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Abstract
We construct the super Koszul complex of a free supercommutative A-module V of rank 
p|q and prove that its homology is concentrated in a single degree and it yields an exact 
resolution of A. We then study the dual of the super Koszul complex and show that its 
homology is concentrated in a single degree as well and isomorphic to Πp+qA , with Π the 
parity changing functor. Finally, we show that, given an automorphism of V, the induced 
transformation on the only non-trivial homology class of the dual of the super Koszul com-
plex is given by the multiplication by the Berezinian of the automorphism, thus relating 
this homology group with the Berezinian module of V.
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Mathematics Subject Classification  17A70 · 16E30 · 16E40 · 58A50

1  Introduction

The definition of the Koszul Complex, whose first introduction as an example of a com-
plex of free modules over a commutative ring A dates back to Hilbert, marks the advent of 
homological methods in commutative algebra in the early 1950s. Since it is a resolution of 
k = A∕m with (A, m) a regular local ring, or of R = S∕(x0,… , xr) , with S = R[x0,… , xr] , 
it allowed the computation of derived functors like Tori(A,M) and Exti(A,M) for any 
S-module M, hence of important homological invariants—like the projective dimension of 
a module (or its Koszul homology)—and their relations to more classical concepts, like for 
example the depth of a module.
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The Koszul complex may also be constructed in a non-commutative setting, i.e. for any 
left A-module M with A any ring and elements x1,… , xr in A, there exists a Koszul com-
plex K(x1,… , xr,M) , when xi are pairwise commuting when viewed as multiplication maps 
xi ∶ M → M . In this paper, we consider the case of a commutative superalgebra S and there-
fore we take the xi ’s to be supercommutative. We first provide the construction of the Koszul 
complex K(x1,… , xr) in the supercommutative case and then we compute its homology in the 
universal case S = A[x1,… , xr] , with A supercommutative. In doing so, we revisit the proof 
that it is a resolution of A as a S-module, and then we study the dual complex K∗(x1,… , xr) 
and calculate its homology, hence computing Exti(A, S) . In particular, this produces the 
Berezinian of the free A-module F =

⨁
i Axi.

Although it is fair to say that results regarding the Koszul complex in a “super setting” have 
previously appeared—see [8] -, we are not aware of a complete and detailed treatment of this 
fundamental construction in the existing superalgebra or supergeometry literature. We take 
the chance to fill such a gap with the present paper, which provides also a completely self-
contained exposition of the subject. Further, we remark that the supercommutative setting for 
the Koszul complex includes of course the commutative case, in a way that clearly shows the 
intimate supercommutative nature of the classical Koszul complex. Moreover, the magical 
self-duality of the classical Koszul complex—allowing for example for the rich theory of com-
plete intersections or, more generally, Gorenstein rings in commutative algebra -, is put in the 
right setting within the treatment of the super Koszul complex of this paper, where it is made 
clear that the dual of a super Koszul complex is not in general isomorphic to the same Koszul 
complex, but to another one, depending on the numbers of even and odd variables involved. 
Finally, we stress that the given construction via homology of the super Koszul complex, pro-
vides a completely invariant construction of the Berezinian of a free-module, a crucial build-
ing block for modern supersymmetric theories in theoretical physics.

The paper is structured as follows. In section two, we establish our conventions and we 
provide the reader with some definitions and preliminary result. In particular, in Theorem 2.2, 
we use our superalgebraic setting to compute the homology of the classic Koszul complex, 
which will be used later on in the paper. In section three, we construct the super Koszul com-
plex of a free supercommutative A-module V and we compute its homology in Theorem 3.5. 
The result is built upon Lemma 3.3 and Lemma 3.4, which compute the homotopy operator 
of the differential of the super Koszul complex. In this respect, in Remark 3.6 at the end of 
section three, we address the differences with the classical Koszul homology and we briefly 
discuss the interesting case of characteristic p in the superalgebraic setting by means on an 
example. In section four we introduce the dual of the super Koszul complex and we briefly 
discuss the functoriality of the construction. Then we proceed to compute the homology of 
the dual of the super Koszul complex in Theorem 4.3, whose proof is based on the ancillary 
result Theorem 2.2. Finally, in the last section we make contact with the Berezinian module of 
V: in particular, we prove that given an automorphism of V, a representative of the homology 
of the dual of the super Koszul complex transforms with the inverse of the Berezinian of the 
automorphism. This allows to identify the (dual of) Berezinian module of V with the only non-
trivial homology module of the dual of the super Koszul complex of V.

Addendum: soon after this paper appeared as a preprint, Prof. Ogievetsky makes us aware 
that the super Koszul complex and its dual first appeared in [9], by him and I.B. Penkov—see 
Corollary 4 therein -, but a detailed treatment has never indeed appeared in the literature. We 
would like to thank him for pointing out this reference to us.
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2 � Preliminary definitions and the Koszul Complex via Superalgebra

In this section, we recall some elements of superalgebra that will be used in the following. 
For a thorough exposition of superalgebra we refer to the classical [8] or the recent [5].

Let A be any superalgebra of characteristic 0 and let V = Ap|q be a free A-supermodule 
with basis given by {x1,… , xp|�1,… , �q} , where the ℤ2-grading, or parity, reads |xi| = 0 and 
|�j| = 1 for any i = 1,… , p and j = 1,… , q. We define

where Symk( ⋅ ) ∶ ����A → ����A is the (super)symmetric k-power functor from the 
category of A-supermodules to itself. Henceforth we will refer to Symk( ⋅ ) simply as the 
k-symmetric product. We observe that R has a structure of a ℤ-graded A-algebra, where the 
products Ri ⊗ Rj → Ri+j are induced by the symmetric product, and also of a ℤ2-graded 
commutative (or supercommutative) A-algebra—we say that it is an A-superalgebra—
where the grading is induced by that of V.

