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Abstract

We provide a method to decompose the two-point function of a quantum field on a warped
manifold in terms of fields living on a lower-dimensional manifold. We discuss explicit applications
to Minkowski, de Sitter and anti-de Sitter quantum field theories. This decomposition presents a
remarkable analogy with the holography principle, in the sense that physies Indimensions may
be encoded into the physics in one dimension less. Moreover, in a cént@®andall-Sundrum,
the method outlined here allows a mechanism of generation of mass-spectra in the 3-brane (or more
generally, ad — 1)-brane).0 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The idea of dimensional reduction in quantum field theory is very old, dating back to the
Kaluza—Klein theory. The motivation for considering theories in a larger ambient space is
the hope to simplify or unify certain aspects of the lower-dimensional theory. Indeed, one
expects that the extra degrees of freedom of the field in the ambient space survive somehow
encoded in the restricted theory.

The basic ingredient of such an approach is to embed the spacetime of interest into a
larger manifold and then consider an extension of the field to this ambient space in order
to read off the properties of the original field into the (hopefully easier) formulation of the
theory in the ambient manifold.

To make an example it is known that a QFT on the de Sitter spacetime manifests thermal
properties to an inertial observer [1-4]: this is a kind of Hawking effect adapted to the
present geometry. However, if we regard the de Sitter manifold as a submanifold of an
ambient Minkowski (hence flat) manifold, what is an inertial observer in de Sitter becomes
a uniformly accelerated observer in the ambient flat spacetime. This allows us to regard the
de Sitter thermal effect as a Unruh effect in the higher-dimensional flat spacetime [5,6].
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PIl: S0550-3213(00)00280-7



576 M. Bertola et al. / Nuclear Physics B 581 (2000) 575-603

Moreover, the general status of field theory in flat spacetime is well established [7,8],
which is not true for generic curved spacetimes [9,10]: the possibility of embedding the
de Sitter manifold in the ambient Minkowski space allows one to formulate a sort of
Wightman axiomatic framework for de Sitter spacetime, as if “geometrically” inherited
from the existing axioms of the Minkowskian case [4,11]. In perspective this approach
seems to be quite promising.

In the present work we address this kind of problems in the rather general framework
of “warped manifolds”: these are obtained by a topological product of manifolds, a “base”
and a “fiber” or “leaf” (or “brane”).

As a pseudo-Riemannian manifold the metric is obtained by warping the metric of the
fiber by a scalar functiom depending on the point of the base.

Quite recently [12,13] this sort of warped manifolds have made their appearance in the
context of the “hierarchy problem”. There, the study is carried out in the case in which the
five dimensional background metric is made up by gluing together two slices of the five
dimensional anti-de Sitter spacetiAdS.

The purpose of the present paper is to deal with a general situation in which the extra
dimensions are warping the “brane” by an arbitrary warp fagtorvhich ultimately might
be considered as a further degree of freedom of the full theory.

Particularly relevant is the case of only one extra dimension: under that hypothesis we
will be led to the study of an auxiliary Schrédinger operaion the extra dimension. Then
we will prove that any (free) field moving in the background geometry will be seen by
an observer in the 3-brane as a bunch of figidsf different masses? = 1: the spectrum
of the allowed masses is dictated by the spectrum of the Schrédinger opérator

As a matter of fact the treatment does not rely in any step on the dimensionality of the
embedded brane, hence we can replace the 3-brane iy ang)-brane.

As we will see, warped products occur in quite a number of relevant examples, the
first to be mentioned being the previous example of de Sitter and Minkowski. Indeed we
can regard (a suitable open subset of) the flat spacetime as a warped manifold where the
d-branes are de Sitter manifolds fibered on the half line parameterizing their curvature
radius. Other examples will involve foliations of de Sitter manifolds by lower dimensional
de Sitter ones, or anti-de Sitter foliated by Minkowski manifolds.

The geometric structure of these warped manifolds enables us to formulate precise
correspondences between scalar Klein—Gordon fields propagating in the ambient spacetime
and the restriction of them to a fixed fiber. In particular we show that under suitable
assumptions and in all the examples the restricted field is a generalized free field admitting
a generalized Kallen—-Lehmann decomposition [17] in terms of Klein—Gordon fields
propagating along th&/ — 1)-brane.

The plan of the paper is the following: in Sections 1.1 and 1.2, we expose some
elementary facts about the canonical Klein—-Gordon theory in the flat spacetime, using it as
a toy-model to introduce the ideas developed in the following.

In Section 2 we provide the general framework of Klein—Gordon QFT on warped
manifolds.
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In Section 3, we enrich the previous framework by imposing appropriate “consistency
conditions” between the geometries of the “bulk” and of the “brane”. By using the latter,
we provide in Section 4 a complete treatment of the aforementioned examples, namely of
the correspondences de Sitter—Minkowski (Section 4.1), de Sitter—de Sitter (Section 4.2),
Unruh—Minkowski (Section 4.3) and Minkowski—anti-de Sitter (Section 4.4). This latter
application has relevance in the aforementioned context of the hierarchy problem as well
as in the AdS/CFT correspondence [18] as it has been pointed out in [19].

1.1. Canonical Klein—Gordon field theory

We begin with a quick review of ordinary Klein—Gordon theory in Minkowskian
spacetime in order to illustrate the idea of the paper.

Let us consider théd + 1)-dimensional Minkowski spacetim®l¢*1 with inertial
coordinategX?, X1, ..., X9) and metric

ds?,, =dx® —dx¥ — ... —dx?". @)
Let @ be a Klein-Gordon quantum field of ma&sin the Wightman vacuum:
(Dd+1 + MZ)(/D\ =0. 2

The field® can be represented in terms of standard creation and annihilation operators and
one deduces the momentum space (Fourier) representation for the two-points correlation
function of @:

Wy (X, X)) = (2, 8(X)P(X) 2)
1
~ @)

/ e 1PN (Ps (P2 — M) ¢ 1P, 3)
Rd+1

wheres2 is the standard Wightman vacuum state éndenotes the Heaviside function. Let
us consider now the restriction of the two-point functW;ﬁdH)(X, X') to the hyperplane
Y ={X e M¢*t1: X4 = x = cons}. Y inherits its metric from the ambient Minkowski
spacetime and can be identified witll alimensional Minkowski spacetime.

Since the restriction oW,(l;“rl)(X, X’) defines an acceptable two-point function (and
therefore a generalized free field) 9~ M¢, it is possible to decompose it into elementary
components, namely to construct its Kéllen—Lehmann representation. This is particularly
simple, since the representation (3) can be rewritten as follows:

WD (x, x') = n/cos{\/u —M2(x x)]
/2 —

where we have introduced the notations (y°, y1,..., y¢~ 1) with y0 = x0, ... y?-1=
X1 x = x4 andu = P4. It follows that

WOy, y) d(u?). (4)
M2

n_ @+ / (d) d(?)
W(yvy)_WM (va)Lyxy W ( (5)

Ny

MZ M?2
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This formula is a particular instance of the well-known Kéllen—Lehmann decomposition.
1.2. Spectral analysis

Let us review this elementary example to single out its key points. First of all the
Minkowski manifold M?*+1 can be written as the Cartesian proddf+! = R x ).
Correspondingly the metric splits into two padtts; ; = —dx?-+ds3. This splitting allows
separation of variables in the Klein—Gordon equation (2), giving rise to the following pair
of equations for the modes:

(04 +Me(y) =0, (6)
2

<_% + M2)9(x) =10 (x). (7)
X

Now we can think of Eq. (7) as a spectral problem in the Hilbert sp&¢&), and look for

a complete set of eigenfunctions for the self-adjoint positive operatéf/dx2 + M?),

which is a Schrddinger operator with constant potential. It is useful to adopt real-valued
eigenfunctions:

05 (x) = S cogxv/a — M2),

27 /A — M?
1
02(x) = ————— sin(xv/A — M?2), (8)
g 2w /% — M? ( )
with A > M?. This set of eigenfunctions is orthonormal and complete:
/ de 0 (06 (x) = 818 (1 — 1), ©)
R
2 (e.¢]
> / dr 6 ()6 (x') = 8(x — x'). (10)
i:1M2
Let us introduce the following “formal quantum fields”:
¢’ (= f @ (X)0,” (x) dx. (11)
R

We have used this terminology (“formal”) to indicate that in the Hilbert space of the
Klein—Gordon field® (X) they are operator-valued distributions not only with respegt to
(as usual), bualso with respect to the mass parameteas it will appear below explicitly
in the expression of the two-point functions of these fields.

