Dead Sea Workshop
16th - 23rd February 2009

The Dead Sea Rift as a natural laboratory for earthquake behavior: prehistorical, historical and recent seismicity

Organized by
Rivka Amit, Geological Survey of Israel
Alessandro M. Michetti, INQUA Paleoseismology Subcommission

Co-organizers: Amotz Agnon, Ari Matmon, The Hebrew University of Jerusalem

Edited by:
Rivka Amit
Amotz Agnon
Ari Matmon

In collaboration with:

UNESCO
Geological Survey of Israel
Safed Scientific Workshop Program
Hebrew University of Jerusalem
The Israel Geological Society
Israel National Earthquake Preparedness Committee
University of Missouri, Kansas City USA
Acknowledgment:

The field guide was made possible through the financial support of the Geological Survey of Israel. We thank Yoav Nahamias for his outstanding help in the workshop organization. Thanks to Shalev Siman-Tov for his technical assistance and contribution in preparing the figures, Rani Calvo and Shalev Siman-Tov for providing photographs, Rami Madmon, Yaacov Mizrahi and Yaacov Refael for their technical assistance. We specially thank Avner Ayalon for his editorial assistance, Bat-Sheva Cohen, Chana Netzer-Cohen and Nili Almog for their editorial and graphical design of the field guide.
Contents

Introduction - The Dead Sea Fault

Hula Valley (pages 1-21)
- Hula basin
- Evaluation of rockfall hazard to the city of Qiryat Shemona, N. Israel - possible correlation to earthquakes

Sea of Galilee (pages 23-53)
- Paleoseismic study of earthquake induced landslide hazard in the city of Safed, northern Israel
- The history of the Frankish Castle of Vadum Iacob - Ateret
- Paleo PGA estimates around the Sea of Galilee from back analysis of old landslides and structural failures in historic monuments
- Paleoseismology of the Eastern Sea of Galilee

Dead Sea (pages 55-117)
- Radon signals in geogas of the upper crust – The Enot Zuqim sector, NW Dead Sea
- Active tectonics in the Nahal Darga Fan-Delta
- Collapse-sinkholes near Mineral Beach - Do sinkhole clusters reveal active faults buried within the sediments of the Dead Sea basin?
- Ze’elim Gully - a high-resolution lacustrine paleoseismic record of the late Holocene Dead Sea basin
- High-Resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform
- Mor structure: example for Late Pleistocene north-south extension in the Dead Sea basin
- Emplacement mechanism and fracture mechanics of clastic dikes

Petra, Jordan (pages 119-124)
- Paleoseismology and archaeoseismology of sites in Aqaba and Petra, Jordan
Arava valley (pages 127-205)

◇ The structure of the western margin of the Dead Sea Rift, southern Arava Valley
◇ Geodetic and geophysical background of the Arava Valley
◇ Late Quaternary seismicity of the Southern Arava Valley, the Dead Sea Fault
◇ Landscape development in a hyper arid sandstone environment along the margins of the Dead Sea Fault: implications from dated rock falls
◇ Reconstructing active rift margin tectonics using cosmogenic exposure age dating of desert pavements: Quaternary subsidence along the western margin of the Dead Sea Rift

Judean Mountains (pages 207-212)

◇ Speleoseismology in the Soreq Cave: The first dated ultra-long record of strong earthquakes
Introduction - The Dead Sea Fault

Shmuel Marco

The Department of Geophysics and Planetary Sciences, Tel Aviv University.