It is worth noticing that A is a R-module thanks to the short exact sequence

where I1 ∶=
⨁

k≥1 Sym
kV is the (maximal) ideal of R generated by V ≅ Sym1V ⊂ R and, 

hence, A ≅ R∕I1R. The ideal I1 has the following presentation:

where Π ∶ ����A → ����A is the parity changing functor, acting on objects by simply 
reversing their parity. In the (2.3) the (surjective) morphism p ∶ R⊗ ΠV → I1 is defined as 
follows on even and odd generators

Notice that p is an odd morphism, as it reverses parity.
Given V as above we define its dual as V∗ ∶= HomA(V ,A). This defines again a supercom-

mutative A-module with parity splitting given by V∗ = HomA(V ,A)0 ⊕ HomA(V ,A)1 , i.e. the 
even and odd A-linear maps. For any i ≤ k there exists a pairing given by

If V has basis given by {x1,… , xp|�1,… , �q} as above, this can be obtained by considering 
the dual space V∗ as the space having basis given by {�x1 ,… , �xp |��1 ,… , ��q} , so that one has 
the identification

(2.1)R ∶=
⨁

k≥0

Rk with Rk ∶= SymkV ,
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Notice in particular that, for k = i one has the duality pairing SymkV∗ ⊗ SymkV → A.
Notably, the above superalgebraic setting can be used to reinterpret the construction of 

the “ordinary” Koszul complex (see for example [7] for an extended treatment of the sub-
ject), and compute its homology in a very economic and elegant way.

Let us consider indeed a free-module AN for a certain ring or algebra A with a basis 
given by {x1,… , xN} . Then one can construct the free supermodule AN|N = AN ⊕ ΠAN 
with a basis given by {x1,… , xN|y1,… , yN} , where |xi| = 0 , i.e. the xi ’s are even, and 
|yi| = 1 , i.e. the yi ’s are odd, for any i = 1,… ,N : in this sense, the yi ’s can be defined as 
yi ∶= �xi , just by changing the parity of the generator of AN . Notice that the xi ’s and the 
yi ’s are not A-linearly dependent.

Here, the supermodule AN|N plays the role of V introduced in the above construction, so 
that R can be written as

where we have defined

Notice that, classically, B and U can be seen respectively as the symmetric and exterior 
algebra over a set of N generators (over A). Let us define the following multiplication oper-
ator on R:

where b ∈ B and F ∈ Sym∙U . In other words, the action of d corresponds to the mul-
tiplication by the element 

∑
i xi ⋅ yi in R: it is immediate to observe the operator is indeed 

nilpotent, i.e. d◦d = 0 because the multiplying element 
∑

i xi ⋅ yi is odd. It follows that d 
makes R into an actual complex R ∶= K∙, where the ℤ-grading is induced by the (super)
symmetric powers of U as in (2.3) and the pair (K∙, d) is a differentially graded (dg) B-alge-
bra, which we call the (dual of the) Koszul complex associated with AN , or Koszul complex 
of AN for short.

Before we compute the homology of the Koszul complex and for future use, we give a 
straightforward generalization of the Euler vector field and its action to a supercommuta-
tive setting. Let f ∈ A[x1,… , xp|�1,… , �q] = Sym∙V  be a bi-homogeneous polynomial, i.e. 
homogeneous in the xi ’s and in the �j’s. Then the map f ↦ deg f  , which associates with f 
its bi-homogeneous degree is well defined. Now, let E be the Euler vector fields, i.e. the 
differential operator defined

and acting on polynomials. Then one has the following easy lemma, which mimic the ordi-
nary one for the commutative case.

(2.2)
SymiV∗ ∶= {D ∶ Symk≥iV → Symk−iV ∶ D is a homogeneous operator of order i}.

(2.3)R = B⊕ (B ⋅ U)⊕ (B ⋅ Sym2U)⊕…⊕ (B ⋅ SymNU) = B⊗A

N⨁

k=0

SymkU.

(2.4)B ∶= A[x1,… , xN] and U ∶= A[y1,… , yN].

(2.5)E ∶=

p∑

i=1

xi�xi +

q∑

j=1

�q��q .
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Lemma 2.1  Let f (x1,… , xp|�1,… , �q) ∈ A[x1,… , xp|�1,… , �q] a bi-homogeneous poly-
nomial and let E ∶=

∑p

i=1
xi�xi +

∑q

j=1
�q��q be the Euler vector field. Then

where deg f  is the degree of the bi-homogeneous polynomial f.

Proof  Obvious, as if follows from the case of monomials. 	�  ◻

Clearly, the above reduces to the ordinary result setting �i = 0 for any i. In particular 
this enters the proof of the homology of the Koszul complex, which—with reference 
to the above definition—is concentrated in degree N as the following theorem shows.