Egs. (2) and (11) yield (in the sense of distributions in the joint variables)):

Oa+ 13" (y) =0. (12)

Furthermore, these fields commute with each other for different values of the parameter
actually, as it results from Egs. (4) and (11), their mutual two-point correlation functions
have the following expression:
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W) = (2.0 08 0 2) =880 = YWDy, )0 0. — MP). (13)
By inverting Eq. (11) we obtain

D(X) = Z / ¢ (161 (x) d. (14)

The previous inversion formula has been obtained by means of the completeness relation
(10). It is worthwhile to stress that this is justified in the present case because the field
is a tempered operator-valued distribution and the theory of inversion of Fourier transform
extends to tempered distributions [20] (namely we are making a Fourier-transform of a
tempered operator-valued distribution w.r.t. the variabénd taking its inversion).

A straightforward computation using Eq. (13) and Eq. (14) shows that

2 oo
Wi X0 =3 [ @ oo w0, (19)
[:1M2

formula which agrees with Eq. (4) which was worked out directly.
By restriction of the fieldd to the branes of constant coordinate- x’ we obtain

Z/ o @)W Dy, v = / & WDy, ).

2 A f
Th | h Dx)P=—L _ isth ity of i
e spectral weig E 16, (x)| = ol is the density of states per unit

spectrum per unit volumef the self-adjoint operatal = —92/9x2 + M2.
We are going to extend this picture to more general manifolds in the following sections.

2. Klein—Gordon fields on warped manifolds: an expansion formula

The previous example suggests the following general structure.(Xett)g) be
a Riemannian manifold(), @) g) a d-dimensional pseudo-Riemannian (Lorentzian)
manifold andw € C*® (X, R") be a smooth positive function. Definet = X x )V as a
topological manifold. The metric oM is defined by

ds? = g,y dX* dX¥ = ds%, + (x) ds3, (16)
where
ds3 = V) gapdx®dx®, ds§, = P g dykdy. 17)

We have denoted points 9f by y, points of X by x and those of\ by X = (x, y) (we
will use the same symbols for the corresponding coordinatels)age tensor indices oft,
k,lon) andu, v on M. Notice that the Riemannian metfit) g is chosen with signature
(_7_7"'7_)'

The pseudo-Riemannian (Lorentzian) manifold, g) is called avarped producf21];
this structure is also denoted concisely by writihg= X x,, V. M is therefore a (trivial)



580 M. Bertola et al. / Nuclear Physics B 581 (2000) 575-603

fiber bundle overt’, whose fibers are all conformally equivalent to a manif@id " g)
with a conformal factor which depends only upon the basis po[&@2].

The simplest example of a warped product is provided by a Minkowskian background
geometry (in arbitrary dimension) and it can be shown that its warped product structure
can be realized in several ways, but with only two types of branes, namely either lower
dimensional Minkowskian spacetimes or de Sitter spacetimes (i.e., in geometrical terms:
hyperbolae or one-sheeted hyperboloids). This can be proven by a study of the Riemann
tensor (see [14-16] for the relevant formulae in the Riemannian case, which carry over to
the pseudo-Riemannian as well with obvious modifications). Similar remarks hold also for
other constant curvature spacetimes.

The Laplace—Beltrami operator for 0-forms (functions) on such a manifold has the
following structure:

1 1
= Wy )= A | () g8y 4 =, 1
mau( 181g""0v) = A + d(dalog(@)) g0 + — Ty (18)

We will assume thai\1 is globally hyperbolic and considercanonicalquantum fieldd
on M satisfying the Klein—Gordon equation

O+ MA)P(X) = <Ax +
w“(x

! )Dy+M2>q3(x,y):o, (19)

where we have introduced the operator

~ 1
_ (X) ,aby _ ( (X)) - d(X) ab
Boe = o+ didaloge) g = — st 110" Vg ). (20)

wd |
Separation of variables leads to the following equations for the modes

Oy +Me(y) =0, (21)

w?(x)(Ax + M?)0(x) = A0(x). (22)
Eq. (22) can be considered to define a spectral problem in the Hilbert space

H=L2%X, diy), diy (x) = 0 2(x) doy (), (23)

where d, (x) = /|X)g|dx is the invariant volume form ort. Indeed, the operator
?(x)(Ax + M?) is symmetric on the dense domaiii®(X) C H. If we assume that

such operator has a self-adjoint extension (which may or may not be the case in specific
examples), the spectral theorem provides us with a l@ag?s of generalized eigenvectors
which gives a decomposition of the identity. In the same fashion as in the introductory
example we then have

(07,6) = f 0 (06 (x) iy = 8(h — 1))
X
Y 0o (") = 0?08 (x, X)), (24)
i
where the indiceqi), (j) label the possible degeneracy of the (possibly continuous)
spectrumpy (x, x’) is the delta distribution ol and the prefacto®?<(x) comes from
the definition of the Hilbert product.
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As in the toy-example treated in the previous section, we introduce “formal quantum
fields” @f\’)(y) by a smearing out of the above modes:

oo = f @ ()03 (x) i (x). =
X

Two remarks are in order here.

First, it is not obvious a priori that this expression makes sense at all, since we are
smearing an operator valued distribution with a function which does not belong to the
corresponding test function space. At best, the fiq}él%(y) can be operator-valued
distributions w.r.tA andy, namely, to get &ona fideoperator one should smeéf)(y)
against suitable test functionsirandy (as in the toy-example).

Second, while the Hilbert spadé may seem to be the most natural where to study
the eigenvalue problem given in Eq. (22), its choice is by no means mandatory. Different
choices may produce different formulae.

By formally using Eq. (24) we can invert the transformation (25) and get

o(X)=> 0" gy (). (26)
)
In concrete applications the actual viability of this inversion needs to be verified case by
case.
In the following we usereal-valued eigenfunctionsx(") so that the fieldsﬁf)(y) are
Hermitean.
Under the assumptions of self-adjointness that we have postulated, the following
properties hold:

(a) The fieIds@i’) satisfy the Klein—Gordon equation on the manif@ld(in cases of
interest to us) is Lorentzian).
(b) The fields\” commute foi = A’ or i  j.

The proof of assertion (a) comes from the following chain of equalities (in the sense of

distributions inx andy):

Oy + 160 () = / 69 (x) @y + 1) (X) dox (x)

X

fe(”(x) —0?(x)(Ax + M?) +1]@ (X) dix (x)

X

/ —w (x) AX—|—M2)+A]9(’)(x)}q§(X)de(x) . (27)

where we made use of the assumed self-adjointness of the opefatoy + M2) (but not
of the hermiticity of the fields).

