A Modified Inverted Omega Incision for Surgical Treatment of Gynecomastia

To the Editor:

Gynecomastia is a benign enlargement of male breast. According to tissue composition, it is usually classified into 3 types: true gynecomastia (glandular), pseudogynecomastia (fatty-glandular), and false gynecomastia (fatty). According to the size of the breast and to the amount of redundancy skin, we use Simon’s classification.1

Many incisions and surgical technique have been described and applied by different authors according to the type and severity of gynecomastia: from suction-assisted lipectomy for fatty forms,2 together with the eventual surgical excision of glandular tissue3 for true gynecomastia to skin resection and eventually free nipple graft for high-grade gynecomastia.4,5

For Simon’s grade 1 and 2A, we use subcutaneous mastectomy and a modification of omega incision described by Simon et al1 in 1973. The classic inferior semicircular intra-areolar incision described by Webster6 and Dufourmentel7 is enlarged by lateral and medial extensions.

We modified this approach by adding the removal of a crescent of skin under the incision (Fig. 1) to improve surgical exposure and hemostasis (advantages of omega incision) and to improve the final aspect of the areola, avoiding the tendency to oval scarring due to the excess of skin after mastectomy at the inferior pole of the nipple-areolar complex.

In our experience, we think this simple technique modification could improve esthetic outcomes without lengthening surgical risks and time.

Alessandro Thione, MD
Luigi Valdatta, MD, FACS
Alessandra Gottardi, MD
Plastic Surgery Unit
Ospedale di Circolo
University of Insubria
Varese, Italy
althione@libero.it

FIGURE 1. Schematic diagram of the modified omega pattern.

REFERENCES

The author responds:

I thank Dr. Dabernig for his comments and we will take his suggestions into consideration in future sural flap delay procedures.

Detlev Erdmann, MD, PhD
Division of Plastic, Reconstructive, Maxillofacial, and Oral Surgery
Durham, NC
detlev.erdmann@duke.edu

Frostbite Injury Due to Improper Usage of an Ice Pack

To the Editor:

Ice packs and other cold therapies are frequently applied for the relief of pain, especially around the knee region. They are known for their anti-inflammatory, antispasmyotic effects. They can also reduce edema and swelling. But like every other medical appliances and...
drugs, improper usage of the ice packs can end up with serious complications.

We were consulted for a 49-year-old woman who had attempted to use a therapeutic cold pack for a total of 9 days for acute synovial arthritis secondary to gonartrosis. She had applied the frozen ice pack continuously for more than a couple of hours until the pack had warmed to room temperature. On physical inspection, she had Grade II and Grade III frostbite on her medial aspects of the knee where she had applied the ice pack (Fig. 1). She was otherwise healthy. We initially did minor debridement of the blisters and the slough. The wound was followed with daily dressing changes using a chlorhexidine-soaked paraffin dressing for 10 days until the patient’s existing lesion recovered without any problem.

Although the basic physiological mechanisms have not been well described, cryotherapy has been shown to decrease skin, muscle, and intra-articular temperatures, decrease metabolism, decrease inflammation, decrease blood flow, decrease pain, decrease muscle spasm, and increase tissue stiffness. The recommended usage of ice packs is to apply it on the sore area for no more than 20 minutes every 2 to 3 hours. It is also recommended to always keep a cloth between the skin and the ice pack. If not used in the recommended way, as in our case, it is likely to end up as frostbite by direct cold injury to cells, ice crystallization of tissues, and poor circulation to the area. To prevent such serious complications, it is important to inform the patient about the seriousness of proper application of the ice pack and to keep in mind to take every therapeutic application seriously, even the ones that seem very simple.

Mustafa Keskin, MD
Zekeriya Tosun, MD
Ahmet Duymaz, MD
Nedim Savacı, MD
Department of Plastic and Reconstructive Surgery
Meram Medical School
Selcuk University
Konya, Turkey
drmkeskin@hotmail.com

Landmarks for K-Wire Placement in the Distal Phalanx

To the Editor:

Positioning a K-wire in the distal phalanx should present no great difficulty for the practiced surgeon. Percutaneous K-wire placement through the distal phalanx is frequently performed for fracture fixation and for distal interphalangeal joint fusion.