E-mail: shmulikm@tau.ac.il

The Dead Sea Fault (DSF) accommodates sinistral motion between the Arabia plate and the Sinai subplate since the Middle Miocene, ~20 Ma. The interpretation of 107 km left-lateral slip along the DSF is based on observations from four independent sources: regional plate tectonics, local geology, seismology, and geodesy. The regional tectonics shows that the Red Sea is an incipient ocean, where the Arabian plate has been breaking away from Africa since Late Oligocene-Early Miocene. This motion is transferred to the collision with Eurasia via sinistral shear along the DSF (Courtillot et al., 1987; Freund, 1965; Garfunkel, 1981; Joffe and Garfunkel, 1987; Quennell, 1956). Local geology shows systematic offset of numerous pre-Miocene geologic features by a total of ~107 km (Bartov et al., 1980; Freund, 1965; Quennell, 1956) and fault geometry that indicates left-lateral motion (Garfunkel, 1981). Paleoseismic and archaeoseismic studies show sub-recent activity as sinistral offsets of natural and of manmade structures (e.g., Amit et al., 2002; Ellenblum et al., 1998; Klinger et al., 2000; Meghraoui et al., 2003; Niemi et al., 2001). Focal mechanisms of moderate-to-large earthquakes show sinistral motion along the DSF and generally are in agreement with the location of the active faults, based on geological data (Baer et al., 1999; Hofstetter et al., 2007; Klinger et al., 1999; Salamon et al., 1996). And finally, geodetic measurements are consistent and confirm the left-lateral slip as well as the slip rate from other palaeoseismic evidence of 4±1 mm/yr (Le Beon et al., 2006; Le Beon et al., 2008; McClusky et al., 2003; Reilinger et al., 2006; Wdowinski et al., 2004). This rate, as well as uniform Gutenberg-Richter frequency-magnitude relation, indicate stable tectonic regime in the last 60 ka (Begin et al., 2005; Hamiel et al., 2008).

The complex geometry of the fault is apparent in pull-apart grabens, which are associated with releasing bends, and pressure ridges that formed where restraining bends occur. Garfunkel (1981) maintains that the pull-apart basins are all shorter the total lateral offset because they began to
form at a later stage, after some motion had already accrued. This view is supported by seismic surveys that reveal earlier buried basins, which are no longer active (Frieslander, 2000).

The pull-apart basins have acted like sediment traps. Studies of the Miocene to Recent clastic and evaporitic sediments as well as some magmatic sequences that accumulated in the basins have yielded a wealth of information and insight on the history of sedimentological conditions and processes (e.g., Bookman et al., 2004; Frostick and Reid, 1989; Klinger et al., 2003; Sneh, 1981, 1982; Tsatskin and Nadel, 2003), climate (e.g., Bartov et al., 2003; Begin et al., 1974; Frumkin et al., 1991; Stein, 2001), geomagnetic secular variation (Marco et al., 1998), seismicity and deformation (e.g., Agnon et al., 2006; Bartov and Sagy, 2004; El-Isa and Mustafa, 1986; Heifetz et al., 2005; Ken-Tor et al., 2001; Marco et al., 1996; Migowski et al., 2004), fauna and flora (Kislev et al., 1992), humans, and environment (e.g., Braun et al., 1991; Goren-Inbar and Belitzky, 1989; Goren-Inbar et al., 2000; Ron and Levi, 2001).

Several authors noted that the detailed shape of the DSF had changed through time (Garfunkel, 1981; Heimann and Ron, 1987, 1993; Marco, 2007; Rotstein et al., 1992; Shamir et al., 2005; ten Brink et al., 1999; ten-Brink and Ben-Avraham, 1989). The widest zone of about 50 km of distributed faulting is found in the Galilee, where the early-stage (Miocene) faults were associated with formation of basins (Freund et al., 1970; Shaliv, 1991) and with rotation of rigid blocks about sub-vertical axes (Ron et al., 1984). Subsequent post-Miocene deformation took place mostly in the form of normal faulting on E-W trending faults and the transform movement is currently localized in a very narrow zone. The deformation in the south was characterized initially by a 20-30-km-wide zone with primarily strike-slip and some normal slip on faults trending sub-parallel to the main transform fault. It later became localized in the Arava, where a single narrow fault zone offsets the youngest alluvium. In the earliest phase, young faults became active in the Negev, some 20 km west of the Arava (Avni et al., 2000), perhaps indicating another widening phase of the DSF zone (Marco, 2007).