The two-point correlation functions of the fieltﬁg) on the vacuuns? of the field® is
then given by:
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WD) =(2.60 ¢ () %2)

— / oy (0) die (x) 60 ()6 (YW (X, X'). (28)
XxX

If we invert this formula by making use of (24), we obtain the following representation
for w:

WX X)= Y 0P e W ). (29)
MA LT

The distributionWA(i\’}) (v, ') satisfies the Klein—Gordon equation 9hw.r.t. bothy and
y/, with masses/ and respectively/)’. '
We now prove assertion (b), namely that the quantum fiéjﬂscommute for different

values ofA ori. Indeed, the CCR’s for the fielkd can be written as follows:
[@(X), ®(x)],, =0 (30)

(@00, 0D (X"], =ibc(X, X), (31)

whered, denotes a time-like vector, orthogonal to a given Cauchy su@facel normalized
to unity (this is not necessarily the gradient of a time parameter). We have adopted the
following convention: whenever we have a (Riemannian) submanifold- M, then
3s(p, p') denotes the delta distribution on that submanifold w.r.t. the volume element
inherited from the ambient manifold.

Taking advantage of the structure M, we can choose a Cauchy surface in the form
C =X x X, whereX is a Cauchy surface i; the former equations now read

[20), 2(X"] =0, (32)

[@(X), 9 @(X)],, =ibc(X, X) =i (0)8x(x, )85 (3, ¥, (33)

the factorw!=? comes from the volume element®fvhich is given by d¢ = w? 1dvy ®
dvy (recall that the surfac& has dimensio — 1). The vector; is a time-like vector
orthogonaltaC = X x X and normalized w.r.t. the metric @¢1: it follows that the vector
w(x)0; is a time-like vector orthogonal t& and normalized w.r.t. the metric {J. 1 we
will denote byd; the vectomw (x)d, tangent tq) and also (with a slight abuse of notation)
its lift to the tangent bundle ofA. With this rescaling Eq. (33) reads

[8(X), 0@ (X)), =iw@)de(X. X)) =i0” ! (1)dx(x, )8 (v, V). (34)

We now smear both sides of Eqgs. (32) and (34) with the méﬁé&) andek(,j)(x’) and
apply Eq. (25): Eq. (32) gives an analogous equation for the f«'fg(féland Eq. (34) gives

[65” 0, 06 O],

1indeed, letd; be a normalized vector tangentta = X x,,  at the point(x, y): then its projection ontd’
has normw=2(x), for 1= g (3, &) = w?(x) M g(d;, 3;).
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d d 9(1) 9(1) ’ 2-dg nes ’
Tx(x) | dix(x)6,” ()8, (X ()T 6x (x, x5 (v, )

=6ij8<x—x )52(%)’ ). (35)

It follows thaty A(’) commutes everywhere g with (;3;{) fora=£ )" ora=2"buti # j:in

fact the above equations tell that on the Cauchy suracfor 1 £ A/, the Klein—Gordon
fieldsg;, ¢,» commute between themselves along with their canonical momenta and hence
they do commute everywhere Jhas a consequence of the equations of motion. This ends
the proof of assertion (b).

In all the examples that we shall present (as in the toy-example of the previous section),
this commutativity of the formal fields will follow from a stronger property, namely the
diagonal character of their correlation funCtIOWé”)(y y’), which will be of the form
8ij8(L— A )Wy (y, y"). This stronger property may fail to be true in the generic case, unless
some additional structural properties & are introduced. This is precisely what will be
done in our next section, in such a way that all our examples are covered .

Whenever the previous diagonal form WAUN(Y y’) is valid, Eq. (29) immediately
yields the corresponding diagonal decomposition:

(2.20)Px)2)=>_ 0" )6 @ HWa(y. ). (36)
Ai
Moreover, when we consider the fiefl restricted to a fixed slice = const, we obtain
a superposition of Klein—Gordon fields as an immediate consequence of the previous
formula, namely:

~ ~ j 2
(2,00, 0@ (x, y)2) =" [ )| "Wy, ). (37)
i
This formulais analogous to the Kéllen—Lehmann representation for the two-point function
in the Minkowskian spacetime [17].
From (37) it follows that the weight function of this Kéllen—Lehmann decomposition of
the restricted propagator is:

w6 x) =880, — 1[0y ()
M,j

(38)

which is the discontinuity of the resolvent of the operaisfix)(Ay + M?) on its
spectrum, i.e., the density of states per unit spectrum per unit volurnié)(in

If X is a one-dimensional spatial manifold we may take one step further.

Let us choose a coordinaiesuch that the line element ok is simply —dx2. The
spectral problem now leads to

wz(x)<<p (x) +d%¢’( ) — M2<p(x)> = —p(x), (39)

where the Hilbert space has the inner product

(0, V) = / dx 0?2 ()@(x) ¥ (x). (40)
X
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The transformation

p) =07 (0 fx) (41)
allows us to rewrite the eigenvalue equation and the Hilbert product as follows:
p o' (x) A g2 1-—do’(x)
F'@+ 205 f (x)+[w2(x) R
d =12 (/) 3
T4 <w<x)> }f(x)_o’

dx -
(fih)= f — Foh). (42)

w(x)

X

Let us introduce a coordinateso that

dx
ds = o (43)
We obtain that:
— ")+ UG) f(s) =1f(s),
(f.h)= f f($)h(s)ds, (44)
X
where
d-10"() | (dON[Wd-D?  1-d b 5
U(s) = 7 o0 +<w(s))[ it 3 w(S)}Jer(S), (45)

and prime now means derivative w.r.t. the variable

We have obtained a one-dimensional Schrodinger problem with a pot&ritipivhich
depends on the warping functiasn(s). Notice that the result matches the introductory
example for the flat case; this is a trivial instance of the above general framework, where
X =R, Y =R? andw(x) = 1: the operatow?(x)(Ax + M?) = —32 + M? describes
exactly a free Schrodinger particle with constant potetal

3. Warped manifolds with additional geometrical structure

In order to give relevant applications of the previous theoretical setting, we need to
specify additional structural properties on the geometry of the warped manol@hese
geometrical properties will be sufficient to establish (via the lemma stated below) the
validity of the diagonal decompositi@B6) which then entails the existence of a Kéllen—
Lehmann-type decomposition for the bulk Klein—Gordon fields built in terms of a “tower”
of massive fields living on the brae

Such geometrical properties involve appropried@sistency requiremeni@tween the
geometry ofM and that of the leaves, that deal with global symmetries as well as with
the existence of complexified manifolds &1 and) .
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(i) Consistency of global isometries of the leaves

We assume that there exists an isometry gréupf M and a subgroup Gy of G
acting in each lead), of M as a global isometry group @f and that there exists a global
pseudo-distancg(y, y’) on) which is preserved by this isometry groGp,.

(ii) Consistency of complex geometries

We assume thatt and)’ admit respective complexified manifoldg © and)(©, such
that for eachr in X' the complexified)' of ), is contained inM(©. Moreover, M ©
and)© contain distinguished pairs of domains, called respectivelytubeids7* and
T in such a way that for alt in X, one has:

TrcTt and 7, cT". (46)

X

These tuboidsT'* (resp.77) serve to define a preferred class of (generalized) free
fields on M (resp.)), as being those whose two-point functions are boundary values of
holomorphic functions WX, X’) (resp. Wy, y)) in the product domaif = x T+ (resp.
7~ x TT). This property, which is a generalization of the standard analyticity property of
Minkowskian two-point functions in the Wightman axiomatic framework, is cafledanal
analyticity (see its introduction in the de Sitter case in [2] and more recently its extension
to the anti-de Sitter case in [19]).

On the basis of the previous consistency requirements, we shall now establish the
following statement (where we have kept the notations of the previous section, but dropped
the discrete variables j):

Lemma. Consider the distribution in(x, ") defined as the two-point function of the
formal fieldsg; (y) and gy (y’), namely

Wi (3 Y) = (2. 91(y) o (V) R2)
= / dvy (x) doy(x") 0, ()0, (XYW (X, X)), 47
XxX

where W (X, X’) denotes the two-point function of a Klein—~Gordon fi@dX) on M
satisfyingG-invariance and normal analyticity ioM(©), and the integral ovex and x’
in (47)is supposed to be convergent after smearing out in the variahlgsfor all real or
complex values of andy’ (in 7— x 7).