However, despite the fact the bone is so accessible, poor positioning of K-wires is a regular occurrence with the wires frequently missing the distal phalanx completely (Fig. 1). Most incorrectly placed K-wires are positioned too far on the volar surface. As such, they can only act as a kind of “second-class splint”, often located in the soft tissue, flexor tendon, or only partially in the bone. For this reason, the fracture or arthrodesis will not stabilize sufficiently, if indeed at all. Some surgeons believe that feeling a resistance when driving in the K-wire is a sign of correct positioning and that everything has been dealt with satisfactorily. If imaging is not carried intraoperatively, the poor result is not recognized until the postoperative x-ray.

Taking into account the close support the distal phalanx provides for the nail bed, we suggest using the arc of the nail as a guide to accurate positioning of K-wires in the distal phalanx. At the finger tip, the landmark for wire placement is found at the intersection of a line between both distal valles unguii and a medio-sagittal line from the margo libera of the fingernail (Fig. 2). As second point of reference, the wire should be aimed at a line parallel to the back of the finger at the level of the distal vallum unguis (Fig. 3).
A combination of both. In many cases, flap reconstruction will include a skin paddle. We propose that a skin graft can be harvested from the skin paddle of the flap, which both provides a useful tool to monitor the viability of the flap and also provides a donor site of low morbidity.

A part of the split-skin donor site can be used for monitoring in the following fashion. The area used for monitoring is covered with gauze that has been impregnated with heparin. This prevents coagulation in the area used for monitoring. This gauze can be easily removed from the skin graft donor site on the flap paddle and wiped gently with a further heparin-soaked swab to provoke bleeding. This is a simple and safe method of checking flap vitality and avoids unnecessary pinpricking of the flap being monitored. This is particularly useful when less experienced staff may be involved in early flap monitoring as their decisions have far-reaching consequences while on night duty.

Further advantages of this method are a reduction in morbidity when a split-skin graft is required, wise economical use of tissue which has already been used for flap surgery, considerable reduction in postoperative pain after a split-skin graft from an insensitive donor site, and simultaneous reduction in the use of painkillers. We propose this method is simple and efficacious and can be routinely used in the case of flap surgery, as a method to monitor flap perfusion.

We believe that these simple landmarks will increase the chance of accurate placement of K-wires in the distal phalax, avoid excessive wire passes, and reduce radiation exposure.

John R. Scott, FRCS(Plast)
Jörg Dabernig, MD
Odhran Shelley, MD
Canniesburn Plastic Surgery Unit
Jubilee Building
Royal Infirmary
Glasgow, Scotland, UK
joerg.dabernig@gmx.at

The Flap Skin Donor Site: A Good Tool for Monitoring Flap Perfusion

To the Editor:

Soft tissue defects often require flap reconstruction or split-skin graft, or a combination of both. In many cases, flap reconstruction will include a skin paddle. We propose that a skin graft can be harvested from the skin paddle of the flap, which both provides a useful tool to monitor the viability of the flap and also provides a donor site of low morbidity.

A part of the split-skin donor site can be used for monitoring in the following fashion. The area used for monitoring is covered with gauze that has been impregnated with heparin. This prevents coagulation in the area used for monitoring. This gauze can be easily removed from the skin graft donor site on the flap paddle and wiped gently with a further heparin-soaked swab to provoke bleeding. This is a simple and safe method of checking flap vitality and avoids unnecessary pinpricking of the flap being monitored. This is particularly useful when less experienced staff may be involved in early flap monitoring as their decisions have far-reaching consequences while on night duty.