<p>| Table 1. Various estimates of the Dead Sea Fault slip rate |
|---------------------------------|-----------------|---------------|-----------------|
| Period | Rate mm/y | Data | Reference |
| Late Pleistocene-Recent | 10 | Geological | (Freund et al., 1968) |
| Last 1000 yr | 0.8-1.7 | Historical | (Garfunkel et al., 1981) |</p>
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Event Type</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plio-Pleistocene</td>
<td>Geological</td>
<td>(Garfunkel et al., 1981)</td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>Seismicity</td>
<td>(Ben-Menahem, 1981)</td>
<td></td>
</tr>
<tr>
<td>Last 4500 yr</td>
<td>2.2 Seismicity</td>
<td>(El-Isa and Mustafa, 1986)</td>
<td></td>
</tr>
<tr>
<td>Late Pleistocene</td>
<td>6.4±0.4 Seismicity</td>
<td>(Joffe and Garfunkel, 1987)</td>
<td></td>
</tr>
<tr>
<td>Plio-Pleistocene</td>
<td>6 (0.283°/ma) Plate kinematics</td>
<td>(Reches and Hoexter, 1981)</td>
<td></td>
</tr>
<tr>
<td>Holocene</td>
<td>9 Geological</td>
<td>(Steinitz and Bartov, 1986)</td>
<td></td>
</tr>
<tr>
<td>Plio-Pleistocene</td>
<td>20 Geological</td>
<td>(Gardosh et al., 1990)</td>
<td></td>
</tr>
<tr>
<td>Holocene</td>
<td>>0.7 Geological</td>
<td>(Heimann, 1990)</td>
<td></td>
</tr>
<tr>
<td>Plio-Pleistocene</td>
<td>5.4-6.1 Geological</td>
<td>(Ginat et al., 1998)</td>
<td></td>
</tr>
<tr>
<td>Plio-Pleistocene</td>
<td>3-7 Drainage systems, Arava Fault</td>
<td>(Klinger et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td>2-6, prefer 4 Alluvial fans, N. Arava</td>
<td>(Niemi et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td>4.7±1.3 Alluvial fans, Arava</td>
<td>(Meghraoui et al., 2003)</td>
<td></td>
</tr>
<tr>
<td>Last 2000 yrs</td>
<td>6.9±0.1 Paleo and Archaeoseismology, Missyaf (DSF in Syria)</td>
<td>(Klingers, 2008)</td>
<td></td>
</tr>
<tr>
<td>1996-1999</td>
<td>2.6±1 Geodesy, GPS</td>
<td>(Pe’eri et al., 2002)</td>
<td></td>
</tr>
<tr>
<td>1996-2003</td>
<td>3.3±0.4 Geodesy, GPS</td>
<td>(Wdowinski et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>25 ka</td>
<td>3.8-6.4 Geological, Lebanon</td>
<td>(Daëron et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Last 5000 yrs</td>
<td>≥3 Stream channel, Jordan Gorge</td>
<td>(Marco et al., 2005)</td>
<td></td>
</tr>
<tr>
<td>Survey-Mode GPS</td>
<td>5.6 to 7.5 (from south to north)</td>
<td>(McClusky et al., 2003)</td>
<td></td>
</tr>
<tr>
<td>1999-2005</td>
<td>4.9±1.4 GPS</td>
<td>(Le Beon et al., 2008)</td>
<td></td>
</tr>
<tr>
<td>Last 47.5 kyrs</td>
<td>4.7 to 5.1 Offset channels, Jordan Gorge</td>
<td>(Ferry et al., 2007)</td>
<td></td>
</tr>
</tbody>
</table>

References

Ben-Menahem, A., 1981, Variation of slip and creep along the Levant Rift over the past 4500 years: Tectonophysics, v. 80, p. 183-197.

Freund, R., 1965, A model of the structural development of Israel and adjacent areas since Upper Cretaceous times: Geol. Mag., v. 102, p. 189-205.