Then the distributior,_;/(y, ¥') is of the following diagonal form

Wi (. y) =8 =YWy, y), (48)

where Wy (v, y) = w,(z(y,y")) is a solution of the Klein—Gordon equatidin both
variablesy, y’)

O, Wi (v, y) =0y Wiy, y) = =AWi(y, y)

21t is not necessary that is a global isometry group of1; G can be identical t@,, as it will occur in most
of the applications below. However, in the latter there will be a larger global isometry group actingxteasion
M of M on which the ambient two-point functioW (X, X’) is defined and admits this global isometry.
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satisfying the required properties of a two-point function ¥nnamelyGy-invariance

and normal analyticity property i), Moreover,W, (y, y') is correctly normalized, in
consistency with the canonical commutation relation for the corresponding Klein—Gordon
field, namely, one hgsvith the notations of Sectid?):

O (Wa(y,y) = Waly', ») |, =820, ¥).

To show this lemma we observe that, in view of (47), the invariand& ft, X’) under
G implies the invariance oW, ;/(y,y’) underGy. The latter is therefore of the form
Wi (v, y) =w, x(z(y,y")) and in view of the symmetry of the distance w.p.tandy’,
one hasn the sense of distributions ifi, A'):

Oy Wi (v, y) =0y Wy (y,y) =0
and thereforen view of property(a) of the fieldsp; (y):
(A =AYWy (v, y) =0,

which entails thatW, ;/(y,y’) is of the form (48) (since the general solution as a
distribution of the equation17 (x1, x2) = 0 is T'(x1, x2) = 8(x1) x t(x2)). The normal
analyticity of W, (y, y") results from the normal analyticity 0¥ (X, X’) in view of the
inclusion relations (46) and the assumed convergence of the integral in (47). Finally, the
normalization ofW, (y, y) readily follows from the commutation relation (35) established

in Section 2 by integrating the latter over.

4. Applications

In the four examples studied below, we discuss quantum field theories on manifolds
which admit natural complexified manifolds carrying tuboids of normal analyticity, and in
all these theories the geometric symmetries are unbroken, namely the considered two-point
functionsW (X, X’) are invariant under the global isometries of the ambient manifdid
moreover, the leavey, will always satisfy the two geometrical consistency requirements
specified above.

In the first two examplesy is a de Sitter spacetime add will be the half line or the
segmentO, ) with appropriate measures; they give a structure of warped product to open
subsets of the Minkowski space in the first example, and to an ambient de Sitter spacetime
in the second example: this extends and generalizes the results in [11].

In the third example we will revisit the Unruh problem, namely the restriction of an
ambient Minkowskian quantum field theory to the world-I}i®f a uniformly accelerated
observer. In this case, the isometry groupidiinduced by a Lorentz boost subgroup of the
ambient space) is simply the time translation group in the proper time of the accelerated
observer.

The last example regards QFT on the anti-de Sitter manifold, considered as foliated by
Minkowskian branes. Although this case seems to lie out of the picture drawn in Section 2,
because AdS spacetime is not globally hyperbolic, it turns out that this lack of global
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hyperbolicity is not an obstruction to the applicability of the previous lemma. In fact, the
previous geometrical consistency requirements are still fulfilled there.
In all these examples, the diagonal form (48) of the correlau(if*g, (y,y") of the formal

fields¢.”, ¢\/” will always allow us to interpret each formal fiefd” as a genuine Klein—
Gordon field with the corresponding two-point functi®, (y, y’) on the brane, and to
obtain thereby, via the inversion argument given in Section 2 (based on the completeness
relation (24)), a decomposition of the ambient Wightman funct®oX, X’) with the
diagonal form (36).

The consistency requirements which we consider in this section readily imply (without
any computation) that the restriction to any given Igafof any Klein—Gordon field of
the ambient spacé is a generalized free field on this leaf. When the branes are either
Minkowski or de Sitter spacetimes, as in the examples we will present, there exists also
a direct method for computing the spectral function of this restricted field by a Laplace-
type transformation on the leaf (this is standard for the Wightman fields in Minkowski
space [7] and has been carried out for de Sitter fields in [2] by using the results on
“invariant perikernels on the one-sheeted hyperboloids” of [23]). It is to be expected that
the comparison of such Laplace-type expressions of the spectral function with the one
obtained here by the (completely different and more general) warped-manifold method
in terms of the “Schrédinger modeﬁ’{ will provide new interesting identities relating
Hankel-type and Legendre-type functions.

Concerning the more technical problem of the convergence of the (a priori formal)
integrals and sums (47) and (36), we shall check the latter in all the examples and
prove in particular that (36) can be given a well-defined meaning as an integral w.r.t. a
suitable measure over the allowed mass spectrum and possibly a sum over the degeneracy
indices. To this end we shall analyze the spectral problem along the general lines drawn in
Section 2.

In the first three examples the operaiy = wz(x)(ZX + M?) is essentially self-
adjointin L2(X, dy) on the domairCg® (&) because it reduces to ordinary Schrodinger
operators with smooth potentials bounded from below; therefore we will not discuss their
self-adjointness, since this follows from general theorems (see, e.g., [20]).

On the contrary, in the last anti-de Sitter example the relevant operator is essentially self-
adjoint only for values oM ? bigger than a certain threshd\mg; beIowMg the operator is
notessentially self-adjoint but can be extended to a self adjoint operator in many different
ways. Among the infinite a priori allowable extensions, two of them are of special relevance
to the so-called AdS—CFT correspondence [19].

4.1. Decomposition of (bulk) Minkowski fields into de Sitter (brane) fields

In this example the manifold is the set of all points which are space-like w.r.t. a given
event, chosen as the origin iN@&+ 1)-dimensional Minkowski spacetime, endowed with
a system of inertial coordinates denoted{&¥‘}, « =0, ..., d.

The regionM = {X : X* X, < 0} is foliated by a family ofd-dimensional de Sitter
spacetimes, identified with the hyperboloids
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XX =nuXPX" = (X%° - (X)’=—R2.

M has the structure of a warped manifold with base- R™ with coordinater; the fiber
Y can be identified with @-dimensional de Sitter spacetime with radiRs= 1; using a
polar-like parametrization for the events.bi, X = R y with y? = —1, the Minkowskian
metric of M can then be rewritten as follows:

ds? = —dR? + R?ds?,

where d§, is the de Sitter metric oJ/, obtained as restriction of the Minkowski metric of
the ambient space. This realizé4 as a warped product with warping functieR) = R.

The operatoR y equals—al% — %E)R and we are led to the following eigenvalue equation
for the mode9), :

R2<—a,% — %aR + M2>9A(R) = A0,(R). (49)

The operator at the |.h.s. is essentially self-adjoint on the dense dafjtant the Hilbert
spacel.?(X, diy), whose scalar product has the following explicit form:

(¢, ¥) = / PRV (R)R'?dR. (50)
X

By means of the transformation (41) and by rescalinge M R (which together are
particular instances of the so called “Lommel’s transformations”), Eq. (49) is turned into
the modified Bessel's equation. By further introducing the new varidble = €' we
finally obtain:

— 1+ (e23 . Uz)fx =0, (51)
with

2
IR Chul i (52)
4

The prime now means derivatives w.r.t. the variahl@his operator is now self-adjoint
w.r.t. the standard? product /g, f(s)h(s) ds.

We have thus obtained a Schrédinger problem for a poterftialTéie corresponding
spectrum is absolutely continuous and nondegenerate; it coincides with the positive real
line. This implies the condition > (d — 1)2/4.

The solutions which have the correct asymptotic behavier-ato are K;, (€°), where
Ki,(z) = K_;,(z) denotes the modified Bessel function [24]; it is real for realThe
normalization can be obtained by studying the asymptotic behavioeat-oo, where
these solutions behave as free waves.

