory
organs such as retina or sinonasal mucosae, but also with non-neuronal tissues such as
breast or hematopoietic sites.

Their frequent expression in pathological conditions associated with inflammation, as
described in retinae, nasal polyps, intestines, or cancer shed a new light on these transcrip-
tion factors as potential drivers of pathologies, and thus potential therapeutic targets.

The behavior of these genes strengthens the hypothesis that homeobox genes from
the “toolbox” can be spatially and temporally selected for their function during the entire
lifespan, from embryonic development to adult life [163]. Of particular interest are the
findings that the OTX genes have important roles in tumor development and inflammatory
processes, making them potential diagnostic and/or prognostic tools and also conceivable
therapeutic targets for corresponding pathologies.
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