Theorem 2.2  Let (K∙, d) the Koszul complex associate to AN for some A. Then the homol-
ogy of (R∙, d) is concentrated in degree N. More in particular, we have

Proof  We construct a homotopy for d ∶ Ki → Ki+1. To this end, let us consider 
hK ∶=

∑N

i=1
�xi�yi ∶ Ki → Ki−1. Without loss of generality, we can restrict to homogeneous 

elements b ∈ B and F ∈ Sym∙U and we compute:

This leads to

Since deg(F) ≤ N we have that N − deg(F) ≥ 0 , so that if deg(b) > 0 the sum above is 
never zero, and for any such pair (deg(b), deg(F)) with deg(b) > 0 and 0 ≤ deg(F) ≤ N we 
can define a homotopy operator for d as

The only instance in which the homotopy fails is when deg(F) = N and deg(b) = 0 : the 
generator of the corresponding module is A ⋅ y1 … yn which is clearly in the kernel of d. 	
� ◻

The geometrical upshot of this important theorem is that the determinant or canoni-
cal module ∧NAN related to AN emerges as the (co)homology of the Koszul complex of 
AN . We will make use of this result later on in the paper.

(2.6)(deg f )f = E(f ),

(2.7)Hi((K∙, d)) ≅

{
A ⋅ y1 … yN i = N

0 else

(2.8)

hKd(b ⋅ F) =

N∑

j=1

�xj ⋅ �yj

(
N∑

i=1

xi ⋅ yi(b ⋅ F)

)
=

N∑

i,j=1

�xj

(
xib

)
�yj

(
yiF

)

=

N∑

i,j=1

(
�ijb + xi ⋅ �xj f

)(
�ijF − yi ⋅ �yjF

)

=
∑

i

(
�iib ⋅ F − b ⋅ (yi�yiF) − (xi�xib) ⋅ F − (xi ⋅ yi)(�xi�yi )b ⋅ F

)

= Nb ⋅ F − deg(F) b ⋅ F + deg(b) b ⋅ F − d hK(b ⋅ F).

(2.9)hKd + d hK = N − deg(F) + deg(b).

(2.10)hK
deg(b),deg(F)

∶=
hK

N − deg(F) + deg(b)
∶ Ki → Ki−1.
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3 � The Super Koszul Complex and its homology

In this section, we define a super analog of the ordinary, i.e. commutative, Koszul com-
plex, and we shall see that, as in the ordinary commutative setting, also in the super-
commutative setting the Koszul complex yields a resolution of A as a R-module, with R 
given by (2.1).

For future convenience, given basis of {x1,… , xp|�1,… , �q} of V = Ap|q , we introduce 
the basis {�1,… ,�q|�i,… ,�p} of ΠV  , where the have set �j ∶= ��j and �i ∶= �xi , so 
that |�j| = 0 and |�i| = 1 for any i = 1,… , p and j = 1,… , q . Notice that if V has dimen-
sion p|q, then ΠV  has dimension q|p.

As a warm-up, with reference to the previous section, let us consider the following 
composition of maps:

where 𝛿1 ∶ R⊗ ΠV → R is given by the composition of the presenta-
tion p ∶ R⊗ ΠV → I1 of the ideal I1 ⊂ R with the immersion i ∶ I1 ↪ R , so that 
𝛿1 ∶= i◦p ∶ R⊗ ΠV → R acts as already defined in equation (2.4), which employing the 
{�j|�i}-notation introduced above now reads:

The map 𝛿2 ∶ R⊗ Sym2ΠV → R⊗ ΠV  is defined on a basis of R⊗ Sym2ΠV  as 
follows:

It is straightforward to observe that these elements are in kernel of the map �1 , so that 
one has that �2◦�1 = 0. This is not by accident and indeed the above construction can be 
made general.

Having already defined R ∶= ⊕k≥0Sym
kV  , we further introduce

and in turn, we define the tensor product of R and R� over A:

Clearly, K∙ is an A-superalgebra, as both R and R� are. We now introduce the following 
A-superalgebra homomorphism:

(3.1)R� ∶=
⨁

k≥0

R�
k

with R�
k
∶= SymkΠV ,

(3.2)K∙ ∶=
⨁

k≥0

K−k = R⊗A

⨁

k≥0

R𝜋
k
= R⊗A R

𝜋 .
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where r ∈ R and r� ∈ R� . It is immediate to observe the following facts: 

1.	 with respect to the supercommutative structure of K∙ , that is with respect to the ℤ2

-gradation, � is odd, i.e. |�| = 1;
2.	 with respect to the ℤ-gradation of K∙ as an R-module, � is homogeneous of degree −1.
3.	 � acts as a derivation only on the factor R� . It follows that � is R-linear on K∙ = R⊗A R

𝜋 
endowed with the structure of an R-module (actually, R-algebra) induces by its factor R.

We have the following theorem.

Theorem 3.1  The pair (K∙, �) defines a differentially graded (dg) R-algebra.

Proof  We have already observed that � is R-linear. We need to prove that �2 ∶= �◦� = 0 . 
We observe that K∙ is generated as an R-algebra by Sym1ΠV ≅ ΠV  , which is K−1 upon ten-
soring with R, i.e. looking at K∙ as an R-algebra. It follows that it is enough to verify that 
𝛿2(1⊗ �j) = 0 and 𝛿2(1⊗ 𝜒i) for any j = 1,… , q and i = 1,… , p , where {1⊗ �j|1⊗ 𝜒i} 
are the generators of ΠV  , and then work by induction on the ℤ-degree of K∙. Obviously, 
one has

which settle the case K−1. Let us now assume that s ∈ K−1 and t ∈ K−k for k ≥ 1 satisfying 
�2(t) = 0 by induction hypothesis. By Leibniz rule, for an element s ⋅ t ∈ K−k−1, one has

by induction hypothesis, recalling that |�| = 1 so that, in particular |�(s)| = s + 1. 	�  ◻

The previous theorem justifies the following definition.