The final result, expressed in the original coordin&teis the following family of
normalized generalized eigenfunctions:

0.(R) = N, R'Z K, (MR),

r—(d—1)2/4

1 /.
N; = ;\/smh(n‘/)\ —(d—17?/4). (53)
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There hold the completeness and orthonormality relations:

o0

/ dr 0, (R)6;(R) = R-“~2§(R — R'),
@-12
4
/ dR RY=20,(R)6,/(R) = () — ). (54)

R+

We now introduce the fieldg; (y) on the de Sitter manifold’ by smearing the fieldd
againstthe radial modes (53), as in Eq. (25). The main result of this section is the following:

(c) The fieldsg; (y) correspond to de Sitter Klein—Gordon fields in the “Euclidean”
[1] (also called Bunch—David25]) vacuum state, namely the vacuum expectation value
(v.e.v) of ¢, (y) onY is given by

Wi (5, ¥) = (2182 0)Gn 0)12) =80 — YW ED (3, 3, (55)

WhereWA(E’d) is thed-dimensional Euclidea(Bunch—Daviestwo-point function, equip-
ped with its normal analytic structurf]. Moreover, each Klein—Gordon field of the
ambient Minkowski spadgvith arbitrary positive mas#/) admits the following expansion
of its two-point function

o
(2, 000@(x)02) = / 0, (RO (RHYWLE D (y, ), (56)
(d-1)2/4
with 6, (R) given by formulg53).

This equation allows us to consider the quantum figldestrictedto a fixed de Sitter
braneR = R’; it has the structure of a Kallen—Lehmann expansion expressing the ambient
quantum fieldd as a superposition of de Sitter quantum fields on the bianeith mass
spectrum

e¢]

(2. 6008(XH2), = / d [0, (R) W ED (y, ). (57)

‘R:R
(d-1)?/4
The proof of the previous statement goes as follows: according to [2], both geometrical

consistency requirements defined above are satisfied by the subsEMinkowski space
and the de Sitter legy: the isometry grous = Gy, is the corresponding Lorentz group
S0o(1,d) and the tubegRjE are the intersections of the complex quacmgf) with the
tubesT'* of the complexified Minkowski spac&1(© = C4*1. It follows that the previous
lemma is applicable, and that we only have to check that the two-point furiétion, y’)
of formula (48) coincides in the present case with the funcﬁq(ﬁ’d). Let us recall that
WA(E"[) is a distribution in the de Sitter invariant variahle= y - y’ which satisfies the de
Sitterian Klein—Gordon equation with eigenvala& in both variablesy, y’ and is given
by

1)

.d d
WD) =CanP L 60, (58)
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where

o r(d-1/2+iv)r(d-1/2-i)
o= 201 (d/2) /2 :

2—

d
i (), (59)

-3 v

PUY )y =22 -1nEp

—d—51+iv
andP;' denotes the associated Legendre function [24].

The value of the constagy; , ensures the correct normalizatioanfE’d) , the canonical
commutation relations being satisfied by the corresponding Klein—Gordon field. Moreover
this distribution is correctly defined as being theundary value of the holomorphic
functionPtD (3. y/) from the tuboid{(y, y) € T~ x T+} of Y© x Y© [2].

Tl+iv

So by all its properties, this definition W{E’d) coincides with that oW, (v, y’) given
in the lemma, which proves formula (55), and therefore the rest of property (c) (in view of
(24)).

It is worthwhile to remark that, when explicitly written Eq. (56) is a rather complicated
new integral relation between Legendre and Hankel functions. Here we get a “quantum
field theoretical” proof of that integral relation without actually performing any integral.

It is interesting to derive an alternative expression ¥y ,/(y, y') by plugging the
momentum representation of the Minkowskian two-point functi@iiX, X’) into its
defining formula (47). We obtain:

o0 o0
drR drR" 41
Wi (y,y) = f 7Rd 19,(R) / —r R0 (R)
0 0

d+1 , )
W3(102 — M?)©O(Py) e PX=X), (60)
JT

In this expression we insert the parametrizatidhss Ry and X’ = R’ y’ and introduce
a vectora defined by the relatiod« = P, so thate varies on the unit shell. One then
rewrites the subintegral ovét as
di+1ly
(2m)d
and by exchanging the order of the integrations aveR’ and« one is led to introduce
the following integrals:

8(a? — 1)O (ag) &V MR

d—1

. dR
O, )= (y-a)=M2z [ yeMRg (RyRI7I—

R

= \/gmr((d —1)/2—iv)I((d—1)/2+iv)

2

x ((—iy - @)% — 1)%,;

—d
giiv(—iywx). (61)

The functionsp, (v, «) are plane waves on de Sitter manifold, i.e., are modes satisfying
the de Sitter Klein—Gordon equation whose phase is constant on ptapésys the role
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of wave-vector.P is an associated Legendre function [24]. The integral appearing in the
definition of these waves is well defined at both extrema provided)| < < 1.
Then by rewriting the integral (60) in terms of these waves, we obtain the following new
integral representation for the Bunch—Davies de Sitter two-point function:
Wiy, ) =80 =2 Can PUT L -3
dd+1

(7)1

8(@? = 1O (@)@ (y - @) (v - ). (62)

4.2. Decomposition of (bulk) de Sitter fields into lower dimensional (brane) de Sitter
fields

In the second example we are dealing with a family/edimensional de Sitter branes
embedded in & + 1)-dimensional de Sitter spacetime. As explained in [27] this problem
is physically relevant to understand the spectrum of the density fluctuations in an open
inflationary cosmology.

Let us consider & + 2)-dimensional Minkowski spacetime, with a chosen set of inertial
coordinatesx?, ..., X4*1. The bulk de Sitter manifold is taken to be the unit one-sheeted
hyperboloidDS = {X € M?*?, X . X = —1}. Consider now the following open region
of the bulk: {X € DS: |X?*1| < 1}. This region is foliated byi-dimensional de Sitter
branes, obtained by intersecting the bulk with a family of hyperplanes parameterized by a
coordinater € (0, 7) as follows:{X € M?+2, X4+1 — cosx]}.

The metric of the bulk de Sitter manifold can consequently be written as follows:

ds3g = —dx? 4 sir? x ds3; (63)

dsgS is the metric of ad-dimensional de Sitter manifold with radius= 1, andw(x) =
sinx. The base manifold’ is thus the segmeri0, ) with coordinatex and metric a2,
The spectral problem now is the following:

w?(x) (B x + M?)8;, = (Sin? x)8] + d(COS x)0}, — (SiM? x) M?6; = — 20 (64)
it has to be considered in the Hilbert space whose produet,ig) = fé’ (sinx)?=2¢(x)
¥(x)dx. M is the mass of the field propagating in the ambient de Sitter space.

Following Eqg. (41), this equation can be simplified by introducing) = sin“2" xf(x).

A further simplification is achieved by introducing the coordinate arctanhcos. The
operator and the inner product become

M2 d?-1 d—1)2
—f”(S)-i-if()—( ( ) )f() (65)
cost(s)
(f.h) = / ds F(s)h(s). (66)

where again the prime denotes the derivative wsr.0MWe have obtained a Schrddinger
d2

this is either a barrier or a well according to

2_
problem with potentiall (s) = Tf?()
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the sign of M? — %*1. When this quantity is negative some bound states may appear
depending on the depth of the well. In both cases a positive continuous doubly-degenerate
spectrum will persist, for which. — % =42 > 0. It is now a standard quantum
mechanical problem to find eigenfunctions and eigenvalues of thi®8iclger problem.