Further advantages of this method are a reduction in morbidity when a split-skin graft is required, wise economical use of tissue which has already been used for flap surgery, considerable reduction in postoperative pain after a split-skin graft from an insensitive donor site, and simultaneous reduction in the use of painkillers. We propose this method is simple and efficacious and can be routinely used in the case of flap surgery, as a method to monitor flap perfusion.
duction at the donor site. From experience, most pain is caused at this site; this situation can be avoided in the future, which also leads to a conspicuous reduction in the use of painkillers.

This method (Fig. 1), which is carried out routinely in our department, leads to a rational economic use of the tissue employed, to a reduction in donor site morbidity, to a significant reduction in postoperative pain, and to a reduction in postoperative pain medication.

Jörg Dabernig, MD
Stuart Watson, FRCS(Plst)
Canniesburn Plastic Surgery Unit
Jubilee Building
Royal Infirmary
Glasow, Scotland
joerg.dabernig@gmx.at

An Alternative Approach to the Delayed Sural Flap

To the Editor:

We read with interest the recent article by Erdmann et al.1 in Annals of Plastic Surgery and congratulate them on their successful use of the delayed sural flap in a difficult patient group. Since the original description of the sural flap by Masquelet et al.,2 this flap has been modified and used widely within Plastic Surgery for lower limb reconstruction.3–5 The findings certainly indicate that caution needs to be taken when using the sural flap in high-risk patients. We agree that the delayed sural flap is a useful technique, particularly for patients with significant comorbidity where free tissue transfers are high risk and operation time needs to be kept to a minimum. In addition, the sural flap can be raised under regional anesthesia, obviating the need for a general anesthetic. For these reasons, the sural flap is routinely used within our unit, often as a delayed procedure, when the patient’s comorbidity precludes free tissue transfer.

From our experience of using the delayed sural flap, we would like to suggest several alternative points of technique that do not compromise the safety of the flap, even in high-risk patients. First, we would disagree with Erdmann1 that the proximal neurovascular bundle needs to be left intact until the second procedure. It can be safely divided and the flap based upon the distal pedicle, provided the flap is replaced in its original anatomic position without tension. This improves the reorientation of blood flow (delay phenomenon) and increases the chances of flap survival after transposition. In our hands, this has resulted in complete flap survival, including in high-risk patients. Second, we do not feel that positioning a glove under the flap during the delay procedure is necessary. Without using a glove, raising the flap from the donor site after 2 weeks can be achieved without difficulty, using fingertip dissection, as minimal adhesions have occurred at this stage. This has the advantage of reducing the infection risk inherent with the insertion of a foreign body, especially in patients with comorbidity, such as diabetes. Third, we recommend strict leg elevation, for a minimum of 7 days, to reduce the high rate of venous congestion associated with the sural flap. We would also recommend taking a subcutaneous vein with the flap during the initial flap-raising procedure. This can subsequently be microsurgically anastamosed to a local vein if venous congestion remains a problem after flap transposition and insetting.

Overall, we agree that the delayed sural flap is a useful flap in a select group of patients with significant comorbidity that would preclude free tis-

FIGURE 1. Application of the method described in the text, with a harvested SSG to cover an additional defect in the trauma zone. The graft is taken from the skin paddle of the flap, which is an insensitive donor site.
Debulking of Free Perforator Flaps for Head and Neck Reconstruction Using an Arthroscopic Shaver

To the Editor:

Free flap contouring in head and neck reconstruction is commonly performed at the end of therapy. The cosmetic result of a free flap is unpredictable during the main reconstructive procedure. Several factors such as flap contracture, postoperative radiotherapy, and muscle atrophy due to denervation affect the wound healing. For these reasons, the common approach is to provide a reconstruction with a flap larger than necessary. Usually after the completion of the therapy for the cancer, several ancillary procedures have to be performed to obtain symmetry and contour. Traditionally, surgical excision of the subcutaneous fat or liposuction systems (suction assisted, ultrasound, laser, or power assisted) are used to debulk the flap.1,2 The surgical excision, the most commonly used procedure, may cause partial or total flap failure in case of damage of the pedicle or the perforator of the flap particularly if performed in early stages.3 Moreover, liposuction systems are effective with the subcutaneous fat but not with fibrotic tissues. We successfully used an arthroscopic shaver for flap debulking in 11 patients. The arthroscopic shaver system is a motorized system consisting of an outer hollow sheath and an inner hollow rotating cannula with corresponding windows (Fig. 1).4 The window of the inner sheath function as a cylindrical blade that rotate into the outer sheath and cut the soft tissues sucked in by a suction system. The procedure is easy and can be performed under local anesthesia using commonly available arthroscopic instruments. A small incision is all that is needed to allow the shaver to enter the selected layer to be debulked. The incision used for a scar revision, skin excision, or local plasty can be used as an alternative way to reach different layers to be contoured (Fig. 1). The device allows easy removal of fibrotic tissues on the submucosal plane of the oral cavity, which is particularly difficult with liposuction after radiotherapy. The shavers have a blunt tip and are side-cutting causing minimal damage to vessels.

No complications such as infection, seroma, hematoma, altered sensation, contour irregularities, or skin necrosis have been encountered in our series. The results were cosmetically acceptable; the procedure is easy and cost effective since the device is available in hospitals with orthopedic departments.

Emanuele Cigna, MD
Department of Plastic Surgery
E-Da Hospital/I-Shou University
Yan-chau Shiang, Taiwan
Department of Plastic Surgery
University of Rome
La Sapienza, Italy
emanuelecigna@msn.com

Paolo Sassu, MD
Prashanth Varkey, MBBS, MS, MCh
Ngian Chye Tan, MBBS
Yi-Tien Liu, MD
Department of Plastic Surgery
E-Da Hospital/I-Shou University
Yan-chau Shiang, Taiwan

REFERENCES

Jörg Dabernig, MD
David J. McGill, MRCS(Ed)
Canniesburn Plastic Surgery Unit
Jubilee Building
Royal Infirmary
Glasgow, Scotland, UK
joerg.dabernig@gmx.at

REFERENCES

FIGURE 1. The incision of a skin excision is used to reach different layers to be debulked.

Debulking of Free Perforator Flaps for Head and Neck Reconstruction Using an Arthroscopic Shaver

To the Editor:
Free flap contouring in head and neck reconstruction is commonly performed at the end of therapy. The cosmetic result of a free flap is unpredictable during the main reconstructive procedure. Several factors such as flap contracture, postoperative radiotherapy, and muscle atrophy due to denervation affect the wound healing. For these reasons, the common approach is to provide a reconstruction with a flap larger than necessary. Usually after the completion of the therapy for the cancer, several ancillary procedures have to be performed to obtain symmetry and contour. Traditionally, surgical excision of the subcutaneous fat or liposuction systems (suction assisted, ultrasound, laser, or power assisted) are used to debulk the flap. The surgical excision, the most commonly used procedure, may cause partial or total flap failure in case of damage of the pedicle or the perforator of the flap particularly if performed in early stages. Moreover, liposuction systems are effective with the subcutaneous fat but not with fibrotic tissues. We successfully used an arthroscopic shaver for flap debulking in 11 patients. The arthroscopic shaver system is a motorized system consisting of an outer hollow sheath and an inner hollow rotating cannula with corresponding windows (Fig. 1). The window of the inner sheath function as a cylindrical blade that rotate into the outer sheath and cut the soft tissues sucked in by a suction system. The procedure is easy and can be performed under local anesthesia using commonly available arthroscopic instruments. A small incision is all that is needed to allow the shaver to enter the selected layer to be debulked. The incision used for a scar revision, skin excision, or local plasty can be used as an alternative way to reach different layers to be contoured (Fig. 1). The device allows easy removal of fibrotic tissues on the submucosal plane of the oral cavity, which is particularly difficult with liposuction after radiotherapy. The shavers have a blunt tip and are side-cutting causing minimal damage to vessels.

No complications such as infection, seroma, hematoma, altered sensation, contour irregularities, or skin necrosis have been encountered in our series. The results were cosmetically acceptable; the procedure is easy and cost effective since the device is available in hospitals with orthopedic departments.