Definition 3.2  (Super Koszul Complex) Given any free A-module V = Ap|q for any super-
algebra A, we call the pair (K∙, �) the super Koszul complex associated with V:

(3.3)
𝛿2(1⊗ �j) = 𝛿(xj ⊗ 1) = 0,

𝛿2(1⊗ 𝜒j) = 𝛿(𝜃j ⊗ 1) = 0,

(3.4)

�2(s ⋅ t) = �2(s)t + (−1)|�||�(s)|�(s)�(t) + (−1)|�||s|�(s)�(t) + (−1)2|�||s|s�2(t)

= (−1)|s|+1�(s)�(t) + (−1)|s|�(s)�(t) + s�2(t)

= s�2(t) = 0
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We are interested to studying the homology of the super Koszul complex. The cru-
cial result in this direction is the construction of a homotopy operator hK

∙
∶ K∙ → K∙ 

for the differential of the super Koszul complex, with hK
i
∶ K−i → K−i−1 such that 

hK
i+1

◦�i + �i−1◦h
K

i
= idKi

 . We organize the construction of the homotopy in two conse-
quential lemmas, whose proofs rely on Lemma 2.1 above.

Lemma 3.3  Let (K∙, �) be the super Koszul complex associated with some V = Ap|q with 
basis as above. Then the operator � ∶ K∙ → K∙ defined as

is such that

for E the Euler vector field acting on R = Sym∙V  and E� the Euler vector field acting on 
R� = Sym∙ΠV .

Proof  We first notice that notice that � defined as above raises the degree by one in K∙, i.e. 
� ∶ Ki → Ki+1 since it multiplies by the elements �i and �j . Also, it is odd—likewise �—
and it is symmetric to � , in that it is a derivation on the first factor of R⊗A R

𝜋 = K∙ , while 
� was a derivation on the second factor of R⊗A R

𝜋 = K∙.

Let us now compute the commutator [�, �] = �◦� + �◦� . By applying the definitions, 
one has that

so that one has

which in turn can be rewritten as

where E and E� are the Euler vector fields acting on R and R� respectively. 	� ◻

Upon a suitable normalization, the operator � defined in the previous lemma allows 
us to write the homotopy for the Koszul complex, as we show in the following.

(3.5)𝜀 ∶=

p∑

i=1

𝜕xi ⊗ 𝜒i +

q∑

j=1

𝜕𝜃j ⊗ �j

(3.6)𝛿◦𝜀 + 𝜀◦𝛿 = E⊗ idR𝜋 + idR ⊗ E𝜋 ,

(3.7)𝛿◦𝜀 =

p∑

i=1

xi𝜕xi ⊗ idR𝜋 +

q∑

j=1

𝜃j𝜕𝜃j ⊗ idR𝜋 ,

(3.8)𝜀◦𝛿 = idR ⊗

p∑

i=1

𝜒i𝜕𝜒i
+ idR ⊗

q∑

j=1

𝓁j𝜕𝓁j
,

(3.9)[𝛿, 𝜀] =

(
p∑

i=1

xi𝜕xi +

q∑

j=1

𝜃j𝜕𝜃j

)
⊗ idR𝜋 + idR ⊗

(
p∑

i=1

𝜒i𝜕𝜒i
+

q∑

j=1

�j𝜕�j

)
,

(3.10)[𝛿, 𝜀] = E⊗ idR𝜋 + idR ⊗ E𝜋 ,
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Lemma 3.4  (Homotopy of � ) Let (K∙, �) be the super Koszul complex associated with some 
V = Ap|q with basis as above and let � ∶ K∙ → K∙ be defined as in Lemma 3.3. Then the 
operator �k,i ∶=

1

k+i
� with 

 is such that

In particular, hK
∙
∶= ⊕k,i≥0𝜀k,i ∶ K∙ → K∙ with

defines a homotopy for the differential of the super Koszul complex.

Proof  Notice that 𝜀k,i ∶ Rk ⊗ R𝜋
i
→ Rk−1 ⊗ R𝜋

i+1
 is just a normalization of �. Further, 

notice that, symmetrically, the Koszul differential � acts on the homogeneous factors of 
K∙ = R⊗A R

𝜋 as 𝛿 ∶ Rk ⊗ R𝜋
i
→ Rk+1 ⊗ R𝜋

i−1
. We can thus consider the following diagram 

We first observe that, as for the normalization, one has

Therefore, it follows from the computation of the commutator in the previous lemma 3.3 
that we can set

Applying lemma 2.1, since the degrees corresponds to the powers k and i for Rk and R�
i
 

respectively, one gets,

establishing the first part of the lemma. For the second part, it is enough to 
observe that the (−1)-th terms of the super Koszul complex can be written as 
K−i = R⊗A Sym

iΠV =
�⨁

k≥0 Rk

�
⊗A R

𝜋
i
 . 	�  ◻

(3.11)𝛿◦𝜀k,i + 𝜀k+1,i−1◦𝛿 = idR ⊗ idR𝜋 .

(3.12)hK
i
∶= ⊕k≥0𝜀k,i ∶ K−i = R⊗A R

𝜋
i
⟶ K−i−1 = R⊗A R

𝜋
i+1

(3.13)�k,i =
1

k + i
� = �k+1,i−1.

(3.14)𝛿◦𝜀k,i + 𝜀k+1,i−1◦𝛿 =
1

k + i
[𝛿, 𝜀] =

1

k + i

(
E⊗ idR𝜋 + idR ⊗ E𝜋

)
.

(3.15)
1

k + i
E⊗ idR𝜋 + idR ⊗ E𝜋 =

k + i

k + i
idR ⊗ idR𝜋 = idR ⊗ idR𝜋 ,
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The previous lemma allows to compute the homology of the super Koszul complex, the 
main result of the present section.