Continuous spectrum

The continuous spectrum coincides with the positive real axis. We will wite=
A — (d+41)2 with A > (”’;41)2 for the eigenvalue. Using standard techniques for the study
of Schrodinger operators one can find the following family of orthonorowathplex
generalized eigenfunctions labeled by a positive parameter

e? I'(l+p—ig)I(—p —ig)

1d .
F,(x)= sinx) 2 P!Y(cosx + i€),
q () V2T (i) ( ) o ( )
—nq . .
ez 'l —l1g)'(—p —1 . ~d . .
F,= A+p Q). (=p Q)(Slnx)l_ZdP;)q(—COSx—lé), (67)
V27 (—ig)
wherep satisfies
d>—1 1
1 :——MZZ___ 2 68
plo+ =" i (68)

(see Eq. (59)) so that = —% +iv. The requiredeal modesy, . with € € {s, ¢} are given
by
1 -
Og,s(x) = E(Fq(x) — Fy(x)),

1 -
0.c() = 5 (Fy (@) + Fy (). (69)

Discrete spectrum

WhenM?2 — "%T‘l < 0, bound states can exist. We can construct them by the substitution
q — —iq in the formulee for the generalized eigenfunctions corresponding to the
continuous spectrum; now s solution of

d?—1
— M2

(p+Dp=

We fix the rootp = —% \/ dff — M2 > 0. Standard quantum mechanics then says that the
discrete eigenvalues are

1 [d?

Consequently, the number of bound states is

. 1 d?
#{Discrete spectruin= [—5 7 MZ}, (71)
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where the square brackets denote the integral part. The normalization of the corresponding
states can be computed using the following integral [26]

1

dy _ 2 I'A4+p—9q)
P B ML C 72
/11—y2| ;)] qr(1+p+q) (72)

It follows that the normalized eigenfunctions are

1+2p—n)

n!

6, (x) = (sinx) 7" PP (Cosx + ie)\/ (o=ml (73)

withn =0,...,[p]= [— % +.4/ %2 — M2]. As before, let us introduce the formal quantum
fields

T
Gc(y) = / dr(sine)? 20, 0B (x,y), qeRY, e els,c),
0

Pn(y) = / dx (sinx)426, ()@ (x, y).
0

By the same arguments used in Section 4.1 we obtain that:

(d) The fieldsp, (), ¢, are Klein—-Gordon fields on de Sitter brane in the Euclidean
vacuum state, namely their ambient de Sitter v.e.v. iNdhe 1)-dimensional Euclidean
vacuum is given by

R « d
Wiee (00 3) = (R210g.c g, (12) = 80, — M)bee Wy (3, ¥,
« A E.d
Wn;n’(yv y/) = <‘Q|(pn(y)§0n’(y/)|9> = Snn’ W)E,, ' )(y, y/)- (74)
All other correlators vanish identically.

Here WA(E"I) is the Euclidean two-point function i dimensions (see Eq. (58)) with
square mass. By inverting now the completeness relations for the fields

D(X) = 0u()Pu)+ Y / dg 0y, (X)g.e ()
n € R

we obtain the following decomposition of the Euclidean de Sitter two-point function in
terms of lower dimensional ones; this is quite a nontrivial relation between Legendre
functions in different dimensions:

(o]
E,d+1 Ed
Wi VX = 3 0,000, WD ()
n=0

o
E.d
+ Z / d)\, G(Ai(d71)2/4)1/2,6(X)G(Af(d71)2/4)1/2,6(X/) W)E )(y, y/)
 @-n¥4
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[p]
=Y P, """ (cosx’ +i€) P, " (cosx + i)
n=0
(p—n)'(1+2p —n) W(E,d)( "
ni(sinx sinx) @072 kY
/ dg sinh(mq)q

2m2(sinx sinx’)@-1/2

IFA+p—ig)(—p —ig)|?
R

X [e”q Py (cosx’ + i€) P9 (cosx + i€)

— ] ; i ; (E.d)
+e 779 P, (—cosx’ —i€) P, (— cosx — Ie)] qu+ o2 (v, y). (75)
On a fixed de Sitter brane = x” we get a Kallen—Lehmann type decomposition of the
correlator of the bulk quantum field, with a measure given by

] 2(p—m) I (1+2p—n)

— p_rtn i Slag — _
1(q. x) XO:\ P+ (Cosx +ie) | ) (@ —(o—m)
sinh(zq)q N 2
72n23irf1,1(x)lf(l+p i) (—p —iq)|
X [e”q\qu(COSx + ie)|2+e_”q|P/’;q(— coSx — ie)\z]. (76)

In all these formulze the discrete contribution vanishes wheneder (d—gl)z.
We remark that the formula of this decomposition matches the one in [27] which was
obtained by the completely different method of Laplace-type transform.

4.3. Decomposition of Minkowski states into uniformly accelerated world-lines (Unruh
effect)

In this section we revisit the Unruh effect; the general framework is the same as in the
previous examples, except that now the codimension of the Iéavssnaximal (i.e.d,
where the dimension of the ambient manifold is 1). What is new in the present approach
to this old model, is that we obtain a closed formula for the decomposition of the ambient
QFT into a collection of harmonic oscillators which oscillate in the proper time of the
accelerated observer and not in the time of an inertial observer. Now the ambient manifold
is thewedgeM = {X e M9t1:| X0 < X9} of a Minkowskian spacetimbl¢t! and) is
the unidimensional world-line of an accelerated observer. In this case, thefieitl be
reduced to a set of harmonic oscillators.

An uniformly accelerated world-line is conveniently parametrized by

(¢ sinht, X, & coshr),

wherex are the remaining/ — 1 coordinates in Minkowski space. In terms of these
coordinates the wedge acquires the structure of warped productdsetlimensional
Riemannian half spac&” = Ri with a 1-dimensional timelike linéy, with warping
functionw (&, x) = &:
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d-1
ds®=g2dr? — dg? - ) “(dx)% (77)
1
The transverse problem is

d-1 2
- 9 1
2 2 oy g2 2 2 2y
E°(Ax +M%)0(E %) =¢ [—as - §1 (M.) - gag +M :|9(§',x)_
and the corresponding Hilbert product

d%' d-1 .
(w,lﬂ):f?(]—[ dx’)@(g,i)x/f(g,}).
RY !

A straightforward computation produces the following generalized orthonormal eigenfunc-

tions
. = A/2sinh(Tm) /P — 1 cogp - X)
9x($,X)=9m,ﬁ,i($,x)=T&m(é M2+p2>ﬁ{ . g = }

Q)7 sin(p - x)

_ _ [172 + =2\ | cosp - %)
where thet subscript selects among ¢@s x) and sir(p - X). In this case the eigenvalue
1 =m? has aR?~1 degeneracy. Again, we introduce the quantum fields

i [de [ NP
@1, p,+(1) =/? / dx 0, 5.+, X)P(7,§, ).
0 Rd-2
Let now W(X, X’) be the usual Wightman two-point function for the quantum field
@ (X) as given by Eq. (3): we can directly compute the correlai@s; .. ¢ (7, T')
of the fieldsg, ; +(r) and show that they are diagonal/in p and the discrete index
€ € {+, —}. Indeed

mpem r, e (7, T)—/_dx _d)?/@mpe(s )C)@m P, '(5/ 2/)W(X X)
d& | dé’ 4’ [z + cogp - X)
/s /s ¥ Kin (£ M ”){simﬁ'f)}
RY RY
,f ~ o\ | cogp’ - X) 1
M K M2+p2){sin<ﬁ’.£>}W’

dd+1P ) ,
/ P §(P? — M?)© (Pg) P X=X
T

Rd+1
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dPydPy R

/ > 8(PE — PE— p? — M?)O(Py)
T

R2

« e| Po(& sinh(t)—&’ sinh(t’))+i P1(& cosi(t)—&’ cosh(t’)) )

The remaining integration is a special case of Eq. (60) with the substituiths>
M? + p%, v m, d = 1. This finally gives
cogm(t —1’) +imm)