Emanuele Cigna, MD
Department of Plastic Surgery
E-Da Hospital/I-Shou University
Yan-chau Shiang, Taiwan
Department of Plastic Surgery
University of Rome
La Sapienza, Italy
emanuelecigna@msn.com

Paolo Sassu, MD
Prashanth Varkey, MBBS, MS, MCh
Ngian Chye Tan, MBBS
Yi-Tien Liu, MD
Department of Plastic Surgery
E-Da Hospital/I-Shou University
Yan-chau Shiang, Taiwan

REFERENCES
Ectopic Bone Formation Following Temporalis Muscle Transposition for Facial Paralysis: A Rare Complication?

To the Editor:

Ectopic bone formation following temporalis muscle transposition for congenital facial paresis has been reported only twice previously in children.1,2 A case of ectopic bone formation following masseter muscle transposition has also been reported.3

We report another similar case of a 17-year-old girl with left-side congenital facial nerve palsy. At the age of 6, she had reconstruction with a temporalis muscle transposition in another hospital. She came to our clinic at the age of 17, seeking further esthetic improvement.

On examination, it was noted that she had a hard, irregular prominence in her left cheek, a hollow temporal fossa deformity, lagophthalmus of the left eye, and a very limited movement of the angle of the mouth while smiling (Fig. 1). A computed tomography scan showed subcutaneous ectopic bone formation in the cheek, pulling at the angle of the mouth on animation (Fig. 2). This ectopic bone was resected using the previous preauricular incision (Fig. 3). In the same operation, a silicone spacer was implanted in the temporal hollow, and lateral tarsorrhaphy of the left eye was preformed, with marked improvement in the patient’s appearance.

A few possible explanations for ectopic bone formation in these cases have been suggested. A likely explanation is ectopic bone formation from transfer of periosteum with the muscle flap.3 Ectopic bone formation can also follow soft-tissue trauma or surgery.4 We would like to suggest that this complication might not be as rare as has been thought and should be expected whenever temporalis muscle transfer is done in children. Therefore, care should be taken to avoid including the periosteum in muscle transfer operations, especially in children.

Neta Adler, MD
Plastic Surgery Department
Rabin Medical Center
Petah Tikva, Israel
netaadle@post.tau.ac.il.

Batya Yaffe, MD
Hand Surgery Department
Sheba Medical Center
Ramat Gan, Israel

REFERENCES

Lasers and Light Devices A to Z

Various lasers and light technology devices are now available on the international market for plastic surgery. However, most do not have an established record of safety in Japan. I recently encountered patients with complications of these “unknown imported devices” and realized that plastic surgeons should know at least “what they are.” Therefore, I prepared the following “A to Z” for quick reference. Over 160 devices were referred. Readers are invited to add to and revise this information.

Adept Medical, UltraWave I-III/A/YAG, Nd:YAG/Alex, H/R/V, SpectraPulse Ultra, IPL, H/R, UltraLight 532, Diode, H

Aesthera, Photopneumatic system, Vacuum +IPL, V/H/R Alderm, Omnilight, LED, A/R, HR-Force, Diode, H

American Medical Bio Care, Omnilight FPL, IPL, H/R/V, Naolight FPL, IPL, A/H/R/V

Archer Medical, Quadraz, Er:YAG/Nd:YAG/Alex/H/V/T

BioCell, MediDerm, Er:YAG, R/W Biolitec, Ceralas, Diode, V

Dr. Ichikawa,

We are writing to announce an error in the citation of the laser technology used in our institution. The correct information should be:

CO2 laser, Diode, H

We have reviewed our records and confirm that the CO2 laser, Diode, H technology was indeed used in the reported procedures. Our apologies for any confusion caused by the previous incorrect citation.

Yours sincerely,

Kota Ichikawa, MD
Department of Plastic Surgery
Tokai University School of Medicine
Kanagawa, Japan

ichikota@is.icc.u-tokai.ac.jp