Theorem 3.5  (Homology of K∙ ) The homology of the super Koszul complex (K∙, �) is given 
by

In particular (K∙, �) is an exact resolution of A endowed with the structure of R-module.

Proof  It is enough to observe that the homotopy operator hK
∙
∶ K∙ → K∙ introduced in the 

previous lemma 3.4 is defined for k + i > 0. It follows that, when hK
∙

 is defined, i.e. for any 
k + i ≥ 0 , we have

where Hi(K∙)k is the R-degree k-component of Hi(K∙) , with the structure of ℤ-graded 
R-module inherited by that of K∙ . The only homology group of K∙ which is not annihilated 
by the homotopy corresponds to the choice i = 0 = k , i.e. H0(K∙)0 . In this case, the com-
plex reads 

 so that H0(K∙)0 = A, and the result follows. 	�  ◻

Remark 3.6  Before we pass to the next section, a remark is now in order. Indeed the ring R 
entering the construction of the super Koszul complex is a ring of polynomials in variables 
that are by no means a regular sequence in general, due to the presence of odd variables. 
This is the reason why the usual induction proof—that can be found for example in [7]—of 
the analog of Theorem 3.5 in the commutative case does not extend to the supercommuta-
tive case, thus leading us to make use of the homotopy previously constructed in Lemmas 
3.3 and 3.4. It is worth noticing by the way that the above computation of the homology 
breakdown in the case the characteristic of A is different than zero, leading to an interesting 
and richer scenario as the following example shows.

Example 3.7  (Homology of Super Koszul Complex in char(A) = p ) Let us set char(A) = 3 , 
for example A ∶= ℤ3 and let us consider two variable, x even and � odd and set, as above, 
� = �x and � = �� . We therefore have V = ℤ3x⊕ ℤ3𝜃 = ℤ

1|1
3

 and hence

This leads to consider the super Koszul complex given by R⊗
ℤ
R𝜋 = ℤ3[x,�|𝜒 , 𝜃] , having 

differential defined by � = x�� + ��
�
. In the notation (K∙, �) , we have that 

(3.16)Hi((K∙, �)) ≅

{
A i = 0

0 i ≠ 0.

(3.17)Hi(K∙)k = 0,

(3.18)R ∶= Sym∙V = ℤ3[x|�], R� ∶= Sym∙ΠV = ℤ3[�|�].
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corresponds to 

Now consider the element ��2 ∈ K−2 : it is straightforward to check that it 
is a cycle, i.e. �(��2) = 0 . On the other hand, for any element � ∈ K−3 , with 
� ∶= f (x|�)�3 + g(x|�)�2� ∈ K−3, one has that �(�) = 2�g(x|�)�� + xg(x|�)�2 , so that 
in particular ��2 is not a boundary, i.e. there is no � ∈ K−3 such that ��2 ≠ �(�) and there-
fore [��3] ∈ H2((K∙, �)) ≠ 0.

4 � The dual of the Super Koszul Complex and its homology

Given the super Koszul complex (K∙, �) associated with V = Ap|q , we can define its 
dual via the functor HomR(−,R) , for R = Sym∙V  as above. Doing so, one gets the pair 
(K∗

∙
, �∗) ∶= (HomR(K∙,R),HomR(�,R)). Defining

the complex K∗
∙
 is thus given by

Notice that R�∗ is a A-superalgebra generated by the elements {�
�1
,… , �

�q
|��1

,… , ��p
} for 

�i ∶= ��i and �j ∶= �xj for i = 1,… , q and j = 1,… , p.

The operator �∗ ∶ K
∗
∙
→ K

∗
∙
 is formally identical to � ∶ K∙ → K∙ , the differential of the 

super Koszul complex introduced above, but what is crucial to note is that �∗ should now 
be seen as the multiplication operator by the odd element 

∑
j xj ⊗ 𝜕𝜒j

+
∑

i 𝜃i ⊗ 𝜕
�i

 in the 
superalgebra R⊗A R

𝜋∗ . Once this is acknowledged, we still write �∗ as

Further, note that since �∗ acts as the multiplication by an odd element, it is automatically 
nilpotent, i.e. �∗◦�∗ = 0 : this justifies the following definition.

Definition 4.1  (Dual of the Super Koszul Complex) Given any free A-module V = Ap|q for 
any superalgebra A, we call the pair (K∗

∙
, �∗) the dual of the super Koszul complex associ-

ated with V. 

(4.1)R�∗
k

∶=
⨁

k≥0

R�∗
i

with R�∗
k

∶= SymkΠV∗

(4.2)K
∗
∙
=
⨁

k≥0

K
∗
k
= R⊗A

⨁

k≥0

R𝜋∗
k

= R⊗A R
𝜋∗

(4.3)𝛿∗ ∶=

p∑

j=1

xj ⊗ 𝜕𝜒j
+

q∑

i=1

𝜃i ⊗ 𝜕
�i
.



414	 S. Noja, R. Re 

1 3

Before we go on and study the homology of this complex, let us briefly discuss the 
functoriality of the above construction, as to understand the properties of the functor 
V ↦ K

∗
∙
.