2m sinh(zrm)
This expression is the Wightman function of an harmonic oscillator in a thermal state at
an inverse temperatug (in the Heisenberg picture): indeed, the quantum Klein—Gordon
field on a one-dimensional spacetime corresponds to a single quantum harmonic oscillator
in the Heisenberg picture where the mass represents the spring constant. The thermal time
correlation function of the position operator at inverse tempergtdog such oscillator is
given by:

N N 2
Wm,ﬁ,e;nl’,ﬁ’,e’(Ta T/) =40(p— p/)85,e’8(m2 —m' )

coSw(t —t' +iB/2))
2wsinh(wpB/2)
which is precisely the expression derived above \gita 27 .
Using the completeness of the modewe can express the vacuum two-point function
of the field® in terms of the two-point functions of the thermal oscillators as in

Wt t')=

(79)

WX X)= Y / dp / d(m®) Oy e (€, )0 e (€, X))
0

€=+~ pd-1
cogm(t —1’) +imm)
2m sinh(zrm) (80)

In this case we know that if the state of the ambient fi@ldx) is the usual vacuum one,
the quantum theory obtained from the ambient space otheeisnalat the Unruh inverse
temperaturgy = 2w. The decomposition

(2.0 e DO D2)= [ u(ED.m)5nOdnE), (61)

defines correlation function®,, (t)¢. (t")) g, of athermal stateof the quantum harmonic
oscillator given by%q)m(r) + m2¢%(7) = 0. Note that along each uniformly accelerated
world-line, specified by the parametersand x, the corresponding proper-time is equal
to £t (¢ being the value of the Tolman factor), so that the temperature “really felt by the
corresponding observer” on this world-line is equal f62iz £).

4.4. AdS states in terms of Minkowski states

This last example concerns the states of a Klein—Gordon field theory on the AdS
spacetime foliated by flat Minkowski spacetimes of codimension one: this decomposition
has been used in [19] in application to the AdS—CFT correspondence and it will be just
briefly reported.
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This example lies somewhat outside of the picture we have drawn in the general part
because the AdS spacetime is not globally hyperbolic. Nevertheless we can prove directly
that a completely analogous decomposition of the Klein—Gordon field can be achieved.

To set the notation, in the spirit of Section 4.2 we consider the vector Space
equipped with the following pseudo-scalar product:

XX =x0x0 - xix™t ... xdx'? 4 xdtiydtt (82)
The (d + 1)-dimensional AdS universe can then be identified with the quadric

AdS 1= {X eRIT2 x?=R?}, (83)
whereX? = X - X, endowed with the induced metric

dsZgs= (A(X%? = d(XH? =+ dXTH?) |y, - (84)

The AdS relativity group is; = SQy(2, d), that is the connected component of the identity
of the pseudo-orthogonal groQ2, d). Two eventsX, X' of AdS;4+1 are space-like
separated if X — X2 <0,ie. ifX X > R2 Inthe following we will put for notational
simplicity R = 1.

We consider an open subset of AdS given by the inequality in the ambient &pace
(X7 + x9*+1 > 0}: this is “half” the spacetime. In ththorocyclic parametrization”X =
X (x, y), there appearsstructure of warped producthis set of coordinates covefs and
is obtained by intersectingdS;1 with the hyperplanegX? + X4+1 = e* = 1} each slice
I, (or “horosphere”) being an hyperbolic paraboloid:

1
Xt=e'yt=—y*, nu=0,1,...,d -1,
N
. 1 1-52 1
X4 —sinhy +Zey2=>"_> 4 =2 200 1?2 d-1? (g5)
2 2s 5 2s
1 1+ 1
X4l = coshy — Zefy?2 ="~ — — 2
20 Y T T %Y
In each slicelT,, y°, ..., y?~1 can be seen as coordinates of an eventdfdimensional
Minkowski spacetimeM? with metric &2, = d(y%)? — d(y})? — --- — d(y¥~1)? (here

and in the following where it appears, an indéxstands for Minkowski). This explains
why the horocyclic coordinatgs, y) of the parametrization (85) are also called Poincaré
coordinates. The scalar product (85) and the AdS metric can then be rewritten as follows:

1 ’
X - X' =coshx — x') — ée"” (v — )2, (86)

1
do2,¢ =€ doZ —dx’= > (dog; — ds?). (87)

Eq. (87) exhibits the regionl of AdS+1 as a warped product with warping function
w(x) = e* and fibers conformal t&1¢.
We apply the formalism of Section 2 and obtain the spectral problem

e [6"(x) +d0' (x) — M?0(x)] = —0(x), (88)

to be considered in the Hilbert spaéé(R, e“~2* dx), where the differential operator
defined in Eq. (88) is symmetric. In the variaBle= e already introduced in Eq. (85)
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and definingf (s) =0 (x) ez Eq. (88) is turned into the well-known Schrédinger spectral
problem on the half-line
L M2y L W12 —-1/2)

—fs)+ Tf(S) =—f )+ 2 f&)=2f(s). (89)
Following [28, p. 88 ff.], we learn that there are two distinct regimes corresponding to the
two ranges > 1 and|v| < 1.

Whenv > 1 the previous operator is essentially self-adjoint and there is only one
possible choice for the generalized eigenfunctions, namely

Jfi(s) = %Sl/zh(x/)_»s), (90)

whereJ, are Bessel's functions. The completeness of these eigenfunctions gives Hankel's
formula, which expresses the resolution of the identitg. %R ", ds) as follows:

g(s) =/dx f;\(s)/f;\(s’)g(s’)ds’, Vg e L2R™, ds). (91)
0 0

When 0< v < 1 both solutions/2J, (v/As) ands'/2J_,(+/As) are square integrable in
the neighborhood of = 0 and must be taken into consideration: we are in the so-called
limit circle caseat zero [20,28], which implies that the operator is not essentially self-
adjoint and there exists g ambiguity in the self-adjoint extensions we can perform. The
freedom is exactly in the choice of the boundary conditions-al (corresponding to the
boundary of AdS).

Now we have a one-parameter family of eigenfunctions:

) (5) = \/g(xz — 23" cos(mv) + 22) P ey (Vrs) = 2y (Vas)], (92)

to which we must add one bound state whesn O:

/ sinmv
fégaan) = 2}{1/]}75'1/2[(1) (}(l/ZVS). (93)

The possible choices of the parameteatto correspond to different self-adjoint extensions
of the differential operator (89). To each such extension there is associated a d@ffhain
also depending on the paramete[20]. To construct® ™ consider the one dimensional
subspaceé#lt spanned by the eigenfunctions solving Eq. (89) with eigenvaties

fu(s) = V5K, (€5 5); (94)

both these functions are square-integrable when0< 1. Each extension is in one-to-one
correspondence with partial isometriés H, — H_, namely, in this case, with elements
of U(1) ~ §*. The domain of the extension is obtained by adjoining to the original domain
of symmetry the subspac@y, + U)H.: here it means that we have to add the span of
the L? element

fal8) = fir(s) + € f-(s).

which has in our case the asymptotics
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(95)

(e % + oty 27 (eF 4o 'F
Fa(s) = il [ (6"« + ) (e + 4)s”j|

2sin(z) rai—v 7 T+
The generalized eigenfunctions of the operator (89) corresponding to a specific extension
have the following asymptotics

£ () = 27 Y2612 (52 — 2200 costv) + 1) V12

><|:z 275t | 2 ] (96)
ri+v)y Ir@d-v

As usual these functions do not belong &R+, ds) but any wave-packet does; moreover
any such wave packet has this asymptotics. This allows us to find which parameter
x corresponds to which unitary operatdf eH, — H_, i.e., to a specific self-adjoint
extension. Indeed, by matching the asymptotics in Egs. (95) with that in Eq. (96) we obtain
_cod5—7%)
Ccof5+ )

We consider now a very specific QFT on the AdS spacetime: this QFT is a generalized
free field theory which satisfies certain analyticity properties [30]. It depends on the
single (complexified) invariartt = Z - Z’' = coshix — x’) — %e"“'(z —7)2, where nowg
(respectivelyz’) belongs to the complexified Minkowski space and its imaginary part lies
in the interior of the future (resp. past) light cone.