Given two A-supermodules V and W, applying the functor Sym∙(−) ∶ ����A → ����A , 
one gets the A-superalgebras RV ∶=

⨁
i≥0 Sym

iV , and RW ∶=
⨁

i≥0 Sym
iW . As for the 

arrows, given a homomorphism f ∶ V → W of A-supermodules, the action of the functor 
yields a supercommutative A-algebra morphism:

Likewise, considering a second homomorphism f � ∶ ΠV → ΠW , upon applying Sym∙(−) 
to the direct sum f ⊕ f 𝜋 ∶ V ⊕ ΠV → W ⊕ ΠW , one gets

which corresponds to a morphism between the super Koszul complex associated with V—
we call it KV

∙
—and the super Koszul complex associated with W—we call it KW

∙
:

Let us apply the functor HomRW (−,RW ) : one has the following commutative triangle

The action on the functor on the morphisms gives the following map

where we have defined (f VW
∙

)∗ ∶= HomRW (f VW∙
,RW ). It follows that the functor V ↦ K

∗
∙
 

is not strictly a contravariant functor. Indeed observing that

the previous (4.9) reads

Nonetheless, let us assume that f ∈ Aut(V) - for example, f is a change of basis. Then, in 
this case, we have a map (f V

∙
)∗ ∶ K

V∗
∙

⟶ K
V∗
∙
. More precisely one finds

and one gets a contravariant functor V ↦ K
V∗
∙

 with (f V
∙
◦gV

∙
)∗ = (gV

∙
)∗◦(f V

∙
)∗, as can be read-

ily checked. Finally, notice that because of their particular form, the homological operators 

(4.4)f ⟼ Sym∙(f ) ∶ RV
⟶ RW .

(4.5)f ⊕ f 𝜋 ⟼ Sym∙(f ⊕ f 𝜋) ∶ RV ⊗A R
V𝜋

⟶ RW ⊗A R
W𝜋 ,

(4.6)f VW
∙

∶= Sym∙(f ⊕ f 𝜋) ∶ K
V
∙
⟶ K

W
∙
.

(4.7)HomRW (K
V
∙
,RW ) = HomRV (K

V
∙
,RV )⊗RV ⊗RW = K

V∗

∙
⊗RV R

W ,

(4.8)(f V
∙
)∗ = Sym∙(f ⊕ (f 𝜋)t) ∶ K

V∗
∙

⟶ K
V∗
∙
.
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� and �∗ , differential of the super Kozsul complex and its dual respectively, are invariant 
under change of basis, i.e. automorphisms of V.

As done in the previous section for the super Koszul complex (K∙, �) , we are now inter-
ested into computing the homology of the dual of the super Koszul complex (K∗

∙
, �∗).

To this end, recalling that the operator 𝛿∗ =
∑

i xi ⊗ 𝜕𝜒i
+
∑

j 𝜃j ⊗ 𝜕
�j

 is now looked as a 
multiplication operator in the algebra K∗

∙
= R⊗ R𝜋∗ , one immediately gets an inclusion of 

ideals.
Indeed, clearly, (�∗)2 = 0 , so the element corresponding to

is in the kernel of �∗ seen as the multiplication operator, i.e. 𝛿∗ ⊆ ker(𝛿∗).
On the other hand it is immediate to observe that also the element

is in the kernel of �∗ , since both the factor in SymqV  and the factor in SympΠV∗ are com-
pletely antisymmetric and when they get multiplied by another odd term coming from � 
they yield zero, i.e. D ∈ ker(�∗). We therefore have the following inclusion of ideals

where, as it is customary, (�∗,D) denotes the ideal generated by the elements �∗ and D . We 
now prove that such an inclusion is indeed an equality.

Lemma 4.2  Let (K∗, �∗) the dual of the super Koszul complex associated with V = Ap|q for 
some A. Then ker(�∗) = (�∗,D) . In particular

Proof  The proof of this lemma relies on the ordinary Koszul complex construction of the 
first section. Let us start simplifying the notation. It can be observed that, by definition

where the even and odd generators have been grouped together. Posing N ∶= p + q we 
define

so that, upon this redefinition, �∗ and D read

(4.9)𝛿∗ ∶=

p∑

j=1

xj ⊗ 𝜕𝜒j
+

q∑

i=1

𝜃i ⊗ 𝜕
�i
∈ V ⊗ ΠV∗

(4.10)D ∶= 𝜃1 … 𝜃q ⊗ 𝜕𝜒1
… 𝜕𝜒p

∈ SymqV ⊗ SympΠV∗

(4.11)(𝛿∗, D) ⊆ Ker(𝛿∗),

(4.12)ker(�∗)∕im (�∗) = (D).

(4.13)R⊗A R
𝜋∗ = A[x1,… xp, 𝜕�1

,… , 𝜕
�q
|𝜕𝜒1

,… , 𝜕𝜒p
, 𝜃1,… , 𝜃q],

(4.14)
(u1,… , uN) ∶=

(
x1,… xp, ��1

,… , �
�q

)
,

(�1,… ,�N) ∶=
(
��1

,… , ��p
, �1,… , �q

)
,

(4.15)

�∗ ∶=

N∑

i=1

ui�i ∈ A[u1,… , uN ,�1,… ,�N],

D =

N∏

j=1

�i ∈ A[u1,… , uN ,�1,… ,�N].



416	 S. Noja, R. Re 

1 3

as elements of the ring A[u1,… , uN ,�1,… ,�N] . Let us set B ∶= A[u1,… , uN] so that one 
has A[u1,… , uN ,�1,… ,�N] = B[�1,… ,�N] . By anticommutativity of the �i ’s one has

but this is nothing but the ordinary (dual of the) Koszul complex K∙ introduced above in 
(2.3) and the result follows from theorem 2.2, that proved that the homology is generated 
over A by the element D = �1 …�N . 	� ◻

Recalling that we have proved in the previous section that the super 
Koszul complex K∙ is an exact resolution of A seen as R-module, and that 
Exti

R
(A,R) ∶= Hi(HomR(K∙,R)) = Hi((K∗

∙
, �∗)) , we can finally compute the homology of the 

dual of super Koszul complex.

Theorem  4.3  (Homology of K∗
∙
 ) The homology of the dual of the Koszul supercomplex 

(K∗
∙
, �∗) is given by

In particular, in the above notation, a generator is given by the element 
𝜃1 … 𝜃q ⊗ 𝜕𝜒1

… 𝜕𝜒p
∈ K

∗
p
.

Proof  Recovering the original notation, one has the following correspondence

More precisely one sees that 𝜃1 … 𝜃q ⊗ 𝜕𝜒1
… 𝜕𝜒p

∈ SymqV ⊗A Sym
pΠV∗ , which implies 

that 𝜃1 … 𝜃q ⊗ 𝜕𝜒1
… 𝜕𝜒p

∈ K
∗
p
 . By lemma 4.2 above, it generates the cohomology of K∗

∙
 as 

a A-supermodule and its parity depends on the sum N = p + q , so that the conclusion fol-
lows. 	�  ◻

5 � Super Koszul Complex and the Berezinian

We now aim at interpreting the main result of the previous section, and we show that 
Ext

p

R
(A,R) transforms exactly as the (inverse of the) Berezinian module of V. More precisely, 

we prove the following theorem.

Theorem 5.1  Let � ∈ AutA(V) be an automorphism of the free A-supermodule V. Then the 
induced automorphism �̂ ∈ AutA(Ext

p

R
(A,R)) is given by the multiplication by the inverse of 

the Berezinian of the automorphism Ber(�)−1 , 

(4.16)B[𝜓1,… ,𝜓N] = B⊕

N∑

i=1

B ⋅ 𝜓i ⊕…⊕ B ⋅ (𝜓1 …𝜓N),

(4.17)Exti
R
(A,R) =

{
Πp+qA i = p

0 else.

(4.18)𝜓1 …𝜓N = 𝜃1 … 𝜃q ⊗ 𝜕𝜒1
… 𝜕𝜒p

∈ K
∗
∙
= R⊗A R

𝜋∗
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Proof  Let us fix the base {x1,… , xp|�1,… , �q} for V. Then, � ∈ AutA(V) is represented by 
an invertible matrix [M] ∈ GL(p|q,A)

where A ∈ GL(p,A0),D ∈ GL(q,A0) are even and B ∈ Hom(Ap,Aq) , C ∈ Hom(Aq,Ap) are 
odd submatrices, such that one has the following transformations

We recall that if �i for i = 1, 2 are automorphisms of V, we have a contravariant functo-
rial construction (see the remarks around (4.8)), such that (�1◦�2)

∗ = �∗
2
◦�∗

1
∶ K

∗
∙
→ K

∗
∙
, 

therefore the product of two matrices M(�1) ⋅M(�2) ∈ GL(p|q,A) corresponds to the 
product of two elements �̂M(�2)

⋅ �̂M(�1)
 acting as automorphisms of Extp

R
(A,R) = Hp(K∗

∙
). 

We can thus use the decomposition

to reduce ourselves to the following cases.

Let us consider the class of the generator of the homology, we call it 
D = 𝜃1 … 𝜃q ⊗ 𝜕𝜒1

… 𝜕𝜒p
∈ Ext

p

R
(A,R) as above, and let us examine its transformation 

under automorphisms of the form (1), (2), (3) separately.
(1) In this case, it is simply to see that D transforms as det(D) ⋅ det(A)−1 , as one has 

factorization of the transformations of the �’s—contributing with det(D) and of the ��’s—
contributing with det(A)−1.

(2) In this case one can observe that a generic automorphism of this forms is a composi-
tion of elementary automorphisms of the forms

(5.1)[M(�)]�� =

(
A B

C D

)
=

(
ahi bhj
cki dkj

)

(5.2)x�
i
∶= �(xi) =

p∑

h=1

xhahi +

q∑

k=1

�kcki,

(5.3)��
j
∶= �(�j) =

p∑

h=1

xhbhj +

q∑

k=1

�kdkj.

(5.4)
(
A B

C D

)
=

(
1 BD−1

0 1

)(
A − BD−1C 0

0 D

)(
1 0

D−1C 1

)

(5.5)(1) ∶ M =

(
A 0

0 D

)
, (2) ∶ M =

(
1 0

∗ 1

)
, (3) ∶ M =

(
1 ∗

0 1

)
.

(5.6)x�
i
= xi + ��k, � ∈ A1

(5.7)x�
l
= xl, l ≠ i,
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It follows that one finds the following transformations:

Thus, recalling that ��i
= ��xi and that �

�j
= ���j , these are rewritten as

In particular, one sees that D is invariant under these transformation.
(3) This is similar to the previous case. Indeed it can be observed again that a generic 

automorphism of this form is a composition of elementary automorphisms of the forms

Thus, similarly, one finds that

It follows that the transformations reads

where the element marked with a hat is missing. Noticing that the second and the third 
elements are of lower degree either in the � ’s or in the �� ’s with respect to the generator 

(5.8)��
j
= �j.

(5.9)�xl = �x�
l
, ∀l

(5.10)��j = ���
j
, j ≠ k

(5.11)��k = ���
k
+ ��x�

i
.

(5.12)��l
= �� �

l
, ∀l

(5.13)�
�j
= �

�
�
j
, j ≠ k

(5.14)�
�k

= �
�
�
k
+ ��� �

i
.