Such a QFT is characterized by t86(2, d)-invariant two-point function given by

—im d% a1
Wz, Z) = wo(Q) = ——7(* -1 0
(2m) 2

The analyticity domains advocated in [30] are such that the complex vatidd@ongs to
the complex plane cut along the segment frethto 1 (the “causal cut”). The analogous
invariant variable in the Minkowskian casesis= —(z — z/)2 and the causal cut in this case
is the negative real axis: the “Euclidean regime” corresponds to positive real valdies of
We can now show by direct computation that the two-point function (9AdS; ;1 in the
whole range € (—1, co) can be decomposed as follows:

! d-1
(©). (97)

v—

N

o0
WﬁlJrl(Z(x,Z),Z’(x’,Z/)):/d)»@;\(x)Q;\(x’)Wf/I’d(z,z’), v e[l,00),
0
o0
d+1 Lol oY (00) (00) /7 M.,d /
W (Z(x,z),zoc,z))—/olwA )0, YWz, ), vel0D),
0

o0
Wf“(Z(x,Z),Z’(x’,z’)):/d)»@k(o)(x)ex(o)(v’)WAM’d(z,z’), ve(=1,0), (98)
0

where WkM’d(z, z) is the usual two-point function for a Klein—-Gordon field dff' of
square mass in the Wightman vacuum:
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d o
W){w’d(z,z/)E/(ZT)‘Z_lS(pz—)»)@(po)e ip-(z—2)
2

=(27r)‘1/2<%) Ki2(V3d), 6=—-(—2)% (99)

In Egs. (98) the function@/{m) and theek(o) belong to the domains of self-adjointness
corresponding to the values= co andx = 0 respectively. They explicitly read

0, (x) = %2 e 2, (Vie™), (100)
6,7 (x) = %2 & 2y (Vie™). (101)

The reason why we must use different self-adjoint extensions is Wfdtl(Z(x,z),
Z(x',z)), as a function ofr (or x’) belongs to®(* whenv € [0, 1) while it belongs
to ©© whenv e (—1, 0): this can be proved directly by studying the asymptotics.

The three Egs. (98) are thus summarized into the following formula valid for the whole
range of parameter.

Wiz (x,2), Z' (¥, 7))

= (27)"%(s s)””zfdzA KT 0, (Vas) I (VAs)8 2 Kaz (VES), (102)

Ao
0
with, again,s = e™*
The proof is an application of formula (12) p. 64 in [29], which is the Hankel's transform

of the product of two Bessel’s functions (we simply adapt the notation)

(e.¢]

/ dm m* Y2, (m s)J, (m s K, (m8)(m sHY?

0

(ws—u—l(s/)—u—% e~ (ut+Pim

= o €2-1"250" 2 ),

Rw) > -1, R +v) > -1,

=

Nl

wherer = SH60%82 Y implicitly perform the “Wick rotation” to th lid
é‘ = 25 . ere we |mp|CIty per orm the “Wick rotation” to the Euclidean

section wheré > 0 and hence = coshix — x) + 3 e+¥'s > 1.

Since the modeg;, form a orthonormal basis in the Hilbert space, Eq. (98) can also be
inverted and we obtain the Minkowski Klein—Gordon two-point function on the glige
by smearingW, against the eigenfunctioms. For instance, when > 1 this corresponds
to the introduction of the fieldg; (y) on the Minkowskian slicdT, obtained by smearing
the AdS Klein—-Gordon field with the complete set of modes (100):

o]

() = f @ (X (x,y))0r(x) €972 dx. (103)

—0o0



M. Bertola et al. / Nuclear Physics B 581 (2000) 575-603 601

It can be shown that the fielgh (y) is a canonical Minkowskian Klein—Gordon field in the
Wightman vacuum state. In precise terms, we have that the AdS vacuum expectation value
of ¢, (y) is given by

Wi (3. )) = (216 ()¢ 0)12) =8 — )W (v, y). (104)

In particular, the fieldg, have zero correlation (and hence commute) for different values
of the square mass

As a specification of the Egs. (98), when restricting the AdS Klein—Gordondietiol a
fixed slicelT, (thed-dimensional brane) we obtain the following explicit formula for the
Kéllen—Lehmann decomposition of the field in the Minkowskian slice

oo
! / d)\' —ax —X 2 /
WX, p). X @ y) = / - &L (Wre) W, (105)
0
This formula is telling us that a free fielé propagating in the ambient gravitational
background will be seen on thedimensional brane as a superposition of fields with a

continuous spectrum of masses but different relative weight given by
da
A, ) = = e[ (Vae ™)) (106)

The results of this section can be used to construct other two-pointfunmf)ﬁ]s(”) (X (x,

y), X (x/, y")) for a Klein—Gordon field on AdS by using the other self-adjoint extensions:
however, it is not guaranteed that suWﬁH’(") can be extended to the other half of AdS
since the definition uses the set of coordinates defined only on one half. Moreover, one
should prove (or disprove) the AdS invariance and analyticity properties of such states. We
will not go any further in this direction in this paper.

5. Conclusions

We have considered a particular foliation of a Lorentzian manifold by means of
Lorentzian submanifolds over a Riemannian base: such foliation also gives a particular
orthogonal splitting of the metric tensor. In this context we have considered a quantum
field over the total manifold and decomposed it into a bundbrgitudinal quantum fields
¢, andtransversal classical modés.

Such decomposition allows us to pick up a specific member of the bunch by a smearing
against those transversal classical modes.

This technique has been then successfully applied:

— to the case of Minkowski, foliated by de Sittéibranes or by accelerated world-lines;

— to the case of de Sitter, foliated by lower dimensional de Sitter branes;

— to anti-de Sitter, foliated by Minkowskian branes.

In all these cases the distinguished analyticity properties of the two-point function in the
ambient manifold appear to survive this operation of picking out a specific field, giving a
QFT on the leaf with those analyticity properties which are advocated independently for
the geometry of the brane itself.
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Since the analytic structure of the two-point function is equivalent to the spectral
structure of the Hamiltonian of the theory, this procedure can be regarded as a method
for enforcing certain spectral properties on a manifold by embedding it into another
manifold where the spectral properties are easier to formulate (this is the case de Sitter
— Minkowski).

Or else we can construct a QFT with certain spectral properties in the ambient manifold
by means of the spectral properties of the QFT in the brane (this is the case Minkewski
AdS).

We also point out that, in more geometrical terms, to some extent what we have done in
the examples is decomposing a certain irreducible unitary representation of the invariance
group of the ambient manifold into irreducible unitary representations of a certain subgroup
which is the invariance group of a submanifold. This might turn out to be of utility in
application to representation theory and special functions: indeed some of the relations
(e.g., Egs. (56), (75)) that we have found, relating the two-point functions of the ambient
manifold and those of the submanifold are integral representations which are not to be
found in the more mathematically oriented literature.

This decomposition has been made here only forwlaeped-productmanifolds for
practical computational issues but nevertheless the idea of inheriting spectral properties
from an ambient manifold could be extended to other cases, most importantly the
Schwarzschild geometry [5,6].

Potentially this perspective is the more appealing the harder is the problem of
consistently formulating a spectral property in curved backgrounds.

Additionally, the recent topic raised in [12,13] allows a direct application of this method
to general warped-branes in various gravitational backgrounds.

Itis our intention to pursue this direction in further publications.
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