(5.15)x�
i
= xi

(5.16)��
j
= �j + �xk, � ∈ A1,

(5.17)��
m
= �m, m ≠ j.

(5.18)��k
= ��

�
�
j
+ �� �

k
,

(5.19)��i
= �� �

i
, i ≠ k

(5.20)�
�j
= �

�
�
j

∀j.

(5.21)

𝜃1 … 𝜃q ⊗ 𝜕𝜒1
… 𝜕𝜒p

= 𝜃�
1
… 𝜃�

q
⊗ 𝜕𝜒 �

1
… 𝜕𝜒 �

p
+

+ (−1)j+1𝛽xk𝜃1 … 𝜃̂j … 𝜃q ⊗ 𝜕𝜒 �
1
… 𝜕𝜒 �

p
+

+ (−1)k+1𝜃�
1
… 𝜃�

q
⊗ 𝜕

�j
𝜕𝜒1

… 𝜕̂𝜒k
… 𝜕𝜒p

,



419A note on super Koszul complex and the Berezinian﻿	

1 3

D ∈ Ext
p

R
(A,R) , hence they do not contribute to the transformation of the homology class, 

which is again invariant.
Combining the above cases, it follows that one has that ̂�M(�) = det(D) det(A − BD−1C)−1 , 

which is nothing but Ber(M(�))−1 as claimed. 	�  ◻

The previous theorem shows that an automorphism �V ∈ AutA(V) induces an auto-
morphism 𝜑̂ ∈ AutA(Ext

p

R
(A,R)) that is given by the multiplication of the inverse of the 

Berezinian of the trasformation, 

Clearly, if one considers instead of V its dual V∗ = HomA(V ,A) and the related homol-
ogy of the dual of the super Koszul complex one finds

This remark naturally leads to the following definition.

Definition 5.2  (Berezinian of a Free A-Module) Let V be a free A-supermodule of rank p|q 
for A any superalgebra. Then we call the Berezinian of V the free A-supermodule of rank 
�0,(p+q)mod2|�1,(p+q)mod2 given by

where R ∶= Sym∙
A
V∗ and A = R∕Imax for Imax ∶=

⨁
k≥0 Sym

kV∗.

Then, by the previous remark, an automorphism � ∶ V → V  induces an automorphism 
Ber(�) ∶ Ber(V) → Ber(V) which is given by the multiplication by Ber(�) and such that 
Ber(�1◦�2) = Ber(�2)Ber(�1).

As a conclusive remark, let us stress that this construction “parallels” in superalgebra 
the ordinary construction of the determinant or canonical module of a free module V via 
homology of its related Koszul complex. In this sense, it should be clear the deep mean-
ing behind the “slogan” that the Berezinian replaces the determinant when passing from a 
commutative setting to a supercommutative setting: notice further that the provided con-
struction of the Berezinian module via super Koszul complex reduces to the construction 
of the ordinary determinant module via Koszul complex if V purely even, i.e. it is of rank 
p|0.

Furthermore, notice that the construction is readily generalizable from algebra to geom-
etry, just by substituting the Ext-module with the Ext-sheaf. Indeed, over a supermanifold 
M ∶= (|M|,OM) (see [1, 5, 8]) the structure sheaf OM plays the role of A, while the free 
supermodule V becomes a locally-free sheaf E of rank p|q over M (see [3]). In particular, 
the choice of E ∶= Ω1

M
 , the cotangent sheaf of M , leads to what is usually called the 

Berezinian sheaf of M , i.e. Ber(M) ∶= Ext
p

Sym∙(Ω1
M
)∗
(OM, Sym∙(Ω1

M
)∗) , locally generated 

by

(5.22)Ber(V) ∶= Ext
p

R
(A,R) ≅ Πp+qA,
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if {x1,… , xp|�1,… , �q} are local coordinates for M.
The notion of Berezinian sheaf of a supermanifold is well-established in the literature. 

In this regards, a nice intrinsic construction of the Berezinian of a smooth supermanifold 
of dimension p|q has been given by Hernández Ruipérez and Muñoz Masque in [11], as a 
certain quotient of the (locally free) sheaf of degree q differential operators taking values 
in (compactly supported) p-forms. In particular, in section 3 of [11], the authors discuss 
the equivalence of their result with the (categorial) construction given by Penkov in [10] in 
the context of DM-modules theory on supermanifolds. An explicit realization of Penkov’s 
construction has been recently given by these authors in [2] (see Section 3, Theorem 3.6), 
where the Berezinian sheaf, together with all the other sheaves of integral forms, emerges 
as the homology of a complex of sheaves of modules over a non-commutative sheaf. In 
particular, the (dual of the) Koszul complex, as discussed in this note, is a quotient of the 
construction in [2], thus making contact between the realization given by Hernández Rui-
pérez and Muñoz Masque in [11] and that in this paper, via Penkov’s construction.

It is worth stressing, though, that it is not obvious how to provide a direct connection 
between the present construction of the Berezinian sheaf via Koszul complex—which 
holds true in the smooth category but also in the holomorphic and algebraic category—
and that given in [11], which actually requires working in the smooth category only, since 
compactly supported functions play a crucial role in the construction. More precisely, with 
reference to [11], it is not possible to trace back in the above Koszul complex construction 
a submodule playing the role of K  in the quotient sheaf discussed by Hernández Ruipérez 
and Muñoz Masque. Nonetheless, the construction in [11] is relatively easier compared to 
that given in this note and it has the perk of making explicit the relation with Berezin inte-
gral over smooth supermanifolds (see Theorem 2.3 in [11]